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Abstract—The current trend for deep learning has come
with an enormous computational need for billions of Multiply-
Accumulate (MAC) operations per inference. Fortunately, re-
duced precision has demonstrated large benefits with low impact
on accuracy, paving the way towards processing in mobile devices
and IoT nodes. Precision-scalable MAC architectures optimized
for neural networks have recently gained interest thanks to their
subword parallel or bit-serial capabilities. Yet, it has been hard to
make a fair judgment of their relative benefits as they have been
implemented with different technologies and performance targets.
In this work, run-time configurable MAC units from ISSCC
2017 and 2018 are implemented and compared objectively under
diverse precision scenarios. All circuits are synthesized in a 28 nm
commercial CMOS process with precision ranging from 2 to 8
bits. This work analyzes the impact of scalability and compares
the different MAC units in terms of energy, throughput and
area, aiming to understand the optimal architectures to reduce
computation costs in neural-network processing.

Index Terms—ASIC, deep neural networks, neural-network
accelerators, multiply-accumulate, MAC, configurable circuits,
precision-scalable circuits.

I. INTRODUCTION

The current trend for deep-learning applications, such as
image classification and speech recognition, has come with
an enormous computational need. Indeed, state-of-the-art
Deep Neural Networks (DNN) require billions of Multiply-
Accumulate (MAC) operations, the fundamental component
of their convolution layers, as well as fetching of millions of
network parameters (weights) and feature maps (activations).
Many hardware improvements have recently been proposed,
innovating at different abstraction levels to solve both memory
and computational bottlenecks [1], [2].

Exploiting reduced precision has demonstrated huge benefits
with no or negligible impact on the network accuracy, paving
the way towards embedded DNN processing in mobile devices
and IoT nodes. It has led to a new trend for precision-scalable
neural processors to minimize energy at target performance
without giving up flexibility. Recent papers have introduced run-
time configurable MAC architectures optimized for deep learn-
ing, built either with high parallelization capabilities [3], [4]
or bit-serial approaches [5], [6].

However, it is difficult to assess the efficiency of these
architectures for two reasons. 1) They have been implemented
using diverse process technologies, bitwidths and scalability
levels, and have been integrated within quite different systems,
with various memory sizes and interfaces, or targeting different
trade-offs. This makes it impossible to extract the precise cost
of the MAC or its contribution to the system. 2) While nearly all

TABLE I. REVIEWED DESIGNS AND THEIR SCALABILITY FEATURES
Weight Activati
MAC architecture elg' R ¢ lva‘ l.on
scalability scalability

Conventional [7]

DVAEFS (Envision [3])
Divide-and-conquer (DNPU [4])
Bit serial (UNPU [5])

Multi-bit serial (this work)

Data gating Data gating

Symmetric subword parallel
Subword parallel ~ Data gating
Serial Data gating

Serial Data gating

these works detail the relative efficiency breakdown of scaling
down precision in their design, few evaluate their absolute
performance against a baseline design, without configuration
nor parallelization overheads.

In this work, the most prominent precision-scalable MAC
accelerators are presented, implemented, and compared in a
fair way under different precision scenarios. All circuits are
synthesized in a 28 nm CMOS process with bitwidth precision
ranging from 8 bits down to 2 bits using both hardware
scalability features and data gating. This study analyzes the
impact of precision scalability on energy efficiency, especially
its unavoidable energy overhead due to the introduced config-
urability, and gives a global picture of energy and throughput-
per-area capabilities of the different architectures.

This paper is organized as follows. Section II introduces
general considerations about scaling precision and details the
deducted methodology to compare the different designs with
impartiality. Section III surveys the considered architectures.
Finally, Section IV analyzes the energy breakdown of scalability
individually and presents a comparison across all approaches.

II. CONSIDERATIONS AND METHODOLOGY
A. Scalability by Design and by Data Gating

Precision-scalable MACs have gained interest following the
observation that the optimum bit-width for a DNN strongly
varies from one application to another, and even across the
different layers of a single DNN [7].

