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Abstract

In Alan Westin’s generally accepted definition of privacy [1], he describes it as an indi-
vidual’s right “to control, edit, manage, and delete information about them[selves| and
decide when, how, and to what extent information is communicated to others.” There-
fore, privacy is an individual and independent human right. The great Mahatma Gandhi
once said that “interdependence is and ought to be as much the ideal of man as self-
sufficiency. Man is a social being.” To ensure this independent right to inherently social
beings, it will be difficult, if not impossible. This is especially true as today’s world is
highly interconnected, technology evolves rapidly, data sharing is increasingly abundant,
and regulations do not provide sufficient guidance in the realm of interdependency. In
this thesis, we explore the topic of interdependent privacy from an adversarial point
of view by exposing threats, as well as from an end-user point of view, by exploring
awareness, preferences and privacy protection needs.

First, we quantify the effect of co-locations on location privacy, considering an adver-
sary such as a social-network operator that has access to this information: Not only can
a user be localized due to her reported locations and mobility patterns, but also due to
those of her friends (and the friends of her friends and so on). We formalize this problem
and propose effective inference algorithms that substantially reduce the complexity of
localization attacks that make use of co-locations. Our results show that an adversary
can effectively incorporate co-locations in attacks to substantially reduce users’ location
privacy; this exposes a real and severe threat.

Second, we investigate the interplay between the privacy risks and the social benefits
of users when sharing (co-)locations on OSNs. We propose a game-theoretic framework
for analyzing users’ strategic behaviors. We conduct a survey of Facebook users and
quantify their benefits of sharing vs. viewing information and their preference for privacy
vs. benefits. Our survey exposes deficits in users’ awareness of privacy risks in OSNs.
Our results further show how users’ individual preferences influence, sometimes in a
negative way, each other’s decisions.

Third, we consider various types of interdependent and multi-subject data (photo, co-
location, genome, etc.) that often have privacy implications for data subjects other than
the uploader, yet can be shared without their consent or awareness. We propose a system
for sharing such data in a consensual and privacy-preserving manner. We implement it
in the case of photos, by relying on image-processing and cryptographic techniques, as
well as on a two-tier architecture. We conduct a survey of Facebook users; it indicates
that there is interest in such a system, and that users have increasing privacy concerns
due to prejudice or discrimination that they have been or could still easily be exposed



to.

In conclusion, this thesis provides new insights on users’ privacy in the context of
interdependence and constitutes a step towards the design of novel privacy-protection
mechanisms. It should be seen as a warning message for service providers and regu-
latory institutions: Unless the interdependent aspects of privacy are considered, this
fundamental human right can never be guaranteed.

Keywords: privacy protection, interdependent privacy, multi-subject data, location pri-
vacy, co-location, genomic privacy, online social networks, Bayesian inference, game the-
ory, consensual sharing



Résumeé

Dans son ouvrage Privacy and Freedom [1], Alan Westin décrit la protection de la spheére
privée comme un droit humain, individuel et indépendant: celui de pouvoir controler,
modifier et effacer les informations & propos de soi et d’étre capable de décider quand,
comment et dans quelle mesure celles-ci peuvent étre transmises a des tiers. D’autre
part, les paroles de Mahatma Gandhi rappellent le caractére profondément social de I’étre
humain et portent I'interdépendance au niveau d’idéal pour 'Homme, au méme titre que
I’autosuffisance. Il semble difficile, voire impossible, de garantir un droit individuel et
indépendant a un étre fondamentalement social, en particulier dans le monde hautement
interconnecté d’aujourd’hui. Cette thése explore I'impact de la nature interdépendante
des données personnelles sur la protection de ces derniéres.

Premiérement, nous quantifions 'impact des données de co-localisation sur la protec-
tion de la sphére privée. Dans le contexte des médias sociaux par exemple, un utilisateur
peut étre localisé non-seulement & partir des données qu’il a directement partagées, mais
également a partir de celles partagées par ses amis, amis d’amis et ainsi de suite. Nous
formalisons ce probléme et montrons comment les données de co-localisation peuvent étre
utilisées pour (mieux) localiser un individu. Pour ce faire, nous proposons un algorithme
d’inférence de localisation et mesurons son impact, exposant ainsi une menace sérieuse
et réelle.

Deuxiémement, nous investiguons les interactions entre les risques (en termes de
sphére privée) et les bénéfices qui découlent du partage de données de (co-)localisation sur
les médias sociaux. Nous proposons un modéle fondé sur la théorie des jeux pour analyser
le comportement des utilisateurs. Nous en estimons les différents paramétres a 'aide
d’une enquéte menée auprés d’utilisateurs de Facebook. Nos résultats montrent comment
les préférences d’un individu peuvent influencer les décisions d’autres utilisateurs, les
poussant parfois & divulguer plus d’information.

Troisiémement, nous nous concentrons sur le partage de différents types de données
interdépendantes ou multi-sujets (photos, co-localisations, génomes). Bien souvent, la
décision de partager ces données est prise de maniére unilatérale par un individu, sans
consentement unanime parmi les sujets concernés, voire & 'insu de ces derniers. Nous
proposons un systéme permettant de partager ces données de maniére consensuelle, tout
en protégeant la spheére privée des participants. Afin d’évaluer sa faisabilité technique,
nous l'implémentons dans le cadre du partage de photos, en utilisant des techniques
cryptographiques et de traitement d’image. Enfin, via une enquéte ciblée, nous montrons
un intérét pour notre systéme de la part des utilisateurs de médias sociaux.

En conclusion, cette thése permet de mieux comprendre les enjeux liés & la protection

vii



de la sphére privée dans un contexte d’interdépendance des données et constitue une
avancée dans la conception de mécanismes de protection adaptés. Ce travail constitue
également un message aux fournisseurs de services de partage en ligne et aux institutions
de régulation: tant que les aspects interdépendants de la protection de la sphére privée
ne sont pas pris en compte, ce droit humain ne pourra pas étre pleinement garanti.

Mots-Clés: protection de la sphére privée, interdépendance, données multi-sujets, don-
nées de (co-)localisation, médias sociaux, inférence Bayésienne, théorie des jeux, partage
consensuel, données génomiques
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Chapter 1

Introduction

The defence of privacy will be the saviour of the
future, essentially.

SVEA ECKERT

History provides abundant examples of technology having unanticipated, underesti-
mated and lasting consequences on humanity. Privacy is no exception to this, despite
having been one of the main concerns in our society for more than a century. With each
new wave of the industrial revolution, we have found ourselves in an increasingly chal-
lenging situation in terms of ensuring the right to individual privacy, long recognized to
be a fundamental human right!. The situation is becoming dire. With the advent of GPS
and camera-equipped smartphones and the growing popularity of online social networks
(OSNs), we interact with an increasing number of devices, services, and individuals, and
in an unprecedented number of ways: We track and share our fitness activities; we im-
mortalize our every move and social interaction through photos and posts on OSNs; we
search for directions everywhere we go; we hunt for jobs; we chat, shop, date, read books,
watch movies, and listen to music; and we can even determine our ancestry — all in the
digital environment. The cost? Our data and, consequently, our privacy. Be it through
the Web, mobile phones, or social media, in our daily activities, we produce increasing
amounts of data, such as traces of our location over time, our social ties, our preferences,
even our personal genome. But we trade these data in exchange for the many services
that we enjoy.

Sadly, grasping the extent of where and how this data, which is often held by corpo-
rations, is and could be used is a massive challenge; and one that we, as a society, have so
far failed. To name only a few examples, the research community has showed how, from
simple location data, a user’s social ties [2, 3], her interests [4], her personal locations
(e.g., home and workplace) [5], and her identity [6] can be inferred; even aggregate loca-
tion data can be exploited for membership inference attacks (i.e., determining whether

1“No one shall be subjected to arbitrary interference with his privacy, family, home or correspondence,
nor to attacks upon his honour and reputation. Everyone has the right to the protection of the law against
such interference or attacks.” Article 12, Universal declaration of human rights, United Nations, 1984



2 CHAPTER 1. INTRODUCTION

or not a target user is part of the aggregate), as shown by Pyrgelis et al. [7]. Seemingly
harmless information that a user shares, such as her music interests, can ultimately be
exploited in order to leak private information (e.g., her gender, relationship status and
age) by making use of information from other people (virtual strangers), whose harmless
interests are similar to hers [8]. Moreover, from our connections on OSNs or the data that
they share, information about us can be retrieved, such as our age [9] and our (potentially
hidden) OSN profile — representing our entire online identity — can be exposed [10, 11].
From the genomic data that our relatives share on dedicated online platforms, our own
genomic code can be inferred [12]. This code represents our entire biological identity,
from which extremely sensitive information can be extracted, such as our predisposition
to certain diseases.

Undoubtedly, much of the data that is made available very often involves (and has
privacy implications for) data subjects other than the individual who shares it online;
and these individuals often have no control over the sharing decision, or might not even
be aware of the fact that the data was made available. The consequences of this sharing
can often be very dramatic, even when there is no ill intent from the individual who
shared the data. An example of this is the case of an individual, whose decision to share
his genome online made possible the discovery of illegitimate siblings and ultimately lead
to his parents divorce [13]. With malicious intent, the damage can be catastrophic to
a person’s reputation. A sadly popular example of this is revenge pornography [14-16]
(i.e., the disclosure, by a former partuner, of photos or videos portraying sexually explicit
activity after the end of the relationship). This phenomenon has even led its victims to
commit suicide [17,18].

Although we are naturally linked as human beings and, as a result, our data is
naturally correlated and our actions inherently have consequences on others, our opinions
on the topic of privacy differ [19]; this is another aspect of the problem. Furthermore,
our awareness regarding privacy threats is also variable and often insufficient. This
is partly due to the fact that, whenever a user opts to use a service, its benefits are
advertized but the associated privacy risks are not; these risks are often impossible to
grasp, due to the complexity of the interactions and to the lack of transparency on how
the data is handled. Yet, it is well known that privacy and utility have been and, most
likely, will always be conflictual. At present, there are little to no mechanisms in place
to prohibit the disclosure, by one individual, of information that could affect another
individual. Hence, there is no incentive for service providers to change their behavior:
Current regulations do not enforce it (most likely due to the complexity of such a task),
and users do not enforce it (partially due to their lack of awareness).

The limits of how far data can be exploited, by the service provider holding it, or by
third parties, to the detriment of an individual are extremely fuzzy. Government agencies
already use data shared on OSNs for surveillance; and companies have and will find new
ways to use such available data to discriminate against people (for insurance purposes,
for hiring purposes, etc.) [20]. It is, therefore, paramount that we do not stop asking
ourselves about how far surveillance, discrimination, prejudice, blackmail and reputation
damage could extend, if left untamed. It is critical, perhaps now more than ever, for the
future of our society that we continually fight to ensure the fundamental right to privacy,
equally, for each and every individual.

In this thesis, we strive to push the balance of power towards the users and the leg-
islative authorities, by exposing new situations where individual privacy can be affected



in unforeseen ways, typically due to data interdependencies, and by designing technical
solutions to keep users informed and to mitigate the privacy risks introduced by others.

Contributions

In this thesis, we address privacy issues related to various types of interdependent and
multi-subject personal data. Our main contributions are as follows:

1. We identify the user-localization problem when co-location information is used.
This kind of information about users is increasingly available online: For instance,
by tagging the names of the friends with whom they are, mobile users increas-
ingly frequently report their co-locations with other users in the messages and the
pictures they post on OSNs. The users’ IP addresses also constitute a source of
co-location information. Combined with (possibly obfuscated) location informa-
tion, such co-locations can be used to improve the inference of the users’ locations,
yet at the cost of high complexity. We formalize this problem and derive an op-
timal inference algorithm that also exploits co-location information, by incorpo-
rating probabilistic knowledge of the users’ mobility and their disclosed locations.
We analyze its complexity and show that, in practice, this kind of inference al-
gorithm is intractable due to the explosion of the state-space size. We further
suggest several approximate inference algorithms, including a solution that relies
on the belief propagation algorithm executed on a Bayesian network model. We
contribute implementations of the proposed algorithms and extensively evaluate
their performance on a mobility dataset. Omne of our main findings is that the
belief-propagation method (approximate inference that makes use of the data from
all the users) converges to the solution of the optimal inference in polynomial time;
thus, we show that an adversary can effectively incorporate co-locations to bet-
ter localize users. Using the mobility dataset, we further quantify the effect of
co-location information on location privacy, under different user mobility settings
(e.g., frequency of co-location disclosures, whether or not the user obfuscates her
location before disclosing it, etc.). Our experimental results show that, even in the
case where the adversary considers co-locations of the targeted user with a single
friend, the median location privacy of the user is substantially decreased. Further-
more, in the case where a user does not disclose any location information herself,
her privacy can decrease by up to 21% simply due to the information reported by
her friends. This finding is paramount, as it brings to light the fact that users
do not have full control over their location privacy. Therefore, we reveal a new
threat to location privacy and suggest that protection mechanisms must not ignore
the social aspects of location privacy. For a first attempt at mitigating the pri-
vacy risks stemming from co-location information, we propose and evaluate some
simple countermeasures, including reporting fake co-locations and coordinated lo-
cation disclosure; the latter is entirely within users’ control and can reduce the
privacy loss by up to 50%. Finally, we propose other generalization-based methods
that socially aware location privacy-protection mechanisms could employ, such as
generalizing the identity of the co-located users or the time of a shared co-location.

2. We study one of the most popular features in location-based OSNs (such as Face-
book and Foursquare); this feature permits users to post location and co-location



CHAPTER 1. INTRODUCTION

(involving other users) information. Such posts bring social benefits to the users
who post them but also to their friends who view them. They also constitute a
severe threat to the privacy of all users involved and can have long-lasting and
unanticipated effects for other users. This is due to the interdependences that co-
location information introduces: Many users become connected and the collection
of the data that is shared can have privacy implications for all of them. We iden-
tify the need to evaluate such benefits and privacy consequences, for a first step
to understanding users’ reasons for sharing such information and to providing the
missing appropriate features that inform the affected users and solicit their con-
sent. We propose the first game-theoretic framework for formalizing these complex
interdependences and for analyzing the strategic behaviors of users; we take into
account different attitudes and preferences regarding the sharing of location and
co-location data. In order to design parametric utility functions that are represen-
tative of the users’ actual preferences and to avoid the pitfalls of purely theoretical
results, we also conduct a survey of 250 Facebook users and use conjoint analysis
to quantify the users’ benefits of sharing vs. viewing (co)-location information and
their preferences for privacy vs. benefits. We extensively evaluate our framework
through data-driven numerical simulations on a mobility dataset: We study the
resulting equilibria and their properties, using values of the parameters derived
from the empirical data. We analyze how users’ individual preferences influence
each others’ decisions, and we determine several factors that significantly influence
these decisions. Our simulations unravel situations in which one of the users can be
forced into a situation that she does not desire, and we demonstrate that sharing
co-location information can also encourage users to over-share their locations; this
is a fact that service providers could exploit by promoting co-location sharing fea-
tures with the purpose of actually gathering more location data from their users.
The survey also reveals the high diversity of opinions in terms of social benefits
and location privacy. Our findings demonstrate the need to deploy, in practice,
appropriate mechanisms for assisting users in their sharing decisions. Our generic
framework represents the basis of such an effort.

. We propose the first system that addresses the critical problem of consensual and
privacy-preserving sharing of multi-subject personal and interdependent data in
the online environment: Before such data is published, our system determines the
affected parties, in a private manner, and asks for their consent. The key difference
from the related works is that our proposed system is privacy-preserving with re-
spect to both other individuals using the system and the involved service providers.
We identify the many different challenges inherent to the design of such a system,
we propose the main building blocks, and we discuss the incentives for adoption of
all the parties involved. We implement and evaluate our system, ConsenShare, in
the case of photos, by relying on image processing and cryptographic techniques,
as well as on a two-tier architecture: one entity for detecting the data subjects and
contacting them and another entity for hosting the data and for collecting consent.
We benchmark the performance (CPU and bandwidth) of ConsenShare by using a
dataset of 20k photos that we collected from Flickr. We conduct a survey of Face-
book users (N = 321). Our experimental results demonstrate the feasibility of our
approach (in terms of the acceptability of the overheads), and the survey results



demonstrate a potential desire from the users. We conclude that it is technically
possible, without much overhead, to ensure users’ privacy by giving them control
in the sharing of photos in which they appear, and to preserve the main features
of existing online platforms. We further discuss how each building block can be
adapted to other types of data (e.g., co-locations, videos, genomic data, etc.). In
doing so, our work lays the foundation for the design of systems that will enable
the sharing of data in a respectful manner, for the privacy of all the users involved,
and without the need to trust these systems with the sensitive data.

Thesis Outline

This thesis contains three parts. In Chapter 2, we show how an adversary can effi-
ciently exploit co-location information to better localize users by identifying a novel
threat to users’ location privacy. In Chapter 3, we analyze the interplay between friends
on location-based OSNs and study how their individual preferences and shared data af-
fects their respective sharing decisions over time. In Chapter 4, we describe a system that
supports the sharing of interdependent and multi-subject personal data in a consensual
and privacy-preserving way.

Publications

Chapter 2 is a combination of the results from [21] and [22]. Chapter 3 contains the
findings of [23]. Chapter 4 relies on the results of [24].






Chapter 2

Location Inference Attacks Using
Co-location Data

I think the greatest freedom that I have gained is that
I no longer have to worry about what happens
tomorrow, because I'm happy with what ['ve done
today.

EDWARD SNOWDEN

2.1 Introduction

Increasingly popular GPS-equipped mobile devices with Internet connectivity enable
users to enjoy on-the-go a wide range of online location-based services. For instance,
mobile users can search for nearby points of interest and get directions, possibly in
real time, to their destinations. Yet, these location-based services raise serious privacy
concerns because a large amount of personal information can be inferred from a user’s
whereabouts. The research community has extensively studied the problem of location
privacy; more specifically, location-privacy protection mechanisms (so-called LPPMs),
which can anonymize and obfuscate the users’ locations before sending them to online
location-based services, have been proposed [16]. In addition, formal frameworks for
quantify location privacy in the case where users disclose their (possibly obfuscated) lo-
cations have been proposed [19, 20]. In such frameworks, the mobility profiles of the users
play an important role in the inference of the users’ locations, namely in a localization
attack.

In parallel, social networks, and in particular location-based social networks, have
become immensely popular. Every day, millions of users post information, including
their locations, about themselves, but also about their friends. An emerging trend is
to report co-locations with other users on social networks, e.g., by tagging friends on

7
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Figure 2.1: Examples showing how co-location information can be detrimental to privacy.
(a) A user reports being in a given area, and a second user reports being in another (over-
lapping) area and that she is co-located with the first user. By combining these pieces
of information, an adversary can deduce that both users are located in the intersection
of the two areas, thus narrowing down the set of possible locations for both of them.
(b) Two users (initially apart from each other, at 10am) declare their exact individual
location. Later (at 1lam), they meet and report their co-location without mentioning
where they are. By combining these pieces of information, the adversary can infer that
they are at a place that is reachable from both of the initially reported locations in the
amount of time elapsed between the two reports.

pictures they upload or in the messages they post.! For instance, our preliminary survey
involving 132 Foursquare users, recruited through Amazon Mechanical Turk, reveals that
55.3% of the participants report co-locations in their check-ins and that for the users
who do so, on average, 2.84%+0.06 of their check-ins contain co-location information. In
fact, co-location information can be obtained in many different ways, such as automatic
face recognition on pictures (which contains the time and location at which the picture
was taken in their EXIF data, e.g., Facebook’s Photo Magic [25]), Bluetooth-enabled
device sniffing and reporting neighboring devices. Similarly, users who connect from
the same IP address are likely to be attached to the same Internet access point, thus
providing evidence of their co-location. Such data falls into the category of multiple-
subject personal data [26].

Attacks exploiting both location and co-location information (as mentioned in [27])
can be quite powerful, as we show in this chapter. Figure 2.1 depicts and describes
two instances in which co-location can improve the performance of a localization attack,
thus degrading the location privacy of the users involved. It is clear that the proper
exploitation of such information by an attacker can be complex because he has to consider
jointly the (co-)location information collected about a potentially large number of users.
This is due to the fact that, in the presence of co-location information, a user’s location
is correlated with that of her friends, which is in turn correlated to that of their own
friends, and so on.

This family of attacks and their complexity is the focus of this chapter. More specif-
ically, we make the following four contributions: (1) We identify and formalize the local-
ization problem with co-location information, we propose an optimal inference algorithm
and analyze its complexity. We show that, in practice, the optimal inference algorithm
is intractable due to the explosion of the state space size. (2) We describe how an at-

INote that the fact that a users tags one of her friends in a post does not necessarily mean that they
are co-located; our formalism takes this fact into account.
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tacker can drastically reduce the computational complexity of the attack by means of
well-chosen approximations. We present a polynomial-time heuristic based on a limited
set of considered users (i.e., optimal inference with the data of only two or three users)
and an approximation that is based on the belief propagation (BP) algorithm executed
on a general Bayesian network model of the problem (approximate inference with the
data of all the users). (3) Using a mobility dataset, we evaluate and compare the perfor-
mance of the different solutions in different scenarios, with different settings. The belief
propagation-based solution gives results significantly better (in terms of the performance
of the inference) than the heuristic. (4) We propose and evaluate some countermeasures
(i.e., social-aware location-privacy protection mechanisms), including fake co-locations
reporting and coordinated location disclosure. Our experimental results show that, even
in the case where the adversary considers co-locations with only a single friend of the
targeted user, the median location privacy of the user is decreased by up to 62% in a
typical setting. Even in the case where a user does not disclose any location information,
her privacy can decrease by up to 21%, due to the information reported by other users.
A paramount finding of our work is that users partially lose control over their location
privacy because co-locations and individual location information disclosed by other users
substantially affect their own location privacy. Our experimental results also show that
a simple countermeasure (i.e., coordinated location disclosure) can reduce the privacy
loss by up to 50%. To the best of our knowledge, this is the first attempt to quantify
the effects of co-location information that stems from social relationships, on location
privacy; thus making a connection between OSNs and location privacy.

The remainder of the chapter is organized as follows. In Section 2.2, we define and
formalize the system model. In Section 2.3, we present the optimal localization attack
for N users and assess its complexity. In Section 2.4, we show how this complexity
can be reduced by means of approximations. In Section 2.5, we propose and evaluate
some countermeasures. In Section 2.6, we briefly analyze the co-location problem from a
differential privacy perspective. In Section 2.7, we report on the experimental evaluation
of the localization attack with co-locations. In Section 2.8, we survey the related work.
In Section 2.9, we conclude the chapter and suggest directions for future work.

2.2 System Model and Formalization

We consider a set of mobile users who move within a given geographical area. While on
the go, users make use of some online services to which they communicate potentially
obfuscated locations (i.e., where they are) and co-location information (i.e., who they
are with). Note that such information could be communicated unintentionally by the
users (e.g., leaked from their IP addresses) without their knowing it. We consider that
a curious service provider (referred to as the adversary) wants to infer the location of
the users from this information hence to track them over time. In order to carry out
the inference attack based on which the location privacy of the users is evaluated, the
adversary would model the users as described below. Our model is built upon [28] and
uses similar notations. Figure 2.2 on page 10 gives an overview of the considered scenario
and Table 2.1 on page 11 summarizes the main notations used in our formalization
throughout the chapter.
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Figure 2.2: Scenario of (co-)location exposure. Three users move in a given geographical
area. They communicate their potentially obfuscated locations and accurate co-location
information to a service provider (i.e., the adversary) who wants to infer their locations.

2.2.1 Users

We consider a set U = {uy,...,un} of N mobile users who move within a given geo-
graphical area that is partitioned into M regions (locations) R = {R1,..., Ryr}. Time
is discrete, and we consider the state of the system (including the locations of the users)
at the successive time instants {1,...,7}. The region in which a user u € U is at time
instant ¢ € {1,...,T} is called the actual location of the user and is denoted by a,(t).
The mobility of the users is modeled by a first order time-homogeneous Markov chain.
We denote by p,(p,r) the probability that user « moves from region p to region r dur-
ing one time instant, and by m,(r) the probability that user u is in region r at time ¢
(i.e., the stationary distribution of p,). We use the term "co-location" for when two
users are at the same location at some point in time. The fact that users v and v are
co-located at time ¢ means that a,(t) = a,(t); we denote by u <»; v the fact that a co-
location between users u and v at time ¢ is reported (by either of them), and we consider
an associated binary variable ¢, ,(t); specifically, ¢, ,(t) = ¢pu(t) = 1 if u <>, v and
Cuw(t) = ¢y u(t) = 0 otherwise. Note, however, that a co-location being reported does
not necessarily mean that the users are really co-located (for instance, on OSNs, users
sometimes tag a friend in a picture just to get their attention, although they are not
actually together). We consider the process of users reporting co-location information to
be probabilistic. Specifically, for any pair of users u and v, the probability of reporting
a co-location, knowing both their actual locations is denoted by

Guw(r,7") EPr(u < v|ay(t) =1 a,(t) =1") (2.1)

We assume that co-locations reported by a user at different time instants are being
reported independently of each other and of those reported by other users. We also
assume that the reporting process for any user does not depend on time. Intuitively,
this co-location reporting function can incorporate social ties (users report co-locations
on social networks only with their friends), selective reporting of co-location (not every
time that Alice is with Bob in the same location does she report that on their favorite
social network), as well as erroneous co-locations (Alice might tag Bob in a picture, even
though he is not really in that picture). Examples of erroneous co-locations also include
the case where Alice and Bob have the same IP address but they are not together (e.g.,
they make use of the same proxy). More generally, this case includes the false positives
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u Set of mobile users
R Set of regions that partition the whole area
N Number of users (N = |U|)
M Number of regions (M = |R|)
T Number of time instants
Pulsy+) Mobility profile of user u
7 (+) The stationary distribution of p,,
Sfu(®) Obfuscation function employed by user w
Guw(+,+) | Co-location reporting function for users u and v
K Adversary’s background knowledge
ay(t) Actual location of user u at time ¢
a(t) Actual locations of all the users at time ¢
u@;r User u reports being in r at time ¢
ou(t) Obfuscated location of user u at time ¢
o(t) Obfuscated locations of all the users at time ¢
U35 v A co-location was reported between u and v at time ¢
Cu,w(t) Binary variable incorporating whether u <»; v
C Set of all reported co-locations at time ¢
C Set of all reported co-locations

Table 2.1: Table of notations.

of the underlying co-location detection technique used by the adversary, and possibly
fake co-locations reported by users to protect their privacy. The probabilistic co-location
reporting function and its parameters are assumed to be known to the adversary; in
practice, it could be learned from models of the users’ behavior, or from ground-truth
data or, when applicable, from theoretical models of the underlying technical co-location
detection method. Concrete examples of co-location reporting functions are given in
Section 2.7. We assume all user-reported co-locations are observed by an adversary.

2.2.2 Location-Privacy Protection Mechanisms

In order to protect their privacy, we assume that users rely on location-privacy protection
mechanisms (LPPM) for obfuscating their individual location information before this is
communicated to an online service provider. We denote by u @, r’ the fact that user u
reports being at location r’ at time ¢ to the online service. The online service observes
only the obfuscated location of the users; we denote this by o,(t) for user u at time ¢.
We denote by R’ the set of obfuscated locations; typically R’ is the power set of R,
as LPPMs can return a set of locations instead of only one location. Typical LPPMs
replace the actual location of a user with another location (i.e., adding noise to the
actual location) or merge several regions (i.e., reducing the granularity of the reported
location). We model an LPPM with a function that maps a user’s actual location to
a random variable that takes values in R/, i.e., , the user’s obfuscated location. This
means that the locations of a user at different time instants are obfuscated independently
of each other and of those of other users. This also means that the way a user’s locations
are obfuscated does not depend on time. Formally, an LPPM is defined by the function
fu(r,r") that denotes the probability that the LPPM used by w obfuscates location r
to 1/, i.e., Pr(oy(t) =1"|ay(t) = r). Excluding the co-location information, our model
corresponds to a hidden Markov model (HMM) [29]. We assume that co-location infor-
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mation is not obfuscated and users do not rely on pseudonyms.? We denote by o(t) the
vector of the observed locations of all the users at time ¢. More generally, we use bold
notations to denote a vector of values of all users. We define Cy = {cy 0 (¢) }uvers and

C= Ut:l..T Ct.

2.2.3 Adversary

The adversary, typically an online service provider (or an external observer who has
access to this information, e.g., another user of the social network), has access to the
observed locations and co-locations of one or several users and seeks to locate users, at a
given time instant, specifically, carry out a localization attack.® Because of the co-location
information, the locations of the users are not independent (they are correlated), thus
when attacking the location of a given user, the adversary takes into account information
potentially about all the users. The attack is performed a posteriori, meaning that the
adversary has access to the observed traces over the complete period, namely {o(t) }4—1..
and C, at the time of the attack. In addition to the observations during the time
period of interest (i.e., {1,...,T}), the adversary has access to some of the users’ past
location traces, from which he builds individual mobility profiles for these users, under the
form of transition probabilities {py }uer- See [28] for more details about the knowledge
construction, in particular, on how the mobility profiles can be built from obfuscated
traces with missing locations. The mobility and co-location reporting profiles constitute,
together with the knowledge of the LPPMs used by the users (including their parameters),
the adversary’s background knowledge K = {py (-, ) bucuts {fu(*) buetts {Gu,0 (s ) Fuveu-

The output of a localization attack that targets user u at time ¢, is a posterior prob-
ability distribution over the set R.

h¥(r) & Pr(a,(t) = r|{o(t)}i=1.7,C,K) . (2.2)

2.2.4 Location-Privacy Metric

The location privacy LP,(t) of user u at time ¢, with respect to a given adversary, is
captured by the expected error of the adversary when performing a localization attack
[28]. Given the output hj'(-) of the localization attack, the location privacy writes

LP,(t) £ Y hi(r) - d(r,au(t)) (2.3)

reR

where d(-,-) denotes a distance function on the set R of regions, typically the Haversine
distance between the centers of the two regions.

2.3 Optimal Localization Attack

Without co-location information (as in [28]) and under the assumptions described in
the previous section, the localization problem translates to solving an HMM inference

2Note that even if pseudonyms are used, the identity of the users can be inferred by using their social
network [30] or their locations [28]. We make this assumption because our main target scenario is users
posting information attached to their real identities on social networks.

3This attack is somewhat similar to correlation attacks on continuous location-based queries with
cloaking as presented in [31].
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Figure 2.3: Sample HMM for T" = 3 time instants. States are represented by red circles,
and observations by blue-green rectangles. State transition probabilities are specified by
the joint user mobility profiles p;; and output probabilities are specified by a combination
of fy; (for individual observations) and [l; (for co-location observations).

problem, for which the forward-backward algorithm is a known solution. Essentially,
the forward-backward algorithm defines forward and backward variables that take into
account the observations before and after time ¢, respectively. The forward variable is the
joint probability of the location of user at time ¢ and all of the observations up to, and
including, time t. The backward variable is the conditional probability of all observations
after time ¢, given the actual location of user at that time instant. Then, the posterior
probability distribution of the possible locations for the targeted user is obtained by
combining (i.e., multiplying and normalizing) the forward and backward variables. With
co-location information, the locations of the users are not mutually independent: as soon
as two users are co-located at some point in time ¢, their locations, before and after time ¢,
become dependent. Actually, the fact that two users meet a same third user (even if they
meet her at different time instants) suffices to create some dependencies between their
locations; this means that, to perform the localization attack on a user, the adversary
must take into account the locations (i.e., the obfuscated location information and the
co-location information) of all the users who are connected to u by a chain of co-location
(i.e., the connected component of w in the co-location graph). Formally speaking, this
means that the adversary cannot rely only on the marginal distributions of the users’
location; instead he must consider the joint distributions. In other words, co-locations
turn N disjoint inference problems (i.e., HMM problems solved by the forward-backward
algorithm) into a joint inference problem.

To solve the localization problem, we consider all the users jointly and show that it
translates to an HMM problem, as depicted in Figure 2.3. Note that more advanced
learning techniques, such as neural networks, could also be used. We solve this problem
by using the forward-backward algorithm [32,33]. For a set U of users and time ¢, we
define the following forward and backward variables:

(1>

A4 (r) £ Pr(o(1)...0(t),Cy...Cpa(t) =r|K)
B (r) £ Pr(o(t+1)...0(T),Ciy1...Crla(t) =r,K) (2.4)

where r denotes a vector of size N, i.e., r € R", and represents the actual locations
of all users at a single time instant. These variables can be defined recursively (over t)
and, unlike in the case where no co-location observations are available, their expressions
involve the co-location information. More specifically, we prove that for all r € RY, we
have*

4For the sake of simplicity and clarity, we define the variables at ¢t = 0 even though no observations
are made at this time instant.
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7'('1,{(1‘) if t=20
o/{’(r) _ li(r,C) - fu(r,o(t))- (2.5)
> o (p) pulpr) ift>0
pERN

and
Z liv1(p, C) '5%-1(/’)'
U pPERN
v = P (v,p) - fu (poolt +1)) ift<T
1 ift="T

where r = (r1,...,75) € RN, p=(p1,...,pn) ERN, ¥/ =(r},...,7y) € RN, and
N
Wu(r) = Hﬂ—ui (Ti)v
i=1

N
fM(r7 I‘/) = HfuL (Ti,Tg),
1=1

N

pu (p,v) = [ s (pi 7).

i=1

l¢(+, ) denotes the joint probability that the users report the set of co-locations observed
at time ¢, when the configuration of their actual locations at ¢ is given. That is, formally,

li(r,C) £ Pr(Cia(t) =r)
_ H {guiﬂij (T’,j, T’j) if (’LLZ <t Uj) S Ct

(2.7)
1 — gu;u,; (1i,75)  otherwise

w; Fu; €U

More specifically, this is a likelihood function that captures the probability that the
co-locations in C}; are reported, and that takes into account the individual co-location
reporting function for every pair of users. As we assumed that co-locations are reported
independently of one another, this likelihood can be expressed as a product of individual
co-location reporting functions for all pairs of users.

