
2019

Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Igor MALINOVIC

Présentée le 15 mars 2019

Thèse N° 9277

On approximation algorithms and polyhedral relaxations for
knapsack problems, and clustered planarity testing

Prof. K. Hess Bellwald, présidente du jury
Prof. F. Eisenbrand, Prof. Y. Faenza, directeurs de thèse
Prof. M. Mastrolilli, rapporteur
Prof. S. Fiorini, rapporteur
Prof. O. Svensson, rapporteur

à la Faculté des sciences de base
Chaire d’optimisation discrète
Programme doctoral en mathématiques

Врећа! Врећа се ово зове, а ово у врећи,
ово се jазавац зове.

— Петар Кочић, "Jазавац пред судом"

Моjоj породици и приjатељима. . .

Acknowledgements
I would like to say many thanks to my supervisor Fritz Eisenbrand, for the opportunity to be

here and his generous support from the beginning of my master studies until today, for his

research advices, involving me into teaching, student projects, interesting political discussions,

and guiding me to become independent.

I am very grateful to my co-supervisor Yuri Faenza, for a lot of patience, time and effort that he

invested in working with me and my development towards becoming a researcher. Thanks to

him for being as well a life coach, great support, football teammate, and a kind friend. Thanks

to Yuri and Fanny for hosting me in NY, and the great time there.

Thanks to many researchers for transferring their knowledge and experience, in particular to

Monaldo Mastrolilli, Ola Svensson, Samuel Fiorini, Daniel Bienstock, Andrey Kupavskii, János

Pach, Radoslav Fulek, István Tomon, Jan Kynčl, and Dömötör Pálvölgyi. Also, to Kathryn Hess

Bellwald for being the jury president for both, my candidacy exam and the thesis defense.

Thanks for love and most devoted support to my family, and friends: "Sina i mi ostali" – Boka,

Laza, Semba, Sina, Oza; "Momci mladi u širem sastavu" – Anči, Bura, DeDe, Ðole, Gadža, Lemi,

Miloš, Ped̄a, Staniša; "Lausannois++": Andreicheck, Andres, Aria, Alfonso, Christoph, Gonzalo,

Jovanče, Lilli, Manuel, Mauro, Mića, Nicolas, Renaud, Slobo, Vido. Thanks to all DISOPT and

DCG members, especially to Jocelyne (for keeping me out of prison and more), and to all

football teammates.

Many wonderful people were around for the time of my studies, and although not mentioned

by name, I would like to thank them.

Lausanne, December 12, 2018 I. M.

v

Abstract
Knapsack problems give a simple framework for decision making. A classical example is

the min-knapsack problem (MINKNAP): choose a subset of items with minimum total cost,

whose total profit is above a given threshold. While this model successfully generalizes to

problems in scheduling, network design and capacited location, its dynamic programming

approaches do not. One often relies on strong polyhedral relaxations for corresponding integer

programs instead. Among other results, we construct such a relaxation for the time-invariant

incremental knapsack problem (IIK), and study classes of valid inequalities for MINKNAP.

IIK is covered in the first part of this thesis. It is a generalization of the max-knapsack problem

to a discrete multi-period setting. At each time, capacity increases and items can be added,

but not removed from the knapsack. The goal is to maximize the sum of profits over all times.

IIK models scenarios in specific financial markets and governmental decision processes.

It is known to be strongly NP-hard and there has been work on approximation algorithms

for special cases. We settle the complexity of IIK by designing a PTAS, and provide several

extensions of the technique.

The second part is on MINKNAP and divided into two chapters. One is motivated by a recent

work on disjunctive relaxations for MINKNAP with fixed objective function, where we reduce

the size of the construction. The other focuses on a class of bounded pitch inequalities, that

generalize the unweighted cover inequalities for MINKNAP. While separating over pitch-1

inequalities is NP-hard, we show that approximate separation over the set of pitch-1 and

pitch-2 inequalities can be done in polynomial time. We also investigate integrality gaps of

linear relaxations for MINKNAP when these inequalities are added. Consequently we show

that, for any fixed t , the t-th CG closure of the natural relaxation has unbounded gap.

The last chapter deals with questions in clustered planarity testing. The Hanani–Tutte theorem

is a classical result that characterizes planar graphs as graphs that admit a drawing in the plane

in which every pair of edges not sharing a vertex cross an even number of times. We generalize

this result to clustered graphs with two disjoint clusters, and show that a straightforward

extension to flat clustered graphs with three or more disjoint clusters is not possible. For

general clustered graphs we show a variant of the Hanani–Tutte theorem in the case when

each cluster induces a connected subgraph. We conclude by a short proof, using matroid

intersection, for a result by Di Battista and Frati on embedded clustered graphs.

Keywords: approximation algorithms, polyhedral relaxations, time-invariant incremental

knapsack, bounded pitch, min-knapsack, clustered planarity, Hanani–Tutte theorem

vii

Résumé
Les problèmes de sac à dos, ou knapsack, offrent un cadre simple pour la prise de décision.

Un exemple classique est le problème min-knapsack (MINKNAP) : choisir un sous-ensemble

d’articles avec un coût total minimum, dont le bénéfice total est supérieur à un seuil donné.

Alors que ce modèle est généralisable aux problèmes d’ordonnancement, de conception

de réseau et de localisation, sa solution par programmation dynamique ne l’est pas. On se

base souvent sur des relaxations polyhédrales pour le problème d’optimisation en nombre

entier correspondant. Parmi d’autres résultats, nous construisons une telle relaxation pour le

problème de sac à dos incrémental et invariant dans le temps (IIK) et étudions des classes

d’inégalités valables pour MinKnap.

IIK est l’objet de la première partie de la thèse. C’est une généralisation du problème max-

knapsack à un cas discret et à périodes multiples. À chaque temps, la capacité augmente et

des articles peuvent être ajoutés mais pas retirés du knapsack. L’objectif est de maximiser

la somme des bénéfices sur tous les temps. IIK modélise des scénarios spécifiques sur des

marchés financiers et dans des processus de décision gouvernementaux. C’est un problème

NP-difficile et des algorithmes d’approximation ont été développés pour des cas particu-

liers. Nous déterminons la complexité de IIK en concevant un PTAS et fournissons plusieurs

extensions de la technique.

La deuxième partie traite de MINKNAP et est divisée en deux chapitres. L’un est motivé par

un travail récent sur les relaxations disjonctives pour le problème MINKNAP à fonction ob-

jectif fixe et nous y réduisons la taille de la construction. L’autre se concentre sur une classe

d’inégalités à pitch borné, qui généralise les inégalités de couverture non pondérées pour

MINKNAP. Alors que la séparation sur les inégalités de pitch-1 est NP-difficile, nous montrons

qu’une séparation approximative sur l’ensemble des inégalités de pitch-1 et de pitch-2 peut

être effectuée en temps polynomial. Nous étudions également les écarts d’intégralité des

relaxations linéaires pour MINKNAP lorsque ces inégalités sont ajoutées. Finalement nous

montrons que, pour tout t fixe, la t-ème fermeture CG de la relaxation naturelle a un saut

non-borné.

Le dernier chapitre examine une classe de problèmes différente. Le théorème Hanani-Tutte

est un résultat classique qui caractérise les graphes planaires en tant que graphes admettant

un dessin dans le plan dans lequel chaque paire d’arêtes ne partageant pas un sommet se

croisent un nombre pair de fois. Nous généralisons ce résultat aux graphes partitionnés

constitués de deux partitions disjointes et montrons qu’une extension directe à des graphes

ix

Acknowledgements

partitionnés plats comportant au moins trois partitions disjointes est impossible. Pour les

graphes partitionnés généraux, nous montrons une variante du théorème de Hanani-Tutte

dans le cas où chaque partition induit un sous-graphe connecté. Nous concluons par une

courte démonstration, utilisant l’intersection de matroïdes, d’un résultat de Di Battista et Frati

sur les tests de planarité par partition.

Mots-clés : algorithmes d’approximation, relaxations polyhédrales, sac à dos incrémental

invariant dans le temps, pitch borné, min-knapsack, graphes partitionnés, théorème Hanani–

Tutte

x

Zusammenfassung
Knapsack-Probleme geben Entscheidungsverfahren eine einfache Struktur. Ein klassisches

Beispiel ist das Min-Knapsack-Problem (MINKNAP): wählen Sie eine Teilmenge von Elementen

mit minimalen Gesamtkosten aus, deren Gesamtgewinn über einem bestimmten Schwellen-

wert liegt. Dieses Modell wurde erfolgreich auf Planungsprobleme, Netzwerkdesign und kapazi-

tierte Standortprobleme verallgemeinert. Hingegen können dynamische Programmieransätze

nicht für diese Probleme benutzt werden. Stattdessen werden häufig starke polyedrische Rela-

xationen für entsprechende ganzzahlige lineare Optimierungen verwendet. Unter anderem

stellen wir eine solche Relaxion für das zeitinvariante inkrementelle Knapsack-Problem (IIK)

her und studieren gültige Ungleichungen für MINKNAP.

IIK behandeln wir im ersten Teil der Arbeit. Es verallgemeinert das Max-Knapsack-Problem

auf mehrere Perioden: Nach jedem Zeitintervall erhöht sich die Kapazität und es können

Elemente hinzugefügt, jedoch nicht entfernt werden. Ziel ist es, die Summe der Gewinne über

alle Zeitintervalle zu maximieren. Mit IIK kann man gewisse Szenarien in Finanzmärkten und

staatlichen Entscheidungsprozessen modellieren. Es ist bekannt, dass IIK stark NP-schwer

ist, in speziellen Fällen wurde aber an Näherungsalgorithmen gearbeitet. Wir legen die Kom-

plexität von IIK durch den Entwurf eines PTAS fest und geben mehrere Verallgemeinerungen

dieser Technik an.

Die nächsten zwei Kapitel befassen sich mit MINKNAP und bilden den zweiten Teil der Ar-

beit. Das erste Kapitel ist motiviert durch eine kürzlich durchgeführte Arbeit über disjunktive

Relaxationen für MINKNAP mit fester Zielfunktion. Bei dieser Relaxion reduzieren wir die

Größe der Konstruktion. Das zweite Kapitel konzentriert sich auf eine Klasse begrenzter

pitch-Ungleichungen, welche die ungewichteten cover-Ungleichheiten für MINKNAP ver-

allgemeinern. Pitch-1-Ungleichungen separieren ist NP-schwer, wir zeigen aber, dass eine

approximierte Separierung der Menge von pitch-1 und pitch-2-Ungleichungen in Polynomial-

zeit erfolgen kann. Wir untersuchen auch die Integritätslücken von linearen Relaxationen für

MINKNAP, wenn diese Ungleichungen hinzugefügt werden. Folglich zeigen wir, dass der t-te

CG-Verschluss der natürlichen Relaxation für jedes feste t eine unbeschränkte Lücke aufweist.

Das letzte Kapitel untersucht eine andere Klasse von Problemen. Das Hanani–Tutte Theorem

ist ein klassisches Resultat, welches planare Graphen durch eine mögliche Zeichnung in der

Ebene charakterisiert, in der jedes Kantenpaar, das keinen Scheitelpunkt hat, eine gerade

Anzahl von Kreuzungen hat. Wir verallgemeinern dieses Ergebnis auf Cluster-Diagramme

mit zwei disjunkten Clustern und zeigen, dass eine einfache Verallgemeinerung auf flache

xi

Acknowledgements

Cluster-Diagramme mit drei oder mehr disjunkten Clustern nicht möglich ist. Für allgemeine

Cluster-Diagramme zeigen wir eine Variante des Satzes von Hanani - Tutte in dem Fall, in dem

jedes Cluster einen zusammenhängenden Untergraph induziert. Mit Matroid-Schnittpunkten

geben wir einen kurzen Beweis für ein Ergebnis von Di Battista und Frati über gruppierte

Planaritätstests.

Schlüsselwörter: Approximationsalgorithmen, polyedrische Relaxationen, zeitinvarianter

inkrementeller Knapsack, beschränkte pitch, min-Knapsack, gruppierte Planarität, Satz von

Hanani – Tutte

xii

Contents
Abstract (English/Français/Deutsch) vii

1 Introduction 1

1.1 Knapsack problems . 2

1.2 Clustered planarity . 4

1.3 Our results and organization of the chapters . 4

2 A PTAS for the time-invariant incremental knapsack 7

2.1 Overview of basic techniques . 9

2.2 A PTAS for IIK . 10

2.2.1 Reducing IIK to special instances and solutions 10

2.2.2 A disjunctive relaxation . 13

2.2.3 Rounding . 16

2.3 Generalizations . 21

3 An improved disjunctive relaxation for the min-knapsack 25

3.1 Overview of the technique . 25

3.2 The disjunctive relaxation . 27

4 On bounded pitch inequalities for the min-knapsack 31

4.1 Basics . 31

4.2 A weak separation oracle for pitch-1 and pitch-2 inequalities 33

4.2.1 Restricting the set of valid pitch-2 inequalities 33

4.2.2 An oracle . 35

4.2.3 Separating inequalities of pitch-3 and larger, with fixed support 37

4.3 Integrality gap for MINKNAP with bounded pitch inequalities 38

4.3.1 When p=c . 38

4.3.2 CG closures of bounded rank of the natural MINKNAP relaxation 39

4.3.3 When all knapsack cover inequalities are added 41

4.3.4 When all bounded pitch and knapsack cover inequalities are added . . . 42

5 Clustered planarity testing 45

5.1 Basic definitions and an overview of results . 45

5.2 Algorithm . 48

xiii

Contents

5.3 Weak Hanani–Tutte for two-clustered graphs . 51

5.3.1 Proof of Theorem 26 . 52

5.4 Strong Hanani–Tutte for two-clustered graphs . 53

5.4.1 Proof of Theorem 27 . 54

5.5 Strong Hanani–Tutte for c-connected clustered graphs 58

5.6 Counterexample on three clusters . 59

5.6.1 Proof of Theorem 29 . 64

5.7 Small faces . 65

5.7.1 Proof of Theorem 30 . 67

5.8 Concluding remarks . 68

6 Future directions 71

A 73

A.1 Background on disjunctive programming . 73

A.2 IIK, MKP, and UFP . 73

Bibliography 80

Curriculum Vitae 81

xiv

1 Introduction

When making decisions, we are regularly deciding among a set of possibilities, according to

our experience and emotional preferences. One can think of planing daily activities subject

to the time limit. There are many factors, and it is not easy to quantify the utility of each

activity for us. We are subjective and sometimes even irrational. However, many decisions

in industrial applications are made in a rigorously controlled environment. Each possible

choice has an assigned value and the goal is to maximize the total utility while respecting

well-defined constraints. A major problem is that the number of choices can be very large.

Knapsack problems give a straightforward way to model decision making. A classical example

is the maximum knapsack problem (MAXKNAP): given a threshold and a set of alternatives,

where each alternative has its weight and profit, provide a subset maximizing the cumulative

profit whose weight does not exceed the threshold. Verifying that a chosen set satisfies the

latter condition, and brings profit above a certain value, requires only a small number of

arithmetic operations. However, it is believed that finding a maximum set satisfying the

condition, and thus solving MAXKNAP, cannot be done efficiently in general 1.

Approximation algorithms are a class of efficient methods to obtain problem solutions which

are not necessarily optimal but have a close-to-optimal guarantee. In the 50s, George Dantzig

provided an algorithm returning a solution to MAXKNAP with profit of at least half the optimal

value, using slightly more operations then reading the problem data. Dantzig was a pioneer in

the field of linear programming, which aims at maximizing a linear function subject to linear

constraints. Geometrically, the corresponding set of feasible solutions is defined with a convex

polyhedron which can be seen as an intersection of half-spaces. While the set of solutions

for MAXKNAP is discrete, polyhedral relaxations form a convex envelope around this set. It is

desired that an extreme point of this envelope can be rounded to a MAXKNAP solution with

value sufficiently close to the optimum. Approximation algorithms designed in such a way are

benefiting from the easiness of adding extra constraints and adaptation to similar problems,

as well as maturity of linear programming solvers in practice.

1It boils down to the "P=NP?" question and the exponential time hypothesis.

1

Chapter 1. Introduction

Clustered planrity relates to another aspect important for decision making, namely data

representation. A sequence of tasks that are to be performed in a large information system can

be visualized by a diagram. Each task is shown as a node and there is an arc between each pair

of tasks sharing data. In addition, tasks are grouped into clusters drawn as circular discs, e.g.,

indicating tasks that are to be executed in parallel. Clustered planarity works with questions

whether certain diagrams can be drawn on a sheet of paper without line intersections. Such a

drawing gives a cleaner overview of the system and makes managing decisions easier.

1.1 Knapsack problems

Knapsack problems are among the most fundamental and well-studied in discrete optimiza-

tion. Some variants forego the development of modern optimization theory, dating back to

1896 [39]. MAXKNAP was classified as an NP-complete problem already in the initial Karp’s list

in the 70’s [31]. This was closely followed by a fully polynomial-time approximation scheme

(FPTAS) for the same problem which was derived by Ibarra and Kim [28]. Many classical

algorithmic techniques including greedy, dynamic programming, backtracking/branch-and-

bound have been studied by means of solving knapsack problems, see e.g. [32]. The algorithm

of Martello and Toth [37] has been known to be the fastest in practice for exactly solving

MAXKNAP instances [2].

However, pure knapsack problems rarely appear in applications. One aims at developing

techniques that remain valid when less structured constraints are added on top of the original

knapsack one. This can be achieved by providing strong linear relaxations for the problem:

then, any additional linear constraint can be added to the formulation, providing a good

starting point for any branch-and-bound procedure. The most common way to measure

the strength of a linear relaxation is by measuring its integrality gap, i.e. the maximum ratio

between the optimal solutions of the linear and the integer programs (inverse for minimization

problems) over all the objective functions. The standard linear relaxation for MAXKNAP has

integrality gap 2, and further reducing the gap requires an extended space [21]. For ε > 0,

an extended formulation with gap bounded by (1+ ε) and size nŌ(1/ε) is either obtained by

disjunctive programming [9] or with 1/ε rounds of the Lassere hierarchy [30]. Disjunctive

programming (See Appendix A.1) provides a very general approach to find strong relaxations

for integral sets, and it has been exploited in practice to produce disjunctive cuts for MILP.

The time-invariant incremental knapsack problem (IIK) is a natural extension of MAXKNAP to

the scenario where the knapsack capacity increases in a predictable manner over a finite set

of times. An item can be added to knapsack at an arbitrary time, and once placed it cannot

be removed. The profit of an item is multiplied by the number of times it appears in the

knapsack. The goal is to maximize profit while respecting the capacity at each time. The

natural relaxation of IIK has unbounded integrality gap [11], and the disjunctive programming

technique [10] has been applied to obtain strong relaxations and approximation algorithms

for its variants [11, 44].

2

1.1. Knapsack problems

The min-knapsack problem (MINKNAP) is a close relative of MAXKNAP where one aims at

finding a minimum cost subset of items with profit above a given threshold. NP-completeness

of MINKNAP immediately follows from the NP-completeness of MAXKNAP. Moreover, it is

not hard to show that the classical FPTAS for MAXKNAP [28, 36] can be adapted to work for

MINKNAP, thus completely settling its complexity. MINKNAP is an important problem ap-

pearing as a substructure in many IPs. Valid inequalities for MINKNAP – like the knapsack

cover inequalities [15] – have been generalized to problems in scheduling, network design and

facility location. In contrast to MAXKNAP, the standard linear relaxation for MINKNAP has

unbounded integrality gap, and this remains true even afterΘ(n) rounds of the Lasserre hier-

archy [35]. It is an open question whether MINKNAP admits a poly-size extended formulation

with constant integrality gap. Adding all (exponentially many) knapsack cover inequalities

reduces the gap to 2, and those can be approximately separated [15]. This bound on the gap

is tight, even when the profit vector is equal to the cost vector. Recent results showed the

existence [6] and gave an explicit construction [22] of an extended formulation for MINKNAP

of quasi-polynomial size with integrality gap 2+ε, for ε> 0.

Besides the knapsack cover inequalities, one can look for other classes of well-behaved in-

equalities for MINKNAP with the goal to reduce the gap below 2. This would further improve

the approximation ratio of algorithms for problems containing MINKNAP as a subproblem. A

prominent family of relaxations for covering problems is given by the so called bounded pitch

inequalities [13], see Section 4.1 for the definition. Intuitively, the pitch is a parameter measur-

ing the complexity of an inequality. The associated separation problem is NP-Hard already

for pitch-1. The pitch-1 inequalities are often known in the literature as unweighted cover

inequalities (see e.g. [6]). Bienstock & Zuckerberg showed that the t-th Chvátal-Gomory (CG)

closure of any linear relaxation can be (1+ε)-approximated by strengthening the relaxation

with all valid inequalities of pitch at most θ(t/ε). They developed a strong hierarchy [12] for

0/1-covering problems, which was simplified by Mastrolilli [38] with an augmented version of

SOS hierarchy.

The work by Fiorini et al. [22] further extends this line of research. Given k ∈N, they present a

procedure for obtaining linear relaxations satisfying all pitch-k inequalities valid for a given

0/1 set. The construction is based on a boolean formula defining the set. Take MINKNAP with

n items as an example, there is a corresponding boolean threshold function which maps each

feasible 0/1 vector to 1 and each infeasible to 0. Every function of this kind admits a monotone

boolean formula using nO(logn) operators [7]. The construction of Fiorini et al. [22] results with

a MINKNAP relaxation of size nO(k logn) satisfying all pitch-k. Applying it for k = 1, to a series

of residual MINKNAP problems, gives the above mentioned MINKNAP relaxation with quasi-

polynomial size and gap arbitrary close to 2. Such a result is in a sense counterintuitive to

the fact that the knapsack cover inequalities can be of pitch as high as n, and that the natural

relaxation with all pitch-1 has unbounded gap. One immediate question can be whether

applying pitch- 1
ε to adequately chosen residual MINKNAP problems can reduce the gap to

1+ε, for ε> 0.

3

Chapter 1. Introduction

1.2 Clustered planarity

Investigation of graph planarity can be traced back to the 1930s and developments accom-

plished at that time by Hanani [66], Kuratowski [71], Whitney [83] and others. The Hanani–

Tutte theorem [66, 82] is a classical result that provides an algebraic characterization of pla-

narity with interesting theoretical and algorithmic consequences; see Section 5.2. The (strong)

Hanani–Tutte theorem says that a graph is planar if it can be drawn in the plane so that no

pair of independent edges crosses an odd number of times. Moreover, its variant known as the

weak Hanani–Tutte theorem [48, 75, 78] states that if G has a drawing D where every pair of

edges cross an even number of times, then G has an embedding that preserves the cyclic order

of edges at vertices in D. Note that the weak variant does not directly follow from the strong

Hanani–Tutte theorem. For sub-cubic graphs, the weak variant implies the strong variant.

Other variants of the Hanani–Tutte theorem were proved for surfaces of higher genus [77, 79],

x-monotone drawings [62, 76], partially embedded planar graphs, and several special cases of

simultaneously embedded planar graphs [81]. See [80] for a recent survey on applications of

the Hanani–Tutte theorem and related results.

With the advent of computing, a linear-time algorithm for graph planarity was discovered [68].

Nowadays, a polynomial-time algorithm for testing whether a graph admits a crossing-free

drawing in the plane could almost be considered a folklore result. Nevertheless, many variants

of planarity are still only poorly understood. As a consequence of this state of affairs, the

corresponding decision problems for these variants had neither been shown to be polynomial

nor NP-hard. Clustered planarity is one of the most prominent [50] of such planarity notions.

Roughly speaking, an instance of this problem is a graph whose vertices are partitioned into

clusters. The question is whether the graph can be drawn in the plane so that the vertices in

the same cluster belong to the same simple closed region and no edge crosses the boundary

of a particular region more than once.

1.3 Our results and organization of the chapters

In Chapter 2, we focus on the time-invariant incremental knapsack problem (IIK) and use

disjunctive programming techniques. IIK has been addressed by various people [42, 27, 11, 44]

and partial solutions were provided. We improve upon all the previous results giving a PTAS

for the problem. This is essentially the best possible (unless P=NP), since the problem is

shown to be strongly NP-hard [11]. In order to obtain a PTAS for IIK with arbitrary number of

descrete times, we tailor the disjunctive approach to incremental problems. We show that,

with a negligable profit loss, one can assume that item insertions happen only at a logaritmic

number of times. Still, directly applaying the construction of Bienstock et al. [11] gives a

formulation which is super-polynomial in size. Thus, we develop a set of patterns describing

how the maximum profit of the inserted items evolves over time. Each pattern induces a union

of polytopes, and each of those polytopes has integrality gap arbitrary close to 1. We perform

rounding by extending the classical greedy algorithm for MAXKNAP by Dantzig [17].

4

1.3. Our results and organization of the chapters

In Chapter 3, we study polyhedral relaxations for MINKNAP with a disjunctive programming

approach for the case when the objective function is fixed. We improve on the result of

Bienstock and McClosky [10], providing a smaller relaxation while preserving most of the

structural properties. Both results are based on the technique for grouping items into cost

classes (this is why it is important that the objective function is fixed). The main difference is

that our classes are non-uniform, and we exploit that there is an optimal point in the relaxation

with at most two fractional components. This property holds for any item partitioning in such

disjunctive formulations, and could potentially be used for more general MINKNAP settings.

In Chapter 4, we investigate structural properties of bounded pitch inequalities for MINKNAP,

and their strength in reducing the integrality gap. In particular, we give a simple characteriza-

tion of pitch-2 inequalities and an algorithm for their approximate separation. However, there

is an example showing that inequalities of pitch-3 and higher have more complex structure.

