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Abstract

Steep mountain streams exhibit shallow waters with roughness elements such as stones and
pebbles that are comparable in size to �ow depth. Owing to the di�culty in measuring �uid
velocities at the interface, i.e., from the rough permeable bed to the free surface, experimental
results are rare although they are essential to improve models. Using a novel experimental
procedure, this thesis attempts to improve predictions of the vertical structure of turbulent �ows
over rough permeable beds.

To explore �ows at the bed interface, I devised an experimental set-up where a �uid �owed
over glass spheres (8 mm < dp < 14 mm) in a narrow �ume (W = 6 cm) with slopes varying
from 0:5% to 8%. The Refractive Index Matching (RIM) technique has been employed. This
involves matching the refractive index of the �uid with that of the glass spheres, thereby allowing
the interior of the medium to be examined and velocities to be measured by Particle Image
Velocimetry (PIV). Vertical pro�les are retrieved by employing the spatiotemporal double averaging
method.

In the course of this manuscript, �ow processes are studied at the mesoscopic scale, i.e., by
averaging quantities over distances ranging from 5 to 10 grain diameters. For open-channel �ows
over rough permeable beds, the spatial averaging procedure yields a continuous porosity pro�le.
When applied to the Navier-Stokes equations, it produces a momentum equation with several
terms including drag forces and three stresses: the turbulent, dispersive, and viscous stresses.
The momentum equation was employed to devise a one dimensional (1D) model describing the
vertical structure of a unidirectional turbulent �ow.

A turbulent boundary layer over the rough bed was observed while experiments were
performed at intermediate Reynolds numbers, i.e., Re = O(1000). In such conditions, viscosity
plays a critical role through the van Driest damping e�ect. To model vertical pro�les, the
Darcy-Ergün equation is well suited to the prediction of friction forces in the permeable bed, i.e.,
in roughness and subsurface layers. Based on the Prandtl mixing length theory, turbulent stress
is predicted from a mixing length distribution that considers dispersive e�ects and assumes a
continuous porosity pro�le. This alternative contrasts with most existing boundary layer models
which postulate a discontinuous porosity pro�le for permeable or impermeable walls.

Finally, hydraulic conditions collected by a Unmanned Aerial Vehicle (UAV) and classical
�ow resistance equations (ChØzy, Keulegan, ...) were compared with pro�le simulations and
demonstrate a good agreement between predictions and observations. It reveals the crucial role
of �uid depth de�nition in equations in small submergence conditions. Furthermore, incipient
sediment motion conditions have been estimated and compared to empirical results showing the
importance of turbulence and lift force for grain entrainment.

With regard to �uid dynamics, mountain streams are a case study of the larger scienti�c
family of turbulent �ows interacting with porous structures. Insights and developments acquired
in the course of this thesis are likely to be transferable to other domains working with these
phenomena such as �ows over buildings, vegetal canopies or rough wings.
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RØsumØ

Dans les riviŁres de montagne, l’Øcoulement a la particularitØ d’Œtre peu profond avec des
ØlØments rugueux de taille comparable à la hauteur d’eau. Comme il est di�cile de mesurer
les vitesses du �uide à l’interface, c’est-à-dire, du lit permØable à la surface libre, les rØsultats
expØrimentaux sont rares bien qu’ils soient requis pour concevoir les modŁles. C’est dans ce
contexte qu’une procØdure expØrimentale novatrice a ØtØ ØlaborØe a�n de prØdire la structure
verticale d’un Øcoulement turbulent sur un lit rugueux permØable.

Pour mesurer l’Øcoulement à l’interface, le dispositif expØrimental consiste à laisser s’Øcouler
un �uide sur des billes de verre (8 mm < dp < 14 mm), dans un canal Øtroit (W = 6 cm) à pente
variable (0:5% à 8%). La technique d’ adaptation d’indice de rØfraction a ØtØ utilisØe. Elle consiste
à Øgaliser l’indice de rØfraction du �uide avec les billes de verre solides pour observer l’Øcoulement
entre les grains et mesurer les vitesses par vØlocimetrie laser (PIV). Les pro�ls verticaux sont
obtenus par double moyenne temporelle et spatiale.

Une couche limite turbulente au dessus du lit permØable rugueux a ØtØ observØe pour des
nombres de Reynolds intermØdiaires, Re = O(1000). Dans ces conditions, la viscositØ joue un
rôle à travers l’e�et d’attØnuation de Van Driest. Pour modØliser les pro�ls verticaux, l’Øquation
de type Darcy-Ergün permet de prØdire les forces de frottement dans le lit permØable, c’est à
dire dans la couche rugueuse et de subsurface. ÉlaborØ à l’aide de la thØorie de Prandtl, une
contrainte turbulente a ØtØ conçu tenant compte de la dispersion et considØrant un pro�l de
porositØ continu. Cette approche alternative contraste avec les modŁles traditionnels de couche
limite sur lit permØable ou impermØable qui postulent un pro�l de porositØ discontinu.

Pour �nir, des mesures hydrauliques de terrain collectØs par drône ainsi que des lois de
rØsistance à l’Øcoulement (ChØzy, Keulegan,...) ont ØtØ comparØ à des simulations. Les conditions
hydrauliques pour atteindre le seuil de mise en mouvement du grain ont ØtØ estimØes et comparØes
à des rØsultats empiriques. Ces comparaisons permettent d’attester du bon accord entre les
prØdictions et les observations et devoilent l’importance de la dØ�nition de la hauteur de �uide
ainsi que le role de la turbulence et de la portance pour prØdire l’entraînement d’un grain.

With regard to �uidity, turbulent streams are a case study of the larger scienti�c family of
turbulent �ows interacting with porous structures. Insights and developments acquired in the
course of this thesis are likely to be transferable to other domains working with these phenomena
such as building/wind or air/wings interactions.

En ce qui concerne la dynamique du �uide, les riviŁres constituent un cas particulier de la
grande famille scienti�que des Øcoulements turbulents en interaction avec des structures poreuses.
Les connaissances et les dØveloppements acquis au cours de cette thŁse sont susceptibles d’Œtre
transfØrØs à d’autres domaines travaillant avec ces phØnomŁnes tels que l’Øcoulement de l’air sur
des bâtiments, une canopØe vØgØtale ou encore des ailes.
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Cp Roughness layer constant [-]

Abbreviations

PIV Particle Image Velocitmetry
RIMS Refractive Index Matched Scanning
ROI Region Of Interest
UAV Unmanned Aerial Vehicle
DTM Digital Terrain Model
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1 Introduction

Among the diverse �ow processes found on Earth, �ow in rivers is likely to be the most
scrutinized. Rivers form remarkable valleys and provide valuable resources, services, and
ecosystems. Usually, these coupled earth/water systems evolve gently, but sporadic heavy
rainfall may abruptly change the water level and the material-at-rest equilibrium, triggering
�oods and massive sediment transport events with devastating consequences. Predicting such �ows
is a central concern of �uvial hydraulics and involves many physical aspects such as hydrodynamic
forces, turbulence, and granular media processes.

Figure 1.1 � The Navizence River at Zinal (Wallis - Switzerland). Credit: Bob de Gra�enried

1 Preliminary �eld observations

In mountainous environments, rivers exhibit shallow waters with roughness elements such
as stones and pebbles that are comparable in size to water depth. This feature is typical of a
gravel-bed rivers, the systems examined in the course of this dissertation. In such environments,
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Chapter 1. Introduction

interactions between surface water, subsurface water, and sediments are expected to be intricate.
Indeed, these streams are far distinct from alluvial rivers, where most of the sediment transport
and �ow resistance laws have been established. A quick look at the photograph shown in Figure 2.1
reveals some of the speci�cities of this system: Running water may seep between coarse elements
to reappear several meters further on, and a large quantity of gravel and boulders with young
vegetation may emerge. In braided rivers, for example, there may be only a small percentage of
the bed surface that is usually covered by water. Seepage observation reveals that a riverbed
is permeable, and sometimes highly permeable. Dry areas between riverbanks substantiate the
hypothesis that in the course of an extreme episode, hydraulic conditions may deviate considerably
from the ordinary state.

A diverse range of bedforms can be observed in the aerial views presented in Figure 1.2. These
bedforms are termed alternate bars, ri�es, or antidunes, and result from diverse entrainment
and deposition processes. In turn, these bedforms control the �ow path and impose large spatial
variabilities on the system. At the grain scale, the �ow path is disturbed by the presence of
protuberances a�ecting both the turbulence behavior and the �uid surface.

Based on these observation and focusing on the gravel-bed river at the grain scale, this
thesis investigates steep open channel �ow over rough permeable beds involving relatively small
submergence. Comparisons between the roughness size and �ow depth reveal the relative
submergence to be a key concept for this �ow type.

2 Hydrodynamic problems in gravel-bed rivers

With knowledge of the �ow discharge, hydraulicians and hydro geomorphologists usually
predict the expected �ow depth, velocities, and sediment transport rates for various natural or
anthropogenic geometries (e.g. bed slope, bank width, roughness height). These predictions are
essential for river management such as bedform or ecosystem classi�cation and restoration, and
are crucial for the building of bridges, dikes, and dams, where failures may incur important costs.

2.1 Flow resistance

Considerable e�orts have been made to study �ow resistance in open channels, i.e., to link
mean velocity to slope and depth. For �ows over a surface with small-scale roughness, these
predictions can be successfully obtained by the Prandtl boundary layer theory. This produces
logarithmic pro�les that accurately predict most open-channel �ow measurements in large relative
submergence conditions. Encouraged by the success of this approach, researchers have been
extensively applying it to steeper open channel �ows with smaller relative submergences, such
as gravel-bed streams (Hey, 1979; Gri�ths, 1981; Bathurst, 1985). Although the assumptions
required to provide the log-law of the wall are not veri�ed in these conditions, the authors
overcome this issue by providing case-by-case parametrization. However, recent studies have
demonstrated the large bias produced with the log-law framework, and have suggested a more
appropriate power law calibrated on �eld data (Ferguson, 2007; Rickenmann & Recking, 2011).
This alternative approach improves �ow resistance predictions, although another important issue
is brought to light: the physics underlying the turbulent boundary layer fail to provide reliable
predictions of �ows showing a small relative submergence.
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2. Hydrodynamic problems in gravel-bed rivers

Figure 1.2 � Spatial scales in a gravel-bed river from aerial photographs: the Navizence River
(Wallis - Switzerland).
(a) At the kilometer scale, a braided river is observed with a succession of bed forms. The average
slope is measured at i = 4% where i is the slope.
(b) At the bed form scale, the slope can vary locally from i = 4% to i = 10% . The main channel
is separated into two channels downstream.
(e) At the grain scale, the size distribution of the bed can be estimated in a dead arm. The red
disks represent the measured equivalent surface of the stones.
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In addition, owing to the complications in de�ning �ow depth with a large roughness size,
inconsistencies are observed between �eld campaign measurements and predictions. Consequently,
specialists are keen to work directly on �ow discharge, which is better de�ned in these conditions,
and thus more accurately monitored.

2.2 Hyporheic exchanges

In addition to �ow resistance, water exchanges between the free surface and groundwater play
a critical role in regulating �uvial ecosystems. These exchanges are termed hyporheic �ows, an
adjective combining the Greek pre�x ‘hypos’ and the root word ‘rheos’, meaning ‘under the �ow’.
In these zones, di�usive processes transport waters from di�erent origins, catalyzing reactions,
supplying nutriment to microorganisms and plants, and with a domino e�ect, delivering food to
the entire aquatic macrofauna.

An outstanding e�ort to summarize the hyporheic exchange issues was made by Boano
et al. (2014). While the chemical aspects of this work are out of the scope of this dissertation,
a glance at this review reveals a poor understanding of the hydrodynamics at the grain scale.
Convective and di�usive components transporting solutes in rivers are generally considered at
a larger scale. The exchange models involve bedforms such as dunes and meanders, which can
act as obstacles creating dead zones or forcing the gain or loss of water (Bencala & Walters,
1983; Elliott & Brooks, 1997; Fox et al., 2014). For uniform �ows, as emphasized by Blois et al.
(2014), numerical models typically treat the surface and the subsurface �ow as two divided layers,
assuming turbulent �ows above the bed and Darcian �ows beneath. Coupling both �ows is then
obtained with step conditions forcing the continuity. Little is known about local exchanges at the
interface between the ground water �ows and the surface �ows where the roughness layer might
play an crucial role.

2.3 Incipient motion

Solid materials in steep rivers are transported downstream by sliding, rolling or saltating
over the movable bed. This is the so-called bed load transport process. The bed is traditionally
assumed to become mobile when hydrodynamic forces on the grains, evaluated through the bed
shear stress, cross a de�ned threshold.

In turbulent �ow conditions, low sediment transport rates �uctuates and a �xed threshold is
not observed (Bu�ngton & Montgomery, 1997). Nevertheless, a transition from low sediment
transport rates to a rapid growth in these rates when the bed shear stress increases is observed.
This transition allows to de�ne a non dimensional bed shear stress threshold, also called critical
Shields number.

The slope in�uence on incipient motion has fertilized many debates in the last two decades,
since well-documented experiments have re�ected an unexpected behavior, i.e., an increment in
the non dimensional bed shear stress required to mobilize grains when the slope increases, whereas
the gravitational contribution should rationally reduce it. This behavior is only observable with
steep streams, i.e., conditions that are inevitably of low relative submergence. Consequently,
classical river transport formulae often predict higher sediment transport rates than observed in
steep rivers. Some authors explained this feature in term of force balance on individual grains
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(Lamb et al., 2008; Recking, 2009) while Ferguson (2012) explained it based on bulk-�ow terms.
These di�erent approaches reveal the limit of the traditional frameworks employed for river �ows.
Although the bed shear stress is probably the most popular term in environmental hydraulics, it
is still roughly de�ned in low submergence conditions where a non negligible part of the �ow seep
through the bed layers (Nikora et al., 2007).

2.4 Sediment-�uid interface modeling: a recurrent issue

As highlighted above, the lack of understanding of the hydrodynamic processes of the interface
between the permeable bed and the �uid surface has been raised as the most recurrent and
fundamental issue. A major reason behind is the di�culty in obtaining accurate measurements
across this interface. Without detailed experiments to characterize the complexity of the �ow
at the interface, the common approach is to use models built from measurements on deep �ows
over impervious rough beds. When the conditions under which these mechanistic models are
applied are examined, their transfer to shallow �ows over rough permeable beds reveals important
inconsistencies:

� The transition from the permeable bed to the surface �ow is usually considered as a step
boundary problem, while the properties of the permeable bed evolve continuously across
the interface via the roughness layer.

� The traditional log-law framework is generally applied, although it is unable to describe
the various mechanisms involved at the interface. In addition, the conditions required to
obtain the logarithmic function from the governing equations are not ful�lled.

� As the interface is not well de�ned, there are di�culties in de�ning �ow depth. This causes
discrepancies in the de�nition of the bed shear stress, as well as the determination of a
reference. As a result, �ow resistance and incipient motion predictions that rely on these
de�nitions are subject to large uncertainties.

To obtain a more comprehensive picture of the �ow across the interface, the double-averaging
concept is essential. This allows the problem to be treated continuously.

3 Double-averaging methodology

3.1 Concept

At the grain scale, �ows over rough permeable beds involve the development of turbulent
boundary layers with large spatial heterogeneity as shown in Figure 1.3. Protuberances act
as obstacles to the �ow, creating local wakes and producing di�erent classes of velocity pro�le
(Mignot et al., 2009a). Moreover, the �ow paths in the roughness layer and the interior of the
porous media are tortuous.

A local description of �ow around grains has the potential to improve models resolving
time-dependent structure such as Large Eddy Simulations (LES) or Direct Numerical Simulations
(DNS). However, the �uvial �uid mechanics involve complex forcing, and the classical assumptions
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Figure 1.3 � Grain-scale processes of a turbulent �ow over a rough permeable bed. The porosity
� and velocity pro�les are averaged over a thin layer parallel to the �ow on the mesoscopic
longitudinal distance L, as prescribed by the double-averaging concept. The �ow is subdivided
into three speci�c regions: the surface layer, the roughness layer, and the subsurface layer. The
roughness crest zrc above which the averaged porosity is 1, and the troughs of the roughness
elements zt where the bulk porosity �b is reached, delimit the roughness layer. The red dotted
arrows represent streamlines in the roughness and subsurface layers both forming the permeable
bed.

involved in modeling turbulence in these approaches are commonly violated (Keylock, 2015).
Furthermore, Computational Fluid Dynamic tools that can model the �ow between grains
and provide very detailed descriptions of the �ow are computationally expensive, and are not
realistically useful for modelling �ows at river scales.

Instead, it is more appropriate to model processes at the mesoscopic scale by spatially
averaging them over a larger volume. For homogeneous porous media, it is common to upscale
the hydrodynamic processes from the pore to the mesoscopic scale to explain empirical laws such
as the Darcy law (Whitaker, 1986). For water �ows over rough permeable beds, these quantities
�uctuate in time, i.e., they involve turbulence. Thus, averaging must �rst be performed over the
temporal scale, to produce time-averaged quantities, and then averaging can be performed over
the spatial scale of a thin layer parallel to the mean bed. This global averaging procedure in time
and space is termed the double-averaging methodology (Nikora et al., 2001, 2007). It can produce
the averaged velocity pro�le, as well as the mean porosity pro�le. The averaged porosity pro�le
allows the �ow to be subdivided into three di�erent layers, the surface, roughness and subsurface
layers, as observed in Figure 1.3.

3.2 Crucial role of the vertical porosity structure

The spatial averaging methodology applied to rough beds produces a continuous porosity
pro�le that contains information describing the interface. As observed in Figure 1.3, the distance
zrc � zt de�nes the roughness layer thickness, whilst if �b = 0, the bed is impermeable at z = zt.
This characterization of the bed interface as a continuum contrasts with most previous theoretical
investigations. Indeed, the problem of �ows adjacent to a permeable wall is commonly treated by
introducing a step boundary condition between the two regions (Beavers & Joseph, 1967; Mendoza
& Zhou, 1992; Breugem et al., 2006; Tilton & Cortelezzi, 2008; Rosti et al., 2015; Zampogna &
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Bottaro, 2016). This condition involves a complex procedure to include the momentum transfer
at the boundary as described by Ochoa-Tapia & Whitaker (1995). Also, for simpli�cation reasons,
an empirical Brinkman condition that imposes penetration of the momentum for an arbitrary
distance is generally introduced (Brinkman, 1949). This method is regularly questioned since the
inertial e�ect is expected to penetrate into the porous medium when turbulence is observed in
the surface layer (see the discussions on this problem of Tilton & Cortelezzi (2008) or Zampogna
& Bottaro (2016) for examples).

A continuous description within the double averaging framework o�ers an alternative method
to describe �ows over permeable or impermeable rough walls. The roughness thickness is therefore
revisited as a thin permeable medium with a varying porosity, where closures can be adapted
according to experimental results. In general, I argue that the continuous porosity o�ers a
relatively unexploited and practical approach to describe diverse types of rough interfaces where
the roughness layer plays an active role.

3.3 Double-averaged momentum equation

Double-averaging of the Navier-Stokes equations provides the double-averaged momentum
equations. Five distinct terms result from the procedure. The classical viscous stress and turbulent
stress are generated from the time averaged procedure, and three additional terms are produced
with the spatial averaging procedure: the viscous drag, the pressure drag, and the dispersive stress
(also termed form induced stress).

The dispersive stress and turbulent stress are algebraically de�ned and can be conveniently
captured from experimental or computational �uid dynamic model outputs. Dispersive stress
has recently received particular attention; it is a measurable stress associated with the spatial
variability of the velocities. Studies have revealed that this stress has a non-negligible role, with
a maximum being observed just below the roughness crest (Voermans et al., 2017; Fang et al.,
2018).

4 Main motivations and contribution

Predictions of �ow resistance and incipient motion remain inaccurate for small relative
submergence �ows in gravel-bed rivers. This inaccuracy is due to the extensive use of incomplete
tools for monitoring this �ow types. Regarding these lack of consensus and understanding, the
work covered in this study aims to provide a 1D model to predict the vertical structure of �ows
over rough permeable beds under turbulent conditions.

The spatial averaging procedure, which is performed subsequent to the time-averaging
procedure, is now considered as the most suitable approach to describe open channel �ows
with small relative submergence. With this approach, the resulting double-averaged momentum
equation provide terms that need closures.

For this purpose, comparison of predictions to reliable measurements forms the principle
obstacle. Velocity measurements in the permeable bed, i.e. in the roughness and the subsurface
layers, cannot be performed with most available equipment. Invasive methods dramatically a�ect
the �ow, and non-invasive methods such as Particle Image Velocimetry (PIV) or Laser Doppler
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Velocimetry (LDV) are limited by the opacity of the permeable bed (Pokrajac et al., 2007; Mignot
et al., 2009a; Cameron et al., 2017). To overcome these issues, I employed the Refractive Index
Matched Scanning (RIMS) method coupled with a PIV technique for measuring velocities across
the interface. RIMS is an alternative approach to examine the interior of the permeable bed
that involves adjusting the refractive index of a �uid mixture to match the refractive index of
a transparent solid material, as illustrated in Figure 1.4. The velocities are thus continuously
collected in the three-dimensional space while a laser sheet is moving. Using an idealized approach,
the �uid mixture �ows over glass beads in a rectilinear �ume and provides velocity pro�les for a
unidirectional �ow condition.

Figure 1.4 � [Left] - Two bottles containing glass beads in equal quantities. The left bottle also
contains water, while the right bottle also contains a �uid that exactly matches the refractive
index of the solid glass beads. In the bottle with water, the refractive index di�erence between
the solid and liquid permits the di�erentiation of the beads. In the bottle on the right, the beads
are invisible, and the interstitial �uid is accessible for measurements. [Right] - Photograph of
a gravity-driven �ow (i = 0:5%) over a rough permeable bed composed of glass beads. The
refractive index matching technique allows for examination of the interior of the roughness layer
and the subsurface layer. The black disks are glass beads crossed by the laser sheet, while the
small dots are tracers. By using two consecutive images, the displacement of the tracers can be
measured via a PIV technique, yielding instantaneous 2D measurements of the velocity �eld.

These experimental results permit to establish the critical role of the damping e�ect (van
Driest, 1956) and the velocity defect-law (Coles, 1956) for small relative submergence �ows.

In addition, these experimental results describing the vertical structure of the �ow helped
to devise a 1D model based on the double-averaging concept. A mechanistic closure for the
dispersive stress has been developed. The other terms of the unidirectional double-averaged
momentum equation have been parametrized according to existing contributions and adapted to
the continuous porosity approach. The 1D model is then able to predict the vertical structure
of the �ow for various hydraulic condition and without the introduction of a vertical origin.
This model is fundamentally dependent on the continuous description of the bed roughness via
averaged porosity pro�les at the mesoscopic scale, an approach that contrasts with most previous
studies on �ow/porous structure interactions.

Finally, this 1D model is compared with the main empirical laws employed in gravel-bedded
rivers to predict �ow resistance and incipient motion calibrated on �eld datas.

This work provides novel results concerning turbulent �ows over permeable rough beds, with
potential applications for gravel-bed �ows. However, the scope of this study goes beyond the
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framework of �uvial hydraulics; insights and developments acquired in the course of this thesis are
likely to be transferable to other domains where a turbulent �uid �ows over a rough permeable
medium.

From a mechanistic point of view, a mountain stream is a liquid �owing on a permeable
polydispersed granular medium with a small relative submergence. With regard to �uidity, this
system is a case study of the larger scienti�c family of �ows over rough porous media. This family
includes diverse processes, including atmospheric boundary layer modeling such as wind/forest
(Novak et al., 2000) and wind/building (Roth, 2000) interactions, and �ow over submerged aquatic
canopies (Ghisalberti & Nepf, 2009)).

5 Outline of the dissertation

Including the introduction, this dissertation contains seven chapters:

� Chapter 2 provides an overview of the current position on open-channel �ows and porous
media �ows. These two domains are generally disconnected, even though they are both
essential to describe the problem. This chapter closes with a presentation of the previously
documented investigations on �uid/porous structure interactions that inspired this thesis.

� Chapter 3 covers the theoretical developments leading to the 1D model to describe �ows
over rough permeable beds. While this theoretical development owes a great deal to the
experimental insights presented in Chapters 4 and 5, a description of the fundamentals of
the double-averaging framework is essential to understand what the experimental procedure
involves.

� Chapter 4 is devoted to description of the experimental set-up, the materials, and the
transverse scanning methodology. This chapter closes with an examination of �ow uniformity
and steadiness conditions in the �ume.

� Chapter 5 presents the experimental results. The experimental vertical pro�le is discussed
and compared with the existing theories on open-channel �ows. The second part of this
chapter is devoted to a comparison of the experimentally obtained vertical pro�les with the
model developed in Chapter 3.

� Chapter 6 illustrates a real case scenario and shows why the de�nitions of �ow depth in the
�uvial hydraulics are critical. Flow resistance and incipient motion predicted by the 1D
model are compared with existing formulae in the literature.

� Chapter 7 concludes this dissertation with a discussion on the experimental results and
the �ndings provided by the model. Guide-lines for monitoring gravel-bed streams are
suggested.
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2 Fluvial �ows and porous media

This chapter provides the essential scienti�c background for the understanding of my research.
In parallel, the mathematical notations and the de�nitions employed in the course of this
dissertation are presented. In the �rst section of this chapter, a brief historical overview which
traces the origins of the contemporary tools in �uvial hydraulics is presented. Modern concepts
from the boundary layer theory such as the van Driest damping e�ect as well as the velocity-defect
law play a key role in describing the experimental results of this manuscript. The current
limitations of open-channel �ow models when applied to rough beds with a small relative
submergence are highlighted. Moreover, as explained in the introduction, the permeable bed
is regarded as a porous media continuum where the mean porosity pro�le varies sharply in the
roughness layer between the surface layer and subsurface layer. In addition to questions of
hydraulics, porous media processes are therefore presented in the second section. The duality
between drag force based law and porous media law to relate solid/�uid interactions is introduced.
In the last section, the pioneering contributions and the recent advances concerning �ows adjacent
to a porous structure that inspired my research are reviewed.

1 Turbulent open-channel �ows

1.1 River �ow and friction laws: an historical review

This section chronologically reviews the outstanding investigations over the past three
centuries which have in�uenced the river science community.

Quantitative �uvial hydraulics in the western world trace their origins back to the xviii c.
Savants, inspired by the well established Newton laws and Euler’s derivations around 1750,
explained the velocity steadiness in open-channel �ows by a bed friction force on the bed surface
that exactly compensates for the gravitational interaction on the water:

P�x�b � ex| {z }
friction

= M �ex| {z }
gravity

= Vf�f g sin � (2.1)
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Figure 2.1 � Open-channel �ow over an inclined bed

M = �fVfg is the weight of an inclined column of �uid of volume Vf = �xAf , where Af is
the cross sectional area on Figure 2.1-(a). The friction force on the total bed area �xP balances
the projected mass on the streamwise direction, where P is the wetted perimeter [ABCD] on
the Figure 2.1-(a). �b is a force per unit bed area, g is the gravity constant, �f is the �uid
density in kilogram per cubic meter and � the bed angle in radian. From mountainous to low
land environments, �uvial channels are slightly inclined (the slope i rarely exceeds 20%) and the
small-angle approximation is generally assumed: i = tan � � sin � � �.

By de�ning the hydraulic radius Rh = Af
P , Equation 2.1 becomes :

�b = mx = �f g Rh i (2.2)

Note that the �ow depth hf is equivalent to the hydraulic radius when the channel is wide
enough. To obtain the relation between the slope, the hydraulic radius and the velocity, a closure
that relates the friction �b to the mean velocity is required. In 1757, the German scientist Albert
Brahms introduced the idea that this action in uniform �ow should be proportional to the square
of the velocity (Brahms, 1757). While Brahms provided measurement of depth, velocity and
slopes of rivers to verify his statements, he never published a formula (Herschel, 1897).
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Shortly after, Antoine ChØzy, engineer from the new École National des Ponts et ChaussØes,
was tasked in 1768 with designing the cross section of a channel to bring fresh water to Paris
from the Yvette river. It is a critical engineering challenge, since the width and the slope of the
channel must be scaled to provide the desired �ow discharge. ChØzy found nothing relevant in
the literature that addressed the issue and started his own measurements, on the Seine river and
other waterways, devising the most lasting formula to describe open-channel �ows in 1775:

Ub = �
p
Rhi =) �b = �fg

U2
b

�2 (2.3)

where � is the dimensional ChØzy coe�cient that depends on the properties of the channel.
Ub = hUxiVf is the volume-averaged velocity1. Interestingly, in his original manuscript, ChØzy
admitted that his formula is not adequate as a general theory but must be determined from one
channel con�guration to another2.

Figure 2.2 � Few traces survive of the pioneering contribution of ChØzy. Here is a copy of the
second manuscript of ChØzy from 1776 describing the formula (from the library of Ecole National
des Ponts et ChaussØes)

His successors, Pierre Du Buat, Pierre-Simon Girard and Gaspard de Prony, acknowledged
the pioneering e�orts of ChØzy but found it more appropriate to work on a binomial form:

�b = K1Ub +K2U
2
b (2.4)

These scientists were focused on Equation 2.4 to conclude with a general theory that included
viscous e�ects through the additional linear term (de Prony, 1804). Although this resolution has
been fruitful in producing the future Darcy-Weisbach and the Navier-Stokes derivations, it has
been a source of confusion for hydraulic engineering issues. Indeed, it is now well established
that viscosity plays a negligible role in �uvial �ows. Nevertheless, Girard used the binomial
formulation to devise the Ourq canal that opened to navigation in 1822. After that, the binomial

1hUx i Vf
= 1

Vf

RRR
Vf

Ux (z)dV is the mean velocity, where Ux (z) is the velocity at the altitude z
2According to Herschel (1897), Chézy's contribution has not been fairly recognized by his peers. De Prony, the

director of the �Ecole des ponts et chaussés� and Chézy's friend wrote : �Chézy died poor, [...] the period from
1745 to 1798 [...] was not favourable for modest engineers� (An excerpt from a notice written by Helmina von
Chézy, Chézy's daughter-in-law (von Chézy, 1834)). During this �Age of Enlightenment�, the Yvette canal was
canceled and the French Revolution broke out in France.
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formulation was progressively depreciated for open-channel �ows predictions.

During the xix c, various formulations similar to the Equation 2.3 were developed in Europe.
For instance, Eytelwein developed what is still known as the ChØzy-Eytelwein law in Germany.
From Italy, the Tadini formula, identical to the ChØzy formula, became one of the most popular
open channel equation in Europe. After years of calibration, most engineers established that the
constant � � 50 m s�1=2 must be adopted.

Continuing Du Buat’s, Prony’s and Girard’s achievements, Henry Darcy (1803-1858) and
Julius Weisbach (1806 - 1871), developed an equation that signi�cantly impacted on the �uvial
engineering community. Whilst their contribution was more intended to predict pipe �ows than
river �ows, the non dimensional Darcy-Weisbach coe�cient f gained popularity because of its
convenience for transferring the equations from one metric system to another (Brown, 2003). The
relation is given by :

�b = f �f
U2
b

8
=) Ub =

r
8
f
p
g Rh i (2.5)

Later, outstanding e�orts were made by Phillipe Gauckler(1826-1905), Robert Manning
(1816-1897) and Albert Strickler (1887 - 1963) in calibrating a more rigorous empirical formula.
They established that the bulk velocity is better described by :

Ub = �
p
Rh i =

1
n
R2=3
h i1=2 (2.6)

where n is the Manning coe�cient that must be calibrated for various bed surfaces. For
instance, Stickler suggested n = d1=6

p =24. The ChØzy coe�cient is thus parametrized by � =
R1=6
h
n = 24Rhdp

1=6
.

ChØzy, Darcy-Weisbach or Manning-Strickler formulae are nowadays widely employed by
water engineers since they allow prediction of depth in rivers with various discharges, slopes, and
roughness. These predictions are essential for navigation channels where boats need a certain
depth to navigate. They become crucial for forecast issues, i.e., predictions of extreme �oods
where existing bridges, dikes, dams or other infrastructures are involved, or are being constructed.

Most of these formulae were calibrated for low gradient rivers (i < 1%). More than a century
later, studies reveal that signi�cant uncertainties persist for steep streams (i > 1%) such as
gravel-bed rivers (Bathurst, 1985; Ferguson, 2007; Rickenmann & Recking, 2011).

The observed uncertainties on empirical relations depend largely on a lack of consensus on
operational de�nitions such as the �ow depth, the mean velocity or the grain-size length scale
(Ferguson, 2007). This problem becomes particularly signi�cant when �ow depth has the same
order of magnitude as the roughness height, i.e., with small relative submergence quantitatively
de�ned by Sm = hf=dp, where dp is the grain size length scale.

Despite the basic need to predict �ow depth, gaps remain in the understanding of �ow
processes in mountain rivers.
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Thus, a better understanding of the underlying physics is required to improve both predictions
and operational de�nitions. This goal has already stimulated vigorous debates in the community,
and the cornerstone lies in modeling the vertical structure where turbulence is critical.

1.2 Vertical velocity structure of turbulent open-channel �ows

1.2.1 Non dimensional numbers

In 1883, Osborne Reynolds reported experiments in pipe �ows, making a distinction between
laminar or turbulent �ow regimes. He developed non dimensional numbers now called Reynolds
numbers that relate the inertial forces to viscous forces, to di�erentiate these regimes. To
characterize an open-channel �ow three di�erent Reynolds numbers are generally given:

Reb =
Ubhf
�

(2.7)

Resurf =
Usurfhf

�
(2.8)

h+ =
u�hf
�

(2.9)

Reb is the bulk Reynolds number, Resurf is the surface Reynolds number (where Usurf is
free surface velocity) and h+ is the friction Reynolds number (where u� =

p
g hf i is termed the

shear velocity).

The dimensionless Froude number developed by William Froude (1810-1879) also plays a
critical role in open-channel �ows:

Fr =
Usurfp
ghf cos �

�
Usurfp
ghf

(2.10)

where Usurf is the surface velocity. The Froude number relates inertial to gravitational
forces, and is also the ratio between surface velocity and the wave speed c =

p
g hf cos � . It

characterizes the development of various �ow features in open channel �ows from a low to a large
Reynolds number.

For instance, an hydraulic jump is observed when a torrential �ow (Fr > 1, also called
supercritical �ow) slows down and switches abruptly to a �uvial regime (Fr < 1, also called
subcritical �ow). Indeed, at Fr = 1, the situation is singular, since the velocity of the water is
equal to the wave speed.

While the Froude number does not appear as essential for uniform �ow, it plays a critical
role in describing instabilities when a periodic perturbation is imposed on the surface along
the streamwise direction. For instance, the growth of instabilities resulting in Kapitza waves in
viscous regime or roll waves in turbulent regime can be forcasted (e.g. Charru (2011); Richard &
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Chapter 2. Fluvial �ows and porous media

Gavrilyuk (2012)). In turn, these instabilities generate internal coherent structures and turbulence,
in�uencing the vertical transfer of momentum.

If instabilities of free surface �ow over inclined beds appear at very low bulk Reynolds
numbers Reb

3, it is usually admitted that a fully turbulent �ow over smooth bed is obtained at
Reb > 1800 and without ambiguity for Reb > 3000 (Pope, 2001).

1.2.2 Log-law of the wall

Turbulent streams exhibit 3D complex structures but the 2D approximation is usually
assumed to describe the �rst order dynamics (see Figure 2.3) . Here, the time-averaged velocity
is oriented on the x direction V (z; t) = Ux(z)ex , but turbulence occurs in the x and z direction.

Figure 2.3 � Flow over a rough impermeable bed: velocity decomposition and roughness length
ks.