The intuition behind Equation (2.5) is that the forward variable at time ¢ can be
expressed recursively, with respect to time, by combining, for all possible locations of the
users at time ¢t —1: (1) the joint probability that the users were at location p at time ¢t —1
and reported the obfuscated locations and co-locations observed by the adversary up to
time ¢—1 (this is captured by o/ ), (2) the joint probability that the users move from the
locations p to the locations r (this is captured by py), (3) the joint probability that the
users obfuscate their locations r to those observed by the adversary o(t) (this is captured
by fu), and (4) the joint probability that the users report co-locations C; observed by
the adversary, assuming their locations r (this is captured by l;(r,C)). Because users
obfuscate their locations independently from each other, the joint obfuscation probability
is the product of the individual obfuscation probabilities (hence the expression of f).
The same applies to py and l;(r, C'). A similar line of reasoning applies to Equation (2.6).
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The function l;(-,-) captures the likelihood of observing a set of co-location infor-
mation (or not) given the actual users’ locations. Schematically speaking (with a de-
terministic vision where only real co-locations are reported, for the sake of clarity), the
set of possible locations for a user u; (at time t), co-located with a user u;, consists of
the locations that can be obfuscated into the location reported by u; at time ¢, that
can be reached (according to u;’s mobility profile) from a possible location of w; at time
t —1, that can be obfuscated into the location reported by u; at time ¢, and that can be
reached (according to u;’s mobility profile) from a possible location of u; at time t — 1.

2.3.1 Development of Equation (2.5)

As the adversary does not have knowledge about conditional mobility profiles
for the wusers, their mobility profiles are independent of each other — formally,
Pr (a,(t) = rlaw (t) =1') = Pr(a.(t) =r), for any users u and «'. Using Bayes’ rule
it follows that, for any r € RV

N
Pr(a(t) =r) = [ [ Pr(au,(t) =) (2.8)
i=1

We start the development of Equation (2.5) by proving its base case: t = 0.

M (r) = Pr(a(0)=r|K) (2.9)
= Pr(a,, (0)=r|K)x - x

Pr(au,(0) =rx | K) (2.10)

= Ty, (r1) .. Tuy (rN) (2.11)

= my(r) (2.12)

In step (2.9)—(2.10) of the derivation, we use the independence assumption (2.8); in
step (2.10)—(2.11), we use the fact that the probability of a user u being in some region
r at time ¢t = 0, given her mobility profile, is captured by the steady state vector,
i.e., m,(r), as there are no observations at, or before, t = 0.

We now complete the development for any ¢ > 0.

H(r) = Pr(o(1)...0(t),C;...Cya(t) =r|K) (2.13)
= Pr(C¢|o(1)...0(t),Cy...Ci_1,a(t) =1,K) -
Pr(o(1)...0(t),C1,...,Ci_1,a(t) =r|K) (2.14)
= Pr(C|a(t) =r,K)-
Pr(o(1)...0(t),Cy...Ci_1,a(t) =r|K) (2.15)
= lt(I',C) :
Pr(o(1)...0(t),Cy...Ci_1,a(t) =r|K) (2.16)

= L(r,C)-Pr(o(t)|a(t) =r,K)-
Pr(o(1)...0(t—1),Cy...Ci_q,a(t) =r|K)
(2.17)
= l(r,C) - fu(r,o()) -
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Pr(o(1)...0(t—1),Cy...Ci_1,a(t) =r|K)

(2.18)
= L(r,C) - fy (r,0(t)) -
> Pr(o(1)...0(t—1),C1...Ciy,
pERN
a(t)=r,a(t—1)=p|K) (2.19)
= li(r,C) - fu (r,0())
> Pr(o(1)...0(t—1),Cy...Ciq,
PERN
a(t—1)=p| K)
Pr(a(t)=r|a(t—1)=p,K) (2.20)
= L(r,C) - fu (r,0(t))
> it i(p) - pup,r) (2.21)
pERN

In step (2.13)—(2.14) of the derivation, we apply the chain rule. In step (2.14)— (2.15),
we use conditional independence: given a(t) = r, the probability that the locations
r can represent the reported C; depends neither on the observations, nor on K. In
step (2.15)—(2.16), we use Definition (2.7). In step (2.16)—(2.17), we apply the chain
rule and use conditional independence: given a(t) = r, o(t) does not depend on the past
observations. In step (2.17)—(2.18), we use the fact that the location obfuscation process
is applied independently for each user. In step (2.18)—(2.19), we apply the law of total
probability, conditioning over all the possible actual locations p users could have been at,
at time ¢t — 1. In step (2.19)—(2.20), we use the chain rule and conditional independence:
given a(t—1) = p, a(t) does not depend on the past observations. In step (2.20)—(2.21),
we use Definition (2.4). [ |

2.3.2 Development of Equation (2.6)

We start the development of Equation (2.6) with the case ¢ = T. As there are no
observations at or after 7'+ 1, using Definition (2.4), we consider

f4(r) =Pr(ola(T) =r,K) =1 (2.22)

We now complete the development for any ¢ < T.

g(r) = Pr(o(t+1)...,0(T),Cii1,...,Crla(t) =r,K) (2.23)
= > Pr(o(t+1)...,0(T),Cis1,...,Cr,a(t + 1) = pla(t) =1,K) (2.24)
pERN
= Z Pr(Ciila(t+1) =p,K)-
pERN
Pr(o(t+1)...,0(T),Cit2,...,Cr,a(t+1)=pla(t) =r,K) (2.25)
= > lia(p.C)
pERN

Pr(o(t+1)...,0(T7),Cit2,...,Cr,a(t+1)=pla(t) =r,K) (2.26)
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S™ 1i1(p,C) - Pr(oft + 1) a(t + 1) = p,K) -
pERN
Pr(o(t+2)...,0(T),Ciya,...,Cr,a(t+1) = pla(t) =r,K) (2.27)
= Y b, C) - fu(p,o(t+1))-
pERN
Pr(o(t+2)...,0(T),Cita,...,Cr,a(t +1) = pla(t) =r,K) (2.28)

= Y 1P, O) - fulp.o(t +1)) - Pr(a(t +1) = p|a(t) = r,K)-

pERN
Pr(o(t+2)...,0(T),Cis2,...,Cr, |a(t +1) = p,K) (2.29)
= > L1(pC) - fulp,o(t+1)) - pu(r,p) - 51 (p) (2.30)
pERN

In step (2.23—2.24) we apply the law of total probability, conditioning over all the
possible actual locations users could have been at, at time ¢ + 1. In step (2.24—2.25)
we apply the chain rule and use conditional independence: given a(t + 1) = p, the
probability that these actual locations are consistent with Cpy; does not depend on
other past observations, actual locations or K. In step (2.25—2.27) we apply the chain
rule and use conditional independence: given the actual locations of users a(t +1) = p
at time ¢+ 1, the probability of observing o(t+ 1) does not depend on other observations
or actual locations of other time instants. In step (2.27—2.28) we use the fact that the
obfuscation process is independently applied for all users. In step (2.28—2.29) we apply
the chain rule and use conditional independence: given a(t + 1) = p, the probability
of observations at times ar or after ¢ + 1 does not depend on a(t) = r. Finally, in
step (2.29—2.30) we use Definition (2.4). |

Finally, the posterior probability distribution of the users’ locations can be computed

based on the forward and backward variables, by using the following formula, for u; € U
and at time ¢

hit(r) £ Pr(ay,(t) =r[{o(t)}=1.7,C,K)
Y o) B

reRN |r;=r

. 2.31
> af(x) - BY(r) (230

reRN

In short, the probability that the users are at given locations at time ¢ is computed
based on all the observations before and at time ¢ (a;) and the observations after time ¢
(B¢). The denominator is simply a normalization factor.

2.3.3 Development of Equation (2.31)

Using Definition (2.4), the conditional independence given a(t) = r and the chain rule,
we first compute the following, Vr € RY:
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Ad(r)-pU(r) = Pr(o(1)...0(t),C;...Cyat)=r|K)-
Pr(o(t+1)...0(T),Ciy1...Crla(t) =1,K) (2.32)
= Pr(o(l)...0(t),Cy...Cpa(t) =r|K) - (2.33)
Pr(o(t+1)...0(T),Cty1...Crlo(1)...0(t),Cy...Cra(t) =r,K)
= Pr(o(l)...o(T7),Cy...Cr,a(t) =r|K) (2.34)
= Pr({o(t)}1=1.7,C,a(t) =r|K) (2.35)

Using Bayes Rule, the total law of probability and (2.35), we get

hit(r) = Pr(ay, () =r[{o(t)}i=1.7,C,K)
Pr(fo(t)}i=1.1,C; au, (t) = r|K)

- Pr (o() 1.7, CIK) (2.:36)
3" Pr({o(t)}iet.r, C,au,(t) = r,a(t) = r|K)
reRN
= (2.37)
> Pr(o(t)}i=1.7. Ca(t) = r[K)
reRN
Z Pr ({o(t)}t=1..7,C, ay,(t) = r,a(t) = r|K)
reRN |ri=r
- +
> al(x) - BY(r)
reRN
Z Pr({o(t) }i=1..1, C, ay, (t) = r,a(t) = r|K)
re€RN | ri#r Z u( ) 514( ) (2.38)
reRN t '
Z Pr({o(t)}i=1..7, C,a(t) = r|K)
reRN |r;=r
= +0 (2.39)
o (r) - B (r)
rgN
Y o))
reRN |ri=r
= (2.40)
o (r) - B (r)
rezR:N
|

We now take a simple example. Consider regions R’ =R = {a,b} and no LPPM,
hence f(a,a) = f(b,b) =1, f(a,b) = f(b,a) = 0. Consider users U = {u,v} with mobil-

ity profiles p, = {0'5 0'5} and p, = [8? 8;} (thus 7, = m, = [0.5 0.5]). Assume

users always report co-locations and do not lie, then gy ,(ry, ) = {1 iy = 7‘1,. Fur-
0 otherwise
thermore, assume one time instant (7' = 1) and two observations at this instant: u <> v
and v @Q; a. By Equation (2.5), it follows that o4 ([-,-]) = 0.25; o%([a, b]) = ¥ ([b,a]) = 0
(because the likelihood of reporting being co-located when users’ locations are differ-
ent is 0); o/ ([b,b]) = 0 (because f(b,a) = 0 - user v cannot report a while in b));
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and o4 ([a,a]) = 0.25. Similarly, by Equation (2.6), it follows that gY([-,:]) = 1;
BY([-,a]) = 0.45 and BY([-,b]) = 0.05. Finally, using Equation (2.31) to localize user
wat t = 1 yields: h{(a) = 1 and h}(b) = 0. This result can easily be verified: if the
adversary knows that v is with v and v is in @, u must also be in a.

We now evaluate the complexity of the joint localization attack. The first observation
is that the size of the state space (i.c., the locations of all users) is M”. To attack a
user at time ¢, the adversary needs to compute the values of o up to time ¢ and the
values of beta down to time ¢ (using dynamic programming for optimal performance).
At each time instant, the adversary needs to compute the values of these two variables
for all possible values of their inputs r € RY (there are M" possible values for r). The
computation of each of these values requires summing over the A" possible locations p
at time ¢ — 1; for each of the possible locations, the computation of one element of the
sum takes ©(N?) operations (the complexity of the computation of I dominates for the
computation of §). Therefore, the computation of the forward and backward variables,
at all time instants, for all possible values of the localizations is ©(N2T M?Y) operations.
Note that the complexity is the same whether the adversary attacks one or all the users
at one or all time instants. In fact, the adversary can pre-compute the Ay for all v and
all ¢, with a complexity that is dominated by that of the computations of the forward
and backward variables. In summary, the complexity of the localization attack on one
or all of the users in U is

Copt (N, T, M) = O(N*TM*N) . (2.41)

The complexity of the optimal localization attack is prohibitively high and prevents
its use for the entire set of users of a mobile social network; the optimal localization attack
is tractable only for small values of IV, i.e., 2 or 3. In the next section, we propose low-
complexity alternatives for performing low-complexity approximate localization attacks.

2.4 Approximate Localization Attacks

We propose two low-complexity alternatives for performing approximate localization at-
tacks. Essentially, the first carefully selects a small set of users to consider when attacking
a target user and performs an optimal joint localization attack on this small set of users
(i.e., considering only the co-locations between these users). The intuition behind this
heuristic is that the locations of a user are significantly correlated with those of only a
limited number of users (e.g., a few co-workers during work hours, and her family and
close friends the rest of the time). The second alternative makes use of all available
location and co-location information (from all users) but only performs an approximate
inference attack to localize users. We formulate the localization problem as a Bayesian
network and apply a well-known inference algorithm, namely, loopy belief propagation.

2.4.1 Limited User-Set Heuristic

As discussed in Section 2.3, the optimal localization attack can be efficiently performed
only on small sets of users. This is because the location of a target user u depends on
locations of all other users that are connected to w in the co-location graph (where there
is an edge between two users u and v if u’ <3; v for some time t). The rationale of our
first approximation is to limit the number of users, to whom the target user’s location
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depends on, and to consider only those that have a high location correlation with w.
Concretely, we choose the user(s) who have the largest number of reported co-locations
with the targeted user, and we perform an optimal localization attack on the resulting
set of users. We call these users the co-targets of the targeted user. Depending on his
computational power, the adversary can choose one or two such users (i.e., N = 2 or
N = 3) to attack the target with. The co-targets of a user u are chosen as follows:

co-target; (u) = argmax |[{t € {1,...,T}|u ¢ v} (2.42)
veld\{u}
co-targety(u) = argmax | [{t € {1,...,T}|u <> v}| +
vel\{u,u'}
Hte{l,...., T} u > v} (2.43)

where v’ = co-target, (u) and |- | denotes the cardinality of the set. More specifically, the
first co-target of a user u is the user with whom w« has the most reported co-locations
during the time interval considered for the localization attack. The second co-target of
u is chosen so as to maximize the number of co-locations with u plus the number of co-
locations with wu’s first co-target. Note that the set of considered users can be different for
every targeted user; in particular v = co-target, (u) =5 u = co-target,(v). In practice,
an adversary could also take into account the function g when choosing u’s co-targets,
to better reflect the trustworthiness of the reported co-locations. The complexity of this
heuristic is ©(T'M*) for N = 2 and O(T'M®) for N = 3 (obtained by replacing N by its
value in the generic expression (2.41) of the complexity of the optimal attack).

2.4.2 Bayesian Network-Based Approximation

We propose using approximation algorithms on Bayesian networks, as a low-complexity
alternative solution to the localization problem. A Bayesian network is a graphical
model that encodes the probabilistic dependencies between different random variables of
interest [33,34]. More specifically, a Bayesian network is a directed acyclic graph in which
nodes represent random variables and where the edges model conditional dependence
between the variables corresponding to the nodes they connect. In addition to its (graph)
structure, a Bayesian network is also specified by its parameters: Each node has an
associated conditional probability distribution (CPD) that specifies the probability that
the corresponding variable will take a certain value, given a combination of values of
the variables associated with its predecessor nodes. Modeling our problem as a Bayesian
network enables us to exploit existing approximate inference algorithms, such as the
belief propagation (BP) algorithm [34,35] (which we use in the evaluation). BP is an
algorithm that converges to the optimal solution by iteratively updating the posterior of
a random variable, based on that of its neighbors and on its CPD, by using values of the
observed variables. For Bayesian networks that do not contain undirected loops, which is
not the case of our model, the BP algorithm converges to the optimal solution in only one
iteration. Because of its iterative aspect, it balances (through the number of iterations)
execution time and accuracy. A typical choice for the number of iterations is two times
the number of nodes in the Bayesian network. Moreover, by running the BP-based
solution, the adversary can obtain coarse-grained estimates of the users’ locations after
a few iterations and update them with better estimates as BP progresses. The heuristic
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Figure 2.4: Sample Bayesian network for N = 3 users and T' = 3 time instants. Actual
location nodes are represented by red circles, observed location nodes by blue rectangles
and observed co-location nmodes by green rectangles with rounded corners. Probabilistic
dependencies are specified by edges and conditional probability distributions (CPD), e.g.,
a co-location observation depends only on the actual locations of the two involved users
and the probabilistic dependency is captured by g.

presented in the previous sub-section makes the most out of a subset of the available
information (i.e., optimal inference on the data of the target user and her co-targets),
whereas the BP-based solution only approximates the optimal solution but exploits all
the available information (approximate inference on the data of all the users).

We build a Bayesian network, as illustrated in Figure 2.4 (for N = 3 and T = 3):
For any user u and any time instant ¢, a node is associated with the variable a,,(t) and
another with the variable o, (t). To represent the fact that the observed location depends
only on a user’s actual location at that time, an edge connects the corresponding nodes
and the corresponding CPD is f,,. Additionally an edge connects the node corresponding
to a user u’s actual location at time ¢ to her actual location node at time ¢ + 1, with its
CPD determined by her mobility profile p,, (following from the Markov assumption). For
any pair u,v of users and any time instant, an observed co-location node is associated
with variable ¢, , (t), with its CPD specified by ¢, , (it depends on the actual location of
the two users involved). Our Bayesian network consists of T'- N actual/observed location
nodes and T- N (N —1)/2 observed co-location nodes.® Location nodes have one incoming

5Note that when the probability of two users reporting a co-location between them is null (e.g., non-
friend users in a social network), the corresponding nodes can be removed. As suggested by Dunbar’s
number [36], a user has a limited number of friends. Therefore, in many contexts, the number of co-
location nodes grows linearly with N.
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edge, and co-location nodes have two. Consequently, the complexity for one iteration of
the belief propagation algorithm is O(N? - T - M?).
Specifically, for nodes {a,(1)}yew, we define the CPD Vr € R as

Pr(a,(1) =7r) = m.(r) (2.44)
For nodes {ay(t)}uecu te(2,... 7y, we define the CPD Vp,r € R as
Pr(ay(t) =r|au(t —1) = p) = pulp,7) (2.45)
For nodes {ou () }ueu te(1,..., vy, we define the CPD Vr,7" € R as
Pr(ou(t) =7"|ay(t) =71) = fu(r,r") (2.46)
Finally, for nodes {u ¢ v}y vew te{1,... 7y, we define the CPD Vr, 7" € R as
Pr(unv="T|a,(t) =ra,(t) =71") = gu,(r,r") (2.47)

Pr(uynv=Fla,(t) =r,a,(t) =7")=1— gyo(r,r) (2.48)

We compare the approximate localization attack to the optimal localization attack,
and we measure its accuracy by the average Hellinger and statistical distance between
their output region distributions. Specifically, if h denotes the output of the optimal
localization attack i that of the approximate localization attack, then

1 1 2

N-T l;“e{;j}ﬁ ; <\/ hi(r) — 1/ hi (7"))
1 1

N-TZ Z 52

uel te{l,..., T} reR

B (r) — bt (r)|-

2.5 Countermeasures

So far, we have presented and analyzed a localization attack that exploits co-location
information. In this section, we propose two countermeasures that mitigate the (negative)
effect of co-locations on the users’ location privacy. These countermeasures apply to
the case where users explicitly report their co-locations, typically on a social network.
For co-location information leaked by the underlying technologies, such as IP addresses
and Bluetooth and Wi-Fi scans of neighboring devices, technology-dependent techniques
should be used. For instance, a user can hide her IP address from the service provider
by using a proxy, a VPN or a peer-to-peer anonymization network such as Tor. Note
that countermeasures are not limited to those presented in this section. Altering the
individual LPPM settings (the value of A, using obfuscation or cloaking) would also
reduce, to some extent, the privacy risk. Unfortunately there is not much else a user can
do to protect herself, other than hide or generalize co-location information or prevent it
from being inferred. In practice, this would translate to hiding IP addresses, disabling
Bluetooth, or blurring faces in pictures posted on online social networks, as proposed
in [37]. Simply put, the proposed countermeasures operate as follows: The first consists
in making co-located users report the same (obfuscated) location and the second consists
in generalizing time and/or user information in the reported co-locations.
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2.5.1 Coordinated LPPMs

In order to make the inference attacks we described in previous sections less effective,
we propose a simple countermeasure: user coordination. This means that if users report
being co-located at some time instant and also want to report obfuscated individual check-
ins, they should coordinate (i.e., report the same obfuscated location). Such a mechanism
requires collaboration between users, which can be challenging to achieve in practice. A
possible solution, in the case of explicitly reported co-locations, is that a user who posts
a co-location information embeds her obfuscated location so that all the co-located users
report the same obfuscated location (if they do report their locations). Collaboration
could also be achieved by means of short-range ad-hoc communication technologies, such
as Wi-Fi Direct or Bluetooth, as the co-located users are physically close. We emphasize
that this does not mean that co-located users have to also report individual check-ins,
rather that if they want to report individual check-ins, they must agree to make them the
same. We argue this would bring no detriment to users’ utility of individual check-ins, as
the obfuscation mechanism selects a random neighboring location to the actual location,
which users have no control or preference over. Intuitively, reporting single co-locations
in a coordinated fashion should give an adversary less information, because it maximizes
the set of possible locations co-located users could be in. As described in Figure 2.1 on
page 8, based on individual check-ins of co-located users, an adversary can infer that both
users should be located in the intersection of possible locations of each of the co-located
users. With coordination, the possible locations of users are the same, thus maximizing
their intersection. Note that this countermeasure has an effect only if both users use
obfuscation.

2.5.2 Generalization of Co-locations

We propose another countermeasure for reducing the effectiveness of inference attacks
that make use of co-location information. In the case of single location observations, a
recommended privacy-protection technique is obfuscation by generalization (i.e., report
a large area that contains the user’s actual location). Similarly, we propose that users
generalize co-location information, in a coarse-grained fashion; specifically, this implies
generalizing the time component of a co-location, and/or the co-located user(s) compo-
nent. Generalizing the time component in a co-location information means reporting a
time range instead of the exact time (e.g., use “morning” instead of “10am”). Generalizing
the user component means excluding the names of the friends a user is with and reporting
only the number of friends (e.g., instead of reporting being with her friend Alice, a user
would just report being with a friend). More generally, in the case where a user u is
co-located with k friends uf, uj, ..., u), he would no longer report k pairwise co-locations
with each of them (u <>; u}, ..., u <+ u},), but instead report one generalized co-location
u <> k friends. The user component of the co-location could also contain information
on social ties, such as “with two colleagues”, or “with some friends”.

We analyze in more depth the case of generalizing the co-located user(s) component
of a co-location. Intuitively, if this mechanism is employed by the users, it is harder for
the adversary to exploit a co-location information because he has to explore all possi-
ble combinations of real users a user is with and assign a likelihood to each of them.
This leads to (N ’C"Oll;agues) possible choices for exploring the generalized co-location “with
k colleagues”, where Ncoleagues is the number of user u’s colleagues in the social net-
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friends family . . . . .
NN — 1 choices for the generalized co-location “with some friends

work, and 2
and/or family”. More specifically, the joint variables o¥(-) and Y(-) (Equation (2.5)
and Equation (2.6)) would include a summation in the computation of the likelihood
of observing the obfuscated co-locations (I.(-,C)) for all possible instantiations of all
reported co-locations at time ¢ (for a) or ¢t + 1 (for 3) by all users. This would dras-
tically increase the complexity of the optimal inference attack. Note that generalizing
the user component of the co-locations would also drastically increase the complexity
of the BP-based solution; the current Bayesian network (Figure 2.4 on page 21) could
not be used anymore. We will investigate this as part of future work. In summary,
this countermeasure protects the users’ privacy by making the inference prohibitively
computationally expensive for the adversary.

Obfuscating the time component of co-locations would also lead to a drastic increase
in complexity because the adversary would have to consider all combinations of exact
time instances when users are co-located (which makes the computation of the joint «, 3
variables nontrivial). Naturally, obfuscating both components of co-location information
would result in the greatest complexity increase. We leave the design and in-depth
analysis of inference algorithms when a combination of the proposed counter-measures
is employed by users to future work. We intend to analytically evaluate the inference
complexity and empirically evaluate the users’ privacy gain and potential utility loss in
different scenarios of employed countermeasures.

2.6 Differential-Privacy Perspective

In this section, we complement our inferential approach to privacy quantification, pre-
sented in the previous sections, with a brief analysis of the effect of co-locations on users’
location privacy from a differential-privacy perspective. In the geo-indistinguishability
framework [38,39] (i.e., the application of differential privacy to geo-location), each obser-
vation has a privacy cost that depends on the level of noise added by the mechanism used
(typically drawn from a planar Laplace distribution). For instance, in order to guarantee
e-differential privacy, noise must introduced with an amplitude such that the expected
distance between the actual location and the reported location is proportional to 1/e.
Consider the case of a single time instant. If two co-located users each report one obfus-
cated version of their actual locations, the adversary has access to two observations of the
same variable, i.e., the users’ common location. Following the composability property
of differential privacy, this means that, to guarantee e-differential privacy for the users’
location, each individualy reported obfuscated location should satisfy (e/2)-differential
privacy (unless the two users agree on reporting the same obfuscated location, as dis-
cussed in Section 2.5 dedicated to countermeasures). This means that the expected
distance between the users’ actual locations and the obfuscated locations they report is
doubled, thus causing a substantial utility loss. This reasoning can be generalized to an
arbitrary number of co-located users: Intuitively, at every time instant, the level of noise
a user must introduce (and thus the utility loss she faces), in order to retain the same
privacy level in the presence of co-locations, is proportional to the number of co-located
users.

A study by Kifer et al. [40], effectively shows that if data correlations are ignored, the
released data will have a privacy guarantee lower than expected. A more complex analysis
of the effect of co-locations, from a differential-privacy perspective, could be carried out
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Figure 2.5: Illustration of the dataset used in the evaluation. Most traces are located
in the region of Beijing (left); we focus on a small active area that corresponds to the
campus of Tsinghua University and we partition it by using a 5 x 5 square grid (middle).
The heat-map (right) shows the number of samples in each region (logscale), for the users
of interest

by using the Pufferfish framework [41,42] (or more recently [43-45]) that enables taking

into account the correlation between entries in a differential-privacy analysis.®

2.7 Experimental Evaluation

Using a dataset of mobility traces, we evaluate the effect of co-locations on users’ privacy,
with respect to the various localization attacks presented in the previous sections.

2.7.1 Dataset, Methodology, and Experimental Setup

The dataset was collected by Microsoft Research Asia, in the framework of the GeoLife
project [48]. It comprises the GPS traces (i.e., sequences of time-stamped latitude-
longitude couples, sampled at a rate of one point every 1-5 seconds) of 182 users, collected
over a period of over three years. The GPS traces are scattered all over the world; but
most of them are located in the region of Beijing, China. We processed the data as
follows, in order to fit in our formalism.

Space Discretization. We select the area of ~4.4 km x 4.4 km, within Beijing, that
contains the largest number of GPS samples, and we filter out GPS samples that are
outside of this area. This geographic area corresponds to the campus of Tsinghua Uni-
versity (longitude ranging from 116.3 to 116.35 and latitude ranging from 39.97 to 40.01,
see Figure 2.5). We partition the selected area into 25 regions by using a 5x5 square
grid. The GPS coordinates of each sample are translated into the region (i.e., the grid
cell) they fall into.

Time Discretization. We divide the continuous time interval into one-hour time sub-
intervals that correspond to time instants in our formalism. For each time sub-interval
t and for each user u, we set the user’s actual location in that time interval (i.e., a,(t))
to the region corresponding to the sample that is the closest to the midpoint of the

6Since the publication of our article [22], several other studies (e.g., [46,47]) have proposed meth-
ods to effectively take data correlations into account when proposing protection techniques based on
differential privacy.
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considered time sub-interval. If a user’s trace does not contain any samples in a given
time sub-interval, the user’s actual location is set to a dummy region r, , leaving us with
partial user traces.

Co-location Generation. As the dataset does not contain explicit co-location infor-
mation reported by the users, we use synthetic co-locations that we generate as follows:
At each time instant, we generate a co-location between two users according to the prob-
abilistic co-location reporting function g..(, -), based on their discretized actual locations
(if they are different from r, ). We consider a special case of the co-location reporting
function (Equation (2.1)) as follows:

v ifr,=r,
G, (Tu, Ty) = 2.49
( ) {u if ry # 1y ( )

As stated in the model, the adversary is assumed to know the values of p and v.
Intuitively, p represents the probability a fake co-location is reported, and v represents
the probability a true co-location is reported. This model assumes that for any user,
reporting a co-location does not depend on the actual location where she and her friend
are and that the user chooses to report their co-location with a fixed probability. In
order to simplify the evaluation, we assume that the co-location reporting function is the
same among any pair of users, as in the case of a Bluetooth scenario. We could relax this
assumption and make v and p functions of the particular pair of users; for example, if a
social graph of relationships between users were available, we could consider v, ;1 > 0 only
for pairs of users for which a social relationship exists, and 0 for all other user pairs, as
users typically report co-locations on social networks only with their friends. Regarding
the values of v and pu, several cases can also be considered: v = 1 and p = 0 would
correspond, for example, to an ideal Bluetooth scenario, in which devices automatically
discover each other and report co-locations with all neighboring devices; ¥ < 1 and u = 0,
could also correspond to a Bluetooth scenario, where co-locations are reported with only
some of the neighboring devices. In our evaluation, we will consider both cases.

For each user, we compute the number of real co-locations” she has with every other
user in the dataset, across the full user traces. We keep only the users for which there
exists another user with whom they have at least 200 co-locations. For these users, we
consider their common time interval (i.e., the longest time interval during which all these
users have at least one sample); we obtained an interval of ~6000 hours. Within this
interval, we sample 10 short traces of 300 continuous hours such that (1) all users have
at least 10% of valid samples (i.e., , different from 7, ) and (2) all users have at least 20
co-locations with their co-target; (as defined in Eq. (2.43)). This leaves us with a total
of 5 users.

User Mobility Profile Construction. We build the mobility profiles {py }uecy of the
users based on their entire discretized traces by counting the transitions from any region
to any region (in R) in one time instant.

Obfuscation. We consider that users report a single (or none), potentially obfuscated,
location at each time instant.® This means that the set R’ in which the obfuscated loca-

"Note that, by real co-locations, we mean that the users are at the same location (i.e., their actual
locations at a given time instant are the same), regardless of the fact that the co-location is reported or
not.

8We assume this because of the limited size of the considered grid.
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tion o, (+) takes values is RU{r, }. We consider, for each user u, that two location-privacy
protection mechanisms are used together: First, the location is hidden (i.e., obfuscated
to r) ) with a probability A, and then, if the location has not been hidden, it is replaced
by a region (chosen uniformly at random) at a distance of at most d,, from the user’s
actual discretized location (i.e., a region). If the actual location of a user is not known
(i.e., set to ) ), the LPPM returns r; with probability 1. In our evaluation, we vary A,
from 0 to 1 and we set d,, to the size of one grid cell; this means that, if it is not hidden,
a user’s location is obfuscated either to its actual value (with probability 0.2) or to one
of the four adjacent regions (e.g., 2, 6, 8 and 12 for Region 7 in Figure 2.5 on page 25),
each with probability 0.2.

Privacy Evaluation. We evaluate the location privacy of the users based on the
metric defined in (2.3). For each user and for each short trace, we generate 20 random
obfuscated traces (remember that obfuscation is a random process), and we perform a
localization attack on each of them. We compute the average location privacy of each
user across the different obfuscated traces and across the different time instants. Time
instants for which the location of a user is not known (i.e., set to r ) are not taken into
account in the computation of their average over time.

Limitations. Unfortunately, we could not obtain real datasets from online social net-
works containing both (coarse-grained) location and co-location data. Due to the syn-
thetic nature of the reported location and co-location information in our data source,
our experimental setup does not perfectly reflect a real usage case. Deciding whether
to report locations and co-locations is a complicated process that involves many factors,
such as the users’ contexts, their privacy preferences, and the shared information itself.
Therefore, the results presented in this section should be taken with a pinch of salt as
they cannot directly be interpreted as the magnitude of the threat in real life. Yet, we
believe that they are significant enough for understanding the effect of co-locations on
location privacy, the sources of privacy loss, and the relative performance of the proposed
heuristics. Also, the number of users considered in most of our evaluations (i.e., 5), as
well as the active area considered, are relatively small. Hence, the results might not be
representative of the entire population. In order to overcome the aforementioned short-
comings, we intend to collect a large-scale dataset from an existing social network. We
also intend to run experiments on large grids (i.e., larger than 5x5).

