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ABSTRACT

The present work uses the results of a fluid full-turbulence 3D simulation of the tokamak periphery to present the first self-
consistent analysis of the radial velocity scaling of plasma blobs in a diverted geometry. A diverted double-null configuration is
considered, and the blob motion is studied using a pattern recognition algorithm. The velocity obtained from the simulation
results is compared to an analytical scaling accounting for the presence of the X-point. Agreement is found between numerical
and analytical results.
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I. INTRODUCTION

The dynamics in the periphery of magnetic fusion devices
is characterised by the presence of blobs. These are coherent
structures of enhanced plasma density with respect to the back-
ground, spatially localised in the plane perpendicular to the
magnetic field and elongated in the parallel direction.1 Because
of their shape, blobs are also known as filaments. Blobs detach
from the main plasma and move radially outwards, making
turbulence at the edge of fusion devices intermittent and signifi-
cantly contributing to the radial transport mechanisms in the
SOL. Blobs have been observed in tokamaks (e.g., in the Caltech
Research Tokamak,2 Alcator C-Mod,3 JET,4 JT-60U,5 Tore
Supra,6 and TCV7), stellarators (e.g., in the W7-AS stellarator8

and in TJ-K9) reversed field pinches,10 and basic plasma devices
(e.g., in LAPD11 and in TORPEX12). They can lead to enhanced
intermittent heat flux on themain vessel wall, possibly damaging
radio frequency antennas and wall tiles and causing sputtering
of impurities.13–15

It is generally believed that blobs are the result of the non-
linear saturation of interchange-like instabilities in the edge,
with the density fluctuation sheared apart by the E�B velocity
and detached from the main plasma, as observed in JET16 and in
TORPEX,12 and as described by 2D fluid models, e.g., Ref. 17.
Once detached from the main plasma, blobs move radially out-
wards. An extensive review of the literature on blob motion can
be found in Ref. 1. The radial motion results from the vertical
charge separation inside the blob stemming from the effect
of the magnetic gradient and curvature drifts. The charge

separation leads to an electric field and its associated E�B drift
that causes the blob to move radially outwards. This basic mech-
anism of radial motion is confirmed by a series of blob studies
conducted on the TORPEX device,18,19 by experiments in limited
and diverted plasmas on TCV,20 and by numerical simulations
of seeded blobs (see, e.g., Refs. 21–24). Considering a self-
consistent simulation of a TCV discharge in a limited configura-
tion, in Ref. 25, a pattern-recognition algorithm for blob tracking
showed good agreement of the blob velocity with the theoretical
scalings.

In the present work, we investigate for the first time the
velocity scaling of blobs self-consistently generated in a simula-
tion of SOL plasma turbulence in diverted configurations. In
previous studies, the effect of the X-point on blob motion has
been investigated using simulations of a single seeded blob;26

for this purpose, the BOUTþþ code27 was used, to reproduce
the experimental work of Ref. 19 on TORPEX. In addition, the
magnetic shear effect of blobs has been studied as a proxy for
the X-point in Refs. 28 and 29. Only very recently, the study of
blob motion has been approached by using 3D full-turbulent
self-consistent simulations in diverted configurations. The
results of a full 3D turbulent simulation with the XGC1 gyroki-
netic code of a DIII-D H-mode discharge have been used to
carry out an initial investigation of the blob properties.30 In the
present work, we extend the use of the pattern recognition
algorithm introduced in Ref. 25 to analyse the blob motion in a
full SOL turbulent simulation in a double-null configuration. The
simulation is carried out with the GBS code. GBS31–33 is a 3D
code that simulates the plasma turbulent dynamics in the
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tokamak periphery by evolving the two-fluid drift reduced
Braginskii’s equations.34,35 In the past few years, GBS has helped
investigating plasma dynamics in limited tokamaks, for example,
by providing predictions of the SOL width.36 Recently, GBS
capabilities have been extended to the simulation of diverted
scenarios,33 by abandoning the use of flux coordinates, which
present a singularity at the X-point.

The results from a GBS simulation in the diverted double-
null configuration are here compared with a theoretical scaling
developed to predict the blob velocity in the presence of an
X-point.37 As pointed out also by a recent experimental study on
ASDEX Upgrade38 and in simulations,39 collisionality can affect
the blob velocity scaling. Our results focus on the high collision-
ality regime, and depending on the blob size, we identify the
polarization current or the parallel current as balance mecha-
nisms to the interchange drive. Our simulation results are in
good agreement with the theoretical scalings.