The decomposition of the instantaneous velocity V (z; t) into its mean Ux and the temporal
�uctuations in the 3 directions of the space is referred to as the Reynolds decomposition:

V (z; t) = (Ux(z) + u0x(z; t)) ex + u0y(z; t) ey + u0z(z; t) ez (2.11)

In the early xx c, Ludwig Prandtl (1875-1953) discovered that turbulence plays a key role by
transferring the momentum vertically, and he developed what is known as the Prandtl boundary
layer theory. Later, his students Theodor Von Kàrmàn (1881 - 1979), Paul Blasius (1883 - 1970)
and Johann Nikuradse (1894 - 1979) attempted to provide analytical predictions of the friction
laws on pipe and open-channel �ows.

The vertical velocity pro�les are derived by solving the steady unidirectional Reynolds

3according to Charru (2011) Kapitza instabilities appears for i � 1% at h+ � 10, interestingly for pure viscous

open-channel �ows Reb = h+ 2
.
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1. Turbulent open-channel �ows

equation:

0 =
d�v
dz

+
d�t
dz

+ �fgi (2.12)

�v = �f�
dux
dz is the viscous stress (where � is the kinematic viscosity in m2=s) and �t =

��fu
0
xu
0
z is the turbulent stress. Equation 2.12 can be integrated from the free surface altitude

where �v + �t is assumed to be zero to obtain:

�u0xu
0
z + �

dux
dz

= gi
�
zsurf � z

�
= u2

�

�
1�

z � zb
hf

�
(2.13)

The right hand expression introduces the bed position zb de�ning hf = zsurf � zb.

The classical Prandtl mixing length assumption is ordinarily employed as a closure equation
for turbulent stress:

�xz = ��fu
0
xu
0
z = �f l

2
m

dUx
dz
j
dUx
dz
j (2.14)

Prandtl proposed the well-known relation lm = �(z� zb), where � is termed the Von KÆrmÆn
empirical constant. The syntheses by Garbis H. Keulegan (1890�1989) of previous theoretical
and experimental works, has been essential to describe �ows in rough channels (Keulegan, 1938).

The vertical structure of a regular open-channel �ow may be subdivided into three layers :
the viscous sublayer, the log-law region and the outer region.

For z�zb � 0, the laminar sublayer is reached, the viscous e�ect dominates. For z�zb > 0:2hf ,
the outer layer is reached. When z � zb is in between, i.e., su�ciently far from both the solid
wall and the free surface (z � zb � hf ) the Equation 2.13 with the closure Equation 2.14 can be
solved to obtain the Kàrmàn law of velocity distribution known as the log-law of the wall:

Ux(z)
u�

=
1
�

ln
�

(z � zb)u�
�

�
+Ar

| {z }
1

=
1
�

ln
�

(z � zb)
ks

�
+Br

| {z }
2

=
1
�

ln
�
z � zb
z0

�

| {z }
3

(2.15)

Here in one line are the three common forms of the log law of the wall found in the literature.
Ar and Br are integration constants from the viscosity/roughness-a�ected region close to the
bed. In the �rst form Equation 2.15-1, the logarithmic law depends on the viscosity. According to
Keulegan (1938), when the roughness length ks < 3:3 �

u�
, the surface behaves as if it were smooth.

Ar is a constant that has been empirically calibrated at 5.5 by Nikuradse (1933). For higher
values of ks, Ar can be expressed by:

Ar = 8:5�
1
�

ln
�
ksu�
�

�
(2.16)
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With this expression, Equation 2.15-2 becomes more convenient since Br is a constant equal
to 8.5.

The last formulation, Equation 2.15-3, is generally given to simplify the developments and
z0 = ks= exp (�Br). It should be emphasized that z0 = ks= exp (�Br) � ks=30. Thus, the
conventional 30 factor between z0 and ks (as well as the 12 factor in the right hand term of
Equation 2.17) are deduced from the Nikuradse experimental results with Equation 2.16.

Integration of a logarithmic law of the wall, Equation 2.15, between zb + ks to zsurf yields
an approximation of the bulk velocity Ub, and by deduction a physically based friction law.

C =
Ub
u�
�

1
�

�
ln
�
hf
z0

�
� 1
�

=
1
�

ln
�
hf
e z0

�
=

1
�

ln
�

12hf
ks

�
(2.17)

C is the non dimensional ChØzy coe�cient (also termed non-dimensional conductance) and
relate bulk velocity Ub to the friction velocity u�. This terminology is regularly employed in
�uvial hydraulics (Aguirre-Pe & Fuentes, 1990; Colombini & Stocchino, 2012). Note that this
coe�cient is linked to the traditional dimensional ChØzy coe�cient � and the Darcy-Weisbach
friction factor by :

C =
�
pg

=
r

8
f

Until now, the log-law of the wall and its derivations of resistance formula have been primarily
responsible for shaping laws from pipes to mountain rivers.

There has been a corpus of studies developing parameterizations to explain the di�erent
behaviors of deep turbulent �ow over smooth or rough walls. A summary of this work has been
made by Nezu (2005). Two important features must be addressed because of their fundamental
role in understanding the hydrodynamic processes in open-channel �ows: the damping e�ect and
the velocity defect-law. They play a crucial role in interpreting my measurements.

1.2.3 Bu�er layer and damping e�ect

To describe �ows over a smooth wall, di�erent corrections of the mixing length function
have been suggested. Since the role of the damping e�ect has been essential for subsequent
developments, the concept is brie�y presented here. The most famous formulation is due to van
Driest (1956).

It involves an exponential decay damping the turbulence near the wall by the presence of
the viscous e�ect. E. R. van Driest proposed the following speci�cation:

lm;vD = �(z � zsm) �; � =
�

1� exp
�
�

1
RevD

(z � zb)u�
�

��
; (2.18)

with �(z) the damping function which tends toward zero at the bed interface zb and increase to
reach one when viscous e�ect are negligible, i.e., (z�zb)u�

� >> RevD. When the local Reynolds
number in the viscous sub layer (where the velocity pro�le is linear, i.e. Ux(z) = (z � zb)u

2
�=�)

exceeds the non dimensional number RevD, the turbulence becomes the dominant factor in
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1. Turbulent open-channel �ows

di�using the momentum (the van Driest Reynolds number is originally given at 26).

If the damping e�ect is not introduced in the equations, the mean velocity in the outer layer
can be largely under-estimated. Indeed, the damping e�ect occurs in a small layer close to the
wall and reduces the apparent turbulent viscosity. Since the velocity gradient is important in this
region, this signi�cantly a�ects the entire vertical pro�le.

The importance of this damping e�ect has been largely unconsidered for turbulent �ows over
rough wall, the boundary conditions being expected to be fully turbulent.

1.2.4 The velocity defect-law

In the outer region (z � zb > 0:2hf ), a signi�cant deviation from the log-law predictions has
been observed, such that the log law of the wall must be modi�ed:

Ux(z)
u�

=
1
�

ln
�

(z � zb)u�
�

�
+Ar + w((z � zb)=hf ) (2.19)

where w((z � zb)=hf ) = 2�
� sin2 ��

2 (z � zb)=hf
�
, is an empirical wake function. � is called

the wake strength parameter.

This correction was �rst introduced by Coles (1956) for boundary layers. It was only 25
years after that scientists recognized its relevance for open-channel �ows (Coleman, 1981; Zippe
& Graf, 1983; Nezu & Rodi, 1986).

With these considerations, a mixing length expression may be deduced from Eqs. 2.13, 2.14,
and 2.19, giving the following mixing length distribution:

lm = hf �
q

1� z0�=0:8=hf

�
hf

z0�=0:8
+ �� sin(�

z0�=0:8

hf
)
�

�(z) (2.20)

with �(z) the damping function introduced in Section 1.2.3. This mixing length distribution
has been largely tested for low gradient �ows. As far as I know, it has never been tested for high
gradient open-channel �ows (i > 0:5%). The following experimental results illustrates how the
Cole modi�cation is essential in describing vertical mixing length distribution in a steep stream.

It must be emphasized that the strategy of the previous studies has been to produce a
mixing length distribution from the modi�cation of the velocity pro�le through an empirical wake
function. This strategy is more convenient since it permits a conclusion with an analytical log
functional with an additional term.

As noted by Nezu (2005), other empirical wake function have been proposed, but Cole’s
wake function appears to be the simplest and the most acceptable extension of the log law.

In general, large scatters in the log-law of the wall with the �tting processes might be
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Chapter 2. Fluvial �ows and porous media

due to non-consideration of both the damping e�ect and the velocity defect-law, especially in
small relative submergence conditions. The theoretical arguments are developed in the following
chapters.

1.3 Reassessments

If the log law of the wall is retrieved for deep �ows, i.e., with a roughness length small
compared to the �ow depth, the problem is more intricate when a non negligible part of the
�ow seeps through the permeable rough bed. Engineers also tend to use this log law for steep
mountain streams, but the arguments for retrieving a log pro�le fail, since the layer thickness
z � zb has both the order of magnitude of dp and hf . In my opinion, matching an analytical
log-law for shallow and rough �ows is a hazardous task. A full vertical resolution of the equation
is preferable, but no analytical solution is for the moment available.

Another problem is posed within the roughness layer. The complex 3D geometry of the
roughnesses in�uences the turbulence statistics in a manner such that Prandtl assumptions are
not valid in this region, where drag forces on protuberance and wake structures are more likely to
in�uence the average �ow. However, many articles use the log-law to characterize the roughness
properties, even for low submergence �ows which are complicated and subject to experimental
uncertainties.

In this dissertation, the roughness layer is revisited as a porous media transition. Indeed,
the porosity varies from the bulk velocity in the bed to a porosity of one in the free surface �ow.
I argue that this point of view is convenient because it characterizes the dependence with the
porosity (and implicitly the elevation) of the drag force in the roughness layer. The advantages
of this description will be developed mainly in the next chapter. In the following section, the
di�erent ways of modeling solid/�uid interactions are depicted.

2 Flows in a porous media

2.1 Darcy based laws

2.1.1 Darcy law

Figure 2.4 � Uniform gravity driven �ow in a con�ned porous medium
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2. Flows in a porous media

The �rst empirical law for steady creeping �ow inside a porous medium has been derived by
Darcy (1856) and may be written, in its simplest form, along the x axis, by:

huxis =
K
�f��

fext; (2.21)

where � denotes the porosity, huxis is the super�cial velocity (i.e. averaged over the entire
volume), it is also called the seepage or the darcian velocity depending on the scienti�c �eld.
K the permeability, fext is the volume averaged external force density exerted on the �uid. In
pressure driven �ow fext is equal to ��dP

dx , the pressure gradient, whilst in gravity driven �ow
fext = ��fgi.

Because porous media contain voids forming the �ow path, the intrinsic velocity or interstitial
velocity Ux is higher than the super�cial velocity huxis.

Ux =
huxis
�

; (2.22)

In its linear and empirical form, Darcy law has been used in many domains such as
groundwater sciences (de Marsily, 1986) or the fossil resource industry (Muskat & Meres, 1936).
One realm has been particularly active in exploring porous media: chemical engineering. Indeed,
to design chemical reactors or �lters using various gases or liquids in a viscous or turbulent regime,
the chemical industry has widely studied the theoretical background of the Darcy law and its
limitations.

2.1.2 Darcy-Forchheimer law: the Ergün equation

To take into account non-linear e�ects in the porous medium when velocity increases, the
most documented law has been developed by Ergun (1952):

fext = AE
(1� �)2�f�

�d2
p

Ux +BE
(1� �)�f

dp
U2
x (2.23)

=
�f��

2

K(Ux)
Ux

| {z }
Darcy approach

(2.24)

where AE and BE are the Ergün empirical constants. Non-linear forms of the Darcy equation
are classically called the Darcy-Forchheimer form, and theoretical forms such as Equation 2.23
are called Darcy-Ergün equations (Nield & Bejan, 2006). The formulation of the force exerted by
the �uid depend on the mean grain size dp and the porosity �.

When the quadratic term is negligible, we end up with the relation known as the Carman-
Kozeny relation:

fext = AE
(1� �)2�f�

�d2
p

Ux (2.25)
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2.1.3 Scaling in a porous media

The diameter of the particles is the principal component to describe a �ow for a packed bed,
and the particle Reynolds number is de�ned by:

Rep =
dpUx
�

(2.26)

The porosity also plays a critical role in the �ow process in a porous medium, while it is
usually not considered in the non dimensional numbers (mainly because � is generally a constant
between experiments performed on packed beds, �b = 0:4).

However, Equation 2.23 may be rewritten to relate underlying principles of �uid �ow by
performing a dimensional analysis.

fext = �
�
�f ; �; Ux; lp; g; �

�
; (2.27)

where � denotes a functional relationship and lp the pore length scale: Naively, lp is often
scaled by dp. However, the diameter of the grains is inadequate to characterize the mean diameter
of the pores. As was elegantly explained by Niven (2002), a better choice is the ratio of the
volume of voids Vv to their surface area Av.

lp(dp; �) =
Vv
Av

=
�dp

6(1� �)
; (2.28)

This length scaling argument is similar to the one used for hydraulic radius scaling Rh = Af
P

introduced above for �uvial hydraulics. Indeed, in rivers, skin friction occurs on the entire bed
limit as the skin friction in the porous bed occurs on the surfaces of the solid grains. Dimensional
analysis yields:

fext
�fg

= i = �

 

Rel =
lpUx
�

; Frp =
Uxp
glp

; �

!

; (2.29)

Rel is the pore Reynolds number and Frl is the pore Froude number. The Ergün equation
becomes :

i = �
Fr2

l

Re2
l

h
ARel +BRe2

l

i
; (2.30)

Chemical engineers have constructed another useful non-dimensional number : the Galileo
number, independent from �uid velocity.

Gap =
Re2

l

Fr2
p

=
l3pg
�2 =

�3d3
pg

�2(1� �)3 (2.31)
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i = �
1
Gap

h
ARel +BRe2

l

i
; (2.32)

The physical basis of the Ergün equation is discussed in Niven (2002), and an interesting
response on the origin of the non linear term of the Ergün equation to this article is given by
Stevenson (2003). The debate is still active on the origin of the transition from linear to non-linear
form. Some authors attributed this transition from laminar to turbulent �ows (Leva, 1959) whilst
others more carefully refer to inertial e�ects. Indeed, local inertial losses and �uid turbulence
produce variations in the same quadratic term of Equation 2.23.

2.2 Drag force based laws

Chemical engineers have also widely explored sedimentation and �uidization processes
(Richardson, 1954). The strategy adopted to describe these system diverges from the �xed bed
point of view, since resistance to the �ow is constructed with the drag force on individual grains.
Consider a single grain in an homogeneous �uid with a velocity Ux. The force on the grain is
given by:

Fd = Cd (Ux)
�fU

2
x

2
�d2

4
(2.33)

where Cd (Ux) is the drag coe�cient on a single sphere and can be given, for instance, by
the expression of Dallavalle (1943): CD = 24:4=Rep + 0:4 = 24:4�=(Uxdp) + 0:4.

Because the volume of grain present in the system is NgVg = (1� �)Vtot = Ng 1
6�d

3
p, where

Ng is the total number of grain. The force per unit of volume is given by:

fext =
Ng Fd
Vtot

=
3
4

(1� �)�f
d

C�D(huxis; �)huxi
2
s

| {z }
Drag approach

(2.34)

where C�D(huxis; �) = CD (huxis) f(�) is a modi�ed drag coe�cient. The factor f(�) is the
voidage function, to take in consideration the hindrance e�ect due to porosity. The di�erent
expressions based on the drag force based laws are conventionally expressed in terms of the
super�cial velocity huxis (and not the intrinsic velocity Ux). It is a detail, but might be a source of
mistakes in di�erent scienti�c contributions. A usual choice for this function is f(�) = �� = ��3:8

which empirically explains the reduction of the drag coe�cient when porosity increases.

This correction is owed to Richardson (1954) and has been tested on highly concentrated
sedimentation processes. This interaction formulation has been used in Jenkins & Hanes (1998);
Revil-Baudard & Chauchat (2013) for sheet �ows and more recently used for bed load transport
simulations by Maurin et al. (2018). The main advantage of the drag force formulation resides in
the � = 1 limit for which the classical drag force is retrieved.
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2.3 Comparison between drag force based law and porous media laws

It is possible to express the drag force based law Equation 2.35 in term of the intrinsic
velocity and compare it to a pourous media law given by the Ergün Equation ??:

fext = A
(1� �)2�f�

�d2 Ux +B
(1� �)�f

d
U2
x =

�f��
2

K(Ux)
Ux

| {z }
Darcy approah

=
3
4

(1� �)�2�f
d

CD(Ux)U2
x

| {z }
Drag approach

(2.35)

By providing the equivalent drag coe�cient Cd for the Ergün formulae, we can compare the
Darcian and the Drag point of view on the Figure 2.5. The two points of view are close for the
packed beds porosity, i.e. � � 0:4 . For large and low porosities, divergences are observed. Since
the Ergün equation was intended only to estimate �ows for homogeneous packed beds with a
porosity varying from � � 0:3 to � � 0:6 the shifts at higher porosities is expected.

An attempt to obtain a generalized approach to treat both �uidization and �xed beds with
various porosities has been devised by Gibilaro et al. (1985) and later by Di Felice (1994).

The Gibilaro - Di Felice (1985) correction aims to modify the drag curve to collapse with the
Ergün equation for � = 0:4. The force exerted by the �uid/solid medium is given by :

fext =
�

17:3�
�dp

+ 0:336Ux

�
��1:8(1� �)

d
Ux (2.36)

2.4 Porous media interactions: up-scaling approaches

Several attempts to explain porous media �ows from the grain scale hydrodynamics have been
provided. The classical approach simpli�es the tortuous path in the pores with tubes, whilst the
upscaling methodologies interpret the macroscopic behavior from the pore scale hydrodynamics.

2.4.1 Classical approaches

In �uid mechanics textbooks, the behavior of the Darcy law is commonly provided by a
comparison with the Poiseuille law which states a linear relation between the pressure gradient
and the mean velocity. In that sense, if the porous medium is represented by an array of tubes, the
linear Darcy trend is retrieved. We can also describe the local pore-sizes variations by a simpli�ed
model of tubes having alternating sizes of section. Using this approach, Niven (2002) concludes
with a quadratic non linear trend for high velocities. This non linear deviation can either �nd its
origin from the inertial loss in the local variation of the sections or from the turbulence transition.

2.4.2 Homogenization and spatial averaging concepts

From a di�erent perspective, strategies have been developed to explain the macroscopic
Darcian behavior from the local description of the �ow. These are the upscaling methods including
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2. Flows in a porous media

Figure 2.5 � Comparison between Drag approach and Darcy approach for volume averaged
non-linear �ow laws in �uid/particle interactions. These formulae provide a similar order of
magnitude. The velocities on the top are given for dp = 1 cm, the order of magnitude of the bead
size employed later for the experiments

the homogenization theory and the volume averaging methodology.

The homogenization theory applied to porous structure has been popularized by Mei &
Auriault (1991). The principle is to consider the Navier-Stokes equation valid at the pore scale.
An expansion is done on the variables to obtain a set of equations valid at various scales. This is
the multi-scale analysis. With this technique, it is possible to retrieve, at the �rst order, a Stokes
problem at low Reynolds numbers enforced by a no-slip condition on the surface of the solid. By
averaging the solution we obtain a Darcy law. By expanding at higher orders for a low Reynolds
number, Mei & Auriault (1991) found a cubic correction instead of the usual quadratic term in
the Forchheimer law.

The volume averaging methodology has also been widely employed in the porous media
community (e.g. Whitaker (1986)) and contains likenesses to the homogenization theory. It
consists in spatially averaging the Navier-Stokes equations. The volume averaging theorem allows
to isolate from the viscous stress and the pressure contribution the total stress acting on the
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surfaces of the solid bodies inside the volume. The volume on which the averaging must be
performed is large enough to consider an homogeneous porous medium. With an appropriate
closure on the relation between the volume averaged forces acting on the solid walls and the mean
�ow, it is possible to retrieve the Darcy or the Forchheimer laws (Whitaker, 1996).

Importantly, a singular term also appears from this procedure: it is the dispersive stress
(also called the form-induced stress). It is the equivalent of the turbulent stress when the average
of the Navier-Stokes Equations is performed over time. The dispersive stress involves the local
deviation of the velocity. For the x component it is de�ned by:

ux(X) = huxi+ eux(X) (2.37)

where ux(X) is the local velocity and X is the spatial position in the in �uid region. huxi is
space averaged velocity and eux(X) the local deviation of the velocity. In an unidirectional �ow,
the volume size is normally chosen such that huxi = Ux does not vary with X. Interestingly,
eux(X) corresponds to the �rst order expansion in the homogenization theory.

If the variation of the velocity only occurs in the z direction, the dispersive shear stress in
the x direction is thus expressed as:

�d = ��f
dheuxeuzi

dz
(2.38)

2.4.3 Discussion

While the homogenization theory gained popularity in the last decade in studying �ows
adjacent to porous structures, I did not �nd any outstanding contribution in which it provides
an equivalent of the dispersive stress. In the following developments, the dispersive stress
plays an important role, since it has been measured in various experimental and numerical
cases. Moreover, the volume averaging framework is the cornerstone of the double-averaging
methodology thoroughly explored within the hydraulic framework by Nikora et al. (2007) and
later by many experimentalists and theoreticians. It is why I decided to develop the theoretical
arguments and the experimental procedures within the volume averaging framework.

3 Flow-porous structure interactions

3.1 Pioneering investigations

Beavers & Joseph (1967) is the �rst signi�cant study of a �ow adjacent to a permeable
wall. Focusing on viscous �ows, they conclude with an intrusion of the �ow inside the bed at
the vicinity of the interface. They report a penetration length scaling with

p
K. Pioneering

works on the interaction between a highly porous foam and turbulent air �ow were performed
at the Massachusetts Institute of Technology from 1968 to 1972 (Munoz G. & Gelhar, 1968;
Ho & Gelhar, 1973). They found that the log-law can be veri�ed if the von KÆrmÆn constant
takes values between 0.26 and 0.29. Calibrating log-laws on the pro�les, the �ctive wall has been
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found to be inside the porous medium. They also admitted the importance of the exchange of
momentum between laminar �ows in the porous region and turbulent �ow above, and �nally
they measured an increase of the friction factor. More recent studies (Mendoza & Zhou, 1992)
investigated turbulent water �ow over a pervious bed and concluded with similar observations.

3.2 Hyporheic exchanges and �ux across the water-sediment interface

Hyporheic exchanges have particularly concerned water resources research over the last
two decades. The principal issue remains the understanding of biogeochemical and ecological
processes due to exchanges across the bed interface (Boano et al., 2014; Blois et al., 2014). This
zone is the theatre of exchanges of water from di�erent origins, conditions that are particularly
favorable to feed or to trigger chemical reactions. The metabolic activity of microorganisms
may catalyze these chemical reactions and participate in the transformation or the precipitation
of di�erent chemical species. In turn, precipitations and growth of bacterial communities may
modify the �ow characteristics, by reducing the permeabilities or by changing the boundary layer
conditions. These bacterial formations are also ideal for plants and macroinvertebrates and, by
domino e�ect, is a fundamental activator of the entire river ecosystem, supplying food to macro
freshwater fauna such as �sh and for the rest of the food chain.

Theoretical analysis has been done to predict �ux exchange in the presence of bedforms
(Elliott & Brooks, 1997), and with the presence of gaining or losing condition in the bed (Fox
et al., 2014).

As explained in the introduction, little is known about the local exchange with the macro
rough permeable bed and its eventual role for the transport of solute. These hyporheic models
need a better understanding of the hydrodynamics at the grain scale.

A review of scienti�c studies on turbulent �ow over porous media reveals poor experimental
investigations of the full vertical structure of the �ow, especially when the inertial e�ect is
non-negligible. Recently, Voermans et al. (2017) studied in detail �ows over a permeable bed
composed of beads of di�erent diameter. In this study, the index matching method is used to
follow the interfacial hydrodynamics. By employing the double-averaging framework (Nikora
et al., 2007), the authors were able to deduce the quantity of interest such as the turbulent stress
and the dispersive stress; quantities that are of primary importance for mass �ux transfer at the
water/sediment interface in rivers (Voermans et al., 2018). These authors argue that through the
permeability number ReK =

p
Ku�
� , it is possible to identify a di�erent regime of di�usivity from

impermeable boundary as ReK ! 0 to highly permeable boundary ReK !1. At ReK � 1� 2
they identi�ed an important threshold, above which the di�usive stress starts to dominate the
�uid shear stress at the sediment-�uid interface.

These contributions inspired our experimental procedure as well as the strategy to interpret
the data. They are a step forward for understanding the vertical structure of the �ow. However,
they focused on low gradient channels where subsurface velocities are negligible. Furthermore, no
model has been developed yet to understand the di�erent components in the hydrodynamics at
this interface.
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3.3 Modeling issues

In the latest numerical works on the �ow/porous structure interactions (Tilton & Cortelezzi,
2008; Rosti et al., 2015), the authors grant that there are few or no published data on the inertial
exchange between turbulent �ow and porous �ow. Consequently, they restrict their analysis
to �ows for which the inertial e�ect can be ignored in the porous region. Recent numerical
contributions also revealed inconsistency in the way the interface condition is considered. The
contribution of Zampogna & Bottaro (2016) was to attempt to include the inertial exchange. The
authors compared direct numerical simulations to a description employing the homogenization
theory. Within this framework, they were able to develop an analytical model that reproduces well
experimental vertical pro�les of turbulent �ows over a canopy (measurements are presented in
Ghisalberti & Nepf (2004)). However, it was realized with a parametrization of the turbulent stress
that is empirically adjusted on the velocity pro�les. Working with linear Darcy law, they revealed
a necessary decrease of the permeability with the Reynolds number leading with inconsistency
with the usual theoretical assumptions done at the interface, which states that the penetration
length is proportional to the permeability (Beavers & Joseph, 1967).

In general, most of the approaches using an Euler description of the interface use a jump
condition. A jump condition involves a non-local form of the volume averaged momentum
equation as described by Ochoa-Tapia & Whitaker (1995). These authors derived momentum
transfer conditions correcting the error. When inertia is not negligible, these conditions are quite
complex. There is still a need for a uni�ed approach to clarify the transition of �ows with a jump
condition.

In the following work, the approach is di�erent. To describe the interface I use a sharp but
continuous variation of the porosity at the interface. This continuous description is practical
because there is no need to introduce a jump condition. It is also a realistic approach since the
space averaged porosity physically decreases smoothly in natural interfaces.

To conclude with the numerical aspects, the dispersive stress is generally neglected or simply
omitted in most of the simulations, whereas recent large eddy scale simulations revealed its
crucial role for �ows over a permeable medium (Fang et al., 2018). It is the second aspect of this
contribution that deals with dispersive e�ects in the roughness layer, as will be seen in the next
chapter.

4 Conclusion on the theoretical background

In this chapter, the essential state of research has been presented in order to understand the
following chapters. The historical evolution of the free surface �ows is essential to explain the
classical approach. These tools are inadequate to describe open-channel �ows with small relative
submergence. Porous media knowledge is also essential to describe the �ow in the roughness and
the subsurface layers. It has been brie�y introduced with the duality between Darcy based laws
and drag force based laws. To model the interface, in contrast with previous models that used a
jump condition, the interface will be treated as a continuous porous medium.
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3 Theoretical developments

This chapter regards the modeling of a turbulent open channel �ow over a rough permeable
bed with the application of the double-averaging concept. It consists of spatially averaging the
time-averaged Navier-Stokes equations, known as Reynolds equations, in a thin layer parallel
to the bed. This process results in obtaining the double-averaged momentum equation. Initially
developed for atmospheric boundary layers and canopy �ows (Wilson & Shaw, 1977), this method
has been re-examined within the framework of �uvial hydraulics by Nikora et al. (2001, 2007).
This approach results in the following principle advantages:

1. The turbulent open-channel �ow layers are treated continuously from the surface layer to
the permeable bed.

2. The mean porosity pro�le is continuous and the region where porosity varies sharply de�nes
the roughness layer. This continuous approach is particularly advantageous for steep shallow
�ow where a consequent part of the �ow seeps through the roughness layer as well as in
the subsurface layer (see Figure 3.1).

3. The phenomenology can be up-scaled at the desired mesoscopic length-scale for modeling
purposes. Closures can be developed in an adequate manner.

4. Quantities involved in the momentum equation are algebraically de�ned, and may be
conveniently captured from experimental outputs for data interpretation and numerical
tests.

In comparison to the Reynolds equations, the double-averaged momentum equation contains
three additional terms: the dispersive stress (also called form induced stress), the viscous drag
and the pressure drag. I suggest or adapt closures for all these terms as well as for the classical
turbulent stress and viscous stress.

The viscous drag and the pressure drag in the permeable bed are identi�ed with a Darcy-
Forchheimer law known as the Ergün equation. These two terms play a critical role in damping
the velocities in the subsurface layer as well as in the roughness layer. Secondly, I suggest a
closure for the dispersive stress based on a mechanistic approach. Thirdly, the classical viscous
shear stress is depicted with a particular attention to the choices found in the literature. Lastly,
the turbulent stress is revisited through the Van Driest approach to take into account the so-called

31



Chapter 3. Theoretical developments

damping e�ect. With these closures, the main features of a uniform open channel �ow are
represented together and permit the building of a 1D model.

The 1D model is then numerically solved. By varying the hydraulic conditions (grain size,
relative submergence, slopes and porosity pro�les), the model outputs are depicted. The important
role of the van Driest damping e�ect is highlighted.

This model is the result of synergies with the experimental observations presented in Chapter
5 (with experimental procedure presented in Chapter 4). The theoretical background and the
de�nitions for the double-averaging concept, as well as the assumptions behind the governing
equation for uniform, steady and unidirectional �ows, are introduced in Appendix A.

Figure 3.1 � Scheme of a gravity driven turbulent �ow over a permeable medium with a small
relative submergence. V (x; y; z; t) is the local instantaneous velocity vector in the three directions
with the components developed in Equation 3.1. Ux is the double-averaged velocity and �(z)
the spatially averaged porosity. zrc the roughness crest level and zt the altitude where the bulk
porosity �b is reached (the troughs of the roughness elements). The roughness layer is bounded
by the altitudes zrc and zt, while the subsurface layer is below zt. The surface layer is above zrc,
in this region � = 1.

1 Unidirectional equation of motion

In this study, a uniform and steady �ow is considered where the quantities are spatially
averaged over mesoscopic distances. Similarly to the Reynolds decomposition, the local instantaneous
velocity is decomposed into the time-space averaged value huxi, the local disturbance euk and the
temporal �uctuations u0k in the three direction of the space (the index k denotes x, y and z).
Assuming a 2-D open channel �ow, the double-averaged decomposition gives:
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2. Closure problem

V (x; y; z; t) =

2

4
ux
uy
uz

3

5 =

2

4
huxi+ eux + u0x

euy + u0y
euz + u0z

3

5 (3.1)

The subscript ‘ � ’ denotes the time averaging, the brackets ‘ h�i ’ the intrinsic space averaging
(i.e. over the �uid phase only) and the tilde subscript ‘e� ’ the local spatial disturbance. The
dimensions of the layer along x and y are considered su�ciently large to assume heuxi � 0,
h~uyi � 0, and heuzi � 0. To simplify the notations, the double-averaging intrinsic velocity along
the x direction is written huxi = Ux.

The double-averaging methodology applied to the Navier-Stokes equation for a gravity driven
unidirectional Newtonian incompressible �ow in the simpli�ed two-dimensional case gives:

hgiis = �huz
dux
dz
is + h�

d2ux
dz2 is (3.2)

where h�is is the super�cial spatial averaging (i.e over the entire volume)1 and the following
relation may be deduced h�is = �h�i.

After manipulations detailed in the Appendix A, the Equation 3.2 can be transformed in the
double-averaged momentum equation:

0 = ��fgi+
d�d
dz

+
d�t
dz

+
d�v
dz

+ fp;x + fv;x; (3.3)

where �d = ��f �heuxeuzi and �t = ��f �hu
0
xu
0
zi are respectively the dispersive and turbulent

stresses; fp;x and fv;x are the pressure drag and viscous drag on the surfaces of the solid elements;
and �v is the viscous stress. Di�erent relations are possible for these terms. The objective of the
following section is to suggest convenient closures.

2 Closure problem

2.1 Drag forces in the porous bed - f p;x + f v;x

2.1.1 Closure choice

Following Whitaker (1996), in a homogeneous porous medium, the pressure and viscous
drag term from the spatial averaging procedure may be identi�ed by a Darcy-Forchheimer law.
Studying a non-mobile permeable bed, I choose the Ergun (1952) equation devised for �ows

1The terminology ` super�cial ' is traditionally employed while the average is performed on a volume.
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through packed beds.

fv;x + fp;x = �AE
(1� �)2��f

�d2
p

Ux �BE
(1� �)
dp

�fU
2
x (3.4)

where dp denotes the diameter of the grains. AE and BE are empirical constants. This term
is constant in the subsurface layer and decreases in the roughness layer, whereas the porosity
increases. It is equal to zero for � = 1 above the roughness crest zrc because �(z > zt) = 1. As
suggested by Nikora et al. (2007), the viscous drag fv;x is considered as the linear term of the
equation and the pressure drag fp;x as the quadratic term. The Ergün equation was intended
only to estimate �ows for homogeneous packed beds with a porosity close to � � 0:4. Because
porosity reaches � = 1 at the roughness crest, there is a layer where the validity of the Ergün
closure is subject to controversy.

2.1.2 Discussion on the closure choice

A similar scienti�c �eld is particularly a�ected to provide an estimate of the drag terms:
the numerical simulation of sediment transport. For instance, Jenkins & Hanes (1998); Maurin
et al. (2016) use an averaged drag force law based on the Richardson (1954) formulation. This
law, devised for sedimentation problems, is adequate for low solid concentration (� � 1) in
the sediment transport layer. Indeed, the force tends to the expected classical drag force for
individual particles in these conditions through the voidage function (as explained in Chapter 2 -
Section 2). However, beneath this sediment transport layer, the porosity decreases sharply and
the deployment of equations for high solid concentration is questioned. Concerned by this aspect,
some authors use the Equation 3.4 for small values of �, and use a drag force law that behaves
correctly for larger values of � (Jackson, 2000). For instance, Cheng et al. (2018) chose to separate
the parametrization of the pressure and viscous drag in two porous domains: for � < �c, they
consider a porous bed and employ a Ergün equation; for � > �c, they consider a �uid-particle
�ow and employ a drag force based law. They �x a threshold of porosity at �c = 0:8. Although
di�erent arguments encourage this combination, it results in a discontinuity at the altitude where
� = �c. Moreover, as far as I know, no report furnishes theoretical arguments to �x �c. Regarding
these aspects, it is advisable to select one law to address this issue.

In my opinion, Ergün equation can be considered as the most reasonable choice for a �xed
bed. The trends and the orders of magnitude are consistent with the phenomenology, i.e. a
reduction of the pressure and viscous drag with an increase of the porosity reaching zero for
� = 1 above zrc. Other considerations support this choice. Equation 3.4 relies on mechanistic
arguments (Whitaker, 1996; Niven, 2002) and may provide insights on the underlying physics
in the roughness layer. Also, many studies calibrate the coe�cient AE and BE of the Ergün
equation for highly permeable natural materials that are likely to be transferable to river bed
material characteristics.