The easiest way to scale precision in arithmetic circuits is
to use data gating, i.e. reducing precision by simply zeroing
operands’ LSBs to avoid unnecessary toggling in the circuit.
This only introduces marginal overhead in the MAC periphery,
leaving the MAC untouched. In contrast, precision-scalable
architectures embed additional features by design, inside the
MAUQ, to increase parallelism or to clock-gate unused parts of
the circuit. However, these features have a cost. First, they imply
some control circuitry, outside of the MAC unit, which can
fortunately be shared among an array of processing elements.



More importantly, they induce hardware overhead in each MAC,
leading to increased area, delay and power consumption. This
is why neural processing elements often support a limited set
of precisions by design, such as 2b, 4b and 8b inputs.

Two schools of thought exist for scaling DNN computations.
Research originally aimed at weight-only precision scaling
rather than activation, mainly to decrease model sizes. But late
works started to quantize both weights and activations, which
can be simplified as a symmetric scaling scenario, where both
weights and activations are scaled at the same precision.

B. Scope and Methodology of the Study

This paper evaluates the precision-scalable MAC designs
listed in Table I, most of them presented at ISSCC 2017 and
2018. They are studied for 2b, 4b and 8b precisions, these
values being commonly found in literature. Both symmetric
and weight-only scaling scenarios are considered.

Multiple implementations of each architecture are made,
varying their level of scalability starting from their 8b baseline.
For instance, a 1-level scalable design allows to scale from 8b
down to 4b by design, the 2b mode carried out by data gating
over the 4b mode. A 2-level scalable design directly allows to
scale down to 4b and 2b by design. Circuits are implemented
in such a way that for any precision scenario, the accumulator
bitwidth is exactly 4b larger than the multiplication range.

All architectures are generated from SystemVerilog descrip-
tions with signed-weight and unsigned-activation represen-
tations. They are built at the highest level of abstraction
without individual optimization. All circuits are synthesized
with identical compiler options following a multi-mode timing
optimization to find the best delay trade-off for all scaling
scenarios. Finally, a design-space exploration is performed
across all the achievable throughputs.

For each circuit and each precision mode, Mentor Questa
is used to generate VCD switching information from a timed
gate-level simulation at best clock period. The simulation for
each mode consists out of 10,000 operations with Gaussian-
distributed random inputs. VCD files are then fed back to
Cadence for power estimation. Power and area of input registers
and overheads that can be shared among multiple processing
elements (e.g. control logic or finite state machines) are not
included in the reported results.

III. SURVEY OF MULTIPLY-ACCUMULATE UNITS
A. Data-Gated Conventional MAC

The baseline of this study is a data-gated conventional
MAC unit as in [7]. When scaled precision is used, only
the MSBs are used for computation while the LSBs are kept at
zero. Hence, the switching activity is reduced. As the critical
path going only through the MSBs is shorter, the frequency
can dynamically be increased or the supply voltage can be
lowered at equal throughput.

This is illustrated in Fig. 1, showing from left to right the use
with full precision, 4-bit symmetric scaling, and 2-bit weight-
only scaling. When using scaled-precision computations, some
parts of the multiplier and accumulator logic keep unused,

as shown by the grey stripes. However, as this MAC does
not embed any configurability feature, such as selective clock
gating, all registers stay clocked despite no data reach LSBs.

[ 4o [0000] [2b]000000]
- | |
@ unused
x 2 X | unused
@ x
16b 16b [ l 16b ]
[ |
)| =
200 ][ 20bf ]| 20bf l
ti

t—

Fig. 1. Data-gated conventional MAC with an example of symmetric 4bx4b
scaling (middle) or weight-only 2bx8b scaling (right).

B. DVAFS MAC

Dynamic Voltage-Accuracy-Frequency Scaling (DVAFS) was
introduced by Moons et. al [3]. Built on an array multiplier
circuit, the DVAFS MAC reuses full-adder cells that are inactive
at scaled precision. This scales together weight and activation
with symmetric subword parallelism, as shown on Fig. 2.
Similar to the data-gated conventional multiplier, the shortened
critical path permits an increased clock frequency. Note that
processing at full precision with DVAFS comes at a slight
energy and area penalty due to the complex configuration and
sign-compensation logic overheads, and the larger registers
required for extra accumulation bits.
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Fig. 2. Symmetric precision scaling in a DVAFS MAC configured for either
one 8bx8b, two 4bx4b, or four 2bx2b operations per cycle.