This paper is organised as follows: Leveraging previous
derivations by Myra et al.,37 we provide the analytical scaling
to estimate the velocity of blobs in diverted configurations in
Sec. II.Then, Sec. III presents theGBS simulation results obtained
in the double-null configuration. Blobs are detected and tracked
to determine their velocity, size, and collisionality, by using the
blob tracking technique presented in Sec. IV. Finally, the simula-
tion results of the blob radial velocity are comparedwith the ana-
lytical scaling in Sec.Vwhich are followed by conclusions.

II. BLOB VELOCITY ANALYTICAL SCALING IN THE
PRESENCE OF AN X-POINT

Analytical predictions of the blob radial velocity can be
obtained by using simplified 2D two-fluid models, describing the
plasma dynamics in the plane perpendicular to the magnetic
field. These models usually consider the continuity equation,
charge conservation, and a closure for the parallel current.
Examples can be found in Refs. 13, 18, and 40. The most investi-
gated of such analytical 2D models to account for the effect of
an X-point on blob transport is the two-region model.37 The
two-region model separates the upstream and the divertor
regions, labelled as regions 1 and 2, respectively (see Fig. 1). In
the upstream region, the unfavourable curvature of the mag-
netic field leads to the formation of an electric dipole that pro-
vides most of the drive for the blob radial motion. In the divertor
region, the magnetic flux expansion causes the blob to elongate
in one direction and squeeze in the other (to guarantee mass
conservation). The stretching of the blob facilitates the damping
of the blob charge separation by cross-field currents.

By following the calculation in Ref. 37, we retain the correc-
tions due to the blob density, blob ellipticity, and magnetic field
line length difference between the two regions in the evaluation
of the blob velocity. We derive the two-region model in the
Appendix. In this section, we present the final results of our cal-
culation and leave the details to the Appendix.

The two-region model allows the identification of four dif-
ferent blob motion regimes,37 which correspond to four differ-
ent mechanisms to balance the curvature drive in region 1. In
the sheath connected regime, denoted as Cs, the curvature drive
is balanced by the current flowing to the sheath. In the ideal

interchange mode regime, Ci, the ion polarisation current in
region 2, due to the fanning of the flux surfaces, balances the
drive. In the resistive ballooning regime, RB, the ion polarisation
current in region 1 dominates. Finally, in the resistive X-point
regime, RX, the parallel current flowing between the two
regions is the key damping mechanism. Each regime is charac-
terised by a different blob velocity to size scaling.

We find that the regimes are defined by the values of the
following parameters:

K ¼ �e=iL2
1

qsXeL2
; (1)

H ¼ â
5
2 ¼ ab

a�

� �5
2

: (2)

The collisionality parameter K in Eq. (1) can be interpreted as the
ratio between the resistivity in region 1 and the sheath resistiv-
ity. If K is high, region 1 is decoupled from the sheath. In Eq. (1),
�
e=i
1 is the electron to ion collision frequency in region 1, present
in Ohm’s law, while qs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
=Xi is the ion sound gyro-

radius. The electron gyro-frequency Xe is defined as Xe ¼ eB/me

(e is the electron charge, me is the electron mass, and B is the
magnetic field strength at the blob location in region 1).We note
that the two-region model is derived in the isothermal limit;
hence, Te at the target is considered to be the same as Te in

FIG. 1. Schematic illustration of the two region model. Region 1 (light gray) corre-
sponds to the outboard low field side, where the curvature drive b is active, and
extends from the midplane to the X-point region. Here, the flux expansion is maxi-
mal and causes the blobs to elongate and tilt due to field line mapping, disconnect-
ing region 1 from the divertor, i.e., region 2 in darker gray, characterised by the
current to the sheath.
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region 1, with no distinction between the blob and background
temperature. In Eq. (1), the parallel lengths of the magnetic field
line in regions 1 and 2 are L1 and L2, respectively.

The parameter H and blob normalised size â in Eq. (2) are
given by the ratio between the physical blob size ab and the ref-
erence size a*. The expressions in physical units for the blob
size ab and the reference size a* as derived in the Appendix
(removing the large aspect ratio approximation) are

ab ¼
2ay
p

� �4
5

a
1
5
x; (3)

a� ¼ qs
2L2

2

qsR

 !1
5

Dxn1

n0;1

� �1
5

: (4)

With respect to Myra et al.,37 Eq. (3) provides an expression for
ab which differentiates the radial (or poloidal) blob size ax (or ay).
More precisely, the radial direction x is therw direction orthog-
onal to the flux surfaces and y indicates the binormal direction
orthogonal to both rw and magnetic field versor b. The term
within square brackets in Eq. (4), not appearing in Ref. 37,
accounts for the effect of blob density and blob ellipticity. The
parameter n0,1 in Eqs. (4)–(6) corresponds to the mean between
the maximal blob density value at the midplane and the back-
ground equilibrium density value. DXn1 and ax are introduced to
approximate the density gradient in the radial direction as a
ratio between a density difference and a radial length, i.e., @xn1

