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Abstract
We consider the numerical approximation of a risk-averse optimal control problems
constrained by an elliptic Partial Differential Equation (PDE) with random coefficients.
Specifically, the control function is a deterministic distributed forcing term that minimizes
the expected mean squared distance between the state (i.e. solution to the PDE) and a
target function, subject to a regularization for well posedness.
For the computation of the approximated optimal control, we combine different approxima-
tion steps, namely: a Finite Element discretization of the underlying PDEs; a quadrature
formula to approximate the expectation in the objective functional; and gradient type
iterations to compute the approximated optimal control.
We start by considering a Monte Carlo quadrature formula, based on random points,
and compare the complexity of a full gradient method, in which the finite element
discretization and the Monte Carlo sample are chosen initially and kept fixed over the
gradient iterations, with a Stochastic Gradient (SG) method in which the expectation
in the computation of the steepest descent direction is approximated by an independent
Monte Carlo estimator, with small sample size, at each iteration, and the finite element
discretization is possibly refined along the iterations.
We then extend the SG method, by replacing the single evaluation of the gradient on
a single mesh, by a multilevel Monte Carlo (MLMC) estimator of the gradient, that
exploits a hierarchy of finite element discretizations. We propose, in particular, strategies
to increase the numbers of discretization levels and Monte Carlo samples per level along
the iterations, to achieve an optimal complexity.
As a last approach, we consider a tensorized Gaussian quadrature formula, in the case
where the randomness in the PDE can be parametrized by a small number of random
variables, and propose to use a generalized version of the Stochastic Average Gradient
method (SAGA) to compute the approximated optimal control. SAGA is a type of SG
algorithm with a fixed-length memory term, which computes at each iteration the gradient
of the loss functional in only one quadrature point, randomly chosen from a possibly
non-uniform distribution.
For all the methods developed in this work, we present a full theoretical error and
complexity analysis. Specifically, we show that the SG strategy, when combined with
a Monte Carlo approximation, results in an improved computational complexity with
respect to a full gradient approach, and, incorporating a MLMC estimator, improves
further the complexity. On the other hand, SAGA is well adapted when a quadrature
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formula with spectral convergence properties is considered, and the resulting algorithm
has a similar asymptotic complexity as the full gradient method, although with possibly
better pre-asymptotic behavior. All theoretical error estimates and complexity results
are confirmed by some numerical experiments.
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Résumé
Le sujet de ce travail de thèse est l’approximation numérique des problèmes de type
contrôle optimal, avec des contraintes formées par des équations différentielles aux dérivées
partielles (EDP) avec coefficients incertains. Plus précisément, le terme de contrôle est
une fonction déterministe, distribuée dans tout le domaine spatial ; il agit comme un
terme de force dans l’EDP, de façon à minimiser une fonctionnelle, égale à la moyenne de
la distance au carré, entre la fonction d’état, solution de l’EDP, et une fonction cible. Un
terme de régularisation est ajouté à la fonctionnelle, afin de garantir un problème bien
posé.
Concernant le calcul approché de ce contrôle optimal, nous combinons différents niveaux
d’approximation, i.e. une discrétisation de type Élément Finis (EF) pour approcher
l’EDP, une formule de quadrature, pour approcher l’espérance qui apparaît dans ladite
fonctionnelle, ainsi qu’une récurrence de type descente de gradient, afin de produire une
séquence de fonctions, approchant ce contrôle optimal.
Après avoir introduit la formule de quadrature de type Monte Carlo (MC), qui repose sur
des échantillons tirés de manière aléatoire, nous comparons la complexité de la méthode
dite de gradient complet (GC), ou la discrétisation EF, et les réalisations MC tirées au
hasard, sont choisies une fois pour toute au début de l’expérience et inchangées ensuite,
avec la méthode du gradient stochastique (GS), ou l’on approxime, à chaque itération,
l’espérance de la fonctionnelle par un estimateurs MC, lui-même échantillonné itération
après itération (reposant sur un petit nombre fixe de réalisations), et ou la discrétisation
de type EF peut devenir de plus en plus précise au fil des itérations. Nous généralisons
ensuite cette idée de GS en utilisant un estimateur Monte Carlo à plusieurs niveaux
(MLMC), qui, au lieu d’exploiter seulement un seul niveau de maillage du domaine
spatial à chaque itération, comme dans le cas du GS évoqué précédemment, approxime
l’espérance par une somme d’estimateur MC classiques, chacun d’eux reposant sur un
maillage de discretisation de taille différent. Nous proposons en particulier l’augmentation
du nombre d’estimateur MC classiques, qui apparaissent dans ladite somme, tout comme
l’augmentation du nombre de réalisations intervenants dans ces estimateurs MC classiques,
au cours des itérations, de sorte à obtenir une complexité algorithmique optimale.
Enfin, supposant que l’aléa de l’EDP peut être décrit en fonction d’un petit nombre de
variables aléatoires, nous considérons une formule tensorielle de quadrature Gaussienne,
et proposons de suivre l’algorithme SAGA afin d’approcher, in fine, le contrôle optimal.
L’algorithme SAGA est un algorithme du type GS, suggérant (cependant) de stocker dans
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une mémoire de taille fixée, certains gradients, calculés aux itérations précédentes, et de
suivre ensuite la moyenne de ces gradients, en guise de direction de descente, afin d’obtenir
l’itéré suivant. En particulier, chaque gradient calculé correspond à un seul nœud de
quadrature, ce nœud étant tiré au hasard suivant une loi, pouvant être non-uniforme.
Pour l’ensemble des méthodes présentées dans ce travail de thèse, nous proposons une ana-
lyse complète d’erreur, ainsi que des complexités associées. Nous montrons en particulier
que la stratégie GS, combinée à une approximation de type MC, améliore la complexité
algorithmique, par rapport à celle du gradient complet ; de plus, cette complexité est
encore améliorée en remplaçant l’estimateur MC par une approximation du type MLMC.
D’un autre côté, l’algorithme SAGA est privilégié lorsque nous utilisons une formule de
quadrature dotées de propriétés de convergence spectrale, produisant un algorithme de
même complexité algorithmique que celle du gradient complet, bien que le comportement
de convergence pré-asymptotique semble bien meilleur. Toutes les estimations d’erreur, et
les complexités théoriques, sont accompagnées de vérifications numériques.
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I Introduction

Many engineering problems involve uncertain systems, either because of intrinsic variability
in the system, or imprecise manufacturing processes, or a lack of knowledge of the system
parameters. Often, the system behavior is modeled by means of Partial Differential
Equations (PDEs), with random input data, to account for the above mentioned variability.
A highly relevant question in engineering applications is that of optimizing the performance
of a system or controlling it to achieve certain target conditions. The topic of PDE-
constrained optimization has been widely studied in the literature [HPUU09, BS12, De 15,
Haz10, LBE+14] in a deterministic setting and only more recently optimization under
uncertainty in PDE based models has been addressed, e.g. in [CQ14, AAUH17, TKXP12,
RW12, KS13, BOS16, APSG17, VBV18, BvW11, Kou12, KS16, KHRvBW13, GLL11].
As an example, think for instance at the problem of designing the shape of a wing of
an aircraft to minimize a certain quantity of interest (gas consumption, risk of crash,
etc.). Hence, one usually introduces a functional, mapping the shape properties onto
the real line, which drives the optimization process to reach the desirable properties for
the final shape. The actual production of the wing will involve imprecise manufacturing
processes, i.e. the exact dimensions and shape of the wing will slightly differ from the
nominal ones, and the design of an optimal shape should take this into account, and
should be efficient and reliable in almost every in-flight condition, e.g. air speed, pressure,
etc. As the manufacturing error, or the distribution of the flying conditions are unknown
at the moment of the design, it is reasonable to consider shape optimization problems,
constrained by models with uncertain coefficients, which could be described as random
variables. Beside shape optimization, many other types of optimization or control of
systems governed by PDEs can be found in applications. We refer to this type of problems
as PDE-constrained optimal control problems (OCPs) under uncertainty, which is the
main topic of this work.

Different approaches for PDE-constrained OCP under uncertainties can be found in
the literature, which shall roughly be grouped into 2 classes. In the first one, one
assumes that the randomness is observable and thus designs an optimal control with
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Chapter I. Introduction

respect to (w.r.t.) the observed realization. The resulting control is random, and the
works [CQ14, AAUH17, TKXP12, RW12, KS13, BOS16] are built on this approach. The
dependence of the output Quantity of Interest (QoI) to be optimized, on the random
parameters is typically approximated either by polynomial chaos expansions or Monte
Carlo (MC) techniques. The former approach is considered e.g. in [KS13], where
the authors prove analytic dependence of the control on the random parameters and
study its best N -term polynomial chaos approximation for a linear parabolic PDE-
constrained OCP. The work [CQ14], combines a stochastic collocation with a Finite
Element (FE) based reduced basis method to alleviate the computational effort. In
the works [RW12, TKXP12, BOS16] the authors address the problem of computing at
once the stochastic control for all realizations thus leading to a fully coupled (in space
and stochastic variables) optimality system discretized by either Galerkin or collocation
approaches. They propose different methods, such as sequential quadratic programming,
or block diagonal preconditioning to solve the coupled system efficiently. Monte Carlo
and multilevel Monte Carlo (MLMC) approaches are considered in [AAUH17] instead,
where the case of random coefficients with limited spatial regularity is addressed.

In the second class, the control is chosen deterministic [APSG17, VBV18, BvW11, Kou12,
KS16, KHRvBW13, GLL11]. This situation happens when randomness in the system is
not observable at the time of designing the control, so that the latter should be robust in
the sense that it minimizes the risk of obtaining a solution which leads to high values of
the objective function. This situation always leads to a fully coupled optimality system in
the random parameters. The idea of minimizing a risk to obtain a solution with favorable
properties goes back to the origins of robust optimization [SDR09]. Here, risk refers
to a suitable statistical measure of the objective function to be minimized, such as its
expectation, expectation plus variance, a quantile, or a conditional expectation above a
quantile (so called Conditional Value at Risk (CVaR) [RU02]).

We can find a vast literature about numerical approximation of PDE-constrained OCPs
in the deterministic setting (see e.g. [BS12, HPUU09]) , as well as on the numerical
approximation of uncontrolled PDEs with random coefficients (see e.g. [GWZ14, BNT10,
LPS14]and references therein). On the other hand, the analysis of PDE-constrained
OCPs under uncertainty is much more recent and still incomplete. Numerical methods
for such OCPs under uncertainty typically depend on the choice of the risk measure. We
review some relevant literature in the next Chapter.

This thesis focuses on numerical approximation of OCPs, constrained by elliptic PDEs
with random coefficients, where the control acts as a volumetric forcing term, so that
the state, solution of the PDE, should be as close as possible to a given target function.
The functional to optimize is the L2 squared distance between the state function and a
target function, plus a regularization term, depending on the L2 squared norm of the
control, and the risk measure considered is just the expected value of the cost functional.
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Specifically, the PDE writes:{
− div(a(x, ω)∇y(x, ω) = g(x) + u(x) for x ∈ D a.e. ω ∈ Γ

y(x, ω) = 0 for x ∈ ∂D a.e. ω ∈ Γ.
(I.1)

where (Γ,F ,P) is a complete probability space, and D ⊂ Rd is the spacial domain, while
the optimization problem is:

find u� ∈ argmin
u∈U

J(u), J(u) = Eω[f(yω, u)], (I.2)

where the functional to minimize is:

f(yω, u) =
1

2
‖yω − zd‖2X +

β

2
‖u‖2U . (I.3)

The state function yω solves problem (I.1), indexed by the stochastic parameter ω, and
‖ · ‖X is a suitable norm to measure the distance of the state to the target zd.

Different types of approximations are required, in order to transform this infinite dimen-
sional problem, into a numerically tractable one: i) a discretization of the spatial domain
D, in order to approximate the state/control functions in suitable finite dimensional
spaces; ii) an approximation of the statistical moments appearing in the risk measure, e.g.
in the particular setting considered here, the expected loss; iii) an optimization routine,
to compute one (approximated) minimizer on the quantity of interest. We consider in
particular: gradient type methods, where adjoint calculus is used to represent the gradient
of the objective function; finite element approximations of the primal and dual problems;
and collocation-type approximations for the expectation in the risk measure, either based
on random points (Monte Carlo), or deterministic points associated to some Gaussian
quadrature formula.

Although finite dimensional, the resulting discrete OCP will be of very high dimension, and
each gradient evaluation will incur a very high computational cost as it requires multiple
solutions of the primal and dual problems. It is therefore crucial to derive optimization
algorithms that are robust w.r.t. the dimension of the state/control discretized spaces
and efficient in the gradient evaluation. In this thesis, we have focused on stochastic-type
gradient algorithms as they allow for fast updates of the (discretized) control, i.e. they
dramatically reduce the cost of each iteration, compared to traditional gradient-type
algorithm. The main focus of this work has been to analyze the convergence of such
algorithms for the OCP (I.2)-(I.3), study their complexity, i.e. the amount of work
required to achieve a prescribed tolerance, and compare them with more traditional
gradient-type methods.

In the next Chapter, we recall some basic ingredients that will be used throughout the
thesis. In particular, we introduce the framework for deterministic OCPs, recall the main
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Chapter I. Introduction

well-posedness results and approximation concepts, and review the basic optimization
techniques for unconstrained optimization. We then introduce the stochastic counterpart
of OCPs, as well as the notion of risk measure, and review some machine learning
techniques that are commonly used to solve stochastic optimization problems involving
some expected loss. We postpone a detailed outline of the thesis to the end of the next
Chapter.
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II Ingredients

II.A. Deterministic PDE-constrained Optimal Control Problems

Optimal Control Problems (OCPs) constrained by deterministic Partial Differential
Equations (PDEs) are a well studied topic in the literature, thanks to their relevance
in industrial applications. The PDE models the physics of the system under study and
involves a control term, acting on the boundary ∂D, or on part of the domain D ∈ Rd

(possibly everywhere). The system is described by a state/primal function y ∈ Y that
solves the underlying PDE, with the control term u ∈ U , acting as a forcing term. The
ultimate goal of an OCP is to find an optimal control u� ∈ U such that the state function
y(u) ∈ Y is as close as possible to a target function zd, where the subscript d stands for
desirable. The notion of closeness evoked above, is expressed by minimizing a distance
function between the two quantities y(u) and zd, using typically some problem specific
norm. To ensure that the control function remains acceptable (e.g. with bounded energy),
a regularization term is usually added to the objective functional to minimize.

One can use discretization techniques to solve the underlying PDE numerically, and
the optimization routine usually involves an iterative procedure. The resulting finite
dimensional optimization problem could be of very high dimension for distributed controls
and the evaluation of the objective functional could be very costly, when the PDE is
discretized on a fine mesh.

II.A.1. Notations and definitions for linear-quadratic OCP

In this subsection, to fix the ideas and notations, we set the framework for the OCPs
studied in this thesis.

• The control function u belongs to an admissible set Uad, subset of a function space
U ⊃ Uad. When Uad � U , the problem is said to be constrained.

5



Chapter II. Ingredients

• For any control u ∈ Uad the state y(u) of the system is an element of a suitable
function space Y that satisfies the linear state equation:

Ay +Bu = g,

where A : Y → Z is a differential linear operator, B : Uad → Z is a linear operator,
g ∈ Z is a source term, with Y and Z being Banach spaces, and U is a Hilbert
space with inner product (·, ·)U .

• The target function zd is an element of a Hilbert space X ⊃ Y and the distance
between the state y and the target zd is measured w.r.t. the norm ‖ · ‖X .

• A cost functional f(y, u) is defined on the space Y × U by

f(y, u) =
1

2
‖y − zd‖2X +

β

2
‖u‖2U ,

where the parameter β represents the price of energy (energy of u, to make y(u)
approach zd).

Alternatively, one could consider the case where the state y is only partially observable
(see e.g. [Qua09]) and the cost functional contains the term ‖Hy− zd‖X , with H : Y → X
a linear operator (observation operator).

II.A.2. Existence and uniqueness results for OCPs

For the rest of this work, we assume that we have access to full observation of the state
function y, i.e. H = Id : Y → X . A linear-quadratic OCP can then be written generically
in the following form:⎧⎨⎩ min

y∈Y,u∈Uad

f(y, u) =
1

2
‖y − zd‖2X +

β

2
‖u‖2U

s.t. Ay +Bu = g.
(II.1)

We define formally an optimal state-control pair, as:

Definition 1. A state-control pair (y�, u�) ∈ Y × Uad is said to be optimal for (II.1) if

1. Ay� +Bu� = g,

2. f(y�, u�) ≤ f(y, u) ∀(y, u) ∈ Y × Uad, s.t. Ay +Bu = g.

We now state standard assumptions (see e.g. [HPUU09]) that guarantee existence of
solutions to the OCP (II.1).

6
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Assumption 1.

1. β ≥ 0; Uad ⊂ U is convex, closed and, if β = 0, bounded;

2. There exists a pair (y, u) ∈ Y × Uad such that Ay +Bu = g (i.e. (y, u) is a feasible
point);

3. A ∈ L(Y,Z) has a bounded inverse.

Theorem 1. Let Assumption 1 hold. Then the OCP (II.1) has an optimal solution
(y�, u�). If β > 0, then the solution is unique.

Proof. A proof can be found, for example, in [HPUU09, Theorem 1.43].

II.A.3. Formulation with Lagrange multipliers

The OCP we are interesting in this thesis is of the form (II.1), and is a constrained
optimization problem under the constraints Ay+Bu−g = 0. We can write the Lagrangian
function L : Y × U × Z∗ → R as:

L(y, u, p) = f(y, u) + 〈p,Ay +Bu− g〉Z∗,Z (II.2)

where Z∗ denotes the dual space of Z and 〈·, ·, 〉Z∗,Z the duality pairing. Using the
identification U∗ ≡ U , the optimality conditions reads:⎧⎪⎪⎨⎪⎪⎩

Ly(y, u, p) = fy(y, u) +A∗p = 0, in Y∗

Lu(y, u, p) = fu(y, u) +B∗p = 0, in U
Lp(y, u, p) = Ay +Bu− g = 0 in Z.

(II.3)

where the adjoint operators A∗ : Z∗ �→ Y∗ and B∗ : Z∗ �→ U are defined as

〈p,Ay〉Z∗,Z = 〈A∗p, y〉Y∗,Y ∀y ∈ Y, p ∈ Z∗,

〈p,Bu〉Z∗,Z = (B∗p, u)U ∀u ∈ U , p ∈ Z∗.

We recognize the adjoint problem on the first line of (II.3), the optimality condition on
the second, and finally the primal problem on the third. From Assumption 1.1-1.3, we
know that there exists an affine solution operator u �→ y(u) = A−1(g −Bu), thus we can
introduce the reduced objective functional, defined as

J(u) = f(y(u), u) =
1

2
‖y(u)− zd‖2X +

β

2
‖u‖2U (II.4)

with the state solution y(u) = A−1(g −Bu). In order to use gradient based optimization
algorithms, we need to derive an expression for the steepest descent direction. This is

7
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based on the adjoint theory. An expression of the Gateaux derivative of the reduced
cost functional (II.4) w.r.t. u can be explicitly computed, and can be obtained from the
partial derivative of the Lagrangian L w.r.t. u. We present hereafter, however, the direct
derivation of the Gateaux derivative of J using adjoint calculus. We denote by dJ(u, s)

the directional derivative of J in the direction s ∈ U namely

dJ(u, s) = lim
ε→0+

J(u+ εs)− J(u)

ε
.

Moreover, we recall that J is called Gateaux differentiable at every u ∈ U , if J is
directionally differentiable at u in any direction s ∈ U and the directional derivative
U � s �→ dJ(u, s) ∈ R is bounded and linear, i.e. there exists J ′(u) ∈ L(U ,R) s.t.
J ′(u)s = dJ(u, s), ∀s ∈ U . Furthermore, we say that J is Fréchet differentiable at
u ∈ U if J is Gateaux differentiable at u and if the following approximation condition
holds:

|J(u+ s)− J(u)− J ′(u)s| = o (‖s‖U ) .

Thanks to the Riesz representation theorem, [RSN90],[Qua09, Theorem 2.1], every element
of φ ∈ U∗ can be written uniquely in the form φ(·) = (Φ, ·)U , with an element Φ ∈ U . In
particular, with a little abuse of notation, we use the same symbol J ′(u) to denote the
functional in U∗ and its representation in U . We use the adjoint approach and derive the
adjoint equation, and an expression for J ′(u):

(J ′(u), s)U = 〈J ′(u), s〉U∗,U = 〈fy(y(u), u), y′(u)s〉Y∗,Y + (fu(y(u), u), s)U
= (y′(u)∗fy(y(u), u), s)U + (fu(y(u), u), s)U .

So
J ′(u) = y′(u)∗fy(y(u), u) + fu(y(u), u),

and, since y′(u) = −A−1B, we can write

y′(u)∗fy(y(u), u) = (−A−1B)∗fy(y(u), u) = −B∗A−∗fy(y(u), u).

It follows that
y′(u)∗fy(y(u), u) = B∗p(u)

with the adjoint variable p = p(u) ∈ Z∗ satisfying the adjoint equation

A∗p = −fy(y(u), u).

In particular, in the linear-quadratic OCP setting (II.1), we have the following expression
for the gradient J ′(u), of the reduced functional J(u):

J ′(u) = βu+B∗p(u), (II.5)

8
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with the dual function p solving the adjoint problem, formulated in weak form:

〈A∗p, v〉Y∗,Y = 〈−fy(y(u), u), v〉Y∗,Y = − (y(u)− zd, v)X , ∀v ∈ Y. (II.6)

Notice that if, in particular, U = X , we end up with

A∗p = −(y(u)− zd). (II.7)

After recalling some usual function spaces, we particularize the above adjoint method,
to two OCPs involving an elliptic PDE: i) a PDE with Dirichlet boundary condition
and distributed control over the whole domain D; ii) a PDE with Neumann boundary
condition, with control acting only on the boundary ∂D.

II.A.4. Function spaces

Let Lp(D) for 1 ≤ p < ∞ denote the space of functions for which the p-th power of their
absolute value is Lebesgue integrable, that is

Lp(D) = {y : D → R, f measurable, and

∫
D
|y|pdx < +∞},

and L∞(D) the space of measurable functions that are bounded almost everywhere (a.e.)
on D. Throughout this work, we will denote by ‖ · ‖ ≡ ‖ · ‖L2(D) the usual L2(D)-norm
induced by the inner product 〈f, g〉 = ∫

D fgdx for any f, g ∈ L2(D). Furthermore, we
introduce the Sobolev spaces

H1(D) = {y ∈ L2(D), ∂xiy ∈ L2(D), i = 1, . . . , n}

and

H1
0 (D) = {y ∈ H1(D), y|∂D = 0}.

We use the equivalent H1-norm on the space H1
0 (D) defined by ‖y‖H1(D) = ‖y‖H1

0 (D) =

‖∇y‖ for any y ∈ H1
0 (D). Moreover, we recall the Poincaré inequality for any function

y ∈ H1
0 (D):

‖y‖ ≤ Cp‖∇y‖ = Cp‖y‖H1(D),

where Cp is the Poincaré constant, and denote by H−1(D) =
(
H1

0 (D)
)∗ the topological

dual of H1
0 (D). For r ∈ N we further recall the space Hr(D) of L2(D) functions with all

partial derivatives up to order r in L2(D) with norm ‖y‖Hr(D) and semi-norm |y|Hr(D)

9
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given by

‖y‖2Hr(D) =
∑
|α|≤r

∥∥∥∥∥∂|α|y
∂xα

∥∥∥∥∥
2

L2(D)

and |y|2Hr(D) =
∑
|α|=r

∥∥∥∥∥∂|α|y
∂xα

∥∥∥∥∥
2

L2(D)

,

respectively, where α = (α1, . . . , αn) is a multi-index.

II.A.5. Dirichlet boundary conditions and interior control

We consider here a distributed control problem, with Dirichlet boundary conditions on
the underlying PDE. The control u acts on the whole domain D, in order to influence
the state function y, through the following elliptic PDE:{

− div(a∇y) = g + u in D

y= 0 on ∂D.
(II.8)

We state here standard assumptions to guarantee existence and uniqueness of solutions
to such elliptic PDE.

Assumption 2. The diffusion coefficient a ∈ L∞(D) is bounded away from zero in D,
i.e.

amin := essinf
x∈D

a(x) > 0 and amax := esssup
x∈D

a(x) < +∞

Now we are in the position to recall the well posedness of the elliptic PDE (II.8).

Lemma 1. Let Assumption 2 hold. If g + u ∈ H−1(D), then problem (II.8) admits a
unique solution y ∈ H1

0 (D) s.t.

‖y‖H1
0 (D) ≤

1

amin
‖g + u‖H−1(D).

Furthermore, as we will occasionally need H2-regularity in the following Sections, we also
introduce a sufficient condition on the domain D and on the gradient of a.

Assumption 3. The domain D ⊂ Rn is polygonal convex and the diffusion coefficient
a ∈ L∞(D) is such that ∇a ∈ L∞(D),

Then, using standard regularity arguments for elliptic PDEs, one can prove the following
result [Eva98].

Lemma 2. Let Assumptions 2 and 3 hold. If g + u ∈ L2(D), then problem (II.8) has a
unique solution y ∈ H2(D). Moreover there exists a constant C, independent of g + u,
such that

‖y‖H2(D) ≤ C‖g + u‖L2(D).

10
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The global OCP writes:⎧⎪⎪⎨⎪⎪⎩
min

y∈H1
0 (D),u∈L2(D)

f(y, u) =
1

2
‖y − zd‖2L2(D) +

β

2
‖u‖2L2(D)

s.t. − div(a∇y) = g + u in D,

and y= 0 in ∂D.

(II.9)

Following arguments in Section II.A.3, and setting U = Uad = L2(D), Y = H1
0 (D),

Z = H−1(D), X = L2(D) we can derive the optimality system:

• Primal problem:{
− div(a∇y) = g + u in D

y= 0 on ∂D.

• Dual problem:{
− div(a∇p) = −(y − zd) in D

p= 0 on ∂D.

• Gradient:

J ′(u) = βu+ p.

• Optimality condition:

J ′(u) = 0, in D.

A steepest descent type algorithm can be constructed easily using the first 3 steps to
compute the steepest descent direction.

II.A.6. Neumann boundary conditions and boundary control

Here we consider an elliptic PDE, with a fixed right hand side and a control u acting
only on the boundary of the domain ∂D. Specifically, the PDE becomes:{

− div(a∇y) + cy= g in D
∂y
∂ν = u in ∂D.

(II.10)

where ν denotes the unit outgoing normal vector to ∂D and ∂y
∂ν the normal derivative of

y to ∂D. The quantity to minimize is slightly modified (the energy of u is computed only

11
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on the border ∂D) as:

min
y∈H1

0 (D),u∈L2(D)
f(y, u) =

1

2
‖y − zd‖2L2(D) +

β

2
‖u‖2L2(∂D) (II.11)

In (II.10), the domain D is a subset of Rd and the function c ∈ L∞(D) is positive, i.e.
c > 0, a.e. in D. Finally, g ∈ H1(D)∗ is the source term. The weak formulation of such
Neumann problem write:∫

D
(a∇y · ∇v + cyv)dx =

∫
D
gvdx+

∫
∂D

uvdS ∀v ∈ H1(D). (II.12)

Thus we can again construct the following linear operators A ∈ L(H1(D), H1(D)∗) s.t.:

〈Ay, v〉H1(D)∗,H1(D) =

∫
D
(a∇y · ∇v + cyv)dx ∀v ∈ H1(D), (II.13)

and B ∈ L(L2(∂D), H1(D)∗)

〈Bu, v〉H1(D)∗,H1(D) =

∫
∂D

uvdS ∀v ∈ H1(D), (II.14)

Here the adjoint B∗ ∈ L(H1(D), L2(∂D)) of B is such that B∗v = v|∂D. Actually, we
have:

(B∗v, w)L2(∂D) = 〈Bw, v〉H1(D)∗,H1(D) =

∫
∂D

wvdS = (v, w)L2(∂D) . (II.15)

resulting in similar primal/dual equations, and optimality conditions, as in Section II.A.5,
i.e. following arguments in Section II.A.3, and setting U = Uad = L2(∂D), Y = H1(D),
Z = H1(D)∗, X = L2(D) we can derive the optimality system of the Neumann boundary
OCP:

• Primal problem:{
− div(a∇y) + cy= g in D

∂y
∂ν = u in ∂D.

• Dual problem:{
− div(a∇p) + cp= −(y − zd) in D

∂p
∂ν = 0 in ∂D.

• Gradient:

J ′(u) = βu+ p, on ∂D.

12
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• Optimality condition:

J ′(u) = 0, on ∂D.

Again, a steepest descent type algorithm can be constructed using the first 3 steps to
compute the steepest descent direction.

II.A.7. Discrete concepts in PDE constrained optimization

We recall here some discrete concepts in PDE constrained OCPs. Specifically, in order to
solve such problems numerically, one shall store the functions values for example in some
vector variable or in a finite dimension/size memory. We present here a first discretize,
then optimize approach, the other approach existing as well, see e.g. [Qua09]. Specifically,
to approach numerically a PDE constrained OCP of the form (II.1), one substitutes all
function spaces (U , X , Y, Z) by sub-spaces of finite dimension (resp. Uh, X h, Yh, Zh),
and each operator (A, B) by a suitable approximate surrogate (resp. Ah, Bh), allowing its
evaluation and resolution on a computer. Let us denote by h the discretization parameter
(h can be thought of as the mesh size of the cells decomposing the domain D, for instance).
We then re-write the OCP (II.1) as:⎧⎨⎩ min

yh∈Yh,uh∈Uh
ad

fh(yh, uh) =
1

2
‖yh − zhd‖2Xh +

β

2
‖uh‖2Uh

s.t. Ahyh +Bhuh = gh.

(II.16)

where fh : Yh ×Uh → R is a modified version of f , involving the associated norms of the
considered surrogate sub-spaces X h, and gh ∈ Zh, zhd ∈ X h are suitable approximation
of g, zd. For the finite dimensional spaces, one may require Uh ⊂ U , Yh ⊂ Y, and
further Assumptions 4, in order to guarantee existence and uniqueness of the discretized
deterministic OCP (II.16).

Assumption 4.

1. β ≥ 0, Uhad ⊂ Uh is convex, closed and if β = 0 bounded

2. Yh is convex, closed, such that (II.16) has a feasible point.

3. Ah ∈ L(Yh,Zh) has a bounded inverse.

4. Bh ∈ L(Uh,Zh).

Then, under Assumption 4, Theorem 1 applies as well, leading to well posedness of the
OCP (II.16), and uniqueness of solutions if β > 0.

13
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Thus, from this discretization method, we end up with only finite dimensional spaces,
and we can treat the optimization routines from a finite dimensional point of view. This
is the purpose of next Section.

II.B. Unconstrained optimization techniques

As evoked in the previous Section, we choose a discretize then optimize approach, implying
that all spaces U , X , Y and Z are replaced with finite-dimensional sub-spaces Uh, X h,
Yh and Zh. Hereafter, however, we removed the sup-scripts h, to lighten the notation
and implicitly assume that the infinite dimensional optimal control problem has been
discretized, and the goal is now to optimize the finite dimension problem. Here, we aim
at minimizing a functional J(u), with the variable u ∈ U , where U is a generic finite
dimensional space, for example U = Rn to fix the ideas. The ultimate goal is to describe
the set:

argmin
u∈U

J(u), (II.17)

or derive an algorithmic routine to find one point u� ∈ argminu∈U J(u). A line search
algorithm, is usually based on a recursive scheme of the form

uj+1 = uj + τjpj (II.18)

where the scalar τj is called the step-size, and the vector pj is named the search direction.
The following discussion presents different optimization algorithms, depending on how we
choose the sequences {τj}j∈N and {pj}j∈N.

II.B.1. Line search algorithm

Most of the line search algorithms require to compute a search direction pj that is
descending, i.e. having pTj ∇J(uj) < 0. Moreover, we often look for search directions pj
that solve a linear system of the type

pj = −Ω−1
j ∇Jj , (II.19)

with the matrix Ωj being non-singular and symmetric. For instance, in the steepest
descent method, we have Ωj = Id, and in the Newton’s method, the Ωj is the exact
Hessian ∇2J(uj). The full Hessian is usually computationally very costly to compute
and, for scalable algorithms, one tries to avoid such full computation. Quasi-Newton
methods are often a good compromise, being more sophisticated then the steepest descent,
but less costly then the Newton’s method requiring the full Hessian Ωj = ∇2J(uj). In
Quasi-Newton methods, Ωj is an approximation of the full Hessian, updated at every
iteration of the recursion (II.18). We present in detail each of these methods in the next
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subsections, with their known convergence results.

II.B.2. Steepest descent

The steepest descent method is obtained by setting pj = −∇J(uj), i.e. Ωj = Id in
equation (II.18). The recurrence scheme becomes

uj+1 = uj − τj∇J(uj) (II.20)

The choice for the sequence of {τj}j exploits the fact that at each iteration, we aim at
solving the minimization problem:

τj = argmin
τ>0

J(uj − τ∇J(uj)). (II.21)

In practice, the optimal step-size is not easy to compute numerically, and optimization
methods generally use sub-optimal sequences of {τj}j guaranteeing sub-optimal conver-
gence of {uj}j to a minimizer u�. However, in the quadratic case, we can easily compute
the exact optimal step-size sequence. Actually, a generic quadratic functional J writes:

J(u) =
1

2
uTQu− bTu, (II.22)

with a positive definite and symmetric matrix Q, and a vector b ∈ Rn. Then one can
easily derive the gradient expression ∇J(u) = Qu − b and the step-size optimization
problem (II.21) writes:

min
τ>0

J(u− τ∇J(u)) = 1

2
(u− τ∇J(u))TQ(u− τ∇J(u))− bT (u− τ∇J(u)) (II.23)

Differentiating the last expression w.r.t. τ , we compute the optimal step-size in the
quadratic setting τ∗ = ∇J(u)T∇J(u)

∇J(u)TQ∇J(u) , and so the optimal step-size, in this particular
quadratic case, writes

τj =
∇J(uj)T∇J(uj)
∇J(uj)TQ∇J(uj) . (II.24)

Theorem 2. We denote by 0 < λ1 ≤ · · · ≤ λn the eigenvalues of the matrix Q, and
we define the Q-norm of a point x ∈ Rn, by ‖x‖2Q = xTQx. Then if we apply the
steepest descent scheme, defined in equation (II.20), in the particular quadratic setting
of (II.22), with optimal step size (II.24), the convergence rate of the squared-error in
Q-norm, ‖uj − u�‖2Q is given by

‖uj+1 − u�‖2Q ≤
(
λn − λ1
λn + λ1

)2

‖uj − u�‖2Q. (II.25)
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From the previous Theorem, we infer that the convergence is exponential w.r.t. the
number of iterations

‖uj − u�‖Q ≤ ρj‖u0 − u�‖Q, (II.26)

with exponential rate ρ = (κ(Q)− 1)/(κ(Q)+ 1) depending only on the condition number
κ(Q) = λn/λ1 of the matrix Q. We present hereafter, an alternative convergence result on
the error ‖uj − u�‖ measured in Euclidean norm instead of the Q-norm. It also shows an
exponential convergence rate w.r.t. the number of iterations, although with a worse rate
than in (II.26). This result and proof technique will be heavily used in the subsequent
Chapters.

Theorem 3. We denote by 0 < λ1 ≤ · · · ≤ λn the eigenvalues of the matrix Q. Then
if we apply the steepest descent scheme, defined in equation (II.20), in the particular
quadratic setting of (II.22), with step-size τj = τ ∈

]
0, 2λ1

λ2n

[
, the convergence rate of the

squared-error, ‖uj − u�‖2 is given by

‖uj+1 − u�‖2 ≤ (
1− 2τλ1 + τ2λ2n

) ‖uj − u�‖2. (II.27)

Moreover, the optimal step-size is τ = τ∗ = λ1
λ2n

, for which the convergence reads

‖uj+1 − u�‖2 ≤
(
1− λ21

λ2n

)
‖uj − u�‖2. (II.28)

Proof. From (II.20) we have:

‖uj+1 − u�‖2 = ‖uj − u� − τj∇J(uj)‖2
= ‖uj − u�‖2 − 2τj〈uj − u�,∇J(uj)〉+ ‖τj∇J(uj)‖2
= ‖uj − u�‖2 − 2τj〈uj − u�, Quj − b〉+ τ2j ‖Quj − b‖2.

Now using the optimality condition, i.e.

∇J(u�) = Qu� − b = 0,

we obtain:

‖uj+1 − u�‖2 = ‖uj − u�‖2 − 2τj〈uj − u�, Q(uj − u�)〉+ τ2j ‖Q(uj − u�)‖2
≤ ‖uj − u�‖2 − 2τjλ1‖uj − u�‖2 + τ2j λ

2
n‖uj − u�‖2

≤ (
1− 2τjλ1 + τ2j λ

2
n

)︸ ︷︷ ︸
=c(τj)

‖uj − u�‖2.

Again minimizing the function τ �→ c(τ) over the fixed step-size, we derive the optimal
step size τj = τ∗ = λ1

λ2n
giving an optimal reduction factor of c(τj) := 1− λ21

λ2n
< 1, leading
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to the sub-optimal convergence rate:

‖uj+1 − u�‖2 ≤
(
1− λ21

λ2n

)
‖uj − u�‖2. (II.29)

Again, from Theorem 3, we infer that the convergence is exponential w.r.t. the number
of iterations, i.e.

‖uj − u�‖ ≤ ρ̃j‖u0 − u�‖, (II.30)

for any τ ∈
]
0, 2λ1

λ2n

[
and in the optimal case, the exponential rate is ρ̃ =

√
1− κ(Q)−2.

Notice that for every 0 < λ1 < λn we have
(
1− λ21

λ2n

)
> (λn−λ1)2

(λn+λ1)2
. The problem of (II.28)

is that the optimal step size τ∗ = λ1
λ2n

requires the knowledge of the eigenvalues of Q or
good bounds λn < L and λ1 > l/2 on them. Actually, if one knows λ1 and λn, then
the choice τj = 2

λ1+λn
is equally good as (II.24) (but again not practical as λ1 and λn

are not known, in general). A special case of this result is when all the eigenvalues of
the matrix Q are equal, implying that the convergence is achieved in only one iteration.
Specifically, if the matrix Q is a multiple of the identity matrix, then all the steepest
descent directions point exactly to the minimizer. The isovalues of such a quadratic
function are circles, centered around the unique minimizer. When the condition number
κ(Q) = λn/λ1 increases, then the isovalues of the quadratic functional are transformed
into ellipsoids that become more and more elongated, producing a zigzagging sequence of
iterates (II.20) and a slow convergence rate. An advantage of the estimate in Theorem 3
w.r.t. that of Theorem 2 is that it generalizes immediately to the non-quadratic case as
long as J is strongly convex and ∇J is globally Lipschitz continuous (see Section II.D.6).

II.B.3. Quasi-Newton methods

The main idea of Quasi-Newton methods is that changes in the gradient of J provide
information on the second derivative of J , along the search direction [NW99]. Let us use
the following shorthand notation: ∇Jj = ∇J(uj), ∇2Jj = ∇2J(uj) and sj = uj+1 − uj .
Then we can write:

∇Jj+1 = ∇Jj +∇2Jj+1(sj) + o(‖sj‖) (II.31)

Then, assuming that the last term o(‖sj‖) is very small for points uj and uj+1 being in a
neighborhood of the solution u�, we can approximate:

∇2Jj+1(sj) ≈ ∇Jj+1 − ∇Jj =: yj (II.32)
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Mimicking equation (II.32), we choose Ωj to satisfy the secant equation:

Ωj+1sj = yj . (II.33)

Usually, for a quasi-Newton method, we aim at having a symmetric matrix Ωj , and the
matrix difference Ωj+1 − Ωj being a low rank matrix. Two very popular update formulas
for the matrix Ωj are the following:

• The symmetric-rank-one (SR1) formula:

Ωj+1 = Ωj − (yj − Ωjsj)(yj − Ωjsj)
T

(yj − Ωjsj)T sj
(II.34)

• The BFGS formula, named from its inventors initials, Broyden, Fletcher, Goldfarb
and Shanno:

Ωj+1 = Ωj −
Ωjsjs

T
j Ωj

sTj Ωjsj
+
yjy

T
j

yTj sj
(II.35)

We just quote a convergence result from [NW99] for a general Quasi-Newton method:

Theorem 4. We assume the function J : U → R is three times continuously differentiable.
Using a fixed step-size of 1, i.e. considering the scheme uj+1 = uj + pj, with pj solving
the linear system (II.19), if we assume that the sequence {uj}j converges to a point
u� being such that ∇J(u�) = 0 and ∇2J(u�) is positive definite, then {uj}j converges
super-linearly, i.e.

lim
j→∞

‖uj+1 − u�‖
‖uj − u�‖ = 0 (II.36)

if and only if

lim
j→∞

‖(Ωj − ∇2J(u�))pj‖
‖pj‖ = 0. (II.37)

Condition (II.37) just reflects the principle that the approximated Hessian Ωj should
approximate the exact Hessian ∇2Jj only following the line/direction pj , in order to reach
the super-linear convergence of the Quasi-Newton method.

II.B.4. Newton’s method

For the Newton’s method, we compute the full Hessian for the matrix Ωj = −∇2Jj and
choose the descent pj such that

∇2Jjpj = −∇Jj . (II.38)
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The main problem here is that the Hessian ∇2Jj is not always positive definite, in a way
that we cannot guarantee that the direction pj is descending. But assuming the following
second order condition:

Assumption 5. The Hessian ∇2J is continuous on an open neighborhood of the solu-
tion u�. Moreover ∇J(u�) = 0 and ∇2J(u�) is positive definite,

then we can state a local rate of convergence, i.e. requiring a starting point u0 being in a
neighborhood of u�, to guarantee that the matrix ∇2Jj remains positive definite for any
j ≥ 0.