The equation proposed by Gibilaro et al. (1985) and introduced in Chapter 2 (Equation 2.36)
was also examined. This equation has been elaborated to model �ow from dense to sparse porous
media. It is therefore ideal for rough permeable beds where porosity is close to the unity at the
roughness crest. However, the advantage of this approach seems reduced by the rarity of studies
deploying this equation for testing experimental data sets.
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2. Closure problem

2.2 Dispersive stress - � d

2.2.1 Preamble

In the last decade, numerous studies have investigated this quantity through the double-
averaging methodology for hydraulically rough beds (Mignot et al., 2009a; Detert et al., 2010; Dey
& Das, 2012; Voermans et al., 2017) and more recently, large eddy scale simulations have been
performed for a similar purpose in idealized con�gurations (turbulent �ow over sphere packing
geometries) (Fang et al., 2018). Experimental and numerical results yield similar observations:
the dispersive stress is ubiquitous in the roughness layer with a maximum observed just below
the roughness crest (zrc) where few protuberances rapidly damp the velocity. The order of
magnitude of this stress is generally lower than the turbulent stress at this altitude. In the
numerical simulations of Fang et al. (2018), the results suggest that the geometry of the bed
has an intricate in�uence on the structure of the �ow above the roughness crest. In some cases
stable recirculation and secondary currents appear, inducing a time-averaged �ow periodicity in
space. This re-circulation contributes signi�cantly to the total dispersive stress. This numerical
observation has been done for idealized periodic beds, whereas the e�ect seems less clear for
irregular bed topography from real scenarios.

The dispersive stress might represent a non-negligible part of the momentum budget in
the roughness layer compared to other quantities such as the turbulent stress or the form drag.
Moreover, it is a measurable quantity, and an opportunity to suggest and test a closure that relies
on physical arguments.

2.2.2 Dispersive stress closure on a regular packed bed

An explanation follows of why the dispersive stress on a regular packed bed is not expected
to be zero. Consider a shear �ow on a rough porous bed where the mean velocity shear dhuxi

dz is
positive as shown in Figure 3.2.

In the experimental observations performed during the experimental procedure presented in
Chapter 4 (see Section 2.5.2), it has been observed that the main contribution for the dispersive
stress is localized behind the protuberance where the velocities are signi�cantly lower than the
averaged velocity. As a consequence the disturbance in the x direction ~ux is negative due to the
velocity de�cit. In the velocity de�cit zones the upward velocities are dominant and the product
~ux~uz is negative (and the dispersive stress positive).

To explain the vertical structure of the dispersive stress, consider two areas at the altitude z:
A+ is the velocity de�cit area behind the obstacle and A0 is the area where the contribution for
the dispersive stress is neutral. Mathematically, it means that h~ux~uziA+

> 0 and h~ux~uziA0
= 0

in A0 but locally ~ux and ~uz may have positive or negative values.

Af = A0 +A+ is the total area of �uid such that �+ = A+=Af and Af
Atot

= �; u+;x = u+ �ex

and u+;z = u+ �ez .

Secondly, in the interaction region f+g, the local mean velocity is assumed to be in�uenced
by the inclined surface of the bead. The geometry is simpli�ed in such a manner that in the area
A+, the angle of contact is the same while the spherical shape would produce an orientation in
the 3 directions of the space. In other words, the sphere is considered as a cylinder in this region.
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Figure 3.2 � A schematic illustration of a bead lying on a packed bed of beads, side view.

Figure 3.3 � A schematic illustration of a bead lying on a packed bed of beads, top view.

This simpli�ed approach aims to avoid complex integration procedures on the sphere that would
not in the end signi�cantly improve either the model, or the interpretation of the phenomenology.

The velocity de�cit at the altitude where the angle is � is given by:

u+;x(z) = cos� Ux(z) (3.5)

The spatial decomposition of the velocity gives :

eu+;x(z) = u+;x(z)� Ux = Ux(cos� � 1) (3.6)

Similarly, in the z direction, because huzi = heuzi = 0 we obtain

eu+;z(z) = u+;z(z) = sin � Ux(z) (3.7)
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and then,

�d =� �f �euxeuz = ��f ��+eu+;z(z)eu+;x(z)

=� �f ��+ sin � U2
x(cos� � 1)

(3.8)

This equation relies on the local geometry through a conceptual angle �, but it is not
applicable if this angle is not linked to the altitude z. We must provide arguments that link the
surface angle to the averaged porosity pro�le.

2.2.2.1 Bed geometry and porosity

Geometrically, for a regular bed , we may de�ne angles and distances at the interface, i.e. in
the roughness layer, in the following manner:

sin � =
‘(z)
dp=2

;

and

cos� =

q
d2
p=4� ‘(z)

2

dp=2
;

where ‘(z) is the radius of the section of the sphere at the altitude z (see Figure 3.2).

There is an intrinsic relation between ‘(z) and the solid fraction 1 � �(z) = A(z)=Atot
at an altitude z. B(z) is the area occupied by the solid over the total area. For instance, a
bead packing arranged in a Face-Centered-Cubic-Structure (FCCS), the solid fraction veri�es
1 � �(z) = B(z)=Atot = �‘(z)2=d2

p. The maximum is reached when ‘(z) = Rp = dp=2 and the
minimum �FCCS;min = 0:31 is obtained at z = zp a value which is slightly higher than the
bulk porosity for this idealized structure, i.e. �b;FCCS = 0:36. For natural beds or beads in a
laboratory �ume, the structure is not exactly arranged as FCCS, but similarities are observed:
the porous medium is dense and the bulk porosity is generally measured around 0:3� 0:5. If the
porous medium has a narrow distribution in sediment size around dp, we can postulate that the
minimum of the porosity is reached where z = zt.

1� �(zt) =
�d2

p

Atot
� 1� �b

The following expressions are obtained for ‘(z), sin �, cos� as function of �:

‘(z) �
dp
2

s
1� �(z)
1� �b

(3.9)

sin � =
‘(z)
dp=2

�

s
1� �(z)
1� �b

(3.10)
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cos� =

q
d2
p=4� ‘(z)

2

dp=2
�

s

1�
1� �(z)
1� �b

(3.11)

2.2.3 Final expression and simpli�cations

By replacing the expressions of cos� and sin � in the Equation 3.8, I arrived at an expression
of the dispersive stress as a function of �(z).

�d = �f �

s
1� �(z)
1� �b

�+

 

1�

s

1�
1� �(z)
1� �b

!

U2
x (3.12)

In some conditions it may be useful to give a simpler form of Equation 3.12, when �(z) = O(1)
at the roughness crest for instance, or in a porous medium where the porosity is high. By
performing the Taylor expansion at the �rst order

q
1� 1��(z)

1��b
= 1� 1

2
1��(z)
1��b

, dispersive stress
may be given by:

�d � 1=2�f ��+

�
1� �(z)
1� �b

�3=2

U2
x(z) (3.13)

We de�ne the local non dimensional dispersive stress by ��fi = �d
�fU

2
x(z)

and plot the behavior

of the expressions (3.12) and (3.13) for di�erent �+, in the Figure 3.4. It is shown that in both
relations, the non-dimensional local dispersive stress tends to its maximum when � = �b.

Little is known about the dispersive stress, but this theoretical analysis could explain some
mechanisms responsible for momentum di�usivity inside porous media. In the porous bed, the
transfer of momentum by di�usive processes is neutral owing to the absence of velocity gradients
(at the spatial averaging scale). However, other quantities such as the concentration of chemical
elements or pollutant may vary. An estimation of the dispersive stress as well as an estimation of
the local velocity disturbance may provide insights into the dynamic of the di�usion in porous
media (e.g. Voermans et al. (2017, 2018) for a thorough discussion of this problem).
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Figure 3.4 � Evolution of the theoretical non-dimensional dispersive stress for a regular packed
bed (�b = 0:4).

2.3 Viscous stress - � v

While the temptation is strong to neglect the viscous e�ects for water in the surface layer,
things appear less simple for the permeable bed. Indeed, in real conditions, i.e. with typical values
of gravel bed characteristics under water (i �=1%, dp � 1 cm, �b � 0:4) it is the viscous drag
fv;x regime that dominates in the subsurface layer when solving Ergün Equation 3.4. Above,
the viscous forces do not vanish in the roughness layer where velocities are much lower than the
velocities in the surface layer. With this continuous transition, it is unclear in which conditions
the di�usion of momentum by viscosity is negligible at the interface. Without expecting any
general behavior, the viscous term is added in the model to investigate after the domains of
application where viscosity plays a negligible role.

There is a wide variety of theoretical arguments to close the viscous stress for diphasic
solid/liquid systems. For the present study, this closure choice has been subject to a dilemma.
Recent papers in the bedload transport domain were also confronted with similar circumstances
without making extensive comments (Ouriemi et al., 2009; Maurin et al., 2016). The gaps in
the theory are explored in Appendix A.4 to guide eventual future investigations but remains
inessential for the understanding of this thesis. In Appendix A.4, an expression of the viscous
shear including the Brinkman correction and the additional terms from the spatial averaging
procedure has been derived. The Einstein correction on the viscosity has been omitted, since no
clear experimental or theoretical work justi�es its adoption for the present problem. Thus, the
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viscous shear stress is given by:

d�v
dz

= �f��
d2Ux
dz2

| {z }
Brinkman term

+ �f�
d�
dz

dUx
dz

+ �f�Ux
d2�
dz2

| {z }
Additional terms

(3.14)

2.4 Turbulent stress - � t

Contrary to the viscous stress, the turbulent stress closure requires a comprehensive discussion
for the subsequent results of this thesis. Prandtl boundary layer theory remains a natural basis
to model turbulent stress but the traditional approach requires an origin of the bed to obtain the
log-law of the wall. Numerous experimental studies reveal the weaknesses of this approach when
applied to small submergence �ows. They are brie�y reviewed in this section. Herein, I argue that
this origin determination is not appropriate for the present problem. An alternative relying on
the continuous porosity pro�le in the roughness layer is suggested. Furthermore, according to my
experimental results, the damping e�ect has been identi�ed as an essential feature. As van Driest
suggested, the damping e�ect depends on the local Reynolds number. Again, the introduction
of this e�ect in the closure must be adapted to the continuous approach of the interface, where
subsurface velocities play a key role for predicting the mixing length distribution. Part of the
following developments on the van Driest approach applied to rough permeable bed were inspired
by the work of DurÆn et al. (2012), where a continuous closure including the van Driest damping
for modeling hydrodynamics in bed-load transport conditions has been developed.

2.4.1 Mixing length theory and open channel �ows

Mixing length theory is applied to close the turbulent stress term2.

�t = �f �hl
2
m

�
dux
dz

�2

i (3.15)

For rough surfaces, the double-averaged mixing length is generally given by a classical mixing
length for regular �at beds and Equation 3.15 becomes:

�t = �f �hl
2
m;t

�
dux
dz

�2

i � �f �l
�
m;t

2
�

dUx
dz

�2

(3.16)

with l�m;t, a space averaged equivalent mixing length. The porous wall has a large number of
geometry-dependent variables (roughness layer height, subsurface layer permeability, roughness
size). Although the double-averaging concept is able to provide insights from the fundamentals of
the mixing length theory, the strategies found in the literature to close the mixing length term
l�m for rough surfaces are purely empirical. The most common methodology is a case-by-case
adaptation of the classical Von KÆrmÆn closure given by l�m;vK = �(z � zb). This closure was

2A positive gradient of the velocity is considered and dux
dz j dux

dz j =
�

dux
dz

�2

40



2. Closure problem

originally developed for deep �ows and zb is the zero displacement height which is the bed position
for smooth walls. It leads to the well-known log-law of the wall for deep �ows. In practice,
because the surface is rough and porous, zb is not well de�ned and is determined, a posteriori, by
�tting operations onto the velocity pro�le or its derivative (See Dey & Das (2012) or Koll (2006)
for di�erent practical examples). This procedure gives at the same time an estimate of �.

For deep �ows, this assumption is generally justi�ed. The eventual change in level of the
curve due to the complex rough boundary conditions at the interface is masked by the �tting
procedure. In deep cases, the Von KÆrmÆn �constant� � = 0:4 is retrieved. The vertical structure
being less dependent on the variety of bed geometries, a given roughness parameter can reproduce
the pro�les with a good agreement. The Keulegan law presented in Chapter 2 is probably the
most lasting expression resulting from this approach for rough-bed �ows.

For small relative submergence conditions, things are more complex. The damping e�ect as
well as the roughness drag disturbs the momentum di�usion by turbulence in various ways and
plays a key role on the vertical velocity structure (Nezu, 2005).

In general, I argue that the �tting procedure with a small relative submergence is not justi�ed.
It results in two estimated parameters (zb and �) in the limited framework of the log-law of the
wall, whereas the hydraulic conditions are not ful�lled to produce a well developed log pro�le. In
support of this opinion, a thorough review of the literature reveals that this procedure produces
large scatters in the determination of the Von KÆrmÆn �constant� when hf � dp.

2.4.2 Experimental scatters in the Von KÆrmÆn determination with the �tting
procedure

Koll (2006) analyzed numerous velocity pro�les in small relative submergence conditions
(Sm � 2�10). The study reveals a substantial dispersion in the determination of the Von-KÆrmÆn
�constant�, producing lower � values than expected. Interested by these aspects, Gaudio et al.
(2010) compiled the data of K. Koll and his co-authors with other experimental investigations to
point out a Non-universality of the Von-KÆrmÆn � in �uvial streams. Ranging from 0.2 to 0.4, �
is lower than expected, and the value increases with Sm to reach the conventional � = 0:4 for
Sm � 1.

Inconsistently, other experiments on synthetic rough beds revealed an increase of the von
KÆrmÆn �constant� with Sm. Bayazit (1976) documented an estimate of � � 1:6 for Sm � 1.
After a detailed analysis of the �tting procedure, Pokrajac et al. (2006) estimated that the Von
KÆrmÆn �constant�found by Bayazit (1976) can be reduced to � � 1. This a value smaller than
the original one, but still larger than the Von KÆrmÆn �constant�.

The reasons for these various trends remain not clearly explained, but these systematic shifts
cannot be attributed to experimental mistakes only. They are more likely to be related to the
complex behavior of the vertical structure of the �ow in these conditions. Slight di�erences in
the �tting procedure may produce various Von KÆrmÆn constants. Moreover, the authors who
suggested the existence of the Von KÆrmÆn �constant� have never pretended to explain �ows
over rough beds with low submergence conditions.

Thus, to predict the mixing length behavior, we must consider its evolution across the entire
�ow depth in a continuous way, i.e. in the roughness layer, the surface layer and the subsurface
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layer. Since viscosity and wakes are suspected of playing a critical role in the vertical mixing
length distribution, the concept of damping e�ect presented in Chapter 2 should be considered.
An empirical correction of the mixing length has been introduced by van Driest to take into
account the damping e�ect (van Driest, 1956). In small relative submergence conditions, the
bu�er layer plays a key role and more importantly on the change in level of the velocity curve.
As recalled by (Nezu, 2005), the bu�er layer �can no longer be neglected in turbulence research�.

Another crucial aspect for the turbulent open channel �ow is the velocity-defect law introduced
in Chapter 2 and measured in the experimental result. While this e�ect is noteworthy in order to
describe the velocity pro�les and the mixing length distribution in the outer layer, this aspect
has been identi�ed as 2nd order correction. Moreover, it brings complexities into the model. For
these two reasons, it has been decided to neglect this e�ect in the model for the moment.

2.4.3 Mixing length distribution and damping e�ect: from idealized smooth surfaces
to rough permeable beds

For an idealized smooth surface, to account for the damping e�ect of the viscous sub layer on
the turbulent mixing processes, the empirical van Driest mixing length distribution is commonly
suggested (van Driest, 1956; Pope, 2001):

lm;vD = �(z � zb)
�

1� exp
�
�

1
RevD

(z � zb)u�
�

��
; (3.17)

This correction is purely empirical and reproduces well the experimental results for open channel
�ows over smooth walls. It is built on a comparison between the local Reynolds number in the
viscous sub layer (where the velocity pro�le is linear, i.e. Ux(z) = (z � zb)u

2
�=� and a calibrated

non dimensional number RevD (the van Driest Reynolds number). This local Reynolds number
is estimated by Rel = Ux(z)z

� = u2
� (z�zb)

2

�2 and Equation 3.17 becomes:

lm;vD = �(z � zb)
�

1� exp
�
�
p
Rel

RevD

��
(3.18)

The value of the van Driest Reynolds number RevD has been empirically estimated at
RevD � 26 by van Driest himself.

For a rough surface, it is generally suggested that the roughness increases the turbulence
at the interface leading to a lower role of the viscous damping e�ect, and a modi�cation of the
closure is needed. This re�ection has been eluded in the original paper of van Driest (1956), and
the paper of Krogstad (1991) propounds di�erent modi�cations and developments.

At this point, two observations can be formulated:

� In natural conditions, a viscous regime may be observed in the roughness layer and just
below the roughness crest. This is a situation that can convey the importance of the
damping e�ect. For open channel �ows with water, these conditions are clearly met for
regular centimetric sediments and low submergence.

� Secondly, if the turbulent regime is observed in the roughness layer, the role of the roughness
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geometries on the transfer of momentum in the vertical direction z is unclear. The interaction
between the �ow and the 3D complex shapes of the protuberances generates wakes that
di�use the momentum in the transverse directions, i.e. along the vertical but also horizontally
in the y direction.

A general expression to account for the damping e�ect due to the viscous e�ect and eventually
the wake structures is an intricate problem to study, since turbulence penetration in the roughness
layer and in the subsurface domain is controlled by numerous factors. It is not the objective
here to provide a general formulation from highly permeable walls to non permeable walls. In
the course of this study, only �ows where the transfer of momentum under the roughness layer
(z < zt) by turbulence is negligible are considered. This approach contrasts with DurÆn et al.
(2012), who obtained a di�erential equation on the mixing length that gives a non zero value
of the mixing length below zt. Although this approach has the advantage of estimating the
penetration of the turbulent mixing e�ect in the bed, it is more complex to apply and not justi�ed
for most natural bed cases. Arguments are developed below for considering a negligible role of
the turbulence stress in the subsurface layer.

2.4.4 How negligible is the turbulent mixing in the subsurface layer (z < zt) ?

In contrast to the van Driest approach on a smooth wall, the velocity will not follow the linear
trend u(z) = (z � zb)u

2
�=� expected for a smooth wall, since the subsurface layer velocity Ux;SSL

under the roughness layer imposes a boundary velocity to the system for z < zt. Nevertheless,
the above mentioned framework assumes that the turbulence is damped when the local Reynolds
number Rel is low compared to RevD. With this in mind, the local Reynolds number is given by
providing an estimate of Ux(z < zt) � USSL, veri�ed when the turbulence does not penetrate the
subsurface layer. For a tilted bed, Ux;SSL is given by the equilibrium between drag forces and
the gravity force. Using the Ergün Equation 3.4 to express the drag components, a 2nd order
equation on Ux;SSL is obtained:

0 = gi�AE
(1� �)2�
�d2
p

Ux;SSL �BE
(1� �)
dp

U2
x;SSL (3.19)

The pore Reynolds number is thus considered as the local Reynolds number Rel = Rep =
Ux;SSLdp�

6(1��)� , with Ux;SSL deduced from Equation 3.19. The square root of this number, as it is
de�ned in Equation 3.18, can be compared to RevD.

Numerical application: Consider the typical orders of magnitude in a gravel bed river3 :
The slope is i � 1%, dp � D50 � 0:05 m, �water � 1 � 10�6 m2:s�1. By solving Equation 3.19
for an idealized subsurface context (a packed bed with a narrow granulometry gives a porosity
� � 0:4), we obtain Ux;SSL = 0:04m:s�1. The pore Reynolds number is estimated at Rel = 24.

According to the ratio in the van Driest correction 3.18, we obtain
p
Rel

RevD
� 0:18. Introducing

this ratio in Equation 3.18, the penetration of a turbulent mixing layer may be negligible in the
subsurface layer. This supposition is reinforced if the subsurface particle-size distribution are

3The orders of magnitude are taken from the upper Roubion catchment (Drôme, France) (Liébault & Piégay,
2001).
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�ner than in the roughness layer. As it is generally the case.

Solving
p
Rel(i; dp)
RevD

= 1 for a dense porous media (� � 0:4),the slope and the sediment size dp
delimiting two domains may be obtained. These domains are depicted in Figure 3.5. In the left
domain, for �ne sediments, (

p
Rel < RevD,) the mixing length is expected to be negligible in the

subsurface layer (i.e. z < zt). In the right domain, for larger sediments, a non negligible role of
the turbulence in the subsurface layer can be predicted.

Figure 3.5 � Slope/diameter diagram caracterizing the turbulent penetration under the roughness
layer (z < zt) based on the van Driest approach for a dense porous bed (� � 0:4). The boundary
is estimated by solving the equation Rel(i; dp) = Re2

vD. . The continuous line represents the
water boundary (at 293� K) and the dotted line the boundary for a slightly more viscous �uid
(the viscosity of the benzyl-alcohol/ethanol mixture used further in the experimental work).

Looking at previous diagram, some comments may be made. For low sizes of sediments,
typically under 5 cm in diameter, the penetration of turbulence is not possible. The boundary
decreases sharply from high slopes to lower slopes. This is a trend that is anti-correlated by the
growth of the sediment size when the river bed slope increases. For sizes of sediments bigger than
0.1 cm, it is expected that turbulence will occur inside the porous bed. Several studies assume a
negligible role of turbulence penetration inside the bed. This diagram is a �rst step to clarify the
domain of application of this assumption. Also, it must be noted that, for a real subsurface layer,
�ne sediments generally occupy the large pores created by the larger stones that constitute the
river bed. Thus, the turbulent penetration role in the subsurface layer must take into account
these smaller sizes. In a similar manner, the permeability of natural porous media composed of
sand and gravel is estimated from e�ective diameter calculated from the smallest fraction of the
grain-size distribution (d10 for instance in Chapuis (2004)).

In Figure 3.6, the critical role of the porosity value may also be observed. For highly porous
media the limit curve is signi�cantly shifted to the left, whereas lower porosity eventually caused
by the presence of �ner particles, shifts the limit to the right. The porosity at the roughness
crest being � � 0:9 to 1, this diagram gives an indication in which domain the �ow at the
roughness crest can be dominated by viscosity. Typically, turbulence penetration is not expected
for sediment lower than 1 cm when i < 1%.
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This prediction will be discussed with regard to the experimental work performed in the
next chapters with a slightly more viscous �uid �f � 3 � 10�6 m2:s�1 on centimetric beads, i.e.
typically where the regimes in the roughness layer and at the roughness crest are not clear.

Figure 3.6 � Slope/diameter diagram characterizing the turbulent penetration under the roughness
crest (z < zt) based on the van Driest approach for the water and various porosities. The boundary
is estimated by solving the equation Rel(i; dp; �) = Re2

vD.

2.4.5 Closure choice and adaptation to a continuous interface

With the di�erent aspects discussed above, the Van Driest correction is kept in its original
form with a no-penetration condition of the turbulence in the subsurface layer, i.e. lm(z < zt) � 0.
In natural �ows and for non mobile beds, it is an arguable hypothesis for the subsurface layer
with grain sizes lower than 10 cm. Within this framework, the grain size in the roughness layer
can be di�erent from the one in the subsurface layer and eventually much larger. Thus, mountain
river beds with large grains (d50 > 5 cm) lying on a relatively lower permeable medium, i.e with
a lower grain size distribution (d50 < 5 cm) or a lower porosity, fall within the scope of this
hypothesis.

An important point must be clari�ed. How do we de�ne the Rel for a given elevation z?

If E.R. van Driest utilized the theoretical velocity pro�le over a smooth surface to de�ne
Rel, this possibility does not exist here.

Firstly, the rough surface has an unde�ned surface position and z � zb must be de�ned
di�erently. Based on reasoning developed during the dispersive stress parametrization, Equation 3.9
establishes a link between ‘(z) and �(z) , the following equality may be written:

zrc � zt =
Z zrc

zt

q
1� ‘2(z)dz =

Z zrc

zt

s
�(z)� �b

1� �b
dz (3.20)
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Equivalently the altitude z is estimated from the integral:

ZvD = z � zt =
Z z

�1

s
�(z)� �b

1� �b
dz (3.21)

With this de�nition, there is no need to de�ne an origin. Equation 3.21 gives ZvD(z < zt) = 0
and ZvD(z > zrc) = z � zt, the usual linear trend of the mixing length for z ! +1 in the
Equation 3.18.

Secondly, without analytical prediction of the velocity, Rel is estimated from the local velocity.
Equation 3.18 becomes :

l�m = �ZvD

 

1� exp

 

�
p
ZvDUx(z)=�
RevD

!!

+ CvD lp (3.22)

CvD is an empirical constant that is introduced with regard to the experimental work
performed in Chapter 5, to take into account dispersive e�ects by the presence of grains. lp is the
pore length scale introduced in Chapter 2. This choice will be explained in Chapter 5.

This mixing length distribution provides a clear advantage through the integration of the
porosity pro�le. However, it results in di�culties in developing an analytical solution and in
computing the pro�le for various cases, since the damping e�ect depends on the velocity.

The discussion on the turbulent mixing term closes here. This closure, like the original closure
of Van Driest, is purely empirical and will be tested with the experimental results in Chapter 5.
Further improvements of the model are possible with the integration of the velocity-defect law or
by employing the double-averaging framework to explain the di�erent values of � measured in
low submergence �ows in the literature.

46



2.
C
losure

problem

2.5 Summary

The momentum equation for a unidirectional steady �ow within the double-averaging framework is given by:

��fgi =
d�d
dz

+
d�t
dz

+
d�v
dz

+ fp;x + fv;x (3.23)

The following closures are employed to model the vertical structure of a �ow over a permeable rough bed:

Type - Double-averaged form Closure choice Parameters

Drag forces f v;x + f p;x
1
V

R
Sint

�� f
d~ux
dz � ~pex � ndS AE

(1 � � )
2

�� f

�d
2
p

Ux + BE
(1 � � ) � f

dp
U2

x AE , BE , dp

Dispersive stress � d � � f � heux euz i � f �
q

1� �
1� � b

� +

�
1 �

q
1 � 1� �

1� � b

�
U2

x � + , � b

Viscous stress d� v
dz � f � hd

2
ux

dz
2 i s � f v;x � f �� d

2
Ux

dz
2 + � f � d�

dz
dUx
dz + � f �U x

d
2

�

dz
2 �

Turbulent stress � t � � f � hu0
x u0

z i

� f �l �
m;t

2 � dUx
dz

�2

CvD ; ZvD =
R z

�1

q
� � � b
1� � b

dz

with l �
m;t = �Z vD

�
1 � exp

�
�

p
Z vDUx( z ) =�

Re vD

��
+ CvD lp

Table 3.1 � Summary of the closure choices for the governing Equation 3.23.
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3 Numerical simulations

This section delivers an overview of the capabilities of the model for predicting pro�les in
various hydraulic conditions. For this purpose, Equation 3.23 has been solved numerically. The
computation is based on �nite di�erence technique. Following the numerical scheme presented in
Appendix B, an Euler semi-implicit scheme has been implemented to guarantee stability and to
ensure convergence.

3.1 Porosity pro�le

The porosity pro�le is an essential component for low submergence �ows, since it controls
the roughness layer depth and the interactions with the permeable bed. Quantitatively, Ux is
highly dependent on � in Equation 3.4. The porosity pro�le is required as an input in the model
and can be reconstructed from experimental measurements (the strategy employed in Chapter 5)
or given by a function reproducing a realistic pro�le. As explained above, the porosity pro�le
varies from the bulk porosity at zt to reach 1 at zrc de�ning the Roughness Layer (RL) and the
roughness thickness hRL. Experimentally, hRL scales with the grain diameter for narrow grain
size distribution.

A cosinus function with the following parametrization was chosen to guarantee smoothness
of � at zt and zrc:

�(z) = 1� 0:5 (1� �b)
�

1 + cos
(z � zrc)�
Cp dp

�
for zrc < z < zrc � Cp dp (3.24)

with,

�(z) = 1 for z > zrc
�(z) = �0 for z < zrc � Cp dp

Cp is a factor such as hRL = Cp dp and represents the relative expansion of the roughness
layer thickness. The cosinus porosity pro�le reproduces well experimental pro�les of bi-disperse
stacks of beads having a narrow grain-size distribution as observed in the result part (Chapter 4
and Chapter 5).

3.2 Real case scenarios

3.2.1 Hydraulic conditions

Three real case scenarios with water (�water = 1� 10�6 m2 s�1 and �f;water = 103 kg m�3)
have been simulated to illustrate the model. Focusing on small relative submergence �ows, the
relative submergence Sm is �xed at one. The porosity pro�les are synthesized by Equation 3.24.
The hydraulic conditions for each scenario are as follows:

1. In the �rst scenario P, water runs on coarse sand of 2 mm diameter with a low gravity
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gradient i =0.5%. The vertical pro�les are plotted in the Figure 3.7.

2. In the second scenario Q, water runs on stones of 10 cm diameter with a slope of 5% and is
depicted in Figure 3.8. These orders of magnitude are typical of a gravel bed river.

3. The third case is the reference case indicated by the letter R. It is a water �ow on 1 cm
diameter sediment with a i = 1% slope. The pro�les are drawn in Figure 3.9. This reference
is produced from the typical order of magnitude of the experiment presented later and
corresponds to an averaged case. It serves to obtain a visualization of the responsiveness of
the model to the hydraulic conditions in the next section.

Figure 3.7 � Case P low relative submergence �ow on coarse sand. Flow characterisitcs are
summarized in Table 3.3.

For all these cases, the parameters of the model have been �xed (see details in Table 3.2).
The sediment depth hs is equal sediment size. The Ergün parameters are �xed to AE = 180 and
BE = 7:5 (the usual values), while the other parameters are �xed according to the experimental
results (see Chapter 5 for details on the calibration).
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Figure 3.8 � Scenario Q, typical of a gravel-bedded river. Flow characterisitcs are summarized in
Table 3.3. .

AE BE �+ Cp RevD CvD �b
180 1.75 0.3 1 70 0.03 0.4

Table 3.2 � Reference parameters of the model

3.2.2 Figures details

Each graphical representation of the scenarios (Figures 3.7, 3.8, 3.9) have been compartmentalized
into 4 subplots (a) (b) (c) and (d) where 10 pro�les in total have been plotted:

(a) The mean velocity pro�le Ux with an indication of the modelled �ow discharge per unit
width qf;m, the �ow depth hf ;m, the surface velocity Usurf;m, the particle- size dp and the
bulk porosity �b.

(b) The porosity pro�le � with an indication of the slope.

(c) The viscous �v, the turbulent �t and the dispersive �d stresses. In this axis, the integration
of the gravity G =

R hf
z �(z) g i dz is also plotted.

(d) The viscous and pressure drag (fv and fp) with the reference axe at the bottom and the
mixing length distribution with the reference axis at the top. The reference mixing length
function lr = � (z � zrc) is plotted as it represents the slope limit of lm for z ! +1.
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Figure 3.9 � The reference case R, the hydraulics condition used in our laboratory. Flow
characterisitcs are summarized in Table 3.3.

3.2.3 Comments on the three scenarios

Regarding the three scenarios, the following comments may be drawn:

1. Scenario P - Figure 3.7. From the viscous shear and the viscous drag pro�les, a signi�cant
role of the viscosity is noticeable. Turbulence stress becomes negligible compared to the
viscous stress at the interface where the damping e�ect highly in�uence the mixing length
distribution. The gradient of the mixing length distribution is much smaller than the von
Kàrmàn constant. This scenario shows the importance of the viscosity for shallow water
�ows over sand.

2. Scenario Q - Figure 3.8. In this scenario, typical characteristics of a gravel bed river are
tested. The �ow is thus fully turbulent with high Froude and Reynolds numbers. In this
case the role of the viscosity is negligible. The dispersive stress plays a minor role but is still
observable. The slope of the mixing length reaches � � 0:4 sharply. Simulated velocities are
about 2 m/s which correspond to the order of magnitudes observed in gravel bedded rivers
(Chapter 6 depicts stream surface velocities from a real case scenario with Vsurf ranging
from 0.5 m/s to 2 m/s).

3. Scenario R - Figure 3.9. This scenario is close to the real case scenario of the experiment.
In this case, the viscosity role is lower than for case P but it is still signi�cant, since the
damping is observable in the surface layer: the slope of mixing length is also lower than �.
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Case dp [m] hf [m] qf [dm2=s] i [%] Sm Reb h+ Fr Rep
P 0.002 0.002 0.02 0.5 1 410 20 0.85 1.21
Q 0.1 0.1 17.6 5 1 3� 105 22142 1.63 13171
R 0.01 0.01 0.33 1 1 6:3� 103 313 1.11 137

Table 3.3 � Characteristics of the scenarios. qf is the �uid discharge per unit width. While the
non dimensional numbers are de�ned in Chapter 2, the de�nitions are slightly modi�ed here

with the speci�cities of �ows over a rough permeable bed. Reb =
hUxihf hf

� is the bulk Reynolds
number where hUxihf = 1

hf

R z� +hf
z�

Ux(z)dz is the mean surface layer velocity, h+ = u� hf
� is the

friction Reynolds number, Fr =
Ux;z= hfp

ghf
the Froude number and Rep =

Ux;z� = � dp
dp

� is the particle

Reynolds number where z� = z � zrc is the vertical distance from the roughness crest.

3.3 Velocity structure and �ow characteristics

In this section, the variations of the velocity pro�les in regard to common variables used in
laboratories or in the �eld are depicted, i.e. the �ow depth, the slope, the grain diameter. Lastly,
the e�ects of the porosity pro�le variations are discussed. Note that, for each variable, only one
characteristic is compared to the referential case R (the dashdotted line in all �gures of this
section).

3.3.1 Flow depth

Figure 3.10 � Velocity pro�les for four �uid depths (hf = 5 dp,hf = 2 dp,hf = dp and hf = 0:5 dp).
The surface elevation for the highest �uid depth hf = 5 dp is not visible. The porosity pro�le is
plotted at the left of the �gure (dotted line).

By increasing the �ow depth, the surface velocities increase as observed in Figure 3.10. The
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subsurface velocities stay constant and the surface in�uence is damped for z�zrc
dp
� �0:5. In the

reference regime, the increase of the �ow discharge has thus a minor in�uence in the penetration
of the velocities inside the bed. The trend of the non dimensional turbulent stress supposes
that the scaling with u� is appropriate. The scaling with the �ow depth is suggested in regard
to the growth of the free surface elevation. However, the scaling on the diameter permits the
mechanisms at the interface to be observed. The duality between two scales, diameter and �ow
depth, is a recurrent problem for graphical representation of �ows over permeable beds.

3.3.2 Slope

Figure 3.11 � Slope in�uence on the non dimensional velocity pro�les. The dimensional velocities
increase across the entire depth. However, the non dimensional velocities, depicted on this �gure,
increases in the subsurface layer whilst it decreases in the surface layer. The velocities are plotted
in a log scale to emphasize the velocity di�erences in the subsurface layer. The mixing length
trend is also in�uenced by the slope increase.

In contrast to the �ow depth, the slope in�uences the velocities across the entire depth, i.e in
the roughness layer, the surface layer and the subsurface layer. This can be observed in Figure 3.11
where the velocity pro�les have been scaled with the shear velocity u� = up = (g dp i)

1=2. In that
case, hf is equal to dp in all pro�les, a situation that is simpli�ed since scaling on dp or hf is
equivalent. It avoids the duality of the two vertical scalings. The three pro�les are computed for
i = 0:1%, i = 10% and the reference case R where i = 1% (the dashdotted line).

In all layers, the growth of gravity projection increases velocities. It might be expected that,
with the scaling, the curve may collapse, but this is not the case. The non dimensional velocity
�Ux, such that �Ux=Ux=u�, increases in the subsurface layer while it decrease in the surface layer.
This result is remarkable and necessitates some discussion.