2.7.2 Experimental Results

We experimentally evaluate the algorithms, presented in Section 2.4, in different sce-
narios, with different settings. For the solution based on belief propagation, we re-
lied on the implementation provided in the Bayes Net Toolbox for Matlab (https:
//code.google.com/p/bnt/); for the optimal inference algorithm, we used our own Java
implementation. The purpose of our evaluation is to assess the raw performance of our
algorithms, but also to compare their results. We also analyze the effect of the differ-
ent parameters of the model (including the individual LPPM settings of the users and
the differences between the individual LPPM settings of the users) and of the set of
co-locations considered in the localization attack.
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Effects of True Co-locations and LPPM Settings

We begin our evaluation by analyzing the effect of (1) the amount of reported true co-
locations and (2) the LPPM settings (i.e., with or without obfuscation and the location
hiding probability A, assumed to be the same across users) in the case of two users,
i.e., the target user and her first co-target are considered jointly in an optimal localization
attack, namely the limited user set approximation with N = 2. For this evaluation, we
consider the case where no fake co-locations are reported. The results are depicted in
Figure 2.6 on page 29. Figure 2.6a on page 29 shows the case where no obfuscation is
used (i.e., the users disclose their actual locations with probability 1 — A and hide them
otherwise), and Figure 2.6b on page 29 shows the case where obfuscation is used (i.e., the
users disclose their obfuscated locations, specifically a region chosen uniformly at random
among the actual location and the four immediate neighboring regions, with probability
1— X and hide them otherwise). The top graphs show a box-plot representation (i.e., first
quartile, median, third quartile and outliers) of the users’ location privacy expressed in
terms of the expected error of the adversary, in kilometers (left axis) and in proportion
of the size of the considered geographic area (right axis). For each couple of values (), v),
we draw one box-plot to aggregate the data-points obtained for all users and for all the 20
randomly generated obfuscated versions of each of the considered actual traces. Note that
without obfuscation, the case A = 0 leads to zero privacy, as users always disclose their
actual locations. It can be observed that the proportion of reported true co-locations
consistently decreases the location privacy of the users. To quantify this decrease, we plot
(middle and bottom graphs) the privacy loss caused by the use of co-location information,
with respect to the case where no true co-locations are reported, i.e., v = 0. We show
both the median absolute privacy loss, in kilometers (middle graph), and the median
relative privacy loss, in percentage of the privacy in the case v = 0 (bottom graph). Note
that the median privacy loss is equal to the median of the differences (w.r.t. the case
v =0) and not to the difference of the median privacy.

Consider for example, the case A = 0.4 and v = 0.5: In the case without obfuscation,
the median privacy loss is approximately 80m, which corresponds to a decrease of ap-
proximately 21%. The median absolute privacy loss can go up to 260m (A = 0.8, v = 1)
and the median relative privacy loss up to 62% (A = 0.2 and v = 1). We observe the
same trend, with a more modest loss, in the case where obfuscation is used. We empha-
size that when there is an obfuscated location observation, the adversary has only five
choices of cells to locate the user: the cell of her actual location and four neighboring
cells of the actual location. Hence, an upper bound for privacy in this case is given by
the inter-cell distance (0.87km). It can be observed in Figure 2.6b on page 29 that when
all observations are available (A = 0), this upper bound is indeed respected.

Effects of True Co-locations and Spatial Cloaking

For a complementary experiment, we also studied the effect of co-location information
when users employ spatial cloaking instead of obfuscation.

Similarly to our experimental setup presented in Figure 2.6b on page 29, we evaluate
user privacy for a different LPPM, namely, location hiding (with probability A) or spatial
cloaking (with probability 1 — ). When using cloaking, a user does not report the region
corresponding to her actual location, but instead a meta-region consisting of four regions,
one of which is the actual location. In Figure 2.7 on page 30, we present our results.
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Figure 2.6: Privacy (top), absolute privacy loss (middle) and relative privacy loss (bot-
tom) for the limited user set attack with N = 2 users , when users do not report fake
co-locations (1 = 0). The privacy loss is expressed w.r.t. the case where no co-locations
are available (v = 0, p = 0); the histograms show median values. Co-location informa-
tion decreases privacy. The relative privacy loss is higher for small values of the hiding
probability and without obfuscation.

We conclude that the proportion of reported true co-locations consistently decreases the
location privacy of the users (as was the case for the other LPPM based on location
hiding and location obfuscation), but in this case the privacy loss is more evident. This
could be explained by the fact that in the case of cloaking, when observing a meta-region
of size four regions, the adversary has to explore four possible regions as candidates for
the user’s actual location; whereas, in the case of obfuscation, five possible candidates
for the actual location have to be explored (one of the four neighboring regions of the
observed (obfuscated) region and the observed region itself).

In the next sections, we focus on the case where users obfuscate their locations, report
true co-locations with probability » = 0.5 and do not report fake co-locations (u = 0).

Effects of the Differences of Individual LPPM Settings

We now analyze the effect of the differences, in the users’ LPPM settings, on the location
privacy (loss) due to co-locations. To do so, we focus on the case of two users, a target and
her co-target, both who obfuscate their locations but with different hiding probabilities
Atarget A Aco-target- We perform a joint optimal localization attack. The results are



30 CHAPTER 2. LOCATION INFERENCE ATTACKS USING CO-LOCATION DATA

25 — 3 05
v=0.25 /1
o L =050 mmmm 1 04
r=0.75 : @
_ v=1 EE— g
Eist 103 &
el
E 1 4 02 =
: ! LN
05 H m 101
ééii; ii 0
_ 03
E
)
2 02 .
g
g o1t -
Z
&
80
S 60t 1
g
= 40 b _
g
Z 20 -
S
(a9

00 02 04 06 08 1.0
Location hiding probability (\)

Figure 2.7: Privacy (top), absolute privacy loss (middle) and relative privacy loss (bot-
tom) for the limited user set attack with N = 2 users, when users do not report fake
co-locations (= 0) and use spatial cloaking or location hiding as protection mecha-
nisms. The privacy loss is expressed w.r.t. the case where no co-locations are available
(v =0, u = 0); the histograms show median values.

depicted in Figure 2.8 on page 32, under the form of heat-maps that represent the target
user’s location privacy (a) as well as her absolute (b) and relative (c) privacy loss (with
respect to the case v = 0) as functions of the respective LPPM settings Aco-target (X-axis)
and Agarget (y-axis).

A first observation is that co-locations always decrease the privacy of the target
(i.e., all values in Figure 2.8b on page 32 are positive) and that the more information the
co-target discloses, the worse the privacy of the target is (i.e., the cells of the heat-map
depicted in Figure 2.8a on page 32 become lighter, when going from right to left on a
given row).

The diagonals of the heat-maps correspond to the case Aco-target = Atarget, Which is
depicted in more detail in Figure 2.6 on page 29. The region of the heat-map above the
diagonal corresponds to the case where the target is more conservative, in terms of her
privacy attitude, than her co-target (i.e., Aco-target < Atarget). It can be observed that
the information disclosed by the target herself compromises her privacy more than the
information disclosed by her co-target, e.g., the cell (0.6,0) is lighter (which means that
the target’s privacy is lower) than the cell (0,0.6).
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By comparing the columns “Aco-targes = 17 and “no co-target” (two right-most columns
in Figure 2.8a on page 32), we can observe the privacy loss that stems from the use,
through the co-location information, of the co-target’s mobility profile alone (as the co-
target never discloses her location). This is substantial. The intuition behind this result
is that co-located users are likely to be at a place that is often visited by both of them,
which narrows down the choice of locations the adversary needs to explore when localizing
both users.

Finally, in the extreme case where the target never discloses location information and
her co-target always does so (top-left cell of the heat-maps in Figures 2.8b and 2.8¢ on
page 32), the privacy loss for the target is 190m, which corresponds to a decrease of 18%.
This case (and in general the cases where the target never discloses location information,
i.e., the top row of the heat-maps) highlights the fact that, as reported co-locations
involve two users, users lose some control over their privacy: Without revealing any
information about herself, a user can still have her privacy decreased by other users, due
to co-location information.

For the rest of the evaluation, we focus on the case where all users have the same LPPM
settings (i.e., same values of \).

Comparison of the Proposed Low-Complexity Alternatives

Here, we compare, through experimentation, the proposed inference algorithms for the
localization attack, by taking into account different scenarios, as depicted in Figure 2.9 on
page 33. We assume all users use the same LPPM settings, i.e., same value for \ and
disclose only their obfuscated locations. In Scenario (a), we consider, in turn, all target
users in our set and perform an individual localization attack on each of them, using only
their own reported locations and no co-locations. This corresponds to the baseline case
v = 0, which was presented in detail in Figure 2.6b on page 29. We then consider the
case of an adversary that exploits co-locations. We assume users report only a limited
proportion of their true co-locations, with probability v = 0.5, and no fake co-locations
(= 0). Scenario (b) corresponds to the case of an adversary that, in order to attack a
target user, performs an optimal joint inference attack on the target and her co-target, as
described in Section 2.3. This scenario corresponds to the case v = 0.5 in Figure 2.6b on
page 29. Scenarios (c) and (d) correspond to the case of an adversary that performs an
optimal joint attack on the target and her two co-targets. We distinguish two cases:
(¢) in which the co-locations between the co-targets are ignored, and (d) in which all
co-locations between any of the three users are considered. We make this distinction
solely to quantify the privacy loss that stems from the use of co-locations that do not
directly involve the target. In practice, an adversary would always consider Scenario (d)
because it takes into account more information at no extra cost. Finally we consider
Scenario (e) that corresponds to an adversary that uses all reported co-locations but
solves an approzimate joint inference problem, as described in Section 2.4.2. We set the
maximum number of iterations of the BP algorithm to 20.

Figure 2.10 on page 34 shows the results of our comparison. The top graph shows a
box-plot representation of users’ privacy, for each of scenarios (a)-(e). To quantify the
different effects on the users’ privacy of the set of considered co-locations and of the
inference algorithm used, we show (bottom) the absolute and relative privacy loss, with
respect to Scenario (a), for each of the scenarios (b)-(e). It can be observed by comparing
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Figure 2.8: Median values of the target’s location privacy (loss), for the limited user set
attack with V = 2 users, when the target and her co-target have different values of A
(with obfuscation, v = 0.5, n = 0). The diagonals correspond to the values of Figure 2.6b
on page 29.

scenarios (a)-(d) that, unsurprisingly, the users’ privacy decreases with the amount of
considered co-locations. The comparison between scenarios (¢) and (d) shows that co-
locations between the target’s co-targets improve the performance of the localization
attack, but not as much as co-locations that directly involve the target user (Scenario (b)
and Scenario (c)). Finally, we observe that the approximation based on belief propagation
(Scenario (e)), which takes into account all co-locations and the location information of
all the users, outperforms the first heuristic (N < 3), at a low computational cost. In
this scenario, the median absolute privacy loss can go up to 182m (A = 0.8) and the
median relative privacy loss up to 27% (A = 0), when v = 0.5 and p = 0. We can thus
conclude that, when using belief propagation instead of joint optimal inference, the loss
in inference accuracy is far less than the gain that stems from using all of the available
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Figure 2.9: Co-locations considered in the evaluation: (a) no co-locations (also referred
to as “No co-target”), (b) only co-locations between the target and co-target; (heuristic,
N =2), (¢) only co-locations between the target and co-target; and between the target
and co-targets (heuristic, N = 3), (d) all co-locations between the target, co-target; and
co-targets (heuristic, N = 3), (e) all co-locations (belief propagation in our proposed
Bayesian network formalization depicted in Figure 2.4 on page 21).

co-location information and the location information of all the users.

In order to assess the performance of the belief propagation algorithm, we also com-
pared it with the optimal inference algorithm, for all scenarios (a)-(d). For each of these
scenarios, we computed the Hellinger distance between the BP algorithm and the optimal
inference. We obtained the following distances: 3.79E-4 for Scenario (a), 5.18E-3 for Sce-
nario (b), 1.79E-2 for Scenario (c¢) and 3.31E-2 for Scenario (d). Similarly, we computed
the statistical distances and obtained the following: 1.86E-4 for Scenario (a), 3.79E-3 for
Scenario (b), 1.84E-2 for Scenario (¢) and 3.10E-2 for Scenario (d). These very small
values for both the Hellinger and statistical distance, for all scenarios, show that the BP
algorithm converges in about 20 iterations, while also proving that our formulation of
the localization problem as a Bayesian network (depicted in Figure 2.4 on page 21) is
correct. In fact, we observe that the approximation provided by the BP algorithm is
already quite close to the optimal after a very small number of iterations (i.e., 2-3) which
suggests that the attack can be carried out efficiently by the adversary.

To further analyze and compare the performance of the different inference algo-
rithms, we measured their execution times in a typical setting (A = 0.2, v = 0.5 and
w = 0, for a single user) on an 8-core Intel(R) Xeon(R) CPU E3-1270 V2 @ 3.50GHz
with 16GB of RAM. We obtained the following results: Scenario (a): 1.82+0.0471s;
Scenario (b): 3.87+0.0498s; Scenario (c): 2,7114+91s; Scenario (d): 2,555+73.6s; Sce-
nario (e): 2.66+0.0151s. These results demonstrate the practicality of the BP-based
attack in comparison to the optimal localization attack, which is already very expensive
for Scenarios (c) and (d), where co-locations between three users are considered.

Effects of Users Reporting Fake Co-locations

Here, we analyze the effect of reporting fake co-locations. We focus on the case of two
users, a target and her first co-target, who both obfuscate their locations and use the
same location hiding probability. We present the case where A = 0.2, but we observe the
same trend for all values of A\. We vary v — the probability of reporting true co-locations,
as well as p — the probability of reporting fake co-locations. We perform a joint optimal
localization attack. The results are depicted in Figure 2.11 on page 35. The top graph
shows a box-plot representation of users’ privacy, and the middle and bottom graphs
show the median absolute and relative privacy loss, with respect to Scenario (a) (where
no co-location information is considered). We observe that when all the true co-location
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Figure 2.10: Comparison of the different localization attacks for the scenarios (a)-(e)
depicted in Figure 2.9 on page 33, with obfuscation. The privacy loss (middle and
bottom) is evaluated w.r.t. Scenario (a). In scenarios (b)-(e), we consider users report
true co-locations with probability v = 0.5 and that they do not report fake co-locations

(1 =0).

information between the target and her co-target is reported (v = 1), the users’ privacy
increases as there are more fake co-locations reported (as u increases). However, when
none of the true co-locations are reported (v = 0), we observe that the users’ privacy
decreases with the increase of available fake co-location information. In other words, an
adversary can exploit the absence of a reported fake co-location at some time instant
to infer that the users must, in fact, be co-located (for large values of y).” This is an
interesting observation that shows an adversary can learn not only from available co-
location information but also from the absence of co-location information. Finally, in
the case where only some of the true co-location information is reported (v = 0.5), we
observe the largest users’ privacy for values of p which lead to a high uncertainty for the
adversary (these are middle values of ). We emphasize that users’ privacy in the case
where v = = 0 (users never report co-location regardless of whether they are co-located
or not) is the same as that where v = p = 1 (users always report co-location regardless of
whether they are co-located or not). Finally, an important observation is that regardless
of the amount of available co-location information (true or fake), users’ privacy is never

9This is similar to the case of the entropy of a binary variable that is flipped with a given probability.
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Figure 2.11: Privacy (top), absolute privacy loss (middle) and relative privacy loss (bot-
tom) for the limited user set attack with N = 2 users, with obfuscation, A\ = 0.2 and
v € {0,0.5,1}. The privacy loss is expressed w.r.t. the case where no co-locations are
available; the histograms show medians. We observed similar results for other values of
A (not shown).

larger than that in the case where no co-locations are considered. This means that an
adversary cannot be significantly confused by misleading co-location information, hence
reporting such fake co-locations would not be an effective privacy protection practice.

Effects of User Coordination

We present the effect of using coordination for Scenario (e), where all available co-location
is used. We infer the user location by using the BP algorithm for Scenario (e) and opti-
mal inference for Scenario (a). We focus on the case where all users use obfuscation and
have the same location hiding probability, A\. We assume users report true co-location
information with probability » = 0.5 and no fake co-location information. We consider
both the case where all users use coordination and the case where no users coordinate.
We compare these with Scenario (a), where no co-location information is observed. Fig-
ure 2.12 on page 36 shows the results of our experiment: a box-plot representation of
user privacy in the top graph, and the median privacy loss with respect to Scenario (a)
in the bottom graphs. We observe that when users coordinate, their privacy can still
decrease compared to the case where no co-locations are used, but there is a privacy gain
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Figure 2.12: Localization attack with and without coordination for scenario (e) depicted
in Figure 2.9 on page 33, with obfuscation, v = 0.5 and p = 0. The privacy loss (middle
and bottom) is evaluated w.r.t. scenario (a).

with respect to the case where co-locations are reported in an uncoordinated fashion.
This privacy gain is higher, as A decreases. For instance, when A = 1, users always
hide their individual location and there is nothing to coordinate, hence coordination has
no effect on users’ location privacy. However, as users report more individual check-ins
(X decreases), the privacy gain stemming from coordination increases, with a peak for
A = 0 (where users’ privacy loss is reduced by half when coordinating). We can conclude
that, by coordinating their individual check-ins with their friends at times where users
also report being co-located, users can limit the privacy loss caused by the co-location
information.

Co-location Information on a Larger Scale

We evaluate the Bayesian network-based approximation on a set of 38 users. We compare
it with the optimal individual localization attack (where no co-location information is
used) and observe the same trend that co-location information further reduces location
privacy.

In Section 2.7 and Section 2.5, we considered a small dataset of users, due to the
high complexity of the optimal solution. We denote this small dataset by Us;. Here, we
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Figure 2.13: Comparison of the localization attacks for target users in U; on Scenarios (a)
and (e), as depicted in Figure 2.9 on page 33, with obfuscation. The privacy loss (middle
and bottom) is evaluated w.r.t. Scenario (a). In Scenario (e), we consider users report
true co-locations with probability v = 0.5 and that they do not report fake co-locations

(1 =0).

evaluate our belief propagation solution on a larger dataset, in order to quantify location
privacy loss when co-locations from a larger set of users are available. To this end, we
select a subset U of users in the GeoLife dataset, such that each selected user must
have at least one real co-location'® with any other user in f; (across their full traces).
This results in 38 users being selected. Note that Us C U;. We emphasize that due
to the low availability of real co-locations across the GeoLife users, this represents a
weaker constraint of minimum desired co-locations, compared to that which we use when
sampling the users in our small dataset ;. The low availability of co-locations, coupled
with the sparsity of the location information available, also is also the basis for sampling
10 short individual collections of actual traces in the following way: For each u, a target
user in Uj, we generate actual traces for all the users in U such that (1) u has at least
10% of valid samples (i.e., different from r,) and « has at least 1 co-location with her
co-target;.

10Note that by real co-locations, we mean that the users are at the same location (i-e., their actual
locations at a given time instant are the same), regardless of the fact that the co-location is reported or
not.
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Figure 2.14: Comparison of the localization attacks for target users in U on Scenario (a),
Scenario (e) considering co-locations only with and among users in U, and Scenario (e)
considering co-locations with and among all users in ;. The privacy loss (middle and
bottom) is evaluated w.r.t. Scenario (a). We consider users report true co-locations with
probability v = 0.5, do not report fake co-locations (1 = 0) and use obfuscation.

We perform an individual localization attack by optimal inference for Scenario (a),
considering, in turn, each user in the set U as the target user (using only their own
reported locations and no co-locations). We then consider Scenario (e), the case of an
adversary that exploits co-locations between any of the users in ;. We assume users
report only a limited proportion of their true co-locations, with probability v = 0.5, and
no fake co-locations (u = 0). We perform an approximate joint inference algorithm, by
using the belief propagation algorithm with at most 20 iterations. We then compare
the privacy in Scenario (e) to that in Scenario (a), in the case where all users use the
same LPPM settings, i.e., same value for A and disclose only their obfuscated locations.
Figure 2.13 shows the results of our comparison. It can be observed that the users’
privacy decreases with the amount of considered co-locations. The privacy loss can seem
somewhat modest, in comparison to the one observed in our previous experiments using
Us. This can be explained by the fact that users in Us; have more real co-locations than
those in U (a user has a median number of real co-locations in their actual traces of 5.5
and 2, respectively). We further compare the privacy of only the target users from U, (but
still using all the co-locations in the larger dataset ;) with that when using co-locations
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among users from U,. Figure 2.14 on page 38 shows the results of this comparison. It
can be observed that the availability of co-locations with a larger number of users can
further reduce privacy (privacy loss is as much as 31% when X\ = 0).

2.8 Related Work

Location is identity. Even if the set of locations shared by a user is anonymized, and her
true identity is hidden from the location-based service provider, the observed trajectories
can be re-identified [6,49-51]. This attack is made by linking available information about
users’ mobility in the past with their observed traces. To protect against such attacks,
many location obfuscation mechanisms have been proposed in the literature; they suggest
that users hide their locations at certain locations, or that they reduce the accuracy or
granularity of their reported locations [52-54]. These techniques increase users’ privacy
by making it more difficult for an adversary to de-anonymize users and to localize or track
them over time. The location privacy of users in such settings can be computed using
the expected error of an adversary in estimating their locations [28]. In such an inference
framework, an adversary has some background knowledge on users’ mobility models;
this is used to reconstruct the full trajectories of the users, by using the anonymized and
obfuscated observed traces.

The adversary’s information, however, is not limited to mobility models. With most
users being members of social networks, an adversary can de-anonymize location traces
by matching the graph of co-traveler users with their social network graph [55]. Co-
travelers are those who have been in each others’ physical proximity for a considerable
number of times. Researchers have extensively studied the problem of inferring social ties
between users, based on their physical proximity [2,56]. Recent revelations about NSA
surveillance programs also show that this type of information is of great use for tracking
and identifying individuals [57]. The dual problem, i.e., inferring location from social ties,
has also been studied by the research community [58—60|. In [61], the authors exploit
proximity information detected via Bluetooth, which is similar to co-location, to build
an opportunistic ad-hoc localization algorithm by using intersection techniques similar
to what we use in our attack. (see Figure 2.1 on page 8) In [62], the authors modeled
the influence of social relationships on human movement and used this to predict future
locations of the users. Location privacy risks have also been studied in the context of
proximity detection (e.g., finding nearby friends in OSNs) [63-66].

The correlation between different users’ information also opens the door to a new
type of privacy threat. Even if a user does not reveal much information about herself,
her privacy can be compromised by others. In [67], the authors study how information
revealed, from pictures, by a user’s friends in social networks can be used to infer private
information about her location. Private information about, for example, a user’s profile
and her age can also be inferred from shared information on online social networks [9,10].
A users’ home address can also be inferred from those of her Facebook friends [68]. Mobile
users, connecting to location-based services from a same IP address, can also compromise
the privacy of those who want to keep their location private [69]. The loss in privacy,
due to other users, has also been shown in other contexts such as genomics [12, 70].
Finally, interdependent privacy risks have been studied by using game-theoretic models
for predicting the optimal behavior of rational users, in the context of OSNs [71,72] and



40 CHAPTER 2. LOCATION INFERENCE ATTACKS USING CO-LOCATION DATA

genomics [73]. Other game-theoretic interdependence models for security and privacy
have been surveyed in [10].

Extracting co-location information about users (i.e., who is with whom) is becoming
increasingly easier. More specifically, with the proliferation of mobile social networks,
where users can check-in with others at various locations, the threat of available co-
location information on users’ location privacy is clear (as pointed out in [27]). Despite
the abovementioned works on quantifying the location privacy and the privacy of users
in social networks, as well as the extensive research on privacy loss due to others, there
has not been a study on evaluating location privacy where co-location information is
considered. We bridge the gap between studies on location privacy and social networks,
and we propose the first analytical framework for quantifying the effects of co-location
information on location privacy, where users can also make use of obfuscation mecha-
nisms.

2.9 Conclusion

In this chapter, we have studied the effect on users’ location privacy when co-location
information is available, in addition to individual (obfuscated) location information. To
the best of our knowledge, this is the first effort to quantify the effects of co-location in-
formation that stems from social relationships between users on location privacy; as such,
it constitutes a first step towards bridging the gap between studies on location privacy
and social networks. Indeed, most studies on geo-location and social networks look at
how social ties can be inferred from co-locations between individuals and how social ties
can be used to de-anonymize mobility traces. We have shown that, by considering the
users’ locations jointly, an adversary can exploit co-location information to better localize
users, hence decrease their individual privacy. Although the optimal joint localization
attack has a prohibitively high computational complexity, the polynomial-time approx-
imate inference algorithms that we propose provide good localization performance. An
important observation from our work is that a user’s location privacy is no longer entirely
in her control, as the co-locations and the individual location information disclosed by
other users significantly affect her own location privacy.

The message of this work is that protection mechanisms must not ignore the social
aspects of location information. Because it is not desirable to report dummy lists of co-
located users (as this information is displayed on the users’ profiles on social networks),
a location-privacy preserving mechanism needs, instead, to generalize information about
co-located users or to generalize the time of a social gathering, as well as the locations
of users at other locations, in order to reduce the effectiveness of the attacks we sug-
gested in this chapter. For a first attempt to mitigate the privacy risks stemming from
co-location information, we have proposed a simple countermeasure that relies on coop-
eration between users and have demonstrated its effectiveness. We intend to address the
design of social-aware location-privacy protection mechanisms (running on the users’ mo-
bile devices) to help the users assess and protect their location privacy when co-location
information is available. An important aspect of generalization techniques is the tension
between utility and privacy: For a user, reporting to be with “some friends” might not be
sufficiently informative, and the generalized co-location information would fail to serve
the user’s purpose. Usability is also a crucial aspect for the adoption of technical protec-
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tion mechanisms. We plan to investigate both the utility and usability aspects of such
protection mechanisms through targeted user surveys.

In our future work, we also plan to investigate the case where co-locations are not
explicitly reported by the users, instead the adversary has access to the social ties between
the users (e.g., friends, family, colleagues). Such ties can be associated with probabilistic
co-location patterns; for instance, the fact that the locations of work-colleagues are often
correlated during office hours.






Chapter 3

To Share or not to Share:
Insights into Users’ Behavior of
Sharing (Co-)Locations

Interdependence is a fundamental law of nature. Fven
tiny insects survive by cooperating with each other.
Our own survival is so dependent on the help of
others that a need for love lies at the very core of our
existence. This is why we need to cultivate a genuine
sense of responsibility and a sincere concern for the
welfare of others.

DarLal LAMA

3.1 Introduction

The location-sharing feature offered by major online social networks has gained momen-
tum, as users increasingly access their favorite OSNs from their smartphones — as much
as 95.1% of active users worldwide accessed their Facebook account via smartphone in
January 2018 [74]. Thus most Facebook check-ins and photos are made from mobile
devices. Another popular feature, currently implemented in many mobile location-based
social networks, is the ability to mention other users, such as friends, in posts or to tag
them on pictures. Ilia et al. [37] perform a user study that demonstrates that 84.7% of
posted pictures contain one or more face(s), whereas 87% contain one tag (users do not
typically tag themselves) and 12.2% contain more than one tag. In many cases, such
information indicates that the users mentioned in a post are co-located. As for location
information, sharing co-location information — the fact that two users are together (the
actual location might not be known) — brings social benefits (as also pointed out by
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Krasnova et al. [75]) to those sharing it but also to their friends who view it: Users enjoy
knowing with whom their friends are and telling their friends with whom they are.

But, these features also raise privacy concerns. Although it has been known for years
that location information leads to severe privacy issues and this has been extensively
studied in the literature (e.g., [2,4,76]; see also FindYou [77], a location privacy auditing
tool, available at https://find-you.herokuapp.com/), it was only recently that the effect
of co-location information on users’ location privacy was studied [22], as we presented in
Chapter 2. A critical aspect of co-locations is that they relate to all the involved users
(such information is “co-owned” by the involved users [78,79]) and introduce interdepen-
dences between the users’ location privacy, as the location information disclosed by users
affects the privacy of their friends. As such, users lose partial control over their privacy
and it becomes complex to evaluate the optimal sharing behavior. Such interdependent
privacy risks are quite problematic if users have different, possibly opposite, views about
sharing and privacy. It creates so-called multi-party privacy conflicts [79,80].

Awareness about the interdependent nature of privacy is increasing, yet, due to its
complexity, this is not explicitly addressed by current laws. Opinion 5/2009 on online
social networking produced by the Working Party on Data Protection, an advisory board
set up by the EU for the reform of the data protection laws, raises awareness about the
case of users uploading data about others. Yet, even in the General Data Protection
Regulation (GDPR) (Regulation EU 2016/679) which became enforceable on 25 May
2018, the case where individuals share data about individuals online is not directly men-
tioned, and the problem remains unsolved. Therefore, from a legal perspective, there are
few regulations that apply to sharing on OSNs (except for the extreme case of sharing
sexually explicit content, namely revenge pornography) and this serious problem deserves
further study. We dedicate the next chapter, Chapter 4, for exploring solutions for this
problem.

In this chapter, we propose the first unified framework for modeling the direct and
indirect benefits, and the privacy implications of location and co-location sharing, in ad-
dition to the resulting strategic behaviors of the users. Such a framework enables anyone
to analyze the behavior of users regarding location and co-location sharing on OSNs. To
this end, we build our framework by using two well-established modeling and analytical
tools: game theory [81-83] and conjoint analysis [84]. Game theory enables us to model
and formalize the users’ sharing rationale and behavior. Such models include a number
of parameters that, typically in the expression of the users’ utility, characterize the users’
behaviors. Conjoint analysis enables us to rigorously quantify, based on a personalized
user survey, the relative benefits of sharing and viewing location and co-location informa-
tion, and the associated relative costs in terms of location privacy. The values obtained
through conjoint analysis are used to derive the different parameters of the game-theoretic
model. Although several works [71,72,85] have investigated interdependent privacy risks
from a game-theoretic perspective (especially in the context of Facebook applications),
this is the first work that investigates the strategic aspects of (co)-location sharing in the
presence of interdependent privacy risks. Our framework could typically be used to gain
insight into users’ sharing behavior but also to design appropriate incentive mechanisms
and location sharing features in order to influence the behavior of OSN users, eventu-
ally optimizing the overall privacy-sharing trade-off. Our contributions are as follows.
We propose the first game-theoretic framework, namely the Sharing Game, to formalize
the important problem of location sharing with interdependent privacy risks (introduced
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by co-location). Following a conjoint analysis approach, we design and conduct a user
survey of Facebook users (N=250) to quantify users’ preferences of (1) sharing or view-
ing posts, (2) location or co-location information, and (3) location privacy or sharing
benefits. Our survey results indicate that, interestingly, there is no consensus regarding
users’ preferences; for instance, some users prefer sharing location information and others
prefer sharing co-location information. We evaluate our analytical framework through
simulations, in a number of key experimental setups and scenarios and on a real dataset,
Geolife [48]. We use values of the parameters derived from the empirical data, avoiding
the pitfalls of purely theoretical results, for a better understanding of realistic human
behaviors. Our simulations notably unravel situations in which users can be forced into
a vicious circle of sharing their information or encouraged to over-share.

The rest of the chapteris organized as follows. In Section 3.2, we give background
information on the main techniques used. In Section 3.3, we describe the considered
setting and the system model, including the users and the adversary, as well as the
proposed framework for studying users’ sharing behaviors. In Section 3.4, we describe
the methodology and the results of the survey of Facebook users in order to estimate the
key parameters of our model. In Section 3.5, we evaluate our framework in a number
of scenarios. We present an extended model in Section 3.6. In Section 3.7, we discuss
directions for improvement and extension of our work. In Section 3.8, we survey the
related work. In Section 3.9, we conclude the chapter and we discuss future work. Finally,
in Section 3.9, we provide the full survey transcript.

3.2 Background

In this section, we briefy introduce the relevant concepts in game theory and the conjoint
analysis technique.

Game Theory 101

Game theory is the study of the strategic interaction between multiple rational decision-
makers who aim to maximize their own utility [81-83]. This mathematical theory enables
us to derive more than the optimal strategy that a rational agent would adopt given vari-
ous parameters: It enables the modeling and computing of stable states, called equilibria,
in which none of the agents can improve his utility given all other agents’ utility func-
tions and strategies. It has been notably used in economics, biology, political science,
psychology, and computer science. It is especially relevant for our work as it enables
us to model and analyze users’ preferences and interactions, and to understand their
resulting rational behaviors. A core concept of game theory is the Nash equilibrium
(NE), which represents the stable state in which no agent (a so-called player), by taking
into account other players’ strategies (so-called opponents), has incentive to deviate from
his strategy. A refinement of the NE is the subgame perfect Nash equilibrium (SPNE).
This refers to an equilibrium derived by considering a smaller part of the whole game
tree, by eliminating incredible threats (strategies that would not rationally be chosen).
A common method for finding a SPNE is called backward induction; it first considers
the last actions of the game and derives the best decision of the last player, given all
other previous possible decisions in the game. Social welfare is defined as the sum of
the utilities of all players. A strategy profile (set of players’ strategies) is called social
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optimum if it maximizes the social welfare. A NE is not necessarily a social optimum, but
finding a socially-optimal NE is highly desirable from a mechanism design perspective.
This process continues to the second to last actions, and so on until it reaches the first
move of the game, i.e., the root of the game tree.

Conjoint Analysis 101

Conjoint analysis [84] is an experimental approach used to detect the hidden rules users
rely on to make decisions (involving trade-offs) between services. A service is viewed as
a combination of attributes, each of which has different levels (values). Users are asked
to rank multiple versions of the service (each being a different combination of attribute
levels). The combination of attributes and levels can lead to a large number of versions
to be ranked. In order to keep the complexity of this task manageable for the users,
the number of proposed versions can be reduced, in an optimal way, to a reasonable
yet meaningful number, through fractional factorial design [86]. The hidden value users
place on each of the attribute levels is then quantified through statistical analysis, as
part-worth utilities and importance values. The importance values represent how much
difference each attribute makes in the total utility of the service; these are represented
as percentages for all the attributes.

3.3 System Model & Formalization

We consider a mobile location-based online social network (OSN) with standard sharing
features. Users are mobile and located within a given geographical region of interest
(typically a city) and time is discrete. At some point in time, ¢, by checking-in at a
given location, a user can post information about her location on her OSN profile. She
can also post co-location information by tagging a friend in a picture, or in a status
update, thus making this information available to the OSN provider, all her friends and
all her tagged friend’s friends. Figure 3.1 on page 47 illustrates an example of this
behavior. In turn, a tagged user can “un-tag” herself from a post in which she is tagged,
making this information unavailable to all users but not to the OSN provider (once the
service provider has seen the information, it cannot be “unseen”). Sharing brings not
only social benefits, but also location privacy implications, for both the user who shared
the information and her tagged friend.