Theorem 5. Suppose the functional J is twice differentiable, that Assumption 5 is
satisfied, and that the Hessian ∇2J(u) is Lipschitz continuous in a neighborhood Ψ(u�)

of u�, i.e. there exists L > 0 such that

‖∇2J(u)− ∇2J(v)‖ ≤ L‖u− v‖ ∀u, v ∈ Ψ(u�). (II.39)

Then, considering the iteration uj+1 = uj + pj where pj solves equation (II.38) and with
u0 ∈ Ψ(u�) being close enough to u�, then the rate of convergence of uj is quadratic, i.e.
there exists 0 < M < 1 such that:

lim
j→∞

‖uj+1 − u�‖
‖uj − u�‖2 < M. (II.40)

Remark 1. In the particular quadratic case of (II.22), Newton’s method converges in
only one iteration, because J(u) = 1

2u
TQu− bTu, ∇J(u) = Qu− b, and ∇2J(u) = Q. So

equation (II.38) writes Qpj = −Quj + b, with solution pj = −uj +Q−1b, and finally the
recursion uj+1 = uj + pj reads for j = 0:

u1 = u0 +Q−1b− u0 = Q−1b = u�, (II.41)

that solves exactly the quadratic problem (II.22).

Remark 2 (on Terminology). The convergence of the Newton method is quadratic in the
sense that ‖uj+1 − u�‖ ≤ M‖uj+1 − u�‖2 asymptotically as j → ∞. Observe, however,
that with respect to the number of iterations, such convergence is "super-exponential", i.e.
‖uj+1 −u�‖ ≤ M2j−1‖u0 −u�‖2j = 1

M ρ
2j with ρ =M‖u0 −u�‖ < 1 if ‖u0 −u�‖ is small

enough (smaller then 1/M).

II.B.5. Coordinate descent

This method is based on a priori choice for the descent direction pj . Specifically, we set
p1 = e1, p2 = e2, . . . , pj = e[j mod n], . . . , where 0 ≤ [j mod n] ≤ n− 1 denotes the rest
in the Euclidean division of j by n, and {e0, . . . , en−1} denotes the euclidean basis of Rn.
We aim at minimizing the functional along every basis direction, until convergence. But
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this convergence is not always guaranteed, as shown in [Pow73]. The coordinate descent
method, with exact line searches (i.e. with an optimal step-size, alongside every direction
pj) can iterate infinitely without converging to any point where the gradient vanishes.
Nevertheless, as stated in [NW99], the two major advantages of such a method are:

• we don’t require any computation of the gradient ∇Jj

• the speed of convergence is usually not too bad/acceptable, if the variables are
loosely coupled.

II.B.6. Conjugate gradient

This method was introduced by Hestenes ans Stiefel in 1950, and has the key feature
of being faster than the steepest descent method, with the same no matrix storage
requirement. Back in the quadratic problem setting (II.22), with a symmetric, positive
definite matrix Q ∈ Rn×n, we introduce the notion of conjugacy, for a set of vectors:

Definition 2. A set of vectors {p0, p1, . . . , pl} is said to be conjugate w.r.t. the symmetric
positive definite matrix Q if

pTi Qpk = 0, ∀i �= k. (II.42)

Now the question is how the directions pj are chosen. As we shall limit the memory space
required, the goal is to compute the next direction pj , only from the previous one, pj−1,
in order to get an update formula with single storage. This is the fundamental property
of the conjugate gradient method. For a formal definition, let us define the linear system
associated to the quadratic minimization problem (II.22)

Qu = b (II.43)

and its residual by r(u) = Qu− b = ∇J(u). This quantity quantifies how close the state
u is from the optimal solution. We denote by rj = Quj − b, the residual at iteration j

and define the search directions for j ≥ 1 as

pj = −rj + βjpj−1, (II.44)

with a scalar βj guaranteeing the conjugacy property, i.e. i �= k ⇒ pTi Qpk = 0. We find
that

βj =
rTj Qpj−1

pTj−1Qpj−1
. (II.45)
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The first direction p0 is equal to the steepest descent computed at the initial point u0:

p0 = ∇J(u0). (II.46)

One main advantage of such a method, is to guarantee the convergence to the solution of
system (II.43), in at most n steps.

Nevertheless, when the matrix Q is of large size, or when round-off errors affects the
numerical computation of the conjugate directions, this exactness property does not hold
anymore, or is not so appealing. The following Theorem recalls a convergence bound,
still valid in high dimension.

Theorem 6. Following again the scheme (II.18), we can bound the error in norm Q as:

‖uj − u�‖Q ≤ 2cj

1 + 2c2j
‖u0 − u�‖Q

with c =
√
κ(Q)−1√
κ(Q)+1

, showing again exponential convergence in j.

Proof. A proof of this result can be found in [Hac16, Theorem 10.14]

Notice that the rate of convergence c =
√
κ(Q)−1√
κ(Q)+1

≈ 1 − 2√
κ(Q)

as κ(Q) → ∞, i.e. this

conjugate gradient algorithm is faster, than the steepest descent algorithm (presented in
Section II.B.2), for problems with a high condition number κ(Q).

This conjugate gradient (CG) algorithm looks very promising, in order to solve the
discrete form of the OCP (II.16), as it guarantees the fastest (exponential) rate of
convergence among the previously enumerated optimization methods, without requiring
the computation of the exact Hessian of the functional J . The coordinate descent method
is not considered in this framework, as the dimensionality of the problem plays a crucial
role in its convergence speed.

The (exact) Newton method is not really an option to solve the OCP (II.16). It converges
in one iteration but requires to assemble the full Hessian matrix which implies computing
explicitly (Ah)−1, not feasible for large scale problems. One could alternatively solve the
linear system involving the full Hessian by a matrix-free iterative method (Newton-Krylov)
such as Conjugate Gradient, but this brings back to the CG method discussed above.

Quasi-Newton methods are an alternative to gradient of CG methods. Based on equation
(II.19), they require computing the search direction pj by inverting the matrix Ωj . Even
when the Sherman-Morrison-Woodbury formula is used to update the inverse Hj = Ω−1

j ,
the cost for computing pj increases over the iterations since the rank of Hj increases, as
stated in [BS12]. This makes the analysis of the complexity of Quasi-Newton methods
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more cumbersome than gradient or conjugate ones and is the reason why we have not
considered these methods in this work.

Finally, when considering OCPs under uncertainty, (e.g. see the convergence rate in Section
III.H), the main limitation in the rate of convergence comes from the discretization in
probability and/or physical space, and the error introduced by the optimization algorithm
is usually negligible, when the convergence is exponential in the number of iterations.
For this reason we will mostly use the steepest descent strategy in the rest of this work,
which guarantees a simple framework to derive theoretical error bounds and convergence
rates for all sources of errors.

II.C. Risk averse optimization

II.C.1. Stochastic modeling

Starting from the deterministic OCP (II.1), we recall that the functional f we aim at
minimizing is

f(y, u) =
1

2
‖y − zd‖2X +

β

2
‖u‖2U .

However the deterministic framework may reach its limits, for example in real life problems,
where the system itself might be random/uncertain or its physical parameters estimation
may include uncertainty from measurement errors (see e.g. Section II.C.2 for details
and examples). The deterministic PDE (II.8) with Dirichlet boundary conditions can be
re-written more realistically, from a stochastic viewpoint, as{

− div(a(x, ω)∇y(x, ω) = g(x) + u(x) for x ∈ D a.e. ω ∈ Γ

y(x, ω) = 0 for x ∈ ∂D a.e. ω ∈ Γ.
(II.47)

where (Γ,F ,P) is a complete probability space. Here, ω ∈ Γ represents the uncertainty
in the system, modeled in terms of a random variable with probability measure P on Γ.
Then, the associated deterministic functional f becomes stochastic as well, because of its
dependence on ω through y = yω

f(yω, u) =
1

2
‖yω − zd‖2X +

β

2
‖u‖2U . (II.48)

At this point, we face an optimization problem with a stochastic functional. Different
approaches have been considered in the literature:

• if we are able to observe the realization ω of the random variable, and are able to
compute the associated optimal control u = uω afterwards, for each realization (e.g.
design multiple kind of turbines, depending on the daily running conditions, and
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adapt them in function of the conditions), then we can derive a stochastic control
uω;

• on the other hand, if the randomness is not observable or, in other terms, the optimal
control has to be computed before observing any realization of the system output,
then we tackle a robust-optimization problem and we need to design one control
u, being robust in some statistical sense w.r.t. the distribution of the functional f .
Think for instance at the design of a wing of an aircraft, being efficient and reliable
in almost every in-flight condition. For this purpose, we incorporate a risk measure
σ into a Quantity of Interest J , such that J = σ ◦ f , in order to choose the control
u, being more or less risk averse to the stochasticity in the system, based on the
choice of the risk measure σ.

In the following, we will only focus on the second approach, i.e. the robust optimization
problems.

II.C.2. Main ideas in risk averse optimization

Uncertainty arises particularly in the field of physical modeling, because of a lack of knowl-
edge of the parameters of the system, or because the system itself has some unpredictable
behavior that can be described only in a probabilistic/statistical sense. For instance, the
process of manufacturing an iron element, in fact produces a slightly different object
than the designed one, because of manufacturing uncertainty. One can model this lack
of precision, for example assigning a probability distribution on the shape/dimension/-
topology of the actual produced element. Another context where uncertainty is very
relevant is, for instance the design optimization of a turbine/airfoil/wing, under uncertain
operating conditions. One shall model the uncertain environment with a statistical
approach from recorded data and history matching, and quantify the resulting uncertainty
in aerodynamic quantities such as lift or drag coefficient by performing several forward
simulations and estimating the output probability distribution.

In an optimization problem, a quantity of interest to be optimized is introduced, and when
facing a robust optimization approach, this quantity should only involve some statistics
of the system output when we do not have access to the aleatory conditions beforehand.
Thus, we need to introduce a map called a risk measure (that quantifies the level of
aversion/unwillingness/hostility to the risk), and compose it with the stochastic objective
functional of the uncertain system. Here, risk refers to a measure of the variation of
the objective functional w.r.t. the random data of the model. For example, consider a
stochastic objective functional

f̃ : U × Γ −→ R

(u, ω) �−→f̃(u, ω),
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where u ∈ U is the control function (that generalize the shape/design previously evoked).
In the context of PDE-constrained optimization under uncertainty, and objective func-
tional (II.48), f̃ reads f̃(u, ω) = f(yω(u), u) where yω(u) solves the elliptic random
PDE (II.47). Here, U denotes the control space and (Γ,F ,P) a complete probability
space. Then one faces the trade-off between minimizing the mean E[f̃(u, ·)] describing
the expected outcome, and the risk (variability measure) D[f̃(u, ·)] which quantifies the
deviation (uncertainty) of the outcome. The formal definition of D is omitted here and
detailed later on. The final quantity of interest may be a linear combination of the two
quantities E[f̃(u, ·)] and D[f̃(u, ·)], which defines a risk measure of the form

σ(f̃(u, ·)) := E[f̃(u, ·)] + cD[f̃(u, ·)],

where the parameter c reflects the price of the risk, or risk aversion. A high value of c
penalizes more the deviation term D[f̃(u, ·)] leading to a smaller variability of the outcome.
The robust minimization problem then reads:

min
u∈U

J(u), J(u) = E[f̃(u, ·)] + cD[f̃(u, ·)]. (II.49)

When the coefficient c varies, we generate an ensemble of minimization problems, from the
most conservative one (i.e. c → ∞ corresponding to the worst-case oriented risk-measure),
up to the most risky one (when we don’t pay attention to any variability of the quantity
ω �→ f̃(u�, ω) around the optimal control) i.e. when c = 0. The variability measure D
quantifies, to some extent, the width and thickness of the tail distribution of the stochastic
objective functional.

A particularly convenient class of risk measures are the so-called coherent risk measures
[RS06, RS07, SDR09], since they exhibit desirable properties, such as monotonicity or
convexity. These two properties are required for example to transfer the convexity property
from f̃ to J . We define formally, in the following Section, the coherent risk measures and
present a non-exhaustive list of risk measures, discussing advantages and limitations of
each of them.

II.C.3. Coherent Risk Measure

On a complete probability space (Γ,F ,P), we consider a random variable Z = Z(ω), with
ω ∈ Γ. The term risk measure refers to a map from the set of random variables (r.v.)
set {Z : Γ → R,F −measurable}, onto the real line R, assuming, some integrability
property of the random variable Z. For this purpose, let us denote Z = Lp(Γ,F ,P)
with 1 ≤ p < ∞ the space of random variables Z for which the p-th order moment
with respect to the reference probability measure P is finite, that is Z = {Z : Γ →
R, F −measurable, s.t.

∫
Γ |Z(ω)|pdP(ω) < +∞}. We thus implicitly assume that the

mapping σ : Z → R is defined on equivalence classes of functions that differ on sets of
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P-zero measure, i.e. for any Z1, Z2 ∈ Z, σ(Z1) = σ(Z2) if P{ω ∈ Γ : Z1(ω) �= Z2(ω)} = 0.
For technical convenience, we assume throughout this work, that

• σ : Z → R is proper, i.e. σ(Z) > −∞ for all Z ∈ Z

• the domain of σ is non-empty, i.e. dom(σ) = {Z ∈ Z : σ(Z) < +∞} �= ∅.

We state now the four properties defining a coherent risk measure.

Definition 3. (coherent risk measure). A proper, non-empty domain map σ : Z → R is
called coherent risk measure, in the sense of Artzner, Delbaen, Eber, and Heath [ADEH99]
if it satisfies the following properties:

• Convexity: For all Z1, Z2 ∈ Z and λ ∈ [0, 1],

σ(λZ1 + (1− λ)Z2) ≤ λσ(Z1) + (1− λ)σ(Z2); (II.50)

• Monotonicity: For all Z1, Z2 ∈ Z:

Z1 ≤ Z2 P−a.e. in Γ ⇒ σ(Z1) ≤ σ(Z2); (II.51)

• Translation Equivariance: For all Z ∈ Z, and c ∈ R,

σ(Z + c) = σ(Z) + c; (II.52)

• Positive Homogeneity: For all Z ∈ Z, and c > 0,

σ(cZ) = cσ(Z). (II.53)

II.C.4. Example of risk measures

The mean-variance risk measure

We present here the most common risk measure found in literature, the mean-variance
risk, incorporating a parameter c ≥ 0 to scale the importance of the variance, i.e. the
risk aversion, as discussed before. For a r.v. Z ∈ Z = L2(Γ,F ,P), let us introduce the
mean-variance risk measure as:

σ(Z) = E[Z] + cE
[
(Z − E[Z])2

]
. (II.54)

It is straightforward to show that the mean-variance risk measure is convex, has the
translation equivariance property, but it fails to satisfy the positive homogeneous, and
the monotonicity properties, if c > 0.
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Remark 3. The particular case c = 0 leads to the risk neutral (or mean-based risk)
measure σ(Z) = E[Z], which is obviously coherent.

The mean-deviation risk measure of order p

Here we generalize the mean-variance risk measure, by replacing the variance term, with
a deviation term, that involves moments of order p, i.e. given a r.v. Z ∈ Z = Lp(Γ,F ,P),
for p ≥ 1, we define the mean-deviation risk measure of order p as:

σ(Z) = E[Z] + cE [|Z − E[Z]|p] 1p . (II.55)

This risk measure remains convex, has the translation equivariance and the positive
homogeneous property (thanks to the power 1/p to make the deviation homogeneous
to the mean), but still fails to be monotonic, in general, when p > 1. Completing the
description of this risk measure, based on [SDR09], the mean-deviation risk measure of
order p = 1 is coherent, if and only if the risk aversion parameter c ∈ [0, 1/2], assuming
that F contains events A with arbitrarily small measure P(A) (which is guarantee, in
particular if P is non-atomic).

The main drawback of the mean-deviation risk measure of order p, as well as the mean-
variance risk measure, is that they both count the excess/surplus over the mean, as much
as any scarcity/shortcoming/insufficiency over it. This symmetric property may limit
considerably the use of such risk measures, because in many engineering scenarios, a
surplus and a lack should not be counted the same way: one might be critical whereas
the other does not matter.

Other risk measures involve only semi-deviations, that count excess (or shortcomings)
over a desirable value.

The mean-upper semi-deviation of order p risk measure

For a r.v. Z ∈ Z = Lp(Γ,F ,P), we define the mean-upper semi-deviation of order p by

σ(Z) = E[Z] + cE
[
(Z − E[Z])p+

] 1
p . (II.56)

with (Z)+ = max{0, Z}. This risk measure is convex, has the translation equivariance
and the positive homogeneous property. However, following [SDR09], it is monotonic if
c ∈ [0, 1]. Moreover if F contains events A with arbitrarily small measure P(A), then the
condition c ∈ [0, 1] is also necessary for monotonicity.

26



II.C. Risk averse optimization

The Conditional Value at Risk (CVaR) risk measure

Besides moment based risk measures, a risk measure can also be based on quantiles. For
a given parameter α ∈ (0, 1) and a r.v. Z ∈ Z = L1(Γ,F ,P), we recall the Value at Risk
(VaR) threshold (α-quantile), defined as:

VaRα[Z] = inf{t ∈ R : P(Z ≤ t) ≥ 1− α}. (II.57)

This risk measure is mainly used in finance. This community often uses also the so-called
Conditional Value at Risk (CVaR), defined as:

CVaRα[Z] = inf
t∈R

{t+ α−1E[(Z − t)+]}, (II.58)

We can think at the CVaRα as the mean of the r.v. Z over the VaRα[Z] threshold, i.e.

CVaRα[Z] = E[Z|Z ≥ VaRα[Z]]. (II.59)

This risk measure is coherent, what makes it very convenient for engineering optimization
problems. Moreover it combines every desirable property for a risk measure, such as it
only counts excesses over the VaRα[Z], based on the positive part function (·)+. The next
Section presents the OCPs, incorporating a risk measure σ in the quantity of interest.

II.C.5. Robust OCPs, incorporating a risk measure

Consider an OCP constrained by a PDE with random parameters. Let us call y(u) the
random solution of the PDE for a given control function u ∈ U , and assume that such
random solution y(u) : Γ → Y has bounded q-th order moments for any u ∈ U , i.e.
y(u) ∈ Θ := Lq(Γ,F ,P;Y). Let, moreover f̂ denote the random objective functional
(function of y(u)) that we want to minimize in a robust sense, defined as

f̂ : Θ −→Z :=Lr(Γ,F ,P), for some r ≥ 1.

y �−→ f̂(y)

Given a risk measure σ : Lp(Γ,F ,P) → R = R ∪ {∞} with p ≤ r, we define the risk
averse PDE-constrained OCP, incorporating the risk measure, as

min
u∈U

Ĵ(u) = σ[f̂ (y(u))] + ς(u) (II.60)

where ς : U → R is a regularization term.

Numerical methods for robust OCPs, typically depend on the choice of the risk measure.
For example, the work [APSG17] considers a risk measure that involves the mean and
variance of the objective functional and uses second order Taylor expansions combined
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with randomized estimators to reduce the computational effort. The work [VBV18]
considers a risk measure that involves only the mean of the objective functional (hereafter
named mean-based risk), with an additional penalty on the variance of the state, and
proposes a gradient type method, in which the expectation of the gradient is computed by
a multilevel Monte Carlo method. In [BvW11], the authors also consider a mean-based
risk problem and propose a reduced basis method on the space of controls to dramatically
reduce the computational effort. In the work [Kou12], the author presents a more general
type of OCP, using the general notion of a risk measure, and derives the corresponding
optimality system of PDEs to be solved. For its numerical solution, a trust-region Newton
conjugate gradient algorithm is proposed in [KHRvBW13], combined with an adaptive
sparse grid collocation for the discretization of the PDE in the stochastic space. The
work [KS16] considers derivative-based optimization methods for the robust CVaR risk
measure, which are built upon introducing smooth approximations to the CVaR. Finally,
in the work [GLL11], the authors consider a boundary OCP where the deterministic
control appears as a Neumann boundary condition. Using again a mean-based risk, they
derive an optimality system of equations and provide a complete error analysis of the
finite element approximation, as well as of the random parameter space approximation.

II.C.6. Existence result for robust OCPs under uncertainty

We present here a result on existence of an optimal control, for OCPs of the form (II.60)
constrained by stochastic equation that induces, for any admissible control function
u ∈ Uad, a random map y(u) : Γ → Y . For consistency of notation, we write y ∈ Θ when
considered as a random field, and y ∈ Y when we refer to a realization of the latter map,
namely y(ω) = y, for some ω ∈ Γ. We now recall the Nemytskii (superposition) operator:
for Θ � y : Γ → Y, we write [

f̂(y)
]
(ω) = f(y(ω), ω),

where the so-called parametrized random objective functional f , maps an element (y, ω) ∈
Y × Γ into the real line R := R ∪ {∞}.

f : Y × Γ −→ R

(y, ω) �−→f(y, ω).

Based on [KS18], we introduce some properties of the solution map y:

Assumption 6.

1. There exists q ≥ 1 such that for all u ∈ Uad, y(u) : Γ → Y is strongly F-measurable,
and y(u) ∈ Θ = Lq(Γ,F ,P;Y).

2. There exist a non negative increasing function ρ : [0,∞) → [0,∞) and a non
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negative random variable C ∈ Lq(Γ,F ,P) satisfying

‖y(u)‖Y ≤ Cρ (‖u‖U ) P− a.e.

for all u ∈ Uad.
3. If un ⇀ u in Uad, then y(un)⇀ y(u) in Y P-a.e.

We now state a differentiability assumption on the map y.

Assumption 7. There exists an open set V ⊆ U with Uad ⊆ V such that the solution
map u �→ y(u) : V → Θ is continuously Fréchet differentiable.

Now we state some assumptions about the objective functional f : Y × Γ → R.

Assumption 8.

1. Carathéodory. f is a Carathéodory function; i.e., f(·, ω) is continuous for P-a.e.
ω ∈ Γ and f(y, ·) is measurable for all y ∈ Y.

2. There exists p ≥ 1 such that, for all y ∈ Θ, the r.v.
[
f̂(y)

]
(ω) = f(y(ω), ω) has

bounded moments up to order p, i.e. f̂(y) ∈ Lp(Γ,F ,P)
3. Growth condition. There exist a ∈ Lp(Γ,F ,P) with a ≥ 0 P-a.e. and c > 0 such

that for all ω ∈ Γ and all y ∈ Y

|f(y, ω)| ≤ a(ω) + c‖y‖q/pY .

4. f(·, ω) is convex for P-a.e. ω ∈ Γ.

We are now in position to state the theorem, from [KS18, Proposition 3.12.], guaranteeing
existence of an optimal control, for the OCP (II.60).

Theorem 7. Let Assumptions 6, 7, and 8 hold. Let σ : Lp(Γ,F ,P) → R = R ∪ {∞} be
a proper, lower semi-continuous, convex, and monotonic risk measure, and let ς : U → R
be proper, lower semi-continuous, and convex. Finally, suppose either Uad is bounded or
u �→ σ

[
f̂(y(u))

]
+ ς(u) is coercive. Then (II.60) has a solution.

We now particularize the general setting (II.60) to the OCP described in Section II.C.1,
constrained by an elliptic random PDE. A risk averse formulation implies choosing a
coherent risk measure and composing it with the random objective functional f(yω(u), u)
of equation (II.48):

min
u∈U

J(u) := σ [f (yω(u), u)] . (II.61)
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The quantity of interest J in equation (II.61) can be re-written, in the form of (II.60),
by setting f̂(y(u))(ω) = 1

2‖yω(u)− zd‖2X , where yω(u) solves the random PDE constraint
(II.47), and ς(u) = β

2 ‖u‖U , so that

f(yω(u), u) = f̂(y(u))(ω) + ς(u).

Since the risk measure σ has the translation equivariance property, the constant quantity
ς(u) can be put equivalently inside or outside the coherent risk measure σ. Then following
[KS18], as it can be shown that the assumptions of Theorem 7 hold true, in this particular
setting, there exists an optimal control for the PDE-constrained OCPs (II.61). A simplified
version of this result is proved, in a more straightforward manner, in Chapter III, in the
case of the mean-based risk measure σ = E.

We present in the next Section some common optimization techniques, widely used by
the machine learning community, for mean-based stochastic optimization problems.

II.D. Machine Learning (ML) Optimization methods

In the Machine Learning (ML) community, one usually faces the problem of forecast-
ing/predicting a quantity say z, from associated inputs θ, using historical data of (θ, z).
Specifically, suppose we have access to historical data points

Ξtrain = {(θ1, z1), (θ2, z2), . . . , (θn, zn)},

we would like to infer a predictive model ŷ, based on Ξtrain, that is able to "explain" the
data output zi, from its associated input θi, for all i ∈ {1, . . . , n}. Here Ξtrain is called
the training data set.

II.D.1. ML problem setting

In order to propose a probabilistic framework ( see e.g. [HTF01]), we denote by ξ ∈ Γ ⊂ Rq

a random input vector, and Z ∈ X , a X -valued random output variable, with joint
distribution Pr(dθ,dz). We will call by (θ, z) ∈ Γ× X any realization of the r.v. (ξ, Z).
The major assumption, in the supervised learning approach, is that there exists a true
model y ∈ Δ, with Δ a family of maps y : Γ → X that link the random variables ξ and Z
by the exact equation y(ξ) = Z. In particular, here, we omit any observation error on Z.
The inputs θi ∈ Γ ⊂ Rq in the training set represent the so-called features, while zi ∈ X
their associated label. For instance, when X = {1, . . . , C}, we can build a multi-class of
the input variables θi in Ξtrain through its associated label/output zi ∈ {1, . . . , C} by
defining the C classes

{θi ∈ Γ : y(θi) = k}k=1,...,C . (II.62)
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Here we cluster the features, i.e. split the input data in the training set, into C classes,
based on its label. In order to extend this classification, on the whole set Γ, i.e. in order
to classify any new feature θn+1, we may generalize them by plugging the approximated
predictive model ŷ, in place of y in (II.62), i.e. the C classes become

{θ ∈ Γ : ŷ(θ) = k}k=1,...,C . (II.63)

In the supervised learning approach, the goal is to learn the function/model ŷ : Γ → X ,
given a collection of labeled input-output pairs

Ξtrain = {(θ1, z1), (θ2, z2), . . . , (θn, zn)}

which are assumed to be iid realizations of the r.v. (ξ, Z). The ultimate goal of such ML
problem, is to construct a predictive (approximated) model ŷ ∈ Δ, based on the training
set Ξtrain, that maps the input/features space Γ into the label set X . This stage is called
the learning stage, and is presented in the next Section.

II.D.2. Learning stage

One way to formalize the learning stage in a ML framework is by using function approx-
imation (see e.g. [Mur12]). Assuming that y ∈ Δ is the true yet unknown model, the
goal of learning is to approximate the exact function y, given a labeled training data set
Ξtrain, and then classify any new feature θn+1, using the predicted label ẑn+1 = ŷ(θn+1).
This theory requires introducing a loss function i.e. a mapping l : Δ × (Γ × X ) → R
where Δ is a set of admissible models ŷ : Γ → X . Specifically, the loss function l is such
that l(ŷ, (ξ, Z)) increases when ŷ is not an accurate predictor of the exact behavior of
the r.v. (ξ, Z). In ML, it is customary to define the best model ŷ∗ ∈ Δ as the one that
minimizes the expected loss w.r.t. the distribution Pr(dθ, dz) of the r.v. (ξ, Z). Thus, the
optimization problem writes

ŷ∗ ∈ argmin
ŷ∈Δ

R(ŷ). (II.64)

where the risk R(ŷ) is defined as

R(ŷ) := E(ξ,Z)[l (ŷ, (ξ, Z))] =

∫
l (ŷ, (θ, z)) Pr(dθ, dz). (II.65)

Unfortunately, the exact distribution of the r.v. (ξ, Z) is usually unknown, or if it is
known, problem (II.64) is rarely tractable, from a numerical point of view. Thus, we
usually replace problem (II.64), with its empirical version, based on the n iid training
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data points of the training set Ξtrain, i.e.

R(ŷ) ≈ R̂(ŷ,Ξtrain) :=
1

n

n∑
i=1

l(ŷ, (θi, zi)), (II.66)

leading to the approximated optimization problem

ŷ∗ ∈ argmin
ŷ∈Δ

R̂(ŷ,Ξtrain). (II.67)

In the case where the distribution of (ξ, Z) is known, one may still end up with the
approximate optimization problem (II.67) if the expectation in (II.64) is replaced by a
Monte Carlo estimator.

In the next Section, we present some desirable properties of the approximated model ŷ∗,
solution of the optimization problem (II.67), in terms of accuracy of ŷ∗ on reproducing
the training data set Ξtrain (bias), and in terms of variability of ŷ∗ when the training set
changes (variance).

II.D.3. Bias-Variance dilemma

The ML community usually looks for an approximated model ŷ∗ ∈ Δ, that is:

• the most accurate for prediction on the training data set Ξtrain i.e. with small bias,
guaranteeing that we extracted well the information from Ξtrain;

• the most robust w.r.t. the training data selection i.e. with small variance, guaran-
teeing that the optimal model ŷ∗ can be generalized to predict the new label of a
new feature point θn+1.

Unfortunately, we cannot reduce the bias without increasing the variance, and vice-versa.
The trade-off between how we should penalize high bias/variance is the big role of the
ML engineer, at the training stage. Over-fitting occurs when the variance is too high,
achieving a too small bias. Then the model over-fits the training data points, but is
not robust to other training data sets, and, by extension, would not guarantee a good
prediction of the model, for a new feature point θn+1.

A common method to limit over-fitting is to impoverish the set of admissible functions Δ,
for example by restricting it to some subset, described by a finite dimensional parameter
vector, say u ∈ U , i.e. each function ŷ in the subset is parametrized by some parameter
u ∈ U and the restricted set of admissible functions reads:

ΔU = {ŷ(u; ·) ∈ Δ s.t. θ �→ ŷ(u; θ) ∈ X ; ∀u ∈ U} � Δ.
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where the map u �→ ŷ(u; ·) is let vague at this stage. Then the ML optimization problem
can be equivalently reformulated in terms of the parameter set U , as:

min
u∈U

1

n

n∑
i=1

l(ŷ(u; ·), (θi, zi)). (II.68)

Next Section present specific choices for the loss function l.

II.D.4. Examples of loss functions

Different examples of loss functions l are used in practice, based on the specific problem
that one would like to solve. For instance, in a classification problem X = {1, . . . , C}, if
we wish to classify new features θn+1 based on the training data set Ξtrain, we usually
use the error count function l, defined as:

l(ŷ(u; ·), (θ, z)) = 1{ŷ(u;θ)	=z}, (II.69)

The optimization procedure on the training data Ξtrain tunes the parameters u of the
function ŷ(u; ·), in order to make the number of errors on Ξtrain, i.e. the number of
misclassified feature points θi whose predicted label ẑi = ŷ(u; θi) differs from the exact
one, zi, as small as possible.

From another perspective, if we want to design a relation model between the features θ
and their associated labels z ∈ X , we utilize instead the squared error loss function:

l(ŷ(u; ·), (θ, z)) = (ŷ(u; θ)− z)2, (II.70)

and call this framework regression problem. Based on a large training data set Ξtrain, the
problem is then of minimizing a large sum of functions, of the form:

Ĵ(u) := R̂(ŷ(u; ·),Ξtrain) + ς(u) =
1

n

n∑
i=1

l(ŷ(u; ·), (θi, zi)) + ς(u), (II.71)

where, we added to the empirical risk R̂, in (II.71), a regularization term ς, in order to
avoid over-fitting on the training data set. Usually u �→ ς(u) is an increasing function of
a specific norm of u, depending on the desired properties of the minimizer u we would
like to reach/guarantee. For instance, the L1 norm is used to encourage sparsity in the
parameter u; other norms could be related to smoothness properties of the function ŷ(u, ·).
The following Section makes the link with the specific OCP framework studied in this
thesis; we choose the regression loss function, and particularize the sets Γ, X , U and
ΔU .
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II.D.5. Link with the studied OCP

We consider again the OCP presented in Sections II.C.1 and II.C.6, and aim now at
recasting it into a ML framework. For convenience, we rewrite here the formulation of the
robust OCP. It is based on the elliptic random PDE with Dirichlet boundary conditions{

− div(a(x, ω)∇y(x, ω) = g(x) + u(x) for x ∈ D a.e. ω ∈ Γ

y(x, ω) = 0 for x ∈ ∂D a.e. ω ∈ Γ.
(II.72)

and its associated deterministic functional J , using the mean-based risk measure:

J(u) = Eω[f(yω(u), u)] =
1

2
Eω

[‖yω(u)− zd‖2X
]
+
β

2
‖u‖2U , (II.73)

where the state function yω(u) solves the PDE (II.72) for every realization ω ∈ Γ and a
given control u ∈ U .

We assume moreover, that the spaces of controls Uh and state Yh have been suitably
discretized (see Section II.A.7) and omit in the following the superscript h. The OCP
aims at finding the optimal control u for which the corresponding state yω(u) is as close as
possible to the target function zd ∈ X . In a machine learning language, the input variable
(feature) is ω ∈ Γ and the output variable (label) should ideally be zd for any ω ∈ Γ.
We set therefore the data space Γ × X and the data random variable (ω, zd) ∈ Γ × X .
Observe that the input is random with probability measure P on Γ, whereas the output
is deterministic, i.e. its probability measure is a Dirac mass in zd.

Our predictive model, which links the feature space Γ to the output space X , is then
the map ω �→ yω(u) = ŷ(u;ω), parameterized by the parameter u ∈ U , and the set of
admissible models ΔOCP is the set of solutions of the PDE (II.72), where the parameter
u acts as a forcing term, namely

ΔOCP := {ŷ(u; ·) : ω �→ ŷ(u;ω) = A−1(ω)(g −Bu), ∀u ∈ U},

where A(= Ah) and B(= Bh) are the operators associated to the discretized version of
the PDE (II.72), i.e. equation (II.16) (see Section II.A.7 for more detail).

Finally, the loss function is the regression-type one l(ŷ(u; ·), (ω, zd)) = 1
2‖ŷ(u;ω)− zd‖2X

and the ML formulation of the OCP reads

min
u∈U

Eω [l(ŷ(u; ·), (ω, zd))] + ς(u),

where ς(u) = β
2 ‖u‖2U is a regularization term.

Its empirical version, when a training set Ξtrain = {(ω1, zd), . . . , (ωn, zd)} is generated e.g.
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by Monte Carlo, reads:

min
u∈U

Ĵ(u) = R̂(ŷ(u; ·),Ξtrain) =
1

n

n∑
i=1

l(ŷ(u; ·), (ωi, zd)) + ς(u)

=
1

n

n∑
i=1

1

2
‖ŷ(u;ωi)− zd‖2X +

β

2
‖u‖2U︸ ︷︷ ︸

:=gi(u)

, (II.74)

where ωi are iid copies of ω, and equation (II.74) is a Monte Carlo (MC) approximation
of (II.73). In the following Section, we present common ML optimization methods to
solve optimization problems involving an empirical risk and can be written in the form of
optimizing a finite sample average, i.e.

min
u∈U

J(u) =
1

n

n∑
i=1

gi(u). (II.75)

with gi(u) = l(ŷ(u; ·), (ωi, zd)) + ς(u). We assume, in particular, that the training set size
is finite but large, n � 1 and each gi is a strongly convex function.

II.D.6. The Full Gradient method

Different strategies have been proposed in the ML literature [SRB13] to solve the opti-
mization problem (II.75), based on line search algorithms presented in subsection II.B.1.
The Full Gradient (FG) strategy is based on computing at each iteration j, the full
gradient of J , w.r.t. u. The deterministic FG algorithm is generated by:

uj+1 = uj − τj∇J(uj).

= uj − τj
n

n∑
i=1

∇gi(uj).

Theoretical convergence results for such a method can be derived using e.g. the argument
in Theorem 3 under the following assumptions on the functions gi’s:

Assumption 9 (Lipschitz continuity). There exists a constant Lip > 0 such that:

‖∇gi(u)− ∇gi(v)‖ ≤ Lip‖u− v‖ ∀u, v ∈ U , ∀i ∈ {1, . . . , n}

Assumption 10 (Strong convexity). There exists a constant l > 0 such that:

l

2
‖u− v‖2 ≤ 〈u− v,∇gi(u)− ∇gi(v)〉 ∀u, v ∈ U , ∀i ∈ {1, . . . , n}

where 〈·, ·〉 stands for the canonical scalar product in Rp, and ‖·‖ =
√〈·, ·〉 is its associated

norm.
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From now on, we will assume that the gi’s are Lipschitz continuous, and strong convex.
Hereafter, for every optimization method, we will state the known convergence rate, in
terms of J(uj) − J(u�), where u� is the exact minimizer of problem (II.75). However,
under the strong convexity assumption, everything can be transposed to uj − u�, since
for any u ∈ U ,

l

2
‖u− u�‖2 ≤ J(u)− J(u�). (II.76)

For the FG method, an exponential convergence rate is guaranteed, as recalled in the
previous Steepest Descent Section II.B.2, i.e.

J(uj)− J(u�) � ρj , (II.77)

with a constant ρ < 1 that depends on l and Lip defined in Assumptions 9 and 10 as long
as τj = τ ∈ ]

0, l/Lip2
[
. The last exponential convergence is also known as geometric, or

linear. This method is very costly, when n is large, because it requires to compute at
each iteration the n gradients ∇gi, i ∈ {1, . . . , n} over the whole training set.

II.D.7. The Stochastic Gradient method

Another method introduced by Robbins and Monro in 1951, called Stochastic Gradient
(SG) overpasses this limitation when n becomes large, by computing at iteration j the
gradient only for one particular index ij , sampled uniformly from the set {1, . . . , n} and
independently of the previous index. We end up with the formulation:

uj+1 = uj − τj∇gij (uj), (II.78)

One can show that selecting a suitable sequence of decreasing step-sizes τj = τ0
j , with

τ0 >
1
l we obtain the algebraic rate of convergence (this convergence rate is denoted by

sub-linear, by the ML community, as it is worse than the convergence rate of the gradient
method, also denoted as linear):

E[J(uj)]− J(u�) �
1

j
, (II.79)

i.e. an algebraic rate O
(
j−1/2

)
on ‖uj − u�‖. Here, the expectation is taken w.r.t. the

selection of the ij index. On the other hand, the convergence rate is independent of n
and does not suffer from any limitation when n increases.

Note that one usually chooses τj = τ0/j, with τ0 being such that τ0 > 1/l, where l is the
strong convexity parameter of Assumption 10. If the above condition does not hold, we
can not guarantee any algebraic convergence rate, as shown in the following counter
example, taken from [SDR09]. Assume we want to minimize f(x) = 1

2κx
2 with 0 < κ < 1

and X := [−1, 1] ⊂ R (we are in the simple case where l = κ/2). Clearly x∗ = 0. The
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recursive sequence using the SG algorithm, and τ0 = 1 writes:

xj+1 = xj − 1

j
f ′(xj) =

(
1− κ

j

)
xj

As we have κ < 1, the factor term remains positive, i.e. 1 − κ
j > 0. But the condition

1 = τ0 > 1/2l = 1/κ is NOT respected. We can write the recurrence:

xj+1 =

j∏
s=1

(
1− κ

s

)
x1 = exp

(
−

j∑
s=1

ln

(
1 +

κ

s− κ

))
x1 > exp

(
−

j∑
s=1

κ

s− κ

)
x1.

Moreover, we have

j∑
s=1

κ

s− κ
≤ κ

1− κ
+

∫ j

1

κ

t− κ
dt <

κ

1− κ
+ κ ln j − κ ln(1− κ).

Then it follows that

xj+1 > O(1)j−κ and f(xj+1) > O(1)j−2κ.

So, although xj may still converge to zero, we miss the general convergence rate of
O(1/

√
j) for κ small enough.

II.D.8. The Stochastic Averaged Gradient method

The Stochastic Averaged Gradient (SAG) method is a variant of SG [SRB13], which stores
part of the old computed gradients (a fixed amount of them, say n, i.e. the memory is
not increasing during the procedure). The algorithm is the following:

uj+1 = uj − τj
n

n∑
i=1

∇gi(φj+1
i ), (II.80)

where at each iteration j an index ij ∈ {1, . . . , n} is selected at random, and we set

φj+1
i =

{
uj if i = ij ,

φji otherwise.
(II.81)

Again, the index ij ∼ U({1, . . . , n}) are iid uniform random variables. If we assume
that each gi is strongly-convex with a common constant l defined as in (10), the authors
of [SRB13] have proven that the convergence is exponential in j (using a fixed, chosen,
step-size), like in the FG method rather than sub-linear as in SG, i.e.

E[J(uj)]− J(u�) �
(
1−min { l

16L
,
1

8n
}
)j

. (II.82)
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Remark 4. Although n appears in the convergence rate, in the well-conditioned setting,
i.e. where n > 2L

l , if we perform n iterations of SAG (i.e., one effective pass through
the data), the error is multiplied by (1− 1/8n)n ≤ exp(−1/8), which is independent of n.
Thus, in this setting each pass through the data reduces the excess objective by a constant
multiplicative factor that is independent of the problem.

Another version of the SAG method, known as SAGA, introduced in [DBLJ14], is defined
as

(SAGA) uj+1 = uj − τj

(
∇gij (uj)− ∇gij (φj+1

ij
) +

1

n

n∑
i=1

∇gi(φj+1
i )

)
, (II.83)

whereas the SAG method can be rewritten equivalently as:

(SAG) uj+1 = uj − τj

(∇gij (uj)− ∇gij (φj+1
ij

)

n
+

1

n

n∑
i=1

∇gi(φj+1
i )

)
. (II.84)

As stated in [DBLJ14], the major advantage of SAGA versus SAG is that it uses an
unbiased update formula for the descent direction, producing a simpler and tighter theory,
with better constants than SAG (see Chapter IV for more details).

II.D.9. SG with momentum

Several improved versions of SG can be found in the literature. For instance, a momentum
term can be added to the iterative SG scheme:

uj+1 = uj − τj∇gij (uj) + βj (uj − uj−1) .

Usually, the momentum parameter βj remains constant over the iteration, i.e. βj = β,
and the algorithm can be rewritten as:

uj+1 = uj −
j∑

k=1

τkβ
j−k∇gik(uk).

Actually, this last momentum recursive scheme uses a geometric weighting of the previous
gradients, while SAG/SAGA select and average the most recent evaluation of each previous
gradient. The momentum scheme still requires a decreasing sequence of step-sizes to
converge, and does not have a better convergence rate than SG, although it might improve
practical performance.
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II.D.10. SG with gradient averaging

Another closely related optimization scheme is to use an average of all previously used
gradients:

uj+1 = uj − τj
j

j∑
k=1

∇gij (uj), (II.85)

which is similar to the SAG algorithm, but all previously computed gradients are averaged.
It does not require any increase in the required memory, to store previously drawn
gradient, contrary to SAG since one can use a simple update formula for the averaged
gradient which only requires a memory space of two gradient evaluations. This SG with
gradient averaging method does not require a decreasing sequence of step-sizes, but it
does not improve the sub-linear convergence of SG, either.