These di�erences in behavior may be explained by the hydrodynamic changes in the roughness
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layer, which have two di�erent origins. The velocity magnitudes in the roughness layer are the
result of the competition between the drag forces of the porous bed and the shear stresses from the
surface. As the subsurface velocity increases, it also in�uences the damping function that plays
an active role in describing the entire velocity pro�le in the surface. When the slope increases,
the damping e�ect decreases and the velocities are smaller relatively to u� (see the mixing length
distribution in Figure 3.11).

In the subsurface layer, �Ux increases with the slope. This can be explained by resolving the
Ergün Equation 3.19. If Equation 3.19 is rearranged in terms of the non dimensional velocity:

1 = AE
(1� �)2�
�2dpup

�Ux;ss +BE
1� �
�

�U2
x;ss (3.25)

Its solution is:

�Ux;ss =

q
(aE=up)

2 + 4bE � aE=up
2bE

(3.26)

With aE = AE(1��)2�=(�2dp) and bE = BE 1��
� . Since (1�4 bE) < 0, it is a function that increases

with up to reach the limit �Ux;ss = 1=
p
bE =

q
�

BE(1��) for up ! +1. �Ux;ss = 1=
p
bE � 0:4 for a

densely packed bed (i.e. � � 0:4). This trend is the consequence of the quadratic term in the
Ergün equation. Thus, it can be observed in Figure 3.11 that the velocity gap between i = 0:1%
and i = 1% is much higher than between i = 1% and i = 10%. The order of magnitude of the
non dimension subsurface velocity is indeed about the order of magnitude of the limit velocity
�Ux;ss � 0:4 in this example.

3.3.3 Grain size

With the grain size, an in�uence is expected in the subsurface layer due the dependence in
dp of the Ergün law. However, according to Figure 3.12, the e�ects are observed in all layers with
a relative submergence �xed at one.

Case dp [m] hf i [%] Reb h+ Rep
D1 0.001 0.001 1 147 10 0.31
D2 0.003 0.003 1 1210 51 7.6
D3 0.05 0.05 1 53105 3503 2035
D4 0.5 0.5 1 1:4� 106 1:1� 105 137

Table 3.4 � Characteristics of the di�erent grain size scenarios

In the four scenarios compared to the reference case, particle-size ranges from 1 mm to 50
cm. In these situations, it must be borne in mind that the regimes will vary signi�cantly. In the
dp = hf = 1 mm-case, it is expected that viscous regime is dominant in the permeable bed and
the viscous sublayer thickness may be large in proportion to the �ow depth. However, for the
50 cm-case, the viscous shear has no e�ect. The penetration inside the roughness layer is highly
dependent on the damping e�ect that is also dependent on the pore size lp as given by the mixing
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Figure 3.12 � Grain size in�uence on the non dimensional velocity pro�les.

length distribution Equation 3.22. Between the pro�le dp = 5 cm and dp = 50 cm, we observe a
signi�cant di�erence in the penetration of about 0:1 dp. This interconnection between grain size
and damping e�ects is crucial to understand the behaviour of the velocity in the roughness layer
and the surface layer.

3.3.4 Continuous porosity pro�le

With all the parameters �xed, the continuous porosity pro�le de�ned by Equation 3.24 also
plays an important role for the behavior of Ux. If in natural packed beds composed of stones the
porosity normally reaches a bulk porosity �b close to 0.4, there is a variety of structures where the
porosity can be di�erent. Vegetated channel where porosity is slightly lower than 1 is an example.
Also, in rivers, the roughness layer thickness hRL and the bulk porosity �b can be reduced by the
presence of �ner alluvium. It has for consequence to reduce the permeability of the subsurface
layer. With a porosity imposed at 0 in the subsurface layer, it is also possible to simulate an
impermeable bed (case P4 here). The pro�les are presented in Figure 4.2.

For Cp = 1 the roughness height hRL is equal to the mean grain-size. Modifying this
parameter is important to characterize the roughness type. In this �rst presentation of the model,
only the cosinus function Equation 3.24 is used but the possibilities of de�ning another pro�le are
in�nite. For a real scenario, it is advisable to use a estimated porosity pro�le from measurements.

The two �rst scenarios (P1 and P2), show an in�uence inside the bed: the lower the bulk
porosity is, the lower the bed is permeable. The shift in the surface velocity is then attributed to
a higher level where the local Reynolds number is higher than the van Driest Reynolds number.

For the scenario (P3), Cp is changed to 0.5. The trend shows the crucial role of this parameter,
since it shifts the vertical position where the boundary layer starts. In this case, higher velocities
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Figure 3.13 � Porosity structure and bulk porosity in�uence on the non dimensional velocity
pro�les.

are observed at the surface while the velocities in the roughness layer are smaller than the
reference case (R). This e�ect might be surprising. In fact, it is again the damping e�ect that
plays a role in this trend. With Cp = 0:5 the velocities are higher in the roughness layer and the
damping e�ect is less important. Its e�ect is to reduce the apparent turbulent viscosity in this
region.

3.4 Gibilaro-DiFelice and Ergün equations

As discussed in Section 2.1, the parametrization for predicting pressure and viscous drags is
subject to controversy since a large range of porosity is observed. Here, the e�ects of two laws
that deal with solid/�uid interactions are directly tested in the 1D model from the reference case
R introduced in Section 3.2. The Ergün Equation 3.4 that has been recalled in this chapter and
the Gibilaro-DiFelice Equation 2.36 presented in Chapter 2.

The two pro�les are plotted in Figure 3.14. The small di�erence in the subsurface layer
reveals the similarity of the two approaches for predicting velocities in the permeable medium. In
the Gibilaro pro�le, a slight increase of the velocity due to the diminution of the quadratic term
of the drag is observed. This di�erence for higher porosity is to be expected and might modify
signi�cantly the vertical pro�les where the pressure drag forces are the dominant e�ect.
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Figure 3.14 � Porous medium law in�uence
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4 Summary of the theoretical development

In this chapter, a 1D model describing the vertical structure of a turbulent �ow over a rough
permeable beds has been devised solving the double-averaged momentum equation. By comparison
with previous attempts to model �ow over porous bed, the principle di�erence consists of sharp
but continuous porosity pro�le at the sediment/�uid interface. Indeed, most of the models usually
consider a jump condition, i.e., a porous region and a surface region split by a local boundary (a
Brinkman condition for instance). The porosity pro�le de�nes three layers: the subsurface layer,
the surface layer and the roughness layer.

This framework seems more appropriate for predicting velocity pro�les for small relative
submergence. However, the closure must be constructed in an adequate manner. The Ergün
equation has been employed to model the viscous and pressure drag in the permeable bed.
Moreover, no closure being available for the dispersive stress in the literature, a mechanistic
approach has been suggested to parameterize this term. The viscous shear stress has been
discussed to choose an appropriate closure among the di�erent choices available in the literature.
Finally, the turbulent mixing length theory has been revisited to obtain a phenomenological
closure. This closure de�nition is based on the van Driest approach and has been adapted to the
continuous porosity pro�le. This is the second most important feature of this model: the absence
of vertical reference to solve the model.

Finally, the suitability of this model is illustrated by plotting di�erent numerical outputs
from various natural environments. The in�uence of di�erent parameters on the vertical velocity
structure is exposed. The roughness layer plays a key role in the vertical structure of the �ow,
since it imposes how the turbulence develops, conditioned by the van Driest damping e�ect.

This model aims to be valid for various applications, ranging from low gradient rivers to
high gradient gravel bedded rivers. Di�erent closure choices are vulnerable to criticism :

� The validity of a porous media equation such as the Ergün equation is questionable for
porosity close to one near the roughness crest.

� The turbulent mixing length is based only on the empirical damping e�ect phenomenology
derived by van Driest, and observed in the experimental results. Another important feature
has been observed in the experimental results, it is the velocity-defect law essential to predict
velocities in the outer layer. Not yet introduced in the model, this e�ect is also present in
small relative submergence conditions.

� The dispersive stress expression is built on physical arguments arguable for spherical packed
beds, and correspond to the measure for this type of bed con�guration. Real bed scenarios
involve more complex deviation of the velocity, and further experimental investigations are
required to test the expression developed in this chapter.

This model has been developed by synergies with an experimental set-up that is able to
measure locally the �uid velocities at the interface and inside the porous media. Within the
double-averaging framework, the di�erent terms of the double-averaged momentum equation can be
computed and compared to the outputs of the model. The next chapter is devoted to presenting
the materials and the method permitting these measures. Chapter 5 presents the results and the
comparison with this model.
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4 Experimental procedure

Owing to the di�culty in measuring �uid velocities inside porous media, there is a signi�cant
lack of experimental work describing �ows over rough permeable beds with small relative
submergence conditions. Herein, a combination of refractive index matched scanning (RIMS)
and particle image velocimetry (PIV) is employed to measure velocities from the surface layer to
the subsurface layer. This methodology is referred to as PIV-RIMS in the rest of this manuscript.
This method provides local information on the mean velocities, turbulence statistics, and solid
element positions in three dimensions.

The data are collected continuously, with a laser sheet moving in the transverse direction.
This is a con�guration that contrasts with most previous PIV measurements, where the laser sheet
is �xed. According to the double-averaging concept, the mean turbulent stress and dispersive stress
are deduced from the local information. While this concept is essential for averaging quantities
collected in the region of interest and comparing experimental outputs with the double-averaged
momentum equation, it requires metrological precautions: temporally due to the turbulence, and
spatially because of the local disturbance of the mean velocities.

This chapter is structured as follows:

1. Section 1 is devoted to present the set-up and materials
2. Section 2 describes the potential of the PIV-RIMS methodology
3. Section 3 veri�es the repeatability and uniformity in the �ume, to allow derivation of

pro�les describing the vertical structure of the �ow in nearly uniform conditions with high
con�dence.

1 Experimental setup

1.1 Flume and materials

The experiments were performed in a narrow �ume (6-cm wide and 2.5-m long) with an
adjustable slope i, as shown in Figure 4.1. A constant head tank provided a steady �uid
discharge to the system with the �ow being driven by gravity. The �ume was randomly �lled with
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borosilicate beads of two diameters (7 and 9 mm in equal proportions, d50 = 8 mm) to constitute
the porous bed1. However, before each run, the porous bed was �attened to form a uniform
sediment height of hs = 5 cm. Flow disturbance from the inlet was reduced by straighteners and
the region of interest was placed at a distance far enough from the permeable grid (this grid
maintained the beads and let the �ow seep inside the bed) to obtain a quasi-uniform �ow. The
outlet condition is of considerable importance in gravity driven �ows over highly permeable beds.
For example, if the outlet wall is impermeable, a dead �ow zone appears upstream for a large
distance. Therefore, we chose to keep the outlet wall permeable to guarantee a �ow within the
entire porous bed. This decision introduced a high pressure discontinuity at the outlet, which
raised a question over the uniformity of the �ow. This problem is discussed in Section 3.2.

Figure 4.1 � (a) Scheme of the experimental set-up. (b) Photograph during �ow (c) 3D
vizualization. 1
 : laser; 2
 : linear unit for displacement along the y-axis; 3
 : high frequency
camera; 4
 : laser sheet

The isoindex �uid was prepared with 40% ethanol and 60% benzyl alcohol by volume.
With these proportions, the isoindex �uid matches the borosilicate refractive index nf �
nboro�silicate�glass � 1:472� 0:002 at 20�C (see the refractive index measurements in Figure D.1
in Appendix D). This mixture has physico-chemical characteristics close to those of water.
The cinematic viscosity was measured at 20�C with a Cannon-Ubbelhode viscosimeter: �f =
3:0 � 0:1 mP � s , and the �uid density was measured at �f = 0:95 � 0:01kg �m�3 (see the

1 If the bed is composed of beads with the same diameter, a self-structured arrangement is generated provoking
undesirable bias in the averaged porosity and velocity pro�les
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density measurements in Figure D.2 in Appendix D). These quantities are in agreement with the
independent measures made by Chen et al. (2012). According to Chen et al. (2012), the surface
tension is about �f = 31� 1mN �m�1, i.e., it is half that of water. The surface tension e�ects
are assumed to be negligible for this problem.

The reservoir containing the �uid (approx. 10 L) delivers the �ow to a second reservoir
where an over�ow pipe maintains the �uid head, ensuring a steady �ow discharge into the �ume.
Two valves control the desired �ow discharge: the �rst valve is manual and regulates the base
�ow, while the second is an electro-valve, and adjusts the �ow to the desired �ow discharge qf .
As observed in Figure 4.1-(a), the reservoir is �xed at the upstream end of the �ume to obtain
�xed head between runs when the �ume is inclined. According to the small angle conditions, the
e�ect of the inclination on the pressure head between the reservoir and the �ume appeared to be
negligible. The relative accuracy of the total �ow discharge was estimated as �qf=qf � 5% (See
Figure D.3 in Appendix D for details on the determination of the accuracy of the �ow discharge).

The �uid mixture is chemically stable, but the free surface in contact with air favors
evaporation of the ethanol, thereby reducing its proportion over time, and by consequence the
refractive index. Thus, a regular addition of ethanol is necessary. The refractive index matching
value nf was therefore controlled using a Digital Refractometer (ATAGO RX-5000 �) between
each run. In addition, a small amount of Rhodamine B was added to the �uid to increase the
contrast between the beads and the �uid. This con�guration {BAE/glass beads/Rhodamine B}
was previously tested in our laboratory to determine the position of beads in three dimensions to
investigate granular segregation (e.g., van der Vaart et al. (2015)). However, this is the �rst time
that this con�guration is employed to measure interstitial �uid velocities.

1.2 Optics

Frame sequences were recorded with a Basler acA2040-180kc high-frequency camera operating
at a speed of 420 frames per second and a resolution of 1496�700 pixel (�pixel� is abbreviated
by �px� hereafter). The focal length of the objective was 35 mm, with an aperture of f/2.8.
The camera was placed at roughly 30 cm from the side wall (this distance varies when scanning)
to obtain a �eld of vision of 73:8�34:5 mm2. Thus, the mesoscopic scale L on which spatial
averagings are performed is about 8 cm, i.e. ten bead diameters. The micro-metric seeding
particles for the PIV were hollow glass spheres of 8�12 �m in diameter. Mounted on a linear
unit, the laser sheet travelled through the medium illuminating the micrometric tracers (laser
diode-pumped solid state, 4 W, 532 nm). The linear movement of the laser sheet perpendicular
to the �ow aimed to scan the Region Of Interest (ROI) of a speci�c width while images were
being recorded.

1.3 Coupling between PIV and RIM for measuring interstitial �ow in
previous contributions

The combination of a PIV technique and refractive index matching to study liquid-granular
�ows in rectilinear �umes was previously employed in two recent pioneering contributions:
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� Ni & Capart (2015) developed a method that permitted internal measurements of liquid-
granular �ows with transverse and longitudinal scans.

� Voermans et al. (2017) provided the �rst detailed experimental investigation using refractive
index matching to study �ows over permeable rough beds.

The motivations behind these experimental contributions were close to the present experimental
work, and helped to develop this scanning methodology. However, the experimental conditions
diverge over one principle point that is crucial to the purpose of this thesis: to obtain steep
slopes with small relative submergence conditions, solid/liquid density ratio must be close to
the stones/water ratio of natural rivers. It is therefore essential to ensure that the sediment
stays at rest while it is still free to move. Indeed, as recalled by Maurin et al. (2018), buoyancy
plays a crucial role in determining the e�ect of the slope on the sediment transport rate and
motion threshold. Here, the density of the borosilicate glass was �s = 2:2� 103 kg m�3 giving a
density ratio for the present study of (�s=�f )this study = 2:3. The two cited contributions had
density ratios of (�s=�f )Ni and Capart = 1:39 and respectively (�s=�f )Voermans et al. = 1:24, while
for underwater sediment (�s=�f )under-water sediment � 2:5.

1.4 Transverse scanning and mean porosity pro�les

Figure 4.2 � Porosity measurement with RIMS, the beads are localized to build the porosity
matrix B(x; y; z). (a) The B �eld averaged along x on a slice positionned at ym = 25 mm from
the wall (the laser sheet position in the 3D vizualisation); (b) averaging performed along x and
y of B allows a smooth porosity pro�le to be retrieved. The altitude is noted z0�=0:8 which is
de�ned by z0�=0:8 = z � z�=0:8 where z�=0:8 is the altitude where the porosity is equal to 0.8.

The image acquisitions during the linear movement of the laser along the y axis yield the
bead positions (xb; yb; zb)n, as well as an estimate of their diameters Dn. From the known
positions, a spatial 3D matrix of the porosity B(x; y; z) is built for the 3-dimensional region of
interest with a resolution of approximately a tenth of a bead diameter (this porosity matrix is
equivalent to the roughness geometry function in Nikora et al. (2001)). Each cell of the 3D matrix
takes a value of 0 if the cell contains a bead, and 1 if not. When a bead surface crosses a cell, the
porosity is calculated according to the proportion of the void occupying the cell. The averaged
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porosity for a slice at a position y of the laser sheet is obtained by averaging2 the matrix along the
x axis �y=25 mm(z) = hB(x; y = 25 mm; z)ix. The global vertical porosity pro�le is derived by
averaging the 3D porosity matrix in the two directions of x and y: �(z) = hBixy (see Figure 4.2).

The time and space averaged depth3 is de�ned by hf = h(zsurf (x; t)� zb)i where zsurf is
the free surface position and zb the bed position. The bed elevation was �xed at the altitude
where � = 0:8 noted z�=0:8, i.e. slightly below the roughness crest zrc. Although, there is no
consensus on the vertical reference de�nition for a rough bed, this choice seems appropriate for
comparing pro�les from various bed structure, as will be explained in Section 3.1.2.

2 Velocimetry and transverse scans

2.1 Image velocimetry processing

The roughness layer contains signi�cant velocity magnitude di�erences that require a sizeable
dynamic range in the image velocimetry tools. Furthermore, the interstitial �ow zones between
beads are small. These two aspects led me to evaluate di�erent methodologies, from classical PIV
to more elaborate PTV (particle tracking velocimetry) methods. The open source library openCV
written in the Python language provided the best performance with respect to our metrological
needs. This library and its algorithms originate from the computer vision community, and are
rarely used by the �uid mechanics community.

The algorithm is based on the measurement of the local Optical Flow by mean of a pyramidal
implementation of the Lukas-Kanade method (Bouguet, 2001). Optical �ow method obtains
the displacement �eld by minimizing the square of the Displaced Frame Di�erence (DFD). The
methodology is similar to PIV algorithms but is optimized to extract the displacement of any
feature. Indeed, in classical PIV, algorithms are optimized for the displacement of particle only.
To understand better what are the equations involved in the algorithm used and the di�erence
with classical PIV see for instance Liu & Shen (2008); Heitz et al. (2010); Boutier (2012). In
turbulent �uid mechanic, this methodology has been implemented in pionneering work of Miozzi
et al. (2008) and latter by Zhang & Chanson (2018). The details on the Image velocimetry
method applied to this experimental set-up are availaible in Appendix C.

2.2 Quantities of interest within the double-averaging framework

Turbulent �ows over rough permeable beds exhibit strong spatial and temporal heterogeneities.
As explained in the Introduction and Chapter 3, the double-averaging concept (e.g. Nikora et al.
(2007)) is adequate to address this problem. Here, the turbulent stress �t = ��f hu

0
xu
0
zi and the

dispersive stress �d = ��f h~ux~uzi may be conveniently deduced and compared to the modelling
of the double-averaged momentum equation. Thus, an experimental evaluation of the spatial
disturbances (~ux,~ux) and the �uctuations (u0x,u

0
z) on a speci�c region of interest, where the

two-dimensional assumption is respected, is required to calculate the turbulent stress and the

2The discrete spatial averaging is de�ned by h� i x = 1
M

PxM
x 0

� (x j ) where M is the number of cells in

the x direction and the averaging in the two direction of the space parallel to the mean bed by h� i xy =
1

MN

PxM
x 0

PyN
y 0

� (x j ; yk ) where N is the number cell in the y direction.
3The discrete time averaging � = 1

n T

PtN
t 0

� (t j ) where nT is the number of time step
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dispersive stress. This is the objective of the PIV-RIMS methodology.

It is recalled that the disturbance for any position can be estimated by ~ui = ui(x; y; z)� <
ui >. Where ui(x; y; z; t) is the instantaneous local velocity in the direction i, ui(x; y; z) the local
time averaged velovity and < ui > is double-averaged velocity in a thin ‘slab’ parallel to the mean
bed at the mesocopic scale. In the x direction Ux =< ux > and if the �ow is unidirectional at the
mesoscopic scale < uy >=< uz >= 0, one of the assumption required to get the two-dimensional
�ow assumption that can be veri�ed here experimentally. The other fundamental assumption
behind the two dimensionality is the uniformity along x and z. They are carefully veri�ed in the
course of this chapter. Postulate the two-dimensionality of the �ow is relevant when quantities
are averaged at the mesoscopic scale (e.g. the discussion of Nikora et al. (2007) [p881]). Details
on the theoretical background of the double-averaging procedure are available in Appendix A.

In the surface layer only (i.e., the altitudes z > zrc where �(z) = 1), the double-averaged
momentum equation gives:

0 = �fg(h� z) sin � + �t + �d + �v: (4.1)

In the permeable bed below the roughness crest (i.e., the altitudes where �(z) < 1), these
assumptions are no longer valid because of drag interactions.

2.3 Constraints on the laser sheet displacement when measuring by
scanning

In Section 1.4, the scanning methodology used to detect bead positions and acquire porosity
pro�les was revealed. The �uid velocities can also be collected during this laser sheet displacement.
This experimental choice aims to reduce the data storage and the duration of the experimental work.
However, this presents several constraints with regard to the spatial and temporal heterogeneities
of the �ow. An analogy may be formulated to help this problem to be understood. As an
example, a �atbed photo scanner requires an adjustment of the chariot velocity for a given digital
resolution. Similarly, the laser sheet is moving in the transverse direction with a constant velocity
VMLS (MLS: Moving Laser Sheet). Here, the local �uid velocities collected during this translation
depend on the length scale of the spatial disturbance of the �ow Lu, which depends on the
topography. Lu may have the same order of magnitude as the mean radius of the particle, i.e.
d50=2. To pursue the analogy, when digitalizing a picture, Lu would be the length scale of the
spatial variations of the colors.

To obtain a measured point with a given VMLS the following condition applies

VMLS < fLu; (4.2)

Where f is the frame acquisition rate.

However, contrary to a classical photo scan, the local information �uctuates with time. A
wait of a speci�c instant Tu0 is required to access the global statistics of the local �ow (average and
standard deviation). This a�ects the measurement strategy signi�cantly, and a second constraint
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appears:

VMLS < Lu=Tu0; (4.3)

Because no preliminary information is available on the turbulent characteristic time Tu0,
experiments are required to estimate its order of magnitude.

Figure 4.3 � Scheme of the transverse continuous scan methodology and comparison with a �xed
laser sheet measurement. Fs and Fe are respectively the starting and end frame indexes.

2.4 Scanning and averaging procedure

Averaging over time during the laser sheet displacement can mathematically be formulated
by:

�Tm;TMA =
1

TMA

Z Tm+TMA=2

Tm�TMA=2
�(yl(t))dt (4.4)

where � might be any local quantity of interest such as the velocity ux(t; x; yl; z) or the
instantaneous shear stress � u0xu

0
z(t; x; yl; z). TMA is the moving-average time, i.e. the time-window

over which a time average is computed to obtain average local �ow and turbulent statistics, with
this being centered on a speci�c recording time Tm. Here the position of the laser sheet yl(t) is
time dependent due to the laser translation: yl = VMLS t.

Thus, the quantities that are averaged over time are also averaged along the y-axis. The
average on TMA at the instant Tm = ym=VMLS also means that the averaging is performed on the
distance DMA = VMLS TMA at ym (see Figure 4.3 for a graphical representation of the problem).
The following equality is then obtained between the average procedure in time and in space:

�Tm;TMA = h�iym;DMA =
1

DMA

Z ym+DMA=2

ym�DMA=2
�(yl(t))dyl (4.5)

Note that, with this formalism, there is only one measurement per instant t and equivalently
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per laser sheet position yl during the translation. However, the laser sheet having a certain
thickness (about 1 mm), information yielded at an instant t is already averaged over the thickness
of the laser sheet. With the transverse scan procedure, time and space are mixed and it is
therefore crucial to carefully evaluate this procedure by comparing measurements with a �xed
laser sheet at ym over a long period and the averaged quantities yielded for the PIV-RIMS
procedure at the position ym.

2.5 Evaluation of the scanning methodology

2.5.1 Flow characteristics and evaluation procedure

To assess the scanning performance, two runs were conducted using the hydraulic characteristics
detailed in Table 4.1 with the same bed arrangement. In the �rst run, velocities were obtained
by PIV for a �xed laser sheet positioned at yl = 25 mm from the side wall. The second run was
performed by scanning the medium with a laser sheet moving from yl = 2 mm to yl = 40 mm
with the PIV-RIMS methodology. The delay Tu0, required to obtain con�dent time-averaged
quantities, is �rst derived from the �xed laser sheet measurements. A duration of 20 s on a
speci�c slice of the �ow gives a robust evaluation of the turbulence statistics for measurement
points around protuberances to provide an estimate of Tu0. The velocity of the moving laser sheet
VMLS may then be deduced from the constraints of Equation 4.2 and Equation 4.3. The �nal
evaluation of the methodology is made by comparing the mean velocities and the turbulent stress
deduced from the scanning methodology with the measurements obtained with the �xed laser
sheet at the position yl = 25 mm. Table 4.2 summarized the characteristics of the Moving Laser
Sheet run and the Fixed Laser Sheet run.

i W [cm] Q [mL/s] qf [� 103 m2=s] hf [mm] Usurf [m/s]
0.5% 6.0 182 3.0 11 0.34

Ub Reb Fr USSL [m/s] d50 [mm] ReSSL Sm [-]
0.28 1026 1.04 0.015 8 41 1.35

Table 4.1 � Experimental conditions for the test of the PIV-RIMS methodology, Usurf is the
surface velocity, Reb = Ubh=� is the surface Reynolds number, Fr = Usurf=

p
gh is the Froude

number, USSL is the mean subsurface layer velocity, ReSSL = d50Ui=� is the interstitial Reynolds
number, Sm = hf=d50 is the relative submergence.

Type ym [mm] Ttot [s] f V MLS [m�s� 1 ]
Case 1 Fixed Laser Sheet (FLS) 25 20 210 0
Case 2 Moving Laser Sheet (MLS) 2 � 40 20 210 0.002

Table 4.2 � Experimental conditions for the Fixed Laser Sheet and the Moving Laser Sheet.

2.5.2 Temporal and spatial averaging measurements with the �xed laser sheet

Figure 4.4 depicts the steps from the temporal averaging to the spatial averaging of �ow
quantities with the laser sheet �xed at ym = 25 m. As an example, the time averaging procedure
for the horizontal velocity ux is shown in Figure 4.4 � (a2) while the spatial averaging along x is
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shown in Figure 4.4 � (a3) (the light-green curves give an idea of the spatial variability of the
time averaged velocities along x). The time-averaged �eld of the vertical velocity uz shown in
Figure 4.4 � (b2) is an ideal illustration of why spatial averaging is unavoidable. Indeed, this
quantity exhibits large spatial heterogeneity and the approximation of a spatially uniform and
unidirectional �ow becomes meaningful only at an appropriate mesocscopic scale over which
the average is performed. Regarding Figure 4.4 � (b3), the spatially averaged vertical velocity
pro�le huzi can be reasonably assumed to be zero and the quasi-uniform and unidirectional �ow
assumption is therefore empirically veri�ed at this scale (about 10 bead diameter). Anticipating
the following developments, by scanning along y PIV-RIMS procedure enlarges the averaging
domain, and these assumptions are more strongly veri�ed.

The time averaged turbulence intensities along x and z in Figure 4.4 � (c2) and Figure 4.4-
(d2) respectively show slarge spatial heterogeneities. Hot spots are visible for ju0xj just after
the top of the protuberances due to the generation of a turbulent wake behind the body. ju0zj
remains more homogeneous but presents some high magnitude zones inside the turbulent wakes
but also in front of the beads lying on the top of the bed. Inside the permeable bed the turbulence
activity is negligible and is more likely due to an artefact of the measure. It can be considered
as an indicator of the errors performed on the small velocities by the PIV proceeding giving
�ju0ijsmall � 2 mm=s. The largest velocities at the free surface are subject to higher inaccuracy
owing to the di�culties in measuring displacements at the surface4. It can be similarly observed
by the arti�cial increase of turbulence intensities at the surface in Figures 4.4 � (c3,d3). If
the vertical turbulence intensities are assumed to be zero at the free surface then the observed
�uctuation might be due to the inaccuracy at this altitude giving �ju0ijhigh � 5 mm=s.

For the turbulent stress �t, the trend globally compensates the integrated gravity momentum
�ux (as expected with the momentum balance Equation 4.1 when the dispersive and viscous
stresses are negligible inside the surface layer).

The spatial disturbance �elds ~uz and ~ux shown in Figures 4.4 � (f2,g2) also exhibit large
heterogeneities but contrary to the turbulence intensities these are more likely localised around
the beads than in the wakes (note that the spatial disturbance can be positive or negative which
is not the case for the turbulence intensities). The observation of these disturbance mappings
corroborate the theoretical assumptions made in Chapter 3 on the dispersive shear stress. As
observed in Figure 4.4 � (f2), there are small zones in front and behind the bead where horizontal
velocity is slower. In these zones the vertical velocity is more likely oriented upward. As a result,
the dispersive stress which is calculated by �d =< ��f ~ux~uz >, is more likely to be positive
than negative at the interface (see Figure 4.4-(h3)). Note that, for this �xed laser sheet case,
measurement is constrained in a single slice of the �ow and dispersive stress is negative at the
top of roughness elements. This feature is not observed when averaging is performed on a larger
domain with the PIV-RIMS procedure as observed in Section 2.6.2. Regarding the dispersive
stress mapping in Figure 4.4 � (h2), the positive e�ect on the dispersive stress is both observed
in front and behind the protuberances where the velocity de�cit is important.

Regarding the Figure 4.4 � (h1), the instantaneous dispersive stress does not have an
equivalent instantaneous mapping. Indeed, form induced shear stress is the result of the
multiplication ~ux and ~uz that are already time-averaged quantities.

4The lighting of the surface produce a continuous line with low contrasts as observed in Figure C.1. The 'Good
Feature To Track' algorithm normally suppresses these low contrast features but noise persists in this zone. Also,
the large displacements due to large velocities close to the surface increase the inaccuracy

69



C
hapter

4.
E
xp

erim
ental

procedure

70



2.
V
elocim

etry
and

transverse
scans

Figure 4.4 � From instantaneous to double-averaged quantities. In this con�guration, the laser sheet is �xed at the position ym = 25 mm from the
side wall and recorded the �ow during 20 s. The units for each quantities are given on the left side. The instantaneous measurements are randomly
selected, but each of them is shown for the same instant. For the turbulent stress and dispersive stress, the dotted line shows the integrated
gravity from the surface elevation � g (zsurf � z) i.
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2.5.3 Turbulence statistics

Height measurement points have been positioned to study the turbulence statistics on the
PIV datum with a �xed laser sheet. They are located around a protuberance formed by a glass
bead at the top of the permeable bed as shown in the Figure 4.5-(a). Note that the 3D structure
can be visualized in Figure 4.2 since it is the highest bead of the bed crossed by the laser sheet.
Examination of Figure 4.6 reveals that the turbulence properties show a strong dependence on
the spatial location of the measurement point. This heterogeneity can also be observed in the 2D
time averaged statistics in Figures 4.4 � (a2, b2, c2, d2, e2, f2, g2, h2).

(a) (b)

Figure 4.5 � (a) Points of interest surrounding a bead at the top of the permeable bed for
statistical analysis of the turbulence; (b) evolution of the standard deviation of the empirical

error �e (Ux; t) = 1
n
Pn
i=0

r�
(Ux)iT � (Ux)Ttot

�2
=(Ux)Ttot , where (Ux)iT is the averaged velocity

estimated on n = 700 samples of duration T against the empirical average calculated overTtot = 20
s. The uncertainty is under 10% after 2 s.

If the measurement point is situated above the roughness crest (A1, B1, C1), the turbulence
is spatially homogeneous with a weak intensity. For the points at the roughness crest altitude
(A2, B2, C2), the intensity increases and di�erences between them are observable. Finally, for the
lowest level in the rough layer (A3, C3), the statistics will be spatially drastically di�erent. For
C3, the averaged velocity is close to 0 and the signal-to-noise ratio is therefore very low, whereas
for A3 in front of a bead, the velocities are higher with a high turbulence intensity relative to the
mean velocity. Di�erentiation of the velocity pro�le along the stream according to the presence of
protuberances has been extensively detailed by Mignot et al. (2009b,c), and this dissertation does
not go further into this classi�cation. Here, this brief turbulence statistic analysis is essentially
performed to identify the region where Tu0 is the largest. On Figure 4.5 � (b), an empirical error
on the averaged velocity in the function for the duration of the measure T has been plotted.
The �ow zones corresponding to the point C3 establish the strongest constraint on the desired
continuous scan methodology and we may observe that Tu0 for C3 is in the order of 2 s to obtain
a relative error lower than 10%.

In this con�guration and with Tu0 � 2 s, the more restrictive condition is the inequality (4.3),
because the constraint on the topography Equation 4.2 is largely respected f � 1=Tu0 = 0:5 Hz.
Hence, the maximum velocity of the moving laser sheet required to obtain satisfactory continuous
scan measurements may be estimated by Equation 4.3 at VMLS;max �

Lu
T
u

0
� 2 mm=s if Lu is
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Figure 4.6 � Temporal �uctuations for 8 measurement points as shown in Figure 4.5�(a).
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approximated by d50=2 � 4 mm.

2.5.4 Results of the evaluation

Figure 4.7 � Comparison of estimated pro�les at the position ym = 25 mm with the �xed and the
moving laser sheet methods. The error is thus de�ned by Err (� ) = h(� )MLS � TMA

i x � h (� )F LS i x ,
where � is the velocity pro�le Ux or the turbulent stress � t . TMA is the averaged time or equivalently the
distance D MA framing the position ym . These results show that error is satisfactory for both velocity
measurement and turbulent statistics when TMA � 2s.

Now that an appropriate estimate of scanning velocity has been provided with respect
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to Equation 4.3, the Moving Laser Sheet (MLS) run is performed by �xing VMLS = 2 mm=s.
Figures 4.7 � (a1,c1) provide the time averaged velocity and turbulent stress �elds at the position
ym = 25 mm from the moving laser sheet run. Figures 4.7 � (a2,c2) compare the resulting
pro�les (averaged along x) from the moving laser sheet and �xed laser sheet procedures. A good
collapse is shown between the averaged velocity and the turbulent stress at the position ym of
the laser sheet with both FLS and MLS procedures. The Figures 4.7 � (b1,d1) represent the
absolute di�erences observed between the 2D �eld at ym.

An estimate of error pro�les is obtained by subtracting the velocity and turbulent stress pro�les
of the FLS experiment from those of the MLS experiment at y = 25 mm (Figures 4.7 � (b2,d2)).
Various TMA have been tried and as observed in Figures 4.7 � (e1,e2) The smallest error pro�les
are obtained for TMA = 2 s, which corresponds to the prediction made in Section 2.5.3. If TMA
is smaller or bigger than 2 s (or respectively (or respectively DMA = 1 mm), the error increases.