At any time t, an adversary — either the service provider or the friends of one or
both of the two users — has access to some of the previously reported locations and co-
locations and can use this information to infer the users’ locations at time t. We propose
a framework in which, at any time, the decision to post (co-)location information, and
the decision to allow a friend to post co-location information, is made strategically by
both the users involved.

We are aware of the fact that users might act irrationally, especially when it comes
to privacy-related decisions [87] and that privacy concerns were shown to vary decidedly
with context as well as personal traits [19]. However, users’ rationality in privacy-related
decision making is an active research topic. For instance, recent results by Redmiles et al.
show that users can actually make rational decisions in the context of adopting optional
security behavior [88] and that users are more likely to behave rationally in the face of
high risk [89]. We believe that privacy-protection demand will increase, notably because a
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1 Mark Zuckerberglat @ Tiananmen Square.
g 9 hrs - Beijing, China - @

It's great to be back in Beijing! | kicked off my visit with a run through
Tiananmen Square, past the Forbidden City and over to the Temple of
Heaven.

(a)

Mark Zuckerberg[with Priscilla Chan and Ime Archibong.]

February 25 at 9:12am - @

Celebrating Priscilla's birthday with friends

Figure 3.1: Tllustrative screenshots of location (a) and co-location (b) sharing on an
online social network (Facebook). These are pictures from the public Facebook profile
of Mark Zuckerberg.

growing number of people suffer the consequences of their carelessness and that of others.
Furthermore, smartphones are increasingly involved in the sharing decisions users make,
as demonstrated by the growing sophistication of the apps’ permission systems. A tool
run for this purpose can be “rational” and strictly follow the parametrization provided
by its user to aid her in decision making. It is therefore of interest to investigate what
happens under the assumption of rationality.

3.3.1 User Model

We model the interactions between a user and one of her friends (also called players) as
a game, called the Sharing Game, over a time window of interest ({1,...,7T}). Note that
the adversary, with respect to whom the users’ privacy is evaluated (typically the service
provider), is not a player of the game.

We denote by a(t) = (ai(t),a;(t)) the users’ (denoted by ¢ and j) actual loca-
tions at time t. A potential strategy of a user i at time ¢ is denoted by s;(t) and
s(t) £ (si(t),s;j(t)) denotes a strategy profile. s;(t) is chosen from the combinations of
possibilities to share or not to share her own location and her possible co-location with
her friend. We denote s;(t) = (sl;(t), sci(t)), where sl;(t) and sc;(t) are binary variables
that represent whether user ¢ shares location and co-location, respectively. For alternate
more compact notations, we use L for sl;(t) = 0, L for sl;(t) = 1, C for sc;(t) = 0 and
C for sc;(t) = 1. When the two players are co-located, each of them can choose any
combination of the four possible strategies: LC-sharing nothing, LC-sharing only the
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a;(t) Player i’s actual location at time t
a;(t) Player j’s actual location at time ¢
a(t) = (ai(t), a;(t)) The players’ actual locations at time ¢
si(t) = (sli(t), sci(t)) A possible strategy of player 4 at time ¢
L or sl.(t) = 0 (False) Hide location
L or sl.(t) =1 (True) Share location
C or sc.(t) = 0 (False) Hide co-location
C or sc.(t) =1 (True) Share co-location
s*(t) = (s:‘ (1), s;f (t)) Equilibrium strategy profiles (decisions) at time ¢
a; Weight with which player i values privacy over benefits
B; (t,a(t),s(t)) Player i’s benefits at time ¢ for strategy profile s(t)
b, Player i’s benefit of sharing her actual location at t
bi’)l Player i’s benefit of viewing her friend’s location at ¢
bic Player i’s benefit of sharing co-location with a friend at ¢
bfw Player i’s benefit of viewing co-loc. shared by a friend at ¢
f;v Player i’s preference factor: sharing vs. viewing
fliC Player i’s preference factor: location vs. co-location
;b Player i’s preference factor: privacy vs. benefits
f(; The altruistic factor of player ¢ for the other player
o(t) Information observed by the adversary in the time window up to ¢
IR Co-location between 7 and j at time t, observed by the adversary
a;(t) @, Player i’s actual location at time t, observed by the adversary
a;(t) @, Player j’s actual location at time ¢, observed by the adversary
B; The adversary’s background knowledge about player ¢

(e.g., her mobility profile)
P (i,t,a(t),o(t — 1),s(t), By, Bj) Player 4’s privacy at time ¢ for some strategy profile s(t)
9:(t) Player i’s type at time ¢ (includes actual location, benefits vs.
¢ privacy preferences, - - -)

i (t,a(t), o(t — 1), s(t), B, By, 6(1)) aPrllzyzli;erz:L;igzzsdzzztl)umlzty at time t for strategy profile s(t)

a; (t,a(t),o(t —1),s(t), By, Bj) Player i’s expected individual utility at t for strategy profile s(t)

wi (8, a(t), o(t — 1), s(t), By, B;) Player i’s perceived utility at time t for strategy profile s(t)

v ’ ’ [ttt (includes altruism)
Player i’s utility/cumulative utility (includes future
considerations) at time t for strategy profile s(t)
5 Discount factor for future considerations in the cumulated utility

SW(t,si(t),s;(t)) Social welfare at time ¢ for strategy profile (s;(t), s;(t))

U; (t,a(t),o(t — 1),s(t), Bi, B;)

Table 3.1: Table of notations.

co-location information, LC-sharing only the location information or LC-sharing both.
However, when the users are not co-located, they can only choose whether to share their
own location, selecting between two possible strategies: LC' — sharing nothing and LC —
sharing location information. At each time in the windows of interest, both users choose
their equilibria strategies—denoted by s*(t) £ (s} (t), s%(t)). Information that the users
share becomes available to an adversary: their actual locations at times at which they
choose L and/or the fact that they are co-located at times they choose C. For a time
t, we denote by o(t — 1) the information that the adversary observes up to time ¢t — 1.
We consider that the adversary only observes information at & € {0,...,¢t — 1} time
instants up to ¢t — 1 included. The information in this set depends on both players’ equi-
libria decisions up to time ¢ — 1. Note that for £k = 0 or ¢ = 1 the set is empty. The

information that the adversary observes at time ¢ depends on s(t).

User i’s social benefits that correspond to a strategy profile s(¢) at time ¢ are denoted
by B; (t,a(t),s(t)). Note that the benefit function takes into account (i) the time ¢, to
reflect the fact that check-ins at different times can have different meanings, (ii) both
users’ locations at time ¢, to reflect the fact that some locations can be more interesting to
share or view than others (e.g., a hotel versus a park), (iii) who the other user is, to reflect
the fact that some co-locations can be more interesting to share than others, and (iv) both
of the users’ strategies, to reflect the benefit of sharing and that of viewing information
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shared by her friend. Her privacy at t, denoted by P (i,t,a(t),o(t —1),s(t), B, B;),
is a function of (i) both users’ actual location at ¢, (ii) the information observed by
the adversary at the last k time instants up to ¢ — 1 — this depends on both users’
strategies at those time instants, (iii) their strategy profile at ¢, and (iv) background
user information (denoted by B;, B;), e.g., their mobility profiles. We emphasize that the
privacy function takes into account previous time instants. In other words, a decision
to disclose information at time ¢ has privacy implications at later time instants. Due to
the dependency introduced by co-locations, the privacy function also takes into account
decisions made by the other user, as well as the related background information.

Naturally, the information that a user has about the adversary’s background knowl-
edge of herself and of the other user, and her information about the other user’s past or
current locations, social benefits and privacy preferences, could be limited. These fac-
tors would influence her computation of her own privacy and of the other’s privacy and
social benefits. Some of these factors could be estimated (e.g., by completing surveys
to compute their preference factors) and voluntarily shared among players (for instance
through the service provider, in a private way).

In the decision-making process, players can be assisted by a tool for evaluating the
privacy implications, namely the value P(-), of each of the players’ possible decisions re-
garding sharing. For instance, a Facebook client could compute this and suggest players’
optimal decisions, using the information regarding users’ locations and preferences in the
computation of the game’s equilibria. Another option is that such information about
the friend is unknown and the players (i.e., their local tool) must estimate it or build
probabilistic models of it. For the sake of keeping our model easy to understand, we
consider the first option here; we also consider only immediate privacy implications in
the users’ estimation of the privacy (users were shown to often become “privacy myopic”
and opt for immediate gratification in the context of their privacy decisions [90]); last,
we assume players to be selfish. We present an extended model, relaxing all of these
assumptions, in Section 3.6.

At any time instant ¢, a player’s social benefits are computed as a normalized sum of
the benefits of sharing information (i.e., location and co-location) and viewing informa-
tion shared by her friend, specifically,

by ()sli(t) + bl () sci(t) + b, ()l (t) + by (+)se; (B)

Frtaltsm) = V) +Boc) 4 B+ 1,0 oy

where b,(-) and b’.(-) denote user i’s benefit of sharing location and co-location, and
¢,(-) and b _(-) her benefit of viewing location and co-location. Note that these benefits
also take into account the parameters of B;(-) and it is possible that they are correlated,
e.g., if user ¢ has a large value of b’,(.), she might also have a large value of b%.(.). The
utility of player ¢ for some strategy profile s(¢) at time ¢ captures both her social benefits
and her privacy. Specifically,

Ui (t,a(t),o(t —1),s(t),B;,B;) = (3.2)
(1—a;)- B;(t,a(t),s(t)) +a; - P(i,t,a(t),o(t —1),s(t), B, B;)

where a; € [0,1] denotes the weight with which user i values her privacy over her social
benefits. This formulation follows a privacy calculus approach [91,92] under a pragmatic
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Figure 3.2: Possible strategies for one time instant of the Sharing Game in the friends
adversarial models (depicted in Figure 3.3 on page 51). User i is the first player (she
chooses a strategy first) and user j the second player (she reacts to i’s choice). Only
the black solid strategies are valid when the two users are not co-located. All strategies
(including the gray dashed ones) are valid when the two players are co-located. Horizontal
arrows indicate the fact that the second player can revert a co-location shared by the first
player (e.g., by un-tagging herself or asking that the post be removed), hence choosing
not to share the co-location. Therefore, when co-located, only strategy profiles in which
the players agree whether to share their co-location are valid.

user model, as classified by Westin [93]. The choice of a linear model follows previous
work (e.g., Acquisti [90]).

The game is played successively, at time instants from 1 to T. At every time in-
stant, we model the interactions as a perfect and complete information, non-cooperative
extensive-form game. This type of game corresponds to the interactions in a typical OSN,
where the players’ actions at some instant are inherently sequential: The second player
(or her application implementing the decision model) knows the choice of the first player
and decides (or suggests to the player) her strategy accordingly. Therefore, without loss
of generality, we consider that the players’ actions are ordered at every time instant.
In reality, players would also play such a game successively over time (reacting to each
other’s sharing actions), hence our choice of the model.

We list the following assumptions that properly model the existing OSNs’ interfaces
(such as Facebook’s): (1) Location posts of a player are visible to all her friends and to
the service provider. (2) Co-location posts initiated by either of the players are visible
to the service provider and cannot be removed (even if the second player removes them,
the service provider still has access to this information). (3) For a co-location post to be
visible to friends of the two players, both of them have to agree to share it, in which case
it is visible to the union of their friends. (4) If a player un-shares a co-location shared by
the first player (by un-tagging or even asking it to be removed), the first player cannot
share that co-location again. (5) Decisions made by the players are fixed. Once they
strategically choose the best decisions at time ¢, they will not revisit them at later time
instants. Table 3.1 on page 48 summarizes the notations used in our formalism.

3.3.2 Adversarial Models

Although the adversary is not a player in our game, the privacy of the players depends on
who the adversary is: For the same strategy profile, different adversaries have access to all
or only some of the shared information. We consider four possible adversaries, specifically
the service provider and three different sets of users, essentially subsets of the players’
friends. Note that these are all adversaries that our survey participants report being
concerned about and we considered the adversaries and the information that is available
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(a) MF (b) FF (c) CF

Figure 3.3: Friends adversarial models (hashed area) for user i: (a) My other friends
model (MF); (b) My friend’s other friends model (FF); (¢) Our friends in common model
(CF). The social circle of user i (resp. j) is represented by the left (resp. right) circle.
The intersection represents the common friends of ¢ and j.

to them for the typical default privacy settings for OSN posts. Tables 3.2, 3.3, 3.4,
and 3.5 summarize the information that is available to each of the adversaries, for all
strategy profiles.

Service Provider Adversarial Model (SP)

The service provider adversary has access to all location and co-location posts made by
the players. The specificity of this adversary is that, once either of the players shares
information, this information is always known to her. In other words, the second player
cannot un-share co-location information with respect to the service provider. We assume
that the SP does not gather location information about its users (i.e., the players) through
other channels, such as their IP address.!

sli(t) | sci(t) | slj(t) | scj(t) | Adversary’s info. on ¢ = Adversary’s info. on j
0 0 0 0 1]
0 0 0 1 {i <0 j}
0 0 1 0 {a;(t)Q; }
0 0 1 1 {Z <t j, a; (t) @t }
0 1 0 0 {i ¢ j}
0 1 0 1 {i ¢4}
0 1 1 0 {i < joa;(t) @ }
0 1 1 1 {Z <t j, aj(t) @t }
i 0 0 0 {a:(t) @, }
1 0 0 1 {Z e j, a; (t) @t }
1 0 1 0 {ai(t) Q;,a;(t)Q }
1 0 1 1 {Z e j, ai(t) @t,aj(t) @t}
1 1 0 0 {i ¢ jyai(t) @, }
1 1 0 1 {Z e j, az(t) @t}
1 1 1 0 {Z <t j, a; (t) @t , Qg (t) @t }
1 1 1 1 {i ¢ j,ai(t) Q,a;(t) @ }

Table 3.2: Information available to the adversary in the SP model, at time ¢

Friends Adversarial Models (MF, FF, CF)

In these adversarial models, privacy is computed from the perspective of the players’
friends. The common point of these models is that, unlike the SP model, the co-location

IThis could be achieved by simply incorporating such side information in the privacy evaluation
function.
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sli(t) | sci(t) | slj(t) | scj(t) | Adversary’s info. on ¢ | Adversary’s info. on j
0 0 0 0 %] %]
0 0 1 0 %] {a;(t)@;}
0 1 0 1 i) {i o0 g}
0 1 1 1 {i 00 4} {i ¢ j,a;(t) @ }
1 0 0 0 {a;(t)Q; } 1%
1 0 1 0 {a;(t) @} {a;(t)@;}
1 1 0 1 {’L ¢ j7 ab(t) @t } {’L <t j}
1 1 1 1 {’L <t j, a; (t) @t } {’L <t j, a; (t) @t }
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Table 3.3: Information available to the adversary in the MF model, at time ¢

sli(t) | sci(t) | slj(t) | scj(t) | Adversary’s info. on ¢ | Adversary’s info. on j

0 0 0 0 1] 1%

0 0 1 0 {a;(t)Q; } &

0 1 1 1 {i 3¢ j,a;(1) @, } {i ¢ §)

1 0 0 0 %) {ai(t)Q; }

1 0 1 0 {a;(t)@; } {ai(t) @, }

1 1 0 1 (i g} {i 0 J,aa(t) @, }

1 1 1 1 {’L <>t j, CL]'(t) @t} {’L <>t j, az(t) @t}

Table 3.4: Information available to the adversary in the FF model, at time ¢

sli(t) | sci(t) | slj(t) | scj(t) | Adversary’s info. on ¢ = Adversary’s info. on j
0 0 0 0 o
0 0 1 0 {CL]' (t) @t }
0 1 0 1 {i <¢ 5}
0 1 1 1 {i 0 joa;(t) @}
1 0 0 0 {ai(t) @ }
1 0 1 0 {a;(t) Q;,a;(t)Q }
1 1 0 1 (i ¢ j, ai(t) @ }
1 1 1 1 {Z <t j, ai(t) @t , Qg (t) @t }

Table 3.5: Information available to the adversary in the CF model, at time ¢

information potentially shared by the first player can be removed by the second one
(e.g., by un-tagging). Figure 3.2 on page 50 illustrates the valid set of players’ strategies
in this case. We consider three different subsets of the friends, based on the information
available to each of them, as illustrated in Figure 3.3: (i) “My other friends model”
(MF) — this adversary has access to all the location posts made by the player and to
co-location posts made by both players; (ii) “My friend’s other friends model” (FF) —
this adversary has access to all the location and co-location posts made by the other
player and to co-location posts made by the player; and (iii) “Our friends in common
model” (CF) — this adversary has access to all location and co-location posts made by
both players. Note that the FF adversary can also be representative (with a possibly
higher value for «.) for a public adversary — though this is not the default visibility for
posts, users can post information with public visibility.

We emphasize that the action of un-tagging is not a strategy in our game. Yet, it
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is modelled in different ways: In the FF, CF and MF models, un-tagging is equivalent
to the strategies that do not share co-location (C') — these adversaries can no longer see
the co-location; in the SP model, un-tagging has no effect — the SP has access to all the

information shared by either player.

3.3.3 Analysis Methodology

At each time instant ¢, we use backward induction, a typical method for finding a subgame
perfect Nash equilibrium (SPNE) that dictates the players’ decisions. Observations made
by the adversary at prior time instants, stemming from the players’ equilibria decisions,
are used when computing the privacy of the players.

The first player, player i, anticipates the second player’s (player j’s) best response,
as a function of her possible strategies s;, essentially

Vs, 3;‘(51) = arg max Uj (t,a(t),o(t —1),(s;, ), B;, Bj) (3.3)

This eliminates incredible outcomes that player j would never rationally choose.
Player i chooses her best strategy out of the remaining outcomes, as follows

sf = argmax U; (t,a(t),o(t -1, (s, sj(s)) ,Bi, Bj) (3.4)
The equilibrium decisions at time ¢ are given by

s"(t) = (s7,57(s])) (3.5)

We define social welfare, at time t, as the sum of the players’ utilities, for any strategy
profile, specifically

U, (t.a(t),o(t — 1),s*(t), B;, B;) (3.6)

In the case of multiple equilibria at time ¢, we assume the players coordinate and
choose the one that maximizes their social welfare. The game is played in a similar way
at successive time instants, each time taking into account the players’ decisions from
previous time instants.

3.3.4 Equilibria Properties

We are interested in different properties for the players’ equilibria decisions: social opti-
mality and utility maximization.

Social Optimality at Equilibrium

We say that the social welfare is maximized for the equilibrium decisions at time ¢ (or,
equivalently, that the equilibrium at time ¢ is socially-optimal) if the following property
holds:

Vs(t) #s*(t):  SW(t,s%(t)) > SW (¢,s(t)) (3.7)
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Individual Utility Maximization at Equilibrium

A player’s ¢ utility is maximized for the equilibrium decisions at time ¢ if the following
property holds:

Vs(t) #s™(t) : U; (t,a(t),o(t — 1),8"(t), Bi, Bj) > U, (t,a(t),o(t — 1),s(t), B;, Bj) (3.8)

We consider the proportion of time instants, across {1,...,T} for which the equilibria
decisions are socially-optimal and the proportion of time instants for which the equilibria
decisions maximize each player’s utility. Note that social optimality is defined only at
time instants where both players play the game.

3.4 Survey

The model presented in the previous section includes a number of parameters that appear
in the expression of the utility function that drives the users’ strategic behaviors. As such,
these parameters characterize the users’ sharing behaviors; in practice, they vary from
one user to another. In order to obtain realistic values for some of these parameters, as
well as to study the general trend and the variability across users, we conducted a survey
of Facebook users in 2016.

3.4.1 Methodology

We recruited participants through the Amazon Mechanical Turk platform. To be eligible,
they were required to have a minimum Human Intelligence Task (HIT) approval rate of
95% with at least 100 past approved HITs and an active Facebook account. We checked
this last criterion by using the “Log-in with Facebook” feature. We use the information
about the participants’ Facebook account only for screening purposes and we did not
store any such information (we made this point clear in the advertisement page in order
to not discourage privacy-concerned potential participants).

After the standard demographic questions (Part I), we polled the survey partici-
pants about their preferences regarding the posts they share or view on social networks
(Part II). The second part of the survey was composed of three questions to assess
the participants’ preferences regarding, respectively, (1) sharing vs. viewing posts with
location information (i.e., check-in posts), (2) sharing posts with location information
vs. sharing posts with co-location information, and (3) location privacy vs. benefits of
sharing location information. We designed these three survey questions by following a
rigorous full-profile conjoint analysis approach [84] and making use of a dedicated tool,
namely the XLSTAT statistical software [94].

This approach enables us to quantify individual values for each of the participants’
preferences factors.

Sharing vs. Viewing (fs,). After a brief reminder about what a check-in post is
(illustrated with a screenshot of a Facebook timeline), the participants were told that,
for technical reasons, some of their own two most-recent check-in posts and some of their
friends’ two most-recent check-in posts might be removed from Facebook. Then, the
participants were asked to rank by preference a number of scenarios corresponding to
different combinations of the numbers of posts kept (e.g., “two of your recent posts are
kept and one of your friend’s recent posts is kept”, “none of your recent posts is kept
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and one of your friend’s recent posts is kept”). The participants were asked to take into
account only benefit considerations (i.e., not privacy). In order to limit the bias coming
from the content of the posts, we explicitly mentioned that the posts to which we refer
are posts they once shared and, hence, would like to keep, and we did not include the
content of the participants’ actual recent posts in the survey page. The initial ordering of
these options was randomized. For this question, two attributes were used: the number
of the participant’s own kept check-in posts and the number of the participant’s friends’
kept check-in posts. Each attribute had three possible values (i.e., none, one or two).
This yielded an optimal number of five options to rank (out of a total of nine). In order
to detect sloppy answers, we included in the list of options to be ordered a sixth option
in which no posts are removed, and we explicitly stated in the text of the question that
this should be the preferred option. The ranking provided by the users enabled us to
compute their preference factors 0 < fg, < 1, from the importance values attributed to
each attribute: f, is the normalized importance value of the attribute own posts, whereas
1— fs, is the normalized importance value of the attribute friends’ posts. A value greater
than 0.5 denotes a preference for sharing information over viewing information.
Location vs. Co-location (f;.). This question was designed by following the same
methodology as for the first question: After a brief reminder about what a co-location
post is (illustrated with screenshots), the participants were asked to order, according to
their preferences, six options in which a number of their own recent posts with location
information and a number of their own recent posts with co-location information would
be removed (e.g., “two of your recent check-in posts are kept and one of your recent
co-location posts is kept.”). The ranking provided by the users enabled us to compute
their preference factors f., similarly to fs,.

Location Privacy vs. Sharing Benefits (f,;). After a brief reminder about location
privacy, the participants were asked to order, according to preference, six options with
different numbers of check-in posts and the corresponding levels of location privacy, in
terms of the average precision with which their location can be inferred during a day
(e.g., “12 location posts for an average location privacy of 400 m”). These numbers were
extracted from the experimental results presented in [22]. The ranking provided by the
users enabled us to compute their preference factors fp,, similarly to fg,.

Finally (Part III), we polled the participants about their usage of Facebook, their pri-
vacy concerns, and about their knowledge of the privacy threats related to (co)-location
information.

It took approximately ten minutes to complete the survey; the participants were paid
2 USD. We ruled out the participants with inconsistent responses in Part II. More specif-
ically, we considered as inconsistent a ranking that violates the natural order, i.e., con-
sidering that removing some of the existing posts is preferable to keeping them all. In
the end, we obtained a sample of N = 250 valid participants; the sample was relatively
diverse and balanced in terms of the participants’ demographics: 46% of the participants
were female, the participants had various primary areas of employments, and their ages
ranged from 19 to 68 years old, with an average of 33 and a standard deviation of 9.48.
The participants were active Facebook users: 70% of the participants declared that they
use Facebook multiple times per day (93% do so multiple times per week), 30% of them
make at least one post with location information per week, and 37% of them make at
least one post with co-location information (in statuses, in posts or in pictures) per week.

Estimation of the Model’s Parameters. We estimate the parameters in our
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model (a, bgi(t), bse(t), byi(t) and by.(t)) from the survey data. As we wanted to keep
the number of questions for our participants low, we quantified only three preference
factors fpp, fic and fs,; to estimate the model’s parameters from these, we make a few
assumptions: We assume that (1) the users’ preferences between sharing and viewing is
the same for posts with location information as for posts with co-location information,
that (2) the users’ preferences between posts with location information and posts with
co-location information is the same for the users’ own posts as for their friends’ posts,
and that (3) the users’ benefits of sharing/viewing are the same over time. We derive
the values of the model parameters as follows:

o = fpb
bsl _ fsv . flc bvc
1- fsv 1- flc
bsc = fsv bvc
1- fsv
flc
bv = bvc 3.9
: 1- flc ( )

where b, is considered a free variable (we set it to 1).

3.4.2 Results

We extracted the aforementioned three preference factors from the survey data by using
XLSTAT. Note that, due to the fact that only a limited number of scenarios can be
presented to the participants for ordering, the preference factors can take only a limited
number of values. Table 3.6 on page 57 presents relevant statistics (e.g., mean and stan-
dard deviation) and Figure 3.4 on page 57 illustrates the CDFs of the derived preference
factors. Note that these results should be taken with a grain of salt as previous works
(e.g., [95,96]) have shown that (reported) privacy attitudes do not always correspond to
actual behaviors. We observe that the average of the factors is close (yet slightly higher)
than 0.5 (specifically, .57 + .15, .56 £ .15 and .60 £ .39 for fs,, fic and fup, respectively).
This means that there is no strong consensus among the participants regarding their
preferences. In fact, the distributions of the factor values are bi-modal: Users tend to
have a clear preference for one of the two options (e.g., location vs. co-location). This
phenomenon appears clearly for fp, (i.e., privacy vs. benefits) that has a high standard
deviation (0.39). In the case of fg,, for instance, the proportion of indifferent users (for
whom fs, = 0.5) is substantial (16.8%) and almost as large as the proportion of users
who prefer viewing over sharing (23.2%). These results are in line with those of previous
studies that showed that there exist multiple usage profiles on social networks: Some
users connect to social networks mostly to share news with their friends, whereas others
do so mostly to view news about their friends [97,98]. 54% of the users prefer location
to co-location information (f;. > 0.5) and 20% do not have a preference (f;. = 0.5),
whereas 63.2% favor privacy over social benefits (f,, > 0.5).

As for the questions related to privacy issues on Facebook, 24.8% of the partici-
pants declared being “very concerned” about privacy, 50% declared being “moderately
concerned” and 25.2% not concerned. When the participants report being co-located
with a friend (say Bob), their feared adversaries are Bob’s friends who are not friends
with the participant (i.e., the FF model, 44% of the participants), the common friends
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fsv fl,c fpb
avg. T+ stddev. .57 £ .15 .56 + .15 .60 £+ .39
proportion of users with f. > 0.5 (prefer sharing/ location/ privacy) 60% 54% 63.2%
proportion of users with fi = 0.5 (indifferent) 16.8% 20% N/A
proportion of users with f. < 0.5 (prefer viewing/ co-location/ benefits) 23.2% 26% 36.8%

Table 3.6: User preference factors extracted from the survey data by using a conjoint-
analysis approach. f, denotes, depending on the column, fs,, fic, or fpp.
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Figure 3.4: CDFs of the preference factors of our survey participants.

of Bob and the participant (i.e., the CF model, 24.4%), Facebook (i.e., the SP model,
24.4%) and the participants’ friends who are not friends with Bob (i.e., the MF model,
21.2%); 26% of the participants reported not being concerned by any of these adversaries.
42.4% of the participants were not aware that their friends’ posts that include location
or co-location information can decrease their own location privacy. Only 50% of the par-
ticipants declared being aware that their posts have privacy implications for themselves
and for their friends, whereas 30.8% of the participants were not aware that their posts
have any effect on privacy (as illustrated in Figure 3.5 on page 58). Finally, we asked the
participants whether the survey would affect their future sharing behavior on Facebook:
A substantial fraction of the participants (around 35%) declared they would be more
careful, especially for co-location information, for instance, by preventing their friends
from tagging them in posts:

“I may remove tags or ask friends not to tag me with locations in the future.”
(female, 35 y/o)

“I may think twice before checking in, or at least consider the impact tagging
others has on their privacy.” (male, 31 y/o)

“Yes because I was unaware of this issue and it now makes me a little scared.”
(male, 19 y/o)

Of the participants who stated that their behavior would not change, 31% declared
already being careful with their posts and tags.

The full transcript of our survey, as well as an anonymized and sanitized version
of the answers (part II and some of part III, password FbS250) are available at https:
//infoscience.epfl.ch /record /2187557 &In=en.



CHAPTER 3. TO SHARE OR NOT TO SHARE:

58 INSIGHTS INTO USERS’ BEHAVIOR OF SHARING (CO-)LOCATIONS
24.8% = 100

)

g 80 r
Very \ 8

concerned \ g 60 |
50.0% Moderately )
: concerned 2

b5) 40 +
72}
=]

Gt 20
=}
IS

25.2% CFMFFF SP  None

(a) (b)

42.4%

— T

/ My pt\

/ affect both \\

/ mine and my \
friends' privacy | (

| My friends' |
M 15 affoct | posts can affect |
y posts affec \ i /
my privacy but my privacy /
not my friends' /
9.2% /
57.6%

(c) (d)

Figure 3.5: (a) Users’ concern about location privacy; (b) The adversaries that users
are concerned about: Our friends in common (CF), My other friends (MF), My friend’s
other friends (FF), The service provider (SP). Users’ awareness about (c¢) privacy risks
stemming from their own posts; (d) own privacy risks stemming from friends’ posts.

3.5 Evaluation

We evaluate our framework by simulating and analyzing the users’ decisions in different
experimental setups. Note that the space of the parameters to explore is very large,
therefore we isolate some of the parameters and we present a selected set of experiments
which shed light on key insights.

3.5.1 Experimental Setup

In this section, we describe the experimental setup of the different building blocks of our
framework, including the location privacy function and the evaluation scenarios.

Quantification of the Users’ Privacy

We quantify users’ privacy (P(-)) as their location privacy, by relying on the inference
framework proposed in Chapter 2 (note that our model is flexible enough to enable the
use of other frameworks for inferring location privacy, for instance, the one proposed by
Xu et al. [99].); we re-use the corresponding formalism and software library. In short, we
assume discrete locations (i.e., the geographical area of interest is partitioned into cells by
using a regular square grid; when reporting their locations, users report the cells in which
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Figure 3.6: Canonical meeting scenario considered in the evaluation: Two users, Alice
(dotted) and Bob (dashed), coming from distinct directions, meet for some time, and
later separate in distinct directions.

their actual locations fall; and the adversary has access to the users’ mobility profiles in
the form of transition probabilities between cells). Privacy is computed as the adversary’s
expected error when localizing users, using a junction tree exact inference algorithm on
the Bayesian network [33]| that models the probabilistic dependencies between all the
users’ locations over the time period of interest. The location and co-location disclosures
available to the adversary depend on the considered adversary, among those presented
in Section 3.3.2, namely the SP, MF, FF, and CF models, and on the users’ strategic
decisions. For the sake of simplicity, we consider the same adversary for both users: For
example, if the first user’s location privacy is computed with respect to the OSN service
provider, so is that of the other user. At time instances where a user’s actual location
is not known (sparse data), her privacy cannot be evaluated. At each other time instant
t, the adversary considers all past location and co-location posts from the users when
inferring their locations.

Scenarios

In order to evaluate our framework and to gain insight about the effects of the different
parameters, we first consider the canonical meeting scenario, illustrated in Figure 3.6:
Two users, Alice and Bob, coming from distinct locations (¢ = 1), meet for some time
(one time unit, ¢ = 2), and later separate in distinct directions (¢ > 2). We consider
T = 5 time instants in total. At each time instant, both Alice and Bob can either
report or hide their actual location. Additionally, at t = 2, either of them can choose
to report being co-located with the other. Both users estimate the mobility profiles that
an adversary would use in the inference process (i.e., B;, B;) by a very basic one: In one
time unit, Alice/Bob either stays in the cell she/he is in (with probability .5) or moves
to one of the neighboring cells (with the remaining equal probabilities);? note that, other
than from a velocity point of view (a user cannot move further than one cell in one time
instant), this captures no real mobility information (all locations are equally probable).
The rationale behind this choice is to understand the basics of the interplay between
the users, independently from the specifics and the singularities of their individual data.
This scenario is, thus, also representative for the case of users who naively estimate the
adversarial background information.

2We assume, for simplicity, a Manhattan-like model where users can move vertically or horizontally.
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Additionally, we consider a real dataset scenario, using the Geolife dataset [48]
(collected in 2008) and the same co-location generation, user mobility profiles construc-
tion and space and time discretization as presented in Chapter 2 (25 geographic regions
covering the campus of Tsinghua University in Beijing and one-hour time sub-intervals
splits of the continuous time interval). In this scenario, two users, Alice and Bob, follow
their individual actual location traces (we consider sub-samples of T' = 300 time instants
from their full traces). At each time instant, both Alice and Bob can either report or hide
their actual location (if this is known). Additionally, if co-located, they can also choose
to report their co-location. In the privacy computation, mobility profiles constructed
from real users’ full location traces are used. Note that these are different and no longer
uniform (among locations) and that they illustrate user-specific patterns of movement.

3.5.2 Experimental Results

In order to understand the effect of each of our model’s parameters, we study through
simulations the different strategic decisions players choose in several situations.

Canonical Meeting Scenario

We first present several simulations on the canonical meeting scenario.