II.D.11. Iterate Averaging

Another variation of SG-type algorithms, is obtained by selecting a step-size sequence
that decreases slower than 1/j:

uj+1 = uj − τ̃j∇gij (uj) with τ̃j =
τ̃0
jκ
, (II.86)

with 1/2 < κ ≤ 1 and where the index ij is sampled uniformly from the set {1, . . . , n}.
Then the convergence rate is measured on the averaged computed control, i.e. on

ũj =
1

j

j∑
k=1

uj . (II.87)

This algorithm does not have any restriction on τ̃0 anymore, contrary to the Robbins-
Monro version of SG, which required τ0 > 1/l, instead. The idea of averaging iterates
goes back to [Pol90] and [Rup88], and is often referred to as Polyak–Ruppert averaging
(see also [PJ92]). This approach is thus more robust to the problem, as it does not require
estimating the convexity constant l, and still converges with the same 1/j algebraic rate
on J(uj)− J(u�), as SG.

A more detailed analysis of SG algorithms, with and without the use of the Polyak-
Ruppert averaged trick, can be found in [BM11]. The authors generalize convergence
rates results, based on the convexity (but not necessarily strong) and Lipschitz continuity
assumptions, using the general step-size τ̃j = τ̃0j

−κ with 1/2 < κ ≤ 1.
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II.D.12. Hybrid Methods

In 1997, Bertsekas [Ber97] proposed a modified SG method, for problems of the form
(II.75), which gradually turns into a FG method over the iterations so that to improve
the convergence rate. Using a pass through all the n data points in the sum (II.75), with
a cyclic and deterministic manner, he recovered an exponential convergence rate. The
method can be decomposed as:

φ0 = uj

φi = φi−1 − τj∇gi(φi−1), i = 1, . . . , n

uj+1 = uj − τj

n∑
i=1

∇gi(φi−1).

The condition on the sequence τj is however numerically unstable, i.e. the convergence of
this method depends a lot on the step-size sequence τj in practice, as stated in [SRB13].
Another slight modification of SG to recover an exponential convergence has been proposed
in [FS12], where the authors replace the single gradient evaluation ∇gij with an averaged
version, on batches of increasing size. They achieve exponential convergence, under
suitable assumptions, and the exponential convergence rate is not independent of n,
contrary to the SAG/SAGA methods (see e.g. Remark 4).

II.D.13. Incremental Aggregated Gradient

The Incremental Aggregated Gradient (IAG), introduced in [BHG07], uses the same
update formula as SAG, although the index ij are set beforehand in a deterministic way.
Specifically, we go through the whole set of data points increasing the index one by one.
For a constant step-size τ > 0, n arbitrary initial points u1, u2, . . . , un ∈ U , an initial
aggregated gradient, denoted by dn defined as dn =

∑n
i=1 ∇gi(ui), the iterative scheme

reads, for j ≥ n:

uj+1 = uj − τ
1

n
dj ,

dj+1 = dj − ∇g(j+1)n(uj+1−n) +∇g(j+1)n(uj+1),

where (j)n ∈ {1, . . . , n} represents j modulo n, with the representative class {1, . . . , n}.
The authors in [BHG07] show exponential convergence, in the strongly convex setting, but
they do not provide any explicit rate. On the other hand, SAG, by using a random selection
of the index ij , (versus a cyclic selection in IAG) improves optimization performance, and
is more robust, when choosing the (fixed) step-size τ , allowing for larger τ .

The OCP studied in this thesis uses the mean based risk measure and can be recast into
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a ML framework

min
u∈U

Eω [l(ŷ(u; ·), (ω, zd)) + ς(u)] (II.88)

as shown in Section II.D.5, with the exact expectation. The SG method does not require
that the exact expectation is approximated beforehand as a discrete sum and can be
equally applied by sampling the random variable ω independently at each iteration,
according to the probability measure P on Γ. The resulting algorithm is

uj+1 = uj − τj∇ (l(ŷ(uj ; ·), (ωj , zd)) + ς(uj)) , ωj
iid∼ P.

This is the approach taken in Chapter III and IV.

On the other hand, in Chapter V, we do first approximate the true expectation by a
finite sum, using a suitable Gaussian quadrature formula. This recast the problem into
the form (II.88) proper of the ML problems.

Hence, all the methods described in this section could be applied. Among those, we have
chosen the SAG/SAGA method, for its simplicity and exponential convergence property.

II.E. Goals of the Thesis

In this thesis, we discuss numerical methods to solve an OCP constrained by elliptic
PDEs, involving random coefficients. The elliptic PDE writes{

− div(a(x, ω)∇y(x, ω) = g(x) + u(x) for x ∈ D a.e. ω ∈ Γ

y(x, ω) = 0 for x ∈ ∂D a.e. ω ∈ Γ.
(II.89)

and contains a random coefficient a(·, ω), where ω is an element of a complete probability
space (Γ,F , P ), yielding that the state solution y(·, ω) is stochastic as well. Notice that in
(II.89), the deterministic control u is distributed over the whole domain D. The functional
we aim at minimizing is the quadratic functional

f(y, u) =
1

2
‖y − zd‖2L2(D) +

β

2
‖u‖2L2(D) (II.90)

where the function zd is the target function we would like the state to be as close as
possible. Using the risk-neutral measure E, the quantity of interest to minimize becomes:

min
u∈U

J(u) = E[f(yω(u), u)] (II.91)

with f defined in (II.90), and yω(u) solution of (II.89).
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In order to make the problem tractable numerically, we will use three types of approxima-
tions:

• a Finite Element approximation, to discretize the PDE (II.89), using a mesh of
characteristic size h of the physical domain D;

• a collocation method to approximate the expectation in (II.91) using randomized
realizations (such as in a Monte Carlo estimator), or deterministic knots (such as
in a Gaussian quadrature formula);

• a line-search type algorithm to approximate the optimal control.

The ultimate goal of the thesis, is to propose new algorithms and analyze their complexity
(W = W (tol)), i.e. derive bounds on the computational cost W , required to reach a
given tolerance tol on the approximated control. Since we will use randomized line search
algorithms like SG and/or randomized quadrature formulas (as MC), the error between
the approximate control and the exact one will always be measured in a root mean
squared sense.

II.F. Outline of the thesis

The next 3 Chapters contain the core of the thesis and correspond to scientific papers,
either submitted for publication (Chapter III, V), or in preparation (Chapter IV).

In Chapter III, we present a solid mathematical framework on the PDE-constrained
OCP, with uncertain coefficients (II.91), providing existence and uniqueness results when
using the mean-based risk measure and detailing and analyzing discretized versions where
the PDE (II.89) is approximated by finite elements and the expectation in the cost
functional is approximated by a Monte Carlo method. We first consider a strategy in
which the finite element discretization and the Monte Carlo sample are fixed initially,
according to the desired tolerance to achieve, and a Full Gradient (FG) algorithm is
used to compute the approximate control. In particular, the same MC sample is used in
all gradient iterations. For this algorithm, we show that the asymptotic computational
complexity W (tol) to reach a root mean squared error (RMSE) of order tol is given by
W (tol) � tol−2− dγ

r+1 | log(tol)|, where γ is a parameter representing the efficiency of the
used PDE linear solver, i.e. (γ = 3 for a direct solver and γ = 1 up to logarithm factors
for an optimal multigrid solver), d is the dimension of the physical domain D ⊂ Rd, and
r is the polynomial degree of the used finite element space.

We compare then this fixed MC approach, with a stochastic gradient method, in which the
expectation in the computation of the approximated gradient, is obtained by independent
Monte Carlo estimators, with small sample sizes (even a size n = 1). We follow, in
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particular, the Robbins-Monro strategy [RM51, Rup88, NJLS09] of reducing progressively
the step-size to achieve convergence of the Stochastic Gradient iterations. We then show
that this SG approach reaches a computational complexity of W (tol) � tol−2− dγ

r+1 , i.e.
we improved the complexity by a log factor w.r.t. the FG approach. We could not
lower this complexity further by using a variable mesh-SG algorithm, where we refine the
discretization of the PDE along the iterations.

In Chapter IV, we extend the previous Robbins-Monro strategy, by replacing the small
size MC gradient estimator, by a multilevel Monte Carlo (MLMC) estimator of the
gradient, which exploits a hierarchy of computational grids of decreasing mesh size. The
multilevel paradigm has been introduced by Heinrich [Hei00] for parametric integration.
It has been extended to weak approximations of stochastic differential equations (SDEs)
in [Gil08] and has shown its efficiency, as a tool in numerical computations. Recently,
the application of MLMC methods to uncertainty quantification problems involving
PDEs with random data has been investigated from the mathematical point of view in
a number of works [BSZ11, BLS13, CST13, CGST11, MSŠ12, TSGU13, NT15]. In the
most favorable cases, it has been shown that the cost W (tol) of computing the expected
value of some output quantity of a stochastic differential model with accuracy tol, scales
as W (tol) � tol−2, and does not see the cost of solving the problem on fine discretizations.
In this work, we use MLMC within a SG algorithm. In particular, we present a full
convergence and complexity analysis of the resulting MLSG algorithm in the case of the
quadratic, strongly convex, OCP (II.91). By reducing progressively the bias and the
variance of the MLMC estimator over the iterations at a proper rate, we are able to
recover an optimal complexity W (tol) � tol−2 in the computation of the optimal control,
analogous to the one for the computation of a single expectation. This result considerably
improves the ones obtained in Chapter III.

We also propose a randomized version of the MLSG algorithm, which uses the unbiased
multilevel Monte Carlo algorithm proposed in [RG12, RG15] (see also [Gil15, Section
2.2]). In this randomized version, we replace the full MLMC sampler at each iteration
j of the Stochastic Gradient algorithm by only one evaluation of the difference of the
objective function on levels lj and lj − 1 where the level lj is drawn randomly (and
independently at each iteration) from a suitable probability mass function over all levels.
We show that this version of the MLSG algorithm also achieves optimal complexity
W (tol) � tol−2. The main advantage of this randomized version, w.r.t. the one that uses
a full MLMC estimator at each iteration, is that it requires fewer parameters to tune,
which is preferable, from a numerical point of view.

In Chapter V, we address again the OCP (II.91), yet this time we consider a deterministic
quadrature formula to approximate the expectation in the cost functional, in combination
with the SAGA algorithm (II.83). Assuming that the randomness in the PDE (II.89) can
be parameterized in terms of a small number M of independent random variables, the
expectation appearing in the cost functional J(u) can be written as a M -dimensional
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integral and suitably approximated by a quadrature formula as e.g. a tensorized Gaussian
quadrature, leading to an approximate optimal control problem

û∗ ∈ argmin
u∈U

Ĵ(u), Ĵ(u) =

n∑
i=1

ζif(yηi(u), u) (II.92)

where ηi are the quadrature knots and ζi the quadrature weights with
∑n

i=1 ζi = 1. For a
given control u, evaluating Ĵ(u) entails the computation of the n solutions {yηi(u)}ni=1 of
the underlying PDE. This approach is known in the literature as stochastic collocation
method and has been analyzed e.g. in [BNT10]. It leads, in favorable cases, to an error
in the functional that converges to zero (sub)-exponentially in n, although typically
exposed to the curse of dimensionality, hence acceptable only for a small number of
random variables. By replacing the tensorized quadrature by a suitable sparse one (see e.g.
[BG04, NTT16]), dimension free convergence rates have been demonstrated in certain
cases (see e.g. [SS13, HANTT16b, EST18, ZDS18] and references therein). However, in
this chapter, we stick to the simpler setting of a tensorized Gaussian quadrature formula
and a small number of random variables.

We then apply on the functional (II.92), the SAGA method, which computes at each
iteration, the gradient of the approximated Ĵ , in only one quadrature point, randomly
chosen from a possibly non-uniform distribution. The SAGA algorithm as stated in
(II.83) is applicable to the case of uniform weights ζi = 1

n , i = 1, . . . , n and uniformly
drawn index ij over {1, . . . , n}. A variant of the SAGA method that uses a non-uniform
sampling of the indexes ij has been proposed in [SBA+]. In this Chapter we first extend
the SAGA algorithm to the case of non-uniform weights, as they appear naturally in a
Gaussian quadrature formula (II.92). In particular, we propose an importance sampling
strategy, where the indexes ij are drawn from a possibly non-uniform distribution, also
different from the distribution induced by the weights {ζi}ni=1. Following similar steps as
in [DBLJ14, SBA+], we present a full theoretical convergence analysis of the generalized
SAGA method, for the OCP (II.92), and prove theoretically a complexity bound of
W (tol) � tol−

dγ
r+1 | log(tol)|M , where M is the stochastic dimension. Compared with the

complexity of SG+Monte Carlo obtained in Chapter III, we see that the factor tol−2

proper of Monte Carlo is replaced by | log(tol)|M which is the complexity of the Gaussian
quadrature formula. This improvement is possible thanks to the fact that we use a
SAGA method, whose convergence is exponential as recalled in Section II.D.8, instead
of SG, whose convergence is sub-linear and would therefore retain the factor tol−2 even
when using an accurate Gaussian quadrature. This complexity is reached at the price of
requiring a larger memory size w.r.t. a standard SG algorithm, being multiplied by a
factor | log(tol)|M+1. Finally, as shown in the numerical examples, the strength of the
SAGA approach to solve an OCP, is in the pre-asymptotic regime, as acceptable solutions
may be obtained already before a full sweep over all quadrature points (which is the cost
of a single iteration, when we use the Full Gradient approach).
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III Analysis of stochastic gradient
methods for PDE-constrained OCPs
with uncertain parameters
This Chapter is essentially the same as [MKN18] submitted for publication.

III.A. Introduction

Many problems in engineering and science, e.g. shape optimization in aerodynamics or heat
transfer in thermal conduction problems, deal with optimization problems constrained by
partial differential equations (PDEs) [HPUU09, BS12, De 15, Haz10, LBE+14]. Often,
these types of problems are affected by uncertainties, due to a lack of knowledge, intrinsic
variability in the system, or an imprecise manufacturing process. For instance, to
determine the optimal cooling of a super-computing center, one should take into account
the fact that the heat source from the supercomputers could vary considerably over
time and also the heat conduction properties of the machines might not be perfectly
determined. As these material properties or boundary conditions are not precisely known,
it is reasonable to consider optimal control problems (OCPs) constrained by PDEs with
uncertain coefficients, which could be described as random variables or random fields.
This OCP is sometimes also referred to as Optimization Under Uncertainty (OUU).

In this work we focus on the numerical approximation of the problem of controlling
the solution of an elliptic PDE with random coefficients by a distributed unconstrained
control. Specifically, the control acts as a volumetric forcing term, so that the solution is
as close as possible to a given target function.

While there is a vast literature on the numerical approximation of PDE-constrained
optimal control problems (see e.g. [BS12, HPUU09] and references therein) in the
deterministic case, as well as on the numerical approximation of (uncontrolled) PDEs
with random coefficients (see e.g. [GWZ14, BNT10, LPS14] and references therein), the
analysis of corresponding PDE constrained control problem under uncertainty is much
more recent and incomplete, although the topic has received increasing attention in the
last few years.
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The formulations of the PDE-constrained OCPs under uncertainty that can be found in
the literature can be roughly grouped in two categories.

In the first category, the control is random [CQ14, AAUH17, TKXP12, RW12, KS13,
BOS16]. This situation arises when the randomness in the PDE is observable hence an
optimal control can be built for each realization of the random system. However, the
corresponding optimality system might still be fully coupled in the random parameters if
the objective function involves some statistics of the state variables. The dependence on
the random parameters is typically approximated either by polynomial chaos expansions
or Monte Carlo (MC) techniques.

The former approach is considered e.g. in [KS13], where the authors prove analytic
dependence of the control on the random parameters and study its best N -term polynomial
chaos approximation for a linear parabolic PDE-constrained OCP; the work [CQ14],
combines a stochastic collocation with a Finite Element (FE) based reduced basis method
to alleviate the computational effort; the works [RW12, TKXP12, BOS16] address the
case of a fully coupled optimality system discretized by either Galerkin or collocation
approaches and propose different methods, such as sequential quadratic programming, or
block diagonal preconditioning to solve the coupled system efficiently. Monte Carlo and
Multilevel Monte Carlo approaches are considered in [AAUH17] instead, where the case
of random coefficients with limited spatial regularity is addressed.

In the second category, the control is deterministic [APSG17, VBV18, BvW11, Kou12,
KS16, KHRvBW13, GLL11]. This situation arises when randomness in the system is not
observable at the time of designing the control, so that the latter should be robust in the
sense that it minimizes the risk of obtaining a solution which leads to high values of the
objective function. This situation is also referred to as risk-averse optimal control and
always leads to a fully coupled optimality system in the random parameters. The idea of
minimizing a risk to obtain a solution with favorable properties goes back to the origins
of robust optimization [SDR09]. Here, risk refers to a suitable statistical measure of the
objective function to be minimized, such as its expectation, expectation plus variance, a
quantile, or a conditional expectation above a quantile (so called Conditional Value at
Risk (CVaR) [RU02]).

Numerical methods for OCPs of this category typically depend on the choice of the risk
measure. For example, the work [APSG17] considers a risk measure that involves the
mean and variance of the objective function and uses second order Taylor expansions
combined with randomized estimators to reduce the computational effort. The work
[VBV18] considers a risk measure that involves only the mean of the objective function
(hereafter named mean-based risk), with an additional penalty on the variance of the
state, and proposes a gradient type method, in which the expectation of the gradient is
computed by a Multilevel Monte Carlo method. In [BvW11], the authors also consider a
mean-based risk problem and propose a reduced basis method on the space of controls to
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dramatically reduce the computational effort. In the work [Kou12], the author presents a
more general type of OCP, using the general notion of a risk measure, and derives the
corresponding optimality system of PDEs to be solved. For its numerical solution, a
trust-region Newton conjugate gradient algorithm is proposed in [KHRvBW13], combined
with an adaptive sparse grid collocation for the discretization of the PDE in the stochastic
space. The work [KS16] considers derivative-based optimization methods for the robust
CVaR risk measure, which are building upon introducing smooth approximations to the
CVaR. Finally, in the work [GLL11], the authors consider a boundary OCP where the
deterministic control appears as a Neumann boundary condition.

In this work, we follow the second modeling category and consider the (robust) OCP
of minimizing the mean-based risk of the objective function. We consider in particular
gradient type methods where adjoint calculus is used to represent the gradient of the
objective function, and FE approximations of the primal and dual problems, as well as a
Monte Carlo approximation of the expectation in the risk measure are employed. The
reason for looking at Monte Carlo approximations, instead of polynomial chaos ones, is
to develop methods that can potentially handle many random parameters and possibly
rough random coefficients.

Our main contribution is to provide a full error analysis including the finite element, the
Monte Carlo and the gradient iterations errors, as well as a complexity analysis when
all sources of errors are optimally balanced to achieve a given tolerance. The motivation
for analyzing gradient type optimization methods is twofold. First, their rather simple
structure allows for a complete complexity analysis, which is desirable in practice due to
their wide-spread use. Second, our analysis reveals that the cost due to the FE and the
Monte Carlo approximations dominate the overall computational complexity, in the sense
that the gradient type method only increases the cost by a logarithmic term.

It is noteworthy that other error analysis have been proposed in [CQ14] in the case of a
random control, with a discretization in space by Finite Elements and in probability by
stochastic collocation, and in [GLL11] in the case of a mean-based risk for a deterministic
boundary control problem, using a Finite Element discretization both in space and in
probability.

The first gradient method that we consider is the standard gradient method (which we
call fixed MC gradient), in which the Finite Element discretization and the Monte Carlo
samples are chosen initially and kept fixed over the iterations of the gradient method. If
N is the sample size of the Monte Carlo estimator, this method entails the solution of N
primal and N dual problems at each iteration of the gradient method, which could be
troublesome if a small tolerance is required, entailing a very large N and small Finite
Element mesh size.

We then turn to stochastic versions of the gradient method in which the gradient is
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re-sampled independently at each iteration and the Finite Element mesh size can be
refined along the iterations. This corresponds to taking, at each iteration, an independent
Monte Carlo estimator with only one realization (N = 1) or a very small and fixed sample
size (N = N̄) independently of the required tolerance, with possibly a finer Finite Element
mesh. We follow, in particular, the Robbins-Monroe strategy [RM51, Rup88, NJLS09] of
reducing progressively the step-size to achieve convergence of the Stochastic Gradient
iterations.

Stochastic Gradient (SG) techniques have been extensively applied to machine learning
problems [KY97, FB15, DB15, DB16], but have not yet been used for risk-averse PDE-
constrained optimization problems. Here, we show that our Stochastic Gradient method
improves the complexity of the fixed MC gradient method by a logarithmic factor.
Although the computational gain is not dramatic, we see potential in this approach as
only one primal problem and one dual problem have to be solved at every iteration of the
gradient method. Moreover, we believe that the whole construction is more amenable to
an adaptive version, which, in combination with an appropriate error estimator, allows
for a self-controlling algorithm. We leave this for future work.

The rest of the paper is organized as follows: in Section III.B we set the mean-based risk-
averse optimal control problem and recall its well posedness and the optimality conditions;
in Sections III.C, III.D, III.E we introduce, respectively, the finite element discretization,
the Monte Carlo approximation, and the steepest descent (gradient) method, including
their full error analysis. In particular, Theorem 12 in Section III.E gives an error bound
for the fully discrete solution of the fixed MC gradient method, whereas Corollary 2 gives
the corresponding computational complexity. In Section III.F we analyze the Stochastic
Gradient method with fixed finite element discretization over the iterations (with error
bound given in Theorem 13 and the corresponding complexity result in Corollary 3),
whereas in Section III.G we analyze the Stochastic Gradient version in which the Finite
Element mesh is refined over the iterations (Theorem 15 and Corollary 4). In Section
III.H, we discuss a 2D test problem and confirm numerically the theoretical error bounds
and complexities derived in the preceding Sections. Finally, in Section III.I we draw some
conclusions.

III.B. Problem setting

We start introducing the primal problem that will be part of the OCP discussed in the
following. Specifically, we consider the problem of finding the solution y : D × Γ → R of
the elliptic random PDE{

− div(a(x, ω)∇y(x, ω)) = φ(x, ω), x ∈ D, ω ∈ Γ,

y(x, ω) = 0, x ∈ ∂D, ω ∈ Γ,
(III.1)
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where D ⊂ Rd is open and bounded, denoting the physical domain, (Γ,F , P ) is a complete
probability space, and ω ∈ Γ is an elementary random event. The diffusion coefficient a is
an almost surely (a.s.) continuous and positive random field on D, and φ is a stochastic
source term (that could contain, for example, a deterministic control part).

Before addressing the optimal control problem related to the random PDE (III.1), we
will first recall the well posedness results for (III.1). We begin by recalling some usual
function spaces needed for the analysis that follows. Let Lp(D) for 1 ≤ p < ∞ denote the
space of functions for which the p-th power of their absolute value is Lebesgue integrable,
that is

Lp(D) = {y : D → R, f measurable, and

∫
D
|y|pdx < +∞},

and L∞(D) the space of measurable functions that are bounded almost everywhere (a.e.)
on D. Throughout this work, we will denote by ‖ · ‖ ≡ ‖ · ‖L2(D) the usual L2(D)-norm
induced by the inner product 〈f, g〉 = ∫

D fgdx for any f, g ∈ L2(D). Furthermore, we
introduce the Sobolev spaces

H1(D) = {y ∈ L2(D), ∂xiy ∈ L2(D), i = 1, . . . , n}

and

H1
0 (D) = {y ∈ H1(D), y|∂D = 0}.

We use the equivalent H1-norm on the space H1
0 (D) defined by ‖y‖H1(D) = ‖y‖H1

0 (D) =

‖∇y‖ for any y ∈ H1
0 (D). Moreover, we recall the Poincaré inequality for any function

y ∈ H1
0 (D)

‖y‖ ≤ Cp‖∇y‖ = Cp‖y‖H1(D),

where Cp is the Poincaré constant, and that H−1(D) =
(
H1

0 (D)
)∗ is the topological dual

of H1
0 (D). For r ∈ N we further recall the space Hr(D) of L2(D) functions with all

partial derivatives up to order r in L2(D) with norm ‖y‖Hr(D) and semi-norm |y|Hr(D)

given by

‖y‖2Hr(D) =
∑
|α|≤r

∥∥∥∥∥∂|α|y
∂xα

∥∥∥∥∥
2

L2(D)

and |y|2Hr(D) =
∑
|α|=r

∥∥∥∥∥∂|α|y
∂xα

∥∥∥∥∥
2

L2(D)

,

respectively, for the multi-index α = (α1, . . . , αn). Finally, we introduce the Bochner
spaces Lp(Γ,V), which are formal extensions of Lebesgue spaces Lp(Γ), for functions with
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values in a separable Hilbert space V as

Lp(Γ,V) = {y : Γ → V, y measurable,

∫
Γ
‖y(ω)‖pVdP (ω) < +∞},

equipped with the norm ‖y‖Lp(Γ,V) =
(∫

Γ ‖y(ω)‖pVdP (ω)
) 1

p , see, e.g., [Eva98] for details.

As it is common for the well posedness of the elliptic PDE (III.1), we assume that the
diffusion coefficient a in (III.1) is uniformly elliptic.

Assumption 11. The diffusion coefficient a ∈ L∞(D× Γ) is bounded and bounded away
from zero a.e. in D × Γ, i.e.

∃ amin, amax ∈ R such that 0 < amin ≤ a(x, ω) ≤ amax a.e. in D × Γ.

Now we are in the position to recall the well posedness of the random PDE (III.1), which
is a standard result, see e.g. [LPS14, BTZ04].

Lemma 3 (Well posedness of (III.1)). Let Assumption 11 hold. If φ ∈ L2(Γ, H−1(D)),
then problem (III.1) admits a unique solution y ∈ L2(Γ, H1

0 (D)) s.t.

‖y(·, ω)‖H1
0 (D) ≤

1

amin
‖φ(·, ω)‖H−1(D) for a.e. ω ∈ Γ

and ‖y‖L2(Γ,H1
0 (D)) ≤

1

amin
‖φ‖L2(Γ,H−1(D)).

Finally, as we will occasionally need H2-regularity in the following Sections, we also
introduce a sufficient condition on the domain D and on the gradient of a.

Assumption 12. The domain D ⊂ Rd is polygonal convex and the random field a ∈
L∞(D × Γ) is such that ∇a ∈ L∞(D × Γ),

Then, using standard regularity arguments for elliptic PDEs, one can prove the following
result [Eva98].

Lemma 4. Let Assumptions 11 and 12 hold. If φ ∈ L2(Γ, L2(D)), then problem (III.1)
has a unique solution y ∈ L2(Γ, H2(D)). Moreover there exists a constant C, independent
of φ, such that

‖y‖L2(Γ,H2(D)) ≤ C‖φ‖L2(Γ,L2(D)).

We are now ready to introduce the optimal control problem linked with the PDE (III.1),
which we will study in the rest of the paper.
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III.B.1. Optimal Control Problem

We define the primal problem for the OCP as the elliptic PDE (III.1), by particularizing
its right hand side to:{

− div(a(x, ω)∇y(x, ω)) = g(x) + u(x), x ∈ D, ω ∈ Γ,

y(x, ω) = 0, x ∈ ∂D, ω ∈ Γ,
(III.2)

with g ∈ H−1(D) and u ∈ U , where U ⊂ L2(D) denotes the set of all admissible
(deterministic) control functions. We set the state space of the solution to (III.2) as
Y = H1

0 (D). To emphasize the dependence of the solution to the PDE on the control
function and on a particular realization a(·, ω) of the random field, we will use the notation
yω(u). When the particular realization of a is not relevant, or when no confusion arises,
we will also simply write y(u) from times. In this work, we focus on the objective function

J(u) = E[f(u, ω)] with f(u, ω) =
1

2
‖yω(u)− zd‖2 + α

2
‖u‖2, (III.3)

where zd is a given target function which we would like the state yω(u) to approach as
close as possible, in a mean-square-error sense. The coefficient α ≥ 0 is a constant of the
problem that models the price of energy, i.e. how expensive it is to add some energy in
the control u in order to decrease the first distance term E

[‖yω(u)− zd‖2
]
. The ultimate

goal then is the OCP, of determining the optimal control u�, so that

u� ∈ argmin
u∈U

J(u), s.t. yω(u) ∈ Y solves (III.2) a.s. (III.4)

Remark 5. The optimal control u� in (III.4) is the one that provides the best fit ‖yω(u�)−
zd‖ on average not requiring too much control energy (induced by the regularization
term). In view of applications, one may consider a more general objective function
J(u) = σ

(
1
2‖yω(u)− zd‖2

)
+ α

2 ‖u‖2, where σ(·) is a more robust risk measure such as
the Conditional Value at Risk [KS16]. In this paper, however, we restrict to the simple
expectation risk measure, namely σ(·) = E[·], for sake of simplicity.

As we aim at minimizing the functional J , we will use the theory of optimization and
calculus of variations. Specifically, we introduce the optimality condition for the OCP
(III.4), in the sense that the optimal control u� satisfies

〈∇J(u�), v − u�〉 ≥ 0 ∀v ∈ Y. (III.5)

Here, by ∇J(u) we denote the L2(D)-functional representation of the Gateaux derivative
of J , namely∫

D
∇J(u)δu dx = lim

ε→0

J(u+ εδu)− J(u)

ε
= DJ(u)(δu) ∀ δu ∈ L2(D).
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In order to study the well posedness of problem (III.4), we introduce a further assumption
on α, U and g.

Assumption 13. The regularization parameter α is strictly positive, i.e. α > 0. Moreover,
the space of admissible control functions is U = L2(D) and the deterministic source term
is such that g ∈ L2(D).

It follows from the results in [Kou12] that problem (III.4) is well posed. As a matter of
fact, problem (III.4) is even well posed for more general settings than the one considered
here. For completeness, we give a short proof for the particular setting considered in this
work, as many of the following results will build on it. For this we first introduce the
following solution operator corresponding to the elliptic PDE (III.1):

S : L2(Γ, H−1(D)) −→ L2(Γ, Y )

φ �−→ Sφ = y solution of (III.1).

Notice that the operator S is continuous in view of Lemma 3. In the case of φ = g + u ∈
L2(D) deterministic, we will sometimes use the notation Sω(g + u) = yω(u) to denote
one ω-realization of y. As S is self-adjoint, we have S∗ = S. Moreover, for any separable
Hilbert space V, we denote by E the usual expectation operator with respect to (w.r.t.)
the probability measure P acting on the space L2(Γ,V), i.e. E : L2(Γ,V) → V . Its adjoint
operator is

E∗ : V ′ −→ L2(Γ,V ′)

v �−→ v,

which associates the constant stochastic (i.e. deterministic) function v ∈ L2(Γ,V ′) to
each deterministic function v ∈ V ′. Finally we define the two operators

S̃ = SE∗ : L2(D) → L2(Γ, Y ) and S̃∗ = ES∗ : L2(Γ, Y ) → L2(D).

Existence and uniqueness of the OCP (III.4) can then be stated as follows.

Theorem 8. Suppose Assumptions 11 and 13 hold. Then the OCP (III.4) admits a
unique control u� ∈ U . Moreover

∇J(u) = αu+ E[pω(u)], (III.6)

where pω(u) = p is the solution of the adjoint problem (a.s. in Γ)

{
− div(a(·, ω)∇p(·, ω)) = y(·, ω)− zd in D,

p(·, ω) = 0 on ∂D.
(III.7)
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Proof. Let us define the inner product � ·, · � on the Bochner space L2(Γ, U), �
u, v �= E [< u, v >] =

∫
Γ

∫
D u(x, ω)v(x, ω)dx dP (ω). Using the linearity of the intro-

duced operators, we can write J(u) as

J(u) =
1

2
E
[
< S̃(g + u)− zd, S̃(g + u)− zd >

]
+
α

2
< u, u >

=
1

2
� S̃(g + u)− zd, S̃(g + u)− zd � +

α

2
< u, u >

=
1

2
� S̃u, S̃u � + � S̃g − zd, S̃u � +

1

2
� S̃g − zd, S̃g − zd � +

α

2
< u, u > .

Defining the bi-linear form A : U × U → R, A(u, v) =� S̃u, S̃v � +α < u, v >, the
linear form G : U → R, G(v) =� S̃g − zd, S̃v �, and the constant
k = 1

2 � S̃g − zd, S̃g − zd �∈ R, we find

J(u) =
1

2
A(u, u) +G(u) + k.

Thanks to Assumptions 11 and 13, it is easy to see that A is coercive and continuous
(cf. Lemma 3), that G is continuous, and that k < +∞. Then, applying Thm. 7.1 of
[Lio71], we conclude that there exists a unique solution u� ∈ U to problem (III.4). Next,
we compute the Gâteaux derivative of J at the point u in the direction δu:

DJ(u)(δu) =

∫
D
∇J(u)δudx = A(u, δu) +G(δu)

=� S̃u, S̃δu � +α < u, δu > + � S̃g − zd, S̃δu �
=< S̃∗(S̃(g + u)− zd), δu > + < αu, δu >

=< ES∗(S(g + u)− zd), δu > + < αu, δu >

=< αu+ E [S∗(S(g + u)− zd)] , δu > .

Defining pω(u) as pω(u) = S∗ (S(g + u)− zd) = S∗ (yω(u)− zd), which is the solution of
equation (III.7), we get ∇J(u) = αu+ E [pω(u)].

Remark 6. By computing the gradient of f w.r.t. u, we can easily get ∇f(u, ω) =

αu+ pω(u). Consequently, the previous proof, also reveals that

∇J(u) = ∇E[f(u, ω)] = E [∇f(u, ω)] .

In Theorem 8, pω(u) = p is the so-called adjoint function associated to the elliptic PDE
(III.2) and satisfies the adjoint equation which depends on the solution y = yω(u). As p
depends on u through y, we will also write p(yω(u)) for pω(u) from times.

For notational convenience, we introduce the weak formulation of (III.2), which reads

find yω ∈ Y s.t. bω(yω, v) = 〈g + u, v〉 ∀v ∈ Y for a.e. ω ∈ Γ, (III.8)
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where bω(y, v) :=
∫
D a(·, ω)∇y∇vdx. Similarly, the weak form of problem (III.7) reads:

bω(v, pω) = 〈v, yω − zd〉 ∀v ∈ Y for a.e. ω ∈ Γ. (III.9)

We can thus rewrite the OCP (III.4) equivalently as:⎧⎪⎨⎪⎩
minu∈U J(u) = 1

2E[‖yω(u)− zd‖2] + α
2 ‖u‖2

s.t. yω ∈ Y solving

bω(yω, v) = 〈g + u, v〉 ∀v ∈ Y for a.e. ω ∈ Γ.

(III.10)

As we want to compute numerically the problem solution, we introduce in the following
Section a Finite Element approximation and different versions of error estimates.

III.C. Finite Element approximation in physical space

In this section we analyze the semi-discrete OCP obtained by approximating the underlying
PDE by a Finite Element method. In particular, we provide a priori error bounds for
the optimal control. Let us denote by {τh}h>0 a family of regular triangulations of D.
Furthermore, let Y h be the space of continuous piece-wise polynomial functions of degree
r over τh that vanish on ∂D, i.e. Y h = {y ∈ C0(D) : y|K ∈ Pr(K) ∀K ∈ τh, y|∂D =

0} ⊂ Y = H1
0 (D). Finally, we set Uh = Y h. We can then reformulate the OCP (III.10)

as a finite dimensional OCP in the FE space:

⎧⎪⎨⎪⎩
minuh∈Uh Jh(uh) := 1

2E[‖yhω(uh)− zd‖2] + α
2 ‖uh‖2

s.t. yhω ∈ Y h and

bω(y
h
ω(u

h), vh) = 〈uh + g, vh〉 ∀vh ∈ Y h for a.e. ω ∈ Γ.

(III.11)

Analogously to the (continuous) solution operator S of (III.1) introduced in Section
III.B.1, here we introduce its discrete version associated to problem (III.11). That is, let
Shω : U → Y h be such that yhω = Shω(g + uh) solves bω(yhω, vh) = 〈g + uh, vh〉 ∀vh ∈ Y h.
We also introduce the L2-projection operator onto Uh, denoted by gh = ΠUh(g), as

∀q ∈ U, 〈ΠUhq, vh〉 = 〈q, vh〉 ∀vh ∈ Uh.

As mentioned before, we may suppress the index ω of Sω when no ambiguity arises, we do
so also for Shω = Sh. Moreover, we denote by

(
Sh
)∗ the corresponding adjoint operator of

Sh. From now on, and throughout the rest of this paper, we assume that Assumptions
11, 12 and 13 are verified. Then we can state the following FE approximation result.
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Lemma 5. The discrete OCP (III.11) is well posed and ∇Jh can be characterized as

∇Jh(uh�) = ΠUh(αuh� + E[ph(uh�)]) (III.12)

and

ph(uh�) :=
(
Sh
)∗

(Sh(uh� + g)− zd) ∈ L2(Γ, Y h).

Remark 7. Notice that since we defined Uh = Y h, it follows that E[ph(uh�)] ∈ Uh and
∇Jh(uh�) = αuh� + E[ph(uh�)].

Following similar arguments as in Thm. 3.4 of [HPUU09] and using the optimality
condition, and the weak form of the primal and dual problems, we can prove the following.

Theorem 9. Let u� be the optimal control solution of problem (III.10) and denote by uh�
the solution of the approximated problem (III.11). Then it holds that

α

2
‖u�−uh�‖2+

1

2
E[‖y(u�)−yh(uh�)‖2] ≤

1

2α
E[‖p(u�)−p̃h(u�)‖2]+ 1

2
E[‖y(u�)−yh(u�)‖2],

(III.13)

where, p̃h(u�) = p̃hω(u�) is such that

bω(v
h, p̃hω) = 〈vh, yω − zd〉 ∀vh ∈ Y h for a.e. ω ∈ Γ. (III.14)

Proof. It follows from Theorem 8 and Lemma 5 that the FE version of the optimality
condition (III.5) reads:

〈∇Jh(uh�), vh − uh�〉 ≥ 0 ∀vh ∈ Uh. (III.15)

Choosing v = uh� ∈ Y h ⊂ Y in (III.5), vh = ΠUh(u�) in (III.15), and observing that

0 ≤ 〈∇Jh(uh�),ΠUh(u�)− uh�〉 = 〈∇Jh(uh�),ΠUh(u� − uh�)〉 = 〈∇Jh(uh�), u� − uh�〉,

since ∇Jh(uh�) ∈ Uh, we obtain

〈α(u� − uh�) + E[p(u�)]− E[ph(uh�)], u
h
� − u�〉 ≥ 0.

Then introducing p̃h(u�) =
(
Sh
)∗

(S(u� + g)− zd), which belongs to L2(Γ, Y h) since the
two operators S and

(
Sh
)∗ are bounded, we obtain

α‖u� − uh�‖2 ≤ 〈E[p(u�)]− E[p̃h(u�)] + E[p̃h(u�)]− E[ph(uh�)], u
h
� − u�〉. (III.16)

In the following, we will repeatedly use the primal and dual weak formulations (III.8),(III.9)
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and(III.14), for the continuous problem and its FE approximation, yielding

〈p̃hω(u�)−phω(uh�), uh� − u�〉 = bω(y
h
ω(u

h
�)− yhω(u�), p̃

h
ω(u�)− phω(u

h
�))

=

∫
D
(yhω(u

h
�)− yhω(u�))︸ ︷︷ ︸
±yω(u�)

(yω(u�)− yhω(u
h
�))dx

= −‖yω(u�)− yhω(u
h
�)‖2 +

∫
D
(yω(u�)− yhω(u�))(yω(u�)− yhω(u

h
�))dx

≤ −‖yω(u�)− yhω(u
h
�)‖2 +

1

2
‖yω(u�)− yhω(u�)‖2 +

1

2
‖yω(u�)− yhω(u

h
�)‖2

≤ −1

2
‖yω(u�)− yhω(u

h
�)‖2 +

1

2
‖yω(u�)− yhω(u�)‖2.

Taking the mean over all realizations ω ∈ Γ, using (III.16), and Fubini’s theorem we have
that

α‖u� − uh�‖2+
1

2
E[‖y(u�)− yh(uh�)‖2]

≤ E[〈p(u�)− p̃h(u�), u
h
� − u�〉] + 1

2
E[‖y(u�)− yh(u�)‖2]

≤ 1

2α
‖p(u�)− p̃h(u�)‖2 + α

2
‖uh� − u�‖2 + 1

2
E[‖y(u�)− yh(u�)‖2],

which leads to the claim.

The FE error ‖u� − uh�‖ is thus completely determined by the approximation properties
of the discrete solution operators Sh and

(
Sh
)∗. Using similar arguments as in [HPUU09,

Thm. 3.5], we can also control the FE error of the state variable in H1, i.e. of ‖y(u�)−
yh(uh�)‖H1

0
.

Theorem 10. With the same notations as in Theorem 9, there exists a constant C > 0

independent of h such that

‖u� − uh�‖2 + E[‖y(u�)− yh(uh�)‖2] + h2E[‖y(u�)− yh(uh�)‖2H1
0
]

≤ C{E[‖p(u�)− p̃h(u�)‖2] + E[‖y(u�)− yh(u�)‖2] + h2E[‖y(u�)− yh(u�)‖2H1
0
]}.

(III.17)

Proof. From the uniform coercivity of the bi-linear form bω(·, ·), c.f. Assumption 11, it
immediately follows

‖yω − yhω‖2H1
0
≤ 1

amin

{
bω
(
yω − yhω, yω − ỹhω

)
+ bω

(
yω − yhω, ỹ

h
ω − yhω

)}
,
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where we have used the notation yω = yω(u�), yhω = yhω(u
h
�), and ỹhω = yhω(u�). Moreover

1

amin
bω
(
yω − yhω, yω − ỹhω

) ≤ amax
amin

‖yω − yhω‖H1
0
‖yω − ỹhω‖H1

0

≤ 1

4
‖yω − yhω‖2H1

0
+
a2max
a2min

‖yω − ỹhω‖2H1
0
,

as well as

1

amin
bω
(
yω−yhω, ỹhω − yhω

) ≤ 1

amin
〈u� − uh� , ỹ

h
ω − yhω〉

≤ 1

amin
〈u� − uh� , ỹ

h
ω − yω〉+ 1

amin
〈u� − uh� , yω − yhω〉

≤ C2
p

2amin
‖u� − uh�‖2 +

1

2amin
‖yω − ỹhω‖2H1

0
+

C2
p

a2min
‖u� − uh�‖2 +

1

4
‖yω − yhω‖2H1

0
.