C. Divide-and-Conquer Strategy

The Deep Neural Processing Unit (DNPU), introduced by
Shin et. al [4], uses a reconfigurable multiplier with a divide-
and-conquer (D&C) approach on one operand. As shown on
Fig. 3, the full-precision multiplier is built out of shifted binary
additions of partial products. By this manner, intermediate
sums directly correspond to scaled multiplication results.

Only one operand is subword parallel, doubling the number
of operations per cycle for each scalability level. The other
operand is common to all subword computations, restricting
its use to repeated operand, but allowing parallelization when
one operand has to stay at full precision. Scaling of the second
operand is always possible by data gating.



Fig. 3. Weight-only precision scaling in a D&C MAC configured for either
one 8bx8b, two 4bx8b, or four 2bx8b operations per cycle.

D. Bit-Serial Designs

Bit-serial designs have recently gained attention with both
the Unified Neural Processing Unit (UNPU) by Lee et. al [5]
and the QUEST log-quantized 3D-stacked inference engine by
Ueyoshi et. al [6]. Indeed, bit-serial operand feeding implicitly
allows fully-variable bit precision. Considered in this study, the
UNPU bit-serial MAC receives weights through 1-bit iterations
while activations are sent in a parallel manner, as illustrated
in Fig. 4. Scaling activation is possible by data gating.
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Fig. 4. Weight-only precision scaling in a bit-serial MAC configured for either
8bx 8b, 4bx8b, or 2bx 8b operations.

This work extends the original bit-serial concept by introduc-
ing multi-bit serial designs. Fig. 5 shows the example of a 4-bit
serial MAC, where weights are fed 4 bits at a time. This scheme
requires only 2 clock cycles for an 8-bit computation, hence
reducing the energy consumed in the clock tree and registers.
Lower precision can be obtained by gating the unnecessary
bits. This survey includes both 2-bit and 4-bit serial MACs.
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Fig. 5. Weight-only precision scaling in a 4-bit serial MAC configured for
either 8bx8b, 4bx8b, or 2bx8b (by gating the 4bx8b) operations.

IV. RESULTS AND COMPARATIVE STUDY

A. Precision-Scaling Energy Breakdown

Figs. 6-8 show the breakdowns of energy per operation
when scaling precision for each type of architecture, selecting
the circuit with the lowest energy per operation (without
consideration for throughput or area). The left subfigures show
symmetric scaling scenarios while the right ones show weight-
only scaling. Energy values are normalized to the full-precision
data-gated conventional MAC drawn with a solid black line.

Processing at full precision with scalable designs comes
with some energy penalty. 8-bit computations with DVAFS
(Fig. 6) consume 13 % and 28 % more energy than data gating
for embedding 1 and 2 levels of scalability, respectively. For
D&C circuits (Fig. 7), these overheads are roughly similar with
respectively 18 % and 26 % extra energy per 8-bit operation.

Despite their efficient use of area, serial designs (Fig. 8)
require much more energy at high precisions due to their need
for several clock cycles per computation, diluting the power
into the clock tree and the multiplication registers. Reassuringly,
the proposed multi-bit designs come at a lower energy penalty:
the 4-bit serial MAC reduces the energy overhead to 57 %.
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Fig. 6. Normalized energy/op with precision scaling in a DVAFS MAC.
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Fig. 7. Normalized energy/op with precision scaling in a D&C MAC.
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Fig. 8. Normalized energy/op with precision scaling in a serial MAC.



a) 2-bit symmetric scaling

b) 4-bit symmetric scaling

c) 8-bit full precision

0.35 0.8 25¢
Q
03f 8 0.7 wr M
— 00 ~ —~ 2
br) D@0 br) br)
e 206y e
o 025 a %
g = $os om0’ 815 o
o o o
g 02 U 5 5
= c04r 5 (=
w w g oy -
0 15 g1rolc i
[ - (TS 2 :a Bl 03
0.1 | | | | | J 0.2 . . . | 0.5 . . X i . |
6 8 10 12 14 16 18 2 4 6 8 10 0 1 2 3 4 5 6
Throughput/area (GOPS/mrT12) Throughput/area (GOPS/mmZ) Throughput/area (GOPS/mn12)
06 d) 2-bit weight-only scaling ) e) 4-bit weight-only scaling
. o °o°' —»— Data gating [7]
0.55} E 0.9 oo
~a- 2-level DVAFS [3]
0.5 .e°° 0.8 g 1-level DVAFS [3]
©°e o0 o P

ok

Energy/op (pJ)
o
D
[$)]
Energy/op (pJ)
o
3

2-level divide-and-conquer [4]
1-level divide-and-conquer [4]