We have shown that pitch-1 and pitch-2 inequalities reduce the gap of MINKNAP to 3/2 in

the case when the cost vector is equal to the profit vector. However, this is false in general

considering the natural relaxation of MINKNAP. We prove that adding all the knapsack cover

and inequalities of pitch at most k, for constant k, still gives the gap of 2. Moreover, bounded

pitch alone can be much weaker than KC: we show that, for each fixed k, the integrality gap

may be unbounded even if all pitch-k inequalities are added. Using the relation between

bounded pitch and Chvátal-Gomory (CG) closures established in [13], this implies that, for

each fixed q , the integrality gap of the q-th CG closure can be unbounded. A recent work by

Bienstock and Zuckerberg [14] generalizes our result on approximate pitch-2 separation to

inequalities with bounded coefficients.

Chapter 5 offers an alternative perspective to clustered planarity. We prove a variant of the

strong Hanani–Tutte theorem for flat clustered graphs with two clusters and c-connected

clustered graphs. As a byproduct, we immediately obtain an algorithm for testing c-planarity

in those cases. It essentially consists of solving a linear system of equations over Z2. We

remark that there exist more efficient algorithms for planarity testing using the Hanani–Tutte

theorem such as those in [58, 59], which run in linear time. Moreover, in the case of x-

monotone drawings a computational study [49] showed that the Hanani–Tutte approach [62]

performs well in practice. This should come as no surprise, since Hanani–Tutte theory seems to

provide solid theoretical foundations for graph planarity that bring together its combinatorial,

algebraic, and computational aspects [81]. As a negative result, we construct a family of

examples which shows that a straightforward extension of strong Hanani–Tutte theorem to

flat clustered graphs with more than two clusters is not possible.

Chapter 2 contains a joint work with Yuri Faenza published in [19], while Chapter 4 is joint

with Yuri Faenza, Monaldo Mastrolilli, and Ola Svensson [20]. Chapter 5 is a collaboration

with Radoslav Fulek, Jan Kynčl, and Dömötör Pálvölgyi [24].

5

2 A PTAS for the time-invariant
incremental knapsack

In order to model scenarios arising in real-world applications, a variety of knapsack problems

have been introduced (see [32] for a survey) and recent works studied extensions of classical

combinatorial optimization problems to multi-period settings, see e.g. [27, 42, 43]. At the

intersection of those two streams of research, Bienstock et al. [11] proposed a generalization

of MAXKNAP to a multi-period setting that they dubbed Time-Invariant Incremental Knapsack

(IIK). In IIK, we are given a set of items [n] with profits p : [n] →R>0 and weights w : [n] →R>0

and a knapsack with non decreasing capacity bt over time t ∈ [T]. We can add items at each

time as long as the capacity constraint is not violated, and once inserted, an item cannot be

removed from the knapsack. The goal is to maximize the total profit, which is defined to be

the sum, over t ∈ [T], of profits of items in the knapsack at time t .

IIK models a scenario where available resources (e.g. money, labour force) augment over

time in a predictable way, allowing to grow our portfolio. Take e.g. a bond market with an

extremely low level of volatility, where all coupons render profit only at their common maturity

time T (zero-coupon bonds) and an increasing budget over time that allows buying more

and more (differently sized and priced) packages of those bonds. For variations of MAXKNAP

that have been used to model financial problems, see [32]. A different application arises in

government-type decision processes, where items are assets of public utility (schools, parks,

etc.) that can be built at a given cost and give a yearly benefit (both constant over the years),

and the community will profit each year those assets are available.

Previous work on IIK. Although the first publication on IIK appeared just very recently [18],

it was previously studied in [11] and several PhD theses [27, 42, 44]. Here we summarize all

those results. In [11], IIK is shown to be strongly NP-hard and an instance showing that the

natural LP relaxation has unbounded integrality gap is provided. In the same paper, a PTAS is

designed for T =O(logn). This improves over [42], where a PTAS for the special case p = w is

given when T is a constant. Again when p = w , a 1/2-approximation algorithm for generic T is

provided in [27]. Results from [44] can be adapted to give an algorithm that solves IIK in time

polynomial in n and of order (logT)O(logT) for a fixed approximation guarantee ε [41]. The

7

Chapter 2. A PTAS for the time-invariant incremental knapsack

authors in [18] provide an alternative PTAS for IIK with constant T , and a 1/2-approximation

for arbitrary T with under the assumption that every item alone fits into the knapsack at t = 1.

Our contributions. In this chapter, we give an algorithm for computing a (1−ε)-approximated

solution for IIK that depends polynomially on the number n of items and, for any fixed ε, also

polynomially on the number of times T . In particular, our algorithm provides a PTAS for IIK,

regardless of T .

Theorem 1. Given ε ∈ R>0 and an instance I of IIK with n items and T ≥ 2 times, there

exists an algorithm that produces a (1− ε)-approximation to the optimal solution of I in

time required to solve O(nT h(ε)) LP problems with Θ(nT) variables and constraints. Here,

h :R>0 →R≥1 is a function depending on ε only. In particular, there exists a PTAS for IIK.

Theorem 1 dominates all previous results on IIK [11, 18, 27, 42, 44] and, due to the hardness

results in [11], settles the complexity of the problem. Interestingly, it is based on designing a

disjunctive formulation – a tool mostly common among integer programmers and practition-

ers1 – and then rounding the solution to its linear relaxation with a greedy-like algorithm. We

see Theorem 1 as an important step towards the understanding of the complexity landscape

of knapsack problems over time. Theorem 1 is proved in Section 2.2: see the end of the current

section for a sketch of the techniques we use and a detailed summary of Section 2.2. In Section

2.3, we show some extensions of Theorem 1 to more general problems.

Related work on other knapsack problems. Bienstock et al. [11] discuss the relation between

IIK and the generalized assignment problem (GAP), highlighting the differences between

those problems. In particular, there does not seem to be a direct way to apply to IIK the

(1−1/e −ε) approximation algorithm [23] for GAP. Other generalizations of MAXKNAP related

to IIK, but whose current solving approaches do not seem to extend, are the multiple knapsack

(MKP) and unsplittable flow on a path (UFP) problems. In Appendix A.2 we discuss those

problems in order to highlight the new ingredients introduced by our approach.

Notation and basic assumptions. We refer to [40] for basic definitions and facts on approxima-

tion algorithms and polytopes. Given an integer k, we write [k] := {1, . . . ,k} and [k]0 := [k]∪ {0}.

Given a polyhedron Q ⊆ Rn , a relaxation P ⊆ Rn is a polyhedron such that Q ⊆ P and the

integer points in P and Q coincide. The size of a polyhedron is the minimum number of facets

in an extended formulation for it, which is well-known to coincide with the minimum number

of inequalities in any linear description of the extended formulation.

We assume that expressions 1
ε , (1+ε) j , log1+ε

T
ε and similar are to be rounded up to the closest

integer. This is just done for simplicity of notation and can be achieved by replacing ε with an

appropriate constant fraction of it, which will not affect the asymptotic running time.

1See Appendix A.1 for a discussion on disjunctive programming.

8

2.1. Overview of basic techniques

2.1 Overview of basic techniques

In order to illustrate the ideas behind the proof of Theorem 1, let us first recall one of the

PTAS for the classical MAXKNAP with capacity β, n items, profit and weight vector p and w

respectively. Recall the greedy algorithm for knapsack:

1. Sort items so that p1

w1
≥ p2

w2
≥ ·· · ≥ pn

wn
.

2. Set x̄i = 1 for i = 1, . . . , ı̄ , where ı̄ is the maximum integer s.t.
∑

1≤i≤ı̄
wi ≤β.

It is well-known that pT x̄ ≥ pT x∗−maxi≥ı̄+1 pi , where x∗ is the optimal solution to the linear

relaxation. A PTAS for MAXKNAP can then be obtained as follows: “guess” a set S0 of 1
ε items

with w(S0) ≤β and consider the “residual” knapsack instance I obtained removing items in

S0 and items ` with p` > mini∈S0 pi , and setting the capacity to β−w(S0). Apply the greedy

algorithm to I as to obtain solution S. Clearly S0 ∪S is a feasible solution to the original

knapsack problem. The best solutions generated by all those guesses can be easily shown to

be a (1−ε)-approximation to the original problem.

Recall that IIK can be defined as follows.

max
∑

t∈[T]
pT xt

s.t. wT xt ≤ bt ∀t ∈ [T]

xt ≤ xt+1 ∀t ∈ [T −1]

xt ∈ {0,1}n ∀t ∈ [T].

(2.1)

By definition, 0 < bt ≤ bt+1 for t ∈ [T −1]. We also assume wlog that 1 = p1 ≥ p2 ≥ ... ≥ pn .

When trying to extend the PTAS above for MAXKNAP to IIK, we face two problems. First, we

have multiple times, and a standard guessing over all times will clearly be exponential in T .

Second, when inserting an item into the knapsack at a specific time, we are clearly imposing

this decision on all times that succeed it, and it is not clear a priori how to take this into

account.

We solve these issues by proposing an algorithm that, in a sense, still follows the general

scheme of the greedy algorithm sketched above: after some preprocessing, guess items (and

insertion times) that give high profit, and then fill the remaining capacity with an LP-driven

integral solution. However, the way of achieving this is different from the PTAS above. In

particular, some of the techniques we introduced are specific for IIK and not to be found in

methods for solving non-incremental knapsack problems.

9

Chapter 2. A PTAS for the time-invariant incremental knapsack

An overview of the algorithm:

(i) Sparsification and other simplifying assumptions. We first show that by losing at most

a 2ε fraction of the profit, we can assume the following (see Section 2.2.1): item 1,

which has the maximum profit, is inserted into the knapsack at some time; the capacity

of the knapsack only increases and hence the insertion of items can only happen at

J =O(1
ε logT) times (we call them significant); and the profit of each item is either much

smaller than p1 = 1 or it takes one of K =O(1
ε log T

ε) possible values (we call them profit

classes).

(ii) Guessing of a stairway. The operations in the previous step give a J×K grid of “significant

times” vs “profit classes” with O(1
ε2 log2 T

ε) entries in total. One could think of the

following strategy: for each entry (j ,k) of the grid, guess how many items of profit class

k are inserted in the knapsack at time t j . However, those entries are still too many to

perform guessing over all of them. Instead, we proceed as follows: we guess, for each

significant time t j , which is the class k of maximum profit that has an element in the

knapsack at time t j . Then, for profit class k and carefully selected profit classes “close”

to k, we either guess exactly how many items are in the knapsack at time t j or if these

are at least 1
ε . Each of the guesses leads to a natural IP. The optimal solution to one of

the IPs is an optimal solution to our original problem. Clearly, the number of possible

guesses affects the number of the IPs, hence the overall complexity. We introduce the

concept of “stairway” to show that these guesses are polynomially many for fixed ε. See

Section 2.2.2 for details. We remark that, from this step on, we substantially differ from

the approach of [11], which is also based on a disjunctive formulation.

(iii) Solving the linear relaxations and rounding. Fix an IP generated at the previous step,

and let x∗ be the optimal solution of its linear relaxation. A classical rounding argument

relies on LP solutions having a small number of fractional components. Unfortunately,

x∗ is not as simple as that. However, we show that, after some massaging, we can control

the entries of x∗ where “most” fractional components appear, and conclude that the

profit of bx∗c is close to that of x∗. See Section 2.2.3 for details. Hence, looping over all

guessed IPs and outputting vector bx∗c of maximum profit concludes the algorithm.

2.2 A PTAS for IIK

2.2.1 Reducing IIK to special instances and solutions

Our first step will be to show that we can reduce IIK, without loss of generality, to solutions and

instances with a special structure. The first reduction is immediate: we restrict to solutions

where the highest profit item is inserted in the knapsack at some time. We call these 1-in

10

2.2. A PTAS for IIK

solutions. This can be assumed by guessing which is the highest profit item that is inserted in

the knapsack, and reducing to the instance where all higher profit items have been excluded.

Since we have n possible guesses, the running time is scaled by a factor O(n).

Observation 2.2.1. Suppose there exists a function f :N×N×R>0 such that, for each n,T ∈N,

ε> 0, and any instance of IIK with n items and T times, we can find a (1−ε)-approximation to

a 1-in solution of highest profit in time f (n,T,ε). Then we can find a (1−ε)-approximation to

any instance of IIK with n items and T times in time O(n) · f (n,T,ε).

Now, let I be an instance of IIK with n items, let ε> 0. We say that I is ε-well-behaved if it

satisfies the following properties.

(ε1) For all i ∈ [n], one has pi = (1+ε)− j for some j ∈ {0,1, . . . , log1+ε
T
ε }, or pi ≤ ε

T .

(ε2) bt = bt−1 for all t ∈ [T] such that (1+ε) j−1 < T − t +1 < (1+ε) j for some

j ∈ {0,1, . . . , log1+εT }, where we set b0 = 0.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

t bt

T

b′t

I → I ′

p

(32)
0 (32)

−1 (32)
−2

ε = 1
2

p′
(32)

0 (32)
−1 (32)

−2

ε = 1
2

0 0

Figure 2.1 – An example of obtaining an ε-well-behaved instance for ε= 1
2 and T = 14.

See Figure 2.1 for an example. Note that condition (ε2) implies that the capacity can change

only during the set of times T := {t ∈ [T] : t = T + 1− (1+ε) j for some j ∈ N}, with |T | =
O(log1+εT). T clearly gets sparser as t becames smaller. Note that for T not being a degree of

(1+ε) there will be a small fraction of times t at the beginning with capacity 0; see Figure 2.1.

Next theorem implies that we can, wlog, assume that our instances are ε-well-behaved (and

our solutions are 1-in).

11

Chapter 2. A PTAS for the time-invariant incremental knapsack

Theorem 2. Suppose there exists a function g :N×N×R>0 such that, for each n,T ∈N, ε> 0,

and any ε-well-behaved instance of IIK with n items and T times, we can find a (1− 2ε)-

approximation to a 1-in solution of highest profit in time g (n,T,ε). Then we can find a (1−4ε)-

approximation to any instance of IIK with n items and T times in time O(T +n(n + g (n,T,ε)).

Fix an IIK instance I . The reason why we can restrict ourselves to finding a 1-in solution is

Observation 2.2.1. Denote with I ′ the instance with n items having the same weights as in I ,

T times, and the other parameters defined as follows:

• For i ∈ [n], if (1+ε)− j ≤ pi < (1+ε)− j+1 for some j ∈ {0,1, . . . , log1+ε
T
ε }, set p ′

i := (1+ε)− j ;

otherwise, set p ′
i := pi . Note that we have 1 = p ′

1 ≥ p ′
2 ≥ ... ≥ p ′

n .

• For t ∈ [T] and (1+ε) j−1 < T − t +1 ≤ (1+ε) j for some j ∈ {0,1, . . . , log1+εT }, set b′
t :=

bT−(1+ε) j+1, with b′
0 := 0.

One easily verifies that I ′ is ε-well-behaved. Moreover, b′
t ≤ bt for all t ∈ [T] and pi

1+ε ≤ p ′
i ≤ pi

for i ∈ [n], so we deduce:

Claim 1. Any solution x̄ feasible for I ′ is also feasible for I , and p(x̄) ≥ p ′(x̄).

We also prove the following.

Claim 2. Let x∗ be a 1-in feasible solution of highest profit for I . There exists a 1-in feasible

solution x ′ for I ′ such that p ′(x ′) ≥ (1−ε)2p(x∗).

Proof. Define x ′ ∈ {0,1}T n as follows:

x ′
t := x∗

T−(1+ε) j+1
if (1+ε) j−1 < T − t +1 ≤ (1+ε) j

for j ∈ {0,1, . . . , log1+εT },with x∗
0 = 0.

In order to prove the claim we first show that x ′ is a feasible 1-in solution for I ′. Indeed, it

is 1-in, since by construction x ′
T,1 = x∗

T,1 = 1. It is feasible, since for t such that (1+ε) j−1 <
T − t +1 ≤ (1+ε) j , j ∈ {0,1, . . . , log1+εT } we have

wT x ′
t = wT x∗

T−(1+ε) j+1 ≤ bT−(1+ε) j+1 = b′
t .

Comparing p ′(x ′) and p(x∗) gives

p ′(x ′) ≥ ∑
t∈[T]

∑
i∈[n]

p ′
i x ′

t ,i = ∑
i∈[n]

(T − ti ,min(x ′)+1)p ′
i

≥ ∑
i∈[n]

1
1+ε (T − ti ,min(x∗)+1)p ′

i ≥ ∑
i∈[n]

1
(1+ε)2 (T − ti ,min(x∗)+1)pi

= (1
1+ε)2p(x∗) ≥ (1−ε)2p(x∗),

where ti ,min(v) := min{t ∈ [T] : vt ,i = 1} for v ∈ {0,1}T n .

12

2.2. A PTAS for IIK

Proof of Theorem 2. Let x̂ be a 1-in solution of highest profit for I ′ and x̄ is a solution to I ′

that is a (1−ε)-approximation to x̂. Claim 1 and Claim 2 imply that x̄ is feasible for I and we

deduce:

p(x̄) ≥ p ′(x̄) ≥ (1−2ε)p ′(x̂)≥(1−2ε)p ′(x ′) ≥ (1−2ε)(1−ε)2p(x∗) ≥ (1−4ε)p(x∗).

In order to compute the running time, it is enough to bound the time required to produce I ′.
Vector p ′ can be produced in time O(n), while vector b′ in time T . Moreover, the construction

of the latter can be performed before fixing the highest profit object that belongs to the

knapsack (see Observation 2.2.1). The thesis follows.

�

2.2.2 A disjunctive relaxation

Fix ε> 0. Because of Theorem 2, we can assume that the input instance I is ε-well-behaved.

We call all times from T significant. Note that a solution over the latter times can be naturally

extended to a global solution by setting xt = xt−1 for all non-significant times t . We denote

significant times by t(1) < t(2) < ·· · < t(|T |). In this section, we describe an IP over feasible

1-in solutions of an ε-well-behaved instance of IIK. The feasible region of this IP is the union

of different regions, each corresponding to a partial assignment of items to significant times.

In Section 2.2.3 we give a strategy to round an optimal solution of the LP relaxation of the IP to

a feasible integral solution with a (1−2ε)-approximation guarantee. Together with Theorem 2

(taking ε′ = ε
4), this implies Theorem 1.

In order to describe those partial assignments, we introduce some additional notation. We say

that items having profit (1+ε)−k for k ∈ [log1+ε
T
ε], belong to profit class k. Hence bigger profit

classes correspond to items with smaller profit. All other items are said to belong to the small

profit class. Note that there are O(1
ε log T

ε) profit classes (some of which could be empty). Our

partial assignments will be induced by special sets of vertices of a related graph called grid.

Definition 3. Let J ∈ Z>0,K ∈ Z≥0, a grid of dimension J × (K +1) is the graph G J ,K = ([J]×
[K]0,E), where

E := {{u, v} : u, v ∈ [J]× [K]0, u = (j ,k)

and either v = (j +1,k) or v = (j ,k +1) }.

Definition 4. Given a grid G J ,K , we say that

S := {(j1,k1), (j2,k2), . . . , (j|S|,k|S|)} ⊆V (G J ,K)

is a stairway if jh > jh+1 and kh < kh+1 for all h ∈ [|S|−1].

Lemma 5. There are at most 2K+J+1 distinct stairways in G J ,K .

13

Chapter 2. A PTAS for the time-invariant incremental knapsack

Proof. The first coordinate of any entry of a stairway can be chosen among J values, the

second coordinate from K +1 values. By Definiton 4, each stairway correspond to exactly one

choice of sets J1 ⊆ [J] for the first coordinates and K1 ⊆ [K]0 for the second, with |K1| = |J1|.

Now consider the grid graph with J := |T | = θ(1
ε logT), K = log1+ε

T
ε , and a stairway S with

k1 = 0. See Figure 2.2 for an example. This corresponds to a partial assignment that can be

informally described as follows. Let (jh ,kh) ∈ S and th := t(jh). In the corresponding partial

assignment no item belonging to profit classes kh ≤ k < kh+1 is inside the knapsack at any

time t < th , while the first time an item from profit class kh is inserted into the knapsack is at

time th (if j|S| > 1 then the only items that the knapsack can contain at times 1, . . . , t|S|−1 are

the items from the small profit class). Moreover, for each h ∈ [|S|], we focus on the family of

profit classes Kh := {k ∈ [K] : kh ≤ k ≤ kh +Cε} with Cε = log1+ε
1
ε . For each k ∈Kh and every

(significant) time t in the set Th := {t ∈ T : th−1 < t ≤ th}, we will either specify exactly the

number of items taken from profit class k at time t , or impose that there are at least 1
ε +1 of

those items (this is established by map ρh below). Note that we can assume that the items

taken within a profit class are those with minimum weight: this may exclude some feasible

1-in solutions, but it will always keep at least a feasible 1-in solution of maximum profit. No

other constraint is imposed.

More formally, set k|S|+1 = K +1 and for each h = 1, . . . , |S|:

i) Set xt ,i = 0 for all t ∈ [th −1] and each item i in a profit class k ∈ [kh+1 −1].

ii) Fix a map ρh : Th ×Kh → {0,1, . . . , 1
ε +1} such that for all t ∈Th one has ρh(t ,kh) ≥ 1 and

ρh(t̄ ,k) ≥ ρh(t ,k), ∀(t̄ ,k) ∈Th ×Kh , t̄ ≥ t .

Additionally, we require ρh(t̄ ,k) ≥ ρh+1(t ,k) for all h ∈ [|S|−1], k ∈Kh∩Kh+1, t̄ ∈Th , t ∈Th+1.

Thus, we can merge all ρh into a function ρ : ∪h∈[|S|](Th ×Kh) → {0,1, . . . , 1
ε +1}. For each

profit class k ∈ [K] we assume that items from this class are Ik = {1(k), . . . , |Ik |(k)}, so that

w1(k) ≤ w2(k) ≤ ·· · ≤ w|Ik |(k). Based on our choice (S,ρ) we define the polytope:

P (S,ρ) = {x ∈RT n : wT xt ≤ bt ∀t ∈ [T]

xt ≤ xt+1 ∀t ∈ [T −1]

0 ≤ xt ≤ 1 ∀t ∈ [T]

∀h ∈ [|S|] :

xt ,i (k) = 0, ∀t < th , ∀k < kh+1, ∀i (k) ∈ Ik

xt ,i (k) = 1, ∀t ∈Th , ∀k ∈Kh , ∀i (k) : i ≤ ρ(t ,k)

xt ,i (k) = 0, ∀t ∈Th , ∀k ∈Kh : ρ(t ,k) ≤ 1
ε ,

∀i (k) : i > ρ(t ,k)}.

The linear inequalities are those from the IIK formulation. The first set of equations impose

14

2.2. A PTAS for IIK

(j|S|, k|S|)

kh kh+1kh + Cε

0
1

K

J

pk

t(j)

(j1, k1)

jh

jh+1

ρ

Figure 2.2 – An example of a stairway S, given by thick black dots. Entries (j ,k) lying in the
light grey area are those for which a value ρ is specified. No item corresponding to the entries
in the dark grey area is taken, except on the boundary in bold.

that, at each time t , we do not take any object from a profit class k, if we guessed that the

highest profit object in the solution at time t belongs to a profit class k ′ > k (those are entries

corresponding to the dark grey area in Figure 2.2). The second set of equations impose that

for each time t and class k for which a guess ρ(t ,k) was made (light grey area in Figure 2.2),

we take the ρ(t ,k) items of smallest weight. As mentioned above, this is done without loss of

generality: since profits of objects from a given profit class are the same, we can assume that

the optimal solution insert first those of smallest weight. The last set of equations imply that

no other object of class k is inserted in time t if ρ(t ,k) ≤ 1
ε .

Note that some choices of S,ρ may lead to empty polytopes. Fix S,ρ, an item i and some time

t . If, for some t ′ ≤ t , xt ′,i = 1 explicitly appears in the definition of P (S,ρ) above, then we say

that i is t-included. Conversely, if x t̄ ,i = 0 explicitly appears for some t̄ ≥ t , then we say that i

is t-excluded.

Theorem 6. Any optimal solution of

max
∑

t∈[T]
pT

t xt s.t. x ∈ (∪S,ρP (S,ρ)
)∩ {0,1}T n

is a 1-in solution of maximum profit for I . Moreover, the the number of constraints of the

associated LP relaxation is at most nT f (ε) for some function f :R>0 →R>0 depending on ε only.

Proof. Note that one of the choices of (S,ρ) will be the correct one, i.e. it will predict the

stairway S associated to an optimal 1-in solution, as well as the number of items that this

15

Chapter 2. A PTAS for the time-invariant incremental knapsack

solution takes for each entry of the grid it guessed. Then there exists an optimal solution

that takes, for each time t and class k for which a guess ρ(t ,k) was made, the ρ(t ,k) items

of smallest weight from this class, and no other object if ρ(t ,k) ≤ 1
ε . These are exactly the

constraints imposed in P (S,ρ). The second part of the statement follows from the fact that the

possible choices of (S,ρ) are

(# stairways) · (# possible values in each entry of ρ) (# entries of a vector ρ)

=
2O(1

ε
log T

ε
) · O(1

ε) O(1
ε

log T
ε

)Cε

=
(T
ε)O(1

ε
) · (T

ε)O((1
ε

)3),

and each (S,ρ) has g (ε)O(T n) constraints, where g depends on ε only.

2.2.3 Rounding

By convexity, there is a choice of S and ρ given as in the previous section such that any optimal

solution of

max
∑

t∈[T]
pT xt s.t. x ∈ P (S,ρ) (2.2)

is also an optimal solution to

max
∑

t∈[T]
pT xt s.t. x ∈ conv(∪S,ρP (S,ρ)).

Hence, we can focus on rounding an optimal solution x∗ of (2.2). We assume that the items

are ordered so that p1

w1
≥ p2

w2
≥ ·· · ≥ pn

wn
. Moreover, let I t (resp. E t) be the set of items from [n]

that are t-included (resp. t-excluded) for t ∈ [T], and let Wt := wT x∗
t .

Algorithm 1

1: Set x̄0 = 0.

2: For t = 1, . . . ,T :

(a) Set x̄t = x̄t−1.

(b) Set x̄t ,i = 1 for all i ∈I t .

(c) While Wt −wT x̄t > 0:

(i) Select the smallest i ∈ [n] such that i ∉ E t and x̄t ,i < 1.