�Dxn1/ax. Reference 37 introduced a practical way to visualise
the four regimes in terms of K and H, as well as their transition
thresholds (see Fig. 2). Each regime presents a different velocity
scaling in terms of the normalised velocity

v̂ ¼ vx
v�
; (5)

with

v� ¼ cs;1
q2
s L2

R3

� �1
5

8
ðdn1Þ5

ðDxn1Þ2n3
0;1

pax
2ay

� �2
2
4

3
5

1
5

: (6)

Here, dn1 is the amplitude of the density fluctuation above n0,1

and ay is the half width half maximum (HWHM) blob poloidal
size, i.e., half of the poloidal blob size measured half way
between the blob density maximum and the background density
value (corresponding to the n0,1 threshold). The major radius R
has to be taken at the blob location in region 1, around midplane,
as it results from approximating the magnetic field curvature at
the origin of the drive in region 1.

III. GBS SIMULATION IN THE DOUBLE-NULL
CONFIGURATION

The present section presents the physical model behind
the GBS code, as well as the results of a simulation run in the
double-null configuration which will be used for our study. GBS
implements a two-fluid model based on the drift-reduced
Braginskii’s set of equations.35 The interaction between the
plasma and the wall is described by the magnetic pre-sheath
boundary conditions.41 The code uses toroidal coordinates to
allow for the simulation of diverted configurations. Reference 33
reported on the implementation and verification of the version
of GBS used for the present study.

A. Physical model

The drift-reduced approximation of the Braginskii equa-
tions34 in the study by Zeiler et al.35 relies on the assumption
that turbulence in the periphery of a tokamak device occurs on
a time scale considerably longer than the gyro-motion [@t� Xi

¼ eB/(mic)] and on a length scale larger than the ion gyro-radius
qi. As a result, the velocity perpendicular to the magnetic field
line can be described as the sums of the E�B, diamagnetic
velocity, and ion-polarisation drifts. The cold-ion version of the
drift-reduced Braginskii’s set of equations used for this work
can be written as

@n
@t
¼ �q�1?

B
/;n½ � þ 2

B
CðpeÞ � nCð/Þ½ � � rkðnvkeÞ þ Sn þ Dnr2

?n;

(7)

@vke
@t
¼ � q�1?

B
/; vke
� �

� vkerkvke þ
mi

me

� �Jk þ rk/�
1
n
rkpke � 0:71rkTe

� �

þ 4
3n

mi

me
g0;er2

kvke þ Dvker2
?vkke; (8)

@vki
@t
¼ �q�1?

B
/; vki
� �

� vkirkvki �
1
n
rkðpeÞ þ

4
3n

g0;ir2
kvki

þ Dvkir
2
?vki; (9)

@Te

@t
¼ � q�1?

B
/;Te½ � � vkerkTe þ

4
3
Te

B
1
n
CðpeÞ þ

5
2
CðTeÞ � Cð/Þ

� �

þ 2
3
Te 0:71rkvki � 1:71rkvke þ 0:71ðvki � vkeÞ

rkn
n

� �
þSTe þ v?;er2

?Te þ vk;er2
kTe; (10)

@x
@t
¼ �q�1?

B
/;x½ � � vkirkxþ

B2

n
rkJk þ

2B
n

CðpeÞ þDxr2
?x; (11)

r2
?/ ¼ x: (12)

FIG. 2. Characterisation of blob regimes in the (K, H) plane and correspondent
velocity to size scaling, as derived in Ref. 37 from the two region model.
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In Eqs. (7)–(12), all variables are dimensionless, and in the
following, we use a tilde to denote physical variables, unless
specified otherwise.We define the plasma density n ¼ ~n=n0, the
electron temperature Te ¼ ~Te=Te0, the electrostatic potential
/ ¼ e~/=Te0, the electron parallel velocity vke ¼ ~vke=cs0, the ion
parallel velocity vki ¼ ~vki=cs0, and the vorticity x ¼ ~x eq2

s0=Te0

with n0;Te0; cs0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te0=mi

p
, and qs0¼ cs0/Xci the reference

density, temperatures, sound velocity, and ion sonic Larmor
radius expressed in physical units. The time is defined as
t ¼ ~t cs0=R0, where R0 is the major radius at the magnetic axis, in
physical units. The electron pressure is pe¼nTe. The current is
Jk ¼ nðvki � vkeÞ. In our simulation, the values of the dimension-
less parameters appearing in Eqs. (7)–(11) are q*¼ qs0/R0¼ 1/500
(normalised ion sonic Larmor radius), � ¼ en0R0=ðmics0riÞ ¼ 1
(normalised Spitzer resistivity), g0;e ¼ 5e� 3; g0;e;i ¼ 1; vke ¼ 1,
and v?,e¼ 2. To reduce the computational cost of the simulation,
we use mi/me¼ 200. The minor radius is a¼ 127qs0. Additionally,
small numerical diffusion terms of the type Dfr2