2.6 Preliminary results from the PIV-RIMS method

2.6.1 3D vizualisation and the side-wall e�ect on the �ow

Having assessed the relative accuracy of the technique by comparing it with �xed laser sheet
methods, di�erent measurements are possible. As a �rst example, the e�ect of the side-wall on
the �ow may be evaluated. Figure 4.8 represents a 3D visualization of the �ow, i.e., the horizontal
component of the velocity represented on the wall of a cuboid that demarcates the 3D region of
interest. The velocity ux increases with y for positions further away from the side-wall. This
increase can also be observed in Figure 4.9 where ux has been averaged along the streamwise
direction x and plotted for di�erent altitudes z0�=0:8. This allows estimation of the region of the
�ow where the side-wall e�ects are negligible (a recurrent problem in the hydraulic experiments)
from a distance of Y = 10 mm (where Y = y�yw is the transverse distance from the wall position
yw). This also demonstrates that measurements at less than 5 mm will be strongly a�ected by
the wall, an observation that raises questions over studies where the measurements are performed
close to the side-wall. These observations provide an a posteriori justi�cation for the use of the
index matching method to explore the �ow at a reasonable distance from the side-wall, and
provide insights for obtaining pro�les that can be used to evaluate the terms of the simple 2D
case of the double-averaged momentum equation in the following developments.

Interestingly. in Figure 4.9, the velocities close to the free surface (z0�=0:8 = 9 mm) and the
wall (Y< 7 mm) are lower than deeper velocities (z0�=0:8 = 2 mm and z0�=0:8 = 4 mm) at the same
distances. This phenomenon may be interpreted in terms of turbulent and dispersive activities
that are stronger close to the bed. These mixing processes actively convect laterally (in the y
direction) momentum from the middle of the �ume to the side wall at these lower altitudes, while
at the vicinity of the free surface this transfer is less active. While I’m know furnishing here
more development focussing on the averaged pro�le in the middle of the �ume, this unexpected
preliminary result constitutes by itself a piece of work for future investigation on the wall e�ect
in �umes.
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Figure 4.8 � 3D visualization of the horizontal velocity (a) Side view of a slab of the velocity �eld
at the �xed laser sheet position ym = 25 mm (the same position as the �xed laser sheet results
above - see Fig 4.4); (b) Frontal view of the �ow, sliced along y. This view allows appreciation of
the side-wall e�ect. Y is the distance from the side wall. Z and X are arbitrary referenced.

Figure 4.9 � Side wall e�ect. The horizontal velocity pro�le has been averaged along the streamwise
direction x and plotted for di�erent altitude z0�=0:8 = z � z�=0:8 as function of the distance from
the sidewall Y.

2.6.2 PIV-RIMS procedure and double-averaged pro�les

The main advantage of the PIV-RIMS methodology consists of averaging of �ow quantities
on an area along the x and y direction as expected in the double-averaging framework. The
‘smooth’ pro�les of the �ow quantities are obtained at the mesoscopic scale in the same way that
the spatially averaged porosity pro�les where computed in Figure 4.2.

The side wall e�ect was found to be negligible at 10 mm from the walls in Sections 2.6.1.
Thus, all the following vertical pro�les in this dissertation are the result of the double-averaging
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method performed in the x and y directions with the laser sheet moving from Y = 10 mm to
Y = 40 mm.

A signi�cant di�erence is observed between the two experimental procedures for the dispersive
stress while the turbulent stress has a close behaviour. With the �xed laser sheet, the averaging
procedure along x does not include the variability in the direction y. However, with PIV-RIMS the
laser sheet moves along y and the pro�les are averaged along x and y containing the variability of
the physical interactions in the transverse direction. Thus, the PIV-RIMS procedure is expected
to provide a better representation of what dispersive stress is at the mesoscopic scale. It allows
the model and the closure developed for the double averaged momentum equation in Chapter 3 to
be compared with the experimental pro�les. Generally, as observed in previous studies (Voermans
et al., 2017; Fang et al., 2018), and further in this dissertation, the dispersive stress at the
mesoscopic scale exhibits a positive trend at the interface with a maximum localized just bellow
the roughness crest (here at the altitude z�=0:8).

Figure 4.10 � Comparaison of the dispersive and turbulent stresses obtained with the �xed
laser sheet (FLS) and PIV-RIMS methodology which relies on the moving laser sheet (MLS)
procedure. In contrast to the �xed laser sheet procedure, PIV-RIMS captures the variability
of the interactions in the transverse direction y. The resulting averaged pro�les are a better
representation of the pro�les at the mesoscopic scale.
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3 Repeatability and uniformity

3.1 Repeatability: the crucial role of bed arrangement

3.1.1 Repeatability at the mesoscopic scale

Two consecutive double-averaged velocity pro�les employing the PIV-RIMS methodology
with equal �ow characteristics (slope and �ow discharge) indicate good repeatability of the
experimental procedure when the bed is not rearranged (see Figure 4.11). Regarding the results
of Secs. 2.6.1 and 2.6.2, the pro�les are averaged between Y = 10 mm and Y = 40 mm to avoid
the sidewall in�uence. This good repeatability is a consequence of the steadiness of the �ow
discharge and the accuracy of the PIV-RIMS procedure.

Figure 4.11 � Comparison between two replicates using the PIV-RIMS procedure with both
having equal bed structure and �ow characteristics. The logarithmic scale facilitates appreciation
of the slight scattering in the subsurface layer.

However, with the mesoscopic averaging lengths (� 8 cm in the x direction and � 3 cm in
the y direction) and the bead sizes (dp � 1 cm) having similar orders of magnitude, there is no
guarantee that the porosity and velocity pro�les will be reasonably close from one run to another
when the bed structure is reset, i.e. rearranged and �atten for a new run. The reproducibility of
experimental results for a rough bed mostly depends on this rearrangement and must be carefully
analyzed.

To this end, ten porosity and velocity pro�les are compared in Figure 4.12. These were
measured with a constant �ow discharge (qf = 0:30dm2=s) and varying slopes ( 1%, 2% and 4%).
Initially, the bed was randomly mixed and �attened with a rule �xing hs = 5 cm. The region
of interest was placed at a distance �g = 90 cm from the outlet (see Figure 4.13, the e�ect of
this distance on the uniformity of the �ow is investigated in the next section). In addition, it
was revealed that slight variations in the slope may have important e�ects on the pro�les. To
include this source of inaccuracy, the inclination is reset before each run. The accuracy on the
slope is about �� � 0:1%, with the relative error being more important for low slopes. Using this
procedure, it was expected that the di�erent sources of inaccuracy could be covered in a few
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runs5 allowing this experimental work to be reproducible.

Figure 4.12 � Reproducibility evaluation with di�erent bed structures. (a) Velocity pro�les
(continuous and dashed lines) and porosity pro�les (dotted lines) for di�erent slopes with a
constant �ow discharge qf = 0:30� 0:015 m2=s. The vertical reference is �xed for the altitude
z�=0:8 where � = 0:8. The modi�ed coordinate is given by z0�=0:8 = z � z�=0:8. (b) Zooming into
the roughness and subsurface surface velocities.

3.1.2 Inter-comparisons: the vertical origin de�nition

Inter-comparisons between vertical pro�les are only possible if a vertical origin is de�ned.
There is no generalized approach to �x this origin for rough beds, and scientists generally select a
measurable vertical position by default. This choice is also highly dependent on the scienti�c

5 the number of runs was limited because of the computational cost

79



Chapter 4. Experimental procedure

�eld. For instance, zrc is a good candidate to obtain reliable values of the von KÆrmÆn constant
� (zrc is generally determined for the altitude where �(zrc) = 0:99 de�ned as z�=0:99 (Pokrajac
et al., 2006)).

Other vertical origins are also considered in the literature. According to Nezu & Nakagawa
(1993) (pp. 25-27) the range of this reference should be about 0.15dp�0.3dp below the top of the
roughness element, while in Mignot et al. (2009b) the average bed elevation is selected. Voermans
et al. (2017) also used the RIM technique to determine the porosity pro�les. For mono-dispersed
bed cases (beads with equal diameters only), they identi�ed an in�ection point in the porosity
pro�les where they �xed the origin. In the present bi-dispersion scenario, no manifest in�ection
point is detectable on individual porosity pro�les.

Thus, di�erent origin levels are arguable in our case. The roughness crest is not a good
candidate as it introduces large scatter between pro�les6. The vertical reference was positioned
in an altitude where less scatter between the porosity pro�les is observed, and was �xed at z�=0:8
(See Figure 4.12). The reference point obtained with this ‘scatter minimization’ is located at
about 0:3 dp from the roughness crest, which is the shift that Voermans et al. (2017) obtained
with the porosity in�ection option and is in the order of magnitude of what Nezu & Nakagawa
(1993) prescribed. This similarity has the advantage of allowing a direct comparison of the results
with the study of Voermans et al. (2017). The Reynolds numbers calculated with this technique
are also slightly di�erent to those estimated with the roughness crest height, as the �ow depth
hf is calculated from a lower altitude.

3.1.3 Scatters in the porosity and the velocity pro�les

In the roughness and surface layers, the porosity pro�les plotted in Figure 4.12 have similar
trends from one experiment to another, with slight di�erences observed at the roughness crest
due to the presence of individual particles on the top. In the subsurface zone (localized at
z0�=0:8 < �0:5dp in all runs) the pro�les show more scatter. This is a consequence of the spatial
limitation of the region of interest. Nevertheless, the porosity pro�le trends agree with the packed
bed porosities �b � 0:4 in regard to the calculated mean porosity from all runs.

3.2 Uniformity: the permeable grid in�uence

At the upstream end, straighteners (honeycomb) stabilize the �ow provided by a constant
head tank, before it runs over the bi-dispersed glass beads (as observed in Figure 4.1 � (a)).
Downstream, a permeable grid lets the �ow seep inside the bed to guarantee an upstream
subsurface �ow in the entire bed height (see the zoom on this part of the �ume Figure 4.13). The
e�ect of the outlet condition, which contains the granular bed, is generally neglected or omitted
in laboratory �umes, whilst it is of primary importance when bed permeability is high.

In this situation, the �uid seeps inside the bed a few centimeters before the permeable grid,
causing a diminution of the �ow depth. Thus, the pressure drop on the permeable grid located at
xg in�uences the whole system: the subsurface �ow increases, and by conservation of the �ow,
reduces the surface �ow. Consequently, the �ow is expected to be non-uniform until it reaches a

6At the mesoscopic scale, z� =0 :99 is highly in�uenced by individual grains slightly higher than the average bed.
It has for e�ect to shift the origin at an inappropriate altitude making inter-comparison between pro�les di�cult.
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bed.

Figure 4.13 � Permeable outlet condition to ensure a subsurface �ow. Measurements must be
performed at a distance �g su�cient to ensure that the boundary e�ect of this condition is
negligible.

certain distance from the outlet �g.

3.2.1 In�uence of the permeable grid on the subsurface �ow

A quantitative estimation of ��g , i.e., the distance from the grid where the ratio between the
surface �ow and the theoretical surface �ow in a uniform situation is � is estimated and given in
Appendix 3,

With the simple Darcy framework, the following relationship has been derived:

��g =

"
qf � �(qf �

Kg
� hsi)

Kg
� hs

� i

#�1
�
hs + dp

�
=2 (4.6)

Numerical application: With �BAE = 3 � 10�6 m2=s, dp = 8mm, the permeability is

estimated with the Karman-Cozeny relation K = �3d2
p

180(1��)2 � 6:32 � 10�8 m2. The sediment
depth is manually �xed at hs = 0:05 m. With i = 2% (the average slope in our experiment) and
� = 0:8, we obtain a distance �0:8

g = 0:68 m.

This approach predicts that the gate has a role at a relatively long distance in comparison
with the �ume length (�2 m). To reduce the outlet discontinuity, a bu�er medium (BM) with a
permeability higher than the subsurface layer (KBM > KSSL) was added at the outlet, to ensure
that the outlet conditions do not reduce the subsurface layer velocities. However, the diminution
of this e�ect does not imply that the e�ect remained negligible. In the following, the e�ect is
estimated empirically to conclude on a negligible role of the permeable gate when �g is su�ciently
large.

3.2.2 Veri�cation of the nearly uniform conditions

To verify the nearly uniform conditions at �g = 90 cm, we executed a set of experiments at
shorter and longer distances from the outlet �g, whereas the previous repeatability tests were
all performed at �g � 90 cm (Figure 4.12). The longest distance is �g =110 cm, and is possibly
in�uenced by the inlet conditions. The shortest distance is �g = 60 cm.
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Figure 4.14 � Velocity pro�les for various �g to evaluate the �ow uniformity in the channel. The
dashed-dotted lines represent the averaged velocity pro�les at �g =90 cm. The error bars show
the deviations from the averaged pro�les due to the modi�cation of bed structure. This amplitude
is to obtain an estimate of the 95% interval where �Ux(z) is the standard deviation at the altitude
z calculated from the pro�les presented in Figure 4.12. The continuous lines are the pro�les
measured at �g = 60 cm and the dashed lines were measured at �g = 90 cm. At bottom right, the
same pro�les are plotted with a logarithmic scale to emphasize the di�erences for low velocities.

In Figure 4.14, an important e�ect of the outlet for �g = 60 cm and for i = 1% may be
observed. In this situation, higher velocities are measured in the surface and subsurface, whilst
the depth is lower than in the mean pro�le at �g = 90 cm. This is in agreement with what is
expected from Equation D.3, where the subsurface �ow increase contributes to a decrease in the
�ow depth. For i = 4%, di�erences between pro�les cannot be statistically attributed to an outlet
e�ect. Indeed, the noise due to the between-run rearrangement of the bed at a constant position
is more important than the di�erence between the pro�les at various distances. This analysis
suggests that a nearly uniform �ow is obtained at �g = 90 cm, as the di�erences between the
pro�les at �g = 110 cm and �g= 90 cm are not statistically signi�cant. The results are presented
in the following analysis, with all the pro�les shown being measured at �g = 90 cm.
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4 Summary of the experimental procedure

As a �rst step, this chapter presented the PIV-RIMS technique that captures the averaged
quantities of turbulent �ows within the double-averaging approach. This technique has been
employed for a turbulent unidirectional �ow over a permeable rough bed. The measurement of
this �ow type necessitates access to the interstitial �ow. Scanning with the isoindex technique
(RIMS) has demonstrated its capacity to obtain reliable porosity pro�les �(z). Coupled with the
PIV processing, the surface and interstitial velocities have been deduced from the image sequences
of the RIMS. The PIV-RIMS methodology minimizes the data storage requirements and duration
of the experiment, but requires the parameters to conform to certain criteria. The velocity of the
moving laser sheet VMLS must be slow enough to extract the spatial and temporal variability
of the �ow. In order to neglect the wall e�ect on the mean �ow the pro�les are obtained by
averaging between Y = 10 mm and Y = 40 mm.

It follows therefrom that the repeatability as well as the uniformity have been carefully
checked. Due to the limited dimensions of the region of interest, it has been shown that the �rst
order e�ect on repeatability is bed rearrangement that highly in�uences mean vertical porosity
structure and, by consequence, velocity pro�les. Nevertheless, this e�ect has been quanti�ed
to be small enough to di�erentiate pro�les at mesoscopic scale with varying slopes. Due to the
permeable grid in�uence at the outlet, uniformity assumption is also subject to question. Distance
between region of interest and outlet positions has been set at �g = 90 cm to obtain satisfactory
uniform �ows.

In next chapter, this technique is employed to provide various vertical pro�les used to explore
shallow water �ows over rough permeable walls.
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5 Experimental results

In this chapter, experimental results on gravity driven �ows over rough permeable beds
are reported. The PIV-RIMS methodology presented in Chapter 4 yielded the double-averaged
vertical structure for �ow quantities such as mean velocity and porosity, as well as the turbulent,
dispersive, and viscous stresses. Here, nine runs following this procedure are depicted with
di�erent �ow characteristics, including two grain sizes, various slopes (0.5% to 8%) and �ow
depths. The pro�les are compared with the experimental work of Voermans et al. (2017), in
which the double-averaging approach was also employed.

The empirical mixing length distributions are shown to be in agreement with the main
discoveries in turbulent open channel �ows, these being the damping e�ect and velocity defect
law. To the best of my knowledge, these well-known open-channel �ow features are here reported
for the �rst time for steep slopes with roughness sizes larger than 0.1 mm.

In addition, the closures presented for the model developed in Chapter 3, which reproduces
the double-averaged vertical pro�les, are tested. Using the model, vertical pro�les are computed
from the various �ow characteristics of the 9 runs and are compared with the measured pro�les.
The agreement between the model and experiment is good. The crucial role of the damping e�ect
on the mixing length distribution is then revealed.

1 Characteristics of the vertical pro�les

The parameters de�ning each experimental run have been listed in Table 5.1. In these runs,
the �ow discharge remains constant while the slope varies from 0:5% to 8% and �ow depth hf
from 5 to 16 mm. To constitute the permeable bed, two bi-dispersed mixes [d1=d2] of borosilicate
glass beads were tested. Each mix consisted of two types of bead sizes in equal proportions by
mass. Thus the median diameter dp was the average of the two bead diameters giving:

� Runs A: [d1 = 7 mm and d2 = 9 mm] dp = 8 mm

� Runs B: [d1 = 13 mm and d2 = 15 mm] dp = 14 mm
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Run A1 A2 A3 A4 B1 B2 B3 B4 B5

Beads mix 50/50 [mm] 7-9 7-9 7-9 7-9 13-15 13-15 13-15 13-15 13-15
dp = d50 [mm] 8 8 8 8 14 14 14 14 14
i [%] 0.5 1 2 4 0.5 1 2 4 8
qf � 103 [m2 /s] 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03
� b � 0.04 0.38 0.38 0.38 0.38 0.4 0.4 0.4 0.4 0.4
hf � 1 [mm] 13 12 10 7 16 14 10 7 5
u� [mm/s] 26 35 45 53 28 37 45 54 61
u� ;V [mm/s] 27 31 37 45 28 30 45 39 45
up [mm/s] 20 28 40 56 26 37 52 75 105
Ub [m/s] 0.26 0.28 0.32 0.37 0.24 0.26 0.28 0.33 0.36
Usurf [m/s] 0.34 0.36 0.41 0.47 0.31 0.34 0.36 0.41 0.43
USSL [mm/s] 1.72 3.43 6.33 9.94 6.52 7.42 12.93 21.65 37.93
Reb 1147 1150 1095 873 1272 1230 952 814 582
Resurf 1507 1494 1409 1116 1649 1583 1230 1009 682
h+ 116 143 154 125 149 172 154 131 98
Rep 4.6 9.1 16.9 26.5 30.4 34.6 60.4 101 177
ReRL 48 66 97 161 199 224 299 381 562
K CK [mm2 ] 0.06 0.06 0.06 0.06 0.19 0.19 0.19 0.19 0.19
ReK 2.2 3.0 3.8 4.4 4.1 5.4 6.6 7.9 9.0
F r 0.92 1.04 1.29 1.79 0.78 0.92 1.13 1.54 1.96

Table 5.1 � Hydraulic parameters for the nine runs. qf is the �ow discharge per unit width, Ub is the surface layer mean velocity, Usurf is the
free surface velocity, u� =

p
ghf i the shear velocity, up =

p
gdpi the particle velocity, USSL the subsurface layer mean velocity, Rep = USSLdp

�

is the particle Reynolds number, ReRL = URLdp
� the roughness layer Reynolds number where URL is the mean velocity in the roughness layer,

KCK = �3
b

180(1��b)
2 d2
p is the Carman-Kozeny equivalent permeability, ReK =

p
KCKu�

� is the permeability Reynolds number, Fr = Usurfp
ghf

is the

Froude number, and u�;V is the shear velocity deduced from the total shear stress, as explained in Section 2
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In all runs, the experimental procedure remained identical to the experimental procedure
presented in Chapter 4. The pro�les were spatially averaged in a volume located in the middle of
the �ume, i.e., between Y = 10 mm and Y = 40 mm, thereby avoiding undesirable wall e�ects
and allowing supposition of two-dimensionality for the �ow. Indeed, the wall e�ect was found to
be negligible for distances of Y > 10 mm from the sidewall in Chapter 4 � Section 2.6.1.

Vertical pro�les for the runs A1 and A3 (dp = 8 mm) are shown in Figure 5.1 to introduce
the vertical �ow structure, i.e., the double averaged velocity, in relation to porosity structure and
stresses.

Figure 5.1 � Vertical pro�les for the runs A1 (i = 0:5%) and A3 (i = 2%) with a constant �ow
discharge. (a) Velocity pro�les: the subsurface velocities are shown with a logarithmic scale on
the abscissa. The thin horizontal error bars represent the uncertainties at the free surface level.
(b) The porosity pro�le. (c) The turbulent stress compared with G de�ned by Equation 5.1; the
turbulent �t, dispersive �d and viscous �v stresses, as well as the total stress �Tot (for run A1 only;
�t = �v + �t + �d). The dashed horizontal lines represent the roughness crest elevation zrc, (i.e for
z0�=0:99 = 0) and the troughs of the roughness element zt. The vertical distance is normalized
by the mass-median-diameter dp and de�ned by z0�=0:8 = z � z�=0:8 where z�=0:8 is the altitude
where � = 0:8.

1.1 Porosity pro�les

The porosity pro�les are shown in Figure 5.1-(b). They are identical for all A runs, as the bed
was not rearranged between runs. As explained previously, the porosity pro�le allows de�nition of
the di�erent layers of the �ow: the roughness layer being located between the roughness crest zrc
and the troughs of the roughness element zt (where � � �b); the surface layer and the subsurface
layer are respectively situated above and below these altitudes. The de�nition of the layers can
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be visualized in Chapter 3 - Figure 3.1.

The origin was �xed at the altitude where z0�=0:8 = 0 to make it convenient to compare
pro�les between runs, in agreement with the discussion in Section 3.1.2 of Chapter 4. While zrc
can be correctly positioned at z0�=0:99 = 0, it is di�cult to identify the position of zt , as the
porosity �uctuates strongly between the roughness layer and the subsurface layer. Indeed, this
position should be at � � �b. Thus, the following arbitrary de�nition was adopted: zt is located
at z0�=0:8 � �0:7 dp. With these values chosen for zt and zrc, the roughness layer thickness is
then approximately dp , since the origin z�=0:8 was found to be 0:3 dp lower than zrc.

1.2 Velocity

Between A1 and A3, the slope increases from 0:5% to 2%. The projection of the gravity force
on the streamwise direction when slope increases a�ects the velocities in the di�erent layers of the
�ow, i.e, in the surface, subsurface, and roughness layers. However, the Ux increment depends on
the layer observed.

As observed in Figure 5.1-(a), subsurface velocities are multiplied by 3.8, while the free
surface velocity is multiplied by 1.23. This di�erence is a consequence of the di�erent natures of
the interactions in each layer. The �ow in the porous media is in�uenced by drag forces, while
the surface �ow is mostly in�uenced by the vertical transfer of momentum by turbulence.

1.3 Turbulent, dispersive and viscous stresses

The turbulent stress �t = �hu0xu
0
zi is plotted in Figure 5.1-(c) and is compared with the total

gravity force between the free surface zsurf and the altitude z. For a unidirectional �ow with
turbulence dominating, the following relationship can be obtained:

G =
Z hsurf

z
�(z) �f g i dz � �t = ��f hu

0
xu
0
zi (5.1)

In other words, the measured turbulent stress at an altitude z compensates for the integrated
gravity forces of the overlying layers of the �ow. As the turbulent stress depends on the
determination of the local turbulence, inaccuracies are expected in this measure. Nevertheless,
the measure shows that the turbulent stress follows the G trend until an altitude roughly located
at z0�=0:8 � 0:3 dp, i.e. more or less the roughness crest zrc. The roughness layer is reached at
lower altitudes and the turbulence stress decreases. The role of the turbulence seems to become
negligible at z0�=0:8 � �0:2 dp for A1 and z0�=0:8 � �0:3 dp for A3. Note that the altitude where
turbulence is negligible TM is lower when the maximum shear stress is higher.

The measured dispersive stress �d = ��f h~ux~uzi , as well as the calculated viscous stress
�v = �f�

dUx
dz , are plotted in Figure 5.1-(c). These 2 stresses are one order of magnitude lower

than the turbulent stress. The e�ects seem negligible, but as explained in Chapter 3, viscosity
may play an important role in the damping e�ect. This e�ect is detailed in Section 3.7 when the
mixing length distributions are studied.
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1. Characteristics of the vertical pro�les

The peak altitudes for turbulent and viscous stresses are situated around the roughness crest
and correspond to the location of the in�ection point of the velocity pro�le. The dispersive stress
peaks are positioned at a lower altitude and correspond to the origin de�ned by z0�=0:8 = 0.
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2 Voermans et al. ’s (2017) measurements and �ndings

Voermans et al.’s (2017) study is a major contribution that employed an experimental
procedure similar to the PIV-RIMS procedure, i.e., it combined RIM and an image velocimetry
technique to measure the vertical �ow structure across the interface. Thus, Voermans et al.’s
(2017) approach in�uenced signi�cantly this result part for the analysis of the vertical structure
presented in Section 3 and provides insights into the interface mechanisms. This study is therefore
regularly cited in this chapter, and this section aims to present the similarities and the di�erence
between this study and my contribution, to clarify further comparisons. Voermans et al. (2017)
suggest a strong link between the permeability Reynolds number de�ned by ReK =

p
Ku�=�,

and the �ow behavior at the interface. Indeed, by comparing the e�ect of the bed shear stress
with the permeable properties of the bed, this number is good indicator of the hydrodynamics at
the interface.

Note that the term Sediment-Water Interface (SWI) employed in Voermans et al. (2017) is
here �xed at an altitude located at z0�=0:8 = 0 1. However, the interface between the surface �ow
and the subsurface is more likely to be a transition region materialized by the roughness layer.
Then, z0�=0:8 = 0 is considered to be equivalent to the SWI, to be consistent with the notation
employed in this dissertation.

In Voermans et al. (2017), experiments were performed for deep and low gradient �ows while
the PIV-RIMS set-up has been built to facilitate adjustment of the bed angle to allow steep stream
conditions to be reached. These experimental conditions produced low submergence conditions
with the presence of a free surface. Consequently, higher surface and subsurface velocities and
stresses were measured, providing ReK

2 values ranging from 2 to 9, while those in Voermans
et al. (2017) ranged from 0.3 to 6. These di�erences in the hydraulic conditions are shown in
Figure 5.2, while the �ow characteristics of the runs of Voermans et al. (2017) are provided in
Table 5.2. Voermans et al.’s (2017) pro�les were provided to me by J.J. Voermans himself. The
subsurface �ows were more important in my experiments because of the increase in the gravity
contribution with steeper slopes.

Case dp KKC u�;V Ub ReK h+

L11 25 0.69 2.78 28 1.71 119

L14 25 0.69 8.09 80 4.97 347

Table 5.2 � Hydrodynamic properties of Voermans et al. (2017) for two experimental cases
describing the vertical structure of �ows adjacent to a packed bed of glass beads.

In the presence of a free surface, the �ow depth estimation is able to provide the shear
velocity u� =

p
ghf i based on a control volume force balance, while Voermans et al. (2017)

employed an alternative de�nition of the shear velocity from the total stress maximum, such as
u�;V = p�Tot;max=�f (where �Tot;max is the maximum of �Tot pro�le as shown in Figure 5.1).
These variations in the de�nition of the shear stress are common in the literature and are a source

1various vertical origin choices exist in the literature. The origin choice employed in this PhD have been
detailed in Chapter 4 Section 3.1.2. The de�nition of the origin is indeed essential for small relative submergence
�ow conditions.

2ReK =
p

Ku � =� is calculated with K given by the Carman-Kozeny formula K CK = �
3
b

180(1 � � b)
2 d2

p
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of confusion, as recalled by Pokrajac et al. (2006) for instance. Since Voermans et al.’s (2017)
paper is a major contribution relating the vertical structure across the interface, their alternative
de�nition of shear velocity was also computed for my data, and is shown in Table 5.1, to allow
comparison between the contributions. This shows that a signi�cant di�erence between u�;V and
u� may appear for low submergence conditions rising the complications for comparing results
with this study.

Despite the di�erence in the hydraulic conditions, most of the observations made by Voermans
et al. (2017) are also applicable to my results. For instance, Voermans et al. (2017) suggested that
the physical behavior of the �ow at z0�=0:8 = 0 may be explained by the value of the permeability
Reynolds number ReK . In particular, they found that a value of ReK � 1� 2 is seen to be an
important threshold when turbulence starts to dominate z0�=0:8 = 0 as opposed to viscous stress.
It is indeed what it is observed in the run A1 having a smaller ReK � 2:2 number where �t > �v.

Moreover, as emphasized by Voermans et al. (2017), all �ows presenting a sediment-�uid
interface seem to possess an in�ectional velocity pro�le. This suggestion is also con�rmed in my
work, as shown in Figure 5.1, and is consistent with Breugem et al. (2006).

Figure 5.2 � Comparison of vertical velocity structures between between Voermans et al. (2017)
and the PIV-RIMS pro�les (this study).

3 Vertical structures

3.1 Mean velocity structure

Vertical velocity pro�les for B runs (dp = 14 mm) are plotted in Figure 5.3 and are compared
with the mean porosity pro�les. Note that the porosity pro�les have a di�erent behavior to those
of the A runs shown in Figure 5.1. For the B runs, bulk porosity is reached for z0�=0:8 � �0:5dp ,
while for the A runs it is around z0�=0:8 � �0:7 dp. This behavior was repeatable, and cannot be
attributed to just a measurement inaccuracy. It re�ects the complex self-structuring of the porous
bed, which depends on various factors (channel width, sediment depth, and relative di�erence
between the bead diameters of the bi-dispersed medium). For the B runs, the evolution of the
velocity with the slope is similar to that described previously for the A1 and A3 runs, i.e., an
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increase in the velocities within the di�erent layers of the �ow. The increase at the surface relies
on the dynamics of the turbulent exchanges at the surface, while the increase in the subsurface
depends on interactions with the porous bed.

Figure 5.3 � Velocity pro�les (continuous) and porosity pro�les (dotted lines) for the B runs
(dp = 14 mm; qf = 0:30m2=s). The mean subsurface velocities Ux;SSL are the depth averaged
velocities between the altitudes z0�=0:8 = �0:5 dp and z0�=0:8 = �1 dp. The order of magnitude of
the inaccuracy of the surface velocities (green error bars) is estimated at 2�Ux;surf � 0:005 m/s.
It is the maximum surface velocity inaccuracy evaluated in Section3.1. The characteristics of
these pro�les are detailed in Table 5.1.

Non-dimensional mean velocity structures are depicted in the semi-logarithmic plots Figures 5.4� (a,b).
Observation of the subsurface layer velocities reveals that the order of magnitude of the non-
dimensional velocities �Ux = Ux=up was between 0.05 and 0.5, the maximum being observed for
run B5, which had a steeper slope and larger bead diameter. These trends are in agreement
with the Ergün equation, which stipulates an increase in permeability when the bead diameter
increases. In Chapter 3 � Section 3.3.2, the Ergün equation was resolved given that �Ux tends
to be towards the asymptotic limit 0.4 when i increases. It is indeed the order of magnitude
observed in the subsurface layer. The evolution of the mean subsurface velocities Ux;SSL as a
function of the slope i and a comparison with the Ergün predictions are studied in detail in
Section 3.2.

In the free surface layer, �Ux follows an opposite trend, i.e. it decreases while the slope
increases. This trend can be explained by the scaling choice with up , since the surface velocities
are more likely to scale with u�. The scaling choice for velocities and length di�ers between the
surface and subsurface variables owing to the di�erent nature of the interactions involved in each
region. A unique and appropriate scaling has not been identi�ed. Table 5.3 summarizes this
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Figure 5.4 � Mean velocity structures for the nine experimental cases, plotted with a logarithmic
scale to emphasize the di�erences at low velocities (a) [A1, A2, A3, A4] (b) [B1, B2, B3, B4,
B5]. The vertical bold line frames the altitudes where the mean subsurface velocity Ux;SSL was
calculated. The horizontal dotted line denotes the roughness crest in the two sets of experiments.

Surface layer Subsurface layer

Flow depth Median grain size
Length hf dp
Velocities u� =

p
ghf i up =

p
gdpi

Non-dimensional
velocities

U 0x = Ux=u� �Ux = Ux=up

Main phenomenon vertical momentum
transfer by
turbulence

drag forces on the
solid walls

Table 5.3 � Summary of the di�erent length scales associated with the subsurface layer and
the surface layer. At the interface, the roughness layer does not have a speci�c scale, but is a
combination of these two scales.

duality problem.

For the scaling pro�les, an arbitrary choice between the bead diameter and the �ow depth
must be made, depending on the layer of interest. At the interface between the surface and
subsurface layer, i.e., in the roughness layer, the involved interactions are a complex combination
of the phenomena observed in the adjacent subsurface and surface layers. The scaling choice for
the roughness layer cannot therefore be clearly stated.
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3.2 Measured subsurface velocities and Ergün equation

The subsurface velocities were directly extracted from the vertical pro�les by de�ning the
subsurface region roughly between the elevation z0�=0:8 � �1:7dp and z0�=0:8 � �0:7dp for dp = 9
mm and z0�=0:8 = �0:4dp and z0�=0:8 = �dp for dp = 14 mm (the rough vertical positions where
the velocities were extracted are shown in Figure 5.4). Points were extracted from the A and B
runs, but other runs were also considered, to take into account the variability in the measurement
due to the di�erent bed structures (the runs presented in Section 3.1 of Chapter 4 for example).

The Ergün equation and the linear term called the Carman-Kozeny equation are de�ned by:

fpart!fluid
�fg�

= i =

Ergün
z }| {

AE
(1� �)2�
g�2d2 Ux;SSL

| {z }
Carman�Kozeny

+BE
(1� �)
d�

U2
x;SSL (5.2)

The measured velocities in relation to the most common porous media laws are shown in
Figure 5.5 for the A runs and Figure 5.6 for the B runs. Although large variation is observed in the
low subsurface velocities owing to variabilities in the bed con�guration, the linear Carman-Kozeny
equation is adapted for low Rep. For higher velocities, i.e. Rep > 20, the linear relationship is
no longer valid. This result justi�es the use of a non-linear porous media equation to describe
the subsurface velocities of steep streams. However, although the Ergün law is appropriate for
predicting the quadratic trend, it is not clear which grain size scale would represent this trend.
According to these measures, the Ergün equation calculated with the lower grain-sizes is a better
candidate for a high Reynolds number. This result is to be expected, because in porous media,
the smallest particles characterize the pore sizes (�ne particles occupy the large pores and reduce
the permeability).

As expected, in a large grain size situation, the velocities in the subsurface layer are higher.
The particle Reynolds number reached 175 for the higher slope 8% and the Carman-Kozeny
estimation was no longer valid for the 2% slope case.

3.3 Turbulence structure

The normalized turbulence intensities in the vertical and streamwise directions, as well as
the normalized turbulent stresses, are shown in Figures 5.7 � (a,b,c) for A runs.

In Figures 5.7 � (a,b), turbulence intensities in the streamwise and vertical direction increase
from the free surface to the interface, with a maximum being localized to between the roughness
crest and z0�=0:8 = 0.

Various universal expressions for turbulence intensities have been provided in the past. For
smooth walls, Nezu & Nakagawa (1993) popularized the semi-empirical relation for hku0xki=u�
and hku0yki=u� giving:

�
hju0xji=u�

�

theo
= 2:3 exp(�(z � zb)=hf ) (5.3)
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Figure 5.5 � Measured subsurface velocities in a bi-disperse media D = 7� 9 mm for 17 runs.
Various bed structures and slopes (i = 0:5� 4%) were tested. The data are compared with the
linear Caraman-Kozeny law (dashed line) and the Ergün law (dashdotted line) calculated with the
median grain diameter (dp = 8 mm) and the measured averaged bulk porosity (�b = 0:39). The
top axis is scaled with the particle Reynolds number Rep = Ux;SSLdp

� . The light-red ‘�ll-between’
curve represents the upper and lower limits of the Ergun law with dp = 7 mm and dp = 9 mm
respectively. The continuous line is a �tted Ergün law giving AE;exp = 172 and BE;exp = 3:28.