The Effect of the Considered Privacy Adversary.

We study how the adversary that is considered by the players when assessing their
privacy influences their decisions. In a first experiment, based on the canonical meet-
ing scenario, we consider a homogeneous setup, in which the parameters in both the
users’ utility are set using the average values of f,,, fic and fp, obtained in our survey,
as presented in Figure 3.4 on page 57. Figure 3.7 on page 61 illustrates the different
game outcomes, for the four adversarial models we presented in Section 3.3.2. A first
observation is that the players’ decisions are quite diverse, thus demonstrating that the
adversarial model can influence what players share.

In the SP and CF models (Figures 3.7a and 3.7b on page 61), at ¢ = 1 (when no
co-location has yet been reported and thus there is no correlation between the users’
locations or their privacy), the equilibrium decisions are that nothing be shared—the
first blue rectangle and red circle pair. Note that for all time instants where users are
not co-located (¢ # 2), the equilibrium decisions can only be "share nothing" or "share
location". The equilibrium at ¢ = 1 maximizes social welfare (there is a green triangle
for t = 1), but either of the players would have a higher utility (both the blue rectangle
and the red circle are empty) if the other one shared his own location (because, in the
current absence of correlation, they would enjoy viewing where their friend is without any
privacy cost for themselves). However, such an outcome is not an equilibrium because
neither of them wants to share their location at this time (mainly due to the fact that the
social benefit gained by sharing location would be less than their incurred privacy loss,
weighted by 1 — a and «, respectively). At time ¢ = 2, when the players are co-located,
the additional benefit of sharing a co-location along with the benefit of sharing a location,
overcomes the privacy loss; and the players’ equilibrium decisions are that everything be
shared (LC,LC). This equilibrium not only maximizes social welfare, but also gives
the best utility for both of the players at this time. Once these decisions to share have
been made at t = 2, the privacy at ¢ = 3 is already substantially compromised; hence
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Figure 3.7: Players’ decisions at equilibrium, (s%;,..(t), 85.(t)), for fs, = 0.57, fic =
0.56, fpp = 0.60 and different adversarial models: (a) Service Provider (SP), (b) Our
friends in common (CF), (¢) My other friends (MF), (d) My friend’s other friends (FF)
models. The x axis shows the time window of interest. On the y axis, for every time
instant, Alice’s decision is represented by a blue rectangle and Bob’s decision by a red
circle. A player’s corresponding shape is full if its utility at equilibrium is maximized,
and empty otherwise. Additionally, each time instant is marked by a green triangle, if
the equilibrium decisions maximize social welfare.

the benefit of sharing location overcomes the (now) small relative privacy loss and both
players choose to share everything, that is, their own locations. Similarly, the decision
to share a location at ¢t = 3 affects a player’s privacy at ¢ = 4 severely enough that
they again decide to share their location (for the benefits) and this effect propagates at
successive time instants.

In the MF model (Figure 3.7c), there is a different equilibrium at the time of co-
location, t = 2. The outcome where both players share everything, (LC, LC) is still the
one that maximizes social welfare, but it is no longer an equilibrium because each of
the players can now deviate from it by not sharing their own location to achieve better
privacy, hence utility (e.g., outcome (LC,LC) would be better for Bob than outcome
(LC, LC), because his adversary—his friends who are not Alice’s friends—cannot see that
Alice also shares her location). This was not the case in the SP model, where information
shared by either player is automatically seen by the provider. In this case, the equilibrium
is outcome (LC, LC): Sharing only a co-location does come with a small privacy cost
(privacy can decrease even when only co-location and no location information is available
due to the mobility profiles, as demonstrated in [22]), but this loss is smaller than the
benefit gained by sharing. This equilibrium maximizes neither the social welfare nor
a player’s utility (either of them would have a better utility if the other would share
their location, because they enjoy viewing where their friend is, at no privacy cost to
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themselves). At time ¢ = 3, the players’ privacy is higher than it was in the SP and
CF models, for any strategy profile, because the decisions made at ¢ = 2 provide the
adversary with less information. Sharing the location is not justified because, in this case,
the privacy cost this would bring is higher than the benefit gain, hence the equilibrium
decisions are that nothing be shared. This equilibrium does not maximize players’ utilities
(each would still prefer to see the other’s location at no privacy cost) or the social
welfare. This effect is propagated over time, at successive time instants, and the equilibria
decisions are the same, that nothing be shared. Furthermore, as the effect of the reported
co-location at time ¢t = 2 fades away over time, privacy increases, and at ¢ = 5 the
equilibrium also maximizes social welfare.

Finally, in the FF model (Figure 3.7d on page 61), the equilibrium at times when the
players are not co-located is always (LC, LC): In this case, sharing their own location
brings them some social benefits without any privacy costs (this adversary cannot see if
they share location). When players are co-located, the equilibrium is (LC, LC) and it
maximizes both the social welfare and the players’ utilities.

The Effect of Privacy vs. Benefits Preferences.

We present a heterogeneous setup, based on the canonical meeting scenario, where
players place different importance on privacy and social benefits. We consider the average
values for fs, and fi. and vary fpp in [0,1]. Figures 3.8 on page 63 and 3.9 on page 64
illustrate our results (see caption for details). When players have different values for f,
(recall that a = f,p), their interests can be in conflict and decisions at equilibrium might
differ: When co-located (¢t = 2), one player might share only co-location, whereas the
other shares both (e.g., in the M F model when « ;ce = 0.6 and a g, = 0.2 Bob shares
both, while Alice shares only co-location (recall that "share co-location" and "share
both" decisions can only occur when the players are co-located, i.e., 20% of the times) or
one shares his location, whereas the other shares nothing (e.g., in the M F model when
aalice = 1 and apo, = 0.2 Alice shares nothing, whereas Bob only shares his location).

An interesting observation is that, in the SP model, when the two players are
co-located, the equilibria strategies are always in the form of (LC,LC), (LC,LC) or
(LC, LC). This stems from the fact that if one player wants to share the co-location in-
formation, as the service provider automatically has access to it, the privacy of the other
player is already compromised and he is forced into sharing also but at least obtains
the associated social benefits. This leads to equilibria in which one player’s utility, or
even the social welfare, are not maximized. Such outcomes can be avoided in the other
models, where a player can undo the co-location shared by the other, and only equilibria
with strategies where both players share or do not share the co-location information are
permitted. An example can be observed in Figure 3.8 on page 63, for a4;;ce = 0.8 and
apop = 0.2: In the SP model, Alice is forced into sharing her location and co-location
information at ¢ = 2 because Bob, who places little importance on privacy, shares both,
and the equilibrium is (LC, LC); in the CF model, Alice does not allow Bob to post
co-location information about her and the equilibrium in this case becomes (LC, LC):
Alice shares nothing while Bob only shares his location.

Another observation is that, in all adversarial models, both players tend to
share more as one or both their a decreases (i.e., as one or both value privacy
less). Notably, a player’s strategy can change, even when only his friend’s preferences
change. Let us look, for example, at the average case of agj;ce = 0.6: As ap,p decreases
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Figure 3.8: Players’ decisions at equilibrium, aggregated over time for fs, = 0.57, fi. =
0.56, and different adversarial models: Service Provider (SP)-first row, Our friends in
common (CF)-second row. For each adversarial model and each possible combination
of values for aajice and apep, eight heatmaps (top blue four for Alice, bottom red four
for Bob) indicate the percentage of times, aggregated over the number of time instants,
that a player made one of the four possible decisions: "share nothing", "share location",
"share co-location" or "share both" (in all combinations aajice-tpop, the values of the
four cells for a player sum to 100). We highlight with rectangles the cases that we discuss
in Section 3.5.2.

from 1 to 0, the amount of sharing Alice does increases (e.g., in the FF model, Alice
only shares her location when apg., € [0.2,1], but she also shares the co-location when
agop = 0). The same observation holds for the other values of aapce. For the SP
model, in particular, when Alice is very privacy conscious (aajice = 1), her preferred
outcome when co-located would be to share nothing, but she can only do this when
apoy, = 1. She can gradually be forced into sharing her co-location with Bob (when
apey € [0.6,0.8]) or even their co-location and her location (when ap, < 0.4).
Furthermore, the propagation of this effect can be observed not only at times where
the players are co-located. Let us look, for example, at the case where aaj.e = 0.2
and apo, = 0.6: In the CF model, before his co-location with Alice (at ¢ = 1 - a
detail that is not directly readable form Figure 3.8 on page 63, as it presents statistics
aggregated over time instants), Bob decides to not share anything (20% of the times).
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Figure 3.9: Players’ decisions at equilibrium, aggregated over time for fs, = 0.57, fi. =
0.56, and different adversarial models: My other friends (MF)-first row, My friend’s
other friends (FF)-second row models. For each adversarial model and each possible
combination of values for aajice and apep, eight heatmaps (top blue four for Alice,
bottom red four for Bob) indicate the percentage of times, aggregated over the number
of time instants, that a player made one of the four possible decisions: "share nothing",
"share location", "share co-location" or "share both" (in all combinations aajice-Bob,
the values of the four cells for a player sum to 100). We highlight with rectangles the
cases that we discuss in Section 3.5.2.

Once co-located, Bob and Alice have enough incentive to share both their co-location
and location (20% of the times). After their co-location, Alice still has incentive to share
her location. Their previously reported co-location, as well as Alice’s successive reports
of her location, continue to damage Bob’s privacy, and he counteracts these losses by
also sharing his location for the benefits (60% of the times).

The Effects of Multiple Users’ Preferences.

We present a more realistic setup, based on the canonical meeting scenario, where each
of the two players’ parameters are assigned from the individual preference profiles of the
survey participants. A preference profile represents the values of all preference factors
(fsvs fie, fpp), for a specific survey participant; there are 250 such preference profiles.
Analyzing the players’ behaviors is substantially more complicated, due to the multiple
influences present in such a complex setup. In order to find a meaningful interpretation,
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Figure 3.10: Equilibria decisions (a) and their properties (b), when Alice and Bob have different
preference profiles, corresponding to real survey data: 150 sharers’ profiles (fs, > 0.5) and 58
viewers’ profiles (fs, < 0.5). We present three scenarios: both Alice and Bob are sharers (left
plots), Alice is a sharer and Bob is a viewer (middle plots) and both are viewers (right plots).
Note that, due to the symmetry of the trajectories in the meeting scenario, the case where Alice
is a viewer and Bob is a sharer is symmetric to the case where Alice is a sharer and Bob is a
viewer. Different adversarial models (SP, CF, MF, FF) are illustrated on the x axis. In each of
the top three plots, for each adversarial model, two bars (blue on the left for Alice and red on
the right for Bob) indicate—on the y axis—the proportion of times (aggregated over time instants
and the number of preference profile pairs considered in that scenario) a player made one of the
four possible decisions: share nothing (empty pattern), share only location (hash right pattern),
share only co-location (hash left pattern) or share both (hash right-left pattern). Each of the
three bottom plots show, on the y axis, for each adversarial model, the proportion of times social
welfare and individual utilities are maximized.

we alternatively split the 250 preference profiles into two subsets, based on the value of
one of the preference factors.

The Case of Sharer / Viewer Players We study how the fact that the players
have different values for the f4, preference factor affects their decisions. We select two
subsets of preference profiles from our survey data: the sharers (150 profiles)—for which
fsv > 0.5-and the viewers (58 profiles)—for which fs, < 0.5. We evaluate the outcome
of the Sharing Game in three cases, for each possible pairs of preference profiles: when
Alice has a sharer’s preference profile and Bob a viewer’s, when both have sharers profiles
and when both have viewers profiles.
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Figure 3.10 shows our aggregated results (see caption for details). We note that the
interplay between the various parameters of the preference profiles (e.g., a sharer profile
encourages sharing because fs, > 0.5, but it could also discourage sharing if f,; > 0.5)
results in a large variety in the distribution of players’ equilibria decisions. Despite this
variability, a few trends are still distinguishable. First, in general, a sharer shares more
information than a viewer and the most information is shared when both Alice and Bob
are sharers, whereas the least information is shared when both are wiewers. Second,
regardless of the players’ types (sharer/viewer), and due to the forcing effect, the largest
amount of co-location is shared in the SP model (e.g., 17% of all time instants when
both players are sharers); the smallest amount of co-location is shared in the FF model
(e.g., 3.6% of all time instants when both players are viewers), when players find it most
beneficial to report few co-locations and report their location most often (at no privacy
cost). Furthermore, the equilibria decisions are frequently socially-optimal: From 52% of
the times (in the FF model, when both Alice and Bob are viewers) to 85% of the times
(in the CF model, when both Alice and Bob are sharers). Regardless of the adversary,
the most socially-optimal equilibria are reached when both players are sharers and the
least when both players are viewers (due to the fact that a viewer player shares less than
a sharer player and, consequently, their opponent benefits less from their posts).

The Case of Benefits-Oriented / Privacy-Oriented Players We present the
case where the players have different values for the fp, factor. We select two subsets of
preference profiles from our survey data: (1) the privacy-oriented (158 profiles), for which
fpp > 0.5; and (2) the benefits-oriented (92 profiles), for which f,; < 0.5. We evaluate
the outcome of the Sharing Game in three cases: (1) when Alice is privacy-oriented
and Bob is benefits-oriented, (2) when both are privacy-oriented and (3) when both are
benefits-oriented, for each possible pairs of preference profiles. We note that the interplay
between the various parameters of the preference profiles (e.g., a benefits-oriented profile
encourages sharing because f,;, < 0.5, but it could also discourage sharing if fs, < 0.5)
results in a large variety in the distribution of players’ equilibria decisions. Yet, a few
trends are still distinguishable.

Figure 3.11 on page 67 illustrates our aggregated results (see caption for details).
It is interesting that, when both players are benefits-oriented, the amount of shared co-
location is substantial: It is always shared in the SP, MF and CF adversarial models
(20% of all time instants), and is shared approximately 19.7% of all time instants in the
FF model. To infer these numbers from Figure 3.11 on page 67, we sum the values for
"co-location" and "both". As discussed in Section 3.5.2, in any adversarial model, both
players share the same amount of co-location. When one player is benefits-oriented and
the other is privacy-oriented, the amount of shared co-location varies significantly,
with respect to the considered adversary: It is always shared in the SP case, shared
5.4% of all time instants (27% of the time instants when the players are co-located) in
the CF case, 10% of all time instants in the MF case and only 2% of all time instants
in the FF case. One reason for this behavior is that the CF adversary has access to
location information shared by both players, whereas the MF adversary only has access
to location shared by one of them, so privacy losses stemming from shared co-locations
are higher in the CF case, and thus less co-location information is shared. Interestingly,
this also causes both players to share their location more frequently in the CF
case than in the MF case (in the CF case, it is enough that one player share his
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Figure 3.11: Equilibria decisions (a) and their properties (b), when Alice and Bob have different
preference profiles, corresponding to real survey data: 92 benefits-oriented profiles (fpp < 0.5)
and 158 privacy-oriented profiles (fp, > 0.5). We present three scenarios: both Alice and Bob are
benefits-oriented (left plots), Alice is benefits-oriented and Bob is privacy-oriented (middle plots)
and both are privacy-oriented (right plots). Note that, due to the symmetry of the trajectories
in the meeting scenario, the case where Alice is privacy-oriented and Bob is benefits-oriented
is symmetric to the case where Alice is benefits-oriented and Bob is privacy-oriented. Different
adversarial models (SP, CF, MF, FF) are illustrated on the z axis. In each of the top three plots,
for each adversarial model, two bars (left blue for Alice and right red for Bob) indicate—on the y
axis—the proportion of times (aggregated over time instants and the number of preference profile
pairs considered in that scenario) a player made one of the four decisions: share nothing (empty
pattern), share only location (hash right pattern), share only co-location (hash left pattern) or
share both (hash right-left pattern). Each of the three bottom plots show, on the y axis, for each
adversarial model, the proportion of times social welfare and individual utilities are maximized.

location after a shared co-location, for both players’ privacy to be damaged, so the other
player would be forced to also share his location for some benefit). When both players
are privacy-oriented, location sharing is substantially reduced, but co-location is still
shared 15% of all time instants in the SP case. The FF case illustrates a naturally
emerging countermeasure: In all the cases, players find it most beneficial to report few
co-locations (unlinking themselves from their friend makes the information unavailable
to the FF adversary) and report their location most often (at no privacy cost), and 0.4%
of all time instants (only 2% of the time instants when the players are co-located) in the
FF case. The equilibria decisions are frequently socially-optimal: From 45% of the times
(in the FF model, when Alice is benefits-oriented and Bob is privacy-oriented) to 99%
of the times (in the FF model, when Alice and Bob are benefits-oriented). We notice
that the case of players having opposite views regarding f,, is particularly problematic:
Regardless of the considered adversary, this case presents the least amount of socially-
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Figure 3.12: Possible strategies and equilibria decisions (CF adversarial model) when Alice
and Bob use two random traces from the Geolife dataset, for fs, = 0.57, fi. = 0.56, f, = 0.60.
We illustrate the game outcome between Alice and Bob in two cases: %7 (a) and 10% (b)
co-locations, respectively — the trace used by Alice is exactly the same in both cases. The x
axis shows the entire time window of interest. In the top section, on the y axis, the possible
strategies at each time instant of the game are illustrated: Alice can only share location (blue
'plus’), Bob can only share location (red ’cross’), Alice and Bob can both share location and co-
location (violet 'rhombus’); For time instants where the game cannot be played (missing location
data) there is no symbol. The middle and bottom sections of the y axis illustrate the equilibria
decisions: For every time instant, Alice’s decision is represented by a blue rectangle and Bob’s
decision by a red circle; A player’s corresponding shape is full if its utility at equilibrium is
maximized, and empty otherwise. Additionally, each time instant at which both Alice and Bob
can play is marked by an upward-pointing green triangle, if the equilibrium decisions maximize
social welfare or by a downward-pointing green rectangle if they do not.

optimal equilibria decisions; furthermore, the utility of the benefits-oriented player is
rarely maximized because his opponent would seldom share or allow sharing. Finally,
misaligned preferences can lead to different decisions for the players—they only make the
same decision 24% of the times in the SP model, 19.2% in the CF model and 11.6% in
the MF model.

Real Dataset Scenario

In this section, we describe results on our real dataset scenario. We consider homoge-
nous preference parameters in both the users’ utility and set these using the average
values of fs,, fic and f,, obtained in our survey, as presented in Table 3.6 on page 57.
For the users’ traces, we consider pairs of real traces (60 pairs of traces consisting of
300 time instants) sampled in Chapter 2 and the corresponding complex (and different)
mobility profiles. On these traces, users can report co-locations (i.e., meet), on average,
14.6% of the time instants (first quartile, median, third quartiles for the number of co-
locations are 10.67%, 12.83%, and 16.67% of the time instants, respectively) and there
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are location samples at 37.55% of the time instants, on average. We simulate the game
between Alice and Bob, for all the 60 pairs of traces, and twice for each of the pairs
(ensuring that each of the two traces in a pair is attributed to the first player).

An Individual Snapshot.

We first present two randomly selected simulations of the game interactions between
Alice and Bob, illustrated in Figure 3.12 on page 68: We chose a trace for Alice and
two different traces for Bob; Alice’s trace contains co-locations with that of Bob in 7%
and 10% of the 300 time instants, respectively. A first observation is that a vicious
circle effect is noticeable. After their first shared co-location (¢t = 4), users’ behavior
changes and they share more than they had done before that co-location: Alice shifts
from not sharing anything at ¢t = 1,2, 3 to sharing both location and co-location at t = 5
and Bob from sharing only his location (¢t = 1, 3) to sharing both (¢ = 5). We repeatedly
observe that, after a shared co-location, users continue to share. Specifically, in the first
case (Figure 3.12a on page 68), after a co-location was shared by either of the players,
a player’s subsequent decision involves sharing location (either only location, or both
location and co-location) 95% and 90% of the times, for Alice and Bob, respectively. We
consider only the time instants where location is available. This frequency is quite high,
indeed higher than the frequency of deciding to share their locations (when available) over
the entire traces: 68% and 81% of the time instants, respectively for Alice and for Bob.
In the second case (Figure 3.12b on page 68), the same effect is observed 91% and 88%
of the times, respectively. Again, this is higher than the frequency of deciding to share
their locations over the whole traces: 76% and 86% of the time instants, respectively.
The oversharing effect can, occasionally, be overcome at later time instants.
This can happen when users did not share for some time (either because they did not
meet or because their location data is sparse) or when their location is particular (i.e., a
rarely visited location, which would yield a higher error for the adversary, thus a higher
privacy). Consequently, both Alice and Bob occasionally choose to not share anything
(e.g., in Figure 3.12a on page 68, Bob shares nothing at ¢ = 22, - - - ; Alice shares nothing
at t = 65,72,---; At t = 74, Bob shares nothing even though Alice shares her location
and, tmmediately after, at t = 75, the situation flips and Alice shares nothing, while
Bob shares his location; in Figure 3.12b on page 68, at ¢ = 162 both users only share
co-location. Overall, of the times a player’s location is available and he decides to share
it, 33% and 21% in the first case (Figure 3.12a on page 68), and 43% and 27% in the
second case (Figure 3.12b on page 68), respectively for Alice and Bob, happen right after
a co-location was shared. To conclude, even though Alice’s location data, mobility
profile, and preferences are constant, her behavior can change depending on
the friend with whom she interacts, even if he has the same preferences as
she has. Hence, the specificities of the data — the actual locations in the traces,
the density of the location data, the meeting frequency (i.e., density of co-locations)
and the patterns of the meetings, as well as the quality of the users’ mobility profiles —
strongly affect the users’ sharing decisions, even when they agree on their privacy
preferences.

The Impact of Co-locations.

We now present the aggregated results of our simulations between all the pairs of
traces, illustrated in Figure 3.13 on page 70. We split and aggregate the results in
two sets: those with traces that contain fewer co-locations than the median value for
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Figure 3.13: Equilibria decisions for Alice and Bob using traces from the Geolife dataset, for
fso = 0.57, fic = 0.56, fpp = 0.60. We present two scenarios, depending on the number of
co-locations they share: # co-locations lower than the median (left) and # co-locations higher
than the median (right). Different adversarial models (SP, CF, MF, FF) are illustrated on
the z axis. In the top plots, for each adversarial model, two bars (left for Alice and right for
Bob) indicate—on the y axis—the proportion of times (aggregated over the total number of time
instants—300—and the number of runs considered in that scenario) a player made one of the four
decisions: share nothing (empty pattern), share only location (hash right pattern), share only
co-location (hash left pattern) or share both (hash right-left pattern); The fact that a player
cannot share anything (i.e., missing location data) is illustrated by the solid pattern. The arrows
represent, in each scenario, the average number of co-locations. The two bottom plots show,
on the y axis, for each adversarial model, the proportion of times (aggregated over the total
number of time instants—300—and the number of runs considered in that scenario) social welfare
and individual utilities are maximized. Note that at times where only one of the two players
has location data, his utility is always maximized, therefore we only illustrate the cases where
both players have location data—the arrows represent, in each scenario, the average number of
times that this happens.

the entire dataset (12.83%) and those that contain more. We notice an incentive to
over-share co-locations and locations: In the second case, where Alice and Bob
have more co-locations, they both share more locations and more co-locations, in all
adversarial models. For example, in the CF model, if in the first scenario Alice shares
co-location and location 9.8% and 25.8% of the time instants, respectively, in the second
one she shares co-location and location 18.8% (representing a relative increase of 87.8%)
and 31.3% (representing a relative increase of 21.7%) of the times, respectively. Finally,



3.6. EXTENDED MODEL 71

on this dataset, the average users (in terms of their privacy preferences) would often
choose to share some information; This can be attributed to the relatively high number
of co-locations in the dataset, as well as to the quality of the mobility profiles. Therefore,
the results presented in this section should be taken with a grain of salt, as they will
likely differ on other datasets or when considering heterogenous privacy preferences.

3.5.3 Conclusions on the Carried out Experiments

In the canonical meeting scenario, which abstracts the specificities of the data, we ex-
posed the fact that the users’ different preferences factors lead to complexity
in their interactions. We noted in the real dataset scenario that the users’ equilib-
ria decisions are also highly data dependent: The users’ actual traces, as well as
the quality of their mobility profiles, can greatly influence users’ sharing decisions, even
when they agree in terms of their preference factors. It is not hard to imagine
how much more complex the interactions between the users can become when different
preference factors of the users are taken into account along with real (co-)location data.
Understanding them is not a trivial problem and it is hard to draw generally applicable
and quantifiable conclusions that take all these variations into account. We exposed,
however, a few trends that we believe to be interesting. First, we identified the model
parameters and the data specificities that have the strongest effect on the users’ decisions:
the frequency of co-locations, the quality of the users’ mobility profiles, the considered
adversary, the value of a (fp, the preference for privacy versus social benefits of one
user); whereas other model parameters have a more moderate effect. Second, some in-
teresting patterns of behavior emerge, for instance, the fact that a vicious-circle effect
can occur in the SP adversarial model: When a player (say Alice) has a strong incentive
to share, it is enough that she shares one co-location information and, with respect to
the service provider, her friend (Bob), who might not be willing to share at all, will
continue to have his privacy affected and be forced into sharing his location at several
later times as well. This effect is propagated and stronger if Alice still wants to share her
own location at other time instants, further damaging Bob’s privacy. We also observed
that the effect of a shared co-location can (sometimes) eventually fade away and that
Bob, too, can influence Alice into sharing; these effects can quickly alternate, making
the players’ decisions vary over time. In other words, the privacy effects propagate not
only in space (influences from a friend) but also in time. Third, we noticed that, in
the FF model, a natural tendency is to share few co-locations but the users still share
a significant amount of location information. Finally, we showed (e.g., in the SP and
CF models) that a (common) decision to share co-location creates the incentive to
over-share locations at later times after the co-location.

3.6 Extended Model

We now propose an extended model, relaxing the assumptions of selfishness, privacy-
myopia and complete information being available to the players. We define the type of
a player i (denoted by 6;(t)) as the information that is private to her. This can include
but is not limited to her actual location (a;(t)), the background information that the
adversary has on her (B;), her specific parameters that influence the computation of her
social benefits and her privacy. Thus, 0;(t) = (a;(t), Bi, fob, fics fsvs - - ). We assume that
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a player ¢ has information only about the possible domain and probability distributions
of the other player’s type and that she incorporates these into her utility function in the
form of an expected value. Given 8(t) = (0;(t),6,(t)), the individual utility of player ¢
for some strategy profile s(t) at time ¢ captures both her social benefits and her privacy

i (t,a(t), ot — 1),s(t), B;, B;, 0(t)) =
(1—a;) - B; (t,a(t),s(t), 0(t)) + as - P (i, t,a(t),0(t — 1),s(t), B, B;, 0(t)) (3.10)

Thus, the expected individual utility of a player can be computed as
u; (t,a(t),o(t —1),s(t), Bi, Bj) = Eg(y[u; (t,a(t),o(t —1),s(t), Bi, B;,0(t))] (3.11)

As previous studies have shown (e.g., [100,101]), in the context of OSNs where users
are friends, they might exercise altruism by taking into account their friends’ individual
utility and hence choose their strategy based on their perceived utility, which we define
for some strategy profile s(t) as follows

u; (t,a(t),o(t —1),s(t),B;, B;) = (3.12)
U; (ta a(t)a O(t - 1); S(t)v Bi»Bj) + f(zz : ﬁj (ta a(t)a O(t - 1)a S(t), Bia Bj)

where fi € [0, 1] denotes the altruistic factor of user i for the other user. These factors
can be experimentally measured using techniques based on conjoint analysis (e.g., [72,
102,103]).

Furthermore, as current decisions have privacy implications at future time instants,
we consider the cumulative utility of user i at time ¢ as the discounted sum of all perceived
utilities from time ¢ (the present) until time 7' (the future) as follows

Ui (t,a(t),o(t— 1),S(t),Bi7Bj) = (313)
T
Bafts1,7) | D00 ui (ta(t), o' —1),s(t'), Bi, B;)
t'=t
where ¢ is a discount factor, taking values in the interval [0,1] and a[t+1,--- ,T] denotes

the vector of actual locations at times ¢ + 1,--- 7T for both ¢ and j. Note that, in
computing her cumulated utility at time ¢, a user does not know any of the actual
locations in the future (¢ > ¢), hence the expectation value over aft + 1,--- ,T]. Given
these locations, s(¢') can be deterministically predicted.

At every time instant, we model the interactions as an incomplete information,
extensive-form game (where the players observe each other’s strategies). Solving such
an extended game is not straightforward. Intuitively, players could choose the strategy
that maximizes their expected utility with respect to the unknown information (i.e., the
other player’s type). However, the way in which players choose to estimate and use the
unknown information (in the backward induction algorithm) strongly affects the com-
plexity of the game. We plan to study the different possibilities and give a numerical
solution in future work.



3.7. DISCUSSION 73

3.7 Discussion

This work represents the first step towards modeling the interplay between users in the
context of (co-)location sharing and the idea of combining a game-theoretic model with
real-user parameters in this setting is also novel. For the first attempt to tackle the
problem of understanding users’ interaction in such a complex context, we focused on a
number of specific scenarios and assumptions, that open several interesting directions for
future work. We assumed that players do not report fake co-locations. Including fake co-
locations into the model is straightforward and simply increases the number of possible
strategies at times where players are not co-located. However, the benefit of sharing fake
co-locations is likely different than that of sharing true co-locations. We included, in
our evaluation, location privacy with respect to one adversary. As adversaries are not
easily separable and a user is likely sensitive to more than one type of the adversaries
that we mentioned, a combination of these different adversaries can be included in the
utility function. We considered a game with two players. In doing so, we illustrated
interdependence effects that work both in time (actions at previous times influence a
user’s future decisions for sharing) and in space (actions of a friend influence a user’s
decisions). To better illustrate the spacial effects, the framework can be extended to
more players and non-default visibility settings for posts; intuitively, we expect that the
cascading effect (one user’s behavior affecting that of her friends’, that of the friends of
her friends, and so on and so forth) would occur, with an even greater impact with more
players. Our evaluation focused on a few specific cases and maintained the number of free
parameters low. We quantified only a limited number of preference factors (whose values
could be specific to Facebook users) in order to avoid the questionnaire fatigue effect
that would have decreased the quality of the participants’ responses. More preference
factors can be evaluated through similar user surveys (e.g., different values for f,;, for the
different adversarial models and their respective weights in the utility function; the benefit
users gain for sharing fake co-locations). Furthermore, previous works (e.g., [95, 96])
have shown that user (reported) privacy attitudes do not always correspond to actual
behaviors, and we have demonstrated that users decisions are highly data dependent.
Hence our results should also be taken with a grain of salt: We believe that the trends that
we have exposed are generic, but their magnitude will likely differ on other datasets or
when considering heterogenous user privacy preferences. Finally, in future work, we plan
to study the N-player T-time Sharing Game, by using multi-agent influence diagrams
(MAIDs), which were introduced by Koller et al. [104] for efficiently solving complex
games. Ultimately, our extensible model with quantifiable parameters can serve as the
first building block to assist user decision-making in an informed manner. Specifically,
we envision that a software tool (e.g., a Facebook client) would use our framework to
take these interactions into account and to assist users in improving their awareness and
decision-making process.

3.8 Related Work

Our work is related to two broad research areas: information sharing on OSNs and
interdependent privacy with game theory. We survey related existing works in these
areas and position our work.
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3.8.1 Information Sharing on OSNs: Privacy & Utility

Users share large amounts of information, including location, co-location and photos, with
their friends on OSNs; this comes with privacy risks. Laufer et al. [91,92] coined the
term privacy calculus; it consists in a psychological framework formalizing users’ decision
making process through a cost-benefit analysis when sharing information. However,
deciding whether to share information (and the precision at which the information is
shared) is a complex process. It involves many factors including the users’ contexts,
the visibility of the shared information (i.e., who has access to it and the relationship
between the user who shares the information and the users or the service providers
who can access it [105-108]), the shared information itself, and the benefits and privacy
risks [109] associated with sharing. In some cases, the happiness of a user’s friends
also becomes part of the decision process; this is usually captured through a so-called
altruistic factor, as introduced in [100] and experimentally measured using techniques
based on conjoint analysis in [102,103]. Conjoint analysis studies were also used to
quantify the value that users attribute to their friends’ information in the context of
app adoption (e.g., in [101]). In practice, deciding whether to share information often
comes down to finding a sweet spot between privacy and benefits [110]. The decision
process can be automated by (1) maximizing privacy under benefits (service quality)
constraints [111] (or conversely), (2) taking a game-theoretic approach for modeling the
interplay between the users and the adversaries [112], or (3) by mimicking the users’
sharing decisions using machine-learning techniques, after a training phase [113].

In our work, we model decision making as the optimization of a utility function that
incorporates both benefits and privacy. One of our contributions is to parametrize this
function by applying conjoint analysis on user data collected through a targeted survey.
Also, as users’ decisions affect those of other users, we follow a game-theoretic approach
for modeling the interplay between users and, ultimately, their decisions.

3.8.2 Interdependent Privacy & Game Theory

The notion of interdependent privacy, i.e., how actions performed by one user affect the
privacy of another, was first formalized by Biczok and Chia [71]. Interdependent privacy
raises the following concern: Users’ privacy is no longer under their sole control. Nu-
merous real-life examples of interdependent privacy risks were studied in the literature,
including information about users’ friends accessed by Facebook apps [71,72], sensitive
attributes inferred from those of a users’ friends on OSNs [9, 10, 68|, demographic in-
formation inferred from a user’s interests [8], detecting private OSN profiles through
attributes correlation within social circles [11], genomic data inferred from that of rela-
tives [73,114], location leaked from geo-tagged pictures that friends upload online [67],
relationships inferred from pictures [115], and co-locations detected from the users’ IP
address at hotspots [69] or reported on OSNs [22].