Finally, it follows that

‖yω − yhω‖2H1
0
≤ C{‖yω − ỹhω‖2H1

0
+ ‖u� − uh�‖2}

and

h2E[‖yω − yhω‖2H1
0
] ≤ h2C{E[‖yω − ỹhω‖2H1

0
] + ‖u� − uh�‖2},

which, combined with (III.13), completes the proof.

We can now proceed and estimate the right hand side of (III.17), assuming the primal
and dual solutions are sufficiently smooth.

Corollary 1. Suppose that y(u�), p(u�) ∈ L2(Γ, Hr+1(D)), then we have

‖u� − uh�‖2 + E[‖y(u�)− yh(uh�)‖2] + h2E[‖y(u�)− yh(uh�)‖2H1
0
]

≤ Ch2r+2{E[|yω(u�)|2Hr+1 ] + E[|pω(u�)|2Hr+1 ]}. (III.18)

Proof. Under the assumptions of the corollary, the operators Sω, S∗
ω : L2(D) → H2(D) ∩

H1
0 (D) are bounded. Using first the Aubin-Nitsche duality argument and then Céa’s

Lemma (see e.g. [Qua09]), for the first term on the right hand side of (III.17), we find

E[‖p(u�)− p̃h(u�)‖2] ≤ CE[h2‖p(u�)− p̃h(u�)‖2H1
0
]

≤ CE[h2+2r|p(u�)|2Hr+1 ].

A similar argument holds for the second term on the right hand side of (III.17). Finally
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the third term on the right hand side of (III.17) can be bounded directly by

h2E[‖y(u�)− yh(u�)‖2H1
0
] ≤ Ch2E[Ch2r|y|2Hr+1 ].

All these inequalities added together lead to the claim.

III.D. Approximation in probability space

In this section we consider the semi-discrete (approximation in probability only) optimal
control problem obtained by replacing the exact expectation E[·] in (III.3) by a suitable
quadrature formula Ê[·]. The semi-discrete collocation problem then reads:⎧⎪⎨⎪⎩

minu∈U Ĵ(u) = 1
2Ê[‖yω(u)− zd‖2] + α

2 ‖u‖2
s.t. yωi(u) ∈ Y and

bωi(yωi(u), v) = 〈g + u, v〉 ∀v ∈ Y i = 1, . . . , N.

(III.19)

This quadrature formula could either be based on deterministic quadrature points or
randomly distributed points leading, in this case, to a Monte Carlo type approximation.
In particular, if X : Γ → R, ω �→ X(ω), is a random variable, let Ê[X] =

∑N
i=1 ζiX(ωi)

be the quadrature operator, where ζi are the quadrature weights and ωi the quadrature
knots. In the case of a Monte Carlo approximation, we have ζi = 1

N for every i, and ωi
being independent and identically distributed (iid) points in Γ, all distributed according
to the measure P .

In the next sub-sections we will particularize results for the cases of a Monte Carlo type
quadrature. Although for the sake of notation we present these results for the semi-discrete
problem (i.e. continuous in space, discrete in probability), they extend straightforwardly
to the fully discrete problem in probability and in space, using a control ûh instead of û,
a solution of (III.19). We study the deterministic Gaussian-type quadrature method in
the appendix.

III.D.1. Monte Carlo method

Consider a Monte Carlo approximation of the expectation appearing in (III.10), namely
the exact expectation E is replaced by E

−→ω
MC [X(ω)] := 1

N

∑N
i=1X(ωi), where N denotes

the number of ωi, i = 1, . . . , N , of the random variable ω and denote by −→ω = {ωi}Ni=1

the collection of these ωi. We recall that the use of MC type approximations might be
advantageous over a collocation/quadrature approach in cases where p is rough, which is,
for example, the case when a(·, ·) is a rough random field w.r.t. the random parameter ω
or has a short correlation length.

Remark 8. We stress here that û is a stochastic function because it depends on the N
iid realizations −→ω = {ωi}Ni=1 of the random variable ω.
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Theorem 11. Let û� be the optimal control of problem (III.19) with Ê = E
−→ω
MC and u�

be the exact optimal control of the continuous problem (III.10), then we have

α

2
E[‖û� − u�‖2] + E[‖y(u�)− y(û�)‖2] ≤ 1

N

1

2α
E[‖p(û�)‖2].

Proof. Similarly to the proof of Theorem 9, the two optimality conditions read

〈∇J(u�), v1 − u�〉 ≥ 0 ∀v1 ∈ U (III.20)

and

〈∇JMC(û�), v2 − û�〉 ≥ 0 ∀v2 ∈ U (III.21)

with

∇JMC(û�) = αû� + E
−→ω
MC [p(û�)] p(û�) := S∗(Sû� − z).

Choosing v1 = û� in (III.20) and v2 = u� in (III.21) we obtain:

〈α(u� − û�) + E[p(u�)]− E
−→ω
MC [p(û�)], û� − u�〉 ≥ 0,

which implies

α‖u�− û�‖2 ≤ 〈E[p(u�)]−E
−→ω
MC [p(u�)]+E

−→ω
MC [p(u�)]−E

−→ω
MC [p(û�)], û�−u�〉. (III.22)

We can split the right hand side of (III.22) into two parts:

〈E[p(u�)]− E
−→ω
MC [p(u�)], û� − u�〉 ≤ 1

2α
‖E[p(u�)]− E

−→ω
MC [p(u�)]‖2 +

α

2
‖û� − u�‖2

Moreover, for every i = 1, · · · , N

〈û� − u�, pωi(u�)− pωi(û�)〉 = bωi(yωi(û�)− yωi(u�), pωi(u�)− pωi(û�))

= 〈yωi(u�)− yωi(û�), yωi(û�)− yωi(u�)〉
= −‖yωi(u�)− yωi(û�)‖2,

leading to

〈û� − u�, E
−→ω
MC [p(u�)]− E

−→ω
MC [p(û�)]〉 ≤ −E−→ω

MC [‖y(u�)− y(û�)‖2]

We finally take the expectation of (III.22), w.r.t. the random sample −→ω = {ωi}Ni=1 and
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exploit the fact that the Monte Carlo estimator is unbiased, that is E[E
−→ω
MC [X(ω)]] = E[X]

for a random variable X : Γ → R.

E[
α

2
‖û� − u�‖2 + E

−→ω
MC [‖y(u�)− y(û�)‖2] = α

2
E[‖û� − u�‖2 + E[‖y(u�)− y(û�)‖2]

≤ 1

2α
E[‖E[p(û�)]− E

−→ω
MC [p(û�)]‖2]

≤ 1

2α
E[‖ 1

N

N∑
i=1

pωi(û�)− E[p(û�)]‖2]

≤ 1

2α
E[

1

N2

N∑
i=1

‖pωi(û�)− E[p(û�)]‖2]

≤ 1

2α

1

N
E[‖p(û�)− E[p(û�)]‖2]

≤ 1

2α

1

N
E[‖p(û�)‖2]

what finishes the proof of the theorem.

Theorem 11 shows that the semi-discrete optimal control û� converges at the usual MC
rate of 1/

√
N in the root mean squared sense, with the constant being proportional to√

E[‖p(û�)‖2].

III.E. Steepest descent method for fully discrete problem

Now we focus on a class of optimization methods to approximate the fully discrete
minimization problem, using the Monte Carlo estimator to approximate the expectation
in (III.11)⎧⎪⎨⎪⎩

minuh∈Uh JMC(u
h) = 1

2E
−→ω
MC [‖yhω(uh)− zd‖2] + α

2 ‖uh‖2
s.t. yhω(u

h) ∈ Y h and

bω(y
h
ω(u

h), vh) = 〈g + uh, vh〉 ∀vh ∈ Y h, for a.e. ω ∈ Γ.

(III.23)

Specifically, we consider a simple gradient method. The gradient method reads:

ûhj+1 = ûhj − τE
−→ω
MC [∇fh(ûhj , ω)], (III.24)

where fh(u, ω) = 1
2‖yhω(u)−zd‖2+ α

2 ‖uh‖2. Here, the index j represents the j-th iteration
in the optimization recursion (III.24), while the superscript h denotes that we discretize
the control u as well as the underlying PDE using Finite Elements on a fixed mesh of
characteristic size h.
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We first analyze the convergence of the continuous version of (III.24), i.e. of

uj+1 = uj − τE[∇f(uj , ω)] . (III.25)

For this we prove a Lipschitz and a strong convexity condition for the function f(u, ω) for
a.e. ω ∈ Γ; which is still valid when replacing f(u, ω) by its discrete version fh(uh, ωi).

Lemma 6 (Lipschitz condition). For the elliptic problem (III.4) and f(u, ω) as in (III.3)
it holds that:

‖∇f(u1, ω)− ∇f(u2, ω)‖ ≤ L‖u1 − u2‖ ∀u1, u2 ∈ U and a.e. ω ∈ Γ, (III.26)

with L = α+
C4

p

a2min
, where Cp is the Poincaré constant. For the Finite Element approxi-

mation as in (III.11) the same inequality holds with the same constant

‖∇fh(uh1 , ω)− ∇fh(uh2 , ω)‖ ≤ L‖uh1 − uh2‖ ∀uh1 , uh2 ∈ Uh and a.e. ω ∈ Γ.

Proof. For a.e. ω ∈ Γ, and every u, u′ ∈ U we have that

∇f(u′, ω)− ∇f(u, ω) = α(u′ − u) + pω(u
′)− pω(u), (III.27)

and

‖pω(u′)− pω(u)‖2 ≤ C2
p‖∇xpω(u

′)− ∇xpω(u)‖2

≤ C2
p

amin
bω
(
pω(u

′)− pω(u), pω(u
′)− pω(u)

)
≤ C2

p

amin
〈pω(u′)− pω(u), yω(u

′)− yω(u)〉

≤ C2
p

amin
‖pω(u′)− pω(u)‖‖yω(u′)− yω(u)‖.

With same arguments we find that

‖yω(u′)− yω(u)‖2 ≤ C2
p‖∇xyω(u

′)− ∇xyω(u)‖2

≤ C2
p

amin
bω
(
yω(u

′)− yω(u), yω(u
′)− yω(u)

)
≤ C2

p

amin
〈yω(u′)− yω(u), u

′ − u〉

≤ C2
p

amin
‖yω(u′)− yω(u)‖‖u′ − u‖.
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Combining (III.27) with the two last estimates, we find

‖∇f(u′, ω)− ∇f(u, ω)‖ ≤ α‖u′ − u‖+ ‖pω(u′)− pω(u)‖

≤
(
α+

C4
p

a2min

)
‖u′ − u‖.

The proof in the FE setting follows verbatim the above one.

Lemma 7 (Strong Convexity). For the elliptic problem (III.4) and f(u, ω) as in (III.3)
it holds that

l

2
‖u1−u2‖2 ≤ 〈∇f(u1, ω)−∇f(u2, ω), u1−u2〉 ∀u1, u2 ∈ U and a.e. ω ∈ Γ, (III.28)

with l = 2α. The same estimate holds for the FE approximation as in (III.11), namely:

l

2
‖uh1 − uh2‖2 ≤ 〈∇fh(uh1 , ω)−∇fh(uh2 , ω), uh1 − uh2〉 ∀uh1 , uh2 ∈ Uh and a.e. ω ∈ Γ.

Proof. For every ω ∈ Γ, and every u, u′ ∈ U :

〈u′ − u,∇f(u′, ω)− ∇f(u, ω)〉 = 〈u′ − u, α(u′ − u) + pω(u
′)− pω(u)〉

= α‖u′ − u‖2 + 〈u′ − u, pω(u
′)− pω(u)〉

= α‖u′ − u‖2 + bω
(
yω(u

′)− yω(u), pω(u
′)− pω(u)

)
= α‖u′ − u‖2 + 〈yω(u′)− yω(u), yω(u

′)− yω(u)〉
= α‖u′ − u‖2 + ‖yω(u′)− yω(u)‖2
≥ α‖u′ − u‖2

The same proof applies to the FE case.

Based on the results of Lemmas 6 and 7, it is straightforward to show the convergence
of the iterates. We state the result for the gradient method for the continuous problem
(III.25) in the following Lemma and the result for the fully discretized problem(III.24) in
Theorem 12.

Lemma 8. Let u� be the optimal solution of the control problem (III.10) and {uj}j∈N
the iterations produced by (III.25). Then for any 0 < τ < l/L2 we have

‖uj+1 − u�‖2 ≤ (1− τ l+ τ2L2)‖uj − u�‖2 ≤ (1− τ l+ τ2L2)j+1‖u0 − u�‖2, (III.29)

and ‖uj − u�‖ → 0 as j → ∞.

Proof. Since u� satisfies the optimality condition ∇J(u�) = 0 we have

uj+1 − u� = uj − u� − τE[∇f(uj , ω)− ∇f(u�, ω)].
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Consequently,

‖uj+1 − u�‖2 = ‖uj − u�‖2 + τ2‖E[∇f(uj , ω)− ∇f(u�, ω)]‖2
− 2τ〈uj − u�,E[∇f(uj , ω)− ∇f(u�, ω)]〉
≤ (1− τ l + τ2L2)‖uj − u�‖2.

The condition 0 < τ < l/L2 guarantees that 0 < 1 − τ l + τ2L2 < 1 and the claim
follows.

As mentioned before, we now provide an error bound for the approximate solution ûhj
defined in (III.24), as a function of the discretization parameters j, h, and N .

Theorem 12. Let ûhj be the solution produced by (III.24) at the j-th iteration and denote
by u� the solution of the optimal problem (III.10). Then under the assumptions of
Corollary 1, there exist constants C1, C2, C3 > 0 such that

E[‖ûhj − u‖2] ≤ C1e
−ρj +

C2

N
+ C3h

2r+2 , (III.30)

with ρ = − log(1− τ l + τ2L2) for 0 < τ < l/L2.

Proof. The global error can be decomposed as follows:

E[‖ûhj − u�‖2] ≤ 3E[‖ûhj − ûh,∗‖2]︸ ︷︷ ︸
gradient

+3E[‖ûh,∗ − uh�‖2]︸ ︷︷ ︸
MC

+3E[‖uh� − u�‖2]︸ ︷︷ ︸
FE error

.

The first term E[‖ûhj − ûh,∗‖2] quantifies the convergence of the finite dimensional steepest
descent algorithm and can be estimated as in Lemma 8. In fact, for any sample −→ω =

{ωi}Ni=1 we have

‖ûhj − ûh,∗‖2 ≤ (1− τ l + τ2L2)j‖ûh0 − ûh,∗‖2 = e−ρj‖ûh0 − ûh,∗‖2.

with ρ = − log(1− τ l + τ2L2). Hence taking expectation w.r.t. −→ω ,

E[‖ûhj − ûh,∗‖2] ≤ e−ρjE[‖ûh0 − ûh,∗‖2].

The second term E[‖ûh,∗−uh�‖2] accounts for the standard MC error and can be controlled
as in Theorem 11 (applied on the FE approximation) leading to

E[‖ûh,∗ − uh�‖2] ≤
1

α2N
E[‖p(ûh)‖2].
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Finally, the term E[‖uh� − u�‖2] can be controlled by the result in Corollary 1, namely by

‖uh� − u�‖2 ≤ C
(
E[|yω(u�)|2Hr+1 ] + E[|pω(u�)|2Hr+1 ]

)
h2r+2,

so that the claim follows.

We conclude this Section by analyzing the complexity of the Algorithm 1 based on the
optimization scheme (III.24). We assume that the primal and dual problems can be
solved, using a triangulation with mesh size h, in computational time Ch = O(h−dγ).
Here, γ ∈ [1, 3] is a parameter representing the efficiency of the linear solver used (e.g.
γ = 3 for a direct solver and γ = 1 up to a logarithm factor for an optimal multigrid
solver), while n is the dimension of the physical space. Hence the overall computational
work W of j gradient iterations is proportional to W � 2Njh−dγ .

Corollary 2. In order to achieve a given tolerance O(tol), i.e. to guarantee that E[‖ûhj −
u‖2] � tol2, the total required computational work is bounded by

W � tol−2− dγ
r+1 | log(tol)|.

Proof. To achieve a tolerance O(tol), we can equidistribute the precision tol2 over the
three terms in (III.30). This leads to the choices given in Algorithm 1:

jmax � − log(tol), h � tol
1

r+1 , N � tol−2.

Hence the total cost for computing a solution ûhjmax
that achieves the required tolerance

is W � 2Njmaxh
−dγ = tol−2− dγ

r+1 | log(tol)| as claimed.

We propose a description of the algorithm used in this Section, in Algorithm 1.
The second (MC) term in the error bound (III.30) C2/N is numerically a problem/limita-
tion to compute efficiently a solution. That is why in the following Section we combine
the first two terms, using Stochastic Gradient techniques.

III.F. Stochastic Gradient with fixed mesh size.

As an alternative to the fixed MC gradient method (III.24) considered in Section III.E, in
which the sample size N is fixed beforehand and a full sample average is computed at each
iteration, here we consider a variant, known in literature as Stochastic Approximation
(SA) or Stochastic Gradient (SG) [RM51, PJ92, SDR09, SRB13, DB16].

The classic version of such a method, the so-called Robbins-Monro method, works as
follows. Within the steepest descent algorithm the exact gradient ∇J = ∇E[f ] = E[∇f ]
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Algorithm 1: Steepest descent method for fully discrete problem

Data:
Given a desired tolerance tol:
Choose τ < l

L2 , jmax � − log(tol), NMC � tol−2, h � tol
1

r+1

Generate NMC iid realizations of the random field ai = a(·, ωi), i = 1, . . . , NMC .
initialization:
u = 0;
for j = 1, . . . , jmax do

p̂ = 0;
for i = 1, . . . , NMC do

solve primal problem by FE → y(ai, u)
solve dual problem by FE → p(ai, u)
update p̂ = p̂+ p(ai, u)/NMC

end
∇̂J = αu+ p̂
u = u− τ∇̂J

end

is replaced by ∇f(·, ωj), where the random variable ωj is re-sampled independently at
each iteration of the steepest-descent method:

uj+1 = uj − τj∇f(uj , ωj). (III.31)

Here, τj is the step-size of the algorithm and is decreasing as 1/j in the usual approach.
We consider a generalization of this method, in which the point-wise gradient ∇f(·, ωj)
is replaced by a sample average over Nj iid realizations which are drawn independently
of the previous iterations. More precisely, let −→ωj = (ω

(1)
j , · · · , ω(Nj)

j ), then we define the
recursion as

uj+1 = uj − τjE
−→ωj

MC [∇f(uj , ω)], (III.32)

where E
−→ωj

MC [∇f(u, ω)] = 1
Nj

∑Nj

i=1 ∇f(u, ω(i)
j ) is the usual Monte Carlo estimator. Notice

that the Robbins-Monro method is a special case of this scheme, namely with Nj = 1

for all j. In what follows, we investigate optimal choices of the sequences {τj}j and
{Nj}j , and the overall computational complexity of the corresponding algorithm. First
we analyze the continuous version (i.e. no Finite Element discretization).

Theorem 13. Let u� be the solution of the continuous OCP (III.10) and denote by uj
the j-th iterate of (III.32). Then it holds that

E[‖uj+1 − u�‖2] ≤ cjE[‖uj − u�‖2] +
2τ2j
Nj

E[‖∇f(u�, ω)‖2], (III.33)

with cj := 1− τjl + L2
(
1 + 2

Nj

)
τ2j .
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Proof. Using inequalities (III.26) and (III.28), we can formulate a recursive formula to
control the error between successive iterations. As each iteration uses an independent
sample, we need to keep track of the history of the sampling ω[j−1] = {−→ω1, . . . ,

−−→ωj−1} to
be able to define uj . Thus we introduce the conditional expectation G[·] = E[·|ω[j−1]].
Using E[∇f(u�, ω)] = 0, we have:

uj+1 − u� = uj − u� − τjE
−→ωj

MC [∇f(uj ,−→ωj)] + τjE[∇f(u�, ω)]
= uj − u� − τjG[∇f(uj , ω)] + τjE[∇f(u�, ω)] + τj

(
G[∇f(uj , ω)]− E

−→ωj

MC [∇f(uj ,−→ωj)]
)

= uj − u� − τjT1 + τjT2,

with T1 := G[∇f(uj , ω)] − E[∇f(u�, ω)] and T2 := G[∇f(uj , ω)] − E
−→ωj

MC [∇f(uj ,−→ωj)].
Hence,

‖uj+1 − u�‖2 =‖uj − u�‖2 + τ2j ‖T1‖2 + τ2j ‖T2‖2
− 2τj〈uj − u�, T1〉+ 2τj〈uj − u�, T2〉 − 2τ2j 〈T1, T2〉.

Moreover, by definition of T1, we find:

‖T1‖2 = ‖G[∇f(uj , ω)]− E[∇f(u�, ω)]‖2
= ‖G[∇f(uj , ω)− ∇f(u�, ω)]‖2 [−→ωj being independent of ω[j−1]]

=

∫
D

(
G[∇f(uj , ω)− ∇f(u�, ω)]

)2
dx

≤
∫
D
G[|∇f(uj , ω)− ∇f(u�, ω)|2]dx [Jensen′s inequality]

= G[‖∇f(uj , ω)− ∇f(u�, ω)‖2]
≤ L2G[‖uj − u�‖2],

where we have used Jensen’s inequality for conditional expectation: φ(G[X]) ≤ G[φ(X)]

for φ convex. See e.g.[Wil91].
Then taking the expectation over all the history sampling ω[j−1], we have:

E[‖T1‖2] ≤ L2E[G[‖uj − u�‖2]]
= L2E[‖uj − u�‖2],
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and

E[〈uj − u�, T1〉] = E[〈uj − u�, G[∇f(uj , ω)− ∇f(u�, ω)]〉]
= E[G[〈uj − u�,∇f(uj , ω)− ∇f(u�, ω)〉]]
≥ E[G[

l

2
‖uj − u�‖2]] [Strong Convexity (III.28)]

=
l

2
E[‖uj − u�‖2].

Concerning the term T2, it holds that,

‖T2‖2 = ‖G [∇f(uj , ω)]− E
−→ωj

MC [∇f(uj , ω)] ‖2 =
∫
D

(
G[∇f(uj , ω)]− E

−→ωj

MC [∇f(uj , ω)]
)2

dx.

Again, taking the expectation w.r.t. ω[j] yields

E
[‖T2‖2] = E

⎡⎣∫
D

⎛⎝ 1

Nj

Nj∑
i=1

(
G[∇f(uj , ω)]− ∇f

(
uj , ω

(i)
j

))⎞⎠2

dx

⎤⎦
= E

⎡⎣∫
D

1

N2
j

Nj∑
i,l=1

(
∇f

(
uj , ω

(i)
j

)
−G [∇f (uj , ω)]

)(
∇f

(
uj , ω

(l)
j

)
−G [∇f (uj , ω)]

)
dx

⎤⎦
=

∫
D

1

N2
j

Nj∑
i,l=1

E
[(

∇f
(
uj , ω

(i)
j

)
−G [∇f (uj , ω)]

)(
∇f

(
uj , ω

(l)
j

)
−G [∇f (uj , ω)]

)]
dx

=

∫
D

1

N2
j

Nj∑
i,l=1

E
[
G
[(

∇f
(
uj , ω

(i)
j

)
−G [∇f(uj , ω)]

)(
∇f

(
uj , ω

(l)
j

)
−G[∇f(uj , ω)]

)]]
dx.

Observe that, conditional upon ω[j−1], the random variables Yi = ∇f(uj , ω(i)
j )−G[∇f(uj , ω)],

i = 1, . . . , Nj , are mutually independent and have zero mean, i.e. E
[
Yi|ω[j−1]

]
= G[Yi] = 0
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and G(YiYj) = 0 when i �= j. Therefore it follows that

E
[‖T2‖2] = ∫

D

1

N2
j

Nj∑
i=1

E
[
G

[(
∇f

(
uj , ω

(i)
j

)
−G [∇f (uj , ω)]

)2]]
dx

= E
[∫

D

1

Nj
G
[
(∇f (uj , ω)−G [∇f(uj , ω)])2

]
dx

]
≤ E

[∫
D

1

Nj
G
[∇f2(uj , ω)] dx]

=
1

Nj
E
[‖∇f(uj , ω)‖2]

≤ 2

Nj
E
[‖∇f(uj , ω)− ∇f(u�, ω)‖2 + ‖∇f(u�, ω)‖2

]
[Lipschitz condition (III.26)]

≤ 2L2

Nj
E
[‖uj − u�‖2

]
+

2

Nj
E
[‖∇f(u�, ω)‖2] .

Finally, we have that

E[〈uj − u�, T2〉] = E[G[〈uj − u�, T2〉]]
= E[〈uj − u�, G[T2]〉]

=
1

Nj

Nj∑
i=1

E[〈uj − u�, G[Yi]〉]

= 0,

and, similarly, E[〈T1, T2〉] = E[G[〈T1, T2〉]] = E[〈T1, G[T2]〉] = 0, which concludes the
proof.

We now consider the FE version of (III.32) and focus on the common setting (τj , Nj) =

(τ0/j,N), which is a generalization of Robbins-Monro method:

uhj+1 = uhj − τ0
j
E

−→ωj

MC [∇fh(uhj , ω)] (III.34)

with −→ωj := (ω
(1)
j , · · · , ω(N)

j ).

Theorem 14. Suppose that the assumptions of Corollary 1 hold and let uhj denote the
j-th iterate of (III.34). For the choice (τj , Nj) = (τ0/j,N) with τ0 > 1/l we have

E[‖uhj − u�‖2] ≤ D1j
−1 +D2h

2r+2 , (III.35)

for suitable constants D1, D2 > 0 independent of j and h.
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Proof. The factor cj in (III.33) becomes in this case

cj = 1− τ0l

j
+
τ20L

2

j2

(
1 +

2

N

)
.

We use the recursive formula (III.33) and set as before uh� the exact optimal control for
the FE problem defined in (III.11). We emphasize that (III.11) has no approximation

in the probability space. Setting aj = E[‖uhj − uh�‖2] and βj =
2τ2j
Nj

E[‖∇f(uh� , ω)‖2], from
(III.33) applied to the sequence of Finite Element solutions {uhj }j>0 we find

aj+1 ≤cjaj + βj

≤cjcj−1aj−1 + cjβj−1 + βj

≤ · · ·

≤
( j∏
i=1

ci

)
︸ ︷︷ ︸

=κj

a1 +

j∑
i=1

βi

j∏
l=i+1

cl︸ ︷︷ ︸
=Bj

. (III.36)

For the first term κj , computing its logarithm, we have,

log(κj) =

j∑
i=1

log(1− τ0l

i
+
M

i2
) ≤

j∑
i=1

−τ0l
i

+

j∑
i=1

M

i2
,

where we have set M = τ20L
2
(
1 + 2

N

)
. Thus

log(κj) ≤ −τ0l log j +M ′, with M ′ =
∞∑
i=1

M

i2
,

and κj � j−τ0l. For the second term Bj in (III.36) we have:

Bj =
j∑
i=1

βi

j∏
k=i+1

ck ≤
j∑
i=1

S

i2

j∏
k=i+1

(
1− τ0l

k
+
τ20L

2

k2

)
︸ ︷︷ ︸

=Kij

, with S =
2τ20
N

E[‖∇f(uh� , ω)‖2].
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For the term Kij we can proceed as follow:

log(Kij) =

j∑
k=i+1

log

(
1− τ0l

k
+
M

k2

)

≤
j∑

k=i+1

(
− τ0l

k
+
M

k2

)
≤ −τ0l(log(j + 1)− log(i+ 1)) +M

(
1

i
− 1

j

)
,

which shows that

Kij ≤ (j + 1)−τ0l(i+ 1)τ0l exp

(
M

(
1

i
− 1

j

))
.

It follows that

Bj ≤ (j + 1)−τ0l exp
(
−M
j

)
︸ ︷︷ ︸

≤1

j∑
i=1

Siτ0l−2 exp

(
M

i

)
︸ ︷︷ ︸
≤exp(M)

≤ S exp(M)(j + 1)−τ0l
j∑
i=1

iτ0l−2 � j−1,

for τ0 > 1/l. Eventually, we obtain the following upper bound, for two constants D3 > 0

and D4 > 0:

aj+1 ≤ D3j
−τ0la1 +D4j

−1. (III.37)

From the condition τ0 > 1
l , we conclude that

aj+1 ≤ D1j
−1, (III.38)

with D1 possibly depending in ‖uh0 − uh�‖. Finally splitting the error as

E[‖uhj − u�‖2] ≤ 2E[‖uhj − uh�‖2] + 2E[‖uh� − u�‖2],

and using (III.18) to bound the second term, the claim follows.

We propose a description of the SG algorithm 2 with fixed mesh size, used in Section
III.F.

We conclude this section by analyzing the complexity of the Algorithm 2.

Corollary 3. To achieve a given tolerance O(tol), i.e. to guarantee that E[‖uhj −u�‖2] �
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Algorithm 2: Stochastic Gradient with fixed mesh size algorithm, with N = 1.
Data:
Given a desired tolerance tol, choose 1

l < τ0, jmax � tol−2, and h � tol
1

r+1

initialization:
u = 0;
for j = 1, . . . , jmax do

sample one realization aj = a(·, ωj) of the random field
solve primal problem → y(aj , u) using FE on mesh h
solve dual problem → p(aj , u) using FE on mesh h
∇̂J = αu+ p(aj , u)

u = u− τj∇̂J
end

tol2, the total required computational work is bounded by

W � tol−2− dγ
r+1 .

Here, we recall that the primal and dual problems can be solved, using a triangulation with
mesh size h, in computational time Ch = O(h−dγ), and r is the degree of the continuous
FE that we use.

Proof. To achieve a tolerance O(tol2) for the error E[‖uhj − u�‖2], we can equidistribute
the precision tol2 over the two terms in (III.35). This leads to the choice:

jmax � tol−2, h � tol
1

r+1 .

The cost for solving one deterministic PDE with the FE method is proportional to h−dγ .
Hence the total cost for computing a solution uhj that achieves the required tolerance is

W � 2Njh−dγ = O(tol−2− dγ
r+1 ),

as claimed.

Remark 9. Other choices of (τj , Nj) have been investigated. For example we have studied
the SG with step-size τj = τ0/j, τ0l−1 > 0 and increasing the MC sample size Nj ∼ jτ0l−1.
With this choice the estimate in (III.35) becomes

aj ≤ D4j
−τ0l log(j) , (III.39)

which leads to the choice jmax � tol
− 2

τ0l | log(tol)| 1
τ0l and a final complexity

W � 2

j∑
i=1

iτ0l−1h−dγ � 2jτ0lh−dγ = O(tol−2− dγ
r+1 | log(tol)|).
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Fixed MC gradient SG - Variable step-size SG - Variable step-size and Nj

τj = τ0 τj = τ0/j τj = τ0/j

N � tol−2 Nj = N Nj = jτ0l−1

h � tol
1

r+1 h � tol
1

r+1 h � tol
1

r+1

jmax � − log(tol) jmax � tol−2 jmax � tol
− 2

τ0l | log(tol)| 1
τ0l

W � tol−2− dγ
r+1 | log(tol)| W � tol−2− dγ

r+1 W � tol−2− dγ
r+1 | log(tol)|

Table III.1 – Complexity analysis overview for different optimization methods

The proof of the bound (III.39) is detailed in Appendix III.K for completeness.

Remark 10. Since the constant l may be challenging to estimate in practice, it is often
difficult to fulfill the condition τ0 > 1/l. To bypass this difficulty, one could consider the
Averaged Stochastic Gradient method [SRB13] instead, in which the step size τj = τ0/j

η,
η ∈ (0, 1) is chosen, with Nj = N and the averaged control 1

j

∑j
i=1 ui is considered. The

analysis of this alternative method is postponed to a future work.

Table III.1 summarizes the results obtained in both the fixed sample size and increasing
sample size regimes. There, the total work (W ) to achieve a given tolerance (tol) is
presented. We see from the table that the two considered SG versions improve the
complexity only by a logarithmic factor compared to the fixed gradient algorithm. The
advantage we see in the SG version w.r.t. the fixed gradient, is that we do not have to fix
in advance the sample size N and we can just monitor the convergence of the SG iteration
until a prescribed tolerance is reached. However, in Algorithm 2, we do have to choose in
advance the FE mesh size. It is therefore natural to look at a further variation of the
SG algorithm in which the FE mesh is refined during the iterations until a prescribed
tolerance is reached. This is detailed in the next Section.

III.G. Stochastic Gradient with variable mesh size

In this section, we refine the mesh used for our FE approximation, while running the
optimization routine. The new mesh size hj is now depending on the iteration j. Here
we study only sequences of nested meshes of size hj = 2−�(j) with � : N → N being an
increasing function. The optimization procedure then reads:

u
hj+1

j+1 = u
hj
j − τjE

−→ωj

MC [∇fhj (u
hj
j , ω)], (III.40)

with −→ωj := (ω
(1)
j , · · · , ω(Nj)

j ). Notice that if non-nested meshes are used, a projection
operator should be added in (III.40) to transfer information from one mesh to another.
We first derive an error recurrence formula in the spirit of (III.33) for the particular
recurrence (III.40) with a decreasing mesh-size hj .
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Theorem 15. Denoting by uhj+1

j+1 the approximated control obtained using the recursive
definition (III.40), and u� the exact control for the continuous optimal problem (III.10),
we have:

E[‖uhj+1

j+1 − u∗‖2]

≤ cjE[‖uhjj − u∗‖2] + 4τ2j
Nj

E[‖∇f(u�, ω)‖2] + 4τj
(
τj(1 +

2

Nj
) +

1

l

)
Ch2r+2

j ,

(III.41)

with cj = 1− τj l
2 + τ2j L

2
(
2 + 2

Nj

)
.

Proof. Subtracting the optimal continuous control u� from both sides of the recurrence
formula (III.40), we get

u
hj+1

j+1 − u∗ =uhjj − u∗ − τjE
−→ωj

MC [∇fhj (u
hj
j , ω)]± τjE[∇fhj (u∗)]± τjG[∇fhj (uhjj )] + τjE[∇f(u∗)]

=u
hj
j − u∗ + τj

(
E[∇fhj (u∗)]−G[∇fhj (uhjj )]

)
+ τj

(
G[∇fhj (uhjj )]− E

−→ωj

MC [∇fhj (u
hj
j , ω)]

)
+ τj

(
E[∇f(u∗)− ∇fhj (u∗)]

)
.

Then setting as in proof of Theorem 13:

T1 := G[∇fhj (uhjj )]− E[∇fhj (u∗)],
T2 := G[∇fhj (uhjj )]− E

−→ωj

MC [∇fhj (u
hj
j , ω)],

T3 := E[∇f(u�)− ∇fhj (u∗)],

we can rewrite the last equality as:

u
hj+1

j+1 − u∗ =uhjj − u∗ − τjT1 + τjT2 + τjT3.

We compute the mean of the squared norm of uhj+1

j+1 − u∗ as

E[‖uhj+1

j+1 − u∗‖2] = E[‖uhjj − u∗‖2] + τ2j E[‖T1‖2] + τ2j E[‖T2‖2] + τ2j E[‖T3‖2]
− 2τjE[〈uhjj − u∗, T1〉] + 2τjE[〈uhjj − u∗, T2〉] + 2τjE[〈uhjj − u∗, T3〉]

− 2τ2j E[〈T1, T2〉] + 2τ2j E[〈T2, T3〉] − 2τ2j E[〈T1, T3〉]. (III.42)

Next, we will bound each of these ten terms to find a recursive formula on E[‖uhjj − u∗‖2].
First, the term τ2j E[‖T1‖2] can be bounded as in the proof of Theorem 13 leading to:

τ2j E[‖T1‖2] ≤ τ2j L
2
hj
E[‖uhjj − u∗‖2],

73



Chapter III. Analysis of stochastic gradient methods for PDE-constrained
OCPs with uncertain parameters

with Lhj being the Lipschitz constant for the function fhj , which is bounded by L (see
Lemma 6). For the term τ2j E[‖T3‖2], we find,

τ2j E[‖T3‖2] = τ2j ‖E[∇f(u�)− ∇fhj (u∗)]‖2
= τ2j ‖E[p(u�)− phj (u�)]‖2
≤ τ2j E[‖p(u�)− phj (u�)‖2]
≤ 2τ2j E[‖p(u�)− p̃hj (u�)‖2] + 2τ2j E[‖p̃hj (u�)− phj (u�)‖2]
≤ 2Cτ2j E[|p(u�)|2Hr+1 ]h

2r+2 + 2Cτ2j E[|y(u�)|2Hr+1 ]h
2r+2 [using Céa’s Lemma]

≤ 2τ2j C(y(u�), p(u�))h
2r+2.

Next, for τ2j E[‖T2‖2] we use the same steps as in Theorem 13 to find

τ2j E[‖T2‖2] ≤
2τ2j L

2
hj

Nj
E
[
‖uhjj − u�‖2

]
+

2τ2j
Nj

E
[
‖∇fhj (u�, ω)‖2

]
.

Then we bound the second term of the right hand side uniformly w.r.t. hj by

‖∇fhj (u�, ω)‖2 ≤ 2‖∇fhj (u�, ω)− ∇f(u�, ω)‖2 + 2‖∇f(u�, ω)‖2
≤ 4C(y(u�), p(u�))h

2r+2 + 2‖∇f(u�, ω)‖2,

where we have used the same steps as for T3 to bound ‖∇fhj (u�, ω)−∇f(u�, ω)‖. Finally,
for the cross terms we have

2τjE[〈uhjj − u∗, T1〉] = 2τjE[〈uhjj − u∗, G[∇fhj (uhjj )− ∇fhj (u∗)]〉]
= 2τjE[G[〈uhjj − u∗,∇fhj (uhjj )− ∇fhj (u∗)〉]] [using Strong convexity]

≥ τjlE[‖uhjj − u∗‖2],

and as in Theorem 9,

2τjE[〈uhjj − u�, T2〉] = 2τ2j E[〈T1, T2〉] = 2τ2j E[〈T2, T3〉] = 0.

Moreover

2τjE[〈uhjj − u�, T3〉] ≤ 2τj
l

4
E[‖uhjj − u�‖2] + 2τj

l
E[‖T3‖2]

≤ 2τj
l

4
E[‖uhjj − u�‖2] + 4τj

l
C(y(u�), p(u�))h

2r+2,

and finally

2τ2j E[〈T1, T3〉] ≤ τ2j E[‖T1‖2] + τ2j E[‖T3‖2]
≤ τ2j L

2
hj
E[‖uhjj − u∗‖2] + 2τ2j C(y(u�), p(u�))h

2r+2.

74



III.G. Stochastic Gradient with variable mesh size

Algorithm 3: Stochastic Gradient with variable mesh size algorithm
Data:
Given a desired tolerance tol, choose 1

l < τ0, h0 and jmax � tol−2 initialization:
u = 0
for j = 1, . . . , jmax do

update mesh size to h = h02
−
 ln2 j−ln2 τ0l

2r+2
�

sample one realization aj = a(·, ωj) or the random field
solve primal problem → y(aj , u) on mesh h
solve dual problem → p(aj , u) on mesh h
∇̂J = αu+ p(aj , u)

u = u− τj∇̂J
end

Putting everything together, we finally obtain (III.41), as claimed.

A natural choice to tune the parameters τj , Nj and hj would be to set, guided by the
usual Robbins-Monro theory, τj = τ0/j, Nj = N and balancing all terms on right hand
side of (III.41).

Theorem 16. Suppose that the assumptions of Corollary 1 hold and let uhjj denote the
j-th iterate of (III.40). For the particular choice (τj , Nj , hj) = (τ0/j,N, h02

−�(j)), with
�(j) = � ln2(j)−ln2(τ0l)

2r+2  , and assuming τ0 > 1/l, we have:

E[‖uhjj − u∗‖2] ≤ F1j
−1 (III.43)

for a suitable constant F1 independent of j.

Proof. With the choice of τj , Nj and �(j) in the statement of the theorem, the two last

terms
4τ2j
Nj

E[‖∇fhj (u�, ω)‖2] and 4τj
(
τj(1+

2
Nj

)+ 1
l

)
Ch2r+2

j in the inequality (III.41) have
the same order O(j−2). Then, we apply the same reasoning as in Theorem 14 to conclude
the proof.

Now we present the idea of the SG algorithm 3 with variable mesh size.

Concerning the complexity of Algorithm 3, one can derive the following complexity result.

Corollary 4. In order to achieve a given tolerance O(tol), i.e. to guarantee that E[‖uhjj −
u�‖2] � tol2, the total required computational work W is bounded by:

W � tol−2− dγ
r+1
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Proof. To achieve tol2 � j−1
max requires jmax � tol−2. Then the total work required is

bounded by

W =

jmax∑
p=1

2Nh−dγp = 2N

jmax∑
p=1

2dγ

ln2 p−ln2 τ0l

2r+2
�

But as � ln2 p−ln2 τ0l
2r+2  ≤ ln2 p−ln2 τ0l

2r+2 + 1, one can bound:

W ≤ 2N

jmax∑
p=1

2dγ
(

ln2 p−ln2 τ0l
2r+2

+1
)
≤ 2nγ+1N{τ0l}

−dγ
2r+2

jmax∑
p=1

p
dγ

2r+2

≤ 2nγ+1N{τ0l}
−dγ
2r+2

2r + 2

2r + 2 + dγ
(jmax + 1)

dγ
2r+2

+1

But as jmax � tol−2, we finally bound the computational work by

W � tol−2− dγ
r+1 .

We notice that the asymptotic complexity remains the same as in the Stochastic Gradient
algorithm with fixed mesh size. However, as we only use computations on coarse meshes
for the first iterations, we thus expect an improvement due to reducing the constant. We
will compute this constant, based on numerical examples, in the Section III.H.