�
hju0zji=u�

�

theo
= 1:27 exp(�(z � zb)=hf ) (5.4)

with zb being the distance from the smooth bed. These curves are plotted in Figures 5.7-(a,b)
with z � zb arbitrarily given by z0�=0:8, although this vertical origin choice cannot be considered
as universal for rough beds. The trends of this semi-empirical relationship correspond to the
observed trends, with good orders of magnitude for all the experimental distributions. However,
the measured turbulence intensities are systematically lower than the predicted ones. This
behavior for steep streams was previously observed by Nezu (1977), and later for steep-slope open-
channel �ows by Tominaga & Nezu (1992), where a more complex expression for the turbulence
intensity distribution was suggested. These alternative expressions take into consideration the
fundamental role of the van Driest damping e�ect. The similarities with the measured turbulence
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Figure 5.6 � Measured subsurface velocities in a bi-disperse media (D = 13=15) mm for 11
runs. Various bed structures and slopes (i = 0:5 � 8%) were tested. The data are compared
with the linear Caraman-Kozeny law (dashed line) and the Ergun law (dashed and dotted line)
calculated with a median grain diameter of (dp = 14 mm) and the measured averaged bulk
porosity (�b = 0:35).

intensity pro�le suggests that the van Driest damping e�ect also plays an important role in
reducing turbulence near a rough bed. Hereafter, the in�uence of the damping e�ect will be
detailed when studying the mixing length distribution.

At the roughness crest, similarities for obstructed shear �ows were popularized by Ghisalberti
& Nepf (2009), giving (hju0xji)zrc=u� � 1:8 and (hju0zji)zrc=u� � 1:1. Here, the measured
streamwise turbulence intensities hju0xji)zrc=u� were slightly lower than 1.8, exhibiting values
between 1.5 and 1.7. The values of the vertical intensities (hju0zji)zrc=u� were about 0.7, while the
expected similarity value was about 1.1. The normalization with u� to obtain these similarities
again raises the problem of the choice of u� , with multiple variants for its de�nition existing
in the literature for rough open channel �ow. To obtain the expected similarities provided
by Ghisalberti & Nepf (2009), Voermans et al. (2017) was forced to modify the shear velocity
de�nition (initially de�ned by u�;V ) . However, the authors also found values of 0.5-0.7 for
(hju0zji)z�=0 :8

=u� , which are consistent with my observations at z�=0:8. While the modi�cation of
u� may provide the similarity expected by Ghisalberti & Nepf (2009), I argue that the damping
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Figure 5.7 � Bulk temporal and spatial statistics for A runs (A1, A2, A3, A4) normalized with the
shear velocity u� with varying slopes: (a) streamwise and (b) vertical turbulence intensity. The
dashed lines are semi-theoretical curves for the turbulence intensities given byNezu & Nakagawa
(1993) (Equation 5.3 and Equation 5.4) (c) Turbulent stress with dotted lines representing G
normalized by � u2

�;(d) streamwise and (e) vertical disturbance intensities; (f) dispersive stress.
The green dashed and dotted lines are the pro�les L11 and L14 measured by Voermans et al.
(2017)

e�ect is an essential component for explaining the lower turbulence intensities, and must be
taken into consideration for both my hydraulic conditions and those of Voermans et al. (2017).
Indeed, in both experimental works the velocities at the interface were low, and the local Reynolds
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Figure 5.8 � The turbulent stress structures for two di�erent shear stress de�nitions and a
comparison with Voermans et al. (2017) data

number took values in the order of magnitude of Rl = O(100) , which is the order of magnitude
of the van Driest Reynolds number, as explained in Chapter 3 Section 2.4. In other words, the
similarities provided by Ghisalberti & Nepf (2009) may not be valid for �ows where the damping
e�ect still plays an important role at the roughness crest.

The maximum of the normalized turbulent stress was found to range between 0.5 and 1, in
agreement with most antecedent studies (Nikora et al., 2001; Mignot et al., 2009a; Voermans
et al., 2017). A systematic decrease of the hu0xu

0
zi=u

2
� peak with the slope i and with ReK can be

noticed. This behavior con�icts with the results of Voermans et al. (2017), where an increase in
the non-dimensional turbulent stress with ReK was observed. Again, the normalized shear stress
was crucially linked with the de�nition of u� , and this decrease may be the consequence of the
shear velocity being de�ned by u�;V . As can be observed in Figure 5.8, while the normalization
by u�;V modi�es the amplitudes of the turbulent stress, the maximums continue to decrease while
ReK increases.

Another feature of low submergence conditions is also brought to light: in the A3 and A4
runs, the altitudes of the turbulent shear stress peaks are localized below zrc. In general, it is
observed that the measured maximums tend to penetrate the permeable bed when ReK increases.
At these lower levels, the drag forces are likely to increase and play a growing part in the total
shear stress; this might explain the relative diminution of the turbulent stress.
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3.4 Disturbance and dispersive stress

The normalized horizontal and vertical disturbance intensities (hj~uxji=u�, hj~uzji=u� ), as well
as the dispersive stress pro�les h~ux~uyi=u

2
� , are shown in Figures 5.7 � (d,e,f) for the A runs and

are compared with the runs L11 and L14 of Voermans et al. (2017). The normalized pro�le shows
similarities with the measurements of Nikora et al.’s (2001), where a maximum is found for each
pro�le at altitudes below the roughness crest. As for L11 and L14, the vertical positions of the
maxima for hj~uxji and hj~uxji are distinctly di�erent, with the distance between the maxima being
about 0:5dp. However, when compared with L11 and L14, the absolute elevations of the peaks
in the A runs are shifted downwards. For L11 and L14, the peak for hj~uxji and the dispersive
stress h~ux~uyi= coincide with zrc , while for the A runs the dispersive stress exhibits a local
minimum at zrc. For the A runs, the maxima of h~ux~uyi= are positioned at z0�=0:8 = 0. These
disturbance intensities and dispersive stress features for the A runs seem to coincide with the
numerical simulation performed by Fang et al. (2018), where the peaks for hj~uxji and hj~uxji are
also positioned below the roughness crest.

3.5 Dispersive stress: parametrization and experimental pro�les

3.5.1 Comparison between the closure and experimental dispersive stress pro�les

In the course of Chapter 3, a closure for the dispersive stress �d = ��f �heuxeuzi was achieved
from mechanistic arguments in Section 2.2. The expression is given by:

�d = �f �

s
1� �(z)
1� �b

�+

 

1�

s

1�
1� �(z)
1� �b

!

U2
x (5.5)

Here, this closure is tested on the empirical dispersive stress pro�les. Equation 5.5 requires
the experimental velocity Ux and the porosity � pro�les as inputs. Additionally, the parameter
�+ , which represents the fraction of the �uid volume where the cross product ~ux~uz is positive,
must be �xed. With �+ = 0:3 , the behavior of the pro�les can be determined.

Thus, the assumptions made in Chapter 3 to obtain this closure, which is built on an
interdependence between the local disturbances and the averaged porosity, allow these pro�les to
be reproduced, and will therefore be introduced as a closure in the 1D model.

3.6 Complete and approximated formulae

An approximation of the dispersive stress was suggested in Chapter 3, and this approximation
is valid for a porosity close to 1, i.e. just below the roughness crest, giving:

�d � 1=2�f ��+

�
1� �(z)
1� �b

�3=2

U2
x(z) (5.6)

In Figure 5.10, it can be observed that the 2 closures give very similar pro�les. Thus, the
two formulations seem appropriate for modeling the dispersive stress at the interface of the rough
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Figure 5.9 � Experimental dispersive stress distributions in comparison with the closure
Equation 5.5 .

permeable bed.

3.7 Mixing length distribution

Measured mixing length distributions across the interface have not been previously described
in the literature. This section is therefore devoted to presenting the structure of these pro�les
and the similarities with previous investigations and discoveries on deep �ows.

3.7.1 Methodology to compute the mixing length distribution

Two methods are regularly employed to determine the mixing-length distribution:

1. The �rst evaluates the local turbulent stress u0xu
0
z from the local velocity �uctuation to

obtain a mixing length expression by:

l�m =

q
�hu0xu

0
zi

dUx
dz

(5.7)

2. The second method considers that the turbulent stress dominates in the surface layer and
approximates the turbulent stress term by �hu0xu

0
zi � G = g (h� z) i.

The second method presents the clear advantage that it is independent of the turbulent
measurements that usually show large variability; it has been employed several times in the past
(e.g. Nezu & Rodi (1986); Revil-Baudard et al. (2015)). However, the mixing length values
thereby deduced are not valid when the �ow is in�uenced by the bed, i.e., where other forces
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Figure 5.10 � Measured vertical dispersive stress pro�les from the closure Equation 5.5 in
comparison with the simpli�ed closure Equation 5.6

compensate the gravitational contribution, such as drag forces, form induced stress, or viscous
stress. For instance, in the measured turbulent stress pro�les shown in Figure 5.1, the turbulence
stress does not compensate the gravity action bellow the roughness crest. Thus, the mixing
length determination with this second method is not valid inside the roughness layer while the
turbulence continues to play a critical role.

Here, the turbulent stress measurements are accurate and coincide with G. Thus, by directly
solving Equation 5.7 using the turbulence measurements, the �rst method can be used to obtain
an estimation of the mixing length distribution in the roughness layer. This method was employed
to deduce the mixing length distributions for �ows over vegetated canopies in Ghisalberti & Nepf
(2004). The mixing length distributions are traditionally normalized by the �ow depth hf (or
equivalently the shear layer thickness in Ghisalberti & Nepf (2004)), as was performed for the
pro�les shown in Figure 5.11.

3.7.2 Surface layer and mixing length

For the surface layer (i.e. for z > zrc), the collapse between the measured lm=hf pro�les is
good. This is encouraging with regard to the use of the mixing length approach to model the
vertical mixing length distribution.

This distribution is similar to that previously depicted by Nezu & Rodi (1986). In particular,
the measure shows that the mixing length does not follow the traditional Von KÆrmÆn linear
trend lm = �z � 0:4 z and must be di�erently parameterized . Above z0�=0:8 = 0:7hf the mixing
length decreases as the surface is approached. For (A1, A2, A3, B1, and B2) the decrease seems to
show a trend towards zero at the free surface. This decreasing trend is known, and was previously
linked to the velocity defect law e�ect described in the literature (Coles, 1956; Nezu & Rodi, 1986).
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Figure 5.11 � Depth-normalized distribution of the mixing-length evaluated from Equation 5.7.
[Left] A runs (dp = 8 mm); [Right] B runs (dp = 14 mm).

Furthermore, near the roughness crest zrc , the increase in the mixing length is not linear, but
increases progressively. This second behavior is also known and is associated with the damping
e�ect. All the pro�les exhibit a local maximum within the roughness layer between the roughness
crest and z0�=0:8 = 0. This local maximum, as well as the global behavior of the mixing length
pro�les, coincides with the observations of Ghisalberti & Nepf (2004).

In Figure 5.11, two theoretical curves that are commonly employed to model the mixing
length phenomena in open-channel �ows are plotted. These mixing length distributions are the
results of (Coles, 1956) and (van Driest, 1956) contributions. It introduces a velocity defect law
(called the Coles wake function) and a turbulence damping e�ect. Thus, according to Nezu &
Rodi (1986), the mixing length distribution lm is given by:

lm = hf �
q

1� z0�=0:8=hf

�
hf

z0�=0:8
+ �� sin(�

z0�=0:8

hf
)
�

� (5.8)

where

� = 1� exp
�
�u�z

0
�=0:8

� 26

�

is the van Driest damping function (presented in Chapters 2 and 3) and � is the Coles parameter
expressing the strength of the wake function (more details are available in Nezu & Rodi (1986) or
in Pope (2001) [pp- 305-308]). Note that the distance from the wall is here given by z0�=0:8 , while
the reference is not clearly established for rough permeable walls. Nevertheless, a comparison
between the mixing length pro�les and theoretical curves is possible. The introduction of the
damping e�ect and the wake function coincides with the measured data for the A runs. For
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3. Vertical structures

Figure 5.12 � Mixing-length distribution evaluated from Equation 5.7 in the roughness layer.
[Left] The A runs (dp = 8 mm); [Right] the B runs (dp = 14 mm). The continuous line represents
the best �t in the roughness layer, i.e. between the roughness crest and a level slightly below
z0�=0:8 = 0:001 mm

modeling purposes, this example shows the importance of developing closures where the mixing
length distribution depends on the damping e�ect and the velocity defect law.

While the observations were similar in the B runs, the similarity with the theoretical curves
is less clear, and larger variability is observed around the theoretical curves. It is also observable
that the curve is shifted upwards, thereby suggesting that z�=0:8 is not an appropriate origin
for the B runs. The di�culty in �xing an origin for the two di�erent diameters suggests that
this reference cannot be universal for a rough permeable bed, and will depend on the turbulence
penetration length in the rough permeable bed. This turbulence penetration length depends
mainly on the roughness size characterizing the wakes around protuberances. It also depends on
the subsurface velocities, since the damping e�ect depends on the local velocity in the roughness
layer, as discussed in Chapter 3 � Section 2.4. In this section, the following closure was developed:

l�m = �ZvD

 

1� exp

 

�
p
ZvDUx(z)=�
RevD

!!

+ CvD lp (5.9)

where the distance ZvD is equivalent to the traditional distance from the bed z and is de�ned
by:

ZvD = z � zt =
Z z

�1

s
�(z)� �b

1� �b
dz (5.10)

It seems important to recall that the ZvD de�nition does not require an arbitrary origin via
the integration procedure. Inspired by Li & Sawamoto (1995), this strategy has already been
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employed in Maurin et al. (2016) for bed load transport modeling, and it also seems appropriate
here, in the context of a non-mobile bed.

Equation 5.9 was constructed with a dependence on the porous length scale lp from the right
term CvD lp. This dependence is depicted in the following section.

3.7.3 Roughness layer and mixing length

In the roughness layer, considerable variability is observable in Figure 5.11. This is the
consequence of an inadequate normalization with the �ow depth, since the turbulence scale is
more likely to be controlled by the geometries of the protuberances in this region (as summarized
in Table 5.3). According to Figure 5.12, the normalization with the porous length scale lp(dp; �) =
Vv
Av

= �bdp
6(1��)

as de�ned in Chapter 2 � Section 2.1.3 appears to be an appropriate scaling choice
for the roughness layer. Indeed, the eddies are more likely to scale with the pore sizes than with
the diameter of the beads.

In Equation 5.9, l�m is equal to CvD lp when porosity reaches the bulk porosity �b. Thus, the
proportionality constant CvD was evaluated by averaging l�m values from the vertical position
z0�=0:8 = 0 to z0�=0:8 = �0:7dp.

For the A and B runs, these averaged CvD values are 0.56 and 0.46 respectively. The value
0.5 in then used in following development when the model is compared with the measurements in
Section 4.

It is clear that Equation 5.9 is not intended to model all of the complexity of the mixing
length distributions. Two main experimental observations are not considered in this model:

� The maximum in the empirical mixing length cannot be retrieved with Equation 5.9, since
the mixing length is monotically increasing in this model.

� The velocity defect law is not taken into account.

This simpli�ed model for the mixing, together with the di�erent closures developed in
Chapter 3, are tested on the experimental runs in the next section.

4 Numerical 1D model and experimental results

In Chapter 3, di�erent closures were suggested to parameterize the terms of the double-
averaged momentum equations. The Ergün equation was employed to close the viscous and pressure
drag forces and the usual parameterizations of AE = 180 and BE = 1:75 were evaluated as good
candidates for the measured subsurface velocities in Section 3.2. A closure for the dispersive
stress was also obtained based on mechanistic arguments, and the experimental dispersive stress
was tested with �+ = 0:3 in Section 3.5. For the mixing length, it has been established that the
‘wake’ factor CvD should be equal to 0.5 in Section 3.7.3, while the van Driest Reynolds number
RevD has not yet been parameterized.

Having identi�ed the di�erent parameterizations, the following section aims to compare
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the numerical 1D model with the measured vertical pro�les. Details of the model and various
simulations have already been provided in Chapter 3.

The following parameters were employed in the model for all runs:

hs [cm] AE BE �+ RevD CvD
5.0 180 1.75 0.3 70 0.5

Here, contrary to the simulations performed in Chapter 3 with synthetic porosity pro�les,
actual measured mean porosity pro�les are entered into the model. Moreover, the 1D vertical
model requires a value for the altitude hf as an input. The strategy employed was to obtain hf
such that the simulated �ow discharge qf;mod was equal to the experimental �ow qf;exp discharge.
In this situation, the model requires a loop to simulate several scenarios with speci�c hydraulic
conditions until qf;mod = qf;exp. Importantly, the vertical reference has been imposed at z�=1
since the reference z�=1 is only useful to compare pro�le with di�erent bed structures.

4.1 Reference parametrisation

In Figure 5.13, the di�erent vertical pro�les of the A3 run are shown, i.e., the velocity
Ux, the porosity �, the dispersive �d, turbulent �t, and viscous �v stresses, the mixing length
lm , and the drag forces fv and fP . Details on the organization of this �gure were given in
Chapter 3 � Section 3.2.2, where synthetic pro�les where simulated and analyzed.

The agreements between the observed velocity, stresses, and mixing length and those predicted
by the model are satisfactory. The viscous and pressure drag forces (fP and fv) were only modeled,
as they were not actually measured.

Similarly, the A and B runs were described in Appendix E. They also all show good agreement
with the pro�les, thereby con�rming that the model is able to reproduce velocity pro�les for
di�erent �ow characteristics. However, the velocity is generally under estimated, an e�ect that is
more visible for low slopes and could be related to the inaccuracy of the measured slope. Indeed,
this underestimation is most important in the 0:5% pro�les, where the slope is possibly higher
than expected with consideration of the maximum shear stresses.

In this model, RevD was �xed at 70 for all runs to obtain the best collapse with the measured
mixing length pro�les in the di�erent runs. Interestingly, it is also the van Driest Reynolds
number suggested by Krogstad (1991) for rough surface conditions. Note that this value is also
highly dependent on the de�nition of ZvD , as well as whether the velocity defect law in the
surface layer is considered.

Nevertheless, the mixing length parameterization Equation 5.9 seems appropriate for
predicting both the behavior in the roughness layer via CvD , and that in the surface layer.

4.2 Damping e�ect in�uence

This section aims to visualize the importance of the damping e�ect in the simulation.
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Figure 5.13 � Simulations with damping e�ect and experimental pro�lesfor the run A3(i = 2%,
dp = 8 mm). Vertical pro�les of (a) velocity, (b) porosity, (c) turbulent �t, dispersive �d and
viscous �v stresses and (d) pressure and viscous drag forces. The mixing length lm is also ploted
with reference axis at the top.. The vertical origin is set at z�=1.The origin could be set at z�=0:8
like the previous graphs which compared pro�les with di�erent bed structures. However, there is
no need to compare pro�le since only one run is tested to compare with the simulation.

106



4. Numerical 1D model and experimental results

Figure 5.14 � Pro�le simulation for the run A3 (i = 2%, dp = 8 mm) without the damping e�ect.
Vertical pro�les of (a) velocity, (b) porosity, (c) turbulent �t, dispersive �d and viscous �v stresses
and (d) pressure and viscous drag forces.

In Figure 5.14, the damping e�ect was neglected so that the mixing length Equation 5.9 was
simpli�ed to obtain:

l�m = �ZvD (5.11)

With this assumption, it can be observed in Figure 5.14 that the mixing length is overestimated
at the roughness. This over estimation increases the modeled vertical momentum exchange because
of turbulence at the roughness crest, and results in an underestimation of the velocities in the
surface layer.

While consideration of the damping e�ect was shown to correctly reproduce the mixing
length distribution in Section 3.7, its critical role has also been demonstrated here. Indeed, the
damping e�ect is responsible for reducing the turbulent viscosity when the local Reynolds number
is low enough. As a result, the velocities in the surface remain high with this e�ect.
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5 Summary of the experimental results

In this Chapter, the measured pro�les produced by the PIV-RIMS procedure have been
depicted. When the slope is increased, the velocity magnitude responds in a manner coherent
with what is expected, i.e., an increase in velocities in the subsurface, roughness, and surface
layers. The turbulent stress measurements are also coherent with the linear trend expected when
turbulence dominates in the surface layer.

Two mixtures of bi-dispersed beads were tested, with these showing that higher median bead
sizes result in higher subsurface velocities. The measured subsurface velocities for increasing
slopes followed the trend expected by the Ergün equation, and demonstrate the fundamental role
of the quadratic term. As a result, the Ergün equation was found to be a good candidate for
modeling drag and viscous forces.

The vertical pro�les for velocities, turbulence intensities, and turbulent stress showed close
similarities with the observations of Voermans et al.’s (2017) , despite di�erences in the hydraulic
conditions due to the steeper slopes. These similarities are: the presence of an in�ectional point
for the velocity; the dominant role of the turbulence stress at the roughness crest for ReK > 2;
and similarities between the turbulent intensities.

However, comparison with the semi-theoretical curve for the turbulence intensities shows
that the prediction systematically over predicted the turbulence. This suggests that the damping
e�ect could play a non-negligible role in reducing the turbulence intensities and the mixing length
in and above the roughness layer.

Similarities with Voermans et al. (2017) were also observed for disturbance and dispersive
stress. Among the various similarities, the dispersive stress also exhibits a maximum localized at
z0�=0:8 = 0 just below the roughness crest. The trend in the dispersive stress is well reproduced
by the assumptions made in Chapter 3 to produce the dispersive stress closure with �+ = 0:3.

The mixing length distributions were also computed from the turbulent stress measures and
showed good agreement with the semi-empirical model popularized by Nezu & Rodi (1986). This
shows the importance of the van Driest damping e�ect, as well as the velocity defect law, in
modeling of the mixing length pro�le.

Having described and justi�ed the relevance of the di�erent closure choices made in Chapter 3,
the model was tested on the hydraulic conditions of runs A and B. Good agreement between
theoretical pro�les and mean pro�les was observed with the model parameters staying equal,
although the simpli�ed model suggested for the mixing length showed a di�erent trend in the
roughness layer. Indeed, mixing length exhibits a local minimum close to the roughness crest and
decreases at the vicinity of the free surface. This observation was systematic in this experimental
work and has also been observed in a previous contribution studying obstructed shear �ows
with higher permeable medium (Ghisalberti & Nepf, 2004). Regarding this similitude, the
semi-empirical mixing length function could be improved in order to reproduce more faithfully
this trend.
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6 Real case scenario and mountain
river monitoring

In the Introduction chapter, a picture of the Navizence river was presented in Figure 2.1,
and this is depicted at di�erent scales in Figure 6.1. This mountain river is regularly monitored
by a UAV (Unmanned Aerial Vehicle, commonly known as a drone) that takes aerial images.
The drone pictures or videos allow con�dent evaluation of the hydraulic conditions from real
case scenarios. For example, an array of pictures of the river can be used to reproduce a highly
resolved Digital Terrain Model (DTM) with a vertical accuracy of �10 cm. This DTM can then
be employed to deduce the local river slope. In addition, pictures of the river may provide insights
on the bed materials and their size distribution. With aerial videos, stream surface velocities can
be deduced using the same image velocimetry algorithm employed for the PIV-RIMS procedure
presented in Appendix B. These di�erent procedures providing slopes, grain sizes, and free surface
velocities of the stream from drone aerial images are presented in Appendix F.

This last chapter presents measurements from a real case scenario and explains some of the
mechanisms with the help of the model developed and tested in this manuscript. The hydraulic
conditions are collected from aerial drone image sequences of a Region Of Interest (ROI) of the
Navizence. The objective is to describe the order of magnitude of the �ow characteristics in a
real-case scenario, and evaluate the applicability of the 1D model developed in Chapter 3 to
predict �ows. These predictions are then discussed, and raise the problem of how to de�ne �ow
depth, and by consequence also bed shear stress, in these shallow waters. These quantities are
fundamental, since the manner in which they are de�ned may explain the trends of fundamental
hydraulic equations such as the �ow resistance or the critical Shields number.
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Figure 6.1 � Location of the region of interest (ROI) (a) At the valley scale, the river drains a
glaciated alpine catchment. The monitored zone of the river is situated up stream of the Zinal
gauging station. (b) Aerial ortho-photography at the kilometer scale. (c) ROI for the free surface
velocimetry measurement. The principal channel is separated into two smaller channels, and from
upstream to downstream, the slope varies sharply from � 4:5% to � 8:2%. (d) Side view of the
ROI in the digital terrain model, the presence of a truck provides an appreciation of the elevation
accuracy of the DTM for slope estimations. (e) At the grain scale, the grain size distribution is
measured in the bed in a dead arm of the river. The red disks represent the equivalent surface
area of the stones. (f) The grain size distribution on 148 stones provides an estimation of the
median grain size diameter D50;b=0.58 m. Details on the procedure to obtain the river slope
from the DTM and grain size distribution are given in Appendix F.2 and F.3
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1 From surface velocity to �ow depth

1.1 Site, slope and grain size distribution

As shown in Figs. 6.1 � (a,b,c), the region of interest is located 2-km upstream of a gauging
station that continuously measures the �ow depth and discharge. This ROI is also represented by
the red rectangle on the digital terrain model in Figure 6.1 � (c). At this site, the slope varies
sharply. The technical procedure to obtain the slope and grain-size distribution of the bed are
detailed in Appendix F.2 and F.3 and summarized below.

� Slopes were directly measured on the digital terrain model. At the intermediate scale,
spatial heterogeneities in the �ow are observable. The main channel has a slope of i � 4:5%.
In the middle of the ROI, the main channel is split into two smaller channels, both having
higher slopes of i � 7:8% to i � 8:5%.

� Grain size measurements were obtained on a dead arm proximal to the running water
(see Figure 6.1- b. The grain-size distribution in this region is larger than the grain-size
distribution on the bank, and is more likely representative of the grain-size distribution
under the �ows. The mass-median diameter is given by D50 = 0:58 m.

1.2 Velocities

Using the same image velocimetry algorithm employed for the PIV-RIMS methodology in
Chapter 4, the velocities at the surface of the river can be obtained from aerial videos. The
image velocimetry procedure is described in Appendix 1, and the velocity �eld is shown in
Figure 6.2 � (a). In Appendix 1, the coherence between the measured surface velocities and
the discharge measured at a gauging station was veri�ed. The total width of the downstream
transect is given by the addition of the two small channels W12 = W1 +W2 � 8� 1 m, and for
the upstream main channel the width is W3 = 7 � 7� 1 m. In Figure 6.2 � (b), the upstream
velocities are much higher than the downstream velocities, despite an increase in the slope. The
widening of the channel decreases the water depth and the velocities.

1.3 Depth and relative submergence estimation

The �ow depth h is usually deduced from knowledge of the bulk depth averaged velocity Ub,
the bank width W , and the discharge Qtot, by employing the following equation:

h�b =
Qtot
UbW

(6.1)

The star subscript on h�b identi�es the �ow depth deduced from this equation using the
discharge. In Equation 6.1, computation of h�b requires an estimate of the depth averaged velocity
Ub deduced from the free surface velocity measurement Usurf . The ratio of these two velocities
de�nes what is usually called the velocity coe�cient � = Ub=Usurf . This value is commonly set
at 0.85, but no consensus on this coe�cient is available for steep streams (Dramais et al., 2011).
This value is highly dependent on the relative submergence, as shown by Welber et al. (2016).
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Figure 6.2 � (a) Free surface velocity �eld obtained from image processing of the aerial videos.
Three transects were positioned on the ROI to obtain an estimation of the variation of the
velocities along the stream. (b) Surface velocity pro�les are given for three transects Oy;1, Oy;2,
and Oy;3.

The river discharge is continuously measured at the Zinal gauging station. Surface velocity
measurements from aerial drone videos were performed at 12:00 h, giving Qtot = 7�0:5 m3=s. The
time precision is important, owing to the diurnal melting cycles shown on the 24 hour hydrograph
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in Appendix F. With the ROI being located 2-km upstream of the gauging station, the total
discharge is expected to be lower. However, the tributaries that feed the river between the ROI
location and the gauging station are much smaller than the main river, and these contributions
can be considered as negligible in the �rst order.

The bulk �ow depth h�b is then calculated by Equation 6.1 with � = 0:85. This bulk value
is employed to deduce a bulk submergence S�b = h�b=dp. The equivalent �ow depth for the
downstream separated channels (Oy;1 and Oy;2) is provided by the following equation:

h�b;12 =
Qtot�

Ub;1W1 + Ub;2W2
� (6.2)

Hydraulic conditions and results of the computation for bulk quantities are summarized in
Table 6.1.

Transect i [%] dp [cm] W [m] Usurf [m/s] Ub [m/s] h�b [m] Reb S�m
Oy;1 8:5 % 58 3.7 1.62 1.37 0.51 6:2� 105 0.89Oy;2 7:8 % 58 5.8 1.66 1.41
Oy;3 4:5 % 58 6.0 3.03 2.57 0.45 11:6� 105 0.76

Table 6.1 � Hydraulic properties in the 3 transects Oy;1, Oy;2 and Oy;3. The bulk quantities H�b ,
Reb, and S

�
m are combined quantities for the downstream transects Oy;1 and Oy;2.

Surprisingly, the bulk �ow depth estimation for transect Oy;3 denoted h�b;3, is lower for
the upstream region than for h�b;12, despite the slope increase. This results in the bulk relative
submergence being higher for the downstream transects, while observations suggest the opposite
trend. These computed values could be attributed to errors in measurement of the bank width or
the surface velocities. However, it must be emphasized that evaluation of the bulk �ow depths
using Equation 6.1 and Equation 6.2 is di�erent from hf . hf represents the surface layer thickness
above the top of the roughness element, while h�b integrates �ows from the surface with those in
the permeable bed layers.

This real case scenario example illustrate the problem of de�ning a �ow depth for such
systems, where a signi�cant part of the �ow is �owing through the permeable bed, i.e., the
roughness layer and the subsurface layer. The 1D model developed in Chapter 3 is therefore
useful to clarify the proportions of �ux in the di�erent layers.

1.4 Simulation of velocity pro�les

In this section, 1D pro�les solving the double-averaged momentum equation are computed
from the model developed in Chapter 3 with the parametrizations given in Section 3.2 of Chapter 3.
In these simulations, the sediment depth is equal to the median grain size and the porosity pro�le
is simulated by employing the procedure in Section 3.1 of Chapter 3 with a cosine function, giving
�(z = �dp) = �b = 0:4

Two simulations are generated and are shown in Figure 6.3 and Figure 6.4, representing the
pro�les for upstream i � 4:5% and downstream i � 8:2% conditions respectively (the slope for
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the downstream conditions is the averaged slope of transects 1 and 2). The grain size diameter
employed for the simulation is dp = D50 = 58 cm. The strategy for simulating these pro�les is the
same as that employed in Chapter 5 to simulate the vertical pro�le corresponding to the PIV-RIMS
experimental pro�le, i.e., by iteration to reach the discharge per unit width qf . Here, the discharge
for the downstream and upstream conditions are computed by qf;12 = Qtot=(W1+W2) = 1:17 m2=s
and qf;3 = Qtot=W3 = 0:73 m2=s respectively.

Figure 6.3 � Pro�le simulation for the upstream condition i = 4:5%. Vertical pro�les of (a)
velocity, (b) porosity, (c) turbulent �t, dispersive �d, and viscous �v stresses, and (d) pressure and
viscous drag forces with mixing length on the top abscissa.

Examination of the simulated drag force pro�les in Figure 6.3 - (d) and Figure 6.4 - (d) and
the stresses reveals that the viscous e�ects are completely negligible for these hydraulic conditions.
However, according to the closure developed in Chapter 3, the simulated dispersive stress seems
to play a non-negligible role.

These modeled pro�les are coherent with the measurements. The simulated surface velocity
for the upstream condition corresponding to the transect Oy;3 is 2.6 m/s, while the measurement
gave an averaged velocity of 3.0 m/s. Similarly, for the downstream conditions, the simulated
surface velocity gives 2.39 m/s, while the measured mean surface velocity was about 1.6 m/s in
transects 1 and 2, with the maximum observed being about 2.2 m/s in Figure 6.2 - (b). Thus,
the simulated surface velocities are within the same order of magnitude, which is a �rst step in
evaluating the coherence of the model for simulation of �ows in real-case scenarios.

With reference to the di�erences observed between the downstream and upstream regions, the
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Figure 6.4 � Pro�le simulation for the downstream conditions i = 8:2%. Vertical pro�les of (a)
velocity, (b) porosity, (c) turbulent �t, dispersive �d, and viscous �v stresses, and (d) pressure and
viscous drag forces with mixing length on the top abscissa.

surface velocity is lower for the upstream conditions than for the downstream region, where the
slope is larger. This di�erence is also in agreement with the �eld observations. The simulated �ow
depths hf;m;3 = 29:3 cm and hf;m;12 = 10:4 cm are lower than the bulk �ow depths deduced from
the discharge h�b;3 = 51 cm and h�b;3 = 45 cm, and follow an opposite trend. Indeed, the resulting
relative submergence values Sm;3 = hf;3=dp = 0:50 and Sm;12 = hf;12=dp = 0:18 coincide with a
reduction in the relative submergence when the slope increases from upstream to downstream.
This con�rms that the bulk submergence S�m is inadequate to evaluate the real submergence in
mountain rivers.

Encouraged by the coherence of the model, the next section of this Chapter will be devoted
to presenting �ow resistance predictions from the model in relation to traditional �ow resistance
equations.

2 Depth and �ow resistance formulas

The 1D model was employed to simulate vertical pro�les with various hydraulic conditions:
6 �ow depths, 4 grain sizes, and 3 slopes were tested to perform N = 6 � 4 � 3 = 72
simulations. Each simulation is a combination of these di�erent hydraulic characteristics, i.e.,
dp = [0:002; 0:01; 0:1; 1]; hf = [0:001; 0:01; 0:1; 1; 3; 8]; i = [0:001; 0:005; 0:05]]. Then, pro�les
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were simulated using grain sizes and �ow depths varying over 3 orders of magnitude from the
millimeter to meter scales, thus providing various relative submergence conditions. The slope
was varied from 0:1% to 5%, to cover �ows from lowland to mountain river environments.

From these simulations, the bulk velocity Ub is given by the depth averaged velocity between
the surface and z = �dp=2 (here z = 0 corresponds to the roughness crest altitude).

Classical friction laws were compared with the simulated pro�les. In Figure 6.5, the non-
dimensional ChØzy coe�cient given by C = Ub=

p
ghi is plotted against the relative submergence.

h is the �ow depth, which is computed di�erently in the literature. Since the beginning of
this manuscript, h has been given by hf , which is the thickness of the surface layer above the
roughness crest, although other �ow depth de�nitions are generally employed in the �eld. Indeed,
because of the complications in evaluating the �ow depth in mountain streams, determination
of this length may be the source of the variation between the measurements and the estimates
deduced from the empirical laws.

For this example, two other de�nitions were selected: h0f = hf + dp=2 and h�f = qf=Ub. h
0
f

provides an idea of the upper limit of the �ow depth that can be measured by applying classical
rules to mountain streams, while h�f = qf=Ub is the �ow depth estimated from the discharge.
This last de�nition is the most common de�nition employed in mountain streams (Rickenmann
& Recking, 2011) or laboratory �umes with small submergence conditions (Prancevic & Lamb,
2015). To be consistent, the relative submergence de�nitions also change with the �ow depth
de�nition, giving Sm = hf=dp, S

0
m = hf=dp and S�m = h�f=dp.