- 1-bit serial [5]
- 2-bit serial (this work)

0.4+ 0.6
wv‘VJ@
0.35f w____weoé 05
0.3 : : . : : 0.4 : :
0 2 4 6 8 10 1 2 3

Throughput/area (GOPS/mn?)

| I | . 4-bit serial (this work)
4 5 6 7

Throughput/area (GOPS/mn?)

Fig. 9. Comparison of MAC architectures synthesized in a 28 nm CMOS process in terms of energy/op and throughput/area under each precision mode.

Scaling both weights and activations (left subfigures) with
data gating leads to energy savings in a linear way with respect
to the bit precision. In comparison, precision-scalable MACs
show a steeper slope, meaning that they save energy in a
superlinear way with bit precision. It is although insufficient
for the 1-bit serial design to compensate its energy penalty.
Below 4 bits, 1-level scalable MACs (including 4-bit serial)
can only scale precision through data gating, returning to the
slope of the baseline. Overall, DVAFS MACs display the best
energy reductions across the entire precision range.

When preserving full-precision activations (right subfigures),
savings are without exception far lower. As it is unsuitable
for weight-only scaling, DVAFS designs are penalized by their
overhead compared to the baseline MAC. D&C and serial
designs both follow similar trends as for symmetric scaling.
1-level scalable designs appear to be the best trade-off for
weight-only scaling: compared to 2-level scalable circuits, they
are superior in 4 bits and almost equivalent in 2 bits.

B. Comparative Study

Fig. 9 gives an overall comparison of the different MAC
architectures for each precision scenario in terms of energy
per operation and throughput per area. The best designs are
towards the bottom-right corners of subfigures.

At full precision (Fig. 9c), data gating is undoubtedly the
most efficient technique, capable of the highest throughput
per area, followed first by 1-level and then by 2-level scalable
designs which suffer from longer critical path.

When scaling precision symmetrically (Figs. 9a-b), the
DVAFS architecture clearly outperforms all other architectures
in terms of energy per operation. In this mode, its subword
parallelism also yields to great throughput-area efficiency.

Note that with symmetric precision scaling, 1-level scalable
circuits stay the best compromise at 4 bits and above, this
trend reverses at 2-bit precision (inversion of bright and dark
curves), except for 1-bit serial MACs which stay the worst
trade-off due to their low speed and energy efficiency.

Interestingly, D&C and 4-bit serial MACs prove capable of
good symmetric scaling, despite not being optimized for it.
This is due to the optimization of the first adder stage of these
designs, which benefits together to all modes, while for DVAFS,
the same hardware has to be optimized for different objectives
as the critical path changes from one mode to the other.

When reducing weight precision only (Figs. 9d-e), D&C and
multi-bit serial architectures are the best trade-offs between
energy and throughput per area. By-passing internal additions,
D&C designs are advantaged for throughput, while 4-bit serial
circuits slightly exceed in terms of energy per operation. 2-bit
serial MACs outrun these two for 2-bit precision only.

V. CONCLUSION AND FUTURE WORK

This work has surveyed different precision-scalable MAC
architectures, namely DVAFS, divide-and-conquer and bit serial.
This later has been enhanced by introducing multi-bit serial
designs. All architectures have been synthesized in a 28 nm
process across a wide range of performance and precision
scenarios, and compared in terms of energy and throughput per
area. This preliminary study has shown that DVAFS surpasses
the state of the art for symmetric scaling, while multi-bit serial
and divide-and-conquer strategies exceed when scaling weights
only. It has also highlighted that less scalability levels can be a
good trade-off thanks to lower circuit overheads. Future works
could propose a more extensive analysis and cover additional
configurable or low-precision design techniques [8]-[10].
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