(ii) Set x̄t ,i = x̄t ,i +min{1− x̄t ,i , Wt−w T x̄t
wi

}.

Respecting the choices of S and ρ, i.e. included/excluded items at each time t , Algorithm

16

2.2. A PTAS for IIK

1 greedly adds objects into the knapsack, until the total weight is equal to Wt . Recall that

in MAXKNAP one obtains a rounded solution which differs from the fractional optimum

by the profit of at most one item. Here the fractionality pattern is more complex, but still

under control. In fact, as we show below, x̄ is such that
∑

t∈[T] pT x̄t = ∑
t∈[T] pT x∗

t and, for

each h ∈ [|S|] and t ∈ [T] such that th ≤ t < th−1, vector x̄t has at most |S| −h +1 fractional

components that do not correspond to items in profit classes k ∈ K with at least 1
ε+1 t-included

items. We use this fact to show that bx̄c is an integral solution that is (1−2ε)-optimal.

Theorem 7. Let x∗ be an optimal solution to (2.2). Algorithm 1 produces, in time O(T +n), a

vector x̄ ∈ P (S,ρ) such that
∑

t∈[T] pT bx̄t c ≥ (1−2ε)
∑

t∈[T] pT x∗
t .

Theorem 7 will be proved in a series of intermediate steps.

Claim 3. Let t ∈ [T −1]. Then:

(i) I t ⊆I t+1 and E t ⊇ E t+1.

(ii) I t+1 \I t ⊆ E t .

Proof. (i) Immediately from the definition.

(ii) If I t+1 \I t 6= ;, we deduce t +1 ∈T . Let h ∈ [|S|] be such that th ≤ t < th−1, where for

completeness t0 = T +1. By construction, the items I t+1 \ I t can only be in buckets

k : kh ≤ k < kh+1 +Cε where either k < kh+1 or k ∈Kh+1 and ρ(t ,k) ≤ 1
ε . Hence, all items

from I t+1 \I t are t-excluded.

Recall that, for t ∈ [T], Wt := wT x∗
t . The proof of the following claim easily follows by construc-

tion.

Claim 4. (i) For any h ∈ [|S|], t ∈ [th −1], k < kh+1 and i ∈ Ik , one has x∗
t ,i = x̄t ,i = 0.

(ii) For t ∈ [T −1] and i ∈ [n], one has x̄t+1,i ≥ x̄t ,i ≥ 0.

(iii) For t ∈ [T], one has: x∗
t ,i = x̄t ,i = 1 for i ∈I t and x∗

t ,i = x̄t ,i = 0 for i ∈ E t .

Define Ft := {i ∈ [n] : 0 < x̄t ,i < 1} to be the set of fractional components of x̄t for t ∈ [T].

Recall that Algorithm 1 sorts items by monotonically decreasing profit/weight ratio. For items

from a given profit class k ∈ [K], this induces the order i (1) < i (2) < . . . – i.e. by monotonically

increasing weight – since all i (k) ∈ Ik have the same profit.

The following claim shows that x̄ is in fact an optimal solution to max{x : x ∈ P (S,ρ)}.

Claim 5. For each t ∈ [T], one has wT x̄t = wT x∗
t and pT x̄t = pT x∗

t .

17

Chapter 2. A PTAS for the time-invariant incremental knapsack

Proof. We first prove the statement on the weights by induction on t , the basic step being

trivial. Suppose it is true up to time t −1. The total weight of solution x̄t after step (b) is

wT x̄t−1 +∑
i∈I t \I t−1 wi (1− x̄t−1,i) = Wt−1 +∑

i∈I t \I t−1 wi (1−x∗
t−1,i)

= Wt−1 +∑
i∈I t \I t−1 wi

(∗)≤ Wt ,

where the equations follow by induction, Claim 4.(iii), and Claim 3.(ii), and (∗) follows by

observing wT x∗
t −wT x∗

t−1 ≥
∑

i∈I t \I t−1 wi . x̄t is afterwords increased until its total weight is

at most Wt . Last, observe that Wt is always achieved, since it is achieved by x∗
t . This concludes

the proof of the first statement.

We now move to the statement on profits. Note that it immediately follows from the optimality

of x∗ and the first part of the claim if we show that x̄ is the solution maximizing pT xt for

all t ∈ [T], among all x ∈ P (S,ρ) that satisfy wT xt = Wt for all t ∈ [T]. So let us prove the

latter. Suppose by contradiction this is not the case, and let x̃ be one such solution such that

pT x̃t > pT x̄t for some t ∈ [T]. Among all such x̃, take one that is lexicographically maximal,

where entries are ordered (1,1), (1,2), . . . , (1,n), (2,1) . . . , (T,n). Then there exists τ ∈ [T], ` ∈ [n]

such that x̃τ,` > x̄τ,`. Pick τminimum such that this happens, and `minimum for this τ. Using

that x̄τ,i = x̃τ,i for i ∈I τ∪E τ since x̄, x̃ ∈ P (S,ρ) and recalling wT x̄τ = wT x̃τ =Wτ one obtains

∑
i∈[n]\(I τ∪E τ)

wi x̄τ,i =
∑

i∈[n]\(I τ∪E τ)
wi x̃τ,i . (2.3)

It must be that x̄τ,` < 1, since x̄τ,` < x̃τ,` ≤ 1, so step (c) of Algorithm 1 in iteration τ did not

change any item ˆ̀> `, i.e. x̄τ, ˆ̀ = x̄τ−1, ˆ̀ for each ˆ̀> `. Additionally, ` ∉I τ beacuse x̄τ,` < 1,

and ` ∉ E τ since otherwise x̄τ,` = x̃τ,` = 0. Hence, ` ∈ [n] \ (I τ∪E τ). By moving the terms

corresponding to ˆ̀> ` to the right-hand side, we rewrite (2.3) as follows∑
¯̀∈[n]\(I τ∪E τ):

¯̀≤`

w ¯̀x̄τ, ¯̀ =
∑

¯̀∈[n]\(I τ∪E τ):
¯̀≤`

w ¯̀x̃τ, ¯̀+
∑

ˆ̀∈[n]\(I τ∪E τ):
ˆ̀>`

w ˆ̀(x̃τ, ˆ̀− x̄τ, ˆ̀︸︷︷︸
=x̄τ−1, ˆ̀

).

By minimality of τ one has x̃τ−1 ≤ x̄τ−1, so wT x̃τ−1 =Wτ−1 = wT x̄τ−1 implies x̃τ−1 = x̄τ−1 and

thus

∑
¯̀∈[n]\(I τ∪E τ):

¯̀≤`

w ¯̀x̄τ, ¯̀ =
∑

¯̀∈[n]\(I τ∪E τ):
¯̀≤`

w ¯̀x̃τ, ¯̀+
≥0︷ ︸︸ ︷∑

ˆ̀∈[n]\(I τ∪E τ):
ˆ̀>`

w ˆ̀(x̃τ, ˆ̀− x̃τ−1, ˆ̀) . (2.4)

Note that the items in [n] are ordered according to monotonically decreasing profit/weight

ratio. By minimality of ` subject to τ we have that x̄τ, ¯̀ ≥ x̃τ, ¯̀ for ¯̀ < `. Thus combining

x̄τ,` < x̃τ,` with (2.4) gives that there exists β< ` such that x̄τ,β > x̃τ, ¯̀. Then for all τ̄≥ τ, one

18

2.2. A PTAS for IIK

can perturb x̃ by increasing x̃τ̄,β and decreasing x̃τ̄,` while keeping x̃ ∈ P (S,ρ) and wT x̃τ̄ =Wτ̄,

without decreasing pT x̃τ̄. This contradicts the choice of x̃ being lexicographically maximal.

For t ∈ [T] define Lt := {k ∈ [K] : |Ik ∩I t | ≥ 1
ε +1 } to be the set of classes with a large number

of t-included items. Furthermore, for h = 1,2, . . . , |S|:

• Recall that Kh = {k ∈ [K] : kh ≤ k ≤ kh +Cε} are the classes of most profitable items

present in the knapsack at times t ∈ [T] : th ≤ t < th−1, since by definition no item is

taken from a class k < kh at those times. Also by definition ρ(th ,kh) ≥ 1, so the largest

profit item present in the knapsack at any time t ∈ [T] : th ≤ t < th−1 is item 1(kh).

Denote its profit by ph
max .

• Define K̄h := {k ∈ [K] : kh +Cε < k}, i.e. it is the family of the other classes for which an

object may be present in the knapsack at time t ∈ [T] : th ≤ t < th−1.

Claim 6. Fix t ∈ [T], th ≤ t < th−1. Then, |Ik ∩Ft | ≤ 1 for all k ∈ [K] ∪ {∞}. Moreover,

|((∪k∈K̄h
Ik)∩Ft) \Fth−1 | ≤ 1.

Proof. We show this by induction on t . Fix t ≥ 1 and suppose that |Ik ∩Ft | ≤ 1 for all k ∈
[K]∪ {∞}. By construction, for a class k such that Ik ∩Ft = {ik }, all items j ∈ Ik with x̄t , j = 0

follow ik in the profit/weight order. Hence, at time t +1, the algorithm will not increase x̄t+1, j

for any j ∈ Ik until x̄t+1,ik is set to 1. We can repeat this argument and conclude |Ik ∩Ft+1| ≤ 1.

Note that this also settles the basic step t = 0 and the case Ik ∩Ft =;, concluding the proof of

the first part. A similar argument settles the other statement.

Claim 7. Let h ∈ [|S|], then: p((∪k∈K̄h \Lt
Ik)∩Ft) ≤ ε∑|S|

h̄=h
p h̄

max, ∀t : th ≤ t < th−1.

Proof. We prove the statement by induction on h. For h = |S|, let t be such that t|S| ≤ t < t|S|−1

and t̄ = t|S|−1. We have that (∪k∈K̄|S| Ik)∩Ft̄ =; so ((∪k∈K̄|S| Ik)∩Ft) \Ft̄ = (∪k∈K̄|S| Ik)∩Ft .

By using Claim 6 we obtain

|(∪k∈K̄|S|\Lt
Ik)∩Ft | ≤ |(∪k∈K̄|S| Ik)∩Ft | ≤ 1.

The largest profit of an item in ∪k∈K̄|S| Ik is smaller than (1+ε)−Cεp |S|
max ≤ εp |S|

max by the definition

of K̄|S| and recalling Cε = log1+ε
1
ε . The statement follows.

Assume that the statement holds for all h such that 2 ≤ h ≤ |S| and prove it for h = 1. Let

t such that t1 ≤ t < t0 = T + 1 and t̄ = t1 − 1. Observe that Lt ⊇ L t̄ and (∪k∈K̄1
Ik)∩Ft̄ ⊆

(∪k∈K2∪K̄2
Ik)∩Ft̄ so

(∪k∈K̄1\Lt
Ik)∩Ft̄ ⊆ (∪k∈(K2∪K̄2)\L t̄

Ik)∩Ft̄ = (∪k∈K̄2\L t̄
Ik)∩Ft̄ .

19

Chapter 2. A PTAS for the time-invariant incremental knapsack

Thus, we obtain:

p((∪k∈K̄1\Lt
Ik)∩Ft) = p(((∪k∈K̄1\Lt

Ik)∩Ft) \Ft̄)+p((∪k∈K̄1\Lt
Ik)∩Ft̄)

≤ p(((∪k∈K̄1\Lt
Ik)∩Ft) \Ft̄)+p((∪k∈K̄2\L t̄

Ik)∩Ft̄)

≤ εp1
max +ε

∑|S|
h̄=2

p h̄
max,

where in the last inequality we used Claim 6 and the inductive hypothesis.

Proof of Theorem 7. We focus on showing that, ∀t ∈ [T]:∑
i∈[n]\I∞

pi bx̄t ,i c ≥
∑

i∈[n]\I∞
pi x̄t ,i −

∑
i∈([n]\I∞)∩Ft

pi ≥ (1−ε)
∑

i∈[n]\I∞
pi x̄t ,i . (2.5)

The first inequality is trivial and, if t < t|S|, so is the second, since in this case x̄t ,i = 0 for all

i ∈ [n] \ I∞. Otherwise, t is such that th ≤ t < th−1 for some h ∈ [|S|] with t0 = T +1. Observe

that:
([n] \ I∞)∩Ft = ((∪k∈(Kh∪K̄h)\Lt

Ik)∩Ft)∪ ((∪k∈(Kh∪K̄h)∩Lt
Ik)∩Ft)

= ((∪k∈K̄h \Lt
Ik)∩Ft)∪ ((∪k∈Lt Ik)∩Ft)

For k ∈ [K] denote the profit of i ∈ Ik with pk . We have:∑
i∈([n]\I∞)∩Ft

pi x̄t ,i = p((∪k∈K̄h \Lt
Ik)∩Ft)+p((∪k∈Lt Ik)∩Ft)

(By Claim 7 and Claim 6) ≤ ε
∑|S|

h̄=h
p h̄

max +
∑

k∈Lt
pk .

(2.6)

If k = kh̄ ∈Lt for h̄ ∈ [|S|] then
∑

i∈Ik
pi x̄t ,i ≥ (1

ε +1)pk = p h̄
max + 1

εpk . Together with ρ(kh , th) ≥
1 ∀h ∈ [|S|] and the definition of Lt this gives:

∑
i∈[n]\I∞

pi x̄t ,i ≥
|S|∑

h̄=h

p h̄
max +

1

ε

∑
k∈Lt

pk . (2.7)

Put together, (2.6) and (2.7) imply (2.5). Morever, by Claim 6, |I∞∩Ft | ≤ 1 for all t ∈ [T] and

since we are working with an ε-well-behaved instance pi ≤ ε
T = ε

T p1
max so

∑
t∈[T]

∑
i∈I∞∩Ft

pi ≤
εp1

max. The last fact with (2.5) and Claim 5 gives the statement of the theorem. �

Theorem 1 now easily follows from Theorems 2, 6, and 7.

Proof of Theorem 1. Since we will need items to be sorted by profit/weight ratio, we can do

this once and for all before any guessing is performed. Classical algorithms implement this in

O(n logn). By Theorem 2, we know we can assume that the input instance is ε-well-behaved,

and it is enough to find a solution of profit at least (1−2ε) the profit of a 1-in solution of

maximum profit – by Theorem 7, this is exactly vector bx̄c. In order to produce bx̄c, as we

already sorted items by profit/weight ratio, we only need to solve the LPs associated with each

choice of S and ρ, and then run Algorithm 1. The number of choices of S and ρ are T f (ε),

and each LP has g (ε)O(nT) constraints, for appropriate functions f and g (see the proof of

20

2.3. Generalizations

Theorem 6). Algorithm 1 runs in time O(T
ε log T

ε +n). The overall running time is:

O(n logn +n(n +T +T f (ε)(fLP (g (ε)O(nT))+ T

ε
log

T

ε
))) =O(nT h(ε) fLP (n)),

where fLP (m)is the time required to solve an LP with O(m) variables and constraints, and

h :R→N≥1 is an appropriate function. �

2.3 Generalizations

Following Theorem 1, one could ask for a PTAS for the general incremental knapsack (IK)

problem. This is the modification of IIK (introduced in [11]) where the objective function is

p∆(x) :=∑
t∈[T]∆t ·pT xt , where ∆t ∈Z>0 for t ∈ [T] can be seen as time-dependent discounts.

We show here some partial results.

Corollary 8. There exists a PTAS-preserving reduction from IK to IIK, assuming ∆t ≤∆t+1 for

t ∈ [T −1]. Hence, the hypothesis above, IK has a PTAS.

We start by proving an auxiliary corollary.

Corollary 9. There exists a strict approximation-preserving reduction from IK to IIK, assuming

that the maximum discount ∆max := ‖∆‖∞ is bounded by a polynomial

g (T,n, log‖p‖∞, log‖w‖∞).

In particular, under the hypothesis above, IK has a PTAS.

Proof. Let I := (n, p, w,T,b,∆) be an IK instance with∆max ≤ g (T,n, log‖p‖∞, log‖w‖∞). The

corresponding instance I ′ := (n, p, w,T ′,b′) of IIK is obtained by setting

T ′ := ∑
t∈[T]

∆t and b′
t ′ := bt , ∀t ′ ∈ [T ′] : δt +1 ≤ t ′ ≤ δt +∆t ,

where δt :=∑
t̄<t ∆t̄ for t ∈ [T]. We have that T ′ ≤ T · g (T,n, log‖p‖∞, log‖w‖∞) so the size of

I ′ is polynomial in the size of I .

Given an optimal solution x∗ ∈ {0,1}T n to I , and x ′ ∈ {0,1}T ′n such that x ′
t ′ = xt for all t ∈ [T]

and δt +1 ≤ t ′ ≤ δt +∆t , one has that x ′ is feasible in I ′ so

OPT(I) = p∆(x∗) = ∑
t∈[T]

∆t ·pT x∗
t = ∑

t ′∈[T ′]
pT x ′

t ′ ≤ OPT(I ′).

Let x̂ be a α-approximated solution to I ′. Define x̄ ∈ {0,1}T n as x̄t = x̂δt+∆t for t ∈ [T]. Then

clearly x̄t ≤ x̄t+1 for t ∈ [T −1]. Moreover,

wT x̄t = wT x̂δt+∆t ≤ b′
δt+∆t

= bt , ∀t ∈ [T].

21

Chapter 2. A PTAS for the time-invariant incremental knapsack

Hence x̄ is a feasible solution for I and

p∆(x̄) = ∑
t∈[T]

∆t ·pT x̄t ≥
∑

t̄∈[T ′]
pT x̂ t̄ .

Finally, one obtains:

p∆(x̄)

OPT(I)
≥

∑
t̄∈[T ′] pT x̂ t̄

OPT(I ′)
≥α. (2.8)

Proof of Corollary 8. Given an instance I of IK with monotonically increasing discounts,

and letting pmax := ‖p‖∞, we have that the optimal solution of I is at least ∆max ·pmax since

wi ≤ bT , ∀i ∈ [n], otherwise an element i can be discarded from the consideration. Reduce I

to an instance I ′ by setting C = ε∆max
T n and ∆′

t = b∆t
C c. We get that ∆′

max ≤ T n/ε thus satisfying

the assumption of Corollary 9 for each fixed ε> 0. Let x∗ be an optimal solution to I and x̄ a

(1−ε)-approximated solution to I ′, one has:

p∆(x̄) ≥C ·p ′
∆(x̄)

≥C · (1−ε)p ′
∆(x∗)

≥ (1−ε)(p∆(x∗)−C
∑
t

pT x∗
t)

≥ (1−ε)(p∆(x∗)−ε∆max ·pmax) ≥ (1−2ε)p∆(x∗).

�

The proof of Corollary 8 only uses the fact that an item of the maximum profit is feasible at a

time with the highest discount. Thus its implications are broader.

Of independent interest is the fact that there is a PTAS for the modified version of IIK when

each item can be taken multiple times. Unlike Corollary 8, this is not based on a reduction

between problems, but on a modification on our algorithm.

Corollary 10. There is a PTAS for the following modification of IIK: in (2.1), replace xt ∈ {0,1}n

with: xt ∈Zn
>0 for t ∈ [T]; and 0 ≤ xt ≤ d for t ∈ [T], where we let d ∈ (Z>0 ∪ {∞})n be part of the

input.

Proof. We detail the changes to be implemented to the algorithm and omit the analysis, since

it closes follows that for IIK. Modify the definition of P (S,ρ) as follows. Fix h ∈ [|S|], k ∈Kh and

t ∈Th . As before, items in the k-th bucket are ordered monotonically increasing according to

their weight as Ik = {1(k), . . . , |Ik |(k)}. In order to take into account item multiplicities we define

r := r (t ,k) = max{r̄ :
∑r̄

l=1 dl (k) < ρ(t ,k)}. Replace the third, fitfth and sixth set of constraints

from P (S,ρ) with the following, respectively:

(4’) 0 ≤ xt ≤ d ;

22

2.3. Generalizations

(5’) xt ,i (k) = di (k), ∀i (k) : i ≤ r (t ,k); xt ,(r+1)(k) = ρ(t ,k)−∑r
l=1 dl (k);

(6’) xt ,i (r+2) = 0, . . . , xt ,i (|Ik |) = 0 if ρt ,k ≤ 1
ε .

For fixed S,ρ, call all items i such that xt ,i = c appears in (5′) or in (6′) (t ,c)-fixed. Note that

items that are (t ,0)-fixed correspond to items that were called t-excluded in IIK. Items that are

(t ,c)-fixed for some c are called t-fixed. Let x̄ be the output of the modification of Algorithm 1

given below. Again, vector bx̄c gives the required (1−2ε)-approximated integer solution.

Algorithm 2

1: Set x̄0 = 0.

2: For t = 1, . . . ,T :
(a) Set x̄t = x̄t−1.

(b) For i ∈ [n], if i is (t ,c)-fixed for some c, set x̄t ,i = c.

(c) While Wt −wT x̄t > 0:

(i) Select the smallest i ∈ [n] such that i is not t-fixed and x̄t ,i < di .

(ii) Set x̄t ,i = x̄t ,i +min{di − x̄t ,i , Wt−w T x̄t
wi

}.

23

3 An improved disjunctive relaxation
for the min-knapsack

By using a similar disjunctive technique as in Chapter 2, we investigate polyhedral relaxations

for MINKNAP subject to a fixed objective function. In this setting one can approximately com-

pute the optimal value with an FPTAS, and then add the objective function as a constraint, thus

obtaining an integrality gap which is arbitrary close to 1. However, one is usually interested in

more structured relaxations that can be applied to more general problems.

Subject to a given objective function and a constant ε > 0, Bienstock and McClosky [10]

provide a disjunctive relaxation for MINKNAP with the integrality gap bounded by 1+ε and

size exponential in Cε =Θ
(1
ε log(1

ε)
)
. The technique is based on grouping items according to

the cost, and partitioning the set of feasible integer solutions into families, according to the

number of items coming from each cost bucket. It can be shown that each family has a small

linear relaxation with the integrality gap close to one.

We improve on their result by constructing an asymptotically smaller formulation, i.e. , reduc-

ing the exponent from Cε to
p

Cε, while preserving most of its properties. The reduction is

achieved by exploiting the structure of vertices in the above relaxation to merge some of the

cost buckets. The following theorem is our main result in this chapter.

Theorem 11. For each ε> 0 and fixed objective function, there is a disjunctive relaxation for

MINKNAP with n2(1/ε)O(
p

Cε) variables and constraints, and integrality gap of at most 1+ε.

In Section 3.1 we recall the disjunctive relaxation from [10] and compare it to our construction,

while the proof of Theorem 11 can be found in Section 3.2.

3.1 Overview of the technique

Given costs c ∈ Rn+ and profits p ∈ Rn+, the standard integer programming formulation for

MINKNAP can be stated as

min{cT x : pT x ≥ 1, x ∈ {0,1}n}. (3.1)

25

Chapter 3. An improved disjunctive relaxation for the min-knapsack

Its natural LP relaxation is obtained by replacing x ∈ {0,1}n with x ∈ [0,1]n . Using that the

objective function is fixed, the items can be rearranged monotonically decreasing according

to their cost, i.e., 1 = c1 ≥ c2 ≥ ·· · ≥ cn .

Denote with Q the set of feasible solutions to (3.1). It is covered by a union ∪ j∈[n]Q j , where

Q j := {x ∈ {0,1}n : pT x ≥ 1, xi = 0 for i < j , x j = 1} (3.2)

Q j contains all the solutions where the j -th item is taken, and all the items with cost larger

then c j are explicitly set to 0. Thus, one can see that its natural relaxation

P j := {x ∈ [0,1]n : pT x ≥ 1, xi = 0 for i < j , x j = 1}

has integrality gap bounded by 2. Covexity then gives that CONV(∪n
j=1P j) is a relaxation of Q

with the gap of at most 2 as well. For any constant ε> 0 and each j , Bienstock and McClosky

[10] further strengthen P j reducing the gap to 1+ ε. It is in fact enough to provide such a

relaxation for Q1, as the others would follow by redefining n′ = n − j + 1, items j , . . . ,n as

1, . . . ,n′, and scaling costs so that c ′j = 1. Their relaxation is as follows.

1. Partition set {2, . . . ,n} into the following buckets1:

Sk := {i ∈ {2, . . . ,n} : (1+ε)−k+1 ≥ ci > (1+ε)−k }, ∀k ∈ [Cε]

and S∞ = {i ∈ {2, . . . ,n} : ci ≤ (1+ε)−Cε}. Note that (1+ε)−Cε ≤ ε.

2. For ρ ∈ {0,1, . . . ,1/ε}Cε let Qρ be the set of all solutions in Q1 where the number of items

taken from Sk is exactly ρk if ρk < 1/ε, and it is at least 1/ε otherwise. Again Q1 =∪ρQρ

and each Qρ can be relaxed to

Pρ :=
{

x ∈ P1 :
∑

i∈Sk

xi = ρk , ∀k : ρk < 1

ε
and

∑
i∈Sk

xi ≥ ρk , ∀k : ρk = 1

ε

}
.

The result from [10] follows from showing that each Pρ has integrality gap 1 + ε. Then

CONV(∪ρPρ) is a relaxation of Q1 with integrality gap 1+ε.

Comparison to our construction. In Section 3.2, we also partition Q into Q j ’s and then

group items according to the cost. The main difference from the above is that we form

buckets of increasing length2. The approximation ratio is preserved by exploiting the following

observation: a vertex x∗ of a polytope like Pρ has at most two fractional components, and they

lie in the same bucket (see Lemma 12).

Say those components correspond to items r and q , with cr ≥ cq . The rounding of x∗ is done

in a standard way, and the cost variation is bounded by a function of cr and cq . If there is a

1Define Cε := log1+ε(1/ε). For simplicity, Cε and 1/ε are considered to be integers.
2The length of a bucket stands for the cost ratio between the smallest and the largest item in the bucket.