The classical laws selected for the comparisons are the ChØzy-Eytelwein law

C = 16;

the Strickler law
C = 24(h=dp)

1=6=g1=2;

the Keulegan law
C = 1=0:4 ln (12 � h=d);

and the Rickenmann & Recking (2011) law

C = 4:41 (h=dp)
1:9 (1 + (h=dp=1:3)1:6)�1:08 (6.3)

The backgrounds behind the ChØzy, Strikler, and Keulegan laws were given in detail in
Chapter 2. The law of Rickenmann & Recking (2011) is a logarithmic matching equation calibrated
on 2890 �eld measurements.

Note that h=dp in each equations may be one of the three de�nitions of the submergence
given above:Sm = hf=dp, S

0
m = hf=dp and S�m = h�f=dp.

Each of the 72 simulations have been represented by symbols on Figure 6.5: ’triangles’ are
plotted using hf de�nition, ’stars’ h0f and ’plus’ h�f . Experimental points from the procedure
detailed in Chapter 5 have also been plotted and represented by ’circles’.

Figure 6.5 shows that the simulation and classical laws give similar orders of magnitude

116



2. Depth and �ow resistance formulas

and that their trends coincide. It con�rms that under various hydraulic conditions, the model is
coherent with most empirical laws, such as those of ChØzy, Strickler, or Keulegan.

For high relative submergence �ows (Sm > 10), the simulated points do not show substantial
variability between the �ow depth de�nitions. This is a consequence that dp is negligible with
respect to hf and h0f = hf + dp=2 � hf . For low relative submergence conditions (Sm < 10),
variability is more important, re�ecting the importance of the �ow depth de�nition. It is not
surprising to see that the curve given by Rickenmann & Recking (2011) is between the h0f (plus
symbols) and qf=Ub (stars) points. Indeed, this equation was calibrated on �eld measurements
where the �ow depth is determined from these procedure and is generally higher than the distance
between the surface and the roughness crest.

Experimental points symbols and ’triangle’ h�f are more likely following the Keulegan law.
This trend appears to be coherent since Keulegan law was calibrated with the �ow depth
corresponding to the surface layer thickness.

With a submergence higher than 102, the trend of the points does not seem to follow the trend
of the Keulegan or Strickler laws. Interestingly, this observation was also found by Rickenmann
& Recking (2011). While these authors suggest that this behavior might be a consequence of
dunes or antidunes (comment on Figure 1 of the mentioned article), the model suggests that this
trend is the result of the underlying physical processes of an open channel �ow with high relative
submergence.

It also suggests that the friction law tends to show a limit more or less corresponding with
the ChØzy-Eytelwein coe�cient C � 16, and questions the use of the Keulegan or Manning
Strikler law for �ows with relative submergence higher than 102.
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Figure 6.5 � Simulations from the 1D model in terms of the non-dimensional ChØzy coe�cient
C versus relative submergences Sm = hf=dp, S

0
m = hf=dp or S�m = h�f=dp. Three di�erent �ow

depth de�nitions are tested, represented by three di�erent symbols, as detailed in the legend.
The size of the symbols are a function of the grain-size, and their color is an indicator of the
slope. Experimental points from Chapter 5 are represented by circles and calculated with hf .
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3 Consequences for the critical Shields stress

3.1 Preamble

To close this last chapter, the critical bed shear stresses were investigated with the 1D model.
As mentioned in the introduction, the bed is traditionally assumed to become mobile when
hydrodynamic forces on grains, evaluated through the bed shear stress, cross a de�ned threshold.
Indeed, observations revealed that the low sediment transport rates exhibit a transition to rapid
growth rates when the bed shear stress increases.

This transition allows the de�nition of a non-dimensional bed shear stress threshold, also
called the critical Shields stress, which is given by:

�th =
�b;th

(�s � �f ) g d
=

�f hf i
(�s � �f ) d

(6.4)

�b;th is the critical bed shear stress that is generally given by �f g h i. By varying the discharge,
the �ow depth h where the critical bed shear stress is reached is calculated. As mentioned above,
the �ow depth h can be estimated by various methods, i.e., from direct measurement or by
deduction from discharge and velocities.

Investigations of compiled �eld and open-channel �ume data sets show that �th increases
with bed slope, while rationally, gravitational contributions should reduce it (Lamb et al., 2008;
Recking et al., 2008). Interestingly, these two investigations on large data-sets were published the
same year as a very similar power function calibrated on �eld data:

�th;Lamb = 0:15 i0:25 � �th;Recking = 0:13 i0:24 (6.5)

More recently, di�erent authors have investigated the role of subsurface �ow interactions
with the surface �ow (Maurin et al., 2018; Lamb et al., 2017). While both articles neglected
the lift e�ect, the authors suspected that this e�ect could play a crucial role in the process of
sediment transport. This hypothesis is plausible, as both the porosity and velocity gradients are
high at the interface between the surface and subsurface �ows. However, these studies illustrate
the fundamental role of the turbulence in explaining incipient motion on steep slopes.

This section will therefore estimate the role of the lift force, as well as the turbulence, in
explaining the trend in the critical Shields number according to the slope.

3.2 Mechanistic model and methodology

To obtain critical Shields stress, the approach is similar to Recking (2009) or Lamb et al.
(2008). It is realized in terms of the force balance on individual grains. However, contrary to
these two previous contributions, the grain subject to the forces is not positioned above the
roughness crest, but is one of the particles constituting the rough permeable bed, as shown in
Figure 6.6. Thus, the particle is positioned at the vertical coordinate zp, i.e. at a distance dp=2
below the roughness crest. The determination of the velocity structure at the mesoscopic scale
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.

Figure 6.6 � Force balance on a grain situated at the top of the permeable bed. FD, FM, P, FB
and �N are the forces due to drag, lift, weight, buoyancy and friction, respectively. V is the
instantaneous velocity vector, and ux = Ux + u0x the instantaneous magnitude along x

by the 1D model allows an approximation of the averaged velocity around this particle to be
obtained, to allow an estimation of the hydrodynamic forces to be deduced.

The drag force was computed by the expression of Dallavalle:

Fd =
�
8
�f d

2
�

0:63 + 4:8 (
p
�=(ux d)

�2
u2
x (6.6)

It must be emphasized that the velocity �elds around grains at the roughness top exhibit
high spatial heterogeneities, and it is therefore di�cult to simplify the mechanism to a drag
force given for an individual sphere. Moreover, this force should be estimated by taking into
consideration the hindrance e�ect, as was presented in Chapter 3 with the use of a voidage
function (see Di Felice (1994) for details).

However, as a �rst attempt to estimate the critical Shields stress, the simplest approach
adopted, i.e., by neglecting the hindrance e�ects and by estimating the bulk force at the middle
of the grain.

Because velocity varies sharply from the top of the grain to the bottom, the circulation of
the velocity and by consequence the lift force is expected to play an important role. Indeed, lift
e�ect is due to the circulation of the velocity around the grain: this is in fact a manifestation of
the Magnus force 1.

According to Petit et al. (2012), the lift force FM in a unidirectional �ow can be expressed

1The term `Magnus force' is traditionally employed when the circulation of the �uid is the consequence of the
rotation of the object. Since the calculation the force from the �uid circulation with or without the rotation of the
object is identical, some authors (Petit et al. , 2012) also refer to the term `Magnus force' to deal with the lift force
due to the �uid circulation in any situation.
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by:

FM = �fV � � � ex = ��fux(zP )
Z

C
v � dl � �CM�f

�
8
�ux(zP ) (v+(t)� v�(t)) d2 (6.7)

where � =
R
C v � dl is the circulation along the contour (C). In a simpli�ed approach �

reduces to the di�erence between a top and a bottom velocity that are v+ and v�. CM is generally
given as 0:5.

The weight in the x direction is given by:

Px = �s
4
3
�R3gi = �s Vp g i (6.8)

with Vp the volume of the sphere. The buoyancy force is given by FB = Vp �fg and the
normal force is thus N = Py � FB � FM , with Py = �sVpg cos(atan(i)) � �sVpg the projected
weight on y. Knowing the friction coe�cient �, the friction force is then computed by:

Ff = �N = �(Py � FB � FM ) (6.9)

For a given hydraulic condition, the estimation of the critical Shields number is obtained
when the total forces in the stream wise direction Px+FD exceed the friction force Ff that permits
the onset of motion. In the algorithm, this procedure is made by iteration until Ff �Px�FD � 0.
With this condition reached, the �ow depth h required to estimate the critical Shields number
in Equation 6.4 is computed in 3 di�erent manners: with the surface layer thickness hf , with
h0f = hf + dp=2 and with a method based on the conservation of mass by computing

hsf = (qtot � qSSL)=Usurf (6.10)

where qSSL is the subsurface discharge. This method diverges slightly from h�f = qtot=Usurf
employed in the above section investigating �ow resistance equation. hsf de�nition has been
employed in the experimental work Prancevic & Lamb (2015) who veri�ed the increase of the
critical Shields stress with slope and compared experimental results with Equation 6.5. This
study found a good agreement and published details on the procedure. Thus, the following section
consists to simulate the runs of this study.

3.3 Simulations and critical shear stress estimations

The following Table 6.2 summarizes the hydraulic conditions that were tested with the 1D
model to yield h with the three di�erent de�nitions described above, i.e., hf , h

0
f and hsf . These

simulated runs utilized the hydraulic parameter involved in one of the sets of Prancevic & Lamb
(2015).
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Run i [%] dp [mm] hsf;exp [mm] Ssm �s
th

1 3.3 15 26.8 1.75 0.04
2 5.8 15 21.1 1.41 0.05
3 9.8 15 16.0 1.06 0.063
4 11.9 15 15.6 1.04 0.075
5 14.0 15 14.2 0.94 0.08
6 17.1 15 12.9 0.86 0.09
7 21.6 15 11.3 0.75 0.01
8 23.6 15 11.4 0.76 0.11

Table 6.2 � Hydraulic conditions of the Prancevic & Lamb (2015) runs. Flow depth was estimated
by Equation 6.10. The relative submergence Ssm and critical Shields stress �s

th are calculated
with h = hsf;exp.

Three types of processing have been performed:

1. The �rst set neglected the lift force introduced by Equation 6.7 and did not consider
turbulence.

2. In the second set, the lift force was introduced but the turbulence remained neglected.

3. In the third set, the turbulence is introduced while the lift force is neglected.

4. In the fourth set of runs, the lift force and turbulence were introduced. The manner in
which the turbulence was parametrized is detailed in the corresponding section.

3.3.1 Without lift force and without turbulence

As a �rst test, lift and turbulence are neglected, i.e., FM = 0 and ux = Ux.

In these conditions, it is observed in Figure 6.7 that the predicted Shields stress is much
higher than is usually measured in the �eld, i.e., the trend provided by the calibration curve on
the �eld data of (Recking et al., 2008) and the experimental points of Prancevic & Lamb (2015).
The critical Shields stress is relatively stable and �uctuates between 2 and 3. It is clear that
these values are too high, and that the origin of this shift may be due to other interactions such
as the lift force or turbulence.

3.3.2 With lift force and without turbulence

With the introduction of the lift force, an additional vertical force must be considered. This
has the e�ect of diminishing the vertical component and reducing the friction force, and by
consequence the critical Shields stress. In Figure 6.8, �th it is about 0.4, and decreases down
to 0.1 for larger slopes. The di�erent de�nitions of �ow depth do not signi�cantly in�uence the
trends. However, the values commonly measured are not yet reached, except for high slopes. The
introduction of the turbulence to explain the onset of motion may improve the coherence with
the measured values.
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Figure 6.7 � Critical Shields number versus slope simulated from the hydraulic conditions of
Prancevic & Lamb (2015) (see Table 6.2). Without turbulence and without lift forces (FM = 0
and ux = Ux).

Figure 6.8 � Critical Shields number versus slope simulated from the hydraulic conditions of
Prancevic & Lamb (2015) (see Table 6.2). Without turbulence and with lift force (FM given by
6.7 and ux = Ux)
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3.3.3 With turbulence and Without lift force

Figure 6.9 � Critical Shields number versus slope simulated from the hydraulic conditions of
Prancevic & Lamb (2015) (see Table 6.2). With turbulence and without lift force (FM given by
6.7 and ux = Ux)

Many papers have investigated the statistics of turbulence in relation to the sediment
entrainment threshold, and have suggested a signi�cant role in the particle momentum balance
(See Paintal (1971); Schmeeckle et al. (2007); Lamb et al. (2008); Prancevic & Lamb (2015), for
instance). The idea behind these studies is that the instantaneous velocity �uctuates and can be
temporarily much higher than the mean velocity around particles. As measured in Chapter 4
and 5, turbulence penetrates into the permeable bed, i.e. around particles. Measurements show
that at the roughness crest, turbulence intensity pro�les scale with the shear velocity, to reach
a maximum of hju0xji � 1:5u� near the roughness crest for streamwise intensity (See Figure 1.7
of Chapter 3). However, it has also been shown that the damping e�ect is crucial with the
hydraulic conditions of the set-up (Reb = O(1000)). When the damping e�ect is negligible, Nezu
& Nakagawa (1993) suggested that for a smooth bed, hju0xji � 2: u� near the wall. However,
it must be emphasized that the turbulence intensity is obtained by calculating the standard
deviation, and higher instantaneous velocities may be observed. To obtain higher velocities,
the probability density functions of the turbulence �uctuations in Figure 4.6 of Chapter 4 are
instructive. While no theoretical probability density function was �tted, one can observe that the
maximum of the velocity is limited, and that extreme sweep events rarely exceed the standard
deviation.

Thus, as a �rst attempt to include the turbulence in the model, the following arbitrary choice
will be used to represent the velocity magnitude that might temporarily dislodge a grain. The
velocity ux is given by Ux + 2u� on the bead position zp. The factor 2 is not fundamental to
explain the following results, similar trends were observed with factors varying from 1 to 3.

124



3. Consequences for the critical Shields stress

By introducing the turbulence, the trend of the critical Shields stress shown in Figure 6.9
is similar to the trend of the previous set (turbulence and no lift). However, it does no explain
the increase of the Shields number when slope increase. To have a complete overview, we must
combine the two e�ects: turbulence and lift force.

3.3.4 With turbulence and lift force

Figure 6.10 � Critical Shields number versus slope simulated from the hydraulic conditions of
Prancevic & Lamb (2015) (see Table 6.2). With turbulence ux = Ux + 3u� and lift force (FM
given by 6.7 and ux = Ux). Note that compared to the above Figure 6.8, the limits for the �th
axis have been changed

Here, contrary to the previous simulations, Figure 6.10 shows an increase in the critical
Shields stress calculated with slopes and by de�ning the �uid depth by h0f and hsf . This result
corresponds with the weel documented experimental results ofLamb et al. (2008) and Recking
(2009). Moreover, the �ow depth de�nition also seems to be of primary importance, since the
Shields stress calculated with hf systemically provides a decrease. The observed values range
from around 0.03 to 0.06 for slopes of about 20 %.

A comparison of Figure 6.8 and Figure 6.10 suggests that both the lift force and the turbulence
e�ect might play a critical role in explaining the onset of motion mechanisms. The lift force alone
allows a substantial reduction in the critical Shields number, of about one order of magnitude.
Additionally, the increasing trend seems to be closely related to the turbulence in�uence, since the
more the relative submergence is important, the more the turbulent intensity at the roughness
crest is important.
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4 Conclusions on mountain river monitoring

In this chapter, the surface velocities from a mountain stream were collected by an image
velocimetry technique yielding �ow depth and relative submergence. Inconsistencies have been
raised between the calculated relative submergence and �eld observations. To explain these
values, vertical pro�les were generated from the 1D model developed in Chapter 3 and tested in
Chapter 5.

These simulations showed that the modeled vertical pro�les are consistent with the �eld
observations, giving stream surface velocities of the same order of magnitude. These modeled
pro�les suggest that the �ow depth hf , de�ned by the thickness of the surface layer, is much
smaller than the �ow depth h�f estimated from the �ow discharge, by a factor of approximately 2
in these conditions, i.e., a small relative submergence and i between 4% < i < 8%.

Owing to the di�culty in measuring �ow depth, h�f is generally employed to calibrate �ow
resistance and critical Shields stress estimations for �eld and laboratory �umes. It must be
emphasized that with small relative submergence conditions, the �ow depth estimated by this
technique complicates the interpretation of these empirical equations. This e�ect becomes more
important for low relative submergence conditions. Furthermore, it has been shown that for
a high relative submergence, the non-dimensional ChØzy number tends to a maximum that is
coherent with the ChØzy-Eytelwein calibration and experimental points provided by Rickenmann
& Recking (2011), while it diverges from the Keulegan prediction. More investigations are
required to evaluate the underlying processes behind these trends.

Lastly, the evolution of the critical Shields stress with the slope has also been investigated. A
simple force balance model on a grain allows the threshold of entertainment to be predicted. It is
suggested that both turbulence activity and the lift force due to the �uid circulation around the
grain (sometimes also called Magnus force) have an important e�ect on the value of this threshold.
Moreover, the increasing trend seems to be related to a decrease in turbulence intensities when
the slope increases in agreement with Lamb et al. (2008) suggestions. Again, the �ow depth
determination is also critical, and may explain the large variability found in the literature for
sediment transport predictions when �ow exhibit small relative submergence.
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7 Conclusion and outlook

The object of this thesis was to develop and test a model for predicting the vertical structure
of turbulent �ows in mountain rivers. To this end, the double-averaging concept applied to open
channel �ows formed a fundamental tool and served for the construction of a 1D model, as well
as for the interpretation of experimental results.

With this procedure, closures for the double-averaged momentum equation applied to an
open-channel �ow over a permeable rough bed were devised in Chapter 3. This 1D model relies
fundamentally on the spatial averaging procedure at the mesoscopic scale producing a continuous
porosity pro�le. In a simpli�ed approach, three layers can be identi�ed by the porosity pro�le,
with these being the subsurface, roughness and surface layers. While the subsurface and roughness
layers constitute the underlying permeable bed, the surface layer begins at the top of the roughness
element and ends at the stream surface. The roughness layer is a critical transition region where
porosity varies sharply. Across the interface, hydrodynamic processes rely both on drag forces
from protuberances and turbulent boundary layer mechanisms. Double-averaged momentum
equation produced terms that required closure, including drag forces, and three stresses: the
turbulent, dispersive, and viscous stresses.

To test this model, an experimental procedure capturing �ows over a rough permeable
medium was devised and presented in Chapter 4. Owing to the complications of measuring
interstitial �ows in the roughness and subsurface layers, a methodology coupling refractive index
matching with particle image velocimetry was developed. This methodology was called PIV-RIMS
in this study. The isoindex �uid used was a mixture of Benzyl-Alcohol and Ethanol, and �owed
over centimetric glass spheres in a narrow �ume with small relative submergence conditions and
steep slopes (0:5 % < i < 8 %). Contrary to previous studies employing the isoindex technique to
measure �uid velocities (?Voermans et al., 2017), the density ratio between the glass and �uid
was higher. This characteristic was essential for reaching steep slopes with the glass spheres
staying at rest while still being free to move. With the PIV-RIMS procedure, the medium was
scanned yielding instantaneous velocities in three dimensions. Averaging over time and space
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within the double averaging procedure allowed the mean velocity and stresses to be computed.

In Chapter 5, nine runs employing the PIV-RIMS procedure and yielding vertical �ow
structures in various hydraulic conditions were depicted. The slopes varied from 0.5% to 8%, the
grain sizes from 8 to 14 mm, and the relative submergence from 0.3 to 1.6. The measurements
obtained show the coherence of the velocity pro�les and turbulence statistics with previous
investigations on open channel �ows (Nezu, 2005). Fully turbulent �ows were observed when
experiments were performed at intermediate Reynolds numbers, i.e., Re = O(1000). In these
conditions, the viscous e�ect is expected to play a critical role. This e�ect relies not simply on the
viscous stress, but more importantly on the van Driest damping e�ect, which states a reduction of
turbulence near the wall when the local Reynolds number is small. Furthermore, velocity defect
law e�ect is observed near the free surface. As far as I know, these two open-channel �ow features
are here exhibited for steep slopes in small relative submergence conditions for the �rst time.

The closures of the 1D model developed in Chapter 3 were devised with insights obtained
from experimental results.

Drag forces in the permeable bed were predicted by the Darcy-Ergün equation. This equation
is commonly employed for �ow predictions in a homogeneous permeable medium. Devised for
a high Reynolds porous �ow, predictions made with the Darcy-Ergün equation coincide with
subsurface velocity measurements. The Darcy-Ergün equation is also coherent with drag force
predictions in the roughness layer, where velocity and porosity are higher near the roughness
crest.

Classical turbulent stress, based on the Prandtl mixing length theory, was also adapted to the
double-averaging approach. Although the mixing length classically requires a �xed reference in
open channel �ows, this reference is not clearly materialized with smooth porosity pro�les. The
alternative mixing length function, including the van Driest damping e�ect, is then computed
from the porosity pro�le without the need for a vertical reference.

While dispersive stress has received experimental and numerical attention this last decade
(Mignot et al., 2009a; Dey & Das, 2012; Voermans et al., 2017; Fang et al., 2018), it has
never achieved a closure. Then, I developed an expression for the dispersive stress based on
mechanistic arguments. The trend of this modeled stress is coherent with previous dispersive
stress measurements and those of this study presented in Chapter 5.

In Chapter 6, I analyzed �eld-data from a real-case scenario on the Navizence mountain
river. Stream surface velocities, grain size distributions, and slopes where deduced from drone
aerial photography. This information served to understand the complications underlying the
�ow depth and bed shear stress predictions with small relative submergence conditions. The
consistency between �eld stream surface velocities and 1D model predictions was established. The
model shows that an important part of the �ow passes through the roughness layer in mountain
rivers, and suggests that the �ow depth deduced from the discharge does not represent the
thickness of the surface layer. Finally, the trend of the classical �ow resistance and critical Shields
stress equations were investigated. The variability observed for low submergence conditions
suggest that de�nitions of �ow depth must be clari�ed when a speci�c formulae is employed.
The increase observed for the critical Shields stress versus slope is coherent with our simulation
if the turbulence activity as well as the lift force due to the �uid circulation around the grain

128



(sometimes also called Magnus force) are considered in the force balance on a single grain.

Additional experimental or theoretical investigations for attaining a better understanding of
�ows over permeable rough beds were identi�ed for future research:

� Experimentally, the PIV-RIMS procedure measured stream-wise and vertical components of
velocity. The procedure can be improved to allow the third component to be obtained, by
coupling it with a tomographic PIV technique, or by simply rotating the laser sheet. With
knowledge of all the components, a better resolution of the wakes around protuberances
might be obtained, and this could explain the mechanisms responsible for mixing length
distributions.

� From experiments, the role of the velocity defect law was also revealed. This e�ect has not
yet been incorporated in the model, and it might improve the prediction of vertical pro�les.

� In Chapter 3, the non-universality of the von Karman constant has been identi�ed to be
a consequence of the inadequate log-law framework when relative submergence is small.
By comparing thoroughly existing experimental data sets with the 1D model a clearer
explanation of this non-universality may be revealed.

� The double-averaged momentum equation could also be studied more closely to pair terms
of the equation with the permeability Reynolds number (ReK =

p
Ku�
� ). To go further, by

simplifying this equation and employing methodologies such as the perturbation method,
it would be possible to produce a function respecting the behavior of the velocity pro�le
across the interface. This function could eventually replace the logarithmic approach that
produces confusion in low relative submergence conditions. A low relative submergence is
indeed a ubiquitous feature of mountain rivers.

The 1D model solving the Navier-Stokes equation at the mesoscopic scale has only been
tested for unidirectional �ows over static granular beds, but insights on the vertical structure
may also improve sediment transport models in turbulent conditions. For instance, it may be
implemented in classical Euleran-Eulerian models where both solid and �uid phases are resolved
continuously (Revil-Baudard & Chauchat, 2013) or for simulations that combine the Discrete
Element Method (DEM) with a continuous description of the �uid (Maurin et al., 2015). It can
also be adapted to recent approaches employing Material Point Method (MPM) (Gao et al.,
2018). These diverse approaches gain attention from computer graphics researcher as well as
from practitioners due to their ability to model complex scenarios with the �uid equations being
averaged at the mesoscopic scale to reduce computational cost.
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A Double-averaging methodology

1 De�nitions

1.1 Time averaging

Considering any quantity � describing the �ow (the pressure p, or the velocities, for instance),
the time-averaging procedure is de�ned as:

�(x; y; z) =
1
T

Z

T
� dt (A.1)

In �ow measurement issues, attention must be paid to this procedure. The duration must be
large enough to obtain the time averaged velocity as well as the turbulence statistics. Due to
the spatial heterogeneity of some �ows, the �uctuations due to turbulence vary at di�erent time
scales depending on the location of the measure. For instance, to obtain an accurate time average
velocity in the roughness layer, the duration is about 1 second for my experiment (see Chapter 4).

1.2 Space averaging

The super�cial spatial averaging on a volume V0 with time averaged quantity is de�ned as:

h�is =
1
V0

ZZZ

V0

� dV (A.2)

The intrinsic spatial averaging procedure on the volume occupied by the �uid Vf is de�ned
as:

h�i =
1
Vf

ZZZ

V0

� dV (A.3)
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The porosity is de�ned by Vf
Vt

= � and we obtain the logical relation h�is = � h�i.

Because of the strong gradients in �ow properties in the vertical direction in open-channels,
it is convenient to de�ne the area averaging over a plane parallel to the mean bed as:

h�iA0 =
1
A0

ZZ

A0

< � >�z dxdy (A.4)

Volume averaging and plane averaging procedure are similar if the volume averaging domain
V0 is designed to form a thin slab of height �z parallel to the averaged bed. In the following, I
will always consider this con�guration, and we may write h�iA0 = h�i(z). This is a quantity that
is only dependent on t and z.

With these considerations, any instantaneous �ow variable may be composed in a manner
similar to a Reynolds decomposition:

�(x; y; z; t) = h�i(z) + e�(x; y; z) + �0(x; z; t); (A.5)

where e�(x; z) is the local deviation against the averaged variable h�i, a quantity that can be
estimated by e�(x; z) = � � h�(x; z; t)i.

1.3 Spatial averaging theorem

The spatial averaging theorem is one of the most employed theorems for multiphase �ows
Jackson (2000). His mathematical background is available in (Howes & Whitaker, 1985) and
results in the following formulation :

h
d�
dxi
is =

dh�is
dxi

+
1
Vtot

Z

Sint
�ei � ndS (A.6)

Where xi (i=1,2, and 3) demotes to the directions x, y and z and ui corresponds to the
velocity components ux, uy and uz. n is the inwardly directed unit vector normal to the solid
element surface, Sint is the extent of the water-bed surface bounded by the averaging domain.

Or equivalently, when we work with the intrinsic quantities:

h
d�
dxi
i =

1
�

d�h�i
dxi

+
1
�

1
Vtot

Z

Sint
�ei � ndS (A.7)

If the solid element are immobile, the spatial averaging theorem applied to time averaged
quantity results in the time-space averaging of hydrodynamic quantities:

h
@�
@xi
i = h

@�
@xi
i =

1
�
@�h�i
@xi

+
1
�

1
Vtot

Z

Sint
�ei � ndS (A.8)
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2 Double-averaged Navier-Stoke equations

2.1 Continuity equation

The double-averaging concept applied on the continuity equation of an incompressible �ow
gives:

h
@ui
@xi
is = 0 (A.9)

Using the theorem Equation A.8, the following development can be obtained:

h
@ui
@xi
is =

@�huii
@xi

+
1
V

Z

Sint
uiex � ndS = 0 (A.10)

The no-slip condition on the solid walls impose ui(rs) = 0 where rs is the position of the
solid surface on which the integration is performed. It results in the simpler form:

@�huii
@xi

=
@huiis
@xi

= 0 (A.11)

It is the super�cial velocity that is conserved

2.2 Double-averaged momentum equation

The double-averaged momentum equation is obtained by averaging in time and space the
Navier-Stokes equations:

h
ui
@t

+ uj
ui
@xj
is =gi � h

�p
@xj
is +

@
@xj

�h�
@ui
@xj
is (A.12)

The Einstein convention, which prescribes a summation over each repeated index, is adopted.
Applying the theorem Equation A.8 and the no slip condition on the solid surfaces, the following
relation called the double-averaged momentum equation is deduced:

huii
@t

+ huji
huii
@xj

=gi �
1
�f �

@�hpi
@xj

�
1
�
@�heuieuji
@xj

�
1
�
@�hu0iu

0
ji

@xj
+

1
�
@
@xj

�h�
@ui
@xj
i

+
1
�

1
�fVf

ZZ

Sint
pn � ei dS +

1
�

1
Vf

ZZ

Sint
�
@ui
@xj

n � ei dS

(A.13)

Where gi is the projected gravity in the direction i.
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2.3 Simpli�cations for gravity driven open channel �ows with uniform
conditions

In some circumstance, a spatially averaged �ow may be considered as uniform, steady
and unidirectional in the x direction. It is the targeted experimental conditions in rectilinear
laboratory �ume (at a su�cient distance from the side wall). Then, the spatial averaging is made
on distances such that all spatially averaged hydrodynamic quantities h�i depend only on the
vertical coordinate z (in other words the derivatives along x and y are equal to zero). Moreover,
the �ow being unidirectional, huyi = huzi = 0. In addition, for gravity driven �ow only, the
pressure gradient along x is also equal to zero.

Thus, the double-averaged momentum equation Equation A.13 becomes:

0 = gx �
1
�

d�heuxeuzi
dz

�
1
�

d�hu0xu
0
zi

dz
+

d�v
dz

+ fPx + fV x (A.14)

Here, all the terms depends only on the variable z and the equation must therefore be written
with the total di�erential notation. This equation is employed as the governing equation for the
theoretical development of this thesis.

2.4 Lemma on porosity and the gradient of the intrinsic velocity

From Equation A.8, by letting � be a constant locally, the porosity lemma takes the form:

@�
@xi

ex i
= �

1
V

Z

Sint
ndS (A.15)

@�
@xi

@Ui
@xi

= �
1
V
@ui
@xi

Z

Sint
ex i
ndS (A.16)

3 Spatial averaging and homogeneous porous media laws

In this section, the Equation A.13 is developed for a porous media in order to provide the
Darcy law. Consider a steady �ow (@�@t = 0) in an homogeneous porous medium subject to
gravity forces only. In this porous medium, all the averaged quantities, over a volume bigger than
variation at the pore scale, are uniform in space, i.e. @h�i

@xi
= 0.

In this conditions the above equation become:

0 = gi �
1
�

1
Vf

ZZ

S
pn � ei dS +

1
�

1
Vf

ZZ

S
�
@ui
@xj

n � ei dS (A.17)

The gravity force is compensated by local pressure forces and local viscous forces.
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4. Viscous shear stress and spatial averaging

At this stage, it is tempting to identify the local viscous force terms of the classical Darcy
law, and the pressure forces in terms of a drag force as it is proposed in Nikora et al. (2007).
However, regarding Whitaker (1986) work, another development might be achieved for the viscous
forces.

It is possible to decompose the integration of the viscous term by :

1
�

1
Vf
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S
�
@ui
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n � ei dS =
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1
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S
�
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S
�
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n � ei dS

=
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�

1
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ZZ

S
�
@~ui
@xj

n � ei dS
(A.18)

Because ui = Ui + ~ui and
@huii
@xi

= @Ui
@xi

= 0

As developped in Whitaker (1986) the permeability in the Darcy-Forchheimer law is more
likely identi�ed as:

1
�

1
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ZZ

S
�(
@~ui
@xj
� ~p)n � ei dS = �

�
Ki
�
�F
K

(A.19)

where K is the traditional permeability and F is the Forchheimer correction that depends
on Ux.

When a gradient of the velocity appears at macroscopic scale @Ux
@xj
6= 0 an additional term

appears in the integration witch can be easily identi�ed with the lemma Equation (A.16):
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�
�
@�
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(A.20)

This additional term is important for a system where porosity and velocity vary sharply as
observed in our experimental work. It is discussed in the following section.

4 Viscous shear stress and spatial averaging

This section focuses on the theoretical development found in the literature to close the
viscous shear stress. This discussion is not essential for the understanding of this thesis but
participates for the closure choice of the viscous shear stress in of the double-averaged momentum
equation. As far as I know, there is a substantial lack of discussion in the literature on the viscous
shear stress in conditions of large porosity and velocity gradients. The spatial averaged viscous
term of the local Navier-Stokes equation is developed within the spatial averaging approach. It is
shown, that the spatial averaging results in various strategy for the closure of the viscous shear
stress. While the Einstein correction of the viscosity is commonly used for �uidized beds and
sheet �ows, a di�erent expression of the viscous stress appears when the spatial averaging is
performed on a periodic porous bed. This last approach has been developed by the scienti�c
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Appendix A. Double-averaging methodology

community studying homogeneous porous media, whereas the former has been developed for
�ows with dilute suspension.

4.1 Spatial averaging of the viscous shear stress

We �rst require that the local variations of the viscosity are negligible. The viscous term of
the Navier-Stokes equation is thus given by:

h�
d2ux
dz2 i = �h

d2ux
dz2 i (A.21)

In Equation (A.21), it is the average of a gradient, whilst it is the gradient of an average that
is desired. We can obtain the gradient by employing the spatial averaging theorem Equation A.8
(Anderson & Jackson, 1967; Nikora et al., 2007).

h
dux
dz
i =

1
�

d�huxi
dz

+
1
V

Z

Sint
uxex � ndS

where the right term represents the integral of the velocity on the surface wall and n is the
normal vector. Because of the no slip condition on solid wall, the integral is equal to zero. The
theorem Equation A.8 for this expression and the total viscous forces are given by:

fv;tot = �f��h
d2ux
dz2 i = �f�

d2�Ux
dz2 +

�f�
V

Z

Sint

dux
dz
ex � ndS =

d�v
dz

+ fv;x (A.22)

It is tempting to identify fv;x to the integration of the viscous forces on the solid walls, but
more developments are required to identify the drag forces fv;x from the integral. Depending on
the domain of application, it is indeed the development of the integral that is unclear for porous
bed conditions with the presence of a signi�cant porosity gradient.

4.2 Spatial averaging for dilute spherical particles in a pure straining
�ow: Einstein correction

It is important to frame the domain of validity of the present development. A pure straining
�ow is considered with highly dilute spherical neutral buoyant suspensions such that the �ow
perturbations due to the particles will not in�uence the �ow on other particles. In these conditions
Ux = 0 and the total force acting on the particle is zero. This con�guration is only conceptual,
to provide a relation between stresses at the surface and space averaged strain rate resulting in
space averaged rheology of the �uid/particle mixture.

Because of the dilution, the integral of the viscous stresses over all particles is the same and
it is possible to demonstrate that the left term of the Equation (A.22) is related to the strain rate
d2Ux
dz2 (see the monograph of Leal (2007), pp 470-476 for general developments in 3 dimensions),
giving the equality :
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4. Viscous shear stress and spatial averaging

�f�
V

Z

Sphere

dux
dz
ex � ndS = �f�

4�
3

5
2
R3 d2Ux

dz2

The averaging is performed on the volume fraction of sphere such that V = 4�
3

5
2R

3=(1� �)
and gives the �nal expression of the viscosity force par unit volume (the calculation is usually
done as a function of the solid fraction � = 1� �):

fv;tot = �f�
d2�Ux
dz2 + �f�

5
2

(1� �)
d2Ux
dz2

If � � 1 (which is expected for the validity of this relation), the result of A. Einstein developed
in the course of his Ph.D. dissertation (1906) is retrieved:

fv;tot = �f�(1 +
5
2

(1� �))
d2Ux
dz2 = �f�

� d2Ux
dz2 (A.23)

With �� = �(1 + 5
2 (1� �))

It might be surprising to apply a closure developed for dilute particles for bed load transport
over a densely packed bed as it has been suggested by Ouriemi et al. (2009); Revil-Baudard &
Chauchat (2013) for instance. However, it is the only known development that theoretically
establishes a relation between the strain rate and the porosity. This situation might explain why
the scientists working on sheet �ows are tempted to apply this correction even if the domain of
validity seems not adapted. In the next subsection, this approach is compared with the porous
media approach where a correction on the viscosity has never been considered in the equations.