III.H. Numerical results

In this section we verify the assertions of Theorems 12, 15, and 16, as well as the
computational complexity derived in the corresponding Corollaries. Specifically, we
illustrate the order of convergence for the three versions of the steepest descent algorithm
presented in Sections III.E, III.F, and III.G respectively. For this purpose, we consider
the optimal control problem (III.19) with a MC approximation of the expectation. We
consider problem (III.2) in the domain D = (0, 1)2 with g = 1 and the random diffusion
coefficient

a(x1, x2, ξ) = 1+0.1 (ξ1 cos(πx2) + ξ2 cos(πx1) + ξ3 sin(2πx2) + ξ4 sin(2πx1)) , (III.44)

with (x1, x2) ∈ D and ξ = (ξ1, . . . , ξ4) with ξi
iid∼ U([−1, 1]). Figure III.2 shows four

typical realizations of the random field. The target function zd has been chosen as
zd(x, y) = sin(2πx) sin(2πy) (see Fig. III.1b) and we have taken α = 0.1 in the objective
function J(u) in (III.3). For the FE approximation, we have considered a structured
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Figure III.1a – Structured mesh triangulation with h = 2−3

IsoValue
-1.10526
-0.947368
-0.842105
-0.736842
-0.631579
-0.526316
-0.421053
-0.315789
-0.210526
-0.105263
0
0.105263
0.210526
0.315789
0.421053
0.526316
0.631579
0.736842
0.842105
1.10526

Figure III.1b – Target function zd for the optimal control problem

triangular grid of size h (see Fig. III.1a) where each side of the domain D is divided into
1/h sub-intervals and used piece-wise linear FE (i.e. r = 1). All calculations have been
performed using the FE library Freefem++[Hec12].

III.H.1. Reference solution

To compute a reference solution of problem (III.2), we use a full tensorized Gaussian
Legendre (GL) quadrature grid with 5 points in each direction and a fine triangulation with
h = 2−8 (see, e.g., references [SSS11, BSSvW10] and Appendix III.J.2 for a formal error
estimate). As this approximated problem is now deterministic with fixed Gaussian nodes,
we used a stopping condition on the gradient. In Figure III.3 we show the optimal control
obtained after j = 6 iterations when the stopping criterion ‖EGL(5,5,5,5)[∇J(uhj )]‖ ≤ 10−8
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IsoValue
0.797133
0.826114
0.845435
0.864755
0.884076
0.903397
0.922717
0.942038
0.961359
0.980679
1
1.01932
1.03864
1.05796
1.07728
1.0966
1.11592
1.13524
1.15457
1.20287

(a)

IsoValue
0.794591
0.823935
0.843498
0.863061
0.882623
0.902186
0.921749
0.941312
0.960874
0.980437
1
1.01956
1.03913
1.05869
1.07825
1.09781
1.11738
1.13694
1.1565
1.20541

(b)

IsoValue
0.844227
0.86648
0.881315
0.896151
0.910987
0.925822
0.940658
0.955493
0.970329
0.985164
1
1.01484
1.02967
1.04451
1.05934
1.07418
1.08901
1.10385
1.11868
1.15577

(c)

IsoValue
0.887915
0.903927
0.914602
0.925277
0.935952
0.946626
0.957301
0.967976
0.978651
0.989325
1
1.01067
1.02135
1.03202
1.0427
1.05337
1.06405
1.07472
1.0854
1.11208

(d)

Figure III.2 – Four realizations of the diffusion random field (III.44). Values of parameters
ξi, i ∈ {1, 2, 3, 4} are reported in Table III.2.

was met, where uhj is the j-th iterate of (III.19) and Ê in (III.19) is a full tensorized
Gaussian Legendre (GL) quadrature approximation of the expectation. The steepest
descent step size was chosen as τ0 = 10. The L2-norm of the final control using this
Gaussian quadrature is ‖ûh=2−8

j=6 ‖ = 0.0663345.

III.H.2. Steepest descent algorithm with fixed discretization

We investigate here the convergence of the method defined in (III.24), for which we recall
the error bound (III.30) in the case of piece-wise linear FE (i.e. r = 1):

E[‖ûhj − u‖2] ≤ C1e
−ρj +

C2

N
+ C3h

4 .

For each tolerance tol, using formula (III.30), we compute the optimal mesh size h =

f1(tol), the optimal sample size in the MC approximation N = f2(tol), and, finally, the
minimum number of iterations we need in the steepest descend method, jmax = f3(tol).
Here, the three functions fi are introduced to emphasize that these parameters are
completely determined by the prescribed tolerance goal tol. In what follows, we compare
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realization (a) (b) (c) (d)

ξ1 -0.717883 0.804387 -0.502862 0.799162

ξ2 -0.666988 -0.966216 -0.777745 -0.174098

ξ3 -0.383946 0.210821 0.969271 -0.337877

ξ4 -0.35036 0.300546 0.562564 0.331761

Table III.2 – Realization values of the diffusion random field of Fig. III.2.

IsoValue
-0.074987
-0.0650264
-0.0583859
-0.0517455
-0.0451051
-0.0384647
-0.0318243
-0.0251839
-0.0185435
-0.0119031
-0.00526272
0.00137769
0.00801809
0.0146585
0.0212989
0.0279393
0.0345797
0.0412201
0.0478605
0.0644615

Figure III.3 – Optimal control reference solution computed with h = 2−8 on tensorized
Gauss-Legendre quadrature formula with N = 94 nodes.

the actual error on the optimal control obtained from the algorithm (measured w.r.t. the
reference solution) with the prescribed tolerance.

To have a precise idea of the functions fi, we have estimated the constants in (III.30)
numerically.

• In order to estimate C1 we used the same finest mesh as the one used to compute
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our reference solution with h = 2−8, and we used also the same Gaussian 5 points for
the quadrature. We computed numerically the squared error between the optimal
control after i iterations and the reference solution computed above. We then only
see the first term in (III.30), and running the algorithm for the first 10 iterations of
the steepest descent method, we estimated a constant C1 ≈ 10−3 and ρ ≈ 3.2.

• To estimate the second constant C2, we used again the same finest mesh as the one
used to compute our reference solution with h = 2−8. We ran the steepest descent
method up to 10 iterations, using a MC estimator for the mean of the gradient with
a sample size NMC of NMC = 20, 21, · · · , 25. Finally, for every sample size NMC

of the MC estimator, we averaged the final error squared on the control over 10
independent realizations. As we go up to 10 iterations, the error term is of order
C1e

−3.2×10 = 1.27 × 10−17. That is, as long as the term C2/N stays bigger than
10−15, i.e. C2 > 10−14, we effectively only see the C2/N term. We numerically
found C2 ≈ 3.16× 10−5, what is coherent with the last condition.

• Finally, to compute the third term, we used different mesh sizes h = 2−1, · · · , 2−5,
and we used a steepest descent algorithm with sufficiently many iterations with a
Gaussian quadrature with 5 points in each direction. We found C3 ≈ 5.01× 10−1.

Figure III.4 shows the convergence of the error on the control (in the L2-norm), versus
the discretization parameter h (that is directly linked to N and jmax using the functions
fi, i = 1, 2, 3). The bars denote plus one standard deviation, estimated by repeating the
simulation 20 times.

We observe a convergence rate of h−4 on the squared error, which is consistent with the
theoretical result (III.30). Figure III.5 shows the corresponding computational complexity.
Here we have used the theoretical computational cost W = 2Njmaxh

−2 (which assumes
an optimal linear algebra solver with γ = 1).

The observed slope is consistent with our theoretical result W ∼ tol−3 up to logarithmic
terms.

III.H.3. Stochastic Gradient with fixed mesh size h

We implemented here the Stochastic Gradient method described in Section III.F using
N = 1 sample at each iteration (recall that the complexity does not depend on N). As
the error result (III.35) is in the mean squared sense, we ran the simulation 10 times and
averaged the obtained errors, in order to estimate this mean.

Also for the SG method with a fixed mesh size we have estimated the constants in (III.35).
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Figure III.4 – Steepest descent Algorithm 1 with fixed discretization over iterations. Error
E[‖u− u�‖2] as a function of the mesh size h. ( ) estimated mean over 20 repetitions.
( ) maen plus one estimated standard deviation.

• To numerically estimate the constant D1, we simply used the finest mesh of size
h = 2−8 and plotted the squared error on the control versus the i-th iteration using
a Stochastic Gradient technique. We repeated the procedure 10 times to compute a
MC estimator of the expectation of this squared error. We found effectively a slope
of −1 and the constant D1 ≈ 2.51× 10−6.

• Again as for the fixed MC procedure, to estimate the second term constant D2, we
used different mesh sizes h = 2−1, · · · , 2−5, and a Stochastic Gradient algorithm
with sufficiently many iterations. We found D2 ≈ 6.31× 10−1, which is very close
to the C3 constant, estimated earlier.

Figures III.6 presents the squared error on the control for different desired tolerances tol,
i.e. different mesh sizes, using the SG steepest descent method with resampling. The
theoretical rate is thus verified for r = 1 and d = 2.

Figure III.7 and III.8 show the estimated mean squared error, using Algorithm 2, as a

81



Chapter III. Analysis of stochastic gradient methods for PDE-constrained
OCPs with uncertain parameters

102 103 104 105 106 107 108
10−9

10−8

10−7

10−6

10−5

10−4

10−3

W : computational work

nu
m

er
ic

al
er

ro
r

E
[‖u− u�‖2

]
E
[‖u− u�‖2

]
+ std

(
E
[‖u− u�‖2

])
W−0.66

Figure III.5 – Steepest descent Algorithm 1 with fixed discretization over iterations. Error
E[‖u − u�‖2] as a function of the theoretical computational work W . ( ) estimated
mean over 20 repetitions (only 2 repetition in the last two points). ( ) mean plus one
estimated standard deviation.

function of the theoretical cost W = 2jmaxh
−2. The slope is the one expected, namely

W � tol−3.

III.H.4. Stochastic Gradient with decreasing mesh size hj

We illustrate here the Stochastic Gradient method described in Section III.G. As the error
result (III.43) is in mean-squared sense, we ran the simulation 20 times up to iteration
jmax = 4000. We then average every error at every iteration over these 20 simulation. In
Figure III.9 we plot the averaged errors obtained versus the iteration of the SG recursion.
In fact, the plot shows the mean squared errors and the mean squared errors plus one
standard deviation, both obtained using once more all the 20 simulations. As we refine
using only embedded mesh, we do see a refinement drop at iterations j = 16, 256, 4096.
Notice that the next refinement would be at iteration j = 65536, which however is
computationally prohibitive.
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Figure III.6 – SG Algorithm 2 with fixed space discretization over iterations. Error
E[‖u− u�‖2] as a function of the mesh size h. ( ) estimated mean over 10 repetitions
(only 2 repetitions in the last two points). ( ) mean plus one estimated standard
deviation.

In practice, in order to estimate the parameter h0, we set a desired final tolerance tol,
which is directly related to hfinal through the constants D1 and D2 estimated previously.
Based on jmax linked to the tolerance tol and expression (III.43), we can thus determine
the initial mesh size h0. That is, with the initial mesh size h0 fixed, we then run the
algorithm with this h0, ensuring that the algorithm will terminate at iteration jmax with
final mesh size hjmax .

In Figure III.10 we plot the averaged numerical error versus the computational cost W
for the three algorithm studied in the previous Sections: the fixed MC gradient, the SG
with fixed mesh, and the SG with variable mesh size. For the fixed MC gradient and
the SG with fixed mesh, we ran 20 iid simulations for every tolerance (i.e. every point
and every square in the Figure) and then averaged them to estimate the mean. For the
SG with variable mesh size we show 3 different realization of error versus computational
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Figure III.7 – SG Algorithm 2 with fixed space discretization over iterations. Error
E[‖u − u�‖2] as a function of the theoretical computational work W . ( ) estimated
mean over 10 repetitions (only 2 repetitions in the last two points). ( ) mean plus one
estimated standard deviation.

work (with the same initial mesh size h0). As discussed before, the SG is more efficient
than the fixed MC gradient, but only by a logarithmic factor (which is difficult to observe
in Figure III.10). All three algorithms follow a slope of tol2 ∼ W−2/3, as predicted by
our theoretical complexity analysis. The proportionality constant is smaller for the SG
compared to the fixed MC gradient, and seems to further reduce for the variable mesh
size SG version at least in the range of computational works considered. This is consistent
with our intuition that computational work is saved in the earlier iterations in this version
of the SG method.

III.I. Conclusions

In this work, we have analyzed and compared the complexity of three versions of the
gradient method for the numerical solution of a mean-based risk-averse optimal control
problem for an elliptic PDE with random coefficients, where a Finite Element discretization
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Figure III.8 – SG Algorithm 2 with fixed space discretization over iterations. The error
E[‖u−u�‖2] as a function of the average CPU time is plotted. ( ) estimated mean over
10 repetitions (only 2 repetition in the last two points). ( ) one estimated standard
deviation.

is used to approximate the underlying PDEs and a Monte Carlo sampling is used to
approximate the expectation in the risk measure. In the first version the FE mesh
and Monte Carlo sample are chosen initially and kept fixed over the iterations. In the
second version, a Stochastic Gradient method, the finite element discretization is still kept
fixed over the iterations, however the expectation in the objective function is re-sampled
independently at each iteration, with a small (fixed) sample size. Finally, the third version
is again a stochastic gradient method, but now with successively refined FE meshes over
the iterations. We have shown in particular, that the stochastic versions of the gradient
method improve the computational complexity by log factors. Our complexity analysis
is based on a priori error estimates and a priori choices of the FE mesh size, the Monte
Carlo sample size, and the gradient iterations to obtain a prescribed tolerance.

Beside the improved complexity, another interest in looking at stochastic versions of the
gradient method is that they are more amenable to adaptive versions, in which the mesh
size and possibly the Monte Carlo sample size are refined over the iterations based on
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Figure III.9 – SG Algorithm 3 with variable mesh size over iterations. The error E[‖u−
u�‖2] as a function of iteration index is plotted.

suitable a posteriori error indicators. The study of such adaptive versions is postponed
to future work.

Another interesting direction is the extension of stochastic gradient methods to more
general risk measures. We mention that Stochastic Gradient methods have been already
used in combination with the CVaR risk measure [BFP09], although not in the context
of PDE-constrained optimal control problems.

III.J. Appendix: Reference solution by Stochastic Collocation

III.J.1. Optimal Control Problem with quadrature

In this appendix, we describe the computation of the reference solution used in the
numerical result of Section III.H, by the Stochastic Collocation method on a tensor
grid of Gauss Legendre points and provide an error estimate for such reference solution.
In the setting of Section III.H, with only 4 random variables, we show here that the
Stochastic Collocation approximation is exponentially convergent and a very accurate
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Figure III.10 – Comparison between Algorithm 1, 2, 3. The estimated mean squared
error E[‖u − u�‖2] is plotted as a function of the theoretical computation work W for
fixed MC gradient and SG with fixed mesh, versus 3 different realizations of the SG with
variable mesh size algorithm.

solution can be obtained with a moderate number of collocation points (54 were used in
the numerical results). We suppose here that our expectation estimator is not random,
but uses deterministic points ξi, for i = 1, . . . , N . The estimated optimal control û is then
deterministic as well. The following theorem derives an error bound when we estimate
the exact expectation E in (III.3) by a deterministic quadrature formula Ê.

Theorem 17. Denoting by u� the optimal control solution of the exact problem (III.10)
and by û the solution of the semi-discrete collocation problem (III.19), we have

α

2
‖û− u�‖2 + E[‖y(u�)− y(û)‖2] ≤ 1

2α
‖E[p(û)]− Ê[p(û)]‖2. (III.45)

Proof. The expressions of the gradient of J and Ĵ are given by ∇J(u�) = αu� +E[p(u�)],
∇Ĵ(û) = αû + Ê[p(û)]. From the optimality condition (III.5) for J , we derive the
optimality condition for Ĵ as:

〈∇Ĵ(û), v′ − û〉 ≥ 0 ∀v′ ∈ U. (III.46)
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Then choosing v = û in (III.5) and v′ = u� in (III.46) and combining both, we have

〈α(u� − û) + E[p(u�)]− Ê[p(û)], û− u�〉 ≥ 0,

that is,

α‖u� − û‖2 ≤ 〈E[p(u�)]− E[p(û)] + E[p(û)]− Ê[p(û)], û− u�〉. (III.47)

In order to bound the first part of the error in (III.47), 〈E[p(u)]−E[p(û)], û− u〉, we take
one random realization ω and we use the primal-dual equations to obtain:

〈û− u�, pω(u�)− pω(û)〉 = bω(yω(û)− yω(u�), pω(u)− pω(û))

= 〈yω(u�)− yω(û), yω(û)− yω(u�)〉
= −‖yω(u�)− yω(û)‖2.

Then taking the (exact) expectation over all the realizations ω, we find:

〈E[p(u�)]− E[p(û)], û− u�〉 = −E[‖y(u�)− y(û)‖2].

For the second contribution, 〈E[p(û)]− Ê[p(û)], û−u�〉, we simply use Young’s inequality,
yielding

〈E[p(û)]− Ê[p(û)], û− u�〉 ≤ 1

2α
‖E[p(û)]− Ê[p(û)]‖2 + α

2
‖û− u�‖2,

from which the claim eventually follows.

III.J.2. Collocation on tensor grid of Gaussian Legendre quadrature

The quantification of the quadrature error E[p(û)] − Ê[p(û)], i.e. the right hand side
in (III.45), heavily depends on the smoothness of the dual function in the stochastic
variables. The numerical example considered in Section III.H has a diffusion coefficient of
the form

a(x, ξ) = a0(x) +
M∑
i=1

√
λiξibi(x) ,

with a0 > 0 a.e. in D, ‖bi‖L∞(D) = 1,
∑M

i=1

√
λi < essinfx∈D a0(x) and ξi ∼ U([−1, 1])

iid uniform random variables. We denote by ξ = (ξ1, · · · , ξM ) the corresponding random
vector. Hence, in this case the probability space (Γ,F , P ) is Γ = [−1, 1]M , F = B(Γ)
the Borel σ-algebra on Γ, and P(dξ) = ⊗M

i=1
dξi
2 the uniform product measure on Γ. In

this case we chose as a quadrature formula the tensor Gaussian quadrature built on
Gauss-Legendre quadrature points. In particular, we consider a tensor grid with qi
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points in the i-th variable and denote the corresponding quadrature by EGLq [·], where
q = (q1, · · · , qM ) ∈ NM is a multi-index.

To any vector of indexes [k1, . . . , kM ] ∈ ∏M
i=1{1, · · · , qi} we associate the global index

k = k1 + q1(k2 − 1) + q1q2(k3 − 1) + . . . ,

and we denote by yk the point yk = [y1,k1 , y2,k2 , ..., yM,kM ] ∈ Γ. We also introduce, for
each n = 1, 2, . . . , N , the Lagrange basis {ln,j}qnj=1 of the space Pqn−1 ,

ln,j ∈ Pqn−1(Γn), ln,j(yn,k) = δjk, j, k = 1, . . . , qn,

where δjk is the Kronecker symbol, and Pq−1(Γ) ⊂ L2(Γ) is the span of tensor product poly-
nomials with degree at most q− 1 = (q1 − 1, . . . , qM − 1); i.e., Pq−1(Γ) =

⊗M
i=1 Pqi−1(Γi).

Hence the dimension of Pq−1 is Nq =
∏N
i=1(qi). Finally we set lk(y) =

∏N
n=1 ln,kn(yn).

For any continuous function g : Γ → R we introduce the Gauss Legendre quadrature
formula EGLq [g] approximating the integral

∫
Γ g(y) dy as

EGLq [g] =

Nq∑
k=1

ωkg(yk), ωk =
M∏
n=1

ωkn , ωkn =

∫
Γn

l2kn(y) dy (III.48)

We now analyze the error introduced by the quadrature formula. The first step is to
investigate the smoothness of the map ξ �→ p(û, ξ). For this, it is convenient to extend
the primal and dual problems to the complex domain. To do so, let us define

a(x, z) = a0(x) +

M∑
i=1

√
λizibi(x)

with z = (z1, · · · , zM ) ∈ CM and let

U0 = {z ∈ CM : Re(a(x, z)) > 0 a.e. in D}.

We consider the primal and dual problems extended to the complex domain: ∀z ∈ U0

find y(·, z) ∈ H1
0 (D;C) s.t.∫

D
a(x, z)∇y(x, z)∇v(x)dx =

∫
D
(û(x) + g(x))v(x)dx ∀v ∈ H1

0 (D;C) , (III.49)

and find p(·, z) ∈ H1
0 (D;C) s.t.∫

D
a(x, z)∇p(x, z)∇v(x)dx =

∫
D
(y(x, z)− zd(x))v(x)dx ∀v ∈ H1

0 (D;C) . (III.50)

It is well known that problem (III.49) and (III.50) are well posed in U0. Let now Σ ⊂ U0
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be

Σ := {z ∈ CN :

M∑
i=1

√
λi|zi| ≤ amin

2
}

with amin = ess infx∈D a0(x). The next Lemma states that both z �→ y(·, z) and
z �→ p(·, z) are holomorphic functions in U0 with uniform bounds on Σ. The result for
z �→ y(·, z) is well known and can be found in reference [CD15] fro example, so that we
only give the proof for z �→ p(·, z).

Lemma 9. Both functions z �→ y(·, z) and z �→ p(·, z) are holomorphic on U0, and both
have a uniform bound on Σ, in the sense that

max
z∈Σ

‖y(·, ξ)‖H1
0
≤ CP

‖g + û‖
amin

(III.51)

and

max
z∈Σ

‖p(·, z)‖H1
0
≤ CP

‖zd‖
amin

+ C3
P

‖g + û‖
a2min

. (III.52)

Proof. It is well known (see e.g. [CD15]) that the function z �→ y(·, z) is holomorphic on U0

with bound (III.51). This property translates to the dual function z �→ p(·, z) ∈ H1
0 (D;C)

which is holomorphic in U0 as well with bound

max
z∈Σ

‖p(·, z)‖H1 ≤ CP max
z∈Σ

‖y(·, z)− zd‖
amin

≤ CP
‖zd‖
amin

+ CP max
z∈Σ

‖y(·, z)‖
amin

≤ CP
‖zd‖
amin

+ C3
P

‖g + û‖
a2min

.

Based on the last regularity result and following [BNT10], we can state the following
error estimate for the quadrature error.

Theorem 18. Denoting by û the solution of the semi-discrete (in probability) optimal
control problem (III.19) with Ê = EGLq [·] and p(û) the corresponding adjoint function,
there exists C > 0 and {r1, · · · , rM} independent of q s.t.

‖E[p(û)]− EGLq [p(û)]‖2 ≤ C
M∑
n=1

e−rnqn ,

with qn the number of points used in the quadrature in direction n.
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III.K. Proof for increasing Monte Carlo sampling in SG

Here we detail the proof of the bound (III.39) in remark 9. The factor cj in (III.33)
becomes

cj := 1− τjl + L2
(
1 +

2

Nj

)
τ2j = 1− τ0l

j
+ L2

(
1 + 2j1−τ0l

)τ20
j2

,

for τj = τ0/j and Nj ∼ iτ0l−1 with τ0l − 1 > 0. We use the recursive formula (III.33)
and set, as before, uh� to be the exact optimal control for the FE problem defined in
(III.11). We emphasize that (III.11) has no approximation in probability space. Setting

aj = E[‖uhj − uh�‖2] and βj =
2τ2j
Nj

E[‖∇f(uh� , ω)‖2], we have from (III.33), applied to the
sequence of FE solutions {uhj }j>0,

aj+1 ≤cjaj + βj

≤cjcj−1aj−1 + cjβj−1 + βj

≤ · · ·

≤
( j∏
i=1

ci

)
︸ ︷︷ ︸

=κj

a1 +

j∑
i=1

βi

j∏
l=i+1

cl︸ ︷︷ ︸
=Bj

. (III.53)

For the first term κj , computing its logarithm, we have

log(κj) ≤
j∑
i=1

log(1− τ0l

i
+
M ′

i2
) ≤

j∑
i=1

−τ0l
i

+

j∑
i=1

M ′

i2
,

where we have set M ′ = 3τ20L
2 as we have 1− τ0l < 0 and thus j1−τ0l ≤ 1 for every j ≥ 1.

Therefore

log(κj) ≤ −τ0l log j +M ′′, with M ′′ =
∞∑
i=1

M ′

i2

and κj � j−τ0l. For the second term Bj in (III.53) we have

Bj =
j∑
i=1

βi

j∏
k=i+1

ck ≤
j∑
i=1

S′i−τ0l−1
j∏

k=i+1

(
1− τ0l

k
+

3τ20L
2

k2

)
︸ ︷︷ ︸

=Kij

, with S′ = 2τ20E[‖∇f(uh� , ω)‖2] .
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For the term Kij we find that

log(Kij) =

j∑
k=i+1

log

(
1− τ0l

k
+
M ′

k2

)

≤
j∑

k=i+1

(
− τ0l

k
+
M ′

k2

)
≤ −τ0l(log(j + 1)− log(i+ 1)) +M ′

(
1

i
− 1

j

)
,

which shows that

Kij ≤ (j + 1)−τ0l(i+ 1)τ0l exp

(
M ′

(
1

i
− 1

j

))
.

It follows that

Bj ≤ (j + 1)−τ0l exp
(
−M

′

j

)
︸ ︷︷ ︸

≤1

j∑
i=1

S′i−τ0l−1(i+ 1)τ0l exp

(
M ′

i

)
︸ ︷︷ ︸
≤exp(M ′)

≤ S′ exp(M ′)(j + 1)−τ0l
j∑
i=1

(i+ 1)−1 � j−τ0l log(j),

for τ0 > 1/l. Eventually, we obtained the following upper bound for two constants D3 > 0

and D4 > 0:

aj+1 ≤ D3j
−τ0la1 +D4j

−τ0l log(j). (III.54)

We conclude that

aj+1 ≤ D4j
−τ0l log(j), (III.55)

with D4 possibly depending on ‖uh0 − uh�‖. Finally, splitting the error as

E[‖uhj − u�‖2] ≤ 2E[‖uhj − uh�‖2] + 2E[‖uh� − u�‖2]

and using (III.18) to bound the second term, the claim follows.
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IV Multilevel Stochastic Gradient
method for PDE-constrained OCPs
with uncertain parameters
This Chapter is essentially the same as [MN19], in preparation.

IV.A. Introduction

In this paper, we present a multilevel Monte Carlo (MLMC) Stochastic Gradient (SG)
approach, to solve an Optimal Control Problem (OCP) with PDE constraints with
random parameters. The deterministic control acts as a forcing term in the random PDE
and is chosen so as to minimize some expected cost functional. We use a Stochastic
Gradient approach to compute the optimal control and independent MLMC estimators
when computing the steepest descent direction, of the expected cost, at each iteration.
The accuracy of the MLMC estimator is increased over the iterations, with consequent
increases in computational cost. The refinement strategy is chosen a-priori as a function
of the iteration counter.

The Stochastic Gradient algorithm has been introduced by Robbins and Monro [RM51]
and is widely used to solve robust optimization problems, involving the optimization of
an expected loss function, which can be stated as

u� ∈ argmin
u∈U

J(u), J(u) = Eω[f(u, ω)]

where ω ∈ Γ denotes a random elementary event and f a "loss" or objective function.
The usual SG algorithm then writes:

uj+1 = uj − τj∇f(uj , ωj)

where the sequence of ωj is independent and identically distributed (iid) and the step-size
is usually chosen as τj = τ0/j, with τ0 sufficiently large. In particular, when u �→ f(u, ω)

is strongly convex for a.e. ω ∈ Γ, the SG algorithm guarantees an algebraic convergence
rate on the mean squared error, i.e. E[‖uj − u�‖2] � 1/j, where u� denotes the exact
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optimal control. In our setting, the evaluation of the loss functional f(uj , ·) involves
the solution of a PDE, which can not be done exactly, except in very simple cases and
requires a discretization step. This, in turn, induces an error in the evaluation of the cost
functional, which can be kept small at the price of a high computational cost.

The multilevel Monte Carlo method has been proven to be very effective in reducing the
cost of computing expectations of output functionals of differential models, compared to
classic Monte Carlo estimators, by exploiting a hierarchy of discretizations, with increasing
accuracy and computational costs. Essentially, the MLMC estimator makes most of the
computation on very coarse (and cheap) discretizations and corrects it with only few
evaluations on finer (and more expensive) discretizations.

The multilevel paradigm has been introduced by Heinrich [Hei00] for parametric integra-
tion. It has been extended to weak approximations of stochastic differential equations
(SDEs) in [Gil08] and has shown its efficiency, as a tool in numerical computations.
Recently, the application of MLMC methods to uncertainty quantification problems
involving PDEs with random data has been investigated from the mathematical point of
view in a number of works [BSZ11, BLS13, CST13, CGST11, MSŠ12, TSGU13, NT15].

In the most favorable cases, it has been shown that the cost W of computing the expected
value of some output quantity of a stochastic differential model with accuracy tol, scales as
W � tol−2, and does not see the cost of solving the problem on fine discretizations. In this
work, we use MLMC within a SG algorithm, by replacing the single realization ∇f(uj , ωj)
by a MLMC estimator, based on a hierarchy of finite element (FE) discretization. In
particular, we present a full convergence and complexity analysis of the resulting MLSG
algorithm in the case of a quadratic, strongly convex, OCP. By reducing progressively
the bias and the variance of the MLMC estimator over the iterations at a proper rate, we
are able to recover an optimal complexity W � tol−2 in the computation of the optimal
control, analogous to the one for the computation of a single expectation. This result
considerably improves the one in our previous work [MKN18] where we have studied
the SG method in which a single realization ∇f(uj , ωj) is taken at each iteration, and
computed on progressively finer discretization over the iterations. An alternative way
to consider a MLMC estimator with a Stochastic Gradient algorithm, although not in
the context of PDE constrained OCPs, has been proposed in [Fri16], which also leads
to the optimal complexity W � tol−2 in favorable cases. The idea in [Fri16] is to build
a sequence of coupled standard Robbins-Monro algorithm with different discretization
levels to construct a multilevel estimator of the optimal control. We propose, instead,
to construct a single SG algorithm that uses at each iteration a multilevel estimate for
E[∇f(u, ·)], with increasing accuracy over the iterations (a similar approach can be found
in [DM15]).

We also propose a randomized version of the MLSG algorithm, which uses the unbiased
multilevel Monte Carlo algorithm proposed in [RG12, RG15] (see also [Gil15, Section
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2.2]). In this randomized version, we replace the full MLMC sampler at each iteration j of
the Stochastic Gradient algorithm by only one evaluation of the difference of the objective
function on levels lj and lj − 1 where the level lj is drawn randomly (and independently
at each iteration) from a suitable probability mass function over all levels. We show that
this version of the MLSG algorithm achieves optimal complexity W � tol−2. The main
advantage of this randomized version, w.r.t. the one that uses a full MLMC estimator
at each iteration, is that it requires less parameters to tune, which is preferable, from a
numerical point of view.

The outline of the Chapter is as follow. In Section IV.B, we present the problem setting,
and recall some results about existence and uniqueness of the optimal control, and its
finite element approximation. We also recall the multilevel Monte Carlo estimator. Then
in Section IV.C, we introduce the multilevel Monte Carlo Stochastic Gradient method.
Our algorithm uses a hierarchy of uniformly refined meshes with mesh sizes forming
a geometric sequence. This is justified from the arguments in [HAvST16]. We discuss
the optimal strategy to reduce the bias and variance of the MLMC estimator over the
iterations and derive a complexity result. In Section IV.D we present the randomized
version of the MLSG algorithm and derive a complexity result. Section IV.E presents a
numerical example, and assesses theoretical results from Sections IV.C and IV.D. Finally,
Section IV.F presents some conclusions and future perspectives of this work.

IV.B. Problem setting

We start by introducing the primal problem that will be part of the OCP discussed in the
following. We consider the problem of finding the solution y : D × Γ → R of the elliptic
random PDE{

− div(a(x, ω)∇y(x, ω)) = g(x) + u(x), x ∈ D, ω ∈ Γ,

y(x, ω) = 0, x ∈ ∂D, ω ∈ Γ,
(IV.1)

where D ⊂ Rd denotes the physical domain and (Γ,F ,P) is a complete probability space.
The diffusion coefficient a is a random field, g is a deterministic source term and u is the
deterministic control. The solution of (IV.1) for a given control u will be equivalently
denoted yω(u), or simply y(u) in what follows. Let U = L2(D) be the set of all admissible
control functions and Y = H1

0 (D) the space of the solutions of (IV.1) endowed with the
norm ‖v‖H1

0 (D) = ‖∇v‖ where ‖ · ‖ denotes the L2(D)-norm induced by the inner product
〈·, ·〉. The ultimate goal is to determine an optimal control u∗, in the sense that:

u� ∈ argmin
u∈U

J(u), s.t. yω(u) ∈ Y solves (IV.1) almost surely (a.s.) in Γ. (IV.2)

Here, J(u) := E[f(u, ω)] is the objective function with f(u, ω) = 1
2‖yω(u)− zd‖2 + β

2 ‖u‖2
and zd is the target function that we would like the state y to approach as close as
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possible. We use assumptions and results from [MKN18, Sections 2 and 3] to guarantee
well posedness of (IV.2) and regularity of solutions.

Assumption 14. The diffusion coefficient a ∈ L∞(D× Γ) is bounded and bounded away
from zero a.e. in D × Γ, i.e.

∃ amin, amax ∈ R such that 0 < amin ≤ a(x, ω) ≤ amax a.e. in D × Γ.

Assumption 15. The regularization parameter β is strictly positive, i.e. β > 0 and the
deterministic source term is such that g ∈ L2(D).

In what follows, we denote the L2(D)-functional representation of the Gateaux derivative
of J , by ∇J(u), namely∫

D
∇J(u)δu dx = lim

ε→0

J(u+ εδu)− J(u)

ε
∀δu ∈ L2(D).

Then existence and uniqueness of the OCP (IV.2) can be stated as follows.

Theorem 19. Under Assumptions 14 and 15, the OCP (IV.2) admits a unique control
u� ∈ U . Moreover

∇J(u) = E[∇f(u, ·)] with ∇f(u, ω) = βu+ pω(u), (IV.3)

where pω(u) = p is the solution of the adjoint problem (a.s. in Γ){
− div(a(·, ω)∇p(·, ω)) = y(·, ω)− zd in D,

p(·, ω) = 0 on ∂D.
(IV.4)

We continue recalling the weak formulation of (IV.1), which reads

find yω ∈ Y s.t. bω(yω, v) = 〈g + u, v〉 ∀v ∈ Y for a.e. ω ∈ Γ, (IV.5)

where bω(y, v) :=
∫
D a(·, ω)∇y∇vdx. Similarly, the weak form of the adjoint problem

(IV.4) reads:

find pω ∈ Y s.t. bω(v, pω) = 〈v, yω − zd〉 ∀v ∈ Y for a.e. ω ∈ Γ. (IV.6)

We can thus rewrite the OCP (IV.2) equivalently as:⎧⎪⎨⎪⎩
minu∈U J(u), J(u) = 1

2E[‖yω(u)− zd‖2] + β
2 ‖u‖2

s.t. yω(u) ∈ Y solves

bω(yω(u), v) = 〈g + u, v〉 ∀v ∈ Y for a.e. ω ∈ Γ.

(IV.7)

Following [MKN18], we now recall two regularity results about Lipschitz continuity and
strong convexity of f in the particular setting of the problem considered here.
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Lemma 10 (Lipschitz continuity). The random functional f is such that:

‖∇f(u, ω)− ∇f(v, ω)‖ ≤ Lip‖u− v‖ ∀u, v ∈ U and a.e. ω ∈ Γ, (IV.8)

with Lip = β +
C4

p

a2min
, where Cp is the Poincaré constant, Cp = supv∈Y/{0}

‖v‖
‖∇v‖ .

Lemma 11 (Strong convexity). The random functional f is such that:

l

2
‖u− v‖2 ≤ 〈∇f(u, ω)− ∇f(v, ω), u− v〉 ∀u, v ∈ U and a.e. ω ∈ Γ, (IV.9)

with l = 2β.

IV.B.1. Finite Element approximation

In order to compute numerically an optimal control we consider a Finite Element (FE)
approximation of the infinite dimensional OCP (IV.7). Let us denote by {τh}h>0 a family
of regular triangulations of D and choose Y h to be the space of continuous piece-wise
polynomial functions of degree r over τh that vanish on ∂D, i.e. Y h = {y ∈ C0(D) :

y|K ∈ Pr(K) ∀K ∈ τh, y|∂D = 0} ⊂ Y , and Uh = Y h. We reformulate the OCP (IV.7)
as a finite dimensional OCP in the FE space:

⎧⎪⎨⎪⎩
minuh∈Uh Jh(uh), Jh(uh) = 1

2E[‖yhω(uh)− zd‖2] + β
2 ‖uh‖2

s.t. yhω ∈ Y h and

bω(y
h
ω(u

h), vh) = 〈uh + g, vh〉 ∀vh ∈ Y h for a.e. ω ∈ Γ.

(IV.10)

Under the following regularity assumption on the domain and diffusion coefficient:

Assumption 16. The domain D ⊂ Rd is polygonal convex and the random field a ∈
L∞(D × Γ) is such that ∇a ∈ L∞(D × Γ),

the following error estimate has been obtained in [MKN18]. In order to lighten the
notation, we omit the subscript ω in yω(·) and pω(·) from now on.

Theorem 20. Let u� be the optimal control, solution of problem (IV.7), and denote
by uh� the solution of the approximate problem (IV.10). Suppose that y(u�), p(u�) ∈
L2
P(Γ;H

r+1(D)) and Assumption 16 holds; then

‖u� − uh�‖2 + E[‖y(u�)− yh(uh�)‖2] + h2E[‖y(u�)− yh(uh�)‖2H1
0
]

≤ A1h
2r+2

(
E[|y(u�)|2Hr+1 ] + E[|p(u�)|2Hr+1 ]

)
, (IV.11)

with a constant A1 independent of h.
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Notice that the OCP (IV.10) can be equivalently formulated in U instead of Uh:⎧⎪⎨⎪⎩
minu∈U Jh(u), Jh(u) = 1

2E[‖yhω(u)− zd‖2] + β
2 ‖u‖2

s.t. yhω ∈ Y h and

bω(y
h
ω(u), v

h) = 〈u+ g, vh〉 ∀vh ∈ Y h, for a.e. ω ∈ Γ.

(IV.12)

Indeed, if we decompose any u ∈ U into u = uh + w with uh ∈ Uh and 〈w, vh〉 =

0, ∀vh ∈ Uh, it follows that

Jh(u) =
1

2
E[‖yhω(uh)− zd‖2] + β

2
‖uh‖2 + β

2
‖w‖2, (IV.13)

so clearly the optimal control ũ∗ of (IV.12) satisfies ũ∗ = uh∗ + w∗ with w∗ = 0 and uh∗

solution of (IV.10), i.e. the optimal control of (IV.12) is indeed a FE function in Uh. For
later developments it will be more convenient to consider the formulation (IV.12) rather
than (IV.10).
Following analogous developments as in [MKN18], it is straightforward to show that
∀u ∈ U

∇Jh(u) = E[∇fh(u, ·)] with ∇fh(u, ω) = βu+ phω(u) ∈ U, (IV.14)

where phω(u) solves the FE adjoint problem which reads

find phω(u) ∈ Y h s.t. bω(v
h, phω(u)) = 〈vh, yhω(u)− zd〉 ∀vh ∈ Y h, for a.e. ω ∈ Γ,

(IV.15)

and yhω(u) solves the primal problem formulated in (IV.12). Moreover, ∇fh(u, ·) satisfies
Lipschitz and convexity properties analogous to those in Lemmas 10 and 11, with the
same constants:

Lemma 12 (Lipschitz continuity).

‖∇fh(u, ω)− ∇fh(v, ω)‖ ≤ Lip‖u− v‖ ∀u, v ∈ U ∀h > 0, for a.e. ω ∈ Γ.

Lemma 13 (Strong convexity).

l

2
‖u− v‖2 ≤ 〈u− v,∇fh(u, ω)− ∇fh(v, ω)〉 ∀u, v ∈ U ∀h > 0, for a.e. ω ∈ Γ.

We conclude this section by stating an error bound on the FE approximation of the
functional f when evaluated at the optimal control u�.

Lemma 14. Let u� be the solution of the OCP (IV.7) and assume y(u�), p(u�) ∈
L2
P(Γ, H

r+1(D)). Then, there exists C(u�) > 0 such that, ∀h > 0:

E[‖∇fh(u�, ·)− ∇f(u�, ·)‖2] ≤ C(u�)h
2r+2.
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Proof. A proof of this result can be found for example in [MKN18, Corollary 1].

IV.B.2. Multilevel Monte Carlo (MLMC) estimator

The OCP (IV.7), or its FE approximation (IV.12), involves computing the expectation
of the cost functional f(u, ω). For this, in this work, we consider a Multilevel Monte
Carlo estimator. The key idea of MLMC [Gil15] is to estimate the mean of a random
quantity P related to the PDE problem (IV.1), by simultaneously using Monte Carlo
(MC) estimators on several approximations Pl, l = 0, . . . , L of P that are built on a
hierarchy of computational grids τhl with discretization parameters hL < · · · < h1 < h0
(FE mesh sizes in our context). Considering Nl iid realizations ωl,i, i = 1, . . . , Nl of the
system’s random input parameters on each level 0 ≤ l ≤ L, the MLMC estimator for the
expected value E[P ] is given by

EMLMC
L,

−→
N

[P ] =
1

N0

N0∑
i=1

P0(ω0,i) +

L∑
l=1

1

Nl

Nl∑
i=1

(Pl(ωl,i)− Pl−1(ωl,i)) (IV.16)

=

L∑
l=0

1

Nl

Nl∑
i=1

(Pl(ωl,i)− Pl−1(ωl,i)) , (IV.17)

where we have set P−1 = 0, and
−→
N = {N0, N1, . . . , NL}. We recall the main complexity

result from [Gil15]. Denote by Vl the variance of Pl − Pl−1 that is Vl = Var[Pl −
Pl−1] and by Cl the expected cost of generating one realization of (Pl, Pl−1), Cl =

E[Cost(Pl(ωl,i), Pl−1(ωl,i))] and consider a sequence of uniform meshes with hl = h0δ
−l,

δ > 1. If there exist positive constants qw, qs, qc, cw, cs, cc such that qw ≥ 1
2 min(qs, qc)

and ∣∣E[Pl − P ]
∣∣ ≤ cw2

−qwl, (IV.18)

Vl ≤ cs2
−qsl, (IV.19)

Cl ≤ cc2
qcl, (IV.20)

then there exists a positive constant c0 such that for any ε < e−1 there are values
L = L(ε) and Nl = Nl(ε), l = 0, . . . , L(ε), for which the multilevel estimator (IV.16) has
a mean-squared-error MSE with bound

MSE =
L∑
l=0

Vl
Nl

≤ ε2,
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and an expected computational cost C =
∑L

l=0ClNl with bound

C ≤

⎧⎪⎪⎨⎪⎪⎩
c0ε

−2, if qs > qc,

c0ε
−2 (log ε)2 , if qs = qc,

c0ε
−2−(qc−qs)/qw , if qs < qc.