26

3.2. The disjunctive relaxation

non-empty bucket whose items have cost bigger than cr , then this bucket contributes to the

objective function at least as much as cr . Hence, if there are many of those buckets, the ratio

between cr and cq can be reasonably large and still the rounding induces a small change with

respect to the total cost. We can then take (non-empty) buckets of increasing length, and still

guarantee the integrality gap of 1+ε (see Lemma 15). Therefore, Q1 can be partitioned into

smaller number of sets, leading to a relaxation of smaller size (see Lemma 17).

3.2 The disjunctive relaxation

Because of the discussion from the previous section, in order to prove Theorem 11, we are left to

provide a disjunctive relaxation for Q1. We will also assume ε≤ 1/256. Let S = {S1, . . . ,SK ,S∞}

be a family of pairwise disjoint subsets of {2, . . . ,n}, and ρ ∈ {1, . . . ,1/ε}K . Define:

P (S ,ρ) := { x ∈Rn : x1 = 1, pT x ≥ 1,∑
i∈Sk

xi = ρk ∀k ∈ [K] | ρk < 1/ε,∑
i∈Sk

xi ≥ ρk ∀k ∈ [K] | ρk = 1/ε,

xi = 0 ∀i ∈ {2, . . . ,n} \∪k∈[K]∪{∞}Sk ,

0 ≤ xi ≤ 1 ∀i ∈∪k∈[K]∪{∞}Sk }.

Lemma 12. An extreme point x∗ of P := P (S ,ρ) has at most two fractional components, and if

they are two, they lie in the same bucket Sh , where h ∈ [K].

Proof. Let x∗ be an extreme point of P , and consider a set C of n linearly independent

constraints of P at which x∗ is active. Let C ′ ⊆C : basic linear algebra implies that C ′ is also

linearly independent, hence the number of variables that belong to the support of C ′ are at

least |C ′|. By Hall’s Theorem, we can then find an injective map assigning to each constraint

from C a variables from its support. We say that the constraint is "charged" to the variable.

Since x ∈ Rn , the map is also surjective. Now let 0 < x∗
r < 1. Then r 6= 1, i.e. r ∈ Sh for some

h ∈ [k]∪ {∞}, and xr charges either
∑

i∈Sk

xi ≥ ρk (or
∑

i∈Sk

xi = ρk), or to pT x ≥ 1. This implies

that there are at most two fractional variables per bucket, and one if h =∞. Now suppose x∗
r

does not charge pT x ≥ 1: then, since the constraint it charges is tight at x∗, there exists q ∈ Sh ,

q 6= r , such that x∗
r +x∗

q = 1. In particular, x∗
q is fractional, and it must charge pT x ≥ 1. Hence,

we showed that each time a fractional variable does not charge pT x ≥ 1, there is exactly one

more fractional variable from the same bucket, and it charges pT x ≥ 1. The thesis then follows

from the fact that at most one variable can charge pT x ≥ 1.

The lemma above gives a new insight on the extreme points of P (S ,ρ) and it is crucial to

control the decrease in the objective function when rounding. Let Γ be the set of vectors

τ ∈N|τ|
0 with the following properties:

1. |τ| ≤ 2
p

Cε;

27

Chapter 3. An improved disjunctive relaxation for the min-knapsack

2. τk +k ≤ τk+1 for k ∈ [|τ|];

3. τ|τ| ≤Cε−1.

and for τ ∈ Γ define K = |τ| and S (τ) as follows:

(i) For k ∈ [K], set Sk := {i ∈ {2, . . . ,n} : (1+ε)−τk ≥ ci > (1+ε)−min{τk+k,Cε}}.

(ii) Set S∞ := {i ∈ {2, . . . ,n} : ci < minl∈S|τ| cl and ci ≤ (1+ε)−Cε}.

0(54)
−7(54)

−4(54)
0

S1 S2 S∞
ε = 1

4

(54)
−1

c

Figure 3.1 – An example of the bucketing S (τ) for τ= (0,4) and ε= 1/4.

We start with some definitions and auxiliary lemmas.

Definition 13. Given ε> 0 and S as above, define cmin,k := mini∈Sk ci and cmax,k := maxi∈Sk ci

for k ∈ [K]. We say that S is (ε,c)-ordered if:

(a) cmin,k ≥ cmax,k+1 for k ∈ [K −1];

(b) min{cmin,K , ε} ≥ maxi∈S∞ ci .

Lemma 14. Let S be an (ε,c)-ordered partition and ρ ∈ [1/ε]K . An extreme point x∗ of P can

be rounded to an integral vector x̄ with cost c(x̄) ≤ (1+2ε)c(x∗) if the following condition holds.

Given a fractional point of x∗ in bucket h ∈ [K] one has

cmax,h

cmin,h
≤ (1+ε)dh for h ∈ [K], with dh ≤ min{h,

⌈
2
√

Cε

⌉
}.

Proof. Following Lemma 12, we distinguish two cases.

Case 1: x∗ has exactly one fractional component, say r . Then x̄ can be obtained by setting

x̄r = 1 and x̄i = x∗
i for i ∈ [n] \ {r }. x∗ is clearly feasible. Moreover, c(x̄)− c(x∗) ≤ cr . If h =∞

then by (b) one has cr ≤ ε · c1 ≤ εc(x∗). Otherwise, h ∈ [K] and
∑

i∈Sh

x∗
i is fractional. Hence

ρh = 1/ε, otherwise x∗ would not be feasible. Then one gets

cr

c(x∗)
≤ cmax,h

c j + cmin,h/ε
≤ (1+ε)dh

1/ε
≤ ε1− (εdh)dh+1

1−εdh
≤ 2ε,

for ε small enough (≤ 1/256) using dh ≤ ⌈
2
p

Cε

⌉
and

(1+ε)dh =
dh∑

l=0

(
dh

l

)
εl ≤

dh∑
l=0

(εdh)l = 1− (εdh)dh+1

1−εdh
.

28

3.2. The disjunctive relaxation

Case 2: x∗ has exactly two fractional entries, say r and q . From Lemma 12 and its proof, we

know they are exactly in the same bucket Sh with h ∈ [K], that
∑

i∈Sh

x∗
i = ρh ∈Z, and x∗

r +x∗
q = 1.

Assume wlog wr ≥ wq . Setting x̄r = 1, x̄q = 0 and x̄i = x∗
i for i ∈ [n] \ {r, q} gives an integral

feasible vector x̄ with the approximation guarantee:

c(x̄)−c(x∗)
c(x∗) ≤ cr −cq

c(x∗)

(∗)≤ cmax,h−cmin,h

c1+(dh−1)cmax,h

(•)≤ cmax,h−cmin,h

dh cmax,h

(◦)≤ (1+ε)dh −1
dh (1+ε)dh

≤
1−(εdh)dh+1

1−εdh
−1

dh
≤ ε

1−εdh
≤ 2ε,

where (∗) follows from (a) and the fact that by construction x∗
1 = 1, and x∗

i = 1 for at least one

i ∈ Sk , for all k < h, (•) from cmax,h ≤ c1, (◦) from the definition of dh , and in the last inequality

we again assumed ε≤ 1/256 and used dh ≤ ⌈
2
p

Cε

⌉
.

Incidentally, observe that the relaxation defined in points 1.-2. from Section 3.1 is induced

by an (ε,c)-ordered family, by disregarding sets Si of the partition with ρi = 0. It also trivially

satisfies the condition of Lemma 14 since dk = 1, ∀k ∈ [K] , and K ≤Cε. Recall that Γ is the set

of vectors τ ∈N|τ|
0 with properties 1.-3. defined above, and that for τ ∈ Γ we have the family

S (τ) consisting of sets Sk , k ∈ [K] and S∞ with the specified structure.

Lemma 15. Let τ ∈ Γ and S =S (τ). An extreme point of P := P (S ,ρ) can be rounded to an

integral vector x̄ with cost c(x̄) ≤ (1+2ε)c(x∗).

Proof. It is enough to show that S satisfies the conditions from Lemma 14. One immediately

checks that S is an (ε,c)-ordered partition. As |τ| ≤ 2
p

Cε, we only need to prove that dh ≤ h,

for each h ∈ [K]. This follows from the fact that cmax,h ≤ (1+ε)−τh and cmin,h ≥ (1+ε)−(τh+h),

hence dh ≤−τh + (τh +h) = h.

0(54)
−4(54)

0 (54)
−1 (54)

−7

1 ≥ 4 1 S∞
c

Figure 3.2 – An example of a knapsack solution x̂ induced by the items marked with full-squares.
The construction in Lemma 16 covers x̂ with τ= (0,1,4) and ρ = (1,4,1) for ε= 1/4.

Lemma 16. For any solution x̂ ∈Q1 there exist τ ∈ Γ and ρ ∈ [1/ε]|τ| such that x̂ ∈ P (S (τ),ρ).

Proof. We iteratively construct τ as follows:

1) τ1 = min{k̂ ∈ [Cε] : ∃ı̂ > 1 s.th. x̂ ı̂ = 1,(1+ε)−k̂ ≥ c ı̂ > (1+ε)−k̂−1};

2) Given τk , as long as the set

Rk+1 := {k̂ ∈ [Cε] : k̂ ≥ τk +k, ∃ı̂ > 1 s.th. x̂ ı̂ = 1,(1+ε)−k̂ ≥ c ı̂ > (1+ε)−k̂−1}

29

Chapter 3. An improved disjunctive relaxation for the min-knapsack

is non-empty, define τk+1 = min{k̂ ∈ Rk+1}.

First observe that step 2) is repeated at most
⌈

2
p

Cε

⌉−1 times, since
d2

p
Cεe∑

k=1
k ≥ Cε. Hence

|τ| ≤ ⌈
2
p

Cε

⌉
. One easily concludes then that τ ∈ Γ.

Now choose ρ such that ρk = min{|supp(x̂)∩Sk |,1/ε} for k ∈ [|τ|]. Let us verify that x̂ ∈ P (S (τ)).

Let i ∈ {2, . . . ,n} such that x̂i = 1. All we need to show is that, if ci > (1+ε)−Cε , then i ∈ Sk for

some k ∈ [|τ|], since the feasibility of x̂ would then follow by definition of ρ. Let k̂ be the

maximum k such that (1+ε)−τk ≥ ci . If ci > (1+ε)−(τk+k), then i ∈ Sk ; else, the maximality of k

is contradicted.

Lemma 17. The number of possible pairs (S (τ),ρ) with τ ∈ Γ and ρ ∈ [1/ε]|τ| are (1/ε)O(
p

Cε).

Proof. |Γ| =C O(
p

Cε)
ε , since τk ≤Cε for k ∈ [|τ|] and |τ| ≤ ⌈

2
p

Cε

⌉
by construction. Having that

ρ ∈ [1/ε]|τ| we get the bound:

C O(
p

Cε)
ε ·

(
1

ε

)d2
p

Cεe
≤

(
2

1

ε
ln

1

ε

)O(
p

Cε)

·
(

1

ε

)d2
p

Cεe
=

(
1

ε

)O(
p

Cε)

Let P̂1 := CONV

(⋃
τ∈Γ

⋃
ρ∈[1/ε]|τ|

P (S (τ,ρ))

)
, we can now prove Theorem 11.

Proof of Theorem 11. Let x̂ ∈ P̂1 ∩ {0,1}n . Hence x̂ ∈ P (S (τ),ρ) for some τ ∈ Γ and ρ ∈ [1/ε]|τ|.
Observe that constraints explicitly defining Q1 in (3.2) are also valid for P (S (τ),ρ), so x̂ ∈Q1.

Conversely, if x̂ ∈ Q1, x̂ ∈ P̂1 by Lemma 16. Hence P̂1 is indeed a relaxation for Q1. Since

each P (S (τ),ρ) has O(n) variables and constraint, P̂1 can be described with a system of

linear inequalities of size n(1/ε)O
p

Cε by Lemma 17. The thesis then follows from the fact that

Q =∪ j∈[n]Q j and Lemma 15.

30

4 On bounded pitch inequalities for the
min-knapsack

In this chapter, we study structural properties and separability of bounded pitch inequalities

for MINKNAP, and the strength of linear relaxations for MINKNAP when they are added. Let

F be the set given by pitch-1, pitch-2, and inequalities from the linear relaxation of (3.1). We

first show that, for any arbitrarily small precision, we can solve in polynomial time the weak

separation problem for the set F . Even better, our algorithm either certifies that the given

point x∗ violates an inequality from F , or outputs a point that satisfies all inequalities from

F and whose objective function value is arbitrarily close to that of x∗. We define such an

algorithm as a (1+ε)-oracle in Section 4.1; see Section 4.2 for the construction. A major step of

our procedure is showing that non-redundant pitch-2 inequalities have a simple structure.

It is then a natural question whether bounded pitch inequalities can help to reduce the

integrality gap below 2. We show that, when p = c, if we add to the linear relaxation of (3.1)

pitch-1 and pitch-2 inequalities, the integrality gap is bounded by 3/2; see Section 4.3.1.

However, this is false in general. Indeed, we also prove that KC plus bounded pitch inequalities

do not improve upon the integrality gap of 2; see Section 4.3.4. Moreover, bounded pitch

alone can be much weaker than KC: we show that, for each fixed k, the integrality gap may be

unbounded even if all pitch-k inequalities are added. Using the relation between bounded

pitch and Chvátal-Gomory (CG) closures established in [13], this implies that, for each fixed

t , the integrality gap of the t-th CG closure can be unbounded; see Section 4.3.2. For an

alternative proof that having all KC inequalities bounds the integrality gap to 2 see Section

4.3.3.

4.1 Basics

A MINKNAP instance is a binary optimization problem of the form (3.1), where p,c ∈Qn and

we assume 0 ≤ p1 ≤ p2 ≤ ·· · ≤ pn ≤ 1, 0 < ci ≤ 1, ∀i ∈ [n]. We will often deal with its natural

linear relaxation

mincT x s.t. pT x ≥ 1, x ∈ [0,1]n . (4.1)

31

Chapter 4. On bounded pitch inequalities for the min-knapsack

The NP-Hardness of MINKNAP immediately follows from the fact that MAXKNAP is NP-Hard

[31], and that a MAXKNAP instance

max vT x s.t. wT x ≤ 1, x ∈ {0,1}n . (4.2)

can be reduced into a MINKNAP instance (3.1) as follows: each x ∈ {0,1}n is mapped via

π :Rn →Rn with π(x) = 1− x; pi = wi∑n
i=1 wi−1 and ci = vi for i ∈ [n]. Note that the reduction is

not approximation-preserving.

We say that an inequality wT x ≥ β with w ≥ 0 is dominated by a set of inequalities F if

w ′T x ≥ β′ can be written as a conic combination of inequalities in F for some β′ ≥ β and

w ′ ≥ w . wT x ≥β is undominated if any set of valid inequalities dominating wT x ≥β contains

a positive multiple of it.

Consider a family F of inequalities valid for (3.1). We refer to [26] for the definition of weak

separation oracle, which is not used in this chapter. We say that F admits a (1+ ε)-oracle

if, for each fixed ε > 0, there exists an algorithm that takes as input a point x̄ and, in time

polynomial in n, either outputs an inequality from F that is violated by x̄, or outputs a point

ȳ , x̄ ≤ ȳ ≤ (1+ ε)x̄ that satisfies all inequalities in F . In particular, if F contains the linear

relaxation of (3.1), 0 ≤ ȳ ≤ 1.

Let
∑

i∈T wi xi ≥ β be a valid inequality for (3.1), with wi > 0 for all i ∈ T . Its pitch is the

minimum k such that, for each I ⊆ T with |I | = k, we have
∑

i∈I wi ≥β. Undominated pitch-1

inequalities are of the form
∑

i∈T xi ≥ 1. Note that the map from MAXKNAP to MINKNAP

instances defined above gives a bijection between minimal cover inequalities∑
i∈I

xi ≤ |I |−1

for MAXKNAP and undominated pitch-1 inequalities for the corresponding MINKNAP instance.

Since, given a MAXKNAP instance, it is NP-Hard to separate minimal cover inequalities [33],

we conclude the following.

Theorem 18. It is NP-Hard to decide whether a given point satisfies all valid pitch-1 inequalities

for a given MINKNAP instance.

Given a set S ⊆ [n], such that β := 1−∑
i∈S pi > 0, the Knapsack cover inequality associated to

S is given by∑
i∈[n]\S

min{pi ,β}xi ≥β (4.3)

and it is valid for (3.1).

For a set S ⊆ [n], we denote by χS its characteristic vector. An ε-approximate solution for a

minimization integer programming problem is a solution x̄ that is feasible, and whose value is

at most (1+ ε) times the value of the optimal solution. An algorithm is called a polynomial

32

4.2. A weak separation oracle for pitch-1 and pitch-2 inequalities

time approximation scheme (PTAS) if for each ε> 0 and any instance of the given problem it

returns an ε-approximate solution in time polynomial in the size of the input. If in addition the

running time is polynomial in 1/ε, then the algorithm is a fully polynomial time approximation

scheme (FPTAS).

Given a rational polyhedron P = {x ∈Rn : Ax ≥ b} with A ∈Zm×n and b ∈Zm , the first Chvátal-

Gomory (CG) closure [16] of P is defined as follows:

P (1) = {x ∈Rn : dλ>Aex ≥ dλ>be, ∀λ ∈Rm}.

Equivalently, one can consider all λ ∈ [0,1]m such that λ>A ∈ Zn . For t ∈ Z≥2, the t-th CG

closure of P is recursively defined as P (t) = (P (t−1))(1). The CG closure is an important tool for

solving integer programs, see again [16].

4.2 A weak separation oracle for pitch-1 and pitch-2 inequalities

In this section, we show the following:

Theorem 19. Given a MINKNAP instance (3.1), there exists a (1+ ε)-oracle for the set F con-

taining: all pitch-1 inequalities, all pitch-2 inequalities and all inequalities from the natural

linear relaxation of (3.1).

We start with a characterization of inequalities of interest for Theorem 19.

Lemma 20. Let K be the set of feasible solutions of a MINKNAP instance (3.1). All pitch-2

inequalities valid for K are implied by the set composed of:

i) Non-negativity constraints xi ≥ 0 for i ∈ [n];

ii) All valid pitch-1 inequalities;

iii) All inequalities of the form∑
i∈I1

xi +2
∑

i∈I2

xi ≥ 2 (4.4)

where I ⊆ [n], |I | ≥ 2, β(I) := 1−∑
i∈[n]\I pi , I1 := {i ∈ I : pi <β(I)} 6= ; and I2 := I \ I1.

The inequalities in iii) are pitch-2 and valid.

Proofs of Lemma 22 and Theorem 19 are given in Section 4.2.1 and Section 4.2.2, respectively.

4.2.1 Restricting the set of valid pitch-2 inequalities

We will build on two auxiliary statements in order to prove Lemma 20.

33

Chapter 4. On bounded pitch inequalities for the min-knapsack

Claim 8. If wT x ≥β and uT x ≥β are distinct inequalities valid for and u ≥ w, then the latter

inequality is dominated by the former.

Proof. uT x ≥ β can be obtained summing nonnegative multiples of wT x ≥ β and xi ≥ 0 for

i ∈ [n], which are all valid inequalities.

Claim 9. Let∑
i∈T1

xi +2
∑

i∈T2

xi ≥ 2 (4.5)

be a valid inequality for MINKNAP, with T1 ∩T2 =; and T1,T2 ⊆ [n]. Then, (4.5) is dominated

by the inequality in iii) with I = T1 ∪T2.

Proof. One readily verifies that Inequality (4.4) with I as above is valid. Suppose now that i ∈
T1 \ I1. Then the integer solution that takes all elements in ([n]\ I)∪{i } is feasible for MINKNAP,

but it does not satisfy (4.5), a contradiction. Hence T1 ⊆ I1. Since T2 = I \ Ti ⊇ I \ I1 = I2, (4.4)

dominates (4.5) componentwise, and the thesis follows by Claim 8.

Proof of Lemma 20. The fact that an inequality of the form (4.4) is pitch-2 and valid is imme-

diate. Because of Claim 9, it is enough to show the thesis with (4.4) replaced by (4.5). Consider

a pitch-2 inequality valid for K :∑
i∈T

wi xi ≥ 1, (4.6)

where T ⊆ [n] is the support of the inequality, w ∈ R|T |
+ . Without loss of generality one can

assume that T = [h] for some h ≤ n and w1 ≤ w2 ≤ ·· · ≤ wh . Since (4.6) is pitch-2 we have that

w1+wi ≥ 1 for all i ∈ [h]\{1}. We can also assume wh ≤ 1, since otherwise
∑

i∈[h−1] wi xi+xh ≥ 1

is valid and dominates (4.6) by Claim 8.

Let j ∈ [h] be the maximum index such that w j < 1. Note that such j exists, since, if w1 ≥ 1,

then (4.6) is a pitch-1 inequality. If 1−w1 ≤ 1/2, then, by Claim 8, (4.6) is dominated by the

valid pitch-2 inequality

∑
i∈[j]

xi +2
h∑

i= j+1
xi ≥ 2, (4.7)

which again is of the type (4.5). Hence 1−w1 > 1/2 and again via Claim 8, (4.6) is dominated

34

4.2. A weak separation oracle for pitch-1 and pitch-2 inequalities

by

w1x1 +
j∑

i=2
(1−w1)xi +

h∑
i= j+1

xi ≥ 1, (4.8)

since wi +w1 ≥ 1 for all i 6= 1, so one has wi ≥ 1−w1 > 1/2. Thus, we can assume that (4.6) has

the form (4.8). Note that inequality

h∑
i=2

xi ≥ 1 (4.9)

is a valid pitch-1 inequality, since we observed w1 < 1. Therefore, (4.6) is implied by (4.7) and

(4.9), taken with the coefficients w1 and 1−2w1 respectively. Recalling that (4.7) is a valid

pitch-2 inequality of the form (4.5) concludes the proof. �

4.2.2 An oracle

We will prove Theorem 19 in a sequence of intermediate steps. Our argument extends the

weak separation of KC inequalities in [15].

Let x̄ be the point we want to separate. Note that it suffices to show how to separate over

inequalities i)-ii)-iii) from Lemma 20. Separating over i) is trivial. We first show how to separate

over iii).

Claim 10. For α ∈]0,1], let zα be the optimal solution to the following IP Pα, and v(zα) its

value:

min
∑

i∈[n]: pi<α
x̄i zi +2

∑
i∈[n]: pi≥α

x̄i zi s.t.
∑

i∈[n]
pi (1− zi) ≤ 1−α, z ∈ {0,1}n . (4.10)

If v(zα) < 2, then x̄ violates Inequality (4.4) with I := {i ∈ [n] : zαi = 1}, otherwise x̄ does not

violate any Inequality (4.4) with β(I) =α.

Proof. Fix a feasible solution z̄ to (4.10), and let I := {i ∈ [n] : z̄i = 1}. Then:

β :=β(I) = 1− ∑
i∈[n]\I

pi = 1− ∑
i∈[n]

pi (1− z̄i) ≥α.

Hence: ∑
i∈I : pi<β x̄i +2

∑
i∈I : pi≥β x̄i = ∑

i∈[n]: pi<β x̄i z̄i +2
∑

i∈[n]: pi≥β x̄i

≤ ∑
i∈[n]: pi<α x̄i z̄i +2

∑
i∈[n]: pi≥α x̄i z̄i = v(z̄),

where the central inequality holds at equality if α=β. Hence, if v(zα) < 2, the inequality with

I := {i ∈ [n] : zαi = 1} from (4.10) is violated by x̄. Else, all inequalities from (4.10) with β(I) =α
are satisfied.

35

Chapter 4. On bounded pitch inequalities for the min-knapsack

Note that Pα is a MINKNAP instance, hence we can use the appropriate FPTAS to find, for each

ε> 0, an ε-approximate solution for it.

Since all data are rationals, we can assume there exists q ∈ N0 such that, for each i ∈ [n],

pi = ri /q for some ri ∈N0.

Claim 11. Let r ∈ {ri +1 : i ∈ [n]} and, forα= r /q, let z̄α be the solution output by the FPTAS for

problem Pα and v̄α its objective function value. If v̄α < 2 for some α, then x̄ violates Inequality

(4.4) with I = {i ∈ [n] : z̄α = 1}. Else, (1+ε)x̄ satisfies all inequalities in Lemma 20.iii).

Proof. Let r = ri +1 for some i ∈ [n]. If v̄α < 2 then by Claim 10 x̄ violates the corresponding

inequality (4.4). Otherwise, vα ≥ 2/(1+ ε), and (1+ ε)x̄ is feasible for any pitch-2 Inequality

(4.4) induced by I with β(I) =α.

Now let I∗ ⊆ [n] with β(I∗) = r ∗
q < 1. There exists i∗ ∈ [n] such that ri∗ < r∗ ≤ ri∗+1 ≤ q (with

rn+1 = q). Let α := ri∗+1
q ≤α∗ :=β(I∗). The set of feasible solutions of Pα contains that of Pα∗ ,

and {i ∈ [n] : pi <α} = {i ∈ [n] : pi <α∗}. Hence, vα
∗ ≥ vα and consequently vα

∗ < 2 implies

vα < 2. Thus, for separating all inequalities in Lemma 20.iii), it suffices to check (4.10) for all

α= r
q as in the statement of the claim.

The following claim follows in a similar fashion to the previous one by observing that, for

β(I∗) = 1
q , (4.10) separates over undominated pitch-1 inequalities.

Claim 12. Let α = 1/q, and z̄α be the solution output by the FPTAS for problem Pα, and v̄α

its objective function value. If v̄α < 2, then x̄ violates the pitch-1 inequality with support

I = {i ∈ [n] : z̄α = 1}. Else, (1+ε)x̄ satisfies all valid pitch-1 inequalities.

Next claim shows how to round a point in the unit cube that almost satisfies all pitch-1 and

pitch-2 inequalities, to one that satisfies them and is still contained in the unit cube.

Claim 13. Let x̄ ∈ [0,1]n be such that (1+ε)x̄ satisfies all inequalities from Lemma 20, and define

ȳ ∈Rn as follows: ȳi = min{1, 1+ε
1−ε x̄i } for i ∈ [n]. Then ȳ ∈ [0,1]n and ȳ satisfies all inequalities

from Lemma 20.