4.3 Spatial averaging for a unidirectional �ow in a porous medium
with a porosity gradient

Following Whitaker (1996) the development of the volume averaged viscous term on the x
component of a unidirectional �ow gives :
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(A.24)

Here, the pressure drag forces are omitted to concentrate the attention on the viscous e�ects.
Assuming that ~ux = M(x; y; z)Ux and ~p = m(x; y; z)Ux where m and M are functions depending
on the bed geometry, the right term represents the viscous forces acting on the particles fv;x.
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The rest may be considered as the viscous shear stress, giving:

d�v
dz

= �f�
d2�Ux
dz2 � �f�
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dz

dUx
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= �f�

 

�
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(A.25)

In an homogeneous porous medium, it is generally assumed that the two left terms are
negligible because the porosity gradient at the scale of the averaged volumes are small. With
these assumptions, the famous Brinkman term is given by:

fv;tot =
d�v
dz

= �f��
d2Ux
dz2

For speci�c rough-bed arrangements, it is not evident that the other terms that involve the
gradient of the porosity in the z direction in the Equation A.25 are negligible. The variation of the
porosity is sharp and is eventually of the same order of magnitude as the variation of the velocity.
The paper of Ochoa-Tapia & Whitaker (1995) attempts to overcome this problem by considering
two separate domains, and by introducing a momentum jump transfer condition. In the present
case, where the porosity is continuous, there is no need to impose a jump condition. As has been
previously mentioned, here is the main di�erence with previous works on �ow over porous media
where authors admit a lack of clari�cation at the transition (e.g. Tilton & Cortelezzi (2008);
Rosti et al. (2015)).

While the dilute conditions are not respected in packed beds permitting the adoption of
the Einstein correction, this rises the problem of the relation between the viscosity and the
porosity. Then the question arises: how should the viscosity be modi�ed for porous beds with
bed load transport where a porosity gradient is observed? Any corrections have been previously
investigated for rigid beds and further theoretical and experimental works are needed to suggest
a general e�ective viscosity that relies on strong arguments.

Furthermore, in addition to the traditional Brinkman correction, other terms emerge within
the spatial averaging framework that are usually neglected or simply omitted. The variation of
velocities in the porous medium generally follows a high variation of porosity, and in some case,
the additional terms might be non-negligible.

Thus, the closure of the viscous shear stress is given by the following form:

d�v
dz

= �f��
d2Ux
dz2

| {z }
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dUx
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+ �f�Ux
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| {z }
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+ �f�
� d2Ux

dz2
| {z }

Einstein correction (neglected)

(A.26)

For the experimental work presented in this thesis the vertical transfer of momentum is more
likely in�uenced by the dispersive stress or turbulent stress than the viscous di�usion. A di�erent
experimental set-up is required to explore the in�uence of the porosity (or solid fraction) on the
e�ective viscosity with or without bed load transport from viscous to turbulent regimes.
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B Numerical resolution of the 1D
model

In this Appendix, the details concerning the discretization of the governing equation for the
1D numerical model are provided. A transient solver to reach the steady state has been employed
( @Ux

@t expected to tend toward zero to reach the desired steady state) . It is a stable method and
might be useful for dynamical systems for future utility.

For numerical suitability, the Eq 3.23 of Chapter 3 can be reformulated in an equivalent
form :

@Ux
@t

= G + L Ux + P
@Ux
@z

+ S
@2Ux
@z2

(B.1)

with

G = �g sin �; (B.2)
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Appendix B. Numerical resolution of the 1D model

After de�ning the porosity pro�le �(z) describing the roughness layer thickness, this non
linear equation can be solved numerically using a semi-implicit scheme. The values are calculated
at the node of the scheme and the velocity in the cells. The equations is solved with a spatial step
�z and a time step �t. On the bottom of the permeable bed, the non-slip condition Ux(zb) = 0
and at the free surface @Ux

@z (zsurf ) = 0 are imposed. The number of nodes is N = 300 and the
grid size is deduced by � z = zsurf�zb

N . The time step in �xed at �t = 10�4s. The convergence of
the scheme has been observed for various scenarios depicted in Chapter 3 - Sec.3.2. The scheme
becomes unstable when the roughness layer thickness is not resolved, i.e when �z > hRL (hRL
usually scale with the grain size dp).

The semi-implicit scheme is given by:

Ux(t+ �t; z)� Ux(t; z)
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+
1
2
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2

P z��z=2
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(B.7)

The scheme is semi-implicit because, at each time step, L z, P z and S z are calculated with
Ux(t; z) calculated at time step t. The linear system can after be resolved to obtain Ux(t+ �t).
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C Image velocimetry processing

This Appendix details the 3 principle steps of the image velocimetry algoritm employed to
yield the velocity �eld from a consecutive images. The test on the PIV challenge as well as the
internet adress to access to the detail of the algorithm are provided at the end of this Appendix.

Figure C.1 � Graphical overview of the work�ow: from the raw image to the velocity �eld.
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Appendix C. Image velocimetry processing

1 Pre-processing

For a given laser sheet position ym, a mask is generated from the bead positions to restrict
the measurement to the interstitial �ow zones and the surface �ow. Similarly, the �uctuating
�uid/air interface is detected to mask the upper part of the frame [see Figure C.1(a)].

To improve image contrast, the Contrast-Limited Adaptive Histogram Equalization (CLAHE)
algorithm (grid size = 32�16 px, clip limit = 8) is employed. Hot pixels (with constant high-
intensity values) may be present during the recording, as well as local and temporary (long
duration in comparison with the particle displacement) hot spots due to re�ection. To solve this
problem, a background removal procedure is performed by subtracting the average frame.

Before any velocity measurements, the algorithm Good Feature To Track (GFT) selects
features that hold a good contrast, i.e., that are able to provide accurate velocity estimates (Shi,
1994) [see Figure C.1(b)]. This pre-selection presents two advantages: �rst, by discarding low-
quality points it diminishes errors, and secondly, it decreases the number of potential interrogation
windows, thereby making the algorithm more e�cient. With classical PIV methods, the entire
domain is usually computed on regularly spaced interrogation windows. With this strategy,
low-quality measurements are generally discarded using post-processing methods, whereas the
method employed here avoids processing those zones with a low signal-to-noise ratio. At the end
of this step, the points mi = (x; z)Ti are selected and the velocimetry processing is launched.

2 Velocimetry processing

The velocimetry algorithm measures the local (region-based) optical �ow by means of a
pyramidal implementation of the Lukas-Kanade method (Bouguet, 2001) [see Figure C.1(c)]. With
this method, the square of the Displaced Frame Di�erence is minimized. To better understand
the equations involved in this algorithm and its link with classical PIV, details of the procedure
are provided in the following, with these being based on the papers of Heitz et al. (2010) and Liu
& Shen (2008).

Given a position m = (x; z)T in the image and the intensity function I(m; t) of the image
�eld, the velocity �eld is denoted as

u(m) = (ux(m); uz(m))T (C.1)

The Optical Flow Constraint (OFC) equation representing the brightness constancy may be
written as

@I
@t

= u � rI (C.2)

Equation C.2 is the linear formulation of the matching formula between 2 consecutive images,
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3. Post processing and interpolation scheme

and is also known as the Displaced Frame Di�erence:

I(m + d(m); t+ �t)� I(m; t) = 0 (C.3)

Where d(m) denotes the displacement �eld between 2 images. With the Lukas-Kanade
method, the displacement �eld between two consecutive images is determined by minimizing the
square of the Displaced Frame Di�erence model

d(m) = arg min
d

X

r2W (m )

(I(r + d; t+ �t)� I(r; t))2 (C.4)

WhereW(m) is the interrogation window around the point of interest. Since I(m; t) is independent
to d, Equation C.4 is equivalent to:

d(m) = arg min
d

X

r2W (m )

I(r + d; t+ �t)2 � 2I(r + d; t+ �t)I(r; t) (C.5)

Equation C.5 shows that the minimization of the square of the Displaced Frame Di�erence
includes the correlation between two consecutive images. The displacement �eld estimated with
this method is thus equivalent to the displacement �eld obtain by classical PIV if the quantityP

r2W (m ) I(m + d(m); t+ �t)2 does not depend on d. This assumption is implicitly performed
in classical cross correlation techniques, but is locally strengthened when the small interrogation
windows or large velocity gradients are considered. This is probably why this method works
better for the current study problem, where small pore sizes limit the windowing.

The ‘pyramidal’ implementation aims to increase the dynamic range, i.e., to deal with large
pixel motion. The pyramid refers to the successive low pass �ltering and sub-sampling of the
image sequence. The levels of the pyramid (1,2,3,...) represent the number of passes and the
resolution of the image for the �rst pass on which the Lukas-Kanade velocimetry method is
executed. For example, if the image has a resolution of 400�400 px and the level of the pyramid
is 2, the �rst image has a resolution of 100�100 px. In this image, the pixel motions are smaller,
and the Lukas-Kanade method (with the same window size) measures the global movement
to introduce a shift for the second pass. This methodology is the equivalent of the iterative
multi-grid method commonly performed in �uid mechanics (Scarano & Riethmuller, 1999). For
this experiment, the pyramidal Lukas-Kanade method is parametrized with a 16 � 16 px window
and three pyramidal levels.

At the end of this step, the velocity is obtained for each of the selected points ui = (ux; uz)
T
i

[see Figure C.1 (c)].

3 Post processing and interpolation scheme

The �nal step consists of an interpolation process to obtain a velocity �eld from the isolated
points where velocity is known, �lling the gaps where the image quality was poor or where
the number of seeding particles was too small. This step is commonly performed in particle
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Appendix C. Image velocimetry processing

tracking velocimetry (PTV) algorithms, but is computationally expensive. Recent improvements
in the Visualization ToolKit (VTK) library allow implementation of a tree-like data structure to
partition the 2D space and create buckets (methods that are commonly used in 3D graphics or
3D game engines). The search for the points or closer neighbors is then more e�cient.

Before the interpolation process, the velocity vectors are subjected to two �lters to detect
potential outliers. The �rst �lter detects and suppresses isolated points, while the second �lter
detects outliers by making comparisons with the local averaged velocity.

A Gaussian interpolation scheme with a kernel of 15 px radius and a standard deviation of
5.6 px is used. Finally, using this process the velocity �eld between two images can be reproduced
[see Figure C.1 (d)].

4 Test on the 4th PIV challenge - Case A

An overview of the literature on the application of Lukas-Kanade techniques to �uid mechanics
reveals only a few contributions (Miozzi et al., 2008; Zhang & Chanson, 2018). The algorithm
developed for the purpose of this PhD, was tested on the image sequences of the 4th PIV
Challenge Case A (Kähler et al., 2016) to assess on its performance. The resulting velocity
measurements (Figure C.2, Figure C.3 and Figure C.4) show a good agreement with the main
measures performed by the twenty leading participant of the 4th PIV Challenge. The main code,
termed opy�ow and the algorithms to provide the �gures below showing the results of the test
have been uploaded to GitHub (https://github.com/groussea/opy�ow). To my opinion, and
regarding di�erent comments from manuscripts in the domain (e.g. Boutier (2012); Heitz et al.
(2010)), this methodology seems more accurate and e�cient than traditional PIV methodologies.

Figure C.2 � Displacement measured on the 4th PIV Challenge . Case A (e.g. Kähler et al.
(2016))
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4. Test on the 4th PIV challenge - Case A

Figure C.3 � Histogram of the vertical and horizontal displacement measured on the 4th PIV
Challenge . Case A (e.g. Kähler et al. (2016))

Figure C.4 � Root mean square of the displacements measured on the 4th PIV Challenge . Case
A (e.g. Kähler et al. (2016))
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D Complements for the experimental
procedure

This Appendix complements the experimental procedure in three sections:

� Section 1 - Figure D.1 shows the refractive index evolution of the Benzyl-Alcohol/Ethanol
mixture with the proportion of Ethanol in the mixture �Eth. These measurements provided
a proportion of 40 % of Ethanol in volume (40/60 mixture) to obtain the matched refractive
index. The accuracy on the isoindex measure is given by the constructor �n = �0:00004
(e.g. the instruction manual of the Digital Refractometer ATAGO RX-5000 �). Figure D.2
presents the viscosity and density measurements performed on the 40/60 mixture.

� Section 2 - Figure D.3 shows the calibration curve of the constant head tank system. The
accuracy on the �ow discharge has been estimated with the sum of the square of the
residuals (SSR): �qf � 2

p
SSR and the value of 5% is calculated with the lowest value of

qf .

� Section 3 - The calculations to obtain the distance from the permeable grid where the
�ow may be considered as uniform is developed. The scheme of this problem is given in
Figure 4.12 of Chapter 4.
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Appendix D. Complements for the experimental procedure

1 Benzyl Alcohol/Ethanol mixture

Figure D.1 � Measure of the refractive index of the Benzyl-Alcohol/Ethanol mixture (BAE)
for various volume fractions of ethanol (�Eth) and comparison with the datas of Chen et al.
(2012). The accuracy on the volume fraction increases while volume fraction decreases. It is
the consequence of diluting an initial solution of BAE from the volume fraction �Eth = 0:5 by
progressively adding Benzyl Alcohol. All the measurements have been done at 273�K.

Figure D.2 � Measure of viscosity and density of the 40/60 Benzyl-Alcohol/Ethanol mixture for
for various volume fractions of Ethanol and comparison with the datas of Chen et al. (2012). The
horizontal dashed lines represent the values for the water. The measurements have been done at
273�K.

150



2. Calibration curve of the constant head tank system

2 Calibration curve of the constant head tank system

Figure D.3 � Calibration curve of the �ow discharge qf at the inlet of the �ume as a function
of the intensity (Int) of the electro-valve. The base �ow qf;0= 0.0014 m2/s is regulated with a
manual valve. The maximum �ow is 0.003 m2/s and is reached when the electro-valve is fully
open. A tanh curve calibration scaled with the square of the Intensity permit the estimation of
the �ow discharge for a given Intensity. Calibration is done by �lling a recipient with a measured
volume.

3 In�uence the permeable grid distance from the measure
estimated with Darcy law

This Appendix is the development to obtain a quantitative estimation of ��, i.e. the distance
from the grid where the surface �ow is �% of the theoretical surface �ow in a uniform situation
(see Figure 4.13). The problem is posed within Darcy framework.

Let zfs(�g) be the free surface level at the distance �g. The pressure drop between the constant
air pressure on the grid and the �uid pressure at an altitude z is given by �P (z) = Pair � P (z),
where P (z) is the static pressure P (z) = Pair + �fg(zf � z).

Thus, the subsurface velocity USSL(z) at an altitude z will be both in�uenced by the gravity
gradient and the pressure drop and can be predicted, at �rst approximation, by :

�Ux;SSL(z) = �
K
�f�

�
�P (z)
Dg

+ �fgi
�

(D.1)

The linear behaviour within the Darcy framework for the subsurface layer �ow is not expected
at the outlet where velocities increase. However, the quadratic term of the Ergün equation usually
decreases the permeability and the linear approximation has for e�ect to overestimate the �ow
inside the porous bed at the outlet.
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Thus, the increase of the total subsurface �ow discharge qf;hSSL is given as a function of �g:

qf;hSSL(�g) =
Z hSSL

0

Kg
�

�
zf (�g)� z

�g
+ i
�
dz =

Kg
�
hSSL

"
hf (�g) + hRL + hSSL

2
�g

+ i

#

(D.2)

At this point, it is observed that for �g ! +1, �ow discharge in the bed tends to its expected
steady value q1

f;hs = Kg
� hsi and the steady surface �ow is given by q1

f;SL+RL = qf � q
1
f;SSL.

Equation D.2 involves hf (�) which is non uniform along x. To resolve this equation, a
relation between surface elevation and subsurface �ow discharge which is quite complex due to
the non uniformity of both surface velocity and depth. Instead, hSL is supposed to be negligible
with respect to hSSL + hRL. This assumption seems reasonable since hf is about 0 at the outlet
condition. Also we must scale hRL and hSLL. As experimentally observed hRL � dp and the
subsurface layer thickness is given by hSLL � hs� dp, where hs is the initial total sediment depth
�xed manually.

As a next step, the distance �g where the surface �ow decrease is negligible is obtained.
Providing the condition qf;SL > �q1

f;SL, where � is the quality coe�cient (that should be close
to one to obtain a nearly uniform �ow), the following equation is obtained:

q�f;SL(��g ) = qf � qf;hs(�
�
g ) = qf �

Kg
�
hs

"
hRL + hSSL

2
��g

+ i

#

= �q1
f;SL (D.3)

The distance �� above which this condition is veri�ed is then provided by:

��g =

"
qf � �(qf �

Kg
� hsi)

Kg
� hs

� i

#�1
�
dp + (hs � dp)=2

�
(D.4)
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E Vertical structure: experimental
measurements and modeling

This Appendix compares the experimental vertical pro�les with numerical simulations from
1D model. The tested runs were depicted in Chapter 5 and �ow characteristics of the runs are
summarized in Table 5.1. The strategy employed for the comparison was to obtain hf such
that the simulated �ow discharge qf;mod was equal to the experimental �ow qf;exp discharge.
The model requires a loop to simulate several scenarios with speci�c hydraulic conditions until
qf;mod = qf;exp.

Each graphical representation have been compartmentalized into 4 subplots (a) (b) (c) and
(d) where 10 pro�les in total have been plotted:

(a) The mean velocity pro�le Ux with an indication of the modelled �ow discharge per unit
width qf;m, the �ow depth hf ;m, the surface velocity Usurf;m, the particle- size dp and the
bulk porosity �b.

(b) The porosity pro�le � with an indication of the slope.

(c) The viscous �v, the turbulent �t and the dispersive �d stresses. In this axis, the integration
of the gravity G =

R hf
z �(z) g idz is also plotted.

(d) The viscous and pressure drag (fv and fp) with the reference axis at the bottom and the
mixing length distribution with the reference axis at the top. The reference mixing length
function lr = � (z � zrc) is plotted as it represents the slope limit for z ! +1.
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Figure E.1 � Run A1 - Simulated and measured pro�les

Figure E.2 � Run A2 - simulated and measured pro�les
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Figure E.3 � Run A4 - Simulated and measured pro�les

Figure E.4 � Run B1 - Simulated and measured pro�les
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Figure E.5 � Run B2 - Simulated and measured pro�les

Figure E.6 � Run B3 - Simulated and measured pro�les
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Figure E.7 � Run B4 - Simulated and measured pro�les

Figure E.8 � Run B5 - Simulated and measured pro�les
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F Free surface velocity, slope, and
grain size measurements in a

gravel-bed river

1 Image-based velocimetry measurement of free surface
�ow in a gravel bed river: methodology and testing

The image velocimetry algorithm presented in Appendix C is also able to capture the
convection of surface features in streams from videos. Using this method, stream surface velocities
were extracted from aerial videos taken by a camera installed on a UAV (Unmanned Aerial Vehicle;
commonly known as a ‘drone’). This technique was employed in Chapter 6 to estimate free surface
velocities in the Navizence river. The purpose of this Appendix is to assess the reliability of
this technique for providing accurate free surface velocity measurements by comparing estimates
of discharge deduced from surface velocity with discharge measured at a gauging station. This
technique has recently been popularized for �ood monitoring, and is commonly termed Large
Scale Particle Image Velocimetry (LSPIV) (Le Coz et al., 2010; Dramais et al., 2011).

1.1 Site and region of interest

Videos of free surface �ows were captured during a �eld campaign on the Navizence river
upstream of Zinal (Wallis - Switzerland) on 20th of June 2018 at 12:00 h (just before the �ood
events of 2nd of July 2018, which destroyed the gauging station). The region of interest from
which the free surface velocimetry was measured was placed a few meters upstream of a gauging
station (see Figure F.2). This close proximity between the gauging station and site of the water
surface velocimetry measurement is required to allow comparison of estimates. However, the
stream gauge was under a bridge, and it was not therefore possible to directly measure the surface
velocity at this location. Therefore, images were taken just upstream of the bridge. The average
slope of the river was estimated at S � 4%� 0:5% (measurements performed on a digital terrain
model; the slope measurement procedure is detailed in Section 2) and the �ow was torrential
Fr � 1� 2. Owing to snow and glacier melt in June, the depth and discharge were higher than
the annual average. The water was charged with �ne sediments making the water opaque, which
may have improved the quality of the measurements. Indeed, if water is clear, stones located
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Figure F.1 � Location of the gauging station

under the �ow constitute motionless features that may signi�cantly disturb the signal. The
images were taken vertically from a drone �ying at an altitude of 30 m (see Figure F.3).

Figure F.2 � The region of interest (ROI) upstream of the stream gauge station, which was
situated under a bridge. The image was extracted from a digital terrain model computed with
Pix4D software.
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methodology and testing

Figure F.3 � Raw image of the region of interest showing the scale 14.6m � 700 px.

Raw image properties :

� Drone model: Phantom Pro

� View angle: vertical

� Frame per seconds (fps): fraw = 120

� Resolution: 1920 x 1080 px

� Altitude: 30 m

� Focal length: 8:8 mm

� Scale: S � 0:020 m/px

1.2 Discharge de�nition

The discharge at any point of the river may be de�ned by

Q = UbW H�b (F.1)

where Ub is the bulk depth averaged velocity, W the bank width, and H�b the bulk �ow
depth. Here, the term bulk is employed for spatially averaged values. At the gauging station, the
discharge QG and the �ow depth H�b;G are continuously recorded. In the following developments,
an estimate is provided of the discharge QD deduced from the drone image sequences of the
stream at the gauging station. This value is then compared with QG to assess the reliability of
the method.
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1.3 Methodology

1.3.1 Image velocimetry algorithm

The algorithm details are available in Appendix C.

1.3.2 Displacement constraint

Image velocimetry processing includes constraints to optimize the process. The time interval
between two consecutive images must be adjusted to provide acceptable deformations. As with
classical PIV, a displacement Dpx of 1 to 20 px between 2 frames is ideal. To respect this condition,
an estimate of the minimum velocity must be provided to allow the minimum displacement
between 2 frames to be deduced. In this situation, the lowest velocities Usurf;min occur near to
the banks, and were estimated to be 0.4 m/s. To respect a minimum displacement of 1 px for
these regions, the maximum processing frame rate was set to

fp;max =
Usurf;min
Dpx S

� 20Hz:

The processing frame rate is de�ned by fp = 1
�t the inverse of the time interval between

2 consecutive processed images. Thus, fp was set to 12 Hz to allow the measurement of low
velocities.

Note that the maximum velocity is also critical to �x the upper limit of the required rate.
Here, for fp = 12, we could measure speeds of 4.8 m/s without di�culty. However, the algorithm
employed here is also suitable for larger deformations on the image (see Appendix C for details).

1.4 Results

1.4.1 Instantaneous measurement

In Figure F.4, the results from image velocimetry processing of two consecutive images of
the stream temporally spaced at �T = 1

fp
= 83 ms can be visualized.

With only two consecutive images, the measure provides the correct direction of the �ow
and the order of magnitude expected for this type of torrential �ow (Usurf � 2� 3 m/s).

1.4.2 Fluctuations and estimation of the accuracy

Turbulence at the surface induces �uctuations in the velocity. Moreover, noise is also expected
in this method, with sources including the relative displacement of the drone and variation in
the time interval between two images. Here, the order of magnitude of the noise is estimated to
provide an idea of the accuracy of the method.

The �rst step was to observe the standard deviation over the entire surface to identify
important hot spots (A1 and B1) of �uctuation upstream of the bridge. This was accomplished
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Figure F.4 � Instantaneous free surface velocity measurement performed using the image
velocimetry algorithm. The instantaneous velocity is measured from two consecutive frames
spaced of �T = 1

fp
= 83 ms.

by looking at the spatial repartition of the standard deviations of the velocity magnitude �kuk
(see Figure F.5). The point A1 is one of the hottest spots of �uctuation in this area.

Figure F.5 � Standard deviation of the velocity magnitude calculated from the surface over a
video of 9 seconds (111 pairs of images).

The second step was to observe the time evolution of the measured velocity at these hot
spots to allow estimation of the probability density function (see Figure F.6). The empirical
standard deviation was around �U � 0.2 m/s for both directions. The relative accuracy was then
estimated at �U

U � 5%.

As a �nal step, an estimate of the minimum time needed to obtain a tolerable accuracy for
the measure is given. Figure F.7 shows that the accuracy of the measure is low, even for short
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Figure F.6 � [Left] - Temporal evolution of the velocities, [right] - Probability Density Function
(PDF) of the measured velocities.

recordings. Indeed, at the measurement point A1, which represents the highest �uctuation zone,
the relative accuracy is about �e � 10% for 0.2 s and rapidly diminishes to reach an asymptotic
value of �e � 2% for 2 s of measurement.

The estimated standard deviation of the empirical error as a function of the sampling time
interval is plotted in Figure F.7. The empirical error is estimated by taking random samples in 9

s of record and given by �e (Ux; T ) = 1
n
Pn
i=0

r�
(Ux)iT � (Ux)Ttot

�2
=(Ux)Ttot , where (Ux)iT is

the averaged velocity estimated on n = 30 samples on duration T against the empirical average
calculated on Ttot = 9 s. The uncertainty is under 2% after 2 s.

Figure F.7 � Estimated standard deviation of the empirical error as a function of the sampling
time interval.
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1.4.3 Measurements from the gauging station

Measurements of the water depth and estimated discharge from the gauging station are
given in Figure 8. The video was recorded at 12:00 h. At a time-scale of the order of a day, this
corresponds to the minimum discharge of the diurnal cycle, giving QG � 7:5 m3=s. In June, the
discharge is highly in�uenced by diurnal �uctuations in temperature, because waters from snow
and glacier melt are the main contributors to the total discharge.

Figure F.8 � Discharge and water depth evolution on 20th of June 2018.

To estimate the discharge at the gauging station at 12:00 h from the surface velocities
captured by the drone, a method must be provided to predict the velocity under the bridge.

1.4.4 Measurements on transverse sections upstream of the gauging station

The width of the river decreases signi�cantly in the immediate vicinity of the bridge structure,
with a funnel e�ect increasing the river depth and velocity. To observe this e�ect, �ve transverse
sections were positioned upstream of the bridge (see Figure F.9). The velocity magnitudes
were then traced for di�erent Y positions on these transverse sections (see Figure F.10). Lower
velocities are shown at the borders, while the maximum velocities corresponded with Y positions
in alignment with the center of the bridge. This e�ect was expected, and it was also expected that
the velocity under the bridge would have an equivalent pro�le, owing to the boundary conditions
along the wall of the bridge.

An extrapolation to the surface velocities at the position of the bridge is then performed.
This procedure consists of selecting the time-averaged velocities higher than 1 m/s on each
transect and averaging them (See Figure F.11).

Thus, a �rst approximation to the free surface velocity at the gauging station can be estimated
by Usurf;1 � 2:23 m/s. A maximum value can also be given from the peak observed upstream
Usurf;max � 3 m/s. Finally, the surface velocity is estimated from an average of these two limits

165



Appendix F. Free surface velocity, slope, and grain size measurements in a
gravel-bed river

Figure F.9 � Time averaged velocity �eld and position of the transverse section upstream of the
gauging station.

Figure F.10 � Time averaged velocities at the transverse section upstream of the gauging station.

bounded by the extreme values: Usurf � 2:6� 0:4 m/s.

The bank width at the gauging station was estimated at W � 6: � 0:1 m. If we consider
the �ow depth estimated by the gauging station at noon H12h � 0:5 � 0:1 m, it is possible to
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Figure F.11 � Averaged surface velocities on the transects shown in Figure F.9.

calculate the discharge by evaluating the depth-averaged velocity from Equation F.1.

1.4.5 From the surface velocity to the depth-averaged velocity

In Equation F.1, computation of the discharge from the videos requires an estimate of the
depth averaged velocity Ub deduced from the free surface velocity measurement Usurf . The ratio
of these two velocities de�nes what is usually called the velocity coe�cient � = Ub=Usurf . This
value is usually set at 0.85, but no consensus on this coe�cient is available for steep streams
(Dramais et al., 2011). This value is highly dependent on the relative submergence as shown by
Welber et al. (2016).

As a �rst approximation, � was deduced from the logarithmic pro�le using the Keulegan
calibration (details on the log-law of the wall are provided in Chapter 2):

�Keul =
hUiz
Usurf

�
�

1�
1

ln(12:2Hb=D50)

�
(F.2)

While the gauging station monitors a gravel bed river, hydraulic conditions at the gauging
station emplacement are not those of the �ow in the natural stream. At the gauging station,
the water �ows over a concrete weir, and the roughness is therefore locally very low and the
submergence high. Thus, with Hb � H12h � 0:5� 0:1 m and D50 � 10 cm, �Keul1 = 0:76 and
D50 � 1 cm �Keul2 = 0:85.

Note that with this approach, the submergence also has a critical in�uence on �. However,
this methodology, which is based on a fully vertical logarithmic pro�le, underestimates the
depth-averaged velocity. Indeed, the assumption behind the logarithmic pro�le states that the
mixing length, which regulates the intensity of the vertical exchanges, is proportional to the
distance from the bed. However, various e�ects tend to reduce this mixing length value, such as
the damping e�ect and the velocity defect law damping e�ect or the velocity defect law (Nezu &
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Rodi, 1986; Pope, 2001). With these e�ects, the apparent turbulent viscosity near the wall and
near the free surface are in reality lower than the values predicted by the log-law assumptions.
Consequently, the di�erence between Ub and Usurf is lower than predicted by the log-law.

In these conditions, a numerical simulation that directly solves the double-averaged momentum
equation was employed (see Chapter 3 for the details of the model), with D50 set at 0.05 cm, which
is an intermediate diameter between the averaged median grain size of the river bed (measured
in Section 3) and the lower roughness size of the concrete weir. In such conditions, it was shown
in Chapter 6 that �model = hUmodeliz � 0:85Usurf;model.

� = 0:85 is indeed the ratio between the surface and depth-averaged velocity for a regular
intermediate submergence Sm � 1� 30. It must be emphasized that this value for a high relative
submergence at the gauging station is not expected upstream, e.g., in the ri�e region. In these
zones, � may show important deviations from 0.9, as highlighted by Welber et al. (2016) and
discussed in Chapter 6.

The predictions for the log law and the model give:

QD;12h;Keul1 = 0:76Usurf W H12h � 5:7� 0:8m3=s

QD;12h;model = QD;12h;Keul2 = 0:85Usurf W H12h � 6:63� 0:8m3=s

The inaccuracy of � 0:8m3=s is due to inaccuracies in the extrapolated surface velocity under
the bridge. These two estimates must be compared with the estimation at the station, which
gives QG � 7:7 m3=s.

1.5 Conclusions on the evaluation

While the inaccuracy on QD is high, a similar order of magnitude is observed between
discharges estimated from the gauging station and discharges estimated by the relation hUiz �
0:85Usurf , con�rming the ability of the image-based methodology to provide surface velocities
within the correct order of magnitude. This also veri�es the coherence with the model predictions
and the 0.85 factor prescribed for intermediate submergence �ows by �uvial engineers. However,
the discharge given by the gauging station is also subject to inaccuracy, and no information on
this is detailed here. To conclude with this comparison, it is recalled that this estimate is highly
dependent on the velocity extrapolations under the bridge, and further explorations are needed
to more precisely determine accuracy.

2 Estimation of local slopes

In this section, another region of the river upstream from the gauging station is considered,
at the site where the velocity measurements in Chapter 6 were made. For a region of interest
in the river, the slope was manually estimated using the Pix4D-mapper software (Vallet et al.,
2011). This software allows the extraction of 3D coordinates M (xm; ym; zm) from the Digital

168



2. Estimation of local slopes

Terrain Model (DTM)1.

It was not possible to create 3D reconstructions under the surface of the water from the raw
images taken by the drone. In general, 3D under water reconstruction is a recurrent problem,
even for transparent and still water, where di�raction considerably a�ects the measurement.
Consequently, it was not possible to obtain the slope from bottom bed measurements. Nevertheless,
the elevations of the banks at the vicinity of the running water are given with a relatively good
accuracy. Under the assumption that the averaged gradient of the bank and the bed follow the
same trend, the bed slope can be estimated.

With regard to accuracy, estimates of the dimensions of objects on preliminary measurements
on the DTM using conventional rules revealed an error of �x = �y = � 0:02 m for the x and y
coordinates. For the elevation z, two sources of error have been identi�ed. The �rst is caused
by imprecision in the 3D reconstruction method, and the second is human-related, as we must
decide which point represents the local elevation of the bank. Combining these two sources of
error, an inaccuracy of �z = � 0:1 m is considered along the z coordinate.

To obtain a qualitative estimate of the slope at one transect, we manually consider two pairs
of points in the proximity of the transect on the left and right banks. For each bank, we estimate
the slope by comparing the coordinates of the two points, one downstream, and a second one
upstream of the transect.

Figure F.12 � Measurement of the local slope using the Pix4D mapping software

Figure F.12 is a screen shot of the Pix4D software during the measurement procedure showing
the di�erent lines over which the slope was measured. We here focus on measurement of the
slope of Transect 1, the arm of the river situated in the upper left of the image. On the right
bank of the river arm we measured two points, one downstream, Rd1(xRd1; yRd1; zRd1), and one
upstream, Ru1(xRu1; yRu1; zRu1).

The distance between the two points is given byDR1;u�d =
q

(xRd1 � xRu1)2 + (xyRd1 � yRu1)2

1The DTM has been computed with Pix4D-mapper from drone (UAV) aerial photographies. The drone used
was the same model used recorded the videos for the free surface velocity estimates. It is made from photography
taken at regular intervals from the sky. 3D mapping is deduced using 3D reconstruction from multiple image
method (aero-triangulation) and computer vision algorithm such as feature matching by machine learning methods
to identify points with the same absolute location from di�erent images (Vallet et al. , 2011)
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The slope on the right bank is estimated by the formula:

i1R =
DR1;u�d

(zRu1 � zRd1)
(F.3)

The same procedure is performed on the left bank to obtain i1L.

The average slope is given by the average of the two slopes, i.e., i1 = i1R+i1L
2 .

The inaccuracy in the estimation of the slope is large, being dominated by the inaccuracy on
the vertical axis, and is given by �(i)

i �
�z

(zRu1�zRd1 ) �
1
10 � 10 %.

Figure F.13 � Estimates of 3 local slopes by employing the Pix4D mapping software

3 Grain-size distribution and median grain diameter

The average grain diameter in the river bed was estimated from the raw images acquired
by the drone and used to build the digital terrain model. These images have a resolution of 1.3
cm/px, which is su�cient to measure the size of the stones. A dead arm proximal to the running
water and close to the region of interest was selected. The average diameter in this region was
bigger than the estimated average diameter on the banks, and was a better representation of
the size of the obstacles in interaction with the running water. A total of 148 grain diameters
were measured with a tool developed on Python that allows the minor and major axis of each
particle to be measured. Figure 14 shows circular regions with equivalent areas to the measured
particles. Particles under 5 cm in diameter were to small to be measured, and the grain-size
distribution is therefore likely to be overestimated. As D84

2 is commonly employed to determine
the roughness length of gravel bed rivers, we suppose that the overestimation of D50 provides a
satisfying estimation of the bed roughness length. In this region, the D50 is estimated at 0.58 m.

2The grain diameter for which 84 % of the grains in mass are below this value.
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3. Grain-size distribution and median grain diameter

Figure F.14 � The region of interest in which the river bed grain sizes were measured was located
in the dead arm. The red disks represent the area covered by the selected individual measured
stones.

Figure F.15 � Particle size distribution in the dead arm and mass median grain diameter estimated
at D50 = 0:58 m.
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