For a fixed variance Vl, the optimal number of samples at level l that minimize the cost
Cl, is given by the formula:

N∗
l (ε) =

⎡⎢⎢⎢ε−2

√
Vl
Cl

L(ε)∑
k=0

√
VkCk

⎤⎥⎥⎥ .

IV.C. Multilevel Stochastic Gradient (MLSG) algorithm

First introduced by Robbins and Monro in 1961, Stochastic Approximation (SA) tech-
niques, such as Stochastic Gradient (SG) [RM51, PJ92, SDR09, SRB13, DB16] are
popular techniques in the machine learning community, to minimize a sum of functions
(say with q terms), and allowing the user to only compute the gradient on batches of size
p � q at each iteration, these batches being selected at random and independently. The
classic version of such a method, the so-called Robbins-Monro (RM) method, works as
follows. Within the steepest descent algorithm, the exact gradient ∇J = ∇E[f ] = E[∇f ]1
is replaced by ∇f(·, ωj), where the random variable ωj (i.e. a random point ωj ∈ Γ

with distribution P) is re-sampled independently at each iteration of the steepest-descent
method:

uj+1 = uj − τj∇f(uj , ωj). (IV.21)

Here, τj is the step-size of the algorithm and is decreasing as τ0/j in the usual setting.
The RM method applied to the OCP (IV.7) has been analyzed in [MKN18]. In this paper,
we consider a generalization of this method, in which the "point-wise" gradient ∇f(·, ωj)
is replaced by a MLMC estimator, which is independent of the ones used in the previous
iterations. Specifically, we introduce a hierarchy of refined meshes τh0 , τh1 , . . . with
h0 > h1 > . . . and corresponding FE spaces Y hl , l = 0, 1, . . . , and Uhl = Y hl and use,
at each iteration, the MLMC estimator defined in Section IV.B.2, EMLMC

Lj ,
−→
N j

[P (uj)], where

P (u) = ∇f(u, ·) and Pl(u) = ∇fhl(u, ·). The total number of levels Lj and samples per
level

−→
N j = {Nj,0, Nj,1, . . . , Nj,Lj} are allowed to depend on j. In particular, we require

Lj and Nj,l to be non decreasing sequences in j and Lj ,
∑Lj

l=0Nj,l → ∞ as j → ∞. We
study only sequences of nested meshes of size hl = h02

−l (i.e. with δ = 2). This implies,
in particular, Y hl−1 ⊂ Y hl , ∀l ≥ 1. In this restricted context, the optimization procedure

1the fact that the gradient and the expectation can be exchanged for the OCP (IV.2) has been proven
in [MKN18]
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reads:

uj+1 = uj − τjE
MLMC
Lj ,

−→
N j

[∇f(uj , ·)],

= uj − τj

(
βuj + EMLMC

Lj ,
−→
N j

[p(uj , ·)]
)

∀j ≥ 1, u1 ∈ Y h0 , (IV.22)

with

EMLMC
Lj ,

−→
N j

[p(uj , ·)] =
Lj∑
l=0

1

Nj,l

Nj,l∑
i=1

(
phl(uj , ω

j
l,i)− phl−1(uj , ω

j
l,i)
)
. (IV.23)

Notice that uj ∈ Y
hLj−1 for any j ≥ 1. This can be shown by a simple induction argument

noticing that if uj ∈ Y
hLj−1 , then ∇̂JMLSG := EMLMC

Lj ,
−→
N j

[∇f(uj , ·)] ∈ Y
hLj which implies

uj+1 ∈ Y
hLj thanks to the nestedness assumption, Y hp ⊂ Y hq if p ≤ q.

Remark 11. In the case where non-nested meshes were used, we would need to introduce
suitable interpolation operators Ihqhp : Y hp → Y hq with p < q and modify the MLSG
algorithm as follows

uj+1 = (1− βτj)I
hLj

hLj−1
(uj)− τjE

MLMC
Lj ,

−→
N j

[p(uj , ·)],

with

EMLMC
Lj ,

−→
N j

[p(uj , ·)] =
Lj∑
l=0

1

Nj,l
I
hLj

hl

Nj,l∑
i=1

(
phl(uj , ω

j
l,i)− Ihlhl−1

phl−1(uj , ω
j
l,i)
)
.

IV.C.1. Convergence analysis

Let us denote by

Fj = σ({ωkl,i}, k = 1, . . . , j − 1; l = 0, . . . , Lk; i = 1, . . . , Nk,l)

the σ-algebra generated by all the random variables {ωkl,i} up to iteration j − 1. Notice
that the control uj is measurable with respect to Fj , i.e. the process {uj} is {Fj}-adapted.
We denote the conditional expectation to Fj by E[·|Fj ].

Theorem 21. For any non decreasing deterministic or random Fj-adapted sequence
{Lj , j ≥ 0}, {Nj,l, j ≥ 0, l ∈ {0, . . . , Lj}}, denoting by uj the approximated control
obtained at iteration j using the recursive formula (IV.22), and u� the exact control for
the continuous OCP (IV.7), we have:

E[‖uj+1 − u�‖2|Fj ] ≤ cj‖uj − u�‖2 + 2τ2j σ
2
j +

(
2τ2j +

2τj
l

)
ε2j (IV.24)
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with cj = 1− l
2τj + 2Lip2

(
1 + 4

∑Lj

l=0
1
Nj,l

)
τ2j

σ2j = σ2(Lj ,
−→
N j) = E[‖EMLMC

Lj ,
−→
N j

[∇f(u�)]− E[∇fhLj (u�)|Fj ]‖2|Fj ] the variance term

ε2j = ε2(Lj) = ‖E[∇fhLj (u�)|Fj ]− E[∇f(u�)]‖2 the squared bias term.

Proof. Using the optimality condition

E[∇f(u�)] = 0,

and the fact that the expectation of the MLMC estimator for any deterministic, or random
Fj-measurable u ∈ U , is

E[EMLMC
Lj ,

−→
N j

[∇f(u)]|Fj ] = E[∇fhLj (u)|Fj ],

we can decompose the error at iteration j + 1 as

‖uj+1 − u�‖2 =
∥∥∥uj − u� − τj

(
EMLMC
Lj ,

−→
N j

[∇f(uj , ·)]− E[∇fhLj (uj , ·)|Fj ]
)

︸ ︷︷ ︸
=B

− τj

(
E[∇fhLj (uj , ·)|Fj ]− E[∇fhLj (u�, ·)|Fj ]

)
︸ ︷︷ ︸

=A

−τj
(
E[∇fhLj (u�, ·)|Fj ]− E[∇f(u�, ·)]

)
︸ ︷︷ ︸

=C

∥∥∥2.
(IV.25)

Then, taking the conditional expectation of (IV.25) to the σ-algebra Fj , we obtain the
10 following terms

E[‖uj+1 − u�‖2|Fj ] = E[‖uj − u�‖2|Fj ] + τ2j E[‖B‖2|Fj ] + τ2j E[‖A‖2|Fj ] + τ2j E[‖C‖2|Fj ]
− 2τj〈uj − u�,E[B|Fj ]〉 − 2τj〈uj − u�,E[A|Fj ]〉 − 2τj〈uj − u�,E[C|Fj ]〉

+ 2τ2j E[〈A,C〉|Fj ] + 2τ2j E[〈A,B〉|Fj ] + 2τ2j E[〈B,C〉|Fj ].
(IV.27)

The second term can be bounded, using the expression of the variance of the MLMC
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estimator, and the Lipschitz property in Lemma 12, as

E[‖B‖2|Fj ] = E[‖EMLMC
Lj ,

−→
N j

[∇f(uj , ·)]− E[∇fhLj (uj , ·)|Fj ]‖2|Fj ]

= E

⎡⎢⎢⎣
∥∥∥∥∥∥∥∥
Lj∑
l=0

1

Nj,l

Nj,l∑
i=1

(
∇fhl(uj , ωji,l)− ∇fhl−1(uj , ω

j
i,l)− E[∇fhl(uj , ·)− ∇fhl−1(uj , ·)|Fj ]

)
︸ ︷︷ ︸

=Ei,l(uj)

∥∥∥∥∥∥∥∥
2

|Fj

⎤⎥⎥⎦
= E

⎡⎣ Lj∑
l=0

Nj,l∑
i=1

Lj∑
l′=0

Nj,l′∑
i′=1

1

Nj,l

1

Nj,l′
〈Ei,l(uj), Ei′,l′(uj)〉|Fj

⎤⎦
=

Lj∑
l=0

Nj,l∑
i=1

Lj∑
l′=0

Nj,l′∑
i′=1

1

Nj,l

1

Nj,l′
E
[〈Ei,l(uj), Ei′,l′(uj)〉|Fj]︸ ︷︷ ︸

=0 if i 	=i′ or l 	=l′

=

Lj∑
l=0

Nj,l∑
i=1

1

N2
j,l

E
[‖Ei,l(uj)‖2|Fj]

=

Lj∑
l=0

1

Nj,l
E
[‖E1,l(uj)‖2|Fj

]
≤ 2

Lj∑
l=0

1

Nj,l
E[‖E1,l(uj)− E1,l(u�)‖2|Fj ] + 2

Lj∑
l=0

1

Nj,l
E[‖E1,l(u�)‖2|Fj ]

≤ 8Lip2

⎛⎝ Lj∑
l=0

1

Nj,l

⎞⎠ ‖uj − u�‖2 + 2E[‖EMLMC
Lj ,

−→
N j

[∇f(u�, ·)]− E[∇fhLj (u�, ·)|Fj ]‖2|Fj ]︸ ︷︷ ︸
=σ2

j

.

Finally

τ2j E[‖B‖2|Fj ] ≤ τ2j 8Lip
2

⎛⎝ Lj∑
l=0

1

Nj,l

⎞⎠ ‖uj − u�‖2 + 2τ2j σ
2
j . (IV.28)

The third term can be bounded as

τ2j E[‖A‖2|Fj ] = τ2j E[‖∇fhLj (uj , ·)−∇fhLj (u�, ·)‖2|Fj ] ≤ τ2j Lip
2‖uj −u�‖2. (IV.29)

The fourth term E[‖C‖2|Fj ] = ε2j is just the squared bias term.
The fifth term is

−2τj〈uj − u�,E[B|Fj ]︸ ︷︷ ︸
=0

〉 = 0.
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The sixth term, using strong convexity of fh uniform in h, is

−2τj〈uj − u�,E[A|Fj ]〉 = −2τj〈uj − u�,E[∇fhLj (uj , ·)− ∇fhLj (u�, ·)|Fj ]〉
≤ −lτj‖uj − u�‖2.

The seventh term of (IV.27) can be bounded as

−2τjE [〈uj − u�, C〉|Fj ] ≤ lτj
2

‖uj − u�‖2 + 2τj
l
E
[‖C‖2|Fj

]
=
lτj
2

‖uj − u�‖2 + 2τj
l
ε2j .

The eight term can be decompose as:

2τ2j E[〈A,C〉|Fj ] ≤ τ2j E[‖A‖2|Fj ] + τ2j ε
2
j

The ninth and tenth terms vanish since A and C are measurable on Fj and E[B|Fj ] = 0.
Hence

2τ2j E[〈B,A〉|Fj ] = 2τ2j E[〈B,C〉|Fj ] = 0.

In conclusion, we have

E[‖uj+1−u�‖2|Fj ] =
⎛⎝1− l

2
τj + Lip2

⎛⎝2 + 8

Lj∑
l=0

1

Nj,l

⎞⎠ τ2j

⎞⎠ ‖uj−u�‖2+2τ2j σj+

(
2τ2j +

2

l
τj

)
ε2j .

(IV.30)

From now on, we consider only deterministic sequences {Lj}, {Nj,l}, i.e. chosen in advance
and not adaptively during the algorithm. In this case the quantities σj and εj defined in
Theorem 21 are deterministic as well. From Theorem 21, taking the full expectation E[·]
in (IV.24) leads to the recurrence

aj+1 ≤ cjaj + λτ2j σ
2
j + μτjε

2
j , (IV.31)

where aj denotes the MSE aj = E[‖uj − u�‖2], cj , σ2j , ε2j are defined in Theorem 21 and
λ = 2, μ = 2τ0 +

2
l .

We now derive error bounds on the variance term σ2(L,
−→
N ) and the bias term ε2(L) as a

function of the total number of levels L and the sample sizes
−→
N = {N0, N1, . . . , NL}.

Lemma 15. For a sufficiently smooth optimal control u� and primal and dual solutions
y(u�), p(u�), the bias term ε2(L) associated to the MLMC estimator (IV.22) with L levels
satisfies

ε2(L) ≤ C(u�)h
2r+2
L
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for some constant C(u�) > 0.

Proof. Following the definition of the MLMC estimator, and using its telescoping property,
we have:

ε2(L) = ‖E[EMLMC
L,

−→
N

[∇f(u�)]]− E[∇f(u�)]‖2

= ‖E[∇fhL(u�, ·)]− E[∇f(u�, ·)]‖2
≤ E[‖∇fhL(u�, ·)− ∇f(u�, ·)‖2]
≤ C(u�)h

2r+2
L .

where in the last step we have used Lemma 14.

Lemma 16. For a sufficiently smooth optimal control u� and primal and dual solutions
y(u�), p(u�), the variance term σ2(L,

−→
N ) associated to the MLMC estimator (IV.22)

using L levels and
−→
N = {N0, N1, . . . , NL} sample sizes, satisfies

σ2(L,
−→
N ) ≤

L∑
l=0

2

Nl
C̃(u�)h

2r+2
l

for some constant C̃(u�) > 0, namely C̃(u�) = max{C(u�)
(
1 + 22r+2

)
,
E
[
‖∇fh0 (u�)‖2

]
2h2r+2

0

}
and C(u�) as in Lemma 15.

Proof. We use again the notation Ei,l(u�) = ∇fhl(u�, ωi,l)−∇fhl−1(u�, ωi,l)−E[∇fhl(u�, ·)−
∇fhl−1(v, ·)], with ωi,l iid with distribution P on Γ and denote Vl = E

[‖Ei,l(u�)‖2]. For
l = 0, . . . , L, i = 1, . . . , Nl, we have

σ2(L,
−→
N ) =E‖EMLMC

L,
−→
N

[∇f(u�, ·)]− E[∇fhL(u�, ·)]‖2

=E‖
L∑
l=0

1

Nl

Nl∑
i=1

Ei,l(u�)‖2

=
∑
l,l′

∑
i,i′

1

NlNl′
E〈Ei,l(u�), Ei′,l′(u�)〉

=

L∑
l=0

Nl∑
i=1

1

N2
l

E[‖Ei,l(u�)‖2] =
L∑
l=0

Vl
Nl

with the following bounds for the quantity V0

V0 ≤ E
[∥∥∥∇fh0(u�, ·)− E

[
∇fh0(u�, ·)

]∥∥∥2]
≤ E

[∥∥∥∇fh0(u�, ·)∥∥∥2] ,
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and Vl, for l ≥ 1:

Vl ≤2E[‖∇fhl(u�, ·)− ∇f(u�, ·)− E[∇fhl(u�, ·)− ∇f(u�, ·)]‖2]

+ 2E
[∥∥∥∇fhl−1(u�, ·)− ∇f(u�, ·)− E

[
∇fhl−1(u�, ·)− ∇f(u�, ·)

]∥∥∥2]
≤2

(
E
[
‖∇fhl(u�, ·)− ∇f(u�, ·)‖2] + E[‖∇fhl−1(u�, ·)− ∇f(u�, ·)‖2

])
≤2C(u�)

(
h2r+2
l + h2r+2

l−1

)
= 2C(u�)

(
1 + 22r+2

)
h2r+2
l .

Then combining the last two bounds, we reach:

σ2(L,
−→
N ) ≤

L∑
l=0

2

Nl
C̃(u�)h

2r+2
l

with C̃(u�) = max{C(u�)
(
1 + 22r+2

)
,
E
[
‖∇fh0 (u�)‖2

]
2h2r+2

0

}.

From Lemmas 15 and 16 we see that the bias ε2j = ε2(Lj) and the variance σ2j = σ2(Lj ,
−→
N j)

terms go to zero if Lj , Nj,l → ∞ as j → ∞. The rate at which Lj and Nj,l should diverge
to ∞ as j → ∞ should be chosen so as to minimize the total computational cost to
achieve a prescribed accuracy.

We express here a final bound obtained on the MSE aj after j iterations when using
the MLSG algorithm (IV.22). Specifically, in the next Lemma we assume algebraic
convergence rates for the two terms τ2j σ

2
j ∼ j−η1 and τjε2j ∼ j−η2 and discuss in Lemma

18 how the parameters (η1, η2) should be chosen, to obtain the best complexity, while
guaranteeing a given MSE.

Lemma 17. Assuming that we can choose Lj and
−→
N j such that the bias and variance

terms decay as

Lj∑
l=0

2

Nj,l
C̃(u�)h

2r+2
l ∼ σ20j

−η1+2, η1 ∈]2, τ0l
2

+ 1], (IV.32)

C(u�)h
2r+2
Lj

∼ ε20j
−η2+1, η2 ∈]1, τ0l

2
+ 1], (IV.33)

with σ20 > 0, ε20 > 0 constants, and taking τj = τ0/j with τ0l > 2, then we can bound the
MSE aj = E[‖uj − u�‖2] for the MLSG algorithm (IV.22) after j iterations as

aj ≤ C1(a1)j
− τ0l

2 + C2

{
j1−min{η1,η2}, if η1 < τ0l

2 + 1or η2 < τ0l
2 + 1

log(j)j−
τ0l
2 , if η1 = η2 =

τ0l
2 + 1

(IV.34)
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with C1 and C2 independent of j.

Proof. We first notice that, as Nj,l ≥ 1, under assumption (IV.33),

Lj∑
l=0

1

Nj,l
≤ Lj + 1 ≤ c̃ log(j + 1), (IV.35)

for some constant c̃ > 0. From (IV.31) we obtain by induction

aj+1 ≤cjaj + λτ2j σ
2
j + μτjε

2
j

≤cjcj−1aj−1 + cj(λτ
2
j−1σ

2
j−1 + μτj−1ε

2
j−1) + λτ2j σ

2
j + μτjε

2
j

� · · ·

�
( j∏
i=1

ci

)
︸ ︷︷ ︸

=κ0,j

a1 +

j∑
i=1

(λτ2i σ
2
i + μτiε

2
i )

j∏
l=i+1

cl︸ ︷︷ ︸
=Bj

. (IV.36)

with λ = 2 and μ = 2τ0 +
2
l . For the first term κ0,j , computing its logarithm, we have,

log(κ0,j) =

j∑
i=1

log(1− τ0l

2i
+Lip2 (2 + 8c̃ log(i+ 1))

τ20
i2
) ≤

j∑
i=1

−τ0l
2i

+ ĉ

j∑
i=1

log(i+ 1)

i2
,

with ĉ = Lip2τ20

(
2

log 2 + 8c̃
)
. Thus

log(κ0,j) ≤ −τ0l
2

log(j + 1) +M, with M = ĉ
∞∑
i=1

log(i+ 1)

i2
,

and κ0,j � j−
τ0l
2 . For the second term Bj in (IV.36) we have:

Bj ≤
j∑
i=1

(
λτ20σ

2
0i

−η1 + μτ0ε
2
0i

−η2) j∏
k=i+1

ck︸ ︷︷ ︸
=κi,j

.
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For the term κi,j we can proceed as follows:

log(κi,j) =

j∑
k=i+1

log (ck)

=

j∑
k=i+1

log

(
1− τ0l

2k
+ ĉ

log(k + 1)

k2

)

≤
j∑

k=i+1

(
− τ0l

2k
+ ĉ

log(k + 1)

k2

)
≤ −τ0l

2
(log(j + 1)− log(i+ 1)) +M,

which shows that

κi,j ≤ (j + 1)−
τ0l
2 (i+ 1)

τ0l
2 exp (M) .

It follows, in the case max{η1, η2} < τ0l
2 + 1 and using (i+ 1)τ0l/2 ≤ (2i)τ0l/2 for i ≥ 1,

that

Bj ≤ (j + 1)−
τ0l
2 exp (M)

j∑
i=1

(
λτ20σ

2
0i

τ0l
2

−η1 + μτ0ε
2
0i

τ0l
2

−η2
)
2τ0l/2

� j1−min{η1,η2},

whereas in the case η1 = η2 =
τ0l
2 + 1

Bj ≤ exp(M)(j + 1)−
τ0l
2

j∑
i=1

(
λτ20σ

2
0i

τ0l
2

−η1 + μτ0ε
2
0i

τ0l
2

−η2
)
2τ0l/2

≤ exp(M)(j + 1)−
τ0l
2
(
λτ20σ

2
0 + μτ0ε

2
0

)
(1 + log(j))2τ0l/2

� log(j)j−
τ0l
2 .

The remaining cases where min{η1, η2} < max{η1, η2} = τ0l
2 + 1 are treated analogously.

We introduce now some computational cost assumptions, to be able to use the MLMC
results, recalled in Section IV.B.2. Let us assume that the primal and dual problems
can be solved using a triangulation with mesh size h, in computational time Ch � h−dγ .
Here, γ ∈ [1, 3] is a parameter representing the efficiency of the linear solver used (e.g.
γ = 3 for a direct solver and γ = 1 up to a logarithmic factor for an optimal multigrid
solver), while d is the dimension of the physical space, D ⊂ Rd. In the particular context
presented in this work and using the results in Lemma 16, the variance Vl at level l can
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be bounded as

Vl = E[‖∇fhl(u�, ·)− ∇fhl−1(u�, ·)‖2] ≤ 2C̃(u�)h
2r+2
l � 2−l(2r+2).

We can estimate the computational cost Cl to generate one realization of ∇fhl(u�, ·)−
∇fhl−1(u�, ·) by:

Cl = Cost(∇fhl ,∇fhl−1) ≤ 2Cost(∇fhl) � h−γdl � 2lγd

Hence the costs and variances match the assumptions in Section IV.B.2 with qs = 2r + 2

and qc = γd. For a problem in dimension d ≤ 3 solved with an optimal solver (γ = 1 up
to log-terms) and using P1 finite elements (r = 1) we fall in the case qs > qc and should
expect the MLMC estimator with optimal sample sizes to achieve an optimal complexity
tol−2 at each iteration. We show in Theorem 22 that this optimality is preserved when
MLMC is used within a stochastic gradient method to solve the OCP (IV.7) when the
rates η1, η2 are properly chosen. We start with a preliminary result.

Lemma 18. In the case where 2r+2 > γd, where γ is such that the cost Cl of computing
one realization of ∇fhl(u, ·)− ∇fhl−1(u, ·) is bounded by Cl � 2lγd, and choosing

• the step-size τj = τ0
j with τ0 > 2

l ;

• the sequence of levels {Lj}j such that

Lj =

⌈
−1

log(2)
log

(
1

h0

(
ε20j

1−η2

C(u�)

) 1
2r+2

)⌉
,

for some η2 ∈]1, τ0l2 + 1] so that the bias term in (IV.33) satisfied ε2j ≤ ε20j
1−η2 ;

• the sequence of sample sizes {Nj,l}{j,l} as

Nj,l =
⌈
Υ(Lj)2

−l 2r+2+γd
2 jη1−2

⌉
with Υ(Lj) = 2C̃(u�)σ

−2
0 h2r+2

0

∑Lj

k=0 2
−k 2r+2−γd

2 for some η1 ∈]2, τ0l2 +1] so that the
variance term in (IV.32) satisfies σ2j ≤ σ20j

2−η1 ;

then, using the MLMC estimator EMLMC
Li,

−→
N i

in (IV.22) at each iteration i = 1, . . . , j, the
total required computational work Wj to compute uj, is bounded by:

Wj � jmax{η1−2,(η2−1) γd
2r+2

}+1.

Proof. In the case 2r+ 2 > γd we know that we are in the first case of MLMC algorithm,
i.e. qs > qc what guarantees an optimal computational complexity Ŵj for each MLMC
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estimator EMLMC
Lj ,

−→
N j

(with optimal
−→
N j and Lj), with bound

Ŵj =

Lj∑
l=0

ClNl,j �
Lj∑
l=0

2lγd

⎛⎝1 +

⎛⎝2−l
2r+2+γd

2 jη1−2

Lj∑
k=0

2−k
2r+2−γd

2

⎞⎠⎞⎠
� jη1−2

⎛⎝ Lj∑
k=0

2−k
2r+2−γd

2

⎞⎠2

+

Lj∑
l=0

2lγd

� jη1−2

⎛⎝ Lj∑
k=0

2−k(
2r+2−γd

2 )

⎞⎠2

+ 2γdLj

� jη1−2 + j
(η2−1)γd

2r+2

The first inequality just recalls that Nl,j must be an integer, so the optimal value is
rounded up to the nearest integer and can not be smaller than 1. Finally, we get a total
cost, for computing uj as:

Wj =

j∑
i=1

Ŵi � jmax{η1−2,(η2−1) γd
2r+2

}+1

We conclude the complexity analysis, investigating the optimal choice of parameters
(η1, η2) to use in the MLSG algorithm. Such optimal choice as well as the resulting
complexity are stated in the next Theorem.

Theorem 22. With the same notation and assumptions as in Lemma 18, the choice
η1 = η2 = η ≥ 2(2r+2)−γd

2r+2−γd , τ0 >
2(η−1)

l is optimal and the MLSG algorithm (IV.22),
requires a computational work W (tol) to reach a MSE = O(tol2), that is bounded by:

W (tol) � tol−2.

Proof. We consider first the case (η1, η2) ∈ Sad =]2, τ0l2 + 1[×]1, τ0l2 + 1[. From Lemma
17, we have that the MSE aj = E[‖uj − u�‖2] decays as aj � j1−min{η1,η2}. We want
now to find the best choice (η1, η2) ∈ Sad that minimizes the total computational
work Wj � jmax{η1−2,(η2−1) γd

2r+2
}+1 to compute uj , under the constraint that the MSE

aj = E[‖uj − u�‖2] is O
(
tol2

)
. Fixing j ∼ tol

2
1−min{η1,η2} we are lead to the minimization

problem

min
(η1,η2)∈Sad

1 + max{η1 − 2, (η2 − 1) γd
2r+2}

min{η1, η2} − 1
= min

(η1,η2)∈Sad

φ(η1, η2)

ψ(η1, η2)
. (IV.37)
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A

η1

η2

η2=η1
(2r + 2)(η1 − 2) = γd(η2 − 1)

isoline ψ(η1, η2)
isoline φ(η1, η2)

Figure IV.1 – Isocurves for problem (IV.37) w.r.t. (η1, η2)

Figure IV.1 shows the isolines of the function (η1, η2) �→ ψ(η1, η2) in red ( ), which
are L-shaped with corners on the bisectrice η1 = η2 (red dashed line ( )), as well as the
isolines of the function (η1, η2) �→ φ(η1, η2) in blue ( ), which have corners on the line

η1 − 2 = (η2 − 1)
γd

2r + 2
⇔ η2 =

2r + 2

γd︸ ︷︷ ︸
=a>1

η1 + 1− 2
2r + 2

γd︸ ︷︷ ︸
=b<−1

(blue dashed line ( )). Problem (IV.37) can be equivalently written as

min
c∈

]
0,

τ0l
2

[ min
(η1,η2)∈Sad

ψ(η1,η2)=c

φ(η1, η2)

c
. (IV.38)

For the inner minimization, we see that on a isoline ψ(η1, η2) = c, the minimum of
φ(η1, η2) is always achieved when η1 = η2 (the minimizer is not unique and corresponds
to a whole horizontal or vertical segment depending on whether c > A− 1 or c < A− 1,
see Figure IV.1). Finally (IV.38) can be rewritten as

min
η∈

]
2,

τ0l
2

+1
[
1 + max

{
η − 2, (η − 1) γd

2r+2

}
η − 1

= min
η∈

]
2,

τ0l
2

+1
[max

{
1,

1 + (η − 1) γd
2r+2

η − 1

}
,

(IV.39)
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from which we see that, since γd < 2r + 2, the optimum is achieved when η ≥ 2(2r+2)−γd
2r+2−γd

provided τ0 is chosen such that τ0 >
2(η−1)

l . The condition η ≥ 2(2r+2)−γd
2r+2−γd implies in

particular that

max{η − 2, (η − 1)
γd

2r + 2
} = η − 2,

hence Wj � jη−1 where j should be chosen as small as possible while satisfying the
constraints j1−η ≤ tol2, which leads to j ∼ tol

2
1−η and finally W (tol) � tol−2. The

remaining case η = τ0l
2 + 1 always leads to a worse bound.

IV.C.2. Implementation of MLSG

Here we present an effective implementation of the MLSG algorithm

The MLSG algorithm requires estimating the constants C(u�) and C̃(u�). This could be
done by a screening phase replacing the optimal control u� by e.g. the initial control u1.
Hence, for instance, for M iid initial random inputs ω̃j , j = 1, . . . ,M distributed as P on
Γ, we could estimate

Êl =
1

M

M∑
j=1

∥∥∥∇fhl(u1, ω̃j)− ∇fhl−1(u1, ω̃j)
∥∥∥2

and then approximate the constant C(u�) by least squares fit of the model Êl =

C(u�)h
2r+2
l . For the constant C̃(u�) we have always taken in our simulation C̃(u�) =

C(u�). Notice that the choice of the constants C(u�) and C̃(u�) does not affect the
asymptotic complexity result. A good choice of such constants, however, leads to a good
balance of the error contributions in the MLMC estimator, notably its bias and variance.
On the same vein, the parameters σ0 and ε0 should be chosen so that the two error
contributions in the recurrence (IV.31), namely λτ20σ

2
0j

−η and μτ0ε20j
−η are equilibrated.

For instance, one could fix σ0 =
√

μ
λτ0
ε0.

IV.D. Randomized multilevel Stochastic Gradient algorithm

We present in this section a modified version of the MLSG algorithm, namely the
randomized multilevel stochastic gradient (RMLSG) algorithm, where we avoid computing
a full MLMC estimator at each iteration, but we rather randomize the choice of the level
used to compute the gradient direction. It corresponds to using at each iteration the
randomized MLMC algorithm proposed in [RG15, RG12] (see also [Gil15]). Specifically,
at each iteration j, we sample an index lj following a suitable discrete probability measure
on {0, . . . , Lj} with probability mass function {pjl }

Lj

l=0 possibly changing at each iteration,
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Algorithm 4: MLSG algorithm

Data:
Choose η ≥ 2(2r+2)−γd

2r+2−γd , τ0 >
2(η−1)

l , h0, σ0, ε0,

generate the sequence Lj =
⌈

−1
log(2) log

(
1
h0

(
ε20j

1−η

C(u�)

) 1
2r+2

)⌉
,

compute Nj,l =
⌈
σ−2
0 jη−22C̃(u�)h

2r+2
0 2−l

2r+2+γd
2

∑Lj

k=0 2
−k 2r+2−γd

2

⌉
.

Initialize u = 0;
for j ≥ 1 do

initialize p̂ = 0;
generate

∑Lj

l=0Nj,l iid realizations of the random field ajl,i = a(·, ωjl,i),
i = 1, . . . , Nj,l, l = 0, . . . , Lj .

for l = 0, . . . , Lj do
initialize p̂l = 0;
for i = 1, . . . , Nj,l do

solve primal problem by FE on mesh hl−1 and realization
aji,l → yhl−1(aji,l, u)
solve dual problem by FE on mesh hl−1 and realization
aji,l → phl−1(aji,l, y

hl−1)
solve primal problem by FE on mesh hl and realization
aji,l → yhl(aji,l, u)
solve dual problem by FE on mesh hl and realization
aji,l → phl(aji,l, y

hl)

update p̂l = p̂l +
1
Ni,l

(
phl(aji,l, u)− phl−1(aji,l, u)

)
end
update p̂ = p̂+ p̂l

end
∇̂J = βu+ p̂
u = u− τ0

j ∇̂J
end

and we set

uj+1 = uj − τjE
RMLMC
Lj ,

−→p j [∇f(uj , ·)], j ≥ 1, u1 ∈ Y h0 , (IV.40)

with

ERMLMC
Lj ,

−→p j [∇f(uj , ·)] := 1

pjlj

(
∇fhlj (uj , ωj)− ∇fhlj−1(uj , ωj)

)
, lj ∼ {pjl }, ωj ∼ P,

(IV.41)

where all random variables {lj , ωj}j≥1 are mutually independent. We recall now from
[Gil15, RG12, RG15] that the optimal choice for the discrete probability mass function
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{pjl }
Lj

l=0, under the condition qs > qc is pjl = 2−l
qs+qc

2

(∑Lj

k=0 2
−k qs+qc

2

)−1
which, in our

setting with qs = 2r + 2 and qc = γd, and assuming 2r + 2 > γd, reads

pjl = 2−l
2r+2+γd

2

⎛⎝ Lj∑
k=0

2−k
2r+2+γd

2

⎞⎠−1

. (IV.42)

Remark 12. The formula (IV.42) allows one to take Lj = ∞, ∀j ≥ 1. This leads
to an unbiased estimator (IV.41), and corresponds to the estimator proposed in [RG12,
RG15]. However, in this work, we prefer the biased version Lj < ∞, ∀j ≥ 1 with Lj
suitably increasing in j, as it leads to a RMLSG algorithm with smaller variance of the
computational cost (see Theorem 25 below).

The next Lemma quantifies the bias of the estimator (IV.41) for a fixed control u.

Lemma 19. For any Lj ≥ 0 and any probability mass function
{
pjl

}Lj

l=0
on {0, . . . , Lj},

we have

E
[
ERMLMC
Lj ,

−→p j [∇f(u, ·)]
]
= E

[
∇fhLj (u, ·)

]
. (IV.43)

Proof. Conditioning on the value taken by the random variable lj , we have

E
[
ERMLMC
Lj ,

−→p j [∇f(u, ·)]
]
=

Lj∑
l=0

E

[
1

pjlj

(
∇fhlj (u, ·)− ∇fhlj−1(u, ·)

)
|lj = l

]
P(lj = l)︸ ︷︷ ︸

=pjl

=

Lj∑
l=0

E
[
∇fhl(u, ·)− ∇fhl−1(u, ·)

]
= E

[
∇fhLj (u, ·)

]
.

So we conclude that the estimator (IV.41) has the same bias as the full MLMC estimator
(IV.23).

IV.D.1. Convergence analysis

Let us denote by
Fj := σ ({ωi}, {li}, i = 1, . . . , j − 1)

the σ-algebra generated by all the random variables {ωi} and the sampled indexs {li} up
to iteration j − 1. Following the same procedure as in Section IV.C.1 we first derive a
recurrence relation for the error ‖uj − u�‖ at iteration j.
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Theorem 23. For any deterministic or random Fj-adapted sequence {Lj , j ≥ 1},
{pjl , j ≥ 1, l ∈ {0, . . . , Lj}}, with {Lj} non decreasing, denoting by uj the approxi-
mate control obtained at iteration j using the recursive formula (IV.40), and u� the exact
control for the continuous OCP (IV.7), we have:

E[‖uj+1 − u�‖2|Fj ] ≤ cj‖uj − u�‖2 + 2τ2j σ
2
j +

(
2τ2j +

2τj
l

)
ε2j (IV.44)

with cj = 1− l
2τj + 2Lip2τ2j

(
4 + 3

∑Lj

l=0
2

pjl

)
σ2j = σ2(Lj ,

−→p j) = E
[∥∥∥ERMLMC

Lj ,
−→p j [∇f(u�)]− E[∇fhLj (u�)|Fj ]

∥∥∥2 |Fj] the variance term

ε2j = ε2(Lj) =
∥∥∥E[∇fhLj (u�)|Fj ]− E[∇f(u�)]

∥∥∥2 the squared bias term.

Proof. Using the optimality condition

E[∇f(u�)] = 0,

and the fact that the expectation of the randomized MLMC estimator for any deterministic,
or random Fj-measurable u ∈ U , is

E[ERMLMC
Lj ,

−→p j [∇f(u)]|Fj ] = E[∇fhLj (u)|Fj ],

we can decompose the error at iteration j + 1 as

‖uj+1 − u�‖2 =
∥∥∥∥∥uj − u� − τj

1

pjlj

(
∇fhlj (uj , ωj)− ∇fhlj−1(uj , ωj)

)∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥∥∥∥
uj − u� − τj

(
1

pjlj

(
∇fhlj (uj , ωj)− ∇fhlj−1(uj , ωj)

)
− E

[
∇fhLj (uj , ·)|Fj

])
︸ ︷︷ ︸

=B(uj)

−τj E
[
∇fhLj (uj , ·)− ∇fhLj (u�, ·)|Fj

]
︸ ︷︷ ︸

=A

−τj E
[
∇fhLj (u�, ·)− ∇f(u�, ·)|Fj

]
︸ ︷︷ ︸

=C

∥∥∥∥∥∥∥
2

= ‖uj − u�‖2 + τ2j ‖A‖2 + τ2j ‖B(uj)‖2 + τ2j ‖C‖2
− 2τj〈uj − u�, A〉 − 2τj〈uj − u�, B(uj)〉 − 2τj〈uj − u�, C〉
+ 2τ2j 〈A,B(uj)〉+ 2τ2j 〈A,C〉+ 2τ2j 〈B(uj), C〉

Taking conditional expectation w.r.t. the σ-algebra Fj and using the fact that E[B(uj)|Fj ] =
0, which implies E[〈uj − u�, B(uj)〉|Fj ] = E[〈A,B(uj)〉|Fj ] = E[〈C,B(uj)〉|Fj ] = 0, we
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get

E
[‖uj+1 − u�‖2|Fj

]
=‖uj − u�‖2 + τ2j E[‖A‖2|Fj ] + τ2j E[‖B(uj)‖2|Fj ] + τ2j E[‖C‖2|Fj ]

− 2τj〈uj − u�,E[A|Fj ]〉 − 2τj〈uj − u�,E[C|Fj ]〉+ 2τ2j E[〈A,C〉|Fj ]
≤‖uj − u�‖2 + τ2j E[‖A‖2|Fj ] + τ2j E[‖B(uj)‖2|Fj ] + τ2j E[‖C‖2|Fj ]

− τjl‖uj − u�‖2 + l

2
τj‖uj − u�‖2 + 2

l
τjE[‖C‖2|Fj ]

+ τ2j E[‖A‖2|Fj ] + τ2j E[‖C‖2|Fj ]

≤
(
1− l

2
τj + 2Lip2τ2j

)
‖uj − u�‖2 + τ2j E[‖B(uj)‖2|Fj ] +

(
2τ2j +

2τj
l

)
E[‖C‖2|Fj ],

where we have exploited the Lipschitz continuity and strong convexity of fhLj to bound
E[‖A‖2|Fj ]≤ Lip2‖uj − u�‖2 as well as 〈uj − u�,E[A|Fj ]〉 ≥ l

2‖uj − u�‖2 (see also the
proof of Theorem 21). Splitting the term B(uj) as (B(uj)−B(u�)) +B(u�), we get:

E
[‖uj+1 − u�‖2|Fj

] ≤(
1− l

2
τj + 2Lip2τ2j

)
‖uj − u�‖2 + 2τ2j E[‖B(uj)−B(u�)‖2|Fj ]

+ 2τ2j E[‖B(u�)‖2|Fj ]︸ ︷︷ ︸
=σ2

j

+

(
2τ2j +

2τj
l

)
E[‖C‖2|Fj ]︸ ︷︷ ︸

=ε2j

.

We can further split the term B(uj)−B(u�) in 3 parts, and use the Lipschitz continuity:

‖B(uj)−B(u�)‖2 ≤ 3

∥∥∥∥∥ 1

pjlj

(
∇fhlj (uj , ·)− ∇fhlj (u�, ·)

)∥∥∥∥∥
2

+ 3

∥∥∥∥∥ 1

pjlj

(
∇fhlj−1(uj , ·)− ∇fhlj−1(u�, ·)

)∥∥∥∥∥
2

+ 3
∥∥∥E[∇fhLj (uj , ·)− ∇fhLj (u�, ·)|Fj ]

∥∥∥2 ,
so that its conditional expectation reads

E[‖B(uj)−B(u�)‖2|Fj ] ≤ 3Lip2

⎛⎝1 +

Lj∑
l=0

2

pjl

⎞⎠ ‖uj − u�‖2.

Finally, we obtain:

E
[‖uj+1 − u�‖2|Fj

] ≤
⎛⎝1− l

2
τj + 2Lip2τ2j

⎛⎝4 + 3

Lj∑
l=0

2

pjl

⎞⎠⎞⎠ ‖uj−u�‖2+2τ2j σ
2
j+

(
2τ2j +

2τj
l

)
ε2j .

(IV.45)
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From now on, we consider only deterministic sequences {Lj}, {pjl }, i.e. chosen in advance
and not adaptively during the algorithm. In this case the quantities σj and εj defined in
Theorem 23 are deterministic as well. From Theorem 23, taking the full expectation E[·]
in (IV.45) leads to the recurrence

aj+1 ≤ cjaj + λτ2j σ
2
j + μτjε

2
j (IV.46)

where aj denotes the MSE aj = E[‖uj − u�‖2], cj , σ2j , ε2j are defined in Theorem 23 and
λ = 2, μ = 2τ0 +

2
l as in (IV.31). We now derive bounds on the bias term ε2(L) and

the variance term σ2(L, {pl}Ll=0) as a function of the total number of levels L and the
probability mass function (pmf) {pl}Ll=0 on {0, . . . , L}.