Proof. Clearly ȳ ∈ [0,1]n . Let J = {i ∈ [n] : ȳi = 1}. If J =;, (1+ε)x̄ < ȳ ≤ 1, hence ȳ satisfies all

pitch-2 inequalities. Thus, J 6= ;. Consider a pitch-2 inequality of the form (4.4), and note that

the left-hand side of the inequality computed in ȳ is lower bounded by
∑

i∈J αi , where αi is

the coefficient of xi . First assume there exists j ∈ J ∩ I2. Then
∑

i∈J αi ≥ α j = 2. Similarly, if

36

4.2. A weak separation oracle for pitch-1 and pitch-2 inequalities

j , j ′ ∈ J , then
∑

i∈J αi ≥α j +α j ′ ≥ 2. In both cases, ȳ satisfies the pitch-2 inequality. Hence, we

can assume J = { j } ⊆ I1. Then:

∑
i∈I
αi x̄i ≥ 2

1+ε , from which we deduce

∑
i∈I \{ j }

αi x̄i ≥ 2

1+ε − x̄ j ≥ 2

1+ε −1 = 1−ε
1+ε and

∑
i∈I
αi ȳi =

∑
i∈I \{ j }

αi ȳi +1 = 1+ε
1−ε

∑
i∈I \{ j }

αi x̄i +1 ≥ 2,

as required. A similar (simpler) argument shows that ȳ also satisfies all pitch-1 inequalities∑
i∈I xi ≥ 1.

Proof of Theorem 19. We can now sum up our (1+ε)-oracle, see Algorithm 3. Correctness and

polynomiality follow from the discussion above. �

Algorithm 3

1: Let ε′ = ε
2+ε .

2: For r ∈ {ri +1 : i ∈ [n]} and for α= r /q , run the FPTAS for Pα with approximation factor ε′.
If any of the output solution z̄α has value v̄α < 2, output inequality (4.4) with I = {i ∈ [n] :
z̄α = 1} and stop.

3: For α= 1/q , run the FPTAS for Pα with approximation factor ε′. If the output solution z̄α

has value v̄α < 2, output inequality
∑

i :z̄α=1 xi ≥ 1 and stop.
4: Output point ȳ constructed as in Claim 13 with ε′ and stop. Note that x̄ ≤ ȳ ≤ 1+ε′

1−ε′ x̄ =
(1+ε)x̄.

4.2.3 Separating inequalities of pitch-3 and larger, with fixed support

Here, we give an example showing that inequalities of pitch-3 and higher do not have the nice

structure of pitch-2. Let

P = {x ∈ [0,1]7 : 5x1 +6x2 +11x3 +16x4 +17x5 +18x6 +21x7 ≥ 41}. (4.11)

Inequality x1 +x3 +x4 +2x5 +x6 +2x7 ≥ 3 is a facet of the first CG closure P (1) (although not of

the integer hull of P) and thus a valid pitch-3. Observe that the coefficient of x5 is higher than

x6 in this pitch-3, while it is the opposite in (4.11). Such situations we call inversions and they

do not occur in (relevant) pitch-2 inequalities. Inequality x1+x2+2x3+3x4+4x5+3x6+4x7 ≥ 8

is an inverted facet of both the integer hull and the first CG closure.

For later use (in Section 4.3.4), we observe here that when I ⊆ [n] is fixed, we can efficiently

and exactly solve the separation problem over inequalities with support I just by solving an LP.

37

Chapter 4. On bounded pitch inequalities for the min-knapsack

Clearly, we are only interested in valid inequalities αT x ≥ 1 with α≥ 0 and points 0 ≤ x∗ ≤ 1.

Let β= 1−p([n] \ I). We can assume β> 0, otherwise there is no valid inequality as above with

support I . Call J ⊆ I massive if
∑

i∈J pi ≥β. Consider the following LP:

min
∑

i∈I αi x∗
i

s.t. ∑
i∈J αi ≥ 1 for all massive J ⊆ I

α ≥ 0

(4.12)

Note that, for each feasible solution ᾱ to the previous LP, we have that ᾱT x ≥ 1 is a valid

inequality for the original MINKNAP instance, and conversely that all inequalities with support

I can be obtained in this way. Hence, let α∗ be the optimal solution to the previous LP. If

(α∗)T x∗ < 1, we obtain an inequality whose support is contained in I , that is violated by x∗.

The support of the inequality can be extended to I by setting αi = ε for all i ∈ I with αi = 0. On

the other hand, if (α∗)T x∗ ≥ 1, x∗ satisfies all inequalities with support I .

4.3 Integrality gap for MINKNAP with bounded pitch inequalities

4.3.1 When p=c

Theorem 21. Consider an instance of MINKNAP (3.1) with p = c. Denote by K the linear

relaxation of (3.1) to which all pitch-1 and pitch-2 inequalities have been added. The integrality

gap of K is at most 3/2.

Proof. Let p = c, and let x̄ be the optimal integer solution to (3.1). We can assume pT x̄ > 1.5,

else we are done.

Claim 14. The support of x̄ has size 2.

Proof. Let k be the size of the support of x̄. If k = 1, then x̄ is also the optimal fractional

solution. Now assume k ≥ 3. Remove from x̄ the cheapest item as to obtain x̄ ′. We have

pT x ′ ≥
(
1− 1

k

)
pT x̄ > 2

3
·1.5 = 1,

contradicting the fact that x̄ is the optimal integral solution.

Hence, we can assume that the support of x̄ is given by {i , j }, with 0 < pi ≤ p j ≤ 1. Since

pi +p j > 1.5, we deduce p j > .75. Since p j ≤ 1, we deduce pi > .5.

Claim 15. Let `< j and ` 6= i . Then p` < .25.

38

4.3. Integrality gap for MINKNAP with bounded pitch inequalities

Proof. Recall that for S ⊆ [n] we denote its characteristic vector with χS . If 0.25 ≤ p` < pi ,

then χ{`, j } is a feasible integral solution of cost strictly less than x̄. Else if 0.5 < pi ≤ p` < p j ,

then χ{`,i } is a feasible integral solution of cost strictly less than x̄. In both cases we obtain a

contradiction.

Because of the previous claim, we can assume w.l.o.g. j = i +1.

Claim 16. pn +∑i−1
`=1 p` < 1.

Proof. Suppose pn +∑i−1
`=1 p` ≥ 1. Since p` < .25 for all `= 1, . . . , i −1, there exists k ≤ i −1 such

that xn +∑k
`=1 pk ∈ [1,1.25[. Hence x{1,...,k,n} is a feasible integer solution of cost at most 1.25,

a contradiction.

Because of the previous claim, the pitch-2 inequality
∑n

k=i xk ≥ 2 is valid. The fractional

solution of minimum cost that satisfies this inequality is the one that sets xi = x j = 1 (since

j = i +1) and all other variables to 0. This is exactly x̄. �

4.3.2 CG closures of bounded rank of the natural MINKNAP relaxation

For t ∈N0, let K t be the linear relaxation of the (3.1) given by: the original knapsack inequality;

non-negativity constraints; all pitch-k inequalities, for k ≤ t .

Lemma 22. For t ≥ 2, the integrality gap of K t is at least max{ 1
2 , t−2

t−1 } times the integrality gap

of K t−1.

Proof. Fix t ≥ 2, and let C be the cost of the optimal integral solution to (3.1). Let C /v ′ be the

integrality gap of K t . Since v ′ is the optimal value of K t , by the strong duality theorem (and

Caratheodory’s theorem), there exist nonnegative multipliers α,α1, . . . ,αn ,γ1, . . . ,γn+1 such

that the inequality cT x ≥ v ′ can be obtained as a conic combination of the original knapsack

inequality (with multiplier α), non-negativity constraints (with multipliers α1, . . . ,αn), and at

most n +1 inequalities of pitch at most t (with multipliers γ1, . . . ,γn+1). By scaling, we can

assume that the rhs of the latter inequalities is 1. Hence v ′ =α+∑r
i=1γi .

Claim 17. Let d T x ≥ 1 be a valid pitch-t inequality for (3.1), and assume w.l.o.g. that d1 ≤ d2 ≤
·· · ≤ dn . Then inequality

∑n
i=2 di xi ≥ max{ 1

2 , t−2
t−1 } is a valid inequality of pitch at most t −1 for

(3.1).

Proof. The inequality
∑n

i=2 di xi ≥ 1−d1 is a valid inequality for (3.1), and by construction it

is of pitch at most t −1. If t ≥ 3, we obtain
∑t−1

i=1 di < 1 and consequently d1 < 1/(t −1), from

39

Chapter 4. On bounded pitch inequalities for the min-knapsack

which we deduce

1−d1 > 1− 1

t −1
= t −2

t −1
≥ 1

2
.

If conversely t = 2, by Lemma 20 we can assume w.l.o.g. that d1 = 1/2, and we can conclude

1−d1 = 1
2 > t−2

t−1 .

Now consider the conic combination with multipliers α,α1, . . . ,αn ,γ1, . . . ,γn+1 given above,

where each inequality of pitch-t is replaced with the inequality of pitch at most t −1 obtained

using Claim 17. We obtain an inequality (c ′)T x ≥ v ′′, where one immediately checks that c ′ ≤ c

and
v ′′ ≥ α+∑n+1

i=1 γi max
{1

2 , t−2
t−1

}≥ max
{1

2 , t−2
t−1

}(
α+∑n+1

i=1 γi
)

= max
{1

2 , t−2
t−1

}
v ′.

Hence the integrality gap of K t is

C

v ′ ≥
C

v ′′ max

{
1

2
,

t −2

t −1

}
and the thesis follows since the integrality gap of K t−1 is at most C /v ′′.

�

Lemma 23. For a fixed ε > 0 and square integers n ≥ 4, consider the MINKNAP instance K

defined as follows:

min εy + p
nz + ∑n

i=1 xi

st

(n −p
n)y + n

2 z + ∑n
i=1 xi ≥ n

y, z, x ∈ {0,1}.

For every fixed t ∈N0, the integrality gap of K t isΩ(
p

n).

Proof. Because of Lemma 22, it is enough to show that the integrality gap of K 1 is Ω(
p

n).

Clearly, the value of the integral optimal solution of the instance is
p

n +ε. We claim that the

fractional solution

(ȳ , x̄, z̄) =

1,
1

n −p
n +1

, . . . ,
1

n −p
n +1︸ ︷︷ ︸

n times

,
2p
n


is a feasible point of K 1. Since εȳ +p

nz̄ +∑n
i=1 x̄i = ε+2+ n

n−pn+1
, the thesis follows.

Observe that (n −p
n)ȳ + n

2 z̄ +∑n
i=1 x̄i = (n −p

n)+ n
2

2p
n
+ n

n−pn+1
> n, hence (ȳ , x̄, z̄) satisfies

the original knapsack inequality.

Now consider a valid pitch-1 inequality whose support contains y . Since ȳ = 1, (ȳ , x̄, z̄) satisfies

40

4.3. Integrality gap for MINKNAP with bounded pitch inequalities

this inequality. Hence, the only pitch-1 inequalities of interest do not have y in the support.

Note that such inequalities must have z in the support, and some of the xi . Hence, all those

inequalities are dominated by the valid pitch-1 inequalities

z +∑
i∈I

xi ≥ 1 ∀I ⊆ [n], |I | = n −p
n +1,

which are clearly satisfied by (ȳ , x̄, z̄).

�

Theorem 24. For a fixed q ∈N0, let CGq (K) be the q−th CG closure of the MINKNAP instance

K as defined in Lemma 23. The integrality gap of CGq (K) isΩ(
p

n).

Proof. We will use the following fact, proved (for a generic covering problem) in [13]. Let

t , q ∈ N0 and suppose (ȳ , z̄, x̄) ∈ K t . Define point (y ′, x ′, z ′), where each component is the

minimum between 1 and (t+1
t)q times the corresponding component of (ȳ , z̄, x̄). Then

(y ′, x ′, z ′) ∈CGq (K). Now fix t , q . We have therefore that

εy ′+p
nz ′+∑n

i=1 x ′
i ≤ (t+1

t

)q (
εȳ +p

nz̄ +∑n
i=1 x̄i

)
= (t+1

t

)q
(
ε+2+ n

n−pn+1

)
and the claim follows in a similar fashion to the proof of Lemma 23. �

4.3.3 When all knapsack cover inequalities are added

In this section we consider the min-knapsack formulation with knapsack cover inequalities

(we use KC to denote this LP formulation). In [15] it is shown that the integrality gap of KC is 2.

In the following we provide a simpler proof.

Let x̄ be a feasible fractional solution for KC of cost C (x̄). Starting from x̄, we show a simple

and fast rounding procedure to obtain a feasible integral solution of cost at most 2C (x̄).

The rounding procedure: Let S = {i ∈ [n] : x̄i ≥ 1/2}. Set xi = 1 for any i ∈ S. Consider the

residual variables S̄ := [n] \ S. The problem is to assign integral values to the the residual

variables. We call this problem the residual problem (RP). By abusing notation, from now

on, let x̄ denote the fractional solution for KC restricted to residual variables. Consider the

following residual relaxation (RR):

min
∑
i∈S̄

Ci xi (4.13)

s.t .
∑
i∈S̄

p ′
i xi ≥ b′ (4.14)

0 ≤ xi ≤ 1/2 (4.15)

41

Chapter 4. On bounded pitch inequalities for the min-knapsack

where p ′
i = min{pi ,b−p(S)} and b′ = b−p(S). Note that x̄ satisfies (RR). So if x∗ is the optimal

solution of (RR) than it follows that ∑
i∈S̄

Ci x∗
i ≤ ∑

i∈S̄

Ci x̄i

Therefore, if it exists an integral solution xi nt to (RP) of cost C (xi nt) ≤ 2C (x∗) then C (xi nt) ≤
2C (x̄) and we are done. We can rewrite the residual relaxation (RR) in the following equivalent

way:

min
∑
i∈S̄

Ci

2
yi (4.16)

s.t .
∑
i∈S̄

p ′
i

2
yi ≥ b′ (4.17)

0 ≤ yi ≤ 1 (4.18)

Clearly the optimal fractional solution to (RR) can be obtained by ordering the variables

according to their densities. W.l.o.g., assume that C1
p ′

1
≤ C2

p ′
2
≤ . . . ≤ C|S̄|

p ′
|S̄|

and let t +1 ∈ [|S̄|] be the

smallest integer such that
∑t+1

i=1
p ′

i
2 ≥ b′ and therefore (recall p ′

i ≤ b′):

t∑
i=1

p ′
i ≥ 2b′−p ′

t+1 ≥ b′ (4.19)

Note that the optimal fractional solution to (RR) picks the first t variables integrally and the

last t +1 potentially fractional (but it could be integral). It follows that:

t∑
i=1

Ci

2
≤ ∑

i∈S̄

Ci x∗
i (4.20)

It follows that the integral solution xi nt obtained by setting x1 = 1 for i ∈ [t] and zero otherwise

is feasible by (4.19) and of cost at most twice the optimal fractional of (RR) by (4.20).

4.3.4 When all bounded pitch and knapsack cover inequalities are added

Consider the following MINKNAP instance with εn = 1p
n

:

min
∑

i∈[n]
xi + 1p

n

∑
j∈[n]

z j

s.t.
∑

i∈[n]
xi + 1

n

∑
j∈[n]

z j ≥ 1+εn

x, z ∈ {0,1}n .

(4.21)

42

4.3. Integrality gap for MINKNAP with bounded pitch inequalities

Lemma 25. For any fixed k ∈ N0 and n ∈ N0 sufficiently large, point (x̄, z̄) ∈ R2n with x̄i =
1+εn

n , z̄i = k
n satisfies the natural linear relaxation, all KC and all inequalities of pitch at most k

valid for (4.21). Observing that the optimal integral solution is 2, this gives an IG of 2
1+ k

n

≈ 2.

Proof. We prove the statement by induction. Fix k ∈N0. Note that (x̄, z̄) dominates compo-

nentwise the point generated at step k −1, and the latter by induction hypothesis satisfies all

inequalities of pitch at most k −1. Let∑
i∈I

wi xi +
∑
j∈J

w j z j ≥β (4.22)

be a valid KC or pitch-k inequality with support I ∪ J , which gives that wi , w j ∈ R>0, ∀i ∈
I , ∀ j ∈ J and β> 0. Observe the following.

Claim 18. |I | ≥ n −1. In addition, |I | = n −1 or |J | ≤ n(1−εn) implies wi ≥β, ∀i ∈ I .

Proof. Since all coefficients in (4.22) are strictly positive and β> 0, |I | ≤ n −2 gives that the

feasible solution (χ[n]\I ,~0) for (4.21) is cut off by (4.22), a contradiction.

Furthermore, if |I | = n −1 and wi∗ <β for some i∗ ∈ I , then (χ([n]\I)∪{i∗},~0) is cut off, again a

contradiction. Finally, if |I | = n, |J | ≤ n(1−εn) and wi∗ <β for some i∗ ∈ I , then (χ{i∗},χ{[n]\J })

does not satisfy (4.22), but it is feasible in (4.21).

We first show the statement for (4.22) being a KC. By the definition of KC: β= 1+ εn −|[n] \

I | − |[n]\J |
n , wi = min{1,β}, ∀i ∈ I and w j = min{ 1

n ,β}, ∀ j ∈ J . If I = [n], then
∑

i∈I wi x̄i =
min{1,β} ·(1+εn) ≥β since β≤ 1+εn . Otherwise, |[n]\ I | = 1 so wi =β, ∀i ∈ I and

∑
i∈I wi x̄i =

β (n−1)(1+εn)
n >β for sufficiently large n.

Conversely, let (4.22) be a valid pitch-k inequality. By Claim 18, if |I | = n −1 or |J | ≤ n(1−εn)

then wi ≥ β, ∀i ∈ I so the proof is analogous to the one for KC. Otherwise, |I | = n and

|J | > n(1−εn). Consider the LP (4.12) in Section 4.2 specialized for our case – that is, we want

to detect if (x̄, z̄) can be separated via an inequality with support I ∪ J . Since (χi ,ı̄ ,0) is feasible

in (4.21) for i , ı̄ ∈ I , then

αi +αı̄ ≥ 1. (4.23)

Furthermore, for n large enough one has |J | > n(1−εn) ≥ k so∑
j∈K

α j ≥ 1 (4.24)

for any k-subset K of J . We claim that the minimum in (4.12) is attained at ᾱi = 1/2, ∀i ∈ I

and ᾱ j = 1/k, ∀ j ∈ J . Indeed, the objective function of (4.12) computed in ᾱ is given by

|I | · 1

2
· 1+ε

n
+|J | · 1

k
· k

n
= 1+εn

2
+ |J |

n
.

43

Chapter 4. On bounded pitch inequalities for the min-knapsack

On the other hand, by summing (4.23) for all possible pairs with multipliers 1+εn
2(n−1) and (4.24)

for all subsets of J of size k with multipliers
(|J |−1

k−1

)−1 · k
n , simple calculations lead to

∑
i∈I

x̄iαi +
∑
j∈J

z̄ jα j ≥ 1+εn

2
+ |J |

n
,

showing the optimality of ᾱ. Recalling |J | > n(1−εn), we conclude that

∑
i∈I

x̄i ᾱi +
∑
j∈J

z̄ j ᾱ j = 1+εn

2
+ |J |

n
> 1+εn

2
+1−εn > 1,

hence (x̄, z̄) satisfies all inequalities with support I ∪ J . �

44

5 Clustered planarity testing

The notion of clustered planarity was introduced by Feng, Cohen and Eades [56, 57] under

the name c-planarity. A similar problem, hierarchical planarity, was considered already by

Lengauer [73]. Since then an efficient algorithm for c-planarity testing or embedding has

been discovered only in some special cases. The general problem whether the c-planarity of a

clustered graph (G ,T) can be tested in polynomial time is wide open, already when we restrict

ourselves to three pairwise disjoint clusters and the case when the combinatorial embedding

of G is a part of the input!

5.1 Basic definitions and an overview of results

A clustered graph is a pair (G ,T) where G = (V ,E) is a graph and T is a rooted tree whose set of

leaves is the set of vertices of G . The non-leaf vertices of T represent the clusters. Let C (T) be

the set of non-leaf vertices of T . For each ν ∈C (T), let Tν denote the subtree of T rooted at ν.

The cluster V (ν) is the set of leaves of Tν. A clustered graph (G ,T) is flat if all non-root clusters

are children of the root cluster; that is, if every root-leaf path in T has at most three vertices.

When discussing flat clustered graphs, which is basically everywhere except Sections 5, 5.2

and 5.5, by “cluster” we will refer only to the non-root clusters.

A drawing of G is a representation of G in the plane where every vertex is represented by a

unique point and every edge e = uv is represented by a simple arc joining the two points that

represent u and v . If it leads to no confusion, we do not distinguish between a vertex or an

edge and its representation in the drawing and we use the words “vertex” and “edge” in both

contexts. We assume that in a drawing no edge passes through a vertex, no two edges touch

and every pair of edges cross in finitely many points. We assume that the above properties of a

drawing of G are maintained during any continuous deformation of the drawing of G except

for intermediate one-time events when two edges touch in a single point or an edge passes

through a vertex.

A drawing of a graph is an embedding if no two edges cross.

45

Chapter 5. Clustered planarity testing

(G,T) T

Figure 5.1 – A clustered embedding of a clustered graph (G ,T) and its tree T .

Figure 5.2 – A clustered graph with one non-root cluster, which is not c-planar.

A clustered graph (G ,T) is clustered planar (or briefly c-planar) if G has an embedding in the

plane such that

(i) for every ν ∈C (T), there is a topological disc ∆(ν) containing all the leaves of Tν and no

other vertices of G ,

(ii) if µ ∈ Tν, then ∆(µ) ⊆∆(ν),

(iii) if µ1 and µ2 are children of ν in T , then ∆(µ1) and ∆(µ2) are internally disjoint, and

(iv) for every ν ∈C (T), every edge of G intersects the boundary of the disc ∆(ν) at most once.

A clustered drawing (or embedding) of a clustered graph (G ,T) is a drawing (or embedding,

respectively) of G satisfying (i)–(iv). See Figures 5.1 and 5.2 for an illustration. We will be using

the word “cluster” for both the topological disc ∆(ν) and the subset of vertices V (ν).

A clustered graph (G ,T) is c-connected if every cluster of (G ,T) induces a connected subgraph.

See Figure 5.12. In order to test a c-connected clustered graph (G ,T) for c-planarity, it is

enough to test whether there exists an embedding of G such that for every ν ∈C (T), all vertices

of V (G) \V (ν) are drawn in the outer face of the subgraph induced by V (ν) [57, Theorem 1].

Cortese et al. [51] gave a structural characterization of c-planarity for c-connected clustered

graphs and provided a linear-time algorithm. Gutwenger et al. [64] constructed a polynomial

algorithm for a more general case of almost connected clustered graphs, which can be also

46

5.1. Basic definitions and an overview of results

used for the case of flat clustered graphs with two clusters forming a partition of the vertex set.

Biedl [47] gave the first polynomial-time algorithm for c-planarity with two clusters, including

the case of straight-line or y-monotone drawings. An alternative approach to the case of two

clusters was given by Hong and Nagamochi [67]. On the other hand, only very little is known

in the case of three clusters, where the only clustered graphs for which a polynomial algorithm

for c-planarity is known are clustered cycles [52].

Notation. In this chapter we assume that G = (V ,E) is a graph, and we state all our theorems

for graphs. However, in some of our proofs we also use multigraphs, that is, generalized graphs

that can have multiple edges and multiple loops. Most of the notions defined for graphs

extend naturally to multigraphs, and thus we use them without generalizing them explicitly.

We use a shorthand notation G −v for (V \ {v},E \ {v w | v w ∈ E }), and G ∪E ′ for (V ,E ∪E ′). The

rotation at a vertex v is the clockwise cyclic order of the end pieces of edges incident to v . The

rotation system of a graph is the set of rotations at all its vertices. We say that two embeddings

of a graph are the same if they have the same rotation system up to switching the orientations

of all the rotations simultaneously. We say that a pair of edges in a graph are independent if

they do not share a vertex. An edge in a drawing is even if it crosses every other edge an even

number of times. A drawing of a graph is even if all edges are even. A drawing of a graph is

independently even if every pair of independent edges in the drawing cross an even number of

times.

Hanani–Tutte for clustered graphs. A clustered graph (G ,T) is two-clustered if the root of T

has exactly two children, A and B , and every vertex of G is a child of either A or B in T . In

other words, A and B are the only non-root clusters and they form a partition of the vertex set

of G . Obviously, two-clustered graphs form a subclass of flat clustered graphs. We extend both

the weak and the strong variant of the Hanani–Tutte theorem to two-clustered graphs.

Theorem 26. If a two-clustered graph (G ,T) admits an even clustered drawing D in the plane

then (G ,T) is c-planar. Moreover, (G ,T) has a clustered embedding with the same rotation

system as D.

Theorem 26 has been recently generalized by the first author to the case of strip planarity [60].

Theorem 27. If a two-clustered graph (G ,T) admits an independently even clustered drawing

in the plane then (G ,T) is c-planar.

We also prove a strong Hanani–Tutte theorem for c-connected clustered graphs.

Theorem 28. If a c-connected clustered graph (G ,T) admits an independently even clustered

drawing in the plane then (G ,T) is c-planar.

On the other hand, we exhibit examples of clustered graphs with more than two disjoint

clusters that are not c-planar, but admit an even clustered drawing. This shows that a straight-

forward extension of Theorem 26 and Theorem 27 to flat clustered graphs with more than two

clusters is not possible.

47

Chapter 5. Clustered planarity testing

Theorem 29. For every k ≥ 3 there exists a flat clustered cycle with k clusters that is not c-planar

but admits an even clustered drawing in the plane.

Gutwenger, Mutzel and Schaefer [65] recently showed that by using the reduction from [81]

our counterexamples can be turned into counterexamples for [81, Conjecture 1.2]1 and for

a variant of the Hanani–Tutte theorem for two simultaneously embedded planar graphs [81,

Conjecture 6.20].