From a social perspective, a large body of work has been devoted to the study of
users’ individual and collaborative coping mechanisms for multi-party privacy conflicts
related to co-owned data (also referred to as regulation of interpersonal boundaries) [79,
80, 116-123]. These works focus mostly on the case of photo sharing on online social
platforms and take an experimental and empirical approach to the problem—i.e., they rely
on interviews and surveys. Misra et al. [124] propose a personal agent that recommends
personalized access control decisions; Fogues et al. [125] propose a machine-learning based



3.9. CONCLUSION 75

policy recommender to predict the optimal sharing policy in multiuser scenarios. Game
theory is a first class candidate tool for studying the interactions between users who are
subject to interdependent privacy risks, as it enables the modeling of the effect of users’
strategies on other users’ utility, as well as the users’ decision making process. It was
successfully used to analyze users’ application adoption behaviors [71,72], the dynamics
of individuals’ privacy preferences regarding shared content [126], and privacy decision-
making [127], such as sharing genomic data [73]. The study of interdependent privacy
risks from an economic perspective follows the long line of research on interdependent
security games surveyed in [128].

Our work is the first to study the interactions between OSN users in the case of
(co-)location sharing, where shared co-locations create interdependent privacy risks. Un-
like in the game-theoretic approaches surveyed above, in our framework we take into
account the time dimension, future considerations, incomplete information, and an al-
truistic factor. In addition, we rely on a rigorous approach, based on user surveys, to
determine realistic values of the different parameters of our model.

3.9 Conclusion

It is well-known that the behavior of others affects our own privacy, in particular in the
case of interdependent data. Yet, formalizing these complex interdependences and their
implications is non-trivial, especially because human decisions play a dominant role. To
address this issue, we focused on the (co-)location sharing features provided by major
OSNs. We proposed a coarse-grained game-theoretic model and provided a first frame-
work to study the interplay between two friends. A major challenge in such approaches is
to assign meaningful values to the parameters that characterize user preferences. For this
purpose, we carried out a survey of Facebook users, which also confirmed the anticipated
high diversity of opinions in terms of social benefits and location privacy. We studied the
resulting equilibria and their properties, in different settings. In particular, we showed
how, because of conflicting preferences, one of the users can be forced into a situation
that she does not desire (e.g., we exemplified on a mobility dataset how a vicious-circle
effect emerges) and we demonstrated that sharing co-location information can addition-
ally encourage users to over-share their locations. This is an interesting finding from a
design perspective for the OSN service providers but a dangerous one for the end users:
Advertising features that permit the sharing of co-location information could also en-
courage users to share their locations more often. Furthermore, we showed that user’s
decisions are strongly influenced by the adversary that they consider and dependent on
the mobility data. We emphasized the need to develop appropriate warning mechanisms
for the users, which we intend to develop in the future; these would help users better
understand and anticipate the consequences of their (co-)location sharing decisions.
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Survey transcript
Part I: Demographics

1. What is your gender?

(O Female
O Male

2. What is your age? [ |

3. What is your primary area of employment?

(O Homemaker

O Retired

O Student (undergraduate)
(O Transportation

O Other: |

Part II: Preferences

4. A check-in post is a post in which location is disclosed, by checking-in at a point of interest
like an airport, concert hall, square etc. The picture depicts an example of a check-in post.

‘6 Mark Zuckerberg added 2 new photos — with Stefan Stojanow
& and 3 others in @ Berlin, Germany.
February 25 at 7:17pm - @

It's great to be back in Berlin! This morning we ran past the Reichstag, across
the Tiergarten and then through the Brandenburg Gate. It was my first time
running through snow in a while!

Imagine that, due to technical constraints, Facebook may have to remove some or all of
your 2 most recent check-in posts (your friends will not see these posts anymore) and/or
some or all of your close friends’ 2 most recent check-in posts (you will not see these posts
anymore). Note that there are posts you and your friends already shared therefore
you do not want Facebook to delete any of them! (choose option “2 of your recent posts are
kept and 2 of your friends’ recent posts are kept” as most preferred). Order the following
scenarios in decreasing order of preference. Click on an item in the list on the left, starting
with your highest ranking item, moving through to your lowest ranking item.
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Your choices Your ranking

2 of your recent posts are kept and
2 of your friends’ recent posts are kept

1 of your recent posts are kept and
2 of your friends’ recent posts are kept

2 of your recent posts are kept and
1 of your friends’ recent posts are kept

2 of your recent posts are kept and
0 of your friends’ recent posts are kept

0 of your recent posts are kept and
1 of your friends’ recent posts are kept

1 of your recent posts are kept and
1 of your friends’ recent posts are kept

5. A check-in post is a post in which location is disclosed, as illustrated below.

B Mark Zuckerberg|at @ Tiananmen Square.

9 hrs - Beijing, China - @

It's great to be back in Beijing! | kicked off my visit with a run through
Tiananmen Square, past the Forbidden City and over to the Temple of
Heaven.

This also marks 100 miles in A Year of Running. Thanks to everyone who has
been running with me -- both in person and around the world!

A co-location post is a post in which you tag the friends you are with - either through a
status message or a picture - as illustrated below.

Mark ZuckerbergEn‘.h Priscilla Chan and Ime Archwbong]
February 25 at 9:12am

Celebrating Priscilla's birthday with friends

Imagine that, due to technical constraints, Facebook may have to remove some or all of
your 2 most recent check-in posts and/or some or all of your 2 most recent co-location posts
(think of posts in which you either tag friends, or check-in, but not both). If removed, your
friends will not see these posts anymore. Note that there are posts you already shared
therefore you do not want Facebook to delete any of them! (choose option “2 of your recent
check-in posts are kept and 2 of your recent co-location posts are kept” as most preferred).
Order the following scenarios in decreasing order of preference. Click on an item in the list
on the left, starting with your highest ranking item, moving through to your lowest ranking.
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Your choices Your ranking

6. We define location privacy as the precision with which someone (Facebook, your friends,
or public observers) can guess your location at any moment during the day. An average
location privacy of 50 meters means that at any time during the day, your location can be
guessed as close as 50 meters from your real location. With each of your check-in posts,
your location privacy can change.

. O —

8

X EmieBiovs | | Mil

L |

Order the following scenarios in decreasing order of preference. Click on an item in the
list on the left, starting with your highest ranking item, moving through to your lowest
ranking item.

Your choices* Your ranking

* These numbers were extracted from the experimental results presented in [22].
Part III: Social Networks Usage

7. On average how many times per week do you use Facebook?
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8.

9.

10.

11.

(O Several times per day

(O One time per day

O A few days per week

(O One time per week

(O Less than one time per week

On average how many times per week do you check-in on Facebook? A check-in post is a
post in which location is disclosed, as illustrated below.

ﬂ Mark Zuckerberg|at @ Tiananmen Square.

9 hrs - Beijing, China - @

It's great to be back in Beijing! | kicked off my visit with a run through
Tiananmen Square, past the Forbidden City and over to the Temple of
Heaven.

This also marks 100 miles in A Year of Running. Thanks to everyone who has
been running with me -- both in person and around the world!

(O More than one time per day
(O One time per day

O Once every few days

O Once per week

(O Less than one time per week

On average how many times per week do you tag the friends that are with you on Facebook,
in pictures or in statuses? An example is illustrated below.

February 25 at 9:12am - @

Mark Zuckerbergﬂmh Priscilla Chan and Ime Archwbong]

Celebrating Priscilla's birthday with friends

(O More than one time per day

(O One time per day

(O Once every few days

O Once per week

(O Less than one time per week
How concerned are you about location privacy (i.e., the fact that someone can infer your
more or less precise location at some points in time)?

(O Very concerned

O Moderately concerned

O Not concerned
Were you aware that check-ins or tagging your friends can decrease your location privacy
and your friends’ location privacy?

O 1 was aware they would impact my own privacy as well as my friends’ privacy

O I was only aware they would impact my own privacy
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12.

13.

14.

CHAPTER 3. TO SHARE OR NOT TO SHARE:
INSIGHTS INTO USERS’ BEHAVIOR OF SHARING (CO-)LOCATIONS

(O I was not aware they have any effect on privacy
Were you aware that the check-ins and tags that your friends post can decrease your location
privacy?

O Yes

O No
Imagine that you are at a venue with a friend, who just checked-in at this venue and tagged
you in his post. In terms of your location privacy, whom are you concerned about?

[J The friends that you have in common on Facebook

[J Your other friends on Facebook (these are not friends of your friend)

[J Your friend’s other friends on Facebook (these are not your friends)

[J Facebook

[J None of the above

Will the information you learned through this survey change your behavior on Facebook
in any way? If so how?




Chapter 4

Privacy-preserving Sharing with
Consent

What can you do against the lunatic who is more
intelligent than yourself, who gives your arguments a
fair hearing and then simply persists in his lunacy?

GEORGE ORWELL

4.1 Introduction

Individuals share increasing amounts of personal data online. Powered by the emergence
of specialized platforms, such as OSNs, the variety of the personal data shared online has
also substantially increased over the last decade, including content as diverse as contact
data (address books), multimedia data (photo, audio, videos), location data and genomic
data.

Recent studies highlighted the fact that such data often involves (and has privacy
implications for) data subjects other than the individual who shares them online [129].
This concept, referred to as multiple-subject personal data (MSPD; the term was coined
by Gnesi et al. [26]) or as co-owned/multi-party data (by Such et al. [80]), applies to
numerous types of data, one of the most widespread examples being group photos and
videos. A sadly popular example [15,16,130], with dramatic consequences, is revenge
pornography (i.e., the disclosure of photos or videos portraying sexually explicit activity,
typically after the end of the relationship between the partners), which can also occur
on platforms such as Facebook [14,131]. Our preliminary results show that the number
of potential victims is very high (40.2% of our survey participants declare that they have
explicit pictures of other people).

Beyond MSPD data, recent studies showed that seemingly strictly personal data
reveals information about other individuals [9, 10,12, an effect which we also study
in Chapter 2. This concept is referred to as interdependent personal data (IPD; the
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term interdependent privacy was coined by Biczok and Chia [71]). The root cause of
interdependent privacy is the fact that the personal data of somehow related people
(e.g., friends, colleagues, relatives) are correlated. A typical example, introduced by
Humbert et al. [12], is genomic data: The genomes of individuals, shared on specific
platforms (e.g., 23andme), reveal information about the genomes of their relatives.

Most of the time, the sharing and the disclosure of multiple-subject or interdependent
personal data occurs without the consent of the involved individuals, possibly creating
so-called multi-party privacy conflicts [79, 80,123, which are known to be difficult to
resolve. Although the notion of consent is known to be fundamental and at the core
of most of data-protection and privacy laws, as well as terms of use of online sharing
platforms, very few technical solutions exist, to the best of our knowledge, for detecting
and sharing such data, in a consensual and privacy-preserving way. Several protocols
have been studied [117-122], but there are no associated tools to aid users to implement
these and, more importantly, they are all based on the assumption that users are aware
when data regarding them is shared, which is not always the case. Existing technical
solutions are limited in terms of the considered adversary (i.e., they typically disregard
the case where the data is disclosed to the service provider), of the detection of the
data-subjects and of the privacy guarantees. For instance, Facebook enables its users to
review the tags that identify them in photos before they are made visible to other users,
and possibly remove them; yet, even though such a tag could eventually be removed by
a user, Facebook does have access to the corresponding information, i.e., the fact that
the tagged user most probably appears in the photo.!

In this chapter, we tackle the problem of designing and building a system for sharing,
in a consensual and privacy-preserving way, multiple-subject or interdependent personal
data (MSPD/IPD). Specifically, in accordance with Nissenbaum’s definition of privacy
as contextual integrity [132], we seek to give individuals control on the dissemination
of data that involves them. This problem is difficult for several reasons. Identifying
the data subjects of some data, or more generally the individuals whose privacy can be
affected by the disclosure of the data, is far from trivial and highly data-dependent. In
addition, the fact that this identification, as well as the collection of the consent and
the preprocessing/sharing of the data (in compliance with the obtained consent) must
be done in a privacy-preserving way, with respect to the involved service providers and
individuals, makes the design of such a system even more difficult. Our survey results
(Section 4.7) suggest that users are both concerned about this threat and potentially
interested in our proposed solution (53.6% of the participants said they would use such
a system).

We propose a generic solution able to handle various types of such data, and we
identify the different building blocks of a system for sharing data online, as well as the
design choices to adapt to the specifics of the different data types. We focus on the
case of photos, and we design and implement a working solution named ConsenShare.
ConsenShare relies on two different entities: an identity management service (IMS) and a
content management service (CMS). The first is in charge of identifying? and contacting
the individuals involved in the data about to be shared on the platform that is operated

INote that the term sharing includes posting on social platforms but also sending data through
(instant) messaging platforms, e.g., WhatsApp.

2While not privacy-mindful, an application for identifying people from a picture taken in public,
FindFace [133], is becoming popular in Russia.
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by the second. The second is in charge of collecting the data and the consent, and
of preprocessing and sharing the data. At the core of ConsenShare lies a distributed
protocol based on standard cryptographic primitives and image processing operations,
which ensures that the information learned by the IMS, the CMS and the involved
individuals is minimal, especially in the case where some of the involved individuals
do not give their consent. An example of a typical setting for ConsenShare would be,
for the case of photos, Facebook acting as the IMS and Flickr as the CMS. ConsenShare
is, to the best of our knowledge, the first such system; it addresses an important and
timely problem. In fact, using such a system before sharing MSPD/IPD data online
might become mandatory by law in a few years. Service providers and law makers are
already making efforts in this direction, in particular for revenge pornography [134-139];
these are not perfect—from a privacy perspective—for the users. Such a solution would
aid with law suits avoidance, as a CMS might be held liable for allowing the sharing
of MSPD/IPD data (as was the case with fake news on OSNs). Furthermore, as our
solution would represent a user-desired feature in an CMS, adoption might also lead to
increasing the user base (and the revenue).

We perform a security and privacy analysis of ConsenShare. By using an unbiassed
random sample of 17k+ photos from Yahoo’s YFCC100m dataset (Flickr [140]), we also
evaluate its performance in terms of CPU and bandwidth consumption, in the (worst
case) scenario where all the individuals who appear on a photo are asked for consent.
Our experimental results show that the CPU time is negligible for the users and for the
CMS. As for the bandwidth overhead (w.r.t. to the baseline case where users directly
upload their photos to the CMS), this is approximately equal to the photo size for the user
who uploads the photo (as the photo must be sent to the IMS, in addition to the CMS)
and 34.78% for the CMS; for the IMS, the bandwidth usage is roughly equal to the size of
the uploaded photos. We complement our evaluation with an online survey on multiple-
subject and interdependent personal data, targeted at Facebook users and conducted
via the Amazon Mechanical Turk platform (N=321). The survey results indicate that
a system like ConsenShare could be desirable. For instance, 69.5% of the participants
are concerned by the sharing of multimedia data that involves them, 27.4% are potential
victims of revenge pornography (i.e., they have shared intimate photos or videos), and
53.6% would certainly use a system like ConsenShare. We also study the potential
adoption of such a system by analyzing the incentives (e.g., business opportunities and
models) of the different stakeholders, namely the end-users, the IMS and the CMS.
In summary, our contributions are the following: (1) We frame the timely and critical
problem of consensual and privacy-preserving sharing of MSPD /IPD data (2) We design,
implement and evaluate the first system to address this problem for photos; we also
propose a generic system for other types of data and identify the different challenges
inherent to its design, as well as incentives for adoption for all the parties involved. Our
results are quite encouraging: The experimental results demonstrate the feasibility of
our approach and the survey results demonstrate potential interest from the users.

The remainder of the chapter is organized as follows. We describe the system model
and list our design goals in Section 4.2. We give a high-level description of a generic
solution, namely ConsenShare, in Section 4.3. We propose and give a detailed description
of a solution specific to photos in Section 4.4. We provide a security and privacy analysis
of ConsenShare in Section 4.5. We report on our data-driven experimental evaluation of
ConsenShare in Section 4.6. We discuss the adoption of ConsenShare, based on (among
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other things) the results of our user survey, as well as its limitations and its extension to
data other than photos in Sections 4.7 and 4.8 respectively. We survey the related work,
with an emphasis on legal, social and technical aspects of the problem, in Section 4.9.
We conclude the chapter in Section 4.10. Finally, in Section 4.10, we provide the full
survey transcript.

4.2 System Model & Design Goals

We describe next our system model, the adversaries and the threat model we consider,
our assumptions and design goals.

System Model. In our model, we consider the following major entities: Users and
a Content Management Service (CMS) — e.g., Flickr for photos, YouTube for videos,
or OpenSNP for genomic data. Users® can upload content to the CMS (with a certain
target audience for visibility consisting of a set of users and/or the general public); any
part of the content that concerns (or has privacy implications for) another user is sent
to her for approval, along with any relevant contextual data (e.g., the identity of the
uploader, description, upload time, target audience, etc.); this content is visible to these
parties (and to the CMS) only if the concerned user grants their consent.

Threat Model. In our model, we assume that the adversaries are the users (individu-
als), the online services (e.g., the CMS-other services can be included in the protocol as
we shall see, e.g., the IMS) and third parties (e.g., external observers). Individuals can be
active adversaries. For instance, a malicious user could try to bypass the system to fully
publish sensitive content (e.g., compromising photos of other users) without obtaining
consent from the affected users (possibly by colluding with other malicious users or by
creating fake profiles). A malicious user might also try to monitor and tamper with the
communications among the different parties in our system to infer private information
about other users, e.g., their real names. The CMS and the IMS are assumed to be
honest-but-curious, i.e., they will follow the protocol, but they could try to infer sensi-
tive information from the data observed. For instance, the CMS might try to learn the
sensitive content specific to particular users before they give consent or infer the social
networks or strength of social ties of some users based on the consent requests that are
sent out and their responses (e.g., if Bob often accepts that Alice share content regarding
him, they are likely to be close).

System Assumptions. We assume that secure two-way communication channels have
been established between all parties in our system, typically over SSL; we assume that
the CMS and the IMS are independent parties and that they do not collude (we discuss
the case of collusion in Section 4.8). We further assume that data from the network layers
(e.g., IP address) cannot be used to leak users’ identities: This is a reasonable assumption
as many mobile users only access the Internet through a NAT gateway offered by their
Internet provider, but could be relaxed if, for instance, users make use of VPN service or
anonymous networks (e.g., Tor) to access the Internet. We do not consider fingerprinting
attacks in our model. Finally, we assume that software that is run locally is trusted
(trusted execution environment can be used).

3Note that we refer to “regular” users; we do not consider professionals such as journalists, who follow
specific accountability rules regarding the publication of content, are liable for it and have a reputation
to uphold.
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Design Goals. Our main goal is to design a mechanism that, in a private way, (1)
informs users every time a piece of content regarding them is submitted and (2) enables
them to grant their consent before such content is available to any other party (except
from the uploader, of course). To this end, the design goals of our system are as follows.

e Effectiveness: the registration process should be secure, registered users should
be detected in uploaded content and the sensitive content involving them should
not be revealed to any component of our system until after they consent.

e Privacy as anonymity for the users: data submission and consent operations
should not leak information about the identity of the users involved (other than
the uploader).

e Unlinkability: An adversary should not be able to aggregate or link consent
operations regarding different individuals associated with a particular content.

e Detection of any malicious user behavior (e.g., attempts to bypass the pro-
tocol); the system should not allow the sharing of sensitive parts of the content, in
such cases.

e Usability and transparency to the users. This includes the fact that consent
operations should provide the users with enough contextual information for them
to make an informed decision.

4.3 Highlevel Solution

In this section we describe our proposed framework, its core components and the main
technical challenges.

Framework Overview. We envision a system to which a user registers with identity
information. The system’s role is (i) to detect, for any content that is uploaded, what
are the users affected by this content (e.g., for genomic data these are the close relatives;
for photos and videos these are the people who appear; etc.), (i) to contact them and
ask them for consent, providing them the option to express a decision either manually,
through policies, or automatic (machine learning based) and (iii) to publish the content
with the proper restrictions and obfuscations (depending on the users’ consent decisions).
Such a system consists of several components, which we describe next.

e Content Management Service (CMS). These are User Generated Content
sites, such as Flickr, YouTube or OpenSNP.

e Identity Management Service (IMS). This handles users’ identities and offers
services to identify the users associated with a given content. The IMS is in charge
of users’ relationships (social and family). In practice, the role of the IMS could
be played by the public administration or by popular OSNs (e.g., Facebook) or, it
could be distributed across several entities.

e User applications (CMS and IMS). This is the component that users interact
with to publish content form their devices to the CMS, to review consent requests
either manually, through the use of policies, or machine learning automation (learn-
ing a user’s decisions from a few initial manual decisions).
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Alice’s face:

Faces that Alice wants in the
photo (asked for consent): —

: Accepts; @ : Denies
Other faces (blurred): 8 &8 &
(c) Face images (d)

Figure 4.1: Example application of ConsenShare on a real photo: (a) Original photo,
taken by Alice; (b) Background image produced by Alice’s application and sent to the
IMS and CMS. Note that faces that Alice wants to appear in the photo will be asked
for consent, whereas others (e.g., people in the background) will be simply blurred as in
Google Street View; (c) Face images, extracted from the original image, by Alice’s appli-
cation; (d) Final photo, hosted by the CMS, assuming one of the people accepts and the
other denies (note that Alice’s consent is automatically granted, as she is the uploader).
In order to enable the people who appear in the photo to make an informed consent deci-
sion with the general context in mind, they receive the background image with only their
own faces shown (for privacy reasons). Note that the sizes of the blurred/cropped out re-
gions can easily be customized and increased even to include the full body (e.g., [141,142])
to avoid people being recognized through features other than their face, such as clothes.
Tmage source: Pixabay, (https://pixabay.com/p-1517163/7no_redirect).

Challenges. Key and challenging components of our framework include: claiming
identity; determining the users involved in some particular content; contacting them
privately and providing them with enough context to make informed consent decisions
(while hiding information for which other involved users should grant consent); the variety
of types of the consent decisions (removing or obfuscating all or some parts from the
content, reducing the visibility audience, etc.); reducing the number of consent decisions
(through policies or machine learning automation); and enforcing multiple and possibly
conflicting individual consent decisions—all of these in a private way. Most of these
components are very data-dependent. Therefore, for simplicity’s sake, in what follows
we will focus on photos. In Section 4.8, we discuss the extension to other types of
MSPD/IPD.

4.4 Specific Solution: The Case of Photos

In this section, we present a working solution, for the case of photos. The main entities
in this case remain the photo uploader (we refer to her as Alice), the CMS, the IMS and
(potentially) the other users that appear in a particular photo (consenters). We refer to
any consenter as Bob.
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4.4.1 Overview of ConsenShare

ConsenShare enables any user, Alice, to upload photos to the CMS (see Figure 4.3 on
page 89. If such a photo, P, contains faces of other people, Alice can choose to remove
these (e.g., by blurring them, similarly to blurring on Google Street View [143])* or — if
she wants these to be visible in the photo — she must first remove the faces from the
photo, upload them (encrypted) separately such that the corresponding people are asked
for consent (Figure 4.1 illustrates on a concrete example how some of the photos look). In
this latter case, only the background corresponding to photo P, namely Ppg, is uploaded
to the CMS (after some validation from the IMS to certify that no (known) faces appear
in it). This version of the photo (Py) is made visible to the target audience desired by
Alice as soon as the upload completes. Faces for which consent must be asked are cropped
out from Pp and a protocol to identify the owner of the face, contact him, provide him
the photo for review and collect his consent decision is executed; this involves the IMS
at different stages. We emphasize that the parts of the photo for which other users
must consent are protected, as one consenter, Bob, will only be provided with the photo
consisting of the background and his own face. Before Bob grants consent, only Alice
(who already has access to the full photo) and Bob are able to see the part of the photo
containing Bob’s face, as Bob’s face image is encrypted using a key created by him. In
addition to this, Bob is also provided with some contextual information about the photo
(such as the identity of the uploader, upload time, description and the target audience for
photo visibility). If Bob denies consent, his face will remain cropped out in the published
photo, Py. If Bob grants consent for his face to appear in the photo, he provides the
CMS with the needed information to decrypt his face (i.e., a key). Before adding Bob’s
face to Py, the CMS performs validation steps to ensure that Alice or another party has
not tampered with the original face appearing in P and that consent has been granted
by the correct user.

4.4.2 Technical Challenges and Choices

Our solution comes with several challenges, discussed here.

Identity Claim

In order to use ConsenShare, users (or their legal guardians for minors) must register by
providing information for face recognition, which would be used to detect them in photos
shared by others in the future. A typical way to do this, which became mainstream, is
to provide the system with an ID and/or photos (which can be verified by humans), as
exemplified, for instance, by Uber [145,146], Airbnb [147] and potentially Facebook [148].
To reinforce the proof of identity, webcams can be used, similarly to Microsoft’s Windows
Hello [149], other solutions for biometric authentication proposed in the literature [150—
152] or Apple’s biometric facial recognition (FacelD [153,154]) for unlocking iPhones.

4Note that recent works, such as that by Li et al. [144], study various common techniques for
obfuscating photos, both in terms of effectiveness and impact on viewing experience. Our design is
flexible enough to enable the use of other photo obfuscation techniques, beyond blurring.
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Figure 4.2: ConsenShare: Register user protocol

Privacy-preserving Face/Body Recognition

A major challenge in the design of ConsenShare is the privacy-preserving face detection
and recognition. Although there is work in the literature detailing how classification
could be performed on encrypted data (e.g., [155-159]), it is not clear how applicable
these would be to the rapidly evolving face recognition algorithms, or how efficient these
would be. Furthermore, this option would raise the problem of the authenticity of the
classification results. Thus, in our design, we focus on face recognition on regular im-
ages; We consider feature vector based face recognition, as described in Google’s popular
and efficient FaceNet framework [160]. We provide the desired privacy guarantees by:
performing the face detection operations locally on the uploading client’s device (thus
the photo is not shared with any other parties); performing the face recognition on the
IMS server based on the much less sensitive information, i.e., the feature vectors; and
validating these operations by the CMS using the original photo once consent is granted.
Note that all local operations can be performed either, natively, in a mobile application,
or a web app (Javascript).

To better understand these design decisions, we give here some background informa-
tion about face recognition, which the familiar reader can skip. A face representation
(or feature vector) is a multi-dimensional numerical vector that encodes the features
of a face (e.g., the eye distance). Its main properties are: (i) A face representation is
unique to a face image, hence different face photos (even belonging to the same person)
result in different, yet close in terms of distance, face representations. (ii) Typically,
the Euclidean distance between face representation extracted from photos depicting the
face of the same person is smaller than the distance between representations extracted
from photos depicting faces of different people. Thus, distances can be translated into a
measure of face (dis)similarity and the problem of face recognition for some input feature
vector reduces to identifying the closest feature vector to it — in the distance space — from
a set of available feature vectors of the registered users.

Note that detecting faces might not be enough, as recent work shows that identi-
fying people is possible from features other than their face, such as their clothes [161].
Our framework can be extended to include body detection and obfuscation techniques
(e.g., [141,142]), as for faces; such solutions would provide more privacy, but would also
involve a utility loss due to the increased obfuscation.
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4.4.3 ConsenShare Main Operations

We describe the following operations: (i) register (Figure 4.2) and (ii) upload photo and
grant/deny consent (Figure 4.3 on page 89).

Register

The operations performed are the following.

1. Bob, a new user, uses the ConsenShare IMS application on his device to take a set
of photos/videos, P, with his webcam. The application sends P, along with Bob’s
login information to the IMS. The idea behind this is to prevent people claiming
an identity different than theirs.

2. The IMS detects the faces in P. If P contains only one valid face, it computes
the corresponding face representation, stores this along with the provided login
information and sends an ok’ response to Bob. Otherwise, an error message is
returned to Bob and nothing is stored.

Upload Photo and Grant/Deny Consent

The operations performed are the following.

1. Alice selects the photo she wants to share: The CMS ConsenShare application splits
it into background image, Pp, (which contains no faces) and the detected faces;
this is done locally by the CMS provided application or webpage. Alice marks the
faces that she does not want to ask for consent and these are blurred; the other
faces are cropped out. Alice sends this Pp to the IMS. The IMS should provide
a public API for this operation. Note that Alice does not need to have an IMS
account.

2. The IMS performs face recognition on the received Pg. If this is indeed a valid
background photo (i.e., contains no faces, contains no known faces, etc. depending
on the policy implemented by the IMS—it could also depend on the requirements
imposed by the CMS), the IMS signs and sends a message containing the hash of
the background photo (and information indicating whether the photo contains no
face, no known faces, etc.). Otherwise, it signs and sends a message specifying the
reasons for which the photo is not valid. The signed message, o, is returned to
Alice.

3. Alice logs in to the CMS using her credentials and forwards the received o together
with Pg and some context information (e.g., the desired visibility and a description
of P) to the CMS, which verifies that all of the following holds: (1) o is a valid
signature by the IMS, (2) the Pg it received from Alice has the same hash as the one
in message returned by the IMS — to prevent Alice from uploading a different photo.
If these checks pass, the CMS creates a visible photo with the specified audience
in context, Py, consisting of the background image Pp and stores hash(Pp) and
context.

For each detected face that must be asked for consent:
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4.

10.

11a)

A face representation is computed locally by the ConsenShare CMS app on Al-
ice’s device and encrypted with the IMS’s public key, Pkyys, using a deterministic
encryption scheme (we discuss why using a deterministic encryption scheme is ac-
ceptable in this case in Section 4.8). This is then sent, along with hash(Pg), to
the CMS. hash(Pg) is used as an identifier for the sharing of the photo.

The CMS generates a random session id, sid, marks it as pending and stores and
forwards the received encrypted face representation and sid directly to the IMS.
As several photo uploads likely happen at the same time, the CMS acts as a mix
network for the IMS (shuffle and delay of messages is also possible), preventing the
IMS to link users to the same photo (details in Section 4.5).

. The IMS decrypts the message to obtain the face representation and finds, among

all the registered users, the one with the closest feature vector (i.e., smallest Eu-
clidean distance) that also satisfies a maximum acceptable similarity threshold. It
then sends a message to this user (Bob), containing sid (e.g., a link embedded in a
notification shown in the app running on Bob’s device, the app would be provided
by the IMS—eg Facebook Messenger). Note that Bob does not need to have a CMS
account. In the case of a missing identity—e.g., Bob is not yet a registered user—the
protocol stops here and his face remain cropped out.

Upon notification, the app running on Bob’s device generates a pair of pub-
lic/private session keys, Pkg;q, Sksiq and sends Pkg;q and sid directly to the CMS.

. The CMS forwards Pkg;y to Alice, who uses it to encrypt the part of the original

photo containing Bob’s face, as well as its position coordinates in the photo. It
sends this encrypted information to the CMS.?

. The CMS stores the received information and forwards to Bob the encrypted face

and the coordinates, as well as the background image Pp and the corresponding
context.

Bob’s app recreates an image consisting of the Pp and the portion in which his face
appears (which he decrypts using Skg;q), shows it to Bob along with the context
and uploader identity, and Bob decides whether to give consent for allowing his face
to be visible in this photo. Note that this can also be automated through machine
learning techniques (e.g., [162-164]), or enforced through policies (e.g., “accept
all from friends”, “accept if not nude”; “accept if I am the uploader”, etc.). Before
presenting the photo to Bob for consent, spam filtering techniques can be performed
(e.g., using senders white/black lists or performing face detection on the face image

to ensure this is really a face image belonging to Bob and not an unsolicited ad).

If the decision is to allow Bob’s face to appear in Py, Skg;q is returned to the CMS
as a response to sid. At this point, the CMS can decrypt the stored face and the
coordinates it has received from Alice and verify the validity of the coordinates
(e.g., by verifying that the corresponding area of Pp is cropped out) and that the
feature representation obtained from this face image is identical to the one Alice sent
to the IMS, through the CMS, in step (4). This is possible because the encryption

5Note that, as the CMS is assumed to be passive, no Man-in-the-Middle attack is possible.
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scheme is deterministic. Note that, for the same person, the feature representation
differs when the face image differs, therefore if two feature representations are
identical, this guarantees that the original face images they were computed from are
identical. If the validation is successful, the CMS adds Bob’s face to the published
photo Py, and marks this sid as accepted.

11b) If the decision is to not allow Bob’s face to appear in Py, a “deny” message is
returned to the CMS as a response to sid, and the CMS then marks sid as denied
and the area corresponding to Bob’s face remains cropped out.

Note that, in the case of no response from a user, his face simply remains obfuscated.
This action can also be configured by the CMS (e.g., default option after a timeout).

4.5 Security and Privacy Analysis

In this section, we demonstrate how ConsenShare satisfies the goals described in Sec-
tion 4.2. Note that the security of some parts of the system directly depend on that of
the underlying technologies used (e.g., face recognition is not perfect [165]). We discuss
these in detail in Section 4.8.

4.5.1 Effectiveness

The identity claim process using webcams at registration, prevents the creation of fake
accounts. Face spoofing detection techniques (e.g., [166]) can also be used to prevent
malicious individuals from creating accounts on behalf of other users. Once registered, if
a user’s face appears in uploaded photos, he would either be asked for consent (with his
face being encrypted in all communications and his identity hidden from the CMS) or
his face would be blurred to begin with (depending on the uploader’s choice). We discuss
why malicious users cannot bypass this part of the protocol in detail in Section 4.5.3.