Lemma 20. For a sufficiently smooth optimal control u� and primal and dual solutions
y(u�), p(u�), the bias term ε2(L) associated to the randomized MLMC estimator (IV.41)
with L levels satisfies

ε2(L) ≤ C(u�)h
2r+2
L .

with C(u�) as in Lemma 15.

Proof. Since, from Lemma 19, we have E
[
ERMLMC
L,−→p [∇f(u, ·)]

]
= E

[∇fhL(u, ·)], the proof
follows verbatim that of Lemma 15.

Lemma 21. For a sufficiently smooth optimal control u� and primal and dual solutions
y(u�), p(u�), the variance term σ2(L, {pl}Ll=0) associated to the randomized MLMC
estimator (IV.41) using L levels and the pmf {pl}Ll=0, satisfies

σ2(L, {pl}Ll=0) ≤
L∑
l=0

2C̃(u�)
h2r+2
l

pl

with C̃(u�) as in Lemma 16. If the pmf {pl}Ll=0 is chosen optimally as pl ∝ 2−l
2r+2+γd

2 ,
and 2r + 2 > γd then

σ2(L, {pl}Ll=0) = O(1), w.r.t. L.

Proof. For the first part of the Lemma, we start showing that

σ2(L, {pl}Ll=0) ≤
L∑
k=0

Vk
pk
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with Vk = E
[∥∥∇fhk(u�, ·)− ∇fhk−1(u�, ·)

∥∥2]. We can write, following [Gil15]

σ2(L, {pl}Ll=0) =E
[∥∥∥ERMLMC

L,−→p [∇f(u�, ·)]− E
[
∇fhL(u�, ·)

]∥∥∥2]
=E

[∥∥∥∥ 1

plR

(
∇fhlR (u�, ·)− ∇fhlR−1(u�, ·)

)∥∥∥∥2
]
−
∥∥∥E [∇fhL(u�, ·)]∥∥∥2

≤E

[∥∥∥∥ 1

plR

(
∇fhlR (u�, ·)− ∇fhlR−1(u�, ·)

)∥∥∥∥2
]

≤
L∑
k=0

Vk
pk
.

The variance terms Vk can be bounded as in Lemma 16 as

Vk ≤ 2C̃(u�)h
2r+2
k , k = 0, . . . , L

leading to the final result

σ2(L, {pl}Ll=0) ≤
L∑
k=0

2

pk
C̃(u�)h

2r+2
k .

Replacing the probability mass function pl ∝ 2−l
2r+2+γd

2 , as defined in (IV.42), we get:

σ2(L, {pl}Ll=0) ≤
L∑
l=0

2C̃(u�)
h2r+2
l

pl
=

L∑
l=0

2C̃(u�)h
2r+2
0 2−l(2r+2)2l(

2r+2+γd
2

) 2
−(L+1) 2r+2+γd

2 − 1

2−
2r+2+γd

2 − 1

≤ 2C̃(u�)h
2r+2
0

L∑
l=0

2−l
2r+2−γd

2

(
1− 2−

2r+2+γd
2

)−1

= O(1).

Since 2r + 2− γd > 0 and the series is convergent.

Analogously to the non-randomized MLSG algorithm, we enforce an algebraic decrease of
the bias as a function of j, i.e.

C(u�)h
2r+2
0 2−Lj(2r+2) ∼ ε20j

1−η, for some η > 1. (IV.47)

Under the further condition η < 3(2r+2)+γd
2r+2+γd , we can obtain a bound on the MSE aj =

E[‖uj − u�‖2] for the RMLSG algorithm, analogous to the one stated in Lemma 17 for
the non-randomized version.
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Lemma 22. Assuming that we can choose Lj such that the bias term decays as

C(u�)h
2r+2
Lj

∼ ε20j
−η+1, η ∈

]
1,

3(2r + 2) + γd

2r + 2 + γd

[
, (IV.48)

with ε20 > 0 constant, taking τj = τ0/j with τ0l > 2, and the probability mass function {pjl }
as in (IV.42), then we can bound the MSE aj = E[‖uj − u�‖2] for the RMLSG algorithm
(IV.40) after j iterations as

aj ≤ C1(a1)j
− τ0l

2 + C2j
1−min{2,η} (IV.49)

with C1(a1) and C2 independent of j.

Proof. We notice that we can bound
∑Lj

l=0

(
pjl

)−1
appearing in the constant cj of Theorem

23, by

Lj∑
l=0

(
pjl

)−1 ≤ c̃jθ, (IV.50)

for some constant c̃ > 0 and θ = η−1
2

(
1 + γd

2r+2

)
. Indeed, denoting by Pj =

∑Lj

l=0 2
−l 2r+2+γd

2 =

O(1), we have

Lj∑
l=0

(
pjl

)−1
=

Lj∑
l=0

2l
2r+2+γd

2 Pj

� 2(Lj+1) 2r+2+γd
2

� j
η−1
2r+2

2r+2+γd
2

� jθ.

The condition η < 3(2r+2)+γd
2r+2+γd is equivalent to θ < 1, what makes the serie of general term{∑Lj

l=0

(
pjl

)−1
j−2

}
j

summable. From (IV.46) we obtain by induction

aj+1 ≤cjaj + λτ2j σ
2
j + μτjε

2
j

≤cj cj−1aj−1 + cj(λτ
2
j−1σ

2
j−1 + μτj−1ε

2
j−1) + λτ2j σ

2
j + μτjε

2
j

� · · ·

�
( j∏
i=1

ci

)
︸ ︷︷ ︸

=κ0,j

a1 +

j∑
i=1

(λτ2i σ
2
i + μτiε

2
i )

j∏
l=i+1

cl︸ ︷︷ ︸
=Bj

. (IV.51)

with λ = 2 and μ = 2τ0 +
2
l . For the first term κ0,j , computing its logarithm, we have,
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log(κ0,j) ≤
j∑
i=1

log

(
1− τ0l

2i
+ τ20Lip

2
(
8 + 12c̃iθ

)
i−2

)
≤

j∑
i=1

−τ0l
2i

+ ĉ

j∑
i=1

iθ−2,

with ĉ = Lip2 (8 + 12c̃) τ20 . Hence,

log(κ0,j) ≤ −τ0l
2

log(j + 1) +M ′, with M ′ = ĉ

∞∑
i=1

iθ−2 < +∞,

which implies κ0,j � j−
τ0l
2 . For the second term Bj in (IV.51) we have:

Bj ≤
j∑
i=1

(
λτ20σ

2
0i

−2 + μτ0ε
2
0i

−η) j∏
k=i+1

ck︸ ︷︷ ︸
=κi,j

.

For the term κi,j we can proceed as follows:

log(κi,j) =

j∑
k=i+1

log (ck)

≤
j∑

k=i+1

log

(
1− τ0l

2k
+ ĉ

kθ

k2

)

≤
j∑

k=i+1

(
− τ0l

2k
+ ĉ

kθ

k2

)
≤ −τ0l

2
(log(j + 1)− log(i+ 1)) +M ′,

which implies

κi,j ≤ (j + 1)−
τ0l
2 (i+ 1)

τ0l
2 exp

(
M ′) ,

and the final bound on Bj :

Bj ≤ (j + 1)−
τ0l
2 exp

(
M ′) j∑

i=1

(
λτ20σ

2
0i

τ0l
2

−2 + μτ0ε
2
0i

τ0l
2

−η
)
2τ0l/2

� j1−min{2,η}.

We are now ready to state the final complexity result for the RMLSG algorithm.

Theorem 24. In the case 2r + 2 > γd with the same notation and assumptions as in
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Lemma 22, if the parameter η satisfies η ∈
]
1, 3(2r+2)+γd

2r+2+γd

[
, and τ0 > 2

l , then the expected

computational work W (tol) of the RMLSG algorithm (IV.40) to reach a MSE O(tol2), is
bounded by:

E[W (tol)] � tol
min

{
−2, −2

η−1

}
. (IV.52)

In particular, if we choose η ∈
[
2, 3(2r+2)+γd

2r+2+γd

[
, we reach the optimal complexity of

E[W (tol)] � tol−2.

Proof. The expected computational work of RMLSG up to iteration j, namely Wj , can
be bounded by

E[Wj ] =

j∑
i=1

E[Cli ] =
j∑
i=1

Li∑
k=0

Ckp
i
k

�
j∑
i=1

Li∑
k=0

2kγd2−k
2r+2+γd

2

⎛⎝ Lj∑
p=0

2−p
2r+2+γd

2

⎞⎠−1

=

j∑
i=1

Li∑
k=0

2−k
2r+2−γd

2

⎛⎝ Lj∑
p=0

2−p
2r+2+γd

2

⎞⎠−1

� O(j).

Taking now j ∼ tol
2

1−min{2,η} to achieve aj � tol2 we finally obtain E[W (tol)] �
tol

2
1−min{2,η} which can be equivalently rewritten as

E[W (tol)] � tol
min

{
−2, −2

η−1

}
.

The previous Theorem shows that the RMLSG algorithm achieves the optimal complexity
E[W (tol)] � tol−2 (in terms of expected computational cost versus MSE), for all η ∈[
2, 3(2r+2)+γd

2r+2+γd

[
. It is worth looking also at the variance of the computational work, beside

its expected value. The next Lemma shows that the choice η = 2 is optimal in the sense
that it minimizes the variance of the cost among all η ∈

[
2, 3(2r+2)+γd

2r+2+γd

[
, at least in the

case 2r + 2 < 3γd, and leads to a coefficient of variation �(tol) =
√

Var[W (tol)]

E[W (tol)] that goes
asymptotically to zero.

Theorem 25. Let W (tol) be the computational cost to reach a MSE = O(tol2) by the
RMLSG algorithm (IV.40), and denote by �(tol) the coefficient of variation of W (tol),
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namely

�(tol) =

√
Var[W (tol)]

E[W (tol)]
.

Assuming that the computational cost Cl of computing one realization of ∇fhl(u, ·) −
∇fhl−1(u, ·) can be bounded as cc2lγd ≤ Cl ≤ cc2

lγd for some cc, cc > 0, then if 2r + 2 ≥
3γd,

lim
tol→0

�(tol) = 0, ∀η ∈
[
2,

3(2r + 2) + γd

2r + 2 + γd

[
.

On the other hand, if γd < 2r + 2 < 3γd,

lim
tol→0

�(tol) = 0, ∀η ∈
[
2,

3γd+ (2r + 2)

3γd− (2r + 2)

[
.

Moreover, �(tol) is minimized for η = 2, for which

�(tol) � tol
3(2r+2−γd)

2(2r+2) .

Proof. Let us start computing the variance of the computational cost Wj , after j iterations

Var [Wj ] := Var

[
j∑
i=1

Cli

]
=

j∑
i=1

Var [Cli ]

≤
j∑
i=1

E
[
C2
li

]
=

j∑
i=1

Li∑
l=0

C2
l p
i
l

�
j∑
i=1

Li∑
l=0

22lγd2−l
2r+2+γd

2

�
j∑
i=1

Li∑
l=0

2−l
2r+2−3γd

2 .

Observe moreover, that under the assumption Cl ∼ 2lγd, we have

E [Wj ] =

j∑
i=1

Li∑
l=0

Clp
i
l

≥
j∑
i=1

1

Pj

Li∑
l=0

cc2
2lγd2−l

2r+2+γd
2

≥ cc

P∞
j.
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If 2r + 2 > 3γd, the series {∑Li
l=0 2

−l 2r+2−3γd
2 }i is convergent, we end up with

Var[Wj ] � j, ∀η ∈
[
2,

3(2r + 2) + γd

2r + 2 + γd

[
.

In this case, the squared coefficient of variation Var[Wj ]
E[Wj ]2

� j−1 which implies �2(tol) � tol2,

∀η ∈
[
2, 3(2r+2)+γd

2r+2+γd

[
.

If, instead, 2r + 2 = 3γd, then we have

Var[Wj ] �
j∑
i=1

Li ≤
j∑
i=1

log
(
i

η−1
2r+2

)
≤ η − 1

2r + 2
(j + 1) log(j + 1)

and then
�(tol)2 =

Var[W (tol)]

E[W (tol)]2
� η − 1

2r + 2
tol2 log(tol−1)

which is minimized for η = 2.
Finally, when 2r + 2 < 3γd, we have

Var[Wj ] �
j∑
i=1

2Li
3γd−(2r+2)

2 �
j∑
i=1

i
η−1
2r+2

3γd−(2r+2)
2 � j

η−1
2r+2

3γd−(2r+2)
2

+1

and we derive
�(tol)2 =

Var[W (tol)]

E[W (tol)]2
� tol−

η−1
2r+2

(3γd−(2r+2))+2,

which shows that lim
tol→0

�(tol) = 0, ∀η ∈ [2, 3γd+(2r+2)
3γd−(2r+2) [. In particular, �(tol) is minimized

for η = 2, what finishes the proof.

We present in the following Section a description of the RMLSG algorithm.

IV.D.2. Implementation of the RMLSG algorithm

In this section, we present an effective implementation of the RMLSG algorithm.

Algorithm 5 requires estimating the constant C(u�) which can be done in the same way
as proposed in Section IV.C.2. Notice that overall this randomized version of the MLSG
algorithm has less parameters to tune than the non-randomized one.
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Algorithm 5: Randomized MLSG algorithm

Data:
Choose τ0 > 2

l , h0, ε0,

generate the sequence Lj =
⌈

−1
log(2) log

(
1
h0

(
ε20j

−1

C(u�)

) 1
2r+2

)⌉
j ≥ 1,

compute pjl = 2−l
2r+2+γd

2

(∑Lj

k=0 2
−k 2r+2+γd

2

)−1
j ≥ 1, l = 0, . . . , Lj .

initialize u = 0;
for j ≥ 1 do

generate one iid realization of the random field aj = a(·, ωj), j ≥ 1.
sample lj ∼ {pjl }

Lj

l=0 on {0, . . . , Lj}
solve primal problem by FE on mesh hlj−1 and realization
aj → y

hlj−1(aj , u)
solve dual problem by FE on mesh hlj−1 and realization
aj → p

hlj−1(aj , y
hlj−1)

solve primal problem by FE on mesh hlj and realization
aj → y

hlj (aj , u)
solve dual problem by FE on mesh hlj and realization
aj → p

hlj (aj , y
hlj )

∇̂J = βu+ 1

pjlj

(
p
hlj (aj , u)− p

hlj−1(aj , u)
)

u = u− τ0
j ∇̂J

end

IV.E. Numerical results

IV.E.1. Problem setting

In this section we verify the assertions on the order of convergence and computational
complexity stated in Lemmas 17, 22 and Theorem 22, 24 for the MLSG Algorithm 4 and
the RMLSG Algorithm 5, respectively. For this purpose, we consider the optimal control
problem (IV.7) in the domain D = (0, 1)2 with g = 1 and the following random diffusion
coefficient:

a(x1, x2, ξ) = 1+

exp (var (ξ1 cos(1.1πx1) + ξ2 cos(1.2πx1) + ξ3 sin(1.3πx2) + ξ4 sin(1.4πx2))) ,

(IV.53)

with (x1, x2) ∈ D, var = exp(−1.125) and ξ = (ξ1, . . . , ξ4) with ξi
iid∼ U([−1, 1]) (this test

case is taken from [LG17]). We have chosen β = 10−4 as the price of energy (regularization
parameter) in the objective functional. For the FE approximation, we have considered a
structured triangular grid of mesh size h where each side of the domain D is divided into
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j: iteration {1, . . . , 3} {4, . . . , 15} {16, . . . , 63} {64, . . . , 120}
Lj 0 1 2 3

hLj 2−3 2−4 2−5 2−6

Table IV.1 – One example of level refinement over the iterations for Algorithm 4

1/h sub-intervals and used piece-wise linear finite elements (i.e. r = 1). All calculations
have been performed using the FE library Freefem++ [Hec12].

IV.E.2. Reference solution

In order to compute one reference solution uref , we used a tensorized Gauss-Legendre
quadrature formula with q = 5 Gauss-Legendre knots in each of the 4 random variables
ξ1, . . . , ξ4 in (IV.53), hence n = 54 knots in total, in order to approximate the expectation
E in the objective functional. We discretized the OCP (IV.7), using a FE method with P1

elements (i.e. r = 1), over a regular triangulation of the domain D, with a discretization
parameter h = 2−7. To compute one optimal control, we used a full gradient strategy,
(requiring at each iteration to solve 2× 54 discretized PDE) up to 20 iterations, using an
adaptive (optimal in our quadratic setting) step-size. We reached a final gradient norm
of ‖∇Ĵ(u20)‖ = 6.54276e− 12 and a final difference between two consecutive controls of
‖u20 − u19‖ = 5.05678e− 09.

IV.E.3. MLSG algorithm

In order to assess the convergence rate of the MLSG Algorithm 4 and its computational
complexity, we run 10 independent realizations of the MLSG algorithm, up to 120
iterations, using a step size τj = τ0/(j + 10), and the following parameters: τ0 = 2/β,

h0 = 2−3, ε0 =
√
C(u�)h

2r+2
0 , σ0 =

√(
2τ0 +

2
l

) ε20
2τ0

, η = 2(2r+2)−γd
2r+2−γd , r = 1, d = 2, γ = 1,

l = 2β (see Lemma 11). The constant C(u�) has been estimated in [MN18] for the
same test case. Here we have taken C(u�) = 0.5. These parameters have been used in
Algorithm 4 to determine the levels Lj and samples per level Nj,l, at each iteration. We
report in Table IV.1 the levels Lj and the corresponding mesh sizes over the iterations
In Figure IV.2, we plot the mean error on the control, E[‖uj − uref‖], averaged over
the 10 repetitions of the MLSG procedure, versus the iteration counter in log scale. We
verify a slope of −1.09, which is consistent with the result MSE = O(j1−η) stated in
Lemma 17 with η = 3. Figure IV.3 shows the estimated mean error, averaged over the
10 repetitions, versus the computational cost model Wj =

∑j
i=0

∑Li
l=0 2

lγdNl,i, which
confirms the complexity result of Theorem 22.
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LS fit: y = −1.0828x+ 0.17005

E[‖uj − uref‖]± std‖uj − uref‖ using MLSG

Figure IV.2 – Mean error vs iteration counter for the MLSG Algorithm 4
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LS fit: y = −1.9703x+ 0.17005

Figure IV.3 – Cost W versus mean error, using the MLSG Algorithm 4

IV.E.4. RMLSG algorithm

Using the randomized version of the MLSG Algorithm 5, we assess the convergence rate
(IV.49) averaging over 1000 independent realizations, of the RMLSG algorithm, up to
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iteration j = 1000. The problem setting is the same as above and we have used the
same parameters r = 1. d = 2, γ = 1, C(u�) = 0.5, τj = τ0/(j + 10) with τ0 = 2/β,

ε0 =
√
C(u�)h

2r+2
0 , η = 2.We use the the optimal probability mass function:

pjl = 2−l
2r+2+γd

2

⎛⎝ Lj∑
k=0

2−k
2r+2+γd

2

⎞⎠−1

j ≥ 1, l = 0, . . . , Lj .

In Figure IV.4, we plot the mean error versus the iteration counter in log-scale and observe
a rate −1/2 which is consistent with the result in Lemma 22 with η = 2. Figure IV.5 shows

100 101 102 103
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100
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iteration counter

E
[‖e
rr
or

‖]

E[‖uj − uref‖] using RMLSG averaged on 1000 realizations
‖uj − uref‖ one realization of RMLSG
LS fit: y = −0.44052x+ 0.67754

E[‖uj − uref‖]± std(‖uj − uref‖)

Figure IV.4 – Mean error vs iteration counter for the RMLSG Algorithm 5

the expected computational cost model E[Wj ] =
∑j

i=1

∑Li
k=0 2

kγdpik versus the actual
mean error averaged over the 1000 repetitions and verify a slope of -2 consistent with the
complexity result in Theorem 24 (with η = 2). The discontinuities in the expected compu-
tational cost in Figure IV.5 are due to the fact that the expected cost is not an increasing
function of the iteration counter, as shown on Figure IV.6. Specifically, as the probability
mass function {pjl } is normalized by its sum

∑Lj

k′=0 2
−k′ 2r+2+γd

2 , when we reach iteration
j where the maximum level Lj is increased the by 1, we observe slight lower expected

cost, i.e. E[W (ERMLMC
Lj ,

−→p j )] =
∑Lj

k=0 2
kγdpjk =

∑Lj

k=0 2
−k 2r+2−γd

2

(∑Lj

k′=0 2
−k′ 2r+2+γd

2

)−1
is

not monotonic in j.
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Figure IV.5 – Expected cost E[W ] vs mean error for the randomized MLSG Algorithm 5
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IV.F. Conclusions

In this work, we presented a modified version of the Stochastic Gradient algorithm, in
order to solve numerically a PDE-constrained OCP, with uncertain coefficients. The
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usual Robbins-Monro approach, involving a single realization estimator of the gradient is
replaced by either a MLMC estimator, with increasing cost w.r.t. the iteration counter, or
a randomized version of the MLMC estimator, where only one difference term of the full
MLMC estimator is computed at each iteration, on a randomly drawn level, according to
a probability mass function, set a priori. We have shown that both algorithms, when
properly tuned, achieve the optimal complexity W � tol−2. These complexity results
are assessed in the numerical Section. In practice, many constants have to be tuned
beforehand in these 2 MLSG algorithms, and as the randomized version, namely RMLSG,
presents fewer constants/parameters to tune, it is preferred as it guarantees less variability
w.r.t. the choice of the algorithm parameters.
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V PDE-constrained OCPs with uncer-
tain parameters using SAGA

This Chapter is essentially the same as the publication [MN18], submitted for publication.

V.A. Introduction

In this paper we consider a risk averse optimal control problem (OCP) for an elliptic
PDE with random diffusion coefficients

u∗ ∈ argmin
u∈U

J(u), J(u) = Eω[f(u, ω)] (V.1)

where ω ∈ Γ denotes a random elementary event, f(u, ω) = f̃(yω(u), u, ω) and yω(u) is
the solution of an elliptic PDE E(yω(u), ω) = u with some random coefficients. Here the
right hand side u is a deterministic function, in a possibly infinite dimensional space U ,
that acts as a control so as to minimize the functional f(·, ω), in an average sense with
respect to (w.r.t.) ω. In particular, in the setting considered in this work, u �→ f(u, ω) is
strongly convex for any ω ∈ Γ.

Assuming that the randomness can be parametrized in terms of a small number M of
independent random variables, the expectation appearing in the cost functional J(u)
can be written as a M -dimensional integral and suitably approximated by a quadrature
formula as e.g. a tensorized Gaussian quadrature, leading to an approximate optimal
control problem

û∗ ∈ argmin
u∈U

Ĵ(u), Ĵ(u) =

n∑
j=1

ζjf(u, ηj) (V.2)

where ηj are the quadrature knots and ζj the quadrature weights with
∑n

j=1 ζj = 1. For
a given control u, evaluating Ĵ(u) entails the computation of the n solutions {yηj (u)}nj=1

of the underlying PDE. This approach is known in the literature as stochastic collocation
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method and has been analyzed e.g. in [BNT10]. It leads, in favorable cases, to an error
in the functional that converges to zero (sub)-exponentially in n, although typically
exposed to the curse of dimensionality, hence acceptable only for a small number of
random variables. By replacing the tensorized quadrature by a suitable sparse one (see e.g.
[BG04, NTT16]), dimension free convergence rates have been demonstrated in certain
cases (see e.g. [SS13, HANTT16a, EST18, ZDS18] and references therein). However, in
this work, we stick to the simpler setting of a tensorized Gaussian quadrature formula
and a small number of random variables.

To solve the approximate OCP (V.2), we could consider a steepest descent hereafter
called Full Gradient (FG), or a Conjugate Gradient (CG) method which would converge
exponentially fast in the number of iterations, i.e. ‖ûk − û�‖ ≤ Cρk for some ρ ∈ (0, 1)

where ûk is the k-th iterate of the method and the error is measured in a suitable norm.
The practical limitation of this approach is that each iteration requires the evaluation of
a descent direction for Ĵ(u), which entails n solutions of the PDE and n solutions of the
corresponding adjoint problem. If n is large, the cost for one single iteration may become
excessively high.

A popular technique in the machine learning community to solve optimization problems
of the form (V.2) is the Stochastic Gradient (SG) method ([RM51]) which reads

ûk+1 = ûk − τkζik∇uf(u, ηik)

where the gradient of only one term in the sum is evaluated at each iteration (corresponding
to one primal and one adjoint computation) for a randomly drawn index ik, and the
convergence is achieved by reducing the step size τk over the iterations. This makes the
cost of each iteration affordable. The convergence of the SG method for a PDE-constrained
optimal control problem with uncertain parameters has been studied in the recent work
[MKN18] in the context of a Monte Carlo approximation of the expectation appearing
in (V.1). In particular, we have shown that the root mean squared error E[‖ûk − û∗‖]
of the SG method converges with order 1/

√
k, which is the same order of the Monte

Carlo “quadrature” error, and leads to an optimal strategy and a slightly better overall
complexity than a FG (or CG) approach. In the setting of this paper, however, the
quadrature error decays (sub)-exponentially, and the convergence rate of 1/

√
k of the SG

method would lead to a much worse complexity than a FG or a CG method.

In recent years, variants of the SG method for a finite dimensional optimization problem
of the form (V.2), such as the Stochastic Averaged Gradient (SAG) method [SRB13]
and the SAGA method [DBLJ14] have been proposed, which recover an exponential
convergence in the number of iterations, by introducing a memory term which stores
all previously computed gradients in the sum and overwrite a term if the corresponding
index is re-drawn. The method presented in [DBLJ14] is applicable to the case of uniform
weights ζj = 1

n , i = 1, . . . , n and uniformly drawn indexs ik over {1, . . . , n}. A variant of
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the SAGA method that uses a non-uniform sampling of the indexs ik has been proposed
in [SBA+].

In this paper, we extend the SAGA algorithm to the infinite dimensional setting of
problem (V.2) and to the case of non-uniform weights, as they appear naturally in a
Gaussian quadrature formula. In particular, we propose an importance sampling strategy
where the indexs ik are drawn from a possibly non-uniform distribution, also different
from the distribution induced by the weights {ζj}nj=1.

Following similar steps as in [DBLJ14, SBA+], we present a full theoretical convergence
analysis of the generalized SAGA method for the infinite dimensional OCP (V.2). In
particular we show that, asymptotically in n, the optimal sampling measure for the indexs
ik is the uniform measure.

We also present a complexity analysis, in terms of computational cost versus accuracy, of
the generalized SAGA method to solve the original OCP (V.1), which accounts for both
the Stochastic Collocation quadrature error as well as the error in solving the primal and
adjoint PDEs approximately by the finite element method. The complexity of SAGA is
then compared to the complexity of FG as well as SG. Our theoretical results show that
the generalized SAGA method has the same asymptotic complexity as the FG method
and outperforms SG.

As shown by our numerical experiments, the interest in using SAGA versus FG is in the
pre-asymptotic regime, as SAGA often delivers acceptable solutions, from a practical
point of view, well before performing n iterations, i.e. with far less that 2n PDE solves
(we recall that one single FG iteration entails already 2n PDE solves). In a context of
limited budget, SAGA represents therefore a very appealing option.

As pointed out above, in this work we have restricted our study to the case of a small
number of random variables and a tensorized Gaussian type quadrature formula, the main
constraint in our analysis being that we need positive weights {ζj}. This leaves open
the question if the methodology can be extended and applied also with other quadrature
formulas, such as sparse grid quadratures whose weights are not all positive, and possibly
a large number of random variables. This question needs further investigation. We believe,
however, that the current work provides an important and necessary step toward further
generalizations.

V.B. Problem setting

We start by introducing the primal problem that will be part of the OCP discussed in
the following. Specifically, we consider the problem of finding the solution y : D× Γ → R
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of the elliptic random PDE{
− div(a(x, ω)∇y(x, ω)) = g(x) + u(x), x ∈ D, ω ∈ Γ,

y(x, ω) = 0, x ∈ ∂D, ω ∈ Γ,
(V.3)

where D ⊂ Rd denotes the physical domain and (Γ,F ,P) is a complete probability space.
The diffusion coefficient a is a random field, g is a deterministic source term and u is
the deterministic control. The solution of (V.3) for a given control u will be equivalently
denoted yω(u), or simply y(u) in what follows. Let U = L2(D) be the set of all admissible
control functions and Y = H1

0 (D) the space of the solutions of (V.3), then the goal is to
determine the optimal control u∗, in the sense that:

u� ∈ argmin
u∈U

J(u), s.t. yω(u) ∈ Y solves (V.3) almost surely (a.s.) in Γ. (V.4)

Here, J(u) := E[f(u, ω)] is the objective function with f(u, ω) = 1
2‖yω(u)− zd‖2 + β

2 ‖u‖2
and zd is the target function that we would like the state y to approach as close as possible.
We have denoted by ‖ · ‖ the L2(D)-norm induced by the inner product 〈·, ·〉.

V.B.1. Existence and uniqueness result

We use results from [MKN18, Sections 2 and 3]. We recall the three assumptions from
[MKN18] that guarantee well posedness of (V.4) and regularity of solutions.

Assumption 17. The diffusion coefficient a ∈ L∞(D× Γ) is bounded and bounded away
from zero a.e. in D × Γ, i.e.

∃ amin, amax ∈ R such that 0 < amin ≤ a(x, ω) ≤ amax a.e. in D × Γ.

Assumption 18. The regularization parameter β is strictly positive, i.e. β > 0 and the
deterministic source term is such that g ∈ L2(D).

In what follow, we denote the L2(D)-functional representation of the Gateaux derivative
of J , by ∇uJ(u), namely∫

D
∇uJ(u)δu dx = lim

ε→0

J(u+ εδu)− J(u)

ε
∀ δu ∈ L2(D).

Existence and uniqueness of the OCP (V.4) can be stated as follows.

Theorem 26. Under Assumptions 17 and 18, the OCP (V.4) admits a unique control
u� ∈ U . Moreover

∇uJ(u) = βu+ E[pω(u)], (V.5)
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where pω(u) = p is the solution of the adjoint problem (a.s. in Γ){
− div(a(·, ω)∇p(·, ω)) = y(·, ω)− zd in D,

p(·, ω) = 0 on ∂D.
(V.6)

We recall as well the weak formulation of (V.3), which reads

find yω ∈ Y s.t. bω(yω, v) = 〈g + u, v〉 ∀v ∈ Y for a.e. ω ∈ Γ, (V.7)

where bω(y, v) :=
∫
D a(·, ω)∇y∇vdx. Similarly, the weak form of the adjoint problem

(V.6) reads:

find pω ∈ Y s.t. bω(v, pω) = 〈v, yω − zd〉 ∀v ∈ Y for a.e. ω ∈ Γ. (V.8)

We can thus rewrite the OCP (V.4) equivalently as:⎧⎪⎨⎪⎩
minu∈U J(u), J(u) = 1

2E[‖yω(u)− zd‖2] + β
2 ‖u‖2

s.t. yω(u) ∈ Y solves

bω(yω(u), v) = 〈g + u, v〉 ∀v ∈ Y for a.e. ω ∈ Γ.

(V.9)

We continue recalling two regularity results, that have been proven in [MKN18], about
Lipschitz property and strong convexity for f in the particular setting of the problem
considered here.

Lemma 23 (Lipschitz condition). The random functional f(u, ω) is such that:

‖∇uf(u1, ω)− ∇uf(u2, ω)‖ ≤ L‖u1 − u2‖ ∀u1, u2 ∈ U and a.e. ω ∈ Γ, (V.10)

with L = β +
C4

p

a2min
, where Cp is the Poincaré constant, Cp = supv∈Y/{0}

‖v‖
‖∇v‖ .

Lemma 24 (Strong Convexity). The (random) functional f(u, ω) is such that:

l

2
‖u1−u2‖2 ≤ 〈∇uf(u1, ω)−∇uf(u2, ω), u1−u2〉 ∀u1, u2 ∈ U and a.e. ω ∈ Γ, (V.11)

with l = 2β.

V.B.2. Finite Element approximation

In order to compute numerically an optimal control we consider a Finite Element (FE)
approximation of the infinite dimensional OCP (V.9). Let us denote by {τh}h>0 a family
of regular triangulation of D and choose Y h to be the space of continuous piece-wise
polynomial functions of degree r over τh that vanish on ∂D, i.e. Y h = {y ∈ C0(D) :

y|K ∈ Pr(K) ∀K ∈ τh, y|∂D = 0} ⊂ Y , and Uh = Y h. We reformulate the OCP (V.9)
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as a finite dimensional OCP in the FE space:

⎧⎪⎨⎪⎩
minuh∈Uh Jh(uh), Jh(uh) = 1

2E[‖yhω(uh)− zd‖2] + β
2 ‖uh‖2

s.t. yhω ∈ Y h and

bω(y
h
ω(u

h), vh) = 〈uh + g, vh〉 ∀vh ∈ Y h for a.e. ω ∈ Γ.

(V.12)

Under the following regularity assumption on the domain and diffusion coefficient:

Assumption 19. The domain D ⊂ Rd is polygonal convex and the random field a ∈
L∞(D × Γ) is such that ∇a ∈ L∞(D × Γ),

the following error estimate has been obtained in [MKN18]. In order to lighten the
notations, we omit the subscript ω in yω(·) and pω(·) from now on.

Theorem 27. Let u� be the optimal control, solution of problem (V.9), and denote
by uh� the solution of the approximate problem (V.12). Suppose that y(u�), p(u�) ∈
L2
P(Γ;H

r+1(D)) and Assumption 19 holds; then

‖u� − uh�‖2 + E[‖y(u�)− yh(uh�)‖2] + h2E[‖y(u�)− yh(uh�)‖2H1
0
]

≤ A1h
2r+2{E[|y(u�)|2Hr+1 ] + E[|p(u�)|2Hr+1 ]}, (V.13)

with a constant A1 independent of h.

The next step is to approximate the expectation E[·] in (V.12) by a suitable quadrature
formula Ê[·]. This is detailed in the next section.

V.B.3. Collocation method

We describe here a semi-discrete (approximation in probability only) OCP obtained by
replacing the exact expectation E[·] in (V.9) by a suitable quadrature formula Ê[·]. We
assume that the random diffusion coefficient can be represented as a function of a finite
number of independent uniformly distributed random variables:

a = a(x, ξ)

with ξ = (ξ1, . . . , ξM ) and ξi
iid∼ U([−1, 1]). Hence, in this case since the whole problem

is parameterized by the random vector ξ, we can take a probability space Γ = [−1, 1]M ,
F = B(Γ) the Borel σ-algebra on Γ, and P(dξ) = ⊗M

i=1
dξi
2 the uniform product measure

on Γ. In this case we chose as a quadrature formula the tensor Gaussian quadrature
built on Gauss-Legendre quadrature points. In particular, if X : Γ → R, ξ �→ X(ξ) =

X(ξ1, . . . , ξM ), is a random variable with finite mean, then the Gauss-Legendre quadrature
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formula is given by

Ê[X] =

n∑
j=1

ζjX(ηj), (V.14)

where n is the total number of points used, {ζj}j are the positive quadrature weights and
{ηj}j the associated quadrature knots. The semi-discrete collocation problem then reads:

⎧⎪⎨⎪⎩
minû∈U Ĵ(û), Ĵ(û) = 1

2Ê[‖yξ(û)− zd‖2] + β
2 ‖û‖2

s.t. yηj (û) ∈ Y and

bηj (yηj (û), v) = 〈g + û, v〉 ∀v ∈ Y j = 1, . . . , n.

(V.15)

An error estimate has been shown in [MKN18].

Lemma 25. Let u� be the optimal control, solution of (V.9) and û� the solution of the
semi-discrete OCP (V.15). Then there exists A2 > 0 s.t.

‖u� − û�‖2 + Ê[‖y(u�)− y(û�)‖2] ≤ A2‖E[p(û�)]− Ê[p(û�)]‖2 (V.16)

To quantify the convergence rate of the right hand side of (V.16), one has first to
understand the smoothness of the function ξ �→ pξ(u) for a generic u ∈ U . For this, we
make the regularity assumption on the diffusion coefficient

Assumption 20. The parametric diffusion coefficient ξ �→ a(·, ξ) ∈ L∞(D) is analytic in
each variable (ξ1, · · · , ξM ) in Γ and there exist 0 < γ1, . . . , γM ∈ R and A3 > 0 such that∥∥∥∥∥∂ka(·, ξ)∂ξkj

∥∥∥∥∥
L∞(D)

≤ A3k!γ
k
j (V.17)

Then following [BNT10], it can be shown that for any u ∈ U , the primal solution
ξ �→ yξ(u) ∈ Y and the adjoint solution ξ �→ pξ(u) ∈ Y are both analytic in Γ (see also
[MKN18, Lemma 7]) and the following result holds:

Theorem 28. Denoting by û� the solution of the semi-discrete (in probability) optimal
control problem (V.15) with Ê = EGLq [·] the tensor Gauss-Legendre quadrature formula
with q = (q1, . . . , qM ) points in each of the variables (ξ1, . . . , ξm), and p(û�) the corre-
sponding adjoint solution, there exist A4 > 0 and 0 < s1, · · · , sM ∈ R independent of q
s.t.

‖E[p(û�)]− EGLq [p(û�)]‖2 ≤ A4

M∑
n=1

e−snqn .

Clearly, the discretization in space by Finite Elements (V.12) and in probability by
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Gauss-Legendre formula (V.15) can be combined to obtain the fully discrete OCP:

⎧⎪⎨⎪⎩
min

ûh∈Ûh Ĵ
h(ûh), Ĵh(ûh) = 1

2Ê[‖yhω(ûh)− zd‖2] + β
2 ‖ûh‖2

s.t. yhω ∈ Y h and

bω(y
h
ω(û

h), vh) = 〈ûh + g, vh〉 ∀vh ∈ Y h for a.e. ω ∈ Γ.

(V.18)

If ûh� denotes the solution of OCP (V.18), the total error will satisfy

‖u� − ûh�‖2 ≤ A5

(
h2r+2 +

M∑
n=1

e−snqn
)
, (V.19)

for a suitable constant A5 > 0 independent of h and {qn}. The following section is dedi-
cated to optimization techniques used to tackle such optimization problem. In particular,
we focus on Stochastic Approximation methods as Stochastic Gradient and Stochastic
Average Gradient. To keep the notation light, we present the different optimization
algorithms and convergence estimates only for the semi-discrete problem (V.15), although
all results extend straightforwardly to the fully discrete case.

V.C. Review of Stochastic Approximation methods

We recall two optimization techniques, namely Stochastic Gradient (SG) method, and
Stochastic Averaged Gradient (SAG) method, mainly used in machine learning, and well
adapted to solve optimization problems whose objective function is the sum of a large
number of terms, as in our semi-discrete problem (V.15). We consider in this section the
general optimization problem

min
u∈U

Ĵ(u), Ĵ(u) =
1

n

n∑
i=1

gi(u). (V.20)

where each function gi is convex, differentiable, each gradient ∇gi is Lipschitz-continuous,
as defined in (V.10) replacing f with gi, with a common Lipschitz constant L, and U is
finite dimensional.

V.C.1. Stochastic Gradient (SG)

Known in literature as Stochastic Approximation (SA) or Stochastic Gradient (SG)
[RM51, PJ92, SDR09, SRB13, DB16], the classic version of such a method, the so-called
Robbins-Monro method, works as follows. Within the steepest descent algorithm the exact
gradient ∇Ĵ(u) = 1

n

∑n
i=1 ∇gi(u) is replaced by one particular term of the sum, ∇gik(u),
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where ik is chosen at random at each iteration step k of the optimization algorithm:

uk+1 = uk − τk∇gik(uk). (V.21)

Here, ik ∼ U({1, . . . , n}) are iid uniform random variables on {1, . . . , n}. In (V.21), τk
is the step-size of the algorithm and decreases as 1/k in the usual approach. For the
following theorem, we assume that each gi is strongly-convex with a common constant l
defined as in (V.11) replacing f with gi.

Theorem 29. Let û� be the solution of problem (V.20) and denote by uk the k-th iterate
of (V.21). For the choice τk = τ0/k with τ0 > 1/l, then we have:

E[‖uk − û�‖2] ≤ A6k
−1, (V.22)

for a suitable constant A6 > 0 independent of k.

V.C.2. Stochastic Average Gradient (SAG)

Another optimization method, called SAG, has recently been introduced in [SRB13]. It
relies on the same idea as the SG algorithm, but introduces a memory, which stores the
gradients computed using older controls, and averages over them to compute the new
gradient direction. The SAG memory-based scheme reads

uk+1 = uk − τk
n

n∑
j=1

∇gj(φk+1
j ), (V.23)

where at each iteration k an index ik ∈ {1, . . . , n} is selected at random, and we set

φk+1
j =

{
uk if j = ik,

φkj otherwise.
(V.24)

Again, the indexs ik ∼ U({1, . . . , n}) are iid uniform random variables. If we assume that
each gi is strongly-convex with a common constant l defined as in (V.11), the authors of
[SRB13] have proven that the convergence is exponential in k.

Theorem 30. Let û� be the solution of problem (V.20) and denote by uk the k-th iterate
of (V.23) with τk = 1

16L . Then

E[‖uk − û�‖2] ≤ A7

(
1−min

{
l

16L
,
1

8n

})k
, (V.25)

for a suitable constant A7 > 0 independent of k.

First we notice that we now require to store n gradients, and to update them on the
fly, one at each iteration. Depending on the memory required for one gradient storage
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SG SAG-SAGA
convex E[Ĵ(uk)]− Ĵ(u�) = O(1/

√
k) E[Ĵ(uk)]− Ĵ(u�) = O(1/k)

strongly-convex E[Ĵ(uk)]− Ĵ(u�) = O(1/k) E[Ĵ(uk)]− Ĵ(u�) = O((1− ε)k)
E[‖uk − u�‖2] = O(1/k) E[‖uk − u�‖2] = O((1− ε)k)

Table V.1 – Convergence rate for SG and SAG method

(i.e. ∼ h−d for the OCP (V.18) if h is the characteristic mesh size of the FE discretization,
and d the space dimension of the problem), and on the parameter n, the memory needed
can dramatically limit this algorithm. The major improvement of this method with
respect to SG is its exponential (1− ε)k convergence rate for strongly-convex objectives,
similar to the full gradient method, versus an algebraic 1/k rate for the SG method. Table
V.1 summarizes the different convergence rates, for both the objective functional and the
control for these two methods.