Embedded clustered graphs with small faces. A pair (D(G),T) is an embedded clustered

graph if (G ,T) is a clustered graph and D(G) is an embedding of G in the plane, not necessarily

a clustered embedding. The embedded clustered graph (D(G),T) is c-planar if it can be

extended to a clustered embedding of (G ,T) by choosing a topological disc for each cluster.

We give an alternative polynomial-time algorithm for deciding c-planarity of embedded flat

clustered graphs with small faces, reproving a result of Di Battista and Frati [54]. Our algorithm

is based on the matroid intersection theorem. Its running time is O(|V (G)|3.5) by [53], so it

does not outperform the linear algorithm from [54]. Similarly as for our other results, we see

its purpose more in mathematical foundations than in giving an efficient algorithm. We find it

quite surprising that by using completely different techniques we obtained an algorithm for

exactly the same case. Our approach is very similar to a technique used by Katz, Rutter and

Woeginger [70] for deciding the global connectivity of switch graphs.

Theorem 30. [54] Let D(G) be an embedding of a graph G in the plane such that all its faces

are incident to at most five vertices. Let (G ,T) be a flat clustered graph. The problem whether

(G ,T) admits a c-planar embedding in which G keeps its embedding D(G) can be solved in

polynomial time.

Organization. The rest of the chapter is organized as follows. In Section 5.2 we describe an

algorithm for c-planarity testing based on Theorem 27. In Section 5.3 we prove Theorem 26.

In Section 5.4 we prove Theorem 27. In Section 5.5 we prove Theorem 28. In Section 5.6 we

provide a family of counterexamples to the variant of the Hanani–Tutte theorem for clustered

graphs with three clusters, and discuss properties that every such counterexample, whose

underlying abstract graph is a cycle, must satisfy. In Section 5.7 we prove Theorem 30. We

conclude with some remarks in Section 5.8.

5.2 Algorithm

Let (G ,T) be a clustered graph for which the corresponding variant of the strong Hanani–Tutte

theorem holds, that is, the existence of an independently even clustered drawing of (G ,T)

implies that (G ,T) is c-planar.

1For a graph G drawn in the plane the conjecture claims that we can clean (by redrawing G) of crossings a
subgraph H of G consisting of independently even edges without introducing new pairs of non-adjacent edges
crossing an odd number of times.

48

5.2. Algorithm

v

e

Figure 5.3 – A continuous deformation of e resulting in an edge-vertex switch (e, v).

Our algorithm for c-planarity testing is an adaptation of the algorithm for planarity testing

from [80, Section 1.4.2]. The algorithm starts with an arbitrary clustered drawing D of (G ,T).

Such a drawing always exists: for example, we can traverse the tree T using depth-first search

and place the vertices of G on a circle in the order encountered during the search. Then we

draw every edge as a straight-line segment. Since every cluster consists of consecutive vertices

on the circle, the topological discs representing the clusters can be drawn easily. The algorithm

tests whether the edges of the initial drawing D can be continuously deformed to form an

independently even clustered drawing D0 of (G ,T). This is done by constructing and solving a

system of linear equations over Z2. By the corresponding variant of the strong Hanani–Tutte

theorem, the existence of such a drawing D0 is equivalent to the c-planarity of (G ,T).

Now we describe the algorithm in more details. We start with the original algorithm for

planarity testing and then show how to modify it for c-planarity testing.

During a “generic” continuous deformation from D to some other drawing D′, the parity of

the number of crossings between a pair of independent edges is affected only when an edge

e passes over a vertex v that is not incident to e, in which case we change the parity of the

number of crossings of e with all the edges incident to v ; see Figure 5.3. We call such an event

an edge-vertex switch. Note that every edge-vertex switch can be performed independently

of others, for any initial drawing: we can always deform a given edge e to pass close to the

given vertex v , while introducing new crossings with every edge “far from v” only in pairs; that

is, after every event when e touches another edge, a pair of new crossings is created. For our

purpose the deformation from D to D′ can be represented by the set of edge-vertex switches

that were performed an odd number of times during the deformation. An edge-vertex switch

of an edge e with a vertex v is denoted by the ordered pair (e, v).

A drawing of (G ,T) can then be represented as a vector v ∈ZM
2 , where M denotes the number

of unordered pairs of independent edges. The component of v corresponding to a pair {e, f } is

1 if e and f cross an odd number of times and 0 otherwise. Let e be an edge of G and v a vertex

of G such that v ∉ e. Performing an edge-vertex switch (e, v) corresponds to adding the vector

w(e,v) ∈ ZM
2 whose only components equal to 1 are those indexed by pairs {e, f } where f is

incident to v . The set of all drawings of G that can be obtained from D by edge-vertex switches

then corresponds to an affine subspace v+W , where W is the subspace generated by the set

{w(e,v); v ∉ e}. The algorithm tests whether 0 ∈ v+W , which is equivalent to the solvability of a

49

Chapter 5. Clustered planarity testing

system of linear equations over Z2.

The difference between the original algorithm for planarity testing and our version for c-

planarity testing is the following. To keep the drawing of (G ,T) clustered after every deforma-

tion, for every edge e = v1v2, we allow only those edge-vertex switches (e, v) such that v is a

child of some vertex of the shortest path between v1 and v2 in T . Such vertices v are precisely

those that are not separated from e by cluster boundaries.

We also include edge-cluster switches (e,C) where C is a child of some vertex of the shortest

path between v1 and v2 in T . An edge-cluster switch (e,C) moves e over the whole topological

disc representing C ; see Figure 5.4. Combinatorially, this is equivalent to performing all the

edge-vertex switches (e, v), v ∈C , simultaneously. The corresponding vector w(e,C) is the sum

of all w(e,v) for v ∈ C . Therefore, the set of allowed switches generates a subspace Wc of W .

Since every allowed switch can be performed in every clustered drawing, every vector from Wc

can be realized by some continuous deformation. Moreover, every clustered drawing of (G ,T)

can be obtained from any other clustered drawing of (G ,T) by a homeomorphism of the plane

and by a sequence of finitely many continuous deformations of the edges, where each of the

deformations can be represented by a subset of allowed switches. Indeed, by [80, Theorem

1.18] or by the discussion of the original algorithm in previous paragraphs, the vectors v and

v′ corresponding to two clustered drawings D and D′ of (G ,T) differ by a vector w ∈ W . We

claim that w ∈Wc . Suppose that D and D′ have the same vertices. Let e be an edge of G , let

e0 be the curve representing e in D, and let e1 be the curve representing e in D′. Let γ be

the closed curve obtained by joining e0 and e1. Let S be the set of vertices of G “inside” γ;

see Subsection 5.4.1 part 2) for the definition. For every cluster C that e cannot cross, all the

vertices of C belong to the same connected region of R2 \γ; in particular, they are all “inside” or

all “outside” γ. For every cluster C whose vertices are “inside” γ, we perform the switch (e,C)

and perform the corresponding deformation on the curve e0. Let e1/2 be the resulting curve.

The closed curve obtained by joining e1/2 and e1 has all the vertices of G “outside”. Therefore,

if we now deform e1/2 to e1 arbitrarily, every vertex will be crossed an even number of times,

so no changes in the parity of crossings between independent edges will occur.

Our algorithm then tests whether 0 ∈ v+Wc .

Before running the algorithm, we first remove any loops and parallel edges and check whether

|E (G ′)| < 3|V (G ′)| for the resulting graph G ′. Then we run our algorithm on (G ′,T). This means

solving a system of O(|E (G ′)||V (G ′)|) =O(|V (G)|2) linear equations in O(|E (G ′)|2) =O(|V (G)|2)

variables. This can be performed in O(|V (G)|2ω) ≤O(|V (G)|4.746) time using the algorithm by

Ibarra, Moran and Hui [69].

Gutwenger, Mutzel and Schaefer [65] independently proposed a different algebraic algorithm

for testing clustered planarity, based on a reduction to simultaneous planarity. It is not hard to

show that their algorithm is equivalent to ours, in the sense that both algorithms accept the

same instances of clustered graphs.

50

5.3. Weak Hanani–Tutte for two-clustered graphs

v
e

C

v

C

v1 v2

v2

v1

Figure 5.4 – Left: an edge-vertex switch (e, v) and an edge-cluster switch (e,C). Right: the
shortest path between v1 and v2 in T . The four light gray vertices in the middle cannot
participate in a switch with e individually.

5.3 Weak Hanani–Tutte for two-clustered graphs

First, we prove a stronger version of a special case of Theorem 26 in which G is a bipartite

multigraph with the two parts corresponding to the two clusters. We note that a bipartite

multigraph has no loops, but it can have multiple edges. In this stronger version, which is an

easy consequence of the weak Hanani–Tutte theorem, we assume only the existence of an

arbitrary even drawing of G that does not have to be a clustered drawing.

Lemma 31. Let (G ,T) be a two-clustered bipartite multigraph in which the two non-root

clusters induce independent sets. If G admits an even drawing then (G ,T) is c-planar. Moreover,

there exists a clustered embedding of (G ,T) with the same rotation system as in the given even

drawing of G.

Proof. We assume that G = (V ,E) is connected, since we can draw each connected component

separately. Let A and B be the two clusters of (G ,T) forming a partition of V (G). By the weak

Hanani–Tutte theorem [48, 78] we obtain an embedding D of G with the same rotation system

as in the initial even drawing of G .

It remains to show that we can draw the discs representing clusters. This follows from a much

stronger geometric result by Biedl, Kaufmann and Mutzel [46, Corollary 1]. We need only a

weaker, topological, version, which has a very short proof. For each face f of D, we may draw

without crossings a set E f of edges inside f joining one chosen vertex in A incident to f to all

other vertices in A incident to f . Since the dual graph of G in D is connected, the multigraph

(A,
⋃

f E f) is connected as well. Let E ′ be a subset of
⋃

f E f such that TA = (A,E ′) is a spanning

tree of A. A small neighborhood of TA is an open topological disc ∆A containing all vertices

of A, and the boundary of ∆A crosses every edge of G at most once; see Figure 5.5. In the

complement of ∆A we can easily find a topological disc ∆B containing all vertices of B , by

drawing its boundary partially along the boundary of ∆A and partially along the boundary of

the outer face of D.

51

Chapter 5. Clustered planarity testing

∆A ∆A

∆B

Figure 5.5 – Left: Drawing the disc∆A . The edges of E ′ are dashed, while the edges of
⋃

f E f \E ′

are dotted. Right: Drawing of the disc ∆B .

u v u v

Figure 5.6 – Pulling v towards u. The evenness of the drawing is preserved.

5.3.1 Proof of Theorem 26

The proof is inspired by the proof of the weak Hanani–Tutte theorem from [78].

Let A and B be the two clusters of (G ,T) forming a partition of V (G). We assume that G is

connected, since we can embed each component separately. Suppose that we have an even

clustered drawing of (G ,T). We proceed by induction on the number of vertices.

First, we discuss the inductive step. If we have an edge e between two vertices u, v in the same

part (either A or B), we contract e by pulling v along e towards u while dragging all the other

edges incident to v along e as well. See Figure 5.6. We keep all resulting loops and multiple

edges. If some edge crosses itself during the dragging, we eliminate the self-crossing by a local

redrawing. The resulting drawing is still a clustered drawing. This operation keeps the drawing

even and it also preserves the rotation at each vertex. Then we apply the induction hypothesis

and decontract the edge e. This can be done without introducing new crossings, since the

rotation system has been preserved during the induction.

In the base step, G is a multigraph consisting of a bipartite multigraph H with parts A and B

and possible additional loops at some vertices. We can embed H by Lemma 31. It remains to

embed the loops. Note that after the contractions, no loop crosses the boundary of a cluster.

Each loop l divides the rotation at its corresponding vertex v(l) into two intervals. One of

these intervals contains no end piece of an edge connecting A with B , otherwise l would cross

52

5.4. Strong Hanani–Tutte for two-clustered graphs

some edge of H an odd number of times. Call such an interval a good interval in the rotation

at v(l). Observe that there are no two loops l1 and l2 with v(l1) = v(l2) = v whose end-pieces

have the order l1, l2, l1, l2 in the rotation at v , as otherwise the two loops would cross an odd

number of times. Hence, at each vertex the good intervals of every pair of loops are either

nested or disjoint.

We use induction on the number of loops to draw all the loops at a given vertex v without

crossings and without changing the rotation at v . For the inductive step, we remove a loop l

whose good interval in the rotation at v is inclusion minimal. Such an interval contains only

the two end-pieces of l , since there exist no edges between a pair of vertices in A or B . By

induction hypothesis, we can embed the rest of the loops without changing the rotation at v .

Finally, we can draw l in a close neighborhood of v within the face determined by the original

rotation at v . This concludes our discussion of the base step of the induction and the proof of

the theorem.

5.4 Strong Hanani–Tutte for two-clustered graphs

In this section we prove Theorem 27. Let (G ,T) be a two-clustered graph. Let A and B be the

two clusters of (G ,T) forming a partition of V (G). For a subset V ′ ⊆V (G), let G[V ′] denote the

subgraph of G induced by V ′. The following lemma gives a characterization of c-planarity for

two-clustered graphs, similar to the one for c-connected clustered graphs [57, Theorem 1].

Lemma 32. An embedding of a two-clustered graph (G ,T) is a clustered embedding if and only

if G[B] is contained in the outer face of G[A] and G[A] is contained in the outer face of G[B].

Proof. The “only if” part is trivial. Let D be an embedding of G in which G[B] is contained in

the outer face of G[A] and vice-versa. First we extend D to an embedding D1 of a connected

two-clustered graph (G1,T) by adding the minimum necessary number of edges between

the components of D. (If G is connected, then G1 = G and D1 = D.) The embedding D1

still satisfies the assumptions of the lemma, since adding an edge between two components

creates no cycle.

Next we contract each component of G1[A]∪G1[B] in D1 to a point, while keeping all the

loops and multiple edges, and preserving the rotations of the vertices. Let D2 be the resulting

embedding and (G2,T2) the corresponding two-clustered multigraph. The connectedness

of G2 and the assumption of the lemma imply that the interior of every loop in D2 is empty

of vertices. We remove all the loops, and apply Lemma 31 to the resulting two-clustered

multigraph (G3,T3). We obtain topological discs ∆A and ∆B certifying the c-planarity of

(G3,T3). Finally, we reintroduce the loops and decontract the components of G1[A] and

G1[B] inside the discs ∆A and ∆B , respectively. Finally, we delete the edges connecting the

components of G .

By the assumption of Theorem 27 and the strong Hanani–Tutte theorem, G has an embedding.

53

Chapter 5. Clustered planarity testing

However, in this embedding, G[B] does not have to be contained in a single face of G[A] and

vice-versa. Hence, we cannot guarantee that a clustered embedding of (G ,T) exists so easily.

For an induced subgraph H of G , the boundary of H is the set of vertices in H that have a

neighbor in G − H . We say that an embedding D(H) of H is exposed if all vertices on the

boundary of H are incident to the outer face of D(H).

The following lemma is an easy consequence of the strong Hanani–Tutte theorem. It helps us

to find an exposed embedding of each connected component X of G[A]∪G[B]. Later in the

proof of Theorem 27 this allows us to remove non-essential parts of each such component X

and concentrate only on a subgraph G ′ of G in which both G[A] and G[B] are outerplanar.

Lemma 33. Suppose that (G ,T) admits an independently even clustered drawing. Then every

connected component of G[A]∪G[B] admits an exposed embedding.

Proof. Let D be an independently even clustered drawing of (G ,T). Let ∆A and ∆B be the two

topological discs representing the clusters A and B , respectively.

Let X be a component of G[A]. (For components of G[B] the proof is analogous.) Let ∂X be

the boundary of X . Let E(X ,B) be the set of edges connecting a vertex in X with a vertex in

B . Observe that E(X ,B) = E(∂X ,B). We replace B by a single vertex v and connect it to all

vertices of ∂X . We obtain a graph X ′ = (V (X)∪ {v},E(X)∪ {uv ;u ∈ ∂X }.

We get an independently even drawing of X ′ from D by contracting∆B to a point and removing

the vertices in A \ X and all parallel edges. By the strong Hanani–Tutte theorem we obtain

an embedding of X ′. By changing this embedding so that v gets to the outer face and then

removing v with all incident edges, we obtain an exposed embedding of X .

5.4.1 Proof of Theorem 27

The proof is inspired by the proof of the strong Hanani–Tutte theorem from [78]. Its outline is

as follows. First we obtain a subgraph G ′ of G containing the boundary of each component of

G[A] and G[B] and such that each of G ′[A] and G ′[B] is a cactus forest, that is, a graph where

every two cycles are edge-disjoint. Equivalently, a cactus forest is a graph with no subdivision

of K4 − e. A connected component of a cactus forest is called a cactus. Then we apply the

strong Hanani–Tutte theorem to a graph which is constructed from G ′ by splitting vertices

common to at least two cycles in G ′[A] and G ′[B], and turning all cycles in G ′[A] and G ′[B]

into wheels. The wheels guarantee that everything that has been removed from G in order to

obtain G ′ can be inserted back. Finally we draw the clusters using Lemma 31.

Now we describe the proof in detail. Let X1, . . . , Xk be the connected components of G[A]∪
G[B]. By Lemma 33 we find an exposed embedding D(Xi) of each Xi . Let X ′

i denote the

subgraph of Xi obtained by deleting from Xi all the vertices and edges not incident to the

outer face of D(Xi). Observe that X ′
i is a cactus.

54

5.4. Strong Hanani–Tutte for two-clustered graphs

e
v

vf e f

ve f
ve f

a) b)

c) d)

Figure 5.7 – Making e and f even by changing the drawing locally around v .

Let G ′ = (
⋃k

i=1 X ′
i)∪E(A,B). That is, G ′ is a subgraph of G that consists of all the cacti X ′

i

and all edges between the two clusters. Let D′ denote the drawing of G ′ obtained from the

initial independently even clustered drawing of G by deleting the edges and vertices of G not

belonging to G ′. Thus, D′ is an independently even clustered drawing of G ′.

In what follows we process the cycles of G ′[A] and G ′[B] one by one. We will be modifying G ′

and also the drawing D′. We will maintain the property that every processed cycle is vertex-

disjoint with all other cycles in G ′[A] and G ′[B], and every edge of every processed cycle is

even in D′. Initially, the property is met as no cycle is processed. Let C denote an unprocessed

cycle in G ′[A]. For cycles in G ′[B], the procedure is analogous. We proceed in several steps.

1) Correcting the rotations. For every vertex v of C , we redraw the edges incident to v in a

small neighborhood of v , and change the rotation at v , as follows [78]. If the two edges e, f of

C incident to v cross an odd number of times, we redraw one of them, say, f , so that they cross

evenly. Next, we redraw every other edge incident to v so that it crosses both e and f evenly;

see Figure 5.7. After we perform these modifications at every vertex of C , all the edges of C are

even. However, some pairs of edges incident to a vertex of C may cross oddly; see Figure 5.7 d).

Moreover, no processed cycles have been affected since they are vertex-disjoint with C .

2) Cleaning the “inside”. We two-color the connected components ofR2\C so that two regions

sharing a nontrivial part of their boundary receive opposite colors. The existence of such a

coloring is a well-known fact; for example, one can color the points of R2 \C using the parity of

the winding number of C . We say that a point not lying on C is “outside” of C if it is contained

in the region with the same color as the unbounded region. Otherwise, such a point is “inside”

of C .

A C -bridge in G ′ is a “topological” connected component of G ′−E(C); that is, a connected

55

Chapter 5. Clustered planarity testing

v

C B

L
v

C B

L

Figure 5.8 – Transforming inner C -bridges into outer C -bridges. Every nontrivial C -bridge
contains a vertex in B .

C
v

x

y

C
v′

x

y

v′′

Figure 5.9 – Splitting a vertex v common to several cycles in G ′[A].

component K of G ′−C together with all the edges connecting K with C , or a chord of C in G ′.
We say that a C -bridge L is outer if all edges of L incident to C attach to the vertices of C from

“outside”. Similarly, we say that a C -bridge L is inner if all edges of L incident to C attach to

the vertices of C from “inside”. Since all the edges of C are even, every C -bridge is either outer

or inner. A C -bridge is trivial if it attaches only to one vertex of C ; otherwise it is nontrivial.

Since C is edge-disjoint with all cycles in G ′[A], every nontrivial C -bridge contains a vertex of

B . Since D′ is a clustered drawing of G ′, all vertices of G ′[B] lie “outside” of C , and so every

nontrivial C -bridge is outer. Therefore, every inner C -bridge is trivial. We redraw every inner

C -bridge L as follows. Let v be the vertex of C to which L is attached. We select a small region

in the neighborhood of v “outside” of C , and draw L in this region by continuously deforming

the original drawing of L, so that L crosses no edge outside L; see Figure 5.8. After this step,

nothing is attached to C from “inside”.

3) Vertex splitting. Let v be a vertex of C belonging to at least one other cycle in G ′[A].

Let x and y be the two neighbors of v in C . By the previous step, the edges xv and y v are

consecutive in the rotation at v . We split the vertex v by replacing it with two new vertices v ′

and v ′′ connected by an edge, and draw them very close to v . We replace the edges xv and

y v by edges xv ′ and y v ′, respectively. For every neighbor u of v that is not on C , we replace

the edge uv by an edge uv ′′. See Figure 5.9. Clearly, this vertex-splitting introduces no pair of

independent edges crossing oddly. Moreover, after all the splittings, C is vertex-disjoint with

all cycles in G ′[A].

4) Attaching the wheels. Now we fill the cycle C with a wheel. More precisely, we add a vertex

vC into A and place it very close to an arbitrary vertex of C “inside” of C . We connect vC with

all the vertices of C by edges that closely follow the closed curve representing C either from

56

5.4. Strong Hanani–Tutte for two-clustered graphs

C C

vC

Figure 5.10 – Attaching a wheel to C .

vC

u w

vC

u w

Figure 5.11 – Fixing the wheels and flipping everything else to the outer face of G ′′[A]. The
circle represents a vertex in B .

the left or from the right, and attach to their endpoints on C from “inside”; see Figure 5.10.

We allow portions of these new edges to lie “outside” of C only near self-crossings of C . In

particular, in the neighborhoods of vertices of C , the new edges are always “inside” of C . Since

no C -bridge is inner, all the new edges are even.

Let G ′′ denote the graph obtained after processing all the cycles of G ′[A] and G ′[B]. Now we

apply the strong Hanani–Tutte theorem to G ′′. We further modify the resulting embedding in

several steps so that in the end, the only vertices and edges of G ′′ not incident to the outer face

of G ′′[A] or G ′′[B] are the vertices vC that form the centers of the wheels, and their incident

edges. First, suppose that some of the wheels are embedded so that their central vertex vC is

in the outer face of the wheel. Then the outer face is a triangle, say vC uw . We can then redraw

the edge uw along the path uvC w , without crossings, so that vC gets inside the wheel. We fix

all the wheels in this way. Next, if some of the wheels contains another part of G ′′ in some of its

inner faces, we flip the whole part over an edge of the wheel to its outer face, without crossings.

See Figure 5.11. After finitely many flips, all the inner faces of the wheels will be empty.

After the modifications, G ′′[A] is drawn in the outer face of G ′′[B] and vice-versa. In the

resulting embedding we delete all the vertices vC and contract the edges between the pairs of

vertices v ′, v ′′ that were obtained by vertex-splits.

Thus, we obtain an embedding of G ′ in which for every component Xi of G ′[A]∪G ′[B], all

vertices of G ′−Xi are drawn in the outer face of Xi . Now we insert the removed parts of G back

to G ′, by copying the corresponding parts of the embeddings D(Xi) defined in the beginning

57

Chapter 5. Clustered planarity testing

(G,T) T

Figure 5.12 – A c-planar embedding of a c-connected clustered graph (G ,T) and the corre-
sponding tree T .

of the proof. This is possible since we are placing the removed parts of Xi inside faces bounded

by simple cycles of Xi . Hence, we obtain an embedding of G in which for every component X

of G[A]∪G[B], all vertices of G −X are drawn in the outer face of X . Thus, Lemma 32 applies

and that concludes the proof.

5.5 Strong Hanani–Tutte for c-connected clustered graphs

Here we prove Theorem 28, using the ideas from the proof of Theorem 27.

Let (G ,T) be a c-connected clustered graph with an independently even clustered drawing.

Our goal is to find a c-planar embedding of (G ,T); see Figure 5.12. We proceed by induction

on the number of clusters of (G ,T). If the root cluster is the only cluster in (G ,T), the theorem

follows directly from the strong Hanani–Tutte theorem applied to G . For the inductive step,

we assume that (G ,T) has at least one non-root cluster.

A minimal cluster is a cluster that contains no other cluster of (G ,T). Let V (µ) be a minimal

cluster of (G ,T). Let (G ,T ′) be a clustered graph obtained from (G ,T) by removing µ from T

and attaching all its children to its parent. Note that (G ,T ′) is still c-connected.

Starting from (G ,T ′), we process the connected subgraph G[V (µ)] analogously as the compo-

nents of G[A] in the proof of Theorem 27, where we substitute A =V (µ) and B =V (G)−V (µ).

By modifying (G ,T ′) we obtain a c-connected clustered graph (G ′′,T ′′) with an independently

even clustered drawing. Now we apply the induction hypothesis and obtain a clustered em-

bedding of (G ′′,T ′′). Again, we modify this embedding so that all vertices of V (G ′′)−V (µ)

are in the outer face of G ′′[V (µ)]. Then we remove the wheels, contract the new edges and

insert back the removed parts of G[V (µ)]. Finally we draw a topological disc ∆(µ) around the

closure of the union of all interior faces of G[V (µ)]. Since G[V (µ)] is connected, this last step

is straightforward and results in a clustered embedding of (G ,T).

58

5.6. Counterexample on three clusters

5.6 Counterexample on three clusters

In this section we construct a family of even clustered drawings of flat clustered cycles on three

and more clusters that are not clustered planar. These examples imply that a straightforward

generalization of the Hanani–Tutte theorem to graphs with three or more clusters is not

possible.