?f are added for
numerical stability (in this simulation, Df¼ 2 for all fields). In the
density and temperature equations, Sn and STe denote source
terms that mimic the outflow of plasma and heat from the core.

The dimensionless spatial operators appearing in Eqs.
(7)–(12) are the parallel gradient rkf ¼ R0b � ~rf , the parallel dif-
fusion operator r2

kf ¼ rkðrkfÞ, the Poisson brackets ½/; f�
¼ q2

s0b � ð ~r/� ~rfÞ, the curvature operator CðfÞ ¼ R0qs0
~B=2

ð ~r � ðb=~BÞÞ � ~r, and the perpendicular diffusion operator
r2
? ¼ q2

s0
~r � ððb� ~rfÞ � bÞ. Here, f indicates one of the dimen-

sionless fluid quantities (n; Te;i; vke;i; x; /), while ~B and b ¼ ~B=~B
are the norm and the versor of the magnetic field. In (r, h, u)
toroidal coordinates, we assume an axisymmetric magnetic field
of the form

~B ¼R0B0ruþru�r~wð~r; hÞ; (13)

with B0 the magnetic field at the magnetic axis and ~w the mag-
netic poloidal flux. Under the assumption of small inverse aspect
ratio e¼ a/R0 and large safety factor q and using Eq. (13), the dif-
ferential operator expressions in (r, h, u) toroidal coordinates
are

rkf ¼
B0

jB0j
@f
@u
þ a

qs0
@r̂w

1
r
@f
@h
� a

qs0

1
r̂
@hw

@f
@r
; (14)

/; f
� �

¼ 1
r
B0

jB0j
/; f
� �

r;h; (15)

CðfÞ ¼ B0

jB0j
sin h

@f
@r
þ cos h

r
@f
@h

� �
; (16)

r2
?f ¼

@2f
@r2
þ 1
r2
@2f
@h2

; (17)

where two different dimensionless forms of the radial coordi-
nate appear: r̂ ¼ ~r=a is used in relation to w derivatives and
r ¼ ~r=qs0 in relation to f derivatives. The dimensionless poloidal
flux w is defined as w ¼ ~w=ða2B0Þ. The details of the derivation of
the differential operators can be found in Ref. 33. Since the
physical model in Eqs. (7)–(12) considers the electrostatic case,
the equilibrium magnetic field is unperturbed throughout the

simulation and @r̂w; @hw=r̂ are given as input to the simulation.
For this study, w is chosen to describe a double-null
configuration

wðr̂; hÞ ¼ S log ðr̂ � cÞ þ 1
2
I log ðr̂ � cÞ2 þ 4� 4ðr̂ � cÞ sin h

	 
�

þ 1
2
I log ðr̂ � cÞ2 þ 4þ 4ðr̂ � cÞ sin h

	 
�
; (18)

with S¼0.03, I¼ 10, and c¼0.9.
The GBS domain corresponds to a torus with a hollow

poloidal cross section (as the tokamak core is not simulated), as
it is represented in Fig. 3. At the numerical wall r¼ rmax, the
magnetic pre-sheath boundary conditions developed by Ref. 41
are considered (neglecting correction terms linked to f deriva-
tives along the wall)

vk;i ¼ 6
ffiffiffiffiffi
Te

p
vk;e ¼ 6

ffiffiffiffiffi
Te

p
max exp k� /

Te

� �
; exp kð Þ

� �

@r/ ¼ 7
ffiffiffiffiffi
Te

p
@rvk;i

@rn ¼ 7
nffiffiffiffiffi
Te
p @rvk;i

x ¼ �ð@rvk;iÞ27
ffiffiffiffiffi
Te

p
@2rrvk;i

@rTe ¼ 0;

(19)

where k¼ 3. The plus/minus indicates whether the magnetic
field points towards (top sign) or out from the wall (bottom sign)
and coincides with the sign of Br, the radial component of B. At
the wall location where Br¼0, the boundary condition for vki