Remark 13. Notice that in SAG, the step-size τk does not necessarily decrease and
remains usually fixed. The factor (1− ε) in the convergence rate in Table V.1 depends on
the Lipschitz constant L, the strong-convexity constant l, and on the parameter n such
that:

ε = min

{
l

16L
,
1

8n

}
, (V.26)

when a fixed constant step-size τk = 1
16L is used (see [SRB13]).

As pointed out in [SRB13], despite the fact that n appears in the convergence rate of
SAG, in the case where n > 2L

l , performing n iterations, i.e. one effective pass through
the quadrature knots, reduces the error by a factor (1− 1/8n)n ≤ exp(−1/8), which is
independent of n. Thus, in this setting, each pass through all the data reduces the error
by a constant multiplicative factor as in the FG algorithm.

V.C.3. SAGA

We recall here also a slightly modified version of SAG, called SAGA, proposed in [DBLJ14]
where the updated part in the gradient estimator is changed by a factor n. It makes the
gradient estimator unbiased, and simplifies the proof of convergence. The SAGA iterative
scheme reads:

uk+1 = uk − τk

⎛⎝∇gik(uk)− ∇gik(φkik) +
1

n

n∑
j=1

∇gj(φkj )
⎞⎠ (V.27)
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where, as for SAG, the indexs ik ∼ U({1, . . . , n}) are drawn independently and φkj is
updated as in (V.24). For comparison, SAG can be rewritten equivalently as:

uk+1 = uk − τk

⎛⎝∇gik(uk)− ∇gik(φkik)
n

+
1

n

n∑
j=1

∇gj(φkj )
⎞⎠ . (V.28)

The convergence rate of SAGA remains the same as for SAG, while lightening the proof
of convergence. In the next section we apply SAGA to the OCP (V.15) combined with
an importance sampling strategy, and extend its convergence proof to this setting.

V.D. SA methods in the context of PDE-constrained OCP

We aim now at applying SG and SAG/SAGA to the semi-discrete OCP (V.15) (or its
fully discrete counterpart). The objective function Ĵ(u) in (V.15) reads

Ĵ(u) =
1

2
Ê[‖yξ(u)− zd‖2] + β

2
‖u‖2

=
n∑
i=1

ζifi(u)
(V.29)

with fi(u) = 1
2‖yηi(u)− zd‖2+ β

2 ‖u‖2 and ∇ufi(u) = βu+pηi(u), where {ζi}i are weights
of the Gauss Legendre quadrature formula and {ηi}i its knots. One possibility to apply
SG or SAG/SAGA to the OCP minu∈U Ĵ(u) is to rewrite Ĵ(u) as

Ĵ(u) =
1

n

n∑
i=1

gi(u)

with gi(u) = nζifi(u). However, the functions fi(u) are naturally weighted by the non-
uniform weights {ζi} and this raises the question whether the indexs ik in the Stochastic
Approximation techniques should be drawn from a uniform or non-uniform distribution.
We take the second, more general, approach by introducing a discrete probability measure
ζ̃ on {1, . . . , n}, ζ̃(j) = ζ̃j > 0,with

∑n
j=1 ζ̃j = 1 and using an importance sampling

strategy.

Hence the modified Stochastic Gradient method with importance sampling for the OCP
(V.15) reads:

Algorithm 6: SG on PDE constrained OCP, with non-uniformly sampled indexs
given uk
sample ik ∼ ζ̃

compute uk+1 = uk − τk
ζik
ζ̃ik

∇ufik(uk).

Similarly the modified SAGA method with importance sampling for the OCP (V.15)
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reads:

Algorithm 7: SAGA on PDE constrained OCP, with non-uniformly sampled indexs
given uk, {φkj }nj=1

sample ik ∼ ζ̃

compute uk+1 = uk − τk

((∇ufik(uk)− ∇ufik(φ
k
ik
)
) ζik
ζ̃ik

+
∑n

j=1 ζj∇ufj(φ
k
j )

)
set φk+1

j =

{
uk if j = ik,
φkj otherwise.

In practice, in the SAGA algorithm, we do not store the past controls φkj , rather the
past gradients gradkj = ∇ufj(φ

k
j ). Similarly, we do not recompute at each iteration k the

whole sum Gk =
∑n

j=1 ζj∇ufj(φ
k
j ), rather update it using the formulas

Gk+1 = Gk − ζik+1
gradkik+1

+ ζik+1
∇ufik+1

(uk)

and then the memory place gradik+1
as:

gradk+1
j =

{
∇ufj(uk) if j = ik+1,

gradkj otherwise.

We point out that both the SG and SAGA methods applied to the OCP (V.15) require 2

PDE’s solved per iteration. Moreover SAGA requires to store 2n PDE solutions at all
iterations.

V.D.1. Convergence and complexity analysis of the modified SG Algorithm 6

Following the analysis in [MKN18], we can bound the Mean Squared Error (MSE) of the
SG iterates assuming a weighted summability property on the discrete probability {ζ̃j}j
used to sample the index ik at iteration k:

Assumption 21 (Weights summability). Let us define

S̃n =

n∑
j=1

ζ2j

ζ̃j
. (V.30)

There exist 0 < S̃ < ∞s.t. for every n ∈ N,

S̃n ≤ S̃.

Then, one can establish the following bound on the MSE when applying SG Algorithm 6:

Theorem 31. Denoting by ûhk the k-th iteration of the modified Algorithm 6 applied
to the fully discrete OCP (V.18) with FE mesh size h and Gauss-Legendre quadrature
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formula with (q1, . . . , qM ) knots in each stochastic direction, then we can bound the MSE,
E[‖ûhk − u�‖2], as:

E[‖ûhk − u�‖2] ≤ B1k
−1 +B2

M∑
n=1

e−snqn +B3h
2r+2 , (V.31)

with constants B1, B2, B3 independent of h, {qn}n and k.

We omit the proof as it follows very similar steps as in [MKN18]. We now analyze the
complexity of the SG algorithm 6 in terms of computational work W versus accuracy tol.

Corollary 5. In order to achieve a given tolerance tol, i.e. to guarantee that E[‖ûhk −
u�‖2] � tol2, the total required computational work is bounded by

W � tol−2− dγ
r+1 . (V.32)

where we assume that the primal and adjoint problems can be solved, using a triangulation
with mesh size h, in computational time Ch = O(h−dγ). Here, γ ∈ [1, 3] is a parameter
representing the efficiency of the linear solver used (e.g. γ = 3 for a direct solver and
γ = 1 up to a logarithm factor for an optimal multigrid solver), while d is the dimension
of the physical space. The memory space required to store the gradient and solution at
each iteration scales as

storage � tol
−d
r+1 (V.33)

Proof. If we want to guarantee an error of order O(tol), we can equalize the three terms
on the right hand side of (V.31) to tol2 thus obtaining:

h = O(tol
1

r+1 ), qj =
2

sj
log(tol−1), n =

(
2

R
log(tol−1)

)M
, k = O(tol−2).

where we have set R =
(∏M

j=1 sj

) 1
M the geometric mean of (s1, . . . , sM ). As W denotes

the computational work (proportional to time if we don’t use any parallel computing
strategy), we have

W = 2Chk � tol−2tol
−dγ
r+1 . (V.34)

The memory space required to store one gradient and one current control uk, is proportional
to h−d thus leading to:

storage � tol
−d
r+1 (V.35)
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V.D.2. Convergence analysis of the modified SAGA Algorithm 7

We prove in Theorem 32 below the exponential convergence in the number of iterations
of Algorithm 7. The outcome of our analysis in that uniform sampling of the index ik (i.e.
ζ̃j =

1
n , ∀j = 1, . . . , n) is indeed optimal in the sense that it provides the best convergence

rate, asymptotically in n.

The proof is inspired from [DBLJ14] and is valid under the assumption that the weights
{ζj}j in (V.29) are positive and sum up to 1, which holds for Gaussian quadrature
formulas, each fi is Lipschitz with the same Lipschitz constant L, which is guaranteed
for OCP (V.15) by Lemma 23, and Ĵ(u) =

∑n
i=1 ζifi(u) is strongly convex, which is

guaranteed by Lemma 24. In what follows, we denote by Fk the σ-algebra generated by
the random variables i0, i1, . . . , ik−1 and denote by E[·|Fk] the conditional expectation to
such σ-algebra. Moreover, in the remaining of this Section, we use the shorthand notation
f ′j(u) for ∇ufj(u). For the convergence proof, we also need to introduce the quantity

Qk =

n∑
j=1

ζ2j

ζ̃j
‖f ′j(φkj )− f ′j(û�)‖2

where û� denotes, as usual, the optimal control, solution of the semi-discrete OCP (V.15).
We start our convergence analysis by few technical Lemmas.

Lemma 26. We have the following bound on the conditional expectation E[Qk+1|Fk]:

E[Qk+1|Fk] ≤ max
j

(1− ζ̃j)Qk + SnL
2‖uk − û�‖2 with Sn =

n∑
p=1

ζ2p (V.36)

Proof. We write the conditional expectation as a sum over the possible values ik = p,
p ∈ {1, . . . , n};
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E[Qk+1|Fk] = E

⎡⎣ n∑
j=1

ζ2j

ζ̃j
‖f ′j(φk+1

j )− f ′j(û�)‖2|Fk

⎤⎦
=

n∑
p=1

E

⎡⎣ n∑
j=1

ζ2j

ζ̃j
‖f ′j(φk+1

j )− f ′j(û�)‖2|Fk, ik = p

⎤⎦ ζ̃p
=

n∑
p=1

ζ̃p

⎧⎨⎩
n∑

j=1,j 	=p

ζ2j

ζ̃j
‖f ′j(φkj )− f ′j(û�)‖2 +

ζ2p

ζ̃p
‖f ′p(uk)− f ′p(û�)‖2

⎫⎬⎭
=

n∑
p=1

ζ̃p︸ ︷︷ ︸
=1

⎧⎨⎩
n∑
j=1

ζ2j

ζ̃j
‖f ′j(φkj )− f ′j(û�)‖2

⎫⎬⎭−
n∑
p=1

ζ2p‖f ′p(φkp)− f ′p(û�)‖2 +
n∑
p=1

ζ2p‖f ′p(uk)− f ′p(û�)‖2

=
n∑
j=1

ζ2j

ζ̃j
(1− ζ̃j)‖f ′j(φkj )− f ′j(û�)‖2 +

n∑
p=1

ζ2p‖f ′p(uk)− f ′p(û�)‖2

≤ max
j

(
1− ζ̃j

) n∑
j=1

ζ2j

ζ̃j
‖f ′j(φkj )− f ′j(û�)‖2 +

n∑
p=1

ζ2pL
2‖uk − û�‖2

≤ max
j

(
1− ζ̃j

)
Qk + SnL

2‖uk − û�‖2

Lemma 27. Let Pk =
(
f ′ik(uk)− f ′ik(φ

k
ik
)
) ζik
ζ̃ik

+
∑n

j=1 f
′
j(φ

k
j )ζj and Tk = Pk − ∇Ĵ(û�),

then we have the following properties:

E[Pk|Fk] = ∇Ĵ(uk) (V.37)

E[Tk|Fk] = ∇Ĵ(uk)− ∇Ĵ(û�) (V.38)

E[‖Tk‖2|Fk] ≤ 9S̃nL
2‖uk − û�‖2 + 8Qk (V.39)

where S̃n is defined as in (V.30).

Proof. Again, we further condition on the possible values taken by the random variable
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ik, thus obtaining:

E[Pk|Fk] = E

⎡⎣⎛⎝(f ′ik(uk)− f ′ik(φ
k
ik
)
) ζik
ζ̃ik

+

n∑
j=1

f ′j(φ
k
j )ζj

⎞⎠ |Fk

⎤⎦
=

n∑
p=1

E

⎡⎣⎛⎝(f ′ik(uk)− f ′ik(φ
k
ik
)
) ζik
ζ̃ik

+
n∑
j=1

f ′j(φ
k
j )ζj

⎞⎠ |Fk, ik = p

⎤⎦ ζ̃p
=

n∑
j=1

f ′j(uk)
ζj

ζ̃j
ζ̃j −

n∑
j=1

f ′j(φ
k
j )
ζj

ζ̃j
ζ̃j +

n∑
j=1

f ′j(φ
k
j )ζj

=
n∑
j=1

f ′j(uk)ζj = ∇Ĵ(uk)

which proves (V.37). We see from this that Pk is an unbiased estimator of ∇Ĵ(uk), when
conditioned to Fk, which represents the main difference with SAG, and simplifies the
convergence proof. Equation (V.38) follows straightforwardly:

E[Tk|Fk] = ∇Ĵ(uk)− ∇Ĵ(û�).

We prove now (V.39).

E[‖Tk‖2|Fk] =E[‖Tk − E[Tk|Fk]‖2|Fk] + ‖E[Tk|Fk]‖2
=E[‖Pk − ∇Ĵ(uk)‖2|Fk] + ‖∇Ĵ(uk)− ∇Ĵ(û�)‖2

=E[‖
(
f ′ik(uk)− f ′ik(φ

k
ik
)
) ζik
ζ̃ik

+

n∑
j=1

f ′j(φ
k
j )ζj −

n∑
j=1

f ′j(uk)ζj‖2|Fk] + ‖∇Ĵ(uk)− ∇Ĵ(û�)‖2

≤2E[‖
(
f ′ik(uk)− f ′ik(φ

k
ik
)
) ζik
ζ̃ik

‖2|Fk]︸ ︷︷ ︸
=A

+2E[‖
n∑
j=1

ζj

(
f ′j(φ

k
j )− f ′j(uk)

)
‖2|Fk]︸ ︷︷ ︸

=B

+ ‖∇Ĵ(uk)− ∇Ĵ(û�)‖2︸ ︷︷ ︸
=C

The first part A can be split as

A = E[‖
(
f ′ik(uk)− f ′ik(φ

k
ik
)
)

︸ ︷︷ ︸
±f ′ik (û�)

ζik

ζ̃ik
‖2|Fk]

≤ 2E[‖ (f ′ik(uk)− f ′ik(û�)
) ζik
ζ̃ik

‖2|Fk]︸ ︷︷ ︸
=T1

+2E[‖
(
f ′ik(û�)− f ′ik(φ

k
ik
)
) ζik
ζ̃ik

‖2|Fk]︸ ︷︷ ︸
=T2
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with

T1 ≤ L2‖uk − û�‖2E[
ζ2ik

ζ̃2ik

] = L2‖uk − û�‖2S̃n

The term T2 can be developed as a sum over the possible values of ik:

T2 = E[
ζ2ik

ζ̃2ik

‖f ′ik(φkik)− f ′ik(û�)‖2|Fk] =
n∑
j=1

ζ2j

ζ̃j
‖f ′j(φkj )− f ′j(û�)‖2︸ ︷︷ ︸

=Qk

Moreover

B = E[‖
n∑
j=1

ζj

(
f ′j(φ

k
j )− f ′j(uk)

)
‖2|Fk]

≤
⎛⎝ n∑
j=1

ζj‖f ′j(φkj )− f ′j(uk)‖
√
ζ̃j√
ζ̃j

⎞⎠2

≤

⎛⎜⎜⎝ n∑
j=1

ζ2j

ζ̃j
‖ f ′j(φkj )− f ′j(uk)︸ ︷︷ ︸

±f ′j(û�)

‖2

⎞⎟⎟⎠
⎛⎝ n∑
j=1

ζ̃j

⎞⎠
︸ ︷︷ ︸

=1

≤ 2
n∑
j=1

ζ2j

ζ̃j
‖f ′j(φkj )− f ′j(û�)‖2 + 2

n∑
j=1

ζ2j

ζ̃j
‖f ′j(uk)− f ′j(û�)‖2

≤ 2Qk + 2L2S̃n‖uk − û�‖2

Finally, by Lemma 23

C = ‖
n∑
j=1

ζp
(
f ′p(uk)− f ′p(û�)

) ‖2
≤
⎛⎝ n∑
j=1

|ζp|‖f ′p(uk)− f ′p(û�)‖
⎞⎠2

≤ L2‖uk − û�‖2
⎛⎝ n∑
j=1

|ζp|
⎞⎠2

≤ S̃nL
2‖uk − û�‖2

which completes the proof.

Lemma 28. Let α > 0 and let Assumptions 23 and 24 hold. If uk denotes the k-th
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iterate of SAGA Algorithm 7 and û� is the solution of the OCP (V.15), then there exist
D1, D2 ∈ R+ such that:

E[‖uk+1 − û�‖2 + αQk+1|Fk] ≤ D1‖uk − û�‖2 +D2αQk

with D1 = 1− lτ + (αSn + 8τ2S̃n)L
2 + τ2L2, D2 = 1− ζ̃min +

8τ2

α , ζ̃min = minj ζ̃j, and
Sn as in Lemma 26.

Proof. Using that ∇Ĵ(û�) = 0, we have

‖uk+1− û�‖2 = ‖uk− û�−τ (Pk − ∇Ĵ(û�))︸ ︷︷ ︸
=Tk

‖2 = ‖uk− û�‖2−2τ〈uk− û�, Tk〉+τ2‖Tk‖2.

Let us develop now ‖uk+1 − û�‖2 + αQk+1, using Lemmas 26 and 27,

E[‖uk+1 − û�‖2+αQk+1|Fk] = E[‖uk − û�‖2|Fk]− 2τE[〈uk − û�, Tk〉|Fk] + τ2E[‖Tk‖2|Fk] + αE[Qk+1|Fk]
= ‖uk − û�‖2 − 2τ〈uk − û�,∇Ĵ(uk)− ∇Ĵ(û�)〉+ τ2E[‖Tk‖2|Fk] + αE[Qk+1|Fk]
≤ ‖uk − û�‖2 − lτ‖uk − û�‖2 + τ2

(
9S̃nL

2‖uk − û�‖2 + 8Qk

)
+ α

(
max
j

(1− ζ̃j)Qk + SnL
2‖uk − û�‖2

)
≤
(
1− lτ + (αSn + 9τ2S̃n)L

2
)
‖uk − û�‖2 +

(
max
j

(1− ζ̃j) + 8
τ2

α

)
αQk

We are now ready to state the final convergence result. For this, we need to find the right
choice of α > 0 and τ s.t.

1− lτ + (αSn + 9τ2S̃n)L
2 = D1 < 1 (V.40)

and

max
j

(1− ζ̃j) +
8τ2

α
= D2 < 1 (V.41)

One particular choice that guarantees an exponential in k convergence rate is shown in
the following Theorem.

Theorem 32. Let Assumptions 21 holds and let us define:

ζ̃j =
1

n
, N = 25S̃, τ =

l

2NL2
, α = 16nτ2.
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with S̃ as in Assumption 21. Then, we have

E[‖uk+1 − û�‖2 + αQk+1] ≤ ρE[‖uk − û�‖2 + αQk]

with ρ = min{1 − l2

4NL2 , 1 − 1
2n} ∈ (0, 1). Notice, in particular, that N and τ do not

depend on n.

Proof. The particular choice of {ζj}j , α, τ implies D1 ≤ 1− l2

4NL2 , D2 = 1− 1
2n , where

we have exploited the fact that nSn = S̃n for ζ̃j = 1/n. Hence,

E[‖uk+1−û�‖2+αQk+1|Fk] ≤ D1‖uk−û�‖2+D2αQk ≤ max(D1, D2)︸ ︷︷ ︸
=ρ

{‖uk−û�‖2+αQk}

The final result is obtained by taking a further expectation over (i0, . . . , ik−1).

Corollary 6. Under Assumption 21 if uk denotes the k-th iterate of SAGA described in
Algorithm 7 and û� is the solution of the semi-discrete OCP (V.15), then there exists
D3 > 0 such that:

E
[‖uk − û�‖2

] ≤ D3(1− ε)k with ε = min

{
l2

4NL2
,
1

2n

}
(V.42)

Proof. This result is a direct application of Theorem 32.

Remark 14. Theorem 32 generalized for any τ ∈ (0, l
NL2 ), in which case D1(τ) =

1− lτ + τ2L2N ∈ (1− l2

4NL2 , 1).

We finish this subsection by showing that Assumption 21 holds, in the case of Gauss-
Legendre quadrature.

Lemma 29. In the setting of uniform random variables ξ and tensorized Gauss-Legendre
quadrature formulas, choosing ζ̃p = 1

n , then Assumption 21 holds.

Proof. As shown in [Sze39, page 353, (15.3.10)], the weights of the Gauss-Legendre
quadrature formula satisfy

ζp �
1

n
.

Hence, for a tensor quadrature with (n1, . . . , nM ) points in each variables, and a multi-
index p = (p1, . . . , pM ), with 1 ≤ pi ≤ ni as n =

∏
i ni we have

ζp =
M∏
i=1

ζpi �
M∏
i=1

1

ni
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and

∑
p

ζ2p

ζ̃p
=
∑
p

ζ2pn �
n1∑
p1=1

. . .

nN∑
pM=1

(
M∏
i=1

1

ni

)2 M∏
i=1

ni

=

n1∑
p1=1

. . .

nN∑
pM=1

M∏
i=1

1

ni

=
M∏
i=1

1

ni

n1∑
p1=1

. . .

nN∑
pM=1

=
M∏
i=1

1

ni

M∏
i=1

ni

= 1

with constant in the symbol � independent of (n1, . . . , nM ), but depending exponentially
on M .

Remark 15. Result of Lemma 29 still holds for Gauss-Jacobi abscissas, as proven in
[Sze39, page 353, eq. (15.3.10)].

V.D.3. Complexity analysis of SAGA

The convergence result stated in Theorem 28 for the semi-discrete OCP (V.15) applies
equally well to the discrete OCP (V.18) with the same constants (thanks to the fact that
the FE approximation functions fhi (u

h) satisfy strong convexity and Lipschitz continuity
inequalities as in Lemmas 23 and 24 with the same constants). We now analyze the
complexity of the SAGA algorithm 7 in terms of computational work W versus accuracy
tol. The complexity analysis is based on the following error splitting into FE discretization
error, Gauss-Legendre quadrature error and SAGA optimization error when stopping the
SAGA algorithm at iteration k leading to the following result.

Theorem 33. With same notations of Corollary 6, if ûhSAGAk
denotes the approximated

optimal control computed by using successively a FE approximation, full tensor Gauss-
Legendre quadrature formula and SAGA method, then the MSE is bounded by:

E[‖ûhSAGAk
− û�‖2] ≤ C1(1− ε)k + C2

M∑
n=1

e−snqn + C3h
2r+2 (V.43)

with ε = 1
2n = 1

2

∏M
n=1 q

−1
n , assuming that n > 50S̃L2

l2
, and with constants C1, C2 and C3

independent of k, {qn}n and h.
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Proof. We can decompose the total error using the three successive approximations
presented in Section V.B and V.D: FE discretization, quadrature formula and SAGA
optimization procedure:

E[‖ûhSAGAk
− û�‖2] ≤ 3E[‖ûhSAGAk

− ûh�‖2]︸ ︷︷ ︸
SAGA

+3 ‖ûh� − uh�‖2︸ ︷︷ ︸
quadrature

+3 ‖uh� − û�‖2︸ ︷︷ ︸
FE

(V.44)

where ûh� is the optimal solution of the fully-discrete OCP (V.18) and uh� is the optimal
control of the FE discretized OCP (V.12). The result is straightforward using the bounds
in Corollary 6, Theorem 27 and Theorem 28.

Corollary 7. In order to achieve a given tolerance O(tol), i.e. to guarantee that
E[‖ûhSAGAk

− û�‖2] � tol2, the total required computational work is bounded by

W �
(
log(tol−1)

)M+1
tol

−dγ
r+1 . (V.45)

where we assume that the primal and dual problems can be solved, using a triangulation
with mesh size h, in computational time Ch = O(h−dγ). Here, γ ∈ [1, 3] is a parameter
representing the efficiency of the linear solver used (e.g. γ = 3 for a direct solver and
γ = 1 up to a logarithm factor for an optimal multigrid solver), while d is the dimension
of the physical space D ⊂ Rd. The memory space required to store the history of the
computed gradients scales as

storage = O
((

log(tol−1)
)M

tol
−d
r+1

)
(V.46)

Proof. Using Theorem 33, as we want to guarantee an error of order O(tol), we can
equalize the three terms on the right hand side of (V.43) to tol2 and finally get:

h = O(tol
1

r+1 ), qj =
2

sj
log(tol−1), n =

(
2

R
log(tol−1)

)M
, k =

2 log(tol−1)

− log(1− 1
2n)

with R =
(∏

j sj

)1/M
. So we obtain asymptotically

k ∼ 4n log(tol−1) ∼ 4

(
2

R
log(tol−1)

)M
log(tol−1) = O

((
log(tol−1)

)M+1
)

If W denotes the computational work (proportional to time if we do not use any parallel
computing strategy), we have

W = O
((

log(tol−1)
)M+1

tol
−dγ
r+1

)
. (V.47)

The memory space required to store the history of all the n computed gradients is
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O(·) FG SG SAGA

W
(
log(tol−1)

)M+1
tol

−dγ
r+1 tol−2−−dγ

r+1
(
log(tol−1)

)M+1
tol

−dγ
r+1

storage tol
−d
r+1 tol

−d
r+1

(
log(tol−1)

)M
tol

−d
r+1

Table V.2 – Computational work and required storage memory for the modified Algorithm
6 and 7 to solve the OCP V.9.

proportional to nh−d, so:

storage = O
((

log(tol−1)
)M

tol
−d
r+1

)
(V.48)

The computational work and storage requirements for SAGA stated in Corollary 7 are
reported in Table V.2. For comparison, we state in the same Table also the complexity
and storage requirement of the standard Stochastic Gradient algorithm, as well as the Full
Gradient algorithm, both based on the same quadrature formula and FE approximation
as for SAGA (we refer to [MKN18] where these results have been derived in the context
of a Monte Carlo approximation). A naive implementation of the FG algorithm would
require to store the gradient computed in each quadrature point, hence a storage of
O(nh−d) . Alternatively, one can store only the partial weighted sum of the gradients
and update it as soon as the gradient in a new quadrature point has been computed,
which brings down the storage to O(h−d).

V.E. Numerical results

In this section we verify the assertions on the order of convergence and computational
complexity stated in Theorem 33 and Corollary 7. For this purpose, we consider the
optimal control problem (V.9) in the domain D = (0, 1)2 with g = 1 and the following
random diffusion coefficient:

a(x1, x2, ξ) = 1 + exp (var (ξ1 cos(1.1πx1) + ξ2 cos(1.2πx1)

+ξ3 sin(1.3πx2) + ξ4 sin(1.4πx2))) , (V.49)

with (x1, x2) ∈ D, var = exp(−1.125) and ξ = (ξ1, . . . , ξ4) with ξi
iid∼ U([−1, 1]) (this test

case is taken from [LG17]). We have chosen β = 10−4 as the price of energy (regularization
parameter) in the objective functional. For the FE approximation, we have considered
a structured triangular grid of mesh size h where each side of the domain D is divided
into 1/h sub-intervals and used piece-wise linear finite elements (i.e. r = 1). For the
approximation of the expectation in the objective functional, we have used a full tensor
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Gauss-Legendre quadrature formula with the same number q of quadrature knots in each
random variable ξj , j ∈ {1, 2, 3, 4}. All calculations have been performed using the FE
library Freefem++ [Hec12].

V.E.1. Performance of SAGA and comparison with FG

In this subsection, we consider the SAGA method using a fixed mesh size h = 2−3 and
study its convergence for different levels of the full tensor Gauss-Legendre quadrature
formula, i.e. a different number q of points in each random variable (the total number of
quadrature points being q4). For each q, we compute a reference solution using 50000

SAGA iterations (using again the same FE mesh size h = 2−3). Then, we perform
5000 SAGA iterations and compare the error = uk − uref w.r.t. the reference solution.
We repeat the computation 20 times, independently, to estimate the log-mean error
logE[‖error‖] (hereafter log(·) refers to the base 10 logarithm). In all cases we have used a
step-size τ = 1000. We show in Figure V.1 the convergence plots of log(E[‖error‖]) versus
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Figure V.1 – Convergence of SAGA for different q and fixed FE mesh (reference solution
computed with the same FE mesh and quadrature with q4 nodes).

k, for q ∈ {1, . . . , 10} and in Figure V.2 a zoom on the first 500 iterations. We can observe
two regimes: a first one over the first 20 iterations, of faster exponential convergence,
and a second one afterwards, of slower, but still exponential convergence. Then, in order
to verify the exponential rate 1− ε of equation (V.43), we plot in Figure V.3 (top), the
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estimated convergence rate, εest divided by the theoretical one εth = 1
2n = 1

2q4
versus q.

Similarly, we plot in Figure V.3 (bottom) the estimated constant C1 of equation (V.43)
versus q. In both cases, the plotted quantity varies very little for q ∈ {3, . . . , 10} which
confirms the validity of our theoretical analysis.
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Figure V.2 – Convergence of SAGA algorithm, for different values of q. Zoom on the first
500 iterations.

We analyze next the sensitivity of the SAGA algorithm w.r.t. the step-size. In Figure
V.4, we plot the L2-norm of the error (averaged over 20 experiments) versus the iteration
counter, for q = 5. With a high step-size, τ = 2000, the method diverges to infinity.
Progressively decreasing τ to 1000, the method starts converging, with the expected
exponential rate, although slowly. Among the different values that we have tried, a step
size τ = 100 seems to provide the fastest convergence. Further decreasing τ to 10 makes
SAGA converge poorly.

In Figure V.5 we compare the convergence rate of SAGA, with τ = 100, with that of a
full gradient method using the optimal step-size for a quadratic optimization problem, i.e.

τk =
‖∇Ĵ(uk)‖2

β‖∇Ĵ(uk)‖2 + ‖Ê[yξ(∇Ĵ(uk)− g)]‖2 (V.50)
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Figure V.3 – Assessment of SAGA convergence rate C1(1− ε)k. Top ( ): estimated
rate εest/εth = εest2q

4. Bottom ( ): estimated constant C1.

where Ê is the Gauss-Legendre quadrature formula defined in (V.14), and yξ(·) is the
solution of (V.3). The error in both cases is plotted against the number of PDE solves.
The plot shows a fastest convergence of FG than SAGA, asymptotically. However, SAGA
features a smaller error in the pre-asymptotic regime, and delivers an acceptable solution,
from a practical point of view, already before two full iterations of FG (i.e. having solved
2500 PDEs). This makes it attractive in a limited budget context.

V.E.2. Complexity results for the SAGA algorithm

We investigate here the convergence of the method defined in Algorithm 7, for which
we recall the error bound (V.43) in the case of piece-wise linear FE (i.e. r = 1) and a
4-dimensional stochastic variable (i.e. M = 4):

E[‖ûhSAGAk
− u�‖2] ≤ C1(1− ε(q))k + C2e

−sq + C3h
4 (V.51)

where s is the rate of exponential convergence of the quadrature formula, and q the
number of knots used in each stochastic variable (isotropic case).
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Figure V.4 – SAGA sensitivity to τ for q = 5.

We have estimated the constants in (V.51) numerically.

• In order to estimate C1 and ε in (V.51), we used a fixed mesh with h = 2−3 and
a fixed quadrature formula for both reference solution and SAGA iterations. By
doing so, we remove the two last terms in the bound (V.51), and only keep the first
one of which we want to estimate the constants C1 and ε(q). Using Figures V.1 and
V.3 previously described, we estimate C1 ∈ [1200, 4500] and ε(q) ≈ 0.2

q4
.

• To estimate the constant C2 and s in (V.51), we use a mesh of size h = 2−4 for
both the reference solution and the optimal control with quadrature. First, we
computed the reference solution for a fine Gauss-Legendre quadrature formula,
i.e. q = 8, using the FG algorithm up to iteration 300. Then we computed the
error for the approximated optimal control using only q ∈ {1, . . . , 5} points in each
random variable, using again the FG algorithm up to iteration 100. In both cases
we have used a step-size τ = 2000. Results are detailed in Table V.3 and plotted in
Figure V.6. The error is the difference between the estimated optimal control using
q ∈ {1, . . . , 5} knots in the quadrature formula, and the optimal control computed
for q = 8. We estimate C2 ≈ 57.4 and s ≈ 5.89.
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Figure V.5 – Comparison of SAGA with τ = 100 vs FG using the optimal step-size (V.50),
for q = 5.

• Finally, to estimate the third term C3, we used the FG algorithm up to iteration
300, with a step-size τ = 2000, on a quadrature formula with q = 1 knot in each
random variable, and computed the reference solution on a fine mesh with h = 2−7.
Then we run FG with the same step size τ = 2000 and quadrature (q = 1) on
coarser meshes with h = 2−1, · · · , 2−6. Results are shown in Table V.4. The Table
confirms a convergence O(h4) of the squared error with an estimated constant
C3 ≈ 1170. To double check our estimate, we repeated the estimation using the
SAGA algorithm: for the reference solution, we used a mesh size h = 2−9, and
q = 2 points in the quadrature formula, and SAGA algorithm up to iteration 20000.
Then we computed 10 repetitions of SAGA using mesh sizes h = 2−1, · · · , 2−7, up
to iteration 10000 and computed the average error. Results are shown in the third
column of Table V.4. The results are almost identical to those obtained with the
FG algorithm, which makes us believe that our estimation of C3 is reliable.

In order to assess the complexity of the SAGA algorithm, we set a target tolerance tol.
For each target tolerance tol, we compute the optimal mesh size h(tol), the optimal
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q ‖error‖
1 1.22e-1
2 5.27e-4
3 1.45e-6
4 3.35e-9
5 7.53e-12

Table V.3 – Quadrature error on the optimal control, versus the number of knots q used
in each random variable.
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Figure V.6 – Fitting the quadrature (squared) error model C2e
−sq in (V.51).

number of Gauss-Legendre points in the quadrature formula q(tol), and the optimal
number of iterations kmax(tol), using the constants C1, C2 and C3 and rates ε(q) and
s estimated in the previous subsection. Then we run 20 independent realizations of
the SAGA algorithm up to iteration kmax, all of them on a mesh of size h(tol), using a
quadrature formula with q(tol) points in each random variable, and estimate the average
error on the optimal control. The reference solution has been computed using the FG
method, on a mesh of size h = 2−9, with a quadrature formula with q = 6, and for more
than 50 iterations. Figure V.7 shows the estimated average error versus the computational
cost model W = kmaxh

−d, which confirms the complexity result of Corollary 7. Table V.5
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h−1 error (FG, q = 1) error (SAGA, q = 1)
2 7.83 7.82
4 2.19 2.19
8 5.46E-01 5.48E-01
16 1.36E-01 1.37E-01
32 3.34E-02 3.42E-02
64 8.34E-03 8.47E-03
128 2.09E-03 2.04E-03

Table V.4 – FE discretization error on the optimal control, using FG, or SAGA, versus
the characteristic mesh size h−1.
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Figure V.7 – Computational cost (model) vs averaged SAGA error.

gives details on the optimal discretization parameters h, q, kmax as well as the required
memory space, estimated based on the model M = nh−d, for each considered tolerance.

The main limitation we see for this method is the required memory space, since the
storage increases as the desired tolerance gets smaller and will reach at some point the
memory limit of the employed machine.
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tol 1/h q n kmax W comp. cost storage avg error
3.16E-01 11 1 1 46 1.11E+04 1.21E+02 2.59E-01
1.00E-01 19 2 16 243 1.75E+05 5.78E+03 8.02E-02
3.16E-02 33 2 16 339 7.38E+05 1.74E+04 2.68E-02
1.00E-02 59 3 81 1896 1.32E+07 2.82E+05 8.29E-03
3.16E-03 105 3 81 2417 5.33E+07 8.93E+05 2.62E-03
1.00E-03 185 4 256 9298 6.36E+08 8.76E+06 8.00E-04
3.16E-04 329 4 256 18947 4.74E+09 2.77E+07 2.80E-04

Table V.5 – Final error over 20 i.i.d. realizations of SAGA, versus the target tolerance tol.

V.F. Conclusions

In this work, we have proposed a SAGA algorithm to solve numerically a quadratic
risk-averse optimal control problem for an elliptic PDE with random coefficients, where
the expectation in the objective functional has been approximated by a Gauss-Legendre
quadrature formula whereas the elliptic PDE has been discretized by finite elements. The
SAGA algorithm is a Stochastic Gradient type algorithm with a fixed-length memory
term, which computes at each iteration the gradient of the objective functional in only
one quadrature point, randomly chosen from a possibly non-uniform distribution. We
have shown that the asymptotically optimal sampling distribution is indeed the uniform
one, over the quadrature points. We have also shown that, when equilibrating the three
sources of errors, namely the finite element discretization error, the quadrature error and
the error due to the SAGA optimization algorithm, the overall complexity, in terms of
computational work versus prescribed tolerance, is asymptotically the same as the one of
a full gradient method (i.e. a gradient method that sweeps over all quadrature points at
each iteration), as the tolerance goes to zero. However, as illustrated by our numerical
experiments, the advantage of SAGA with respect to FG is in the pre-asymptotic regime,
as acceptable solutions may be obtained already before a full sweep over all quadrature
points.

The full tensor Gauss-Legendre quadrature formula considered in this work is affected by
the curse of dimensionality, hence applicable only to problems for which the randomness
can be described in terms of a small number of random variables. To overcome such
curse of dimensionality, one could use sparse quadratures instead [BNT10, LG17, Bor10],
whose weights, however, are not all positive. The result in Lemma 28 is still valid, as
long as the approximate functional Ĵ satisfies a strong convexity condition,

l

2
‖u1 − u2‖2 ≤ 〈∇uĴ(u1)− ∇uĴ(u2), u1 − u2〉 ∀u1, u2 ∈ U,

which might not be guaranteed for a given number of quadrature points. Also, because of
the presence of negative weights, the quantity S̃n might not be uniformly bounded in n,
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therefore, the results in Theorem 32 and Corollary 6 might not apply to this case. These
issues will be further investigated in a future work.
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VI.A. Conclusions

In this thesis we analyzed and developed stochastic approximation methodologies to
efficiently solve PDE-constrained optimal control problems with uncertain parameters.
Specifically, we compared the complexity of different versions of stochastic gradient
methods to compute the numerical solutions of mean-based risk-averse OCPs. We started
by introducing a finite element discretization, used to approximate the underlying PDEs,
as well as a collocation formula, to approximate the expectation in the risk measure, and
derived theoretical error bounds on the approximated control.

In the first analyzed algorithm, the FE mesh and a Monte Carlo estimator are chosen
initially and kept fixed over the iterations, whereas in a second algorithm, a Stochastic
Gradient method is used, with the FE discretization still kept fixed over the iterations;
however the expectation in the objective function is re-sampled independently at each
iteration, with a fixed small sample size. Then, we generalized such approach into a
stochastic gradient method, with successively refined FE meshes over the iterations.

Later we proposed a modified version of the SG algorithm, where the usual Robbins-
Monro approach, involving a single realization estimator of the gradient is replaced
by either a MLMC estimator, with increasing cost w.r.t. the iteration counter, or a
randomized version of the MLMC estimator, where only one difference term of the full
MLMC estimator is computed at each iteration, on a randomly drawn level, according to
a probability mass function.

Finally, we have proposed a SAGA algorithm to solve numerically the risk-averse OCPs,
where the expectation in the objective functional has been approximated by a Gauss-
Legendre quadrature formula. The SAGA algorithm is a SG type algorithm, with a
fixed-length memory term, which computes at each iteration the gradient of the objective
functional in only one quadrature point, randomly chosen.
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Our complexity analysis is based on a priori error estimates, and a priori choices of the
FE mesh size, the MC sample size or quadrature formula size, and the maximum number
of iterations of the gradient method, to obtain a prescribed tolerance.

After assessing the effectiveness of the stochastic versions of the gradient method, im-
proving the computational complexity by log factors, w.r.t. the full gradient algorithm
based on fixed MC estimator, we replace the re-sampled MC estimator, by a re-sampled
MLMC estimator, and show that we achieve the optimal complexity W � tol−2.

Lastly, using the SAGA method, we show that the overall complexity, in terms of
computational work versus prescribed tolerance, is asymptotically the same as the one of
a full gradient method (i.e. a gradient method that sweeps over all quadrature points at
each iteration), as the tolerance goes to zero. However, as illustrated by our numerical
experiments, the advantage of SAGA with respect to FG is in the pre-asymptotic regime, as
acceptable solutions may be obtained already before a full sweep over all quadrature points.
It is noteworthy that the full tensor Gauss-Legendre quadrature formula, considered in
this work, is affected by the curse of dimensionality, hence applicable only to problems for
which the randomness can be described in terms of a small number of random variables.

VI.B. Perspectives

To overcome the curse of dimensionality of the SAGA algorithm that uses a full tensor
quadrature formula, one could use sparse quadratures instead [BNT10, LG17, Bor10],
whose weights, however, are not all positive, implying that the presented results might
not apply to this case.

Another interesting direction is the extension of stochastic gradient methods to more
general risk measures. We mention that Stochastic Gradient methods have been already
used in combination with the CVaR risk measure [BFP09], although not in the context
of PDE-constrained optimal control problems. These issues may be further investigated.

The analysis, in this thesis work, is based on a priori error estimates. All tunable
parameters have been chosen a priori, based on some preliminar computations. For
example, the iterations at which we refine the mesh size, in the SG with variable mesh
algorithm, or the estimation of the MLMC parameters qw, qs, qc,, or the number of levels
and number of sample per level, for each iteration counter, are such a priori based
quantity. This is based on a priori error estimates, that are possible due to the fact
that we consider a simple elliptic PDE, with a quadratic functional. Nevertheless, in
real world problems, the setting would not be as ideal, and one may require to estimate
the different error contributions alongside the iterations, i.e. on the fly, and construct
adaptative algorithms. This analysis would be based on adaptative error estimates, where
the problem parameters, e.g. the MLMC parameters, would be estimated, while iterating
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the optimization scheme. This construction is postpone to future work.

In this work we have only considered and analyzed the stochastic gradient method. It
would be interesting to understand if other optimization methods such as Quasi-Newton of
Conjugate Gradient can be reformulated in a stochastic framework, for PDE-constrained
OCP under uncertainty.

Finally, in order to accelerate the numerical iterative methods, one could think at
introducing preconditioner, in order to reach a problem that is more suitable for numerical
computations. How to do this in the context of stochastic gradient iterations is a topic
we have not looked into and deserves further investigations.
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