Before giving the construction, we prove that there are no other “minimal” counterexamples

to the Hanani–Tutte theorem for flat clustered cycles with three clusters, and more generally,

flat clustered cycles whose clusters form a cycle structure. A reader interested only in the

counterexample can immediately proceed to Subsection 5.6.1 or directly to the study of

Figure 5.16.

Let k ≥ 3. We say that a flat clustered graph (G ,T) with k clusters is cyclic-clustered if there is a

cyclic ordering of its clusters (V1,V2, . . . ,Vk) such that for i 6= j , G has an edge between Vi and

V j if and only if |i − j | ∈ {1,k −1}; that is, if Vi and V j are consecutive in the cyclic ordering.

In this section we assume that (G ,T) is a cyclic-clustered graph with k clusters. Clustered

drawings of cyclic-clustered graphs with no edge-crossings outside the clusters have a simple

structure.

Observation 5.6.1. Let D be a clustered drawing of a cyclic-clustered graph (G ,T) with k clusters

on the sphere such that the edges do not cross outside the topological discs ∆i representing the

clusters Vi . Then we can draw disjoint simple curves α1,β1,α2,β2, . . . ,αk ,βk such that both αi

and βi connect the boundaries of ∆i and ∆i+1, do not intersect other discs ∆ j , and the bounded

region bounded by αi , βi and portions of the boundaries of ∆i and ∆i+1 contains all portions of

the edges between Vi and Vi+1 that are outside of ∆i and ∆i+1 (the indices are taken modulo k).

Proof. The observation is obvious when there is exactly one edge between every pair of

consecutive clusters. The general case follows easily by induction on the number of the

inter-cluster edges.

We note that if (G ,T) has only three clusters, then the conclusion of Observation 5.6.1 holds

even if (G ,T) is not cyclic-clustered, that is, if there is a pair of clusters with no edge between

them.

First we show that it is enough to consider clustered drawings in which the clusters are drawn

as cones bounded by a pair of rays emanating from the origin. We call such drawings radial.

We call two clustered drawings of (G ,T) equivalent if for every pair of independent edges e

and f , the number of their crossings has the same parity in both drawings. We call a clustered

drawing weakly even if every pair of edges between two disjoint pairs of clusters cross an even

number of times. Clearly, every independently even drawing is also weakly even.

Lemma 34. Given a weakly even clustered drawing D of a cyclic-clustered graph (G ,T), there

exists a radial clustered drawing of (G ,T) equivalent to D.

59

Chapter 5. Clustered planarity testing

Vi Vj Vi Vj

Figure 5.13 – Eliminating crossings outside clusters in a cyclic-clustered graph.

Proof. Here we refer to the topological discs representing the clusters simply by “clusters”, and

denote them also by Vi .

If all the crossings in D are inside clusters, we can easily obtain a radial drawing of (G ,T)

equivalent to D as follows. By Observation 5.6.1, we can flip some edges so that the outer face

intersects all the clusters. Then the complement of the union of the discs ∆i and the curves αi

and βi from Observation 5.6.1 in the plane contains exactly one bounded and one unbounded

component touching all the clusters. Therefore, we can continuously deform the plane and

then expand the clusters to take the shape of the cones.

Suppose that there are crossings outside clusters in D. We show how to obtain an equivalent

drawing that has all crossings inside clusters, in two phases.

In the first phase, we eliminate all crossings outside clusters as follows. We continuously

deform every edge of G between two consecutive clusters Vi and Vi+1 (the indices are taken

modulo k) into a narrow corridor between Vi and Vi+1, keeping the interiors of Vi and Vi+1

fixed except for a small neighborhood of their boundaries. See Figure 5.13. Inside the corridor

between Vi and Vi+1, we want the portions of the edges be noncrossing, but their order may

be arbitrary. We may represent this deformation by the set S(D,D′) of edge-cluster switches

(see Section 5.2 for the definition) that were performed an odd number of times.

Now we again use the fact that between every two consecutive clusters of the cyclic sequence

(V1,V2, . . . ,Vk), there is at least one edge of G . Since no two edges cross outside clusters in D′,
both drawings D and D′ are weakly even. Hence, if S(D,D′) contains an edge-cluster switch

(e,Vi) with a cluster Vi that is disjoint with e, then S(D,D′) contains an edge-cluster switch of

e with every cluster disjoint with e. We call such an edge switched.

In the second phase, we further transform D′ into a drawing D′′ by deforming the edges only

inside the clusters. For every switched edge e, we perform edge-vertex switches of e with all

vertices in the two clusters incident to e, except for the endpoints of e. Since performing an

edge-vertex switch of e with every vertex of G not incident to e has no effect on the parity of

the number of crossings of e with independent edges, the new drawing D′′ is equivalent to

60

5.6. Counterexample on three clusters

D.

In the rest of this section we assume that G is a cycle Cn = v1v2 . . . vn . For technical reasons,

we define vn+1 as v1. For j ∈ [n], let ϕ(v j) denote the index of the cluster containing v j , that is,

v j ∈Vϕ(v j).

For every edge vi vi+1 of Cn we define sign(vi vi+1) ∈ {−1,0,1}, as an element of Z, so that

sign(vi vi+1) ≡ ϕ(vi+1) −ϕ(vi) (mod k). Note that the sign is well defined since (G ,T) =
(Cn ,T) is cyclic-clustered and k ≥ 3. We then define the winding number of (Cn ,T) as
1
k

∑n
i=1 sign(vi vi+1). Note that in a radial clustered drawing of (Cn ,T) where the clusters

V1,V2, . . .Vn are drawn in a counter-clockwise order, our definition of the winding number of

(Cn ,T) coincides with the standard winding number of the curve representing Cn with respect

to the origin.

We will show that if (Cn ,T) is a counterexample to the variant of the Hanani–Tutte theorem for

flat cyclic-clustered graphs with k clusters, then the winding number of (Cn ,T) is odd.

We say that (Cn ,T) is monotone if sign(v1v2) = sign(v2v3) = ·· · = sign(vn v1) 6= 0.

In the following two lemmas we show how to reduce any even radial clustered drawing of

(Cn ,T) to an even radial clustered drawing of a monotone cyclic-clustered cycle (Cn′ ,T ′), for

some n′ ≤ n, that has the same winding number as (Cn ,T).

We extend the notion of edge contraction to flat clustered cycles as follows. If (G ,T) is a

clustered cycle and e = uv is an edge of G with both vertices u, v in the same cluster C , then

(G ,T)/e is the clustered multigraph obtained by contracting e and keeping the vertex replacing

u and v in the cluster C . The clustering of the rest of the vertices is left unchanged. If P = uw v

is a path of length 2 in G such that u and v are in the same cluster C , then (G ,T)/P is the

clustered multigraph obtained by contracting the edges uw and w v and keeping the vertex

replacing u and v in the cluster C . Obviously, if G =Cn , then the contraction of an edge yields

a cycle of length n −1. Similarly, the contraction of a path of length 2 yields a cycle of length

n −2.

Lemma 35. Let D be an even radial clustered drawing of (Cn ,T). Let e be an edge in Cn with

both endpoints in the same cluster Vi . Then (Cn ,T)/e has an even radial clustered drawing.

Proof. Since the edge e is completely contained inside the disc representing the cluster Vi , we

can contract the curve representing e in D towards one of its endpoints, dragging the edges

incident to the other endpoint along. Since e was even, this does not change the parity of the

number of crossings between the edges of G .

Lemma 36. Let D be an even radial clustered drawing of (Cn ,T). Let Va and Vb be two adjacent

clusters. Let P1, . . . ,Pm be all the paths of length 2 in Cn

61

Chapter 5. Clustered planarity testing

Vb Va Vb Va Vb Va
P1

P3 P2

P1

P3 P2

w

f

w

f

w

f

Figure 5.14 – Illustration for the proof of Lemma 36. From left to right: the successive stages of
the redrawing operation eliminating paths P1,P2 and P3. The edge f cannot be present in the
drawing, since it would violate its evenness.

whose middle vertices belong to Va and whose end vertices belong to Vb . Then (Cn′ ,T ′) =
(. . . ((Cn ,T)/P1)/ . . .)/Pm has an even radial clustered drawing.

Proof. Refer to Figure 5.14. By Lemma 35, we assume that no edge of Cn has both vertices in

the same cluster. At the end we can recover the contracted edges by decontractions.

The proof proceeds by the following surgery performed on D. First we cut the paths Pi at

the ray r separating the clusters Va and Vb , by removing a small neighborhood of the curves

near r . Second, we reconnect the severed ends of every Pi on both sides of r , by new curves

drawn close to r . This operation splits every Pi into two components. One of the components

is a curve connecting the former end vertices of Pi , the other component is a closed curve

containing the middle vertex of Pi . By removing the middle vertex of Pi , we replace each Pi by

a single edge ei , still represented as the union of both components of Pi . Third, we remove the

closed curve of every ei . Finally, we contract the remaining component of each ei towards one

of the end vertices, as in Lemma 35.

We claim that the resulting drawing is even. It is easy to see that during the first and the second

phase, the parity of the number of crossings between each pair of edges was preserved, if we

consider the edge ei instead of each path Pi , and count the crossings on all components of

every edge together. Now we show that the closed component of each ei crosses every other

edge an even number of times. This is clearly true for every edge e j other than ei , since only

the closed component of e j can cross the closed component of ei . Suppose that the closed

component of ei crosses some other edge f an odd number of times. Then f intersects the

region containing Va , and so f has one endpoint, w , in Va . Since the other endpoint of f is

not in Va , the vertex w lies “inside” the closed component of ei (in the same sense as defined

in Section 5.4). If some of the two edges incident to w had the other endpoint outside Vb , it

would cross ei , and thus Pi , an odd number of times. Therefore, both edges incident to w are

incident to both clusters Va and Vb . But every such pair was replaced by a single edge during

the surgery; so there is no such f .

62

5.6. Counterexample on three clusters

u

v
u+

Vj Vi

v+

Figure 5.15 – Illustration for the proof of Theorem 37. The two pairs of vertices u, v , and u+, v+
are in clusters Vi and Vi+1, respectively. The “inside” of the curves γ(u) and γ(u+) consists of
the shaded regions. Thus, we have u <i v and u+ <i+1 v+.

Theorem 37. Let (Cn ,T) be a cyclic-clustered cycle that is not c-planar but has an even clustered

drawing. Then the winding number of (Cn ,T) is odd and different from 1 and −1.

Proof. Let k ≥ 3 be the number of clusters of (Cn ,T). By Lemmas 34, 35 and 36, we may

assume that (Cn ,T) is monotone and that it has an even radial clustered drawing. In particular,

the absolute value of the winding number of (Cn ,T) is equal to n/k. Cortese et al. [52] proved

that a cyclic-clustered cycle is c-planar if and only if its winding number is −1, 0 or 1. This

implies that n ≥ 2k if (Cn ,T) is not c-planar.

For every i ∈ [k], we define a relation <i on Vi as follows. Refer to Figure 5.15. Let u ∈ Vi ,

and let uu− and uu+ denote the two edges incident to u so that u− ∈ Vi−1 and u+ ∈ Vi+1

(the indices are taken modulo k). Let (uu−)i and (uu+)i denote the parts of uu− and uu+,

respectively, contained inside the cone representing Vi . Let r (uu−) and r (uu+) denote the

endpoint of (uu−)i and (uu+)i , respectively, different from u. That is, r (uu−) and r (uu+)

are on the boundary of the cone representing Vi . Let γ(u) denote the closed curve obtained

by concatenating (uu−)i , (uu+)i , and the two line segments connecting r (uu−) and r (uu+),

respectively, with the origin. We say that a pair of vertices u, v ∈Vi is in the relation u <i v if v

is “outside” (in the same sense as defined in Section 5.4) of the curve γ(u).

Let v+ be the neighbor of v in Vi+1, and let v− be the other neighbor of v . The relations <i and

<i+1 satisfy the following properties.

(1) the relation <i is anti-symmetric, that is, (u <i v) ⇒¬(v <i u),

(2) u <i v if and only if u+ <i+1 v+.

For part (1), we observe that (v v−)i and (uu+)i cross an even number of times. Suppose

that u <i v . Then (v v−)i and (uu−)i cross an odd number of times if and only if r (v v−) is on

γ(u); equivalently, r (v v−) is closer to the origin than r (uu−). If also v <i u, then (v v−)i and

63

Chapter 5. Clustered planarity testing

1 2 34 5 67 8 9

Figure 5.16 – A counterexample to the variant of the Hanani–Tutte theorem with parameters
k = 3 and r = 3; the underlying graph is thus a cycle on 9 vertices. The vertices are labeled by
positive integers in the order of their appearance along the cycle.

(uu−)i cross an odd number of times if and only if r (uu−) is closer to the origin than r (v v−); a

contradiction.

For part (2), let u++ be the neighbor of u+ other than u. The claim follows from the fact that

v v+ crosses each of the curves (uu−)i ,uu+ and (u+u++)i+1 evenly.

Recall that Cn = v1v2 . . . vn . Let i =ϕ(vn) and suppose without loss of generality that i +1 =
ϕ(v1). Suppose that n/k is even. Then both vn and vn/2 are in Vi . By (2), we have vn <i vn/2 ⇔
v1 <i+1 vn/2+1 ⇔ ··· ⇔ vn/2 <i vn , but this contradicts (1). Therefore, n/k is odd.

Remark. We will see next that the relations <i are not necessarily transitive. In fact, it is

not hard to see that in every counterexample to the variant of the Hanani–Tutte theorem for

cyclic-clustered cycles, no relation <i is transitive.

5.6.1 Proof of Theorem 29

For simplicity of the description, we draw the graph on a cylinder, represented by a rectangle

with the left and right side identified.

Let r ≥ 3 be an odd integer and let k ≥ 3. Our counterexample is a drawing of a monotone

cyclic-clustered cycle with kr vertices and k clusters. The corresponding curve consists of

kr +1 periods of an appropriately scaled graph of the sinus function winding r times around

the cylinder, where the vertices mark the beginning of kr of the periods. We can describe the

curve representing the cycle analytically as a height function f (α) = sin
(

kr+1
r α

)
on a vertical

cylinder (whose axis is the z-axis) taking the angle as the parameter. The vertices of the cycle

are at points
(
i 2r

kr+1π,0
)
, where i = 0, . . . ,kr −1, and the clusters are separated by vertical lines

at angles 2r i+1
kr+1 π, for i = 0, . . .k − 1; see Figure 5.16. By the result of Cortese et al. [52], the

cyclic-clustered cycle is not c-planar when r > 1.

64

5.7. Small faces

5.7 Small faces

In this section we reprove a result of Di Battista and Frati [54] that c-planarity can be decided

in polynomial time for embedded flat clustered graphs whose every face is incident to at

most five vertices. In our proof, we reduce the problem to computing the largest size of

a common independent set of two matroids. This can be done in polynomial time by the

matroid intersection theorem [55, 72]. See e.g. [74] for further references.

In this section, we will use a shorthand notation (G ,T) instead of (D(G),T) for an embedded

clustered graph. Let (G ,T) be an embedded flat clustered graph where G = (V ,E).

Since contracting an edge with both endpoints in the same cluster does not affect c-planarity,

we will assume that (G ,T) is an embedded clustered multigraph where every cluster induces

an independent set. If (G ,T) is c-planar and contains a loop at v , then the whole interior of

the loop must belong to the same cluster as v . Hence, either there is a vertex of another cluster

inside the loop, in which case (G ,T) is not c-planar, or we may remove the loop and everything

from its interior without affecting the c-planarity. The test and the transformation can be

easily done in polynomial time. We will thus also assume that (G ,T) has no loops.

A saturator of (G ,T) is a subset S of
(V

2

)
\ E such that every cluster of (G ∪S,T) is connected

and the edges of S can be added to (G ,T) without crossings.

Let S be a minimal saturator of (G ,T). Then each cluster in (G ∪S,T) induces a spanning tree

of the cluster, and so the boundary of each cluster can be drawn easily. We have thus the

following simple fact.

Observation 5.7.1 ([57]). An embedded flat clustered graph (G ,T) is c-planar if and only if

(G ,T) has a saturator.

In order to model our problem by matroids we need to avoid two noncrossing saturating

edges in one face coming from two different clusters, which might happen if the boundary of

the face is not a simple cycle. To this end, we modify the multigraph further by a sequential

merging of some pairs of vertices. Assuming that u and v are non-adjacent vertices incident

to a common face f , merging of u and v in f consists in embedding a new edge uv inside f

and then contracting it.

Lemma 38. Let (G ,T) be an embedded flat clustered multigraph all of whose faces are incident

to at most five vertices. Suppose that G has no loops and that every cluster of (G ,T) induces an

independent set. Then there is an embedded flat clustered multigraph (G ′,T) obtained from

(G ,T) by merging vertices such that

1) (G ,T) is c-planar if and only if (G ′,T) is c-planar, and

2) if (G ′,T) is c-planar then (G ′,T) has a saturator S whose edges can be embedded so that each

face of G ′ contains at most one edge of S.

65

Chapter 5. Clustered planarity testing

Moreover, finding G ′ and verifying conditions 1) and 2) can be performed in linear time.

A saturating pair of a face f is a pair of vertices incident to f and belonging to the same cluster.

Thus, a cluster with k vertices incident to f has
(k

2

)
saturating pairs in f . A saturating edge of f

is a simple curve embedded in f and connecting the vertices of some saturating pair of f .

Proof of Lemma 38. Clearly, once we find that (G ,T) is not c-planar we can choose G ′ =G .

A face of (G ,T) is bad if it admits two noncrossing saturating edges, even from the same cluster.

If no face of (G ,T) is bad, then the choice G ′ =G satisfies both conditions of the lemma.

Assume that (G ,T) has at least one bad face f . We show that at least two vertices of f can be

merged so that the resulting embedded clustered multigraph is c-planar if and only if (G ,T) is

c-planar. The lemma then follows by induction on the number of vertices.

Suppose that f has only two saturating pairs, {u, v} and {x, y}. In this case, u and v belong

to a different cluster than x and y . Since f is bad, the pairs {u, v} and {x, y} can be joined by

saturating edges e(u, v) and e(x, y), respectively, embedded in f without crossings. Hence, we

can merge u with v along e(u, v) while preserving the c-planarity.

If f has more than two saturating pairs, there is a cluster C that has at least three vertices

incident to f . Let C (f) be the set of these vertices. If all other clusters have at most one vertex

incident to f , all saturating pairs of f have vertices in C (f). In this case, we can merge any

pair of vertices of C (f) while preserving the c-planarity.

In the remaining case, f is incident to exactly five vertices, exactly three of them, u, v and w ,

are in C , and the remaining two, x and y , are in another cluster D. In this case, f has four

saturating pairs: {u, v}, {u, w}, {v, w} and {x, y}. If x and y are in different components of the

boundary of f , then it is possible to embed saturating edges for all the four saturating pairs

without crossings. We may thus merge x with y without affecting the c-planarity. For the rest

of the proof we assume that x and y are in the same component of the boundary of f . In this

case, every saturating edge e joining x with y separates the face f into two components. At

least one of the components is incident to at least two vertices of C (f), and so at least one

saturating edge of the cluster C can be embedded in f while avoiding crossings with e. If at

least two saturating edges of C can be embedded in f while avoiding crossings with e, we

may merge x with y along e without affecting c-planarity. Therefore, we also assume for the

rest of the proof that for every saturating edge e joining x with y in f , exactly one saturating

pair of C can be joined by a saturating edge embedded in f without crossings with e. This

implies that for every minimal saturator of (G ,T), at most two saturating pairs in total can be

simultaneously joined by saturating edges embedded in f without crossings.

If for some of the saturating pairs of C in f , say, {u, v}, no saturating edge embedded in f

joining u with v separates x and y , we can merge u with v without affecting c-planarity. We

may thus assume that every pair of vertices in C (f) can be separated by some saturating edge

66

5.7. Small faces

x

yu

v

w

f

x

yu

v

w

f

x

yu

v

w

f

Figure 5.17 – Three cases of a bad face f whose boundary contains a 4-cycle. Saturating edges
joining the pairs {x, y} and {u, w} are drawn in the third case. The vertices u and w can be
merged without affecting the c-planarity.

joining x with y .

The boundary of f , denoted by ∂ f , is a bipartite cactus forest with partitions C (f) = {u, v, w}

and D(f) = {x, y}. We call every connected component of R2 \∂ f other than f an enclave. Each

enclave is bounded by a simple cycle, of length 2 or 4. Suppose that each enclave is bounded

by a 2-cycle. Since each of the 2-cycles contains only one vertex of C , every saturating edge

joining two vertices of C (f) has to be embedded in f , and moreover, every minimal saturator

of (G ,T) contains exactly two of the saturating pairs {u, v}, {u, w}, {v, w}, forming a spanning

tree of the triangle uv w . Similarly, every minimal saturator of (G ,T) contains the pair {x, y},

and the saturating edge joining x with y must be embedded in f . By our assumptions, two of

the three saturating edges in f will cross, so in this case (G ,T) is not c-planar.

We are left with the case when one enclave is bounded by a 4-cycle, say, uxv y . Clearly, there is

at most one other enclave and it is bounded by a 2-cycle. In total, there are three possibilities

for the subgraph ∂ f ; see Figure 5.17. Every saturator of (G ,T) has to contain at least one of the

two saturating pairs {u, w}, {v, w}, and the corresponding saturating edge must be embedded

in f . Moreover, saturating edges joining the pairs {x, y} and {u, w} can be simultaneously

embedded without crossings. Therefore, we can merge u and w while preserving c-planarity.

This finishes the proof of the lemma.

5.7.1 Proof of Theorem 30

We start with the embedded multigraph (G ′,T ′) obtained in Lemma 38. By Observation 5.7.1

and Lemma 38, it is enough to decide whether (G ′,T ′) has a minimal saturator.

In order to test the existence of a saturator we define two matroids for which we will use the

matroid intersection algorithm. The ground set of each matroid is a set E ′ of saturating edges

of (G ′,T ′) defined as the disjoint union
⋃

f E f , over all faces of G ′, where E f is a set containing

one saturating edge for each saturating pair of f . By the proof of Lemma 38, no face f is bad,

so every set E f has at most two saturating edges. Moreover, if |E f | = 2, then the two saturating

edges in E f cross and belong to different clusters.

67

Chapter 5. Clustered planarity testing

Figure 5.18 – A counterexample with GT = K1,3.

The first matroid, M1, is the direct sum of graphic matroids constructed for each cluster as

follows. Denote the clusters of (G ′,T ′) by Ci , i = 1, . . . ,k. Let Gi be the multigraph induced by

Ci in G ′ = (V ,E ′). The ground set of the graphic matroid M(Gi) is the edge set of Gi . The rank

of M(Gi) is the number of vertices of Gi minus one. Since the matroids M(Gi), i = 1, . . . ,k, are

pairwise disjoint, their direct sum, M1, is also a matroid and its rank is the sum of the ranks of

the matroids M(Gi).

The second matroid, M2, is a partition matroid defined as follows. A subset of E ′ is independent

in M2 if it has at most one edge in every face of G ′.

Let M be the intersection of M1 and M2. If M has an independent set of size equal to the rank

of M1, then (G ′,T ′) has a saturator that has at most one edge inside each face. Thus, (G ′,T ′) is

c-planar by Observation 5.7.1, and that in turn implies by Lemma 38 that (G ,T) is c-planar as

well. On the other hand, if (G ,T), and hence (G ′,T ′), is c-planar, then (G ′,T ′) has a minimal

saturator S that has at most one edge inside each face by Lemma 38. Thus, S witnesses the

fact that M has an independent set of size equal to the rank of M1. Hence, (G ′,T ′) is c-planar

if and only if M has an independent set of size equal to the rank of M1, and this can be tested

by the matroid intersection algorithm.

5.8 Concluding remarks

Let GT be the simple graph obtained from (G ,T) by contracting the clusters and deleting the

loops and multiple edges. By the construction in Section 5.6 we cannot hope for the fully

general variant of the Hanani–Tutte theorem when GT contains a cycle.

A simple modification of the construction provides a counterexample also for the case when

GT is a tree with at least one vertex of degree greater than two; see Figure 5.18. This disproves

our conjecture from the conference version of this work [61].

Therefore, the only open case for flat clustered graphs is the case when GT is a collection of

68

5.8. Concluding remarks

paths. We conjecture that the strong Hanani–Tutte theorem holds in this case.

Conjecture 1. If GT is a path and (G ,T) admits an independently even clustered drawing then

(G ,T) is c-planar.

A variant of Conjecture 1 for non-flat two-level clustered graphs in which the clusters on the

bottom level form a path and one additional cluster contains all interior clusters of the path

would provide a polynomial-time algorithm for c-planarity testing for strip clustered graphs,

which is an open problem stated in [45].

69

6 Future directions

In this thesis we tackled the time-invariant incremental knapsack problem (IIK) and the min-

knapsack problem (MINKNAP), as well as clustered planarity testing. While we completely

settled the complexity of IIK, the status of its certain generalizations and probabilistic variants

has remained unknown. Furthermore, for MINKNAP and clustered planarity we obtained

negative results on bounded-pitch and Hanani–Tutte approaches, respectively. There are also

evidences that those techniques can be used for giving positive results.

Incremental knapsack. A natural generalization of IIK is the incremental knapsack prob-

lem (IK) where profits are scaled by a given time-dependent factor. The construction from

Section 2.2 can be extended to IK under some restrictions (see Section 2.3). A PTAS for IK

with constant T is given by Della Croce et al. [18], while our construction implies an EPTAS

in this case. It remains open whether IK admits a PTAS for the number of times T being

logarithmic in the number of items, or for arbitrary T . The generalized assignment problem

(GAP) [23] is related to IK and it cannot be approximated better then the ratio 1−1/e. It might

be worth investigating the hard instances for GAP and checking whether those could lead to

an APX-hardness result for IK. For modeling industrial processes more realistically, one may

consider IK\IIK in the setting where capacities are not a priori known, but revealed over time

in an on-line manner. Depending on various probabilistic assumptions, the main goal in such

a setting is to develop an algorithm which maximizes the competitive ratio.