4.5.2 Privacy as Anonymity and Unlinkability

Regarding the data that is visible or known to the different parties throughout the
protocol, we emphasize that face detection is performed locally on the uploader’s device,
that is, faces are not transmitted to the IMS (only face vectors) and the CMS only receives
encrypted versions of the faces to forward to the consenters. None of the consenters
involved in a photo have access to each other’s faces. The IMS only has access to the
background image (which does not contain any faces) and to the face representations
of the people appearing in all the photos (which do not disclose anything about the
sensitive information—the actual face). As the CMS acts as a mix network (it forwards a
large number of messages to the IMS), the IMS cannot distinguish the lookup operations
belonging to the same photo, thus it cannot link faces to faces or faces to a particular
content. To make this property even stronger, the CMS can randomly mix and delay
messages sent to the IMS (using buffering and shuffling), as well as add dummy messages
in step (5) (Figure 4.3 on page 89). As for the CMS, it has access to the face-free
background image. All the other data (face vectors and the faces) is sent encrypted to
the CMS and only decrypted after the concerned users grant consent. The CMS is thus
not able to identify the users that are involved in the same photo before they have given
consent.
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Furthermore, the CMS is also not able to link different faces (from different photos)
of the same user, as face representations of a person always differ (even slightly) in
each photo, making the encrypted version entirely different. We consider the case where
the CMS wants to identify users in photos submitted in the future, based on their face
representations from previous granted consents (step 1la, Figure 4.3 on page 89); the
CMS would have to build a dictionary of possible face representations for a target user by
adding noise at each position of the face representation array. This quickly becomes very
expensive, i.e., the time complexity is exponential in the size of the face representation
array (e.g., 128 positions in OpenFace [167]). Furthermore, we can easily protect against
this attack with very little bandwidth and CPU time overhead by concatenating a random
salt to the feature vector and to the face sent in step (4) and (9), respectively; In step (11),
the CMS can retrieve the salt along with the face and perform the validation of the face
representation. As for other similar timing, linking or side-channel attacks potentially
performed by the IMS or by the CMS, these can also be deterred by traffic aggregation
and randomization at the CMS and by adding dummy request at the client side (e.g., the
uploader’s application can send more messages, to other users (in Step (4)), which would
be automatically disregarded by the consenters’ application).

4.5.3 Malicious User Behavior

A malicious uploader cannot bypass the system by leaving faces visible in the background
image, as this would immediately be detected by the IMS in step (2) (Figure 4.3 on
page 89). Malicious uploaders can also not bypass the system by sending an incorrect
feature vector in step (4)-in order for someone else to provide consent in lieu of the
legitimate target consenter—as this would be detected by the CMS in step (11a). Sim-
ilarly, malicious users cannot bypass the system by providing a consenter with a face
different than that sent to the CMS, as verifications of the face position in the photo
and a comparison of the feature vector for that face and that sent to each consenter are
performed in step (11la). Every message sent by an uploader, throughout the protocol,
is validated by the CMS before any consenter’s face is made visible to the target audi-
ence. Thus, malicious user behavior (even colluding users) results in sensitive parts of
the photo not being shared with the target audience. Privacy of the sensitive content is
also guaranteed, up to the point consent is granted by the concerned user. This is due
to the security of the encryption schemes and the design of the system: The sensitive
content is encrypted and not visible to the IMS, to the CMS, eavesdroppers or to any
other users of the system.

4.5.4 Usability and Transparency

All consent requests contain contextual information for the consenter. However, in our
solution, there is a chance of spamming attacks, e.g., sending unwanted information
to specific users (in the background of the photo, for instance). Although these can
be annoying, we do not consider them extremely privacy invasive and well-known anti-
spamming techniques (such as those used for e-mail) can be used by the CMS to handle
this problem.
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4.5.5 Collusion Cases

User-CMS and user-IMS collusions do not lead to additional information leakage. We
discuss the case of CMS-IMS collusion (e.g., the role of the CMS and that of the IMS
are both played by Facebook). Typically, the CMS has information about the photos,
but does not know anything about the identities of the faces appearing in them; the IMS
can link every face with a user. In the case of collusion, the CMS and IMS entities would
be able to link the users’ identities to a particular photo, but the sensitive parts of the
photos belonging to these users (their faces) would still not be visible unless these users
grant their consent (as their decryption is only possible if consent is granted and both the
CMS and IMS are honest-but-curious). Linkability could be reduced by adding dummy
messages by the uploader application.

4.6 Implementation and Evaluation

To evaluate the performance of ConsenShare and demonstrate its practicality, we im-
plemented a proof-of-concept prototype and evaluated its performance, in terms of CPU
usage and bandwidth consumption, by relying on a real large photo dataset. We describe
the implementation of our prototype, the dataset collection as well as our experimental
setup, and we present the bandwidth and CPU consumption for the photo upload and
grant consent operations.

4.6.1 Prototype Implementation

We implemented the prototype and carried out our performance evaluation by us-
ing Python 3.6. The prototype code and documentation are available at http://
infoscience.epfl.ch /record /232563. Note that the prototype was not optimized; therefore,
the CPU usage measurements should be considered as a loose upper bound. The proto-
type consists of the two server applications (the CMS and the IMS respectively), which
we implemented with Flask, and a client application that supports the three main opera-
tions of the system: register (to the IMS), upload photo (to the CMS) and approve/deny
consent (to the CMS). The servers use basic SQLite databases for local storage. All
communication between these entities is achieved through JSON-based HTTPS requests
and responses.

For face detection and feature-vector extraction, we use Dlib [168]-a C++ face
detector-and OpenFace [167,169] (v.0.2.1), which is an open source Python implemen-
tation of Google’s FaceNet framework [160]. We implemented the lookup operation
(i.e., retrieving the best matching record for an input feature vector) to return the
database record that minimizes the Euclidean distance with the input feature vector:
We implemented it in a naive way, that is by comparing it to all the records in the
database. Note that there exist efficient techniques for finding the most similar face,
based on a low-dimensional representation (embedding), in databases of up to hundreds
of million faces (e.g., [170]). Basic image manipulation operations, such as loading and
saving image files as well as extracting faces and replacing them with black rectangles,
were performed with the Python Imaging Library (Pilow, v.4.1.1). In order to avoid
discrepancies in the image file sizes (and therefore in the bandwidth measurements), we
configured Pilow to retain all the parameters of the JPEG/JFIF format and encoders
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Figure 4.4: Dataset statistics.

(e.g., quality, color space, chrominance subsampling factor) from the original image pro-
cessed, when saving (parts of) it.

For the basic cryptographic operations (hash, sign/verify, encrypt/decrypt and gen-
erate keys), we used the Python binding to the Networking and Cryptography library
(PyNaCl [171], v.1.1.2). Specifically for sign/verify operations, we used the Ed25519
algorithm, with 128-bits security; for (cryptographic) hashing we used the SHA-256 al-
gorithm with 128-bits security; for encryption, decryption and session keys generation we
used the Curve25519 algorithm with 128-bits security (256-bits keys). We thus achieve a
security of more than 112 bits, in compliance with the current NIST standards [172] for
2016-2030. For the simplicity of the implementation, we consider that the IMS generates
the keys (Step (7)) and that no context is sent along with the photo (Steps (3) and (10)).

4.6.2 Dataset

We relied on the Yahoo Flickr Creative Commons 100 Million (YFCC100m) dataset [140]
that contains the metadata of 100 million photos from the Flickr photo hosting website.
More specifically, we extracted an unbiased sample of 20k photos (we drew photo IDs
uniformly at random, without replacement, by using Python built-in random number
generator with a seed of 0; we skipped the files that were no longer available). For each
selected photo, we downloaded its full-resolution version from Flickr (if still available),
and we filtered out the photos for which the size of the photo after a load and save
operation differed from the original size by more than 5% (see Figure 4.4a). Our final
dataset contained 17,257 photos and is available at http://infoscience.epfl.ch/record/
232563.



96 CHAPTER 4. PRIVACY-PRESERVING SHARING WITH CONSENT

We computed statistics related to the sizes of the photos and to the faces that appear
on them (these are depicted in Table 4.1 on page 96). In our final dataset, the average
number of faces in a photo is 1.0 (with a standard deviation of 3.7), and the maximum
number of faces in a photo is 230. 61.2% of the photos do not contain any face, 20% of
the photos contain exactly one face and 18.8% contain more than one face. Figure 4.4c
illustrates the CDF of the number of faces per photo. Faces are generally small in size,
compared to the actual photo: a face represents, on average, 1.1+3.3 % of the photo size
(with a maximum of 77.2 %), whereas the average size of all faces represents 3.0 +5.6 %
of the photo size in MB. As for the sizes of the photos, there is substantial variation (as
can be observed in Figure 4.4b), the average photo size is 2.1+2.4 MB and the maximum
is 25.2 MB.

Min | Mean £ Std | Max
Number of faces in a photo 0 1.0 £3.7 230
Size of a photo (MB) 0.005 | 2.1+24 |252
Size of a face (MB) 0.0004| 0.0£0.1 |10.7
aoze ofaface . 700(%)® | 0.004 | 1.14+33 [77.2

Size of the photo

Stz of allfaces —700(92Y5 [70.007 | 3.0 £5.6 | 77.2

Size of the photo

Table 4.1: Dataset statistics

4.6.3 Experimental Set-Up

We evaluate the scenario where a user, Alice, wants to upload a photo in which potentially
other people appear and we assume Alice wants all these people to appear in the photo—
thus all faces are asked for consent. We do not consider the lookup operation in our
evaluation (Step (6) (Figure 4.3 on page 89)). Hence, we generically refer to a consenter
by the name of Bob, for photos that contain at least one face. We perform the photo
upload and grant consent (for all appearing faces) operations for all the photos in our
dataset, sequentially. In Step (10) (Figure 4.3 on page 89), we configured the CMS to
provide Bob with a scaled version of the original background image with a maximum
width of 1000 pixels, keeping the same image aspect ratio, quality and metadata as the
original. We made use of one standard computer (Intel i7 CPU, 2.8 GHz, 8GB RAM)
with Mac OS v.10.12.5. We did not use any optimization for Intel processors.

4.6.4 Experimental Results

We present here the bandwidth and CPU requirements of our system for the upload
photo and grant consent (from all parties) operations. All the results that we present
are upper bounds of the real bandwidth and CPU consumption, as face detection is
done much faster, some of the users might be blurred out (and thus not asked for con-
sent), and more advanced image transformation techniques can be used (such as JPEG
transmorphing [173] to reduce bandwidth consumption).

6Computed only for photos containing at least one face.
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Figure 4.5: Average per-photo total bandwidth consumption in logscale for the uploader
(Alice), the CMS, the IMS and the consenter (for the same photo, we consider the average
bandwidth for one consenter, Bob). We illustrate these (y-axis) for different categories
of photos, based on the number of faces they contain (x-axis). Note that for Bob, total
upload and download bandwidth is 0 for photos that contain no face.

Bandwidth

We compute the average total bandwidth consumption in MB (on upload and on down-
load) for one photo—for all the photos in our dataset, for each of the four entities: Alice,
the CMS, the IMS, and one consenter, Bob. We refer to a baseline case where Alice
directly uploads the photo to the CMS (providing no privacy for Bob). With respect to
this baseline case, we compute the average bandwidth overhead (in MB) for one photo,
which equals the total bandwidth from which the size of the original photo is subtracted
(for Alice upload and CMS download) and, for the other cases, simply the total band-
width. We also refer to the relative bandwidth overhead, expressed in percent, relative to
the original photo size (dividing the bandwidth overhead by the original photo size). The
average bandwidth requirements are presented in Table 4.2 on page 98. Notably, the av-
erage total bandwidth consumption for Alice on upload is 4.2 +4.8MB (roughly twice the
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Figure 4.6: Average per-photo relative bandwidth overhead of the uploader (Alice) and
the CMS (download). These are computed with respect to the baseline scenario where
Alice uploads the original photo directly to the CMS and expressed as a percent of the
original photo size. We illustrate these (y-axis) for different categories of photos, based
on the number of faces they contain (x-axis).

Total Relative bandwidth
bandwidth (MB) overhead (%)
Alice Upload 42448 101.0 4.7
(uploader) Download 0.0007 £ 0.0013 0.2+0.4
CMS Upload 04+14 33.1£135.0
Download 21+24 1.7+54
IMS Upload 0.0006 4 0.001 0.1+04
Download 21+24 99.8 £ 3.7
Bob Upload 0.0001 + 0.0001 0.02 £ 0.07
(consenter) Download 0.2£0.3 13.8 £26.8

Table 4.2: Average per-photo total bandwidth requirements and relative bandwidth over-
head for the uploader (Alice), the CMS, the IMS and the consenter (for the same photo,
we consider the average bandwidth for one consenter, Bob). We compute the bandwidth

overhead relative to the baseline scenario where Alice uploads the original photo directly
to the CMS.

original photo size — because she sends the background image twice”), the average total
bandwidth consumption for the CMS and for the IMS on download is 2.1 + 2.4MB and
2.1 £ 2.4MB, respectively (roughly the original photo size); the average total bandwidth
consumption for the CMS on upload is 0.4 & 1.4.® The other cases present negligible
bandwidth consumption. Note that in a real system, the CMS upload cost could be
substantially reduced by returning an even lower version of the background image to
Bob. Figures 4.5 on page 97 and 4.6 on page 98 illustrate the total bandwidth consump-
tions (for all entities) and the relative bandwidth overheads (for Alice on upload and for
the CMS on download), detailed for categories of photos containing a certain number of
faces. Although there is some slight increase of bandwidth consumption w.r.t. to the

7Sending the background image to the CMS could be delegated to the IMS by providing the hash as
opposed to the full Pg in step (3) (Figure 4.3 on page 89) and making the CMS request Pp from the
IMS directly.

8While this may at first glance seem high, note that recent statistics reported that Flickr handles
1.68 million photo uploads per day, on average (this is a lower bound, as it only includes photos uploaded
with public visibility) [174]. At an average photo size of 2MB, this means 6.4TB daily.
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Figure 4.7: Average per-photo CPU times in seconds for different operations performed
by the uploader, the CMS, the IMS and by a consenter (for the same photo, we con-
sider the average time for one consenter, Bob). Note that the operations Alice:Encrypt
face repres., Alice: Verify signature, Alice:Encrypt face coord., Alice:Encrypt face images,
CMS:Validate consent, IMS:Decrypt face repres., Bob:Decrypt face coord., Bob:Decrypt
face images take 0 CPU time when the photo contains no face.

number of faces in a photo (e.g., for Alice on upload), this is negligible and most such
increases can actually be due to an increase in photo size.

CPU time

We compute the average CPU time in seconds for one photo, for various operations,
which we enumerate in Table 4.3 on page 100. Clearly the most expensive operation is
the face detection performed by Alice (on the original photo) and by the IMS (on the
slightly smaller sized background image for verification) with an average CPU time of
21.5 + 21.3 s and 19.6 + 23.6 s, respectively. We did not notice any pattern with the
number of faces in the photo for these operations, but there is a noticeable increasing
pattern with the photo size. Thus, a simple optimization of scaling down the photos
when performing face-detection would drastically reduce this time, as shown in practice
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. CPU time (s
Operation avg £ stde(v)
Detect faces in P (1) 21.5+21.3
Encrypt face representations (4) | 4.7 x 107* £ 1.5 x 10~°
Alice Verify signature (9) 2.6 x 107" £8.7x 107
(uploader) Encrypt face coordinates (9) 1.8x 107" +£6.2x 1077
Encrypt face images (9) 75x 1077 £26x10°°
CMS Validate consent (11) 1.3£54
Detect faces in Pp (2) 19.6 + 23.6
IMS Compute hash(Pg) (2) 0.02 +£0.02
Sign hash(Pg) (2) 23x107°+£34x%x107°
Decrypt face representations (5) | 2.8 x 10~* £9.5 x 10~ *
Bob Decrypt face coordinates (10) 1.9x107°+£25x 107°
(consenter) Decrypt face images (10) 6.6 x 107° £5.0 x 10~*

Table 4.3: Average per-photo CPU times in seconds for the uploader, the CMS, the IMS
and a consenter (for the same photo, we consider the average time for one consenter,
Bob).

(e.g., Amos et al. [167] mention a run-time less than 0.1 s and Taigman et al. [175] mention
a run-time of 1 s per photo, for images from the Labeled faces in the wild dataset [176]).
The validate consent operation (Step (11) (Figure 4.3 on page 89)) — which includes face
detection on all of the face photos in one photo for validation purposes and is performed
by the CMS — takes, on average, 1.3 + 5.4 s and is, as it can be seen in Figure 4.7,
highly dependent on the number of faces appearing in the photo. However, even with
230 faces in a photo, this operation only takes 303 s (remember that we did not use any
CPU optimizations and, in practice, face recognition operations are already performed
much faster by app/services like Facebook, even on phones). The CPU times for other
operations are negligible.

We conclude that these results are acceptable and demonstrate the effectiveness of a
system like ConsenShare.

4.7 Incentives and Adoption

We present here the results of our survey and discuss the incentives for adoption by the
different stakeholders.

4.7.1 Survey

In order to gain insight into the individuals’ perceptions of Multiple-
Subject /Interdependent Personal Data (MSPD/IPD) (and of the associated privacy
risks) and of a ConsenShare-like system, we conducted a survey targeted at Facebook
users.

Methodology

We conducted our survey in mid-2017. We recruited participants through the Amazon
Mechanical Turk (AMT) platform. To be eligible, they were required to have a minimum
Human Intelligence Task (HIT) approval rate of 95% with at least 100 past approved
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Figure 4.9: Participants’ responses to survey questions regarding ConsenShare automa-
tion.

HITs and an active Facebook account (AMT offers the possibility to specify this admission
criterion). The survey took approximately 10 minutes to complete (median completion
time of 8m48s) and each participant received a financial compensation of 3 USD in
exchange for their participation. The survey was approved by our institution’s ethics
committee/institutional review board (application #006-2017/18.05.2017).

The survey was structured as follows. After the standard demographic questions
(Part I), we polled the participants about their perception of online data privacy for
different data types and about their experience with discrimination causes by data avail-
able online (Part IT). We polled the participants about their sharing behaviors and those
of their friends regarding multimedia content on OSNs; some of the questions were
specific to sexually explicit content (Part III). We polled the participants about their
(un)tagging (face tags, “with tags”, @ tags) behaviors and those of their friends on Face-
book (Part IV); the survey questions included screenshots from the Facebook website
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to illustrate the aforementioned tagging features. After a brief high-level description
of ConsenShare, we polled the participants about their perceptions of a ConsenShare-
like system. In particular, we polled them about their willingness to use such a system
(Part V), with a special emphasis on the consent decision process (manual, policy-based,
machine learning-based). Finally, we asked the participants to confirm their agreement
to save their responses and to use them in a scientific publication. The survey con-
tained two duplicated questions in order to check the participants’ attention; we used
these to exclude the responses from inattentive participants from our dataset. The com-
plete transcript of the survey and the anonymized and sanitized answers are available at
http://infoscience.epfl.ch /record /232563.

Results

We obtained a total of 536 complete responses. We ruled out duplicates (i.e., when a
participant completed the survey multiple times), the responses from inattentive partici-
pants (i.e., when a participant’s responses to the duplicated questions were inconsistent)
and the participants that chose not to allow us to save their answers. This left us with
321 complete responses. The corresponding participant sample was rather balanced and
diverse in terms of the participants’ demographics: 53.0% of the participants were female,
the participants had various areas of employments, and their ages ranged from 20 to 75
years old, with an average of 35.3 +10.4.

Our survey results indicate a potential user concern regarding the sharing of location
data (86.3% of the participants), multimedia data (69.5% of the participants) and ge-
nomic data (60.8% of the participants). Furthermore, 10.3% of the participants claimed
that they were victims of discrimination or prejudice based on online content about
them. Of these, 33.3% reported that this happened more than once in the past. A
staggering 66.7% reported that the cause was content shared by others, which highlights
the gravity of MSPD/IPD privacy risks. As for the most common domains in which the
discrimination or prejudice happened, 60.7% of the users referred to a job application,

e.g.,

“They checked my profile online before the interview and he started making
uncomfortable jokes about the game pages I like on it and a party photo.”
(Male, 28)

“My employer watches my online activity and asked about that later” (Male,
26)

30.3% to familial or social situations, e.g.,
“My marriage proposal got cancelled” (Male, 25)

27.3% to professional situations, 15.2% to loan or mortgage and 9.1% to insurance pre-
miums.

Regarding sharing multimedia content online, 60.1% of the participants reported
that they share such content at least occasionally (a few times/month). 48.6% of the
participants reported that this content contains faces of people other than themselves at
least half of the times, whereas 41.4% declared that this happens sometimes, but less
than half of the times. Only 10.0% said their multimedia content never features faces
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of others. Participants reported that their friends also share multimedia content about
them at least occasionally (a few times/month) — for 45.5% of the participants.

Regarding revenge pornography, 4.1% of the participants declared that they were
victims of revenge porn in the past.” We also polled participants about whether other
people have or had access to explicit photos of themselves. 27.4% of them declared that
this is the case; of these, 48.9% declared that the person who has the photos took them
with a device of their own, whereas 8.0% declared that a third party took and shared
the photos. Asked whether they have or had explicit photos of someone else, 40.2%
participants responded positively; of these, 41.9% reported that they are the ones that
took these photos, whereas 16.3% said that a third party shared these photos with them.
Many participants explained, in comments, that the photos were taken in the scenario of
a (former) relationship. This illustrates that the number of potential victims of revenge
pornography might be quite high.

We also polled participants about their Facebook behavior. Asked how they tag or
mention their friends when posting photos or videos in which they appear, a staggering
41.1% declared that they do not tag or link their friend’s profile in any way (in other
words, the friend can be completely unaware of the content posted and would thus not
be able to remove/report the content). 7.2% of the participants said their friends ask
them to remove photos that they have shared, at least occasionally and 11.2% said they
noticed their friends contact Facebook about removing this content at least occasionally.
30.5% of the participants declared that they also ask their friends to remove content that
they posted and 16.9% declared that they asked Facebook to remove such content.

Finally, we presented our framework to the participants. Aggregated participants’ re-
sponses for this section of the survey are illustrated in Figures 4.8 on page 101 and 4.9 on
page 101. Asked whether they find ConsenShare useful, 36.5% of the participants an-
swered that this would be useful and 49.8% very useful e.g.,

“I think this is a great way of giving control to individuals.” (Male, 37)
“I think it’s best for all parties involved. ” (Female, 32)

“It would be nice to be asked if you wanted to be on the internet first, rather
than letting any Tom, Dick, and Harry take your photo and post it[---]”
(Female, 31)

Interestingly, some participants even reported that they would be more comfortable with
social platforms if such a solution was in place. Regarding the use of policies, only 3.4%
of the participants declared that they would not use any policy, whereas 54.2% declared
they would use a policy to deny consent for photos containing location information and
92.5% declared that they would use a policy to deny consent for photos containing explicit
content. As for the use of automated decision making (via machine learning, for example),
20.2% of the participants were not sure that they would use this, whereas 50.2% declared
that they would be in favor of using such a feature. Asked how comfortable they would
be with a registration process similar to the one of ConsenShare (where a few photos
would be required for registration), 38.9% of the participants reported being comfortable

9This result is in keeping with other studies, such as a report from the Data & Society Research
Institute and the Center for Innovative Public Health Research [177]|, which found that 4% of U.S.
internet users have been threatened with or experienced revenge porn.
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or very comfortable and 20.3% reported being undecided about this. Of the remaining
participants (who reported being uncomfortable or very uncomfortable with this), some
commented that this is because they do not trust webcams in general or because this
system is not provided by a known company. Some also seemed confused about how the
system would work, not understanding that these photos would not be stored or that
face recognition is something that Facebook (the IMS here) already does on their photos.
We thus recommend taking the results for this particular question with a grain of salt.

In terms of the (in)convenience of first sharing the background photo and sanitized
versions of the faces of the other people appearing in the photo, 43.3% of the participants
found this convenient, e.g.,

“It would not be inconvenient at all! It sounds like a great solution! You still
get your photo but your friends get to decide whether or not to have their
faces visible — a win win!” (Female, 33)

whereas 19.0% were undecided. Finally, asked whether they would overall use the Con-
senShare system, 53.6% of the participants answered positively, e.g.,

“It might seem inconvenient but I still favor this system and reasoning behind
it.” (Female, 32)

“I think this could save a lot of head aches and keep people from being upset
with one another over photo postings. This would allow anything that a
person did not want online to be taken care of before it made it to a facebook
page.” (Male, 42)

“I would definitely be interested in using this feature and really hope that
you can develop it and get it out there. it would make me feel much more
comfortable using social media and sharing images online.” (Female, 34)

and 35.8% said that they would perhaps consider using the system.

While there are limitations to our survey and future work we envision on this—we
discuss these in Section 4.8—the results indicate that a system like ConsenShare could be
needed and there is a potential desire from the users to adopt it.

4.7.2 Adoption

As we saw from our survey, a system such as ConsenShare would involve some tradeoff
between the user experience as an uploader (waiting for friends to give consent before
the full photo is visible), as well as the data that must be provided for registration,©
and her experience as a consenter (whose privacy would be much better protected).
However, giving back control to the users represents a substantial incentive for adoption
on their part, which is further enhanced by the fact that the system is transparent
and lightweight. Regarding the stakeholders, although adoption would come with some
costs (e.g., , increased bandwidth, deploying the infrastructure!!), a major incentive for

10Note that in the case where an existing system is used to play the role of the IMS (such as Facebook),
the users’ faces are already registered, making adoption quite straightforward for the users.

HFor instance, the cost of adding the consent feature to a CMS such as Flickr would be minimal
compared to the existing infrastructure: A simple interface with an IMS (e.g., Facebook) and basic
cryptography and image processing operations. In other words, the individual ConsenShare operations
are not much different from what current CMS platforms are already doing.



4.8. DISCUSSION: LIMITATIONS AND EXTENSION 105

adoption by the CMS could be following new trends (e.g., the fact that such consent-based
mechanisms for MSPD/IPD data might become law-enforced) and avoiding lawsuits.
Furthermore, as such features are evidently desired by their users, including them would
be good for reputation, providing a competitive advantage and likely increase the user
base (and thus also the ads revenue), as well as the shared data. This also creates new
business opportunities for the CMS providers that implement the ConsenShare in-house
solution and sell it to other CMS providers. As for the IMS, the advantage would be a
business-to-business arrangement with the various CMS providers (either transactional
or subscription-based), an increased user base (thus revenue) and data (similar to that
by the Facebook Connect feature). Furthermore, the IMS could monetize such features
by providing them to the users in exchange for a premium fee. Note that existing services
with large user databases including faces and relationships (typically OSNs) are perfect
candidates to play this role, as they already have most of the data and technology needed.
For instance, Facebook already performs face recognition in the background and could
offer this service as an IMS to different CMSs.

4.8 Discussion: Limitations and Extension

We discuss here the limitations and extensions of our work. It should be noted that this
work represents a first step towards proposing a privacy-preserving generic framework for
sharing MSPD/IPD data. First, it is worth mentioning that there is an inherent tradeoff
between the right to privacy and the right to freedom of speech. A possible middle-
ground option, in the case of photos, would be to instantly publish critical content —
such as photos of a mass civil action — on CMS platforms with blurred faces (similar to
Google Street View and to many media outlets that already protect the identity of certain
individuals, e.g., minors, by blurring their faces in pictures and videos). As for the other
side of the coin, the right to privacy is subject to debate for public figures/celebrities [178,
179]; such individuals could be detected using, for instance, Facebook’s verified accounts
feature, and their faces could be automatically posted, without the need for consent.
Second, in the case of pictures, detection is not perfect. There is still a small margin of
false positives (i.e., detecting a face when none exists; if recognition matches such a “face”
to a user, he can report this to the IMS, who can then improve its models upon checking
the validity of this request) and false negatives (i.e., not recognizing a face, which pose
more problems from the privacy point of view, as these imply that a user appearing
in a picture would not be recognized. Such a detected but unidentified face could be
blurred out by default). These can be alleviated by asking the uploader for manual input
in detecting users in the picture (similar to tagging on Facebook). Third, our current
solution is centralized. In future work, we plan to design a decentralized P2P solution for
the IMS and potentially the CMS. Fourth, we intend to extend our solution to incorporate
interaction among users, providing them with the automatic tools to consider different
options of sharing (e.g., different obfuscation mechanisms, different target audiences, etc.)
and iteratively achieve a consensus — thus automating the social ad-hoc mechanisms users
reportedly use today [80]. Fifth, the solution is CMS-specific, which means an individual
user could upload the content on a different platform and just post a link to that content,
by-passing the need for consent; however, this would have less impact and could even
be blocked by the CMS, e.g., blocking links to dubious websites. Sixth, as the issue
of balance of control and the “ideal” privacy settings are culturally-dependent and not
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entirely law-enforced in the case of MSPD/IPD data (and regulations can differ depending
on the country), our survey sample of participants is not necessarily representative of
the global population; the vast majority of Mechanical Turk workers is reported to be
US-based and they might have an IT-experience higher than the average; previous works
have studied the profiles of Mechanical Turk workers [180]. Furthermore, it is possible
that the participants’ answers do not accurately indicate their true attitudes for adoption,
as users’ privacy attitudes and privacy decisions are not always rationally connected [87]
and reported behaviors do not necessarily match the natural behavior [181]. For a more
rigorous assessment of the usability and adoption potential of ConsenShare and the
users’ perception on the different design alternatives, in future work, we intend to run
additional surveys using a fully-functional prototype, making use of the SeBIS intention
scale [182,183] to gain more insight into the participants’ expertise and following specific
guidelines for designing privacy/security surveys [184]. Finally, we discuss how the main
building blocks in our framework can be adapted to other data, beyond photos. Note
that for any type of data, there are several options to consider in the design, such as
remove vs. obfuscate the data (and the available granularity); in what follows, we discuss
some of the alternatives.

The Case of Audio and Video. Considering audio and video data in our framework
is a rather straightforward extension from our picture solution. Different solutions for
identifying users in audio/video content have been proposed [185,186], and various op-
tions can be used for separating the sensitive content (portions of the video in which a
user appears) from the non-sensitive content: entirely cutting out the audio/video sec-
tions in which a user appears or altering the content of those sections to obfuscate that
user. The privacy tradeoff of such solutions would be the temporal discontinuity.

The Case of Genomic Data. Genomic privacy is a complex subject whose discussion
involves many ethical and balance of control issues and closely ties to that of the privacy
of others versus personal freedom. The topics of who are the affected parties, how their
consent decisions should be expressed, as well as that of genomic data credibility are still
under debate both in the media (e.g., [187]) and in the research community (e.g., [12,
188-190]). There are several options that could be considered; we discuss how their
implementation could be done in ConsenShare. Identity claim (at registration) in the
case of genomic data would require formal identity proof (e.g., an ID) and reporting
of familial relationships. Detection of the involved individuals comes down to knowing
these familial relationships (e.g., through the IMS; Facebook already offers that option)
and selecting the close relatives of the uploader. The degree of closeness for which
individuals are considered as affected parties — and thus should grant consent — would
be a configurable parameter of the system, which can be set according to the applicable
regulation. In the most restrictive possible form of regulation, consent would be binary
(ves/no) and a user would be allowed to share her whole genome only if all affected

parties say “yes”.!?

2Note that in this case, the CMS/IMS do not even need to see the data to determine the involved
individuals. In less restrictive regulatory options, consent can be refined to allow publication with a level
of noise added to the full genome (e.g., through differential privacy [191]) or after applying obfuscation
techniques — typically at the SNP level — that would guarantee a certain level of privacy to the affected
relatives, while allowing the user who wants to share his genome some freedom. In this case, the
individual desired level of privacy would be configurable for each user and the consent decision of an
affected user would be the level of noise/obfuscation that the uploader must apply to his genome; the
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A unique limitation for genomic data is the fact that affected users (i.e., unborn future
relatives, such as children) can appear after the user has already shared his genome with
proper consent from his relatives at that time. In this case, we can offer the possibility of
revoking consent, which would force the uploader to remove the data (a less than perfect
solution, as the data might have already been duplicated).

The Case of Co-location Data. Co-location data can be shared online by differ-
ent means, for instance, by posting (and tagging) pictures or videos in which multiple
people appear or directly tagging them in a post message. In the case of co-locations
shared by using multimedia data, detection can be done as described above. In the case
where co-located users are directly tagged by the uploader, detection is, obviously, no
longer needed. The context provided to a consenter in the case of co-location data could
also include an estimation of the location privacy loss stemming from that reported co-
location, as quantified through the framework that we propose in Chapter 2. However, as
co-locations introduce dependencies among the data of different users, once a co-location
between Alice and Bob is shared, Alice’s future location posts would also affect Bob’s
location privacy and vice versa. Hence the system should consider a window of influence
of the correlation, by including an adjustable parameter for each user, specifying how
much time after a shared co-location in which he is involved are other users required to
ask for his consent to share location data. The temporal constraint could be coupled
with a constraint specifying an allowed granularity level of obfuscation (e.g., Bob wants
to be asked for consent if, for the next hour after allowing Alice to share their co-location,
she wants to report her exact location, but she will not require his consent if she only
reports her location within an area of 1km or more of her real location).

4.9 Related Work

Consensual and privacy-preserving sharing of multi-subject and interdependent data on-
line is a multi-faceted problem, as advocated by Good [192]: it includes legal, social and
technological dimensions. In this section, we survey the related work in these dimensions,
beginning with the legal aspects.

The notion of individual control over information about oneself and more specifically
that of consent for information disclosure is currently the basis of most definitions of
privacy, including Nissembaum’s contextual integrity [132], terms of use, and data pro-
tection and privacy laws in most countries [193]. This is the case for the Consumer
Privacy Bill of Rights [194], adopted by the US White House, and the General Data
Protection Regulation (GDPR) (Regulation EU 2016/679), recently adopted by the EU
Parliament.