Min-knapsack. We have shown that adding all bounded pitch inequalities to the natural

MINKNAP relaxation does not reduce the gap in general. However, Fiorini et. al. [6, 22] have as

a corollary that a quasi-polynomial extended formulation, with gap arbitrarily close to 2, can

be obtained by applying pitch-1 to residual MINKNAP problems. One might like to investigate

whether using higher pitch inequalities in a similar fashion can reduce the gap below 2. A

major open question is whether there exists a poly-size relaxation with bounded gap.

Clustered planarity testing. We gave a counterexample for a variant of Hanani–Tutte theorem

on three-clustered graphs. Nevertheless, it is plausible that the Hanani–Tutte approach can

lead to a polynomial-time algorithm for c-planarity testing of strip clustered graphs.

71

A Appendix

A.1 Background on disjunctive programming

Introduced by Balas [3] in the 70s, disjunctive programming is based on “covering” the set by

a small number of pieces which admit a relatively simple linear description. More formally,

given a set Q ⊆ Zn we first find a collection {Q j } j∈[m] such that Q = ∪ j∈[m]Q j . If there exist

polyhedra P j , j ∈ [m] with bounded integrality gap and P j∩Zn =Q j , then P := CONV(∪ j∈[m]P j)

is a relaxation of CONV(Q) of with the same guarantee on the integrality gap. Moreover, one

can describe P with (roughly) as many inequalities as the sum of the inequalities needed to

describe the P j .

A variety of benchmarks of mixed integer linear programs (MILPs) have shown the improved

performances of branch-and-cut algorithms by efficiently generated disjunctive cuts [4].

Branch-and-bound algorithms for solving MILP also implicitly use disjunctive programming.

The branching strategy based on thin directions that come from the Lenstra’s algorithm for

integer programming in fixed dimension has shown good results in practice for decomposable

knapsack problems [34]. For further applications of disjunctive cuts in both linear and non-

linear mixed integer settings see [8].

A.2 IIK, MKP, and UFP

A special case of GAP where profits and weights of items do not change over the set of bins

is called the multiple knapsack problem (MKP). MKP is strongly NP-complete as well as IIK

and has an LP-based efficient PTAS (EPTAS) [29]. Both the scheme in [29] and the one we

present in Chapter 2 are based on reducing the number of possible profit classes and knapsack

capacities, and then guessing the most profitable items in each class.

However, the two schemes are obtained in very different ways. The key ingredient of the

approximation schemes so far developed for MKP is a “shifting trick”. In rounding a fractional

LP solution it redistributes and mixes together items from different buckets. Applying this

73

Appendix A.

technique to IIK would easily violate the monotonicity constraint, i.e. xt ,i ≤ xt+1,i where xt ,i

indicates whether an item i is present in the knapsack at time t . This highlights a significant

difference between the problems: the ordering of the bins is irrelevant for MKP while it is

crucial for IIK.

In UFP one is given a path P = (V ,E) with edge capacities b : E → R>0 and a set of tasks (i.e.

sub-paths) [n] with profits p : [n] →R>0 and weights w : [n] →R>0 and, for each taskπ ∈ [n], its

starting point and ending nodes u(π), v(π) ∈V . The goal is to select a set S ⊆ [n] of maximum

profit such that, for each e ∈ E , the set of tasks in S containing e has total weight at most be .

One might like to rephrase IIK in this framework mapping times to nodes, parameters bt to

edge capacities, and the insertion of item i at time t with an appropriate path π(t , i). However,

we would need to introduce another set of constraints that for each item i at most one task

π= (i , t) is taken. This would be a more restrictive setting then UFP.

The best known approximation for UFP is 2+ε [1]. When all tasks share a common edge, there

is a PTAS [25] based on a “sparsification” lemma introduced in [5] which, roughly speaking,

considers guessing 1/ε “locally large” tasks in the optimal solution for each e ∈ E and by this

making the computation of “locally small” tasks easier. In our approach for solving IIK we

perform a kind of sparsification in Section 2.2.1 by reducing the number of times and different

profits to be taken into consideration. At that point, the number of possible time/profit

combinations is still too large to be able to guess a constant fraction of the highest profit items

per each time. Thus, we introduce an additional pattern enumeration in Section 2.2.2 which

follows the evolution of the highest-profit item in an optimal solution to an IIK instance. This

pattern, – that we call ”stairway“, see Section 2.2.2 – is specific for IIK, and fundamental for

describing its dynamic nature (while the set of edges for UFP is fixed). Once the stairway is

fixed we can identify and distinguish between locally large and small items. This is the main

difference between our approach here and the techniques used for UFP and related problems

[1, 5, 25], or the techniques used in other works on IIK [11, 44].

74

Bibliography

[1] Aris Anagnostopoulos, Fabrizio Grandoni, Stefano Leonardi, and Andreas Wiese. A

mazing 2+ε approximation for unsplittable flow on a path. In Proc. of SODA ’14, pages

26–41, 2014.

[2] Rumen Andonov, Vincent Poirriez, and Sanjay Rajopadhye. Unbounded knapsack prob-

lem: Dynamic programming revisited. Europ. Journ. Oper. Res., 123(2):394 – 407, 2000.

[3] Egon Balas. Disjunctive programs: cutting planes from logical conditions. In Nonlinear

Programming 2, pages 279 – 312. Academic Press, 1975.

[4] Egon Balas and Pierre Bonami. Generating lift-and-project cuts from the lp simplex

tableau: open source implementation and testing of new variants. Math. Prog. Comp.,

1(2):165–199, 2009.

[5] Jatin Batra, Naveen Garg, Amit Kumar, Tobias Mömke, and Andreas Wiese. New ap-

proximation schemes for unsplittable flow on a path. In Proc. of SODA ’15, pages 47–58,

2015.

[6] Abbas Bazzi, Samuel Fiorini, Sangxia Huang, and Ola Svensson. Small extended formula-

tion for knapsack cover inequalities from monotone circuits. In Proc. of SODA ’17, pages

2326–2341, 2017.

[7] Amos Beimel and Enav Weinreb. Monotone circuits for monotone weighted threshold

functions. Inf. Process. Lett., 97(1):12–18, 2006.

[8] Pietro Belotti, Leo Liberti, Andrea Lodi, Giacomo Nannicini, and Andrea Tramontani.

Disjunctive inequalities: applications and extensions. Wiley Encycl. of Oper. Res. and

Manag. Sc., 2011.

[9] Daniel Bienstock. Approximate formulations for 0-1 knapsack sets. Oper. Res. Lett.,

36(3):317–320, May 2008.

[10] Daniel Bienstock and Benjamin McClosky. Tightening simple mixed-integer sets with

guaranteed bounds. Math. Progr., 133(1):337–363, 2012.

75

Bibliography

[11] Daniel Bienstock, Jay Sethuraman, and Chun Ye. Approximation algorithms for the

incremental knapsack problem via disjunctive programming. CoRR, abs/1311.4563,

2013.

[12] Daniel Bienstock and Mark Zuckerberg. Subset algebra lift operators for 0-1 integer

programming. SIAM Journal on Optimization, 15(1):63–95, 2004.

[13] Daniel Bienstock and Mark Zuckerberg. Approximate fixed-rank closures of covering

problems. Math. Prog., 105(1):9–27, Jan 2006.

[14] Daniel Bienstock and Mark Zuckerberg. Simpler derivation of bounded pitch inequalities

for set covering, and minimum knapsack sets. arXiv preprint arXiv:1806.07435, 2018.

[15] Robert D. Carr, Lisa K. Fleischer, Vitus J. Leung, and Cynthia A. Phillips. Strengthening

integrality gaps for capacitated network design and covering problems. In Proc. of

SODA ’00, pages 106–115, 2000.

[16] Michele Conforti, Gerard Cornuejols, and Giacomo Zambelli. Integer Programming.

Springer Publishing Company, Incorporated, 2014.

[17] George B. Dantzig. Discrete-variable extremum problems. Operations Research, 5(2):266–

277, 1957.

[18] Federico Della Croce, Ulrich Pferschy, and Rosario Scatamacchia. Approximation results

for the incremental knapsack problem. In Proc. of IWOCA ’17, pages 75–87, 2017.

[19] Yuri Faenza and Igor Malinovic. A PTAS for the time-invariant incremental knapsack

problem. In Proc. of ISCO ’18, pages 157–169, 2018.

[20] Yuri Faenza, Igor Malinovic, Monaldo Mastrolilli, and Ola Svensson. On bounded pitch

inequalities for the min-knapsack polytope. In Proc. of ISCO ’18, pages 170–182, 2018.

[21] Yuri Faenza and Laura Sanità. On the existence of compact ε-approximated formulations

for knapsack in the original space. Oper. Res. Lett., 43(3):339–342, 2015.

[22] Samuel Fiorini, Tony Huynh, and Stefan Weltge. Strengthening convex relaxations of

0/1-sets using boolean formulas. arXiv preprint arXiv:1711.01358, 2017.

[23] Lisa Fleischer, Michel X. Goemans, Vahab S. Mirrokni, and Maxim Sviridenko. Tight

approximation algorithms for maximum general assignment problems. In Proc. of SODA

’06, pages 611–620, 2006.

[24] Radoslav Fulek, Jan Kyncl, Igor Malinovic, and Dömötör Pálvölgyi. Clustered planarity

testing revisited. Electr. J. Comb., 22(4):P4.24, 2015.

[25] Fabrizio Grandoni, Tobias Mömke, Andreas Wiese, and Hang Zhou. To augment or not

to augment: Solving unsplittable flow on a path by creating slack. In Proc. of SODA ’17,

pages 2411–2422, 2017.

76

Bibliography

[26] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms and

Combinatorial Optimization. Springer-Verlag, New York, 1988.

[27] Jeffrey Hartline. Incremental optimization. PhD thesis, Cornell University, 2008.

[28] Oscar H. Ibarra and Chul E. Kim. Fast approximation algorithms for the knapsack and

sum of subset problems. J. ACM, 22(4):463–468, October 1975.

[29] Klaus Jansen. A fast approximation scheme for the multiple knapsack problem. In Proc.

of SOFSEM ’12, pages 313–324, 2012.

[30] Anna R. Karlin, Claire Mathieu, and C. Thach Nguyen. Integrality gaps of linear and

semi-definite programming relaxations for knapsack. In Proc. of IPCO ’11, pages 301–314,

2011.

[31] Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer

Computations, pages 85–103. Springer US, 1972.

[32] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems. Springer, 2004.

[33] Diego Klabjan, George L. Nemhauser, and Craig A. Tovey. The complexity of cover

inequality separation. Oper. Res. Lett., 23(1-2):35–40, August 1998.

[34] Bala Krishnamoorthy and Gábor Pataki. Column basis reduction and decomposable

knapsack problems. Discr. Opt., 6(3):242 – 270, 2009.

[35] Adam Kurpisz, Samuli Leppänen, and Monaldo Mastrolilli. On the hardest problem

formulations for the 0/1 lasserre hierarchy. Math. Oper. Res., 42(1):135–143, 2017.

[36] Eugene L. Lawler. Fast approximation algorithms for knapsack problems. Math. Oper.

Res., 4(4):339–356, November 1979.

[37] Silvano Martello and Paolo Toth. Knapsack Problems: Algorithms and Computer Imple-

mentations. John Wiley & Sons, Inc., New York, NY, USA, 1990.

[38] Monaldo Mastrolilli. High degree sum of squares proofs, bienstock-zuckerberg hierarchy

and CG cuts. In Proc. of IPCO ’17, pages 405–416, 2017.

[39] George B. Mathews. On the partition of numbers. Proc- of the London Math. Soc.,

s1-28(1):486–490, 1896.

[40] Alexander Schrijver. Combinatorial Optimization - Polyhedra and Efficiency. Springer,

2003.

[41] Jay Sethuraman and Chun Ye. Personal communication, 2016.

[42] Alexa Sharp. Incremental algorithms: Solving problems in a changing world. PhD thesis,

Cornell University, 2007.

77

Bibliography

[43] Martin Skutella. An introduction to network flows over time. In Research Trends in

Combinatorial Optimization, pages 451–482, 2008.

[44] Chun Ye. On the trade-offs between modeling power and algorithmic complexity. PhD

thesis, Columbia University, 2016.

[45] P. Angelini, G. Da Lozzo, G. Di Battista and F. Frati, Strip planarity testing, Graph Drawing,

edited by S. Wismath and A. Wolff, vol. 8242 of Lecture Notes in Computer Science, 37–48,

Springer (2013).

[46] T. Biedl, M. Kaufmann and P. Mutzel, Drawing planar partitions II: HH-drawings, Graph-

theoretic concepts in computer science (Smolenice Castle, 1998), vol. 1517 of Lecture Notes

in Computer Science, 124–136, Springer, Berlin (1998).

[47] T. C. Biedl, Drawing planar partitions III: Two constrained embedding problems, Tech.

rep., RUTCOR, Rutgers University (1998).

[48] G. Cairns and Y. Nikolayevsky, Bounds for generalized thrackles, Discrete Comput. Geom.

23(2) (2000), 191–206.

[49] M. Chimani and R. Zeranski, Upward planarity testing: A computational study, Graph

Drawing, edited by S. Wismath and A. Wolff, vol. 8242 of Lecture Notes in Computer

Science, 13–24, Springer (2013).

[50] P. F. Cortese and G. Di Battista, Clustered planarity (invited lecture), Twenty-first annual

symposium on Computational Geometry (proc. SoCG 05), 30–32, ACM (2005).

[51] P. F. Cortese, G. Di Battista, F. Frati, M. Patrignani and M. Pizzonia, C-planarity of c-

connected clustered graphs, J. Graph Algorithms Appl. 12(2) (2008), 225–262.

[52] P. F. Cortese, G. Di Battista, M. Patrignani and M. Pizzonia, Clustering cycles into cycles of

clusters, J. Graph Algorithms Appl. 9(3) (2005), 391–413.

[53] W. H. Cunningham, Improved bounds for matroid partition and intersection algorithms,

SIAM J. Comput. 15(4) (1986), 948–957.

[54] G. Di Battista and F. Frati, Efficient c-planarity testing for embedded flat clustered graphs

with small faces, J. Graph Algorithms Appl. 13(3) (2009), 349–378.

[55] J. Edmonds, Submodular functions, matroids, and certain polyhedra, Combinatorial

optimization—Eureka, you shrink!, vol. 2570 of Lecture Notes in Computer Science,

Springer, 11–26, Berlin (2003).

[56] Q.-W. Feng, R. F. Cohen and P. Eades, How to draw a planar clustered graph, Computing

and Combinatorics, edited by D.-Z. Du and M. Li, vol. 959 of Lecture Notes in Computer

Science, 21–30, Springer Berlin Heidelberg (1995).

78

Bibliography

[57] Q.-W. Feng, R. F. Cohen and P. Eades, Planarity for clustered graphs, Algorithms — ESA

’95, edited by P. Spirakis, vol. 979 of Lecture Notes in Computer Science, 213–226, Springer

Berlin Heidelberg (1995).

[58] H. de Fraysseix, P. O. de Mendez and P. Rosenstiehl, Trémaux trees and planarity, Internat.

J. Found. Comput. Sci. 17(5) (2006), 1017–1029.

[59] H. de Fraysseix and P. Rosenstiehl, A characterization of planar graphs by Trémaux orders,

Combinatorica 5(2) (1985), 127–135.

[60] R. Fulek, Towards Hanani–Tutte theorem for clustered graphs, Graph-Theoretic Concepts

in Computer Science, Proceedings of the 40th International Workshop on Graph-Theoretic

Concepts in Computer Science (WG 2014), vol. 8747 of Lecture Notes in Computer Science,

176–188, Springer (2014).

[61] R. Fulek, J. Kynčl, I. Malinović and D. Pálvölgyi, Clustered planarity testing revisited,

Proceedings of the 22nd International Symposium on Graph Drawing (Graph Drawing

2014), vol. 8871 of Lecture Notes in Computer Science, 428–439, Springer, Berlin (2014).

[62] R. Fulek, M. Pelsmajer, M. Schaefer and D. Štefankovič, Hanani–Tutte, monotone draw-

ings and level-planarity, Thirty Essays on Geometric Graph Theory, edited by J. Pach,

263–287, Springer New York (2013).

[63] F. L. Gall, Powers of tensors and fast matrix multiplication, arXiv:1401.7714 (2014).

[64] C. Gutwenger, M. Jünger, S. Leipert, P. Mutzel, M. Percan and R. Weiskircher, Advances

in c-planarity testing of clustered graphs, Graph Drawing, edited by M. Goodrich and

S. Kobourov, vol. 2528 of Lecture Notes in Computer Science, 220–236, Springer Berlin

Heidelberg (2002).

[65] C. Gutwenger, P. Mutzel and M. Schaefer, Practical experience with Hanani-Tutte for

testing c-planarity, 2014 Proceedings of the Sixteenth Workshop on Algorithm Engineering

and Experiments (ALENEX) (2014), 86–97.

[66] H. Hanani, Über wesentlich unplättbare Kurven im drei-dimensionalen Raume, Funda-

menta Mathematicae 23 (1934), 135–142.

[67] S. Hong and H. Nagamochi, Two-page book embedding and clustered graph planarity,

Tech. rep., Dept. of Applied Mathematics and Physics, University of Kyoto (2009).

[68] J. Hopcroft and R. Tarjan, Efficient planarity testing, J. Assoc. Comput. Mach. 21 (1974),

549–568.

[69] O. H. Ibarra, S. Moran and R. Hui, A generalization of the fast LUP matrix decomposition

algorithm and applications, J. Algorithms 3(1) (1982), 45–56.

[70] B. Katz, I. Rutter and G. Woeginger, An algorithmic study of switch graphs, Acta Inform.

49(5) (2012), 295–312.

79

http://arxiv.org/abs/1401.7714

Bibliography

[71] K. Kuratowski, Sur le problème des courbes gauches en topologie, Fundam. Math. 15

(1930), 271–283.

[72] E. L. Lawler, Matroid intersection algorithms, Math. Programming 9(1) (1975), 31–56.

[73] T. Lengauer, Hierarchical planarity testing algorithms, J. Assoc. Comput. Mach. 36(3)

(1989), 474–509.

[74] J. Oxley, Matroid theory, vol. 21 of Oxford Graduate Texts in Mathematics, second ed.,

Oxford University Press, Oxford (2011), ISBN 978-0-19-960339-8.

[75] J. Pach and G. Tóth, Which crossing number is it anyway?, J. Combin. Theory Ser. B 80(2)

(2000), 225–246.

[76] J. Pach and G. Tóth, Monotone drawings of planar graphs, J. Graph Theory 46(1) (2004),

39–47; updated version: arXiv:1101.0967.

[77] M. J. Pelsmajer, M. Schaefer and D. Stasi, Strong Hanani–Tutte on the projective plane,

SIAM J. Discrete Math. 23(3) (2009), 1317–1323.

[78] M. J. Pelsmajer, M. Schaefer and D. Štefankovič, Removing even crossings, J. Combin.

Theory Ser. B 97(4) (2007), 489–500.

[79] M. J. Pelsmajer, M. Schaefer and D. Štefankovič, Removing even crossings on surfaces,

European J. Combin. 30(7) (2009), 1704–1717.

[80] M. Schaefer, Hanani-Tutte and related results, Geometry—intuitive, discrete, and convex,

vol. 24 of Bolyai Soc. Math. Stud., 259–299, János Bolyai Math. Soc., Budapest (2013).

[81] M. Schaefer, Toward a theory of planarity: Hanani-Tutte and planarity variants, J. Graph

Algorithms Appl. 17(4) (2013), 367–440.

[82] W. T. Tutte, Toward a theory of crossing numbers, J. Combinatorial Theory 8 (1970), 45–53.

[83] H. Whitney, Non-separable and planar graphs, Trans. Amer. Math. Soc. 34(2) (1932),

339–362.

[84] D. H. Wiedemann, Solving sparse linear equations over finite fields, IEEE Trans. Inform.

Theory 32(1) (1986), 54–62.

[85] V. V. Williams, Multiplying matrices faster than Coppersmith-Winograd, Proceedings of

the Forty-fourth Annual ACM Symposium on Theory of Computing, STOC ’12, 887–898,

ACM, New York, NY, USA (2012).

80

http://arxiv.org/abs/1101.0967

Igor Malinović

Contact
information

Office: EPFL SB MATH Email: igor.malinovic@epfl.ch
MA C1 573 Tel.: +41 21 69 32568
1015 Lausanne Web: http://disopt.epfl.ch/Malinovic

Switzerland OrcID: 0000-0003-1617-9335

Research
interests

Combinatorial optimization, Approximation algorithms

Education 2014-present: Ph.D. in Mathematics
EPFL, Lausanne, Switzerland
Topic: Approximate formulations for knapsack sets
Advisor: Prof. Friedrich Eisenbrand
Co-advisor: Prof. Yuri Faenza (Columbia University)

2014: M.Sc. in Computer Science, Minor in Mathematics
EPFL, Lausanne, Switzerland
Thesis: Mathematical programming for SMT
Advisor: Prof. Friedrich Eisenbrand
(GPA: 5.15/6.00)

2011: B.Sc. in Computer Science
University of Novi Sad, Novi Sad, Serbia
(GPA: 9.96/10.00)

Employment Sept-Oct 2014: Research assistant
Invariant generation using integer programming
DISOPT group, EPFL, Lausanne, Switzerland
Advisors: Prof. Friedrich Eisenbrand,

Andrey Rybalchenko (Microsoft Research)

Aug 2013-Feb 2014: Intern
Extraction and analysis of wind farm data
ABB Corporate Research, Dätwil, Switzerland
Advisors: Carsten Franke and Yan Zhang

Mar-Jun 2013: Research assistant (part time)
SOS hierarchies for solving non-linear systems
DISOPT group, EPFL, Lausanne, Switzerland
Advisor: Prof. Friedrich Eisenbrand

Nov 2012-Jan 2013: Intern (part time)
Processes automation for financial reporting
Nestlé Capital Advisers, La Tour-de-Peilz, Switzerland
Advisor: Fabian Zepeda

Languages Serbian (native), English (advanced), French (intermediate),
German (elementary)

81

Student projects
supervision

Joachim Moussalli : Multi-objective optimization for risk treatment,
& Maurice Amendt M.Sc. Spring 2018, EPFL

Augustin Prado: Convolutional neural networks for autonomous
mobile robots, M.Sc. Fall 2017, EPFL

Jonas Racine: Robot navigation via support vector machines,
M.Sc. Spring 2017, EPFL

Joachim Moussalli: A PID controller for path following, B.Sc. Fall 2016, EPFL

Pol Chapon: Applying the Lasserre hierarchy to solving non-linear
feasibility problems, B.Sc. Spring 2016, EPFL

Teaching
assistant

Spring 2015-2018: Discrete optimization (main assistant), B.Sc., EPFL

Fall 2017: Discrete mathematics, B.Sc., EPFL

Fall 2016: Analysis I, B.Sc., EPFL

Fall 2015: Linear algebra, B.Sc., EPFL

Research visits Jan, Jul-Sept 2017: Industrial Engineering and Operations Research,
Columbia University, New York, US

Apr 2014: Microsoft Research, Cambridge, UK

Organization,
promotion

2015: Conference University De Suisse Occidentale (CUSO) ”Career day”
for Ph.D. students, EPFL, Switzerland

2010: Advances in Databases and Information Systems (ADBIS) conference,
University of Novi Sad, Serbia

Prizes, awards,
fellowships

2011-2013: The Swiss Government Excellence scholarship

2009, 2010: ”Extraordinary award” for the results in the B.Sc. program
by University of Novi Sad

2009-2011: Dr. Milan Jelić’s foundation scholarship

Publications • Y. Faenza, I. Malinović, M. Mastrolilli, and O. Svensson. On bounded
pitch inequalities for the min-knapsack polytope. In Proc. of ISCO ’18,
pages 170-182, 2018

• Y. Faenza and I. Malinović. A PTAS for the time-invariant incremental
knapsack problem. In Proc. of ISCO ’18, pages 157-169, 2018

• R. Fulek, J. Kyncl, I. Malinović and D. Pálvölgyi. Clustered planarity
testing revisited. The Electronic Journal of Combinatorics, vol. 22, num.
4, p. P4.24, 2015

82

Ce document a été imprimé au Centre d’impression EPFL,
imprimerie climatiquement neutre, certifiée myClimate.

	Abstract (English/Français/Deutsch)
	Introduction
	Knapsack problems
	Clustered planarity
	Our results and organization of the chapters

	A PTAS for the time-invariant incremental knapsack
	Overview of basic techniques
	A PTAS for IIK
	Reducing IIK to special instances and solutions
	A disjunctive relaxation
	Rounding

	Generalizations

	An improved disjunctive relaxation for the min-knapsack
	Overview of the technique
	The disjunctive relaxation

	On bounded pitch inequalities for the min-knapsack
	Basics
	A weak separation oracle for pitch-1 and pitch-2 inequalities
	Restricting the set of valid pitch-2 inequalities
	An oracle
	Separating inequalities of pitch-3 and larger, with fixed support

	Integrality gap for MinKnap with bounded pitch inequalities
	When p=c
	CG closures of bounded rank of the natural MinKnap relaxation
	When all knapsack cover inequalities are added
	When all bounded pitch and knapsack cover inequalities are added

	Clustered planarity testing
	Basic definitions and an overview of results
	Algorithm
	Weak Hanani–Tutte for two-clustered graphs
	Proof of Theorem 26

	Strong Hanani–Tutte for two-clustered graphs
	Proof of Theorem 27

	Strong Hanani–Tutte for c-connected clustered graphs
	Counterexample on three clusters
	Proof of Theorem 29

	Small faces
	Proof of Theorem 30

	Concluding remarks

	Future directions
	
	Background on disjunctive programming
	IIK, MKP, and UFP

	Bibliography
	Curriculum Vitae