Although the general case of MSPD/IPD is not explicitly addressed by current laws,
because of its complexity, it is mentioned in multiple places. For instance, in case
law [195], the court found that “an individual’s personal autonomy makes him master of
all those facts about his own identity, such as his name, health, sexuality, ethnicity, his
own image |...| and also of the "zone of interaction’ [...] between himself and others”.
In addition, Opinion 5/2009 on OSN produced by the Working Party on Data Protec-

most restrictive of these — among all the relatives — would be applied to the uploader’s genome before
sharing. An individual’s genomic privacy can be quantified using dedicated frameworks such as that
proposed by Humbert et al. [12].
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tion mentions the case of online social networks (OSN) users uploading data about other
individuals, possibly not members of the OSN.

In the context of MSPD/IPD, specific data types received particular attention: pho-
tos, in light of the right to one’s own image, genomic data [187], and more recently, pho-
tos and videos containing sexually-explicit content, namely revenge pornography, against
which laws have been passed in Canada, France, Israel, Japan, the United Kingdom and
in several states in the US (to name a few). In addition, online service providers, includ-
ing Reddit [134], Facebook [135], and Twitter [137] have also reacted to this new trend
and updated their terms of use accordingly. Furthermore, deepfake technology [196] has
recently been used to create revenge pornography, a situation to which several service
providers responded by updating their terms of use [197-199]. Yet, neither the laws nor
terms of use are self-enforcing, and technical solutions are therefore needed.

Online services recently began including features to cope with content uploaded with-
out the consent of some of the individuals whose privacy is affected by it, typically for
photos. Facebook, for instance, enables its users to report such content and to remove ref-
erences to their identities attached to shared content. However, such features still suffer
from the following problems: (1) Individuals cannot automatically detect that content
having privacy implications for them has been shared, unless an explicit reference to
their identities is attached to it. (2) Even though the content is eventually removed, the
damage, in terms of privacy, is done as the service provider and possibly some users have
seen the content.

The need for and the design of collaborative privacy schemes for MSPD/IPD is an
active topic in the literature. Gnesi et al. [26] introduce the notion of MSPD as data
that contains identifiers that refer to more than one person, as is the case of pictures,
phone records, co-locations or medical reports. They also discuss a technical solution for
protecting MSPD based on user-defined privacy policies, however, it does not guarantee
any protection against the service provider.

Aditya et al. [200] propose an image capture platform that also provides privacy
protection by a combination of short-range wireless signaling to disseminate privacy
policies. In the context of OSNs, Such et al. [79,80,123] study the so-called multi-party
privacy conflicts (MPC), notably in the case of pictures. They identify the sources of
such conflicts and the different non-technical strategies used by users to cope with them,
including avoidance or individual/collaborative resolution. Collaborative privacy policy
enforcement solutions were also proposed by Beato et al. [201] (based on secret sharing),
by Squicciarini et al. [202,203] (based on the Clarke-Tax mechanism from game theory),
by Ratikan et al. [204] (based on majority voting), as well as by Hu et al. [205-208] (based
on access control). Again, in contrast to our work, these solutions assume a trusted model
for the service provider (OSN). Ilia et al. [209] proposes a collaborative multi-party access
control model for OSNs where the service provider is considered honest-but-curious.
However, it assumes that the data uploader is honest, yet privacy careless. Our work, on
the contrary, assumes that the data uploader and other users could be malicious. Finally,
collaborative privacy policies mechanisms have been proposed in other contexts such as
sharing photos through instant messaging platforms [210] and personal data stored on
others’ devices (e.g., phone numbers) [211].

Researchers also proposed mechanisms to defend against untrusted providers in OSNs.
De Cristofaro et al. [212]| propose a privacy-enhanced alternative to microblogging OSNs
such as Twitter. Their solution protects posts’ contents, hashtags and follower interests
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from the service provider. Ion et al. [213] describe a privacy-enhancing mechanism that
enables users to share data over any web-based OSN and provides confidentiality against
unauthorized parties, including the service provider. Feldman et al. [214] propose a
framework for OSNs that provides not only confidentiality guarantees, but also integrity
protection (e.g., against equivocation attacks) against an untrusted service provider.
Secure JPEG techniques [215] can also be used to hide part of the photo content from
the service provider. Although these works offer different levels of protection against an
untrusted service provider, they do not offer mechanisms for detecting/identifying the
individuals involved in the content and for implementing collaborative privacy policies
for MSPD/IPD.

Identifying individuals involved in content shared online is a difficult problem. In
several cases, including the case of pictures, such identification comes down to a classi-
fication problem. For instance, machine learning techniques can be used for detecting
faces on encrypted images [155], [156]. Moreover, Ziad et al. [216] describe the use of
homomorphic encryption for performing general image-processing operations (e.g., spa-
tial filtering, anti-aliasing) on remote (untrusted) servers in a privacy-preserving way;
to use such an approach in our framework, certification of results would also be needed
(e.g., through blind signatures). Closer to our work, He et al. [217] describe a system
for partial image sharing in OSNs that enables data owners to define private regions in
an image, support for popular image transformations and set different privacy policies
for each user associated with an image. In the same area, Ilia et al. [37] propose a fine-
grained access control mechanism that enables users associated with an image to restrict
the exposure of their own faces; this approach handles multi-party privacy policies con-
flicts and is compatible with existing access control mechanisms. These works, however,
focus only on the problem of sharing images in OSNs. Our work, in contrast, focuses
on different MSPD /IPD types, not only images, and deals with the problem of detecting
involved individuals in a privacy-preserving way.

4.10 Conclusion

In this chapter, we propose ConsenShare, a generic framework for sharing MSPD /IPD
data (e.g., photos, videos, genomic data, etc.) with consent from all the involved individ-
uals. ConsenShare is privacy-preserving by design not only with respect to other users of
the system, but also with respect to the service providers. We implement and evaluate
ConsenShare in the case of photos and show that it is technically possible to provide
users control in the sharing of photos in which they appear, while ensuring their privacy
and preserving the main features of existing sharing platforms. In doing so, our work
lays the foundation for the design of privacy-preserving sharing of MSPD/IPD data.



110 CHAPTER 4. PRIVACY-PRESERVING SHARING WITH CONSENT

Survey Transcript

Part I: Demographics

1. What is your gender?
O Male
(O Female

(O I prefer not to answer
2. What is your age? [ |
3. What is your primary area of employment?
(O Homemaker
O ...
(O Retired
O Other[ ]

Part II: Privacy and discrimination

4. From a privacy point of view, do you care about being associated with the
following data shared online?

[0 Textual data, such as status updates on Online Social Networks
[0 Location data, such as check-ins on Online Social Networks

O Multimedia data, such as posts containing pictures or videos on Online
Social Networks

O Genomic data of your relatives shared on specific platforms (e.g., 23andme)

O Other [

5. Do you feel that you have been the victim of discrimination or prejudice (e.g.,
for a job application, insurance premiums, social or professional situations, loan
application, etc) based on content about you online (e.g., pictures or videos)?

O Yes, more than once
(O Yes, once
(O No, never

6. [Conditioned on the positive response to Q5] Do you feel that the discrimination

or prejudice was caused by content that you shared or someone else shared?
O Myself

(O Someone else

O Both

7. [Conditioned on the positive response to Q5| In which of the following domains
did you experience discrimination or prejudice caused by content shared online?

(We would appreciate any details about the context of the stories that you are
comfortable sharing).

0O A job application [ ]
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8.

Professional situations ]
Familial or social situations [ ]

Insurance premiums (health, car, etc.) [ |

O O o o

Loan application (including mortgage) [ |

O Other[ ]

From a privacy point of view, do you care about being associated with the
following data shared online?

0 Textual data, such as status updates on Online Social Networks
O Location data, such as check-ins on Online Social Networks

[0 Multimedia data, such as posts containing pictures or videos on Online
Social Networks

O Genomic data of your relatives shared on specific platforms (e.g., 23andme)

O Other [

Part ITII: Multimedia data online

9.

10.

11.

12.

On average, how often do you share pictures or videos online?

(O Very often (Almost daily)

(O Somewhat often (A few times / week)

(O Occasionally (A few times / month)

(O Infrequently (Less than a few times / month)
O Never

On average, what proportion of the pictures and videos that you share online
contains faces of people other than yourself?

O None

(O Few of them (some, but less than half)

(O About half

(O Most of them (more than half, but not all)

O Al

On average, how often do your friends share online pictures or videos on which
you appear?

(O Very often (Almost daily)

(O Somewhat often (A few times / week)

(O Occasionally (A few times / month)

(O Infrequently (Less than a few times / month)

(O Never

Does anyone (or did in the past) have sexually explicit images or videos of your-

self, either because they took them directly, or because they were shared with
them?
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O Yes
O No

(O I prefer not to answer

13. [Conditioned on the positive response to Q12] How did this(these) person(s)
obtain sexually explicit pictures or videos of you?

O They took them [ ]
O I took them and shared them [ ]

O Someone else took them and shared them ]

O Idonot know[ ]

14. Did you ever have access to sexually explicit images or videos of someone else,
either because you took them directly or because they were shared with you?

O Yes
O No

(O I prefer not to answer

15. [Conditioned on the positive response to Q14] How did you obtain sexually ex-
plicit pictures or videos of someone else?

O Itook them [ ]
O They took them and shared them with me[ ]

[0 Someone else took them and shared them with me[ ]

00 Ido not remember [ ]

16. Have you ever been the victim of revenge porn'® (e.g., someone sharing sexually
explicit pictures of you without your consent)?

O Yes
O No
(O I prefer not to answer
17. On average, how often do you share pictures or videos online?
(O Very often (Almost daily)
O Somewhat often (A few times / week)
(O Occasionally (A few times / month)
(O Infrequently (Less than a few times / month)

13Revenge porn (sometimes lengthened to revenge pornography) is the sexually explicit portrayal of
one or more people that is distributed without their consent via any medium. The sexually explicit
images or video may be made by a partner of an intimate relationship with the knowledge and consent
of the subject, or it may be made without his or her knowledge. The possession of the material may be
used by the perpetrators to blackmail the subjects into performing other sex acts, to coerce them into
continuing the relationship, or to punish them for ending the relationship. Halder and Jaishankar (2013)
define Revenge porn as: “an act whereby the perpetrator satisfies his anger and frustration for a broken
relationship through publicizing false, sexually provocative portrayal of his / her victim, by misusing the
information that he may have known naturally and that he may have stored in his personal computer,
or may have been conveyed to his electronic device by the victim herself, or may have been stored in
the device with the consent of the victim herself; and which may essentially have been done to publicly
defame the victim”. Source: https://en.wikipedia.org/wiki/Revenge porn
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O Never

Part IV: Social networks usage

18. Do you currently have a Facebook account?
Please note that we will not ask you any questions revealing personal identifiable
information. Facebook usage related questions are only for screening purposes.

O Yes
O No
19. [Conditioned on the positive response to Q18] How often do you tag or mention
friends on Facebook (either in a status or on a picture)?
(O Very often (Almost on every one of my posts)
(O Somewhat often (On more than half of my posts)
(O Occasionally (On less than half of my posts)
(O Infrequently (Hardly ever or on very few of my posts)
20. [Conditioned on the positive response to Q18] When you add content regarding

others on Facebook (e.g., a picture or video in which they appear), which of the
following methods do you use?

O T tag their face (e.g., in pictures)

[0 T use the “with” tags in the status or in the picture description
[ e oo G )

sov G )

@ TagPhoto @ AddLocation /' Edit
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O Ilink their name (e.g., by using “@Q”) in a status, in a picture description or
in comments
o e ok ot ©

® TogPhoto @ AddLocation /' Edit

Like

Aane Mario o nswer
Uk Ropty - st row
[

Commen t

or

P e e
Let's be BFFs,

& Like Comment

‘Anne Mari{ Sabina Jourdainjwouid be fealous &2

Like - Reply

[0 I might not tag at all or link others’ names when I post content about them

Just text! No notifications for Anis or Sabrina

. Anne Marie & feeling happy.
Let's be BFFs

& Like

it ok o te? @
Just text! No notification for Sabrina

® TagPhoto @ AddLocation / Edit

21. [Conditioned on the positive response to Q18] How often do your friends ask
you to remove status updates and/or pictures that you have shared of them on
Facebook?

(O Very often (Almost every time)

O Somewhat often (More than half the times)
(O Occasionally (Less than half the times)

O Infrequently (Hardly ever or extremely rarely)

22. [Conditioned on the positive response to Q18] How often have you noticed your
friends untag themselves from status updates and/or photos in which you had
tagged them ?

(O Very often (Almost every time)

O Somewhat often (More than half the times)
(O Occasionally (Less than half the times)

O Infrequently (Hardly ever or very rarely)

23. |Conditioned on the positive response to Q18] How often does someone else tag
you in a status update or a picture on Facebook?
(O Very often (Almost daily)

(O Somewhat often (A few / week)
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(O Occasionally (A few / month)
O Infrequently (Less than a few / month)

24. [Conditioned on the positive response to Q18] When others add content regarding
you on Facebook (e.g., a picture or video in which you appear), which of the
following methods do they use?

O They tag my face (e.g., in pictures)

[0 They use the “with” tags in the status or in a picture description

\e Marie is & feeling happy|with Anis Jourdain.

da desrp

@ TagPhoto @ AddLocation /' Edit

O They link my name (e.g., by using “@Q”) in a status, in a picture description
or in comments

. Anne Marie is € feeling happy{with Anis Jourdain.
Justnow- & v
5 ot

or
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@ TagPhoto  © Add Location / Edit

[0 They post content about me, but do not tag or link my name, so I don’t
get notified. I have to look at their activity to identify such content.

Just text! No notifications for Anis or Sabrina

. Anne Marie & feeling happy.
Let's be BFFs

& Like Comment

e ST

it ok o te? @
Just text! No notification for Sabrina

No tagged faces! No notifications for anyone.

® TagPhoto @ AddLocation / Edit

25. |Conditioned on the positive response to Q18] How often do you ask your friends
to remove status updates and/or pictures that they have shared of you on Face-
book?

(O Very often (Almost every time)

(O Somewhat often (In more than half of the cases)

(O Occasionally (In less than half of the cases)

O Infrequently (Hardly ever or in very few of the cases)

26. [Conditioned on the positive response to Q18] How often do you untag yourself
from status updates and/or photos in which other people had tagged you?

(O Very often (Almost every time)

(O Somewhat often (In more than half of the cases)

(O Occasionally (In less than half of the cases)

O Infrequently (Hardly ever or in very few of the cases)

Part V: A world of consent

27. We have designed a system that requires consent from everyone appearing in o
picture before their faces are uploaded online (e.g., on Facebook).
Therefore, you will be asked to accept or deny that you are visible in every picture
that your friends post of you. Note that this can be automated with automatic
policies (e.g., always decline for sexually explicit content).
Our system guarantees privacy to the users with respect to each picture. This
means that:

— Facebook or our system itself would not be able to see the actual part of
the picture in which you appear before you give consent.
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28.

29.

30.

—  Our system would not be able to link your identity with any given picture
before you give consent.

How useful would you find this system? (We would greatly appreciate any addi-
tional comments about the reasons for your choice).

(O Very useful

O Useful

(O Neither useful nor unuseful

(O Somewhat useful

(O Not useful at all

Please enter your comment here:

In order to limit the burden of manually reviewing each and every one of the
pictures requiring your consent, you could specify automatic policies. Which one
of the following would you use:

00 Deny for sexually explicit images

O Deny for partial nudity (e.g., photos in a swimsuit)

O Deny for geo-tagged photos (where location is specified)
[0 None of these

O Other [ 7]

In order to limit the burden of manually reviewing each and every picture posted,
another option would be to manually review a few pictures posted when first
using the system. During this initial phase, the system learns your individual
decision patterns (e.g., the friends you usually allow to post pictures or the type
of pictures you usually deny or accept). After this initial phase, you let the
system make decisions on your behalf. The system would be set up that when its
confidence is not very high (a confidence level which you can specify, therefore
you control the level of automation you want to allow), it would still prompt you
for manual decisions and use them to further learn.

Would you use this feature?

Strongly disagree
Disagree
Neither agree nor disagree

Agree

OO00O0O0

Strongly agree

In order for our system to identify you in future pictures, you would have to
register by providing a few webcam or phone camera pictures. Our system does
not store these pictures themselves, but uses them to compute representations of
your face. The computations are done locally on your smartphone or computer.
How comfortable would you be with this? (We would greatly appreciate any
additional comments about the reasons for your choice).
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31.

32.
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Very comfortable
Comfortable
Neither comfortable nor uncomfortable

Uncomfortable

OO0OO0OO0O0

Very uncomfortable

Please enter your comment here:

Consequently, when you want to post a picture in which others appear, a sanitized
version of this picture is initially shared online, in which the faces of others are
blurred for privacy reasons, but the background of the picture and yourself are
fully visible. We emphasize that the sharing of your picture would not be slowed
down by in any way. As soon as others give consent, their face is automatically
made visible in the picture.

Would you find this inconvenient? (We would greatly appreciate any additional
comments about the reasons for your choice).

(O Strongly disagree
(O Disagree
(O Neither agree nor disagree

O Agree
(O Strongly agree

Please enter your comment here:

Considering the aforementioned benefits and functionality of our system, would
you consider using this system? This is a general question, we will not contact
you for further experiments, but we would greatly appreciate any additional
comments about the reasons for your choice.

O Yes
O Maybe
O No

Please enter your comment here:




Chapter 5

Conclusion

As soon as I wake up [--- ] I remember that everything
is interrelated, the teaching of interdependence. So
then I set my intention for the day: that this day
should be meaningful. Meaningful means, if possible,
serve and help others. If not possible, then at least
not to harm others. That’s a meaningful day.

DaLar Lama

In this thesis, we have exposed new privacy challenges that stem from the natural
interdependencies in the data shared by individuals. We have analysed how users’ di-
vergent behaviors can affect the global privacy of OSN users, and we have identified the
driving factors of their decisions to share location and co-location information. Finally,
we have proposed mechanisms to be implemented by service providers — possibly en-
forced by regulatory entities: These mechanisms mitigate the privacy threats caused by
others’ sharing decisions, by improving users’ awareness, and by giving them the option
to control whether to permit the data to be shared, as a pre-emptive step to its misuse.

In Chapter 2, we have formally quantified the location privacy of users of location-
based services, by relying on a Bayesian inference approach. We have proposed a proba-
bilistic framework for inferring locations of users at times where it is unknown; this frame-
work incorporates knowledge of user mobility profiles in the form of Markov chains, as
well as user-reported locations and co-locations. We have formally shown that an optimal
inference algorithm that considers co-locations is intractable due to the high complexity,
and we have proposed polynomial-time approximate solutions (relying on the belief prop-
agation algorithm) that converge to the optimal solution. In doing so, we have proven
that an attacker can successfully exploit co-locations to localize users. Using a mobility
dataset, we have quantified the privacy loss that stems from co-locations. Unsurprisingly,
our results show that the more co-location the adversary has, the better he is able to lo-
calize users: Even when considering co-locations with only one friend of a target user, the
target’s location privacy is decreased by up to 62%, in a typical setting. In the case where
a target user does not disclose any location information, her privacy can decrease by up
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to 21%, simply due to the location and co-location information reported by another user.
This demonstrates that existing location-privacy protection-mechanisms fail to provide
users full control over their privacy. We have proposed easy countermeasures for mitigat-
ing the effect of co-locations on location privacy and have evaluated their effectiveness.
We have further suggested extensions of location-privacy protection mechanisms based
on generalization or obfuscation of co-locations.

In Chapter 3, we have studied the problem of location and co-location information
sharing on location-based OSNs. We have proposed the first game-theoretic framework
to analyze the strategic behaviors of users in this setting. To enhance the practicality
of our results, we have estimated the parameters of the utility functions from real users’
actual preferences. Specifically, we have conducted a survey of 250 Facebook users and
quantified their benefits of sharing vs. viewing (co)-location information and their pref-
erence for privacy vs. benefits through conjoint analysis. Our survey findings expose
the fact there is a large variation, in terms of these preferences, among the users, which
draws attention to the fact that conflictual situations can be frequent. We have simulated
users’ decisions, using our model, for various combinations of the estimated parameters,
exposing situations where dangerous patterns can emerge (e.g., a vicious circle of sharing,
or an incentive to over-share), even when the users have similar preferences.

In Chapter 4, we have proposed a framework for sharing, in a consensual and privacy-
preserving manner, various types of data that have privacy implications for subjects other
than the uploader. We have identified the different challenges in the design of such a
framework, the main building blocks, as well as the incentives for adoption for all the
parties involved. We have designed, implemented and evaluated our proposed system
for photos (ConsenShare) by using image processing and cryptographic techniques. The
key property of ConsenShare is that it is privacy-preserving by design, not only with
respect to other users of the system but also with respect to the service providers in-
volved. We have experimentally demonstrated the feasibility of our approach, by using a
Flickr dataset of 20k photos: We conclude that the overhead for ensuring privacy, while
preserving existing features of photo sharing platforms (such as Flickr), is acceptable.
Furthermore, we have conducted a user study of Facebook users: It reveals interest from
users for a system such as ConsenShare, as well as their growing concern and limited
awareness regarding photos shared on Facebook in which they appear. Our work consti-
tutes an important first step in the design of privacy-preserving sharing of various types
of interdependent and multi-subject data.

In conclusion, our hope is that this thesis will help raise awareness among end-users,
service providers, and regulatory institutions alike, regarding the privacy risks of our era.
We believe that a crucial step in ensuring privacy is to educate users about interactions
with technology. We were saddened to observe, in our surveys, the repeated remarks
of the type “I do not need to be worried about my privacy because I have done nothing
wrong and I have nothing to hide.” We are confident that this thesis is a step forward
in the direction of convincing such individuals that privacy is not about hiding things,
but about protecting things and doing so, not only for themselves, but also for their
peers. Furthermore, we hope that the threats we exposed might encourage people to
express a certain curiosity and to practice caution when using services in their daily
routine, as well as to consider the possible consequences of how the data they share
could affect themselves or others in the future. As privacy will never again be evaluated
or attained at an individual level, it must be protected as a global right, to which we all
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contribute. Last but not least, as our world becomes more connected, our technologies
become more complex, and as the adversaries we face become smarter and faster, we
trust that the problem of privacy will continue to be studied and its challenges continue
to be overcome. To this end, we believe that our research has opened opportunities that
could be further explored by ourselves and by other researchers, and that it has provided
regulatory institutions with an enriched knowledge of the existing privacy problems and
has presented them with adequate solutions. The implementation of which should be
made mandatory to ensure the future of privacy.
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honest-but-curious, 94, 108

image processing, 83, 104
incentive, 44, 45, 64, 70, 71, 83, 100, 104

139

inference, 3, 9, 12, 13, 19, 20, 23, 24, 31
interdependencies, 4, 119
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regulation, 106, 107
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PROFILE
Privacy and security researcher, specialized in quantifying privacy, identifying security and privacy threats and proposing privacy-
enhancing solutions without loss of usability, notably in the context of interdependent and multi-subject data; machine learning
enthusiast; former (and still) a software engineer at heart. A versatile scientist, passionate about many aspects of technology, but
also about how and what technology can do.
WORK EXPERIENCE
Teaching at Ecole Polytechnique Fédérale de Lausanne, Switzerland 2011 - 2019
Teaching assistant for the courses: "Privacy Protection”, "Information Security and Privacy" (UNIL), "Algorithms", "Software
Design Engineering", "Mobile Networks", "General Physics 1", "Linear Algebra"
Volunteer at VP Bali, Indonesia April 2013 — July 2013
Help to set up a new volunteer program for teaching English and taught children ages 13 to 16
Research Assistant at National University of Singapore September 2012 — April 2013
Research assistant in the Communications and Internet Group
Programmer at MFS South Africa http:/mfsafrica.com/ July — September 2011
Developed the backend of an online remittance portal for international payments to mobile money accounts across Africa
http://www.mtnmmo.com. Responsibilities: functional specification review, design and implementation
Software Development Engineer at Microsoft — Redmond, WA, USA and Vancouver, March 2010 — February 2011
BC, Canada October 2008 — February 2010

Worked on a large-scale service - the Customer Experience Improvement Program - that collects and manages customer data
for all Microsoft products. Ownership of existing modules (maintenance), as well as new ones (design and implementation)

Programmer at S.A.LA research foundation (Solutions of Artificial Intelligence

Applications) — Cluj-Napoca, Romania January 2006 — July 2008

Contribute to medical research projects on topics of artificial intelligence and data mining
Developer at Experter Sp. z 0.0 — Warsaw, Poland July — October 2007

Worked on “Smart 2”, a project management application. Responsible with the design of the database, implementation of the
data access layer, design and implementation of the workflow engine

Trainee at ISDC - Cluj-Napoca, Romania Fall 2006 and Fall 2007
Designed and developed a website for a tourist agency, a student portal and a quiz engine

Programmer at Siemens PSE - Brasov, Romania July — September 2006
Research project exploring the migration of existing web sites from Tomcat Web Server to Websphere

EDUCATION

Ecole Polytechnique Fédérale de Lausanne, Switzerland September 2013 — March 2019

Ph.D. in Computer, Communication and Information Sciences

Thesis: “Interdependent and Multi-Subject Privacy: Threats, Analysis and Protection”

Advisor: Prof. Jean-Pierre Hubaux, Laboratory for Communications and Applications 1, EPFL

Co-advisor: Prof. Kévin Huguenin, Information Security and Privacy Lab, UNIL-HEC Lausanne

Courses: “Games for Crowds and Networks”, “Advanced Topics in Algorithmic Game Theory and Mechanism Design”, “Privacy
Protection”, “Cellular biology and biochemistry for engineers”

Ecole Polytechnique Fédérale de Lausanne; National University of Singapore February 2011 — April 2013

MSc in Computer Science, Internet Computing Specialization; excellence scholarship throughout the program

Courses: PhD level course “Machine Learning”, PhD level course “Recommender Systems”, “Pattern Classification and
Machine Learning”, “Computational Molecular Biology”, “Distributed Information Systems”, “Intelligent Agents”, “Advanced
Algorithms, Cryptography”, “Computational Linguistics”, “Multi-agent Systems”, “Statistical Analysis of Genetic Data”, “Methods
and Models for Random Networks”, “Computer Vision”, “Philosophy of Biology”

Master thesis at National University of Singapore, “Evolution of the Internet: An Economic Perspective”



University of Plovdiv, Bulgaria July 2007
Summer school on project management

ISDC - Cluj-Napoca, Romania 2006 — 2007
Oracle and PL/SQL training; .NET training

Workshops on consulting, project management, business development and soft skills

Extreme Programming workshop with Reinier Tang, CTO in ISDC B.V.
Babes-Bolyai University of Cluj-Napoca, Romania October 2004 — July 2008

BSc in Computer Science; bachelor thesis on Windows Communication Foundation (GPA 10/10; excellence scholarship)
HONORS AND AWARDS
LSRS “Student of the Year” award — Europe, university level December 2012

Winner of the LSRS (Romanian Students Abroad League) award, granted each year in collaboration with the Romanian
government to the best Romanian students abroad (http://gala.lsrs.ro/gala-Isrs/gala-2013/castigatori/)

HC? — Swiss national programming competition April 2012

15t place in the “just for fun” category, 7\" place overall (out of 42 teams)
Google Anita Borg Scholar April 2011
The aim of this scholarship is to award excellence among women studying Computer Science and to encourage them to become

active role models and leaders. The scholarships were awarded based on the strength of the candidates’ academic performance,
leadership experience and passion for technology. (https://www.womentechmakers.com/scholars/previous)

Imagine Cup by Microsoft, Software Design section January — April 2008

Developed “Ecotraveler”, a framework for real time public transportation information made available to the general public via
web, mobile apps or SMS. Finished in 2™ place at the university level competition; 3™ place at the national phase

Imagine Cup by Microsoft, Software Design section January — April 2007

Developed “Globalpedia”, a crowdsourcing educational application providing quick access to information. An objective (any place
or item of interest) is tagged with a RFID label, to which information is associated. This can be then accessed and updated by
anyone who owns a mobile device. Finished in 3™ place at the university phase

ECN-Sapientia international programming contest March 2007
Selected to represent Babes-Bolyai University; 2™ prize out of 21 teams competing

Campus Match of Imagine Cup, Algorithm Competition January 2007
3 place in the international competition

Imagine Cup by Microsoft, Software Design section Spring 2006

Developed “The end of stress as we know it”, a platform aimed to help people eliminate stress through music, color and reflex-o-
therapy. This project involved building a device that coordinates a web of motors, which massage energy centers in the sole. A
stress assessment module determines the exact location, intensity and duration of the massage automatically

“Grigore Moisil” Algorithm Contest by “Babes-Bolyai” University April 2005
2" prize (1%t prize among the first-year students competing)

ACSL (American Computer Science League) 2003 - 2004

Attended the Worldwide Finals in Chicago in the Senior #3 Category; 2™ place out of 19 teams competing
Individual qualification, based on four international online contests, with a perfect score (1% place worldwide)

ACSL (American Computer Science League) 2002 - 2003

Attended the Worldwide Finals competing in the Intermediate #5 Category; obtained 5" place out of 18 teams competing
Individual qualification based on four international online contests, awarded 2™ place worldwide

PUBLICATIONS AND MAIN PROJECTS

A. M. Olteanu, K. Huguenin, M. Humbert, and J.-P. Hubaux. The (Co)-Location Sharing Game. The 19th Privacy Enhancing
Technologies Symposium (PoPETs’19) https://infoscience.epfl.ch/record/218755?In=en
A. M. Olteanu, K. Huguenin, |. Dacosta, and J.-P. Hubaux. Consensual and Privacy-Preserving Sharing of Multi-Subject and
Interdependent Data. The Network and Distributed System Security Symposium 2018 (NDSS’18). DOI
10.14722/ndss.2018.23002. https://infoscience.epfl.ch/record/232563?In=en
Media coverage
http://wp.unil.ch/hecimpact/kept-in-the-picture-a-consent-based-system-for-sharing-data-online/
https://www.ictjournal.ch/articles/2018-10-08/des-chercheurs-lausannois-inventent-un-systeme-empechant-la-publication-non




A. M. Olteanu, K. Huguenin, R. Shokri, M. Humbert, and J.-P. Hubaux. Quantifying Interdependent Privacy Risks with Location
Data. |IEEE Transactions on Mobile Computing 2016 (TMC’16). DOI 10.1109/TMC.2016.2561281.
https://infoscience.epfl.ch/record/2227837In=en

A. M. Olteanu, K. Huguenin, R. Shokri and J.-P. Hubaux. Quantifying the Effect of Co-location Information on Location Privacy.
14th Privacy Enhancing Technologies Symposium 2014 (PETS’14). DOI 10.1007/978-3-319-08506-7_10.
https://infoscience.epfl.ch/record/198297?In=en

Research project (4 months) on quantifying the loss of online privacy through Google AdSense behavioral advertising
http://infoscience.epfl.ch/record/212899

Research project (4 months) focusing on constraint optimization problems: analysis and comparison of existing algorithms,
implementing and evaluating the Asynchronous Forward Bounding algorithm http://infoscience.epfl.ch/record/188532

User study on recommender systems: design and validation of a psychometric model to understand the motivations of the
subjects when adopting a recommender system

A. G. Floares, R. Badea, C. Floares, |. Coman, L. Neamtiu, V. Aron, A. Olteanu, M. Ciornei (ro). Liver and Prostate i-Biopsy and
the Related i-Scoring Systems. Automation Computers Applied Mathematics Scientific Journal, vol 17, No 1, 2008, pages 63-68,
ISSN: 1221-437X http://acam.tucn.ro/pdf/ACAM17 %281%292008-abstracts.pdf

A. Floares, C. Floares, L. Neamtiu, A. Olfeanu, R. Badea, .Coman, V. Aron, M. Ciornei (ro). RODES — Algorithm for Automatic
Mathematical Modeling Complex Biological Networks via Knowledge Discovery in Data. Automation Computers Applied
Mathematics Scientific Journal, vol 17, No 1, 2008, pages 69-73, ISSN: 1221-437X

http://acam.tucn.ro/pdf/ACAM17 %281%292008-abstracts. pdf

TECHNICAL SKILLS

Programming Languages: Java, C#, C/C++, Python, Scala, Pascal, Matlab

Technologies: .NET Framework, ASP.NET, Web Services, HTML, CSS, XML, J2EE

Database Systems: Microsoft SQL Server, Oracle, MySQL

Software Development: Object Oriented Analysis and Design, Design Patterns

Version Control: Git, Svn

Fields of expertise and interest: Privacy and security, game theory and mechanism design, graphical models, Bayesian
inference, machine learning, graph theory, algorithms, data mining, genetic algorithms

ORGANISATIONS
Vice president of the Romanian Student Association at EPFL February 2014 — December 2017

Our mission is to facilitate the integration of Romanian students in Switzerland and setup educational partnerships between the
two countries, in collaboration with the Romanian consulate in Geneva

AIESEC member October 2006 — July 2008

The Centre for Health Policy and Public Health Cluj-Napoca, Romania March 2006 — July 2008

Microsoft Student Partner within the Microsoft Academic Program December 2005 — July 2008

ACM member October 2005 — present
FOREIGN LANGUAGES

Native Romanian O Fluent English (C2; Cambridge C1 Certificate grade A, TOEFL Internet Based Test score 117/120, GRE) O
Advanced French (C1; B1 attestation from EPFL) O Intermediate Spanish (B1) O Intermediate Italian (B1) 0 Basic German
(A1/A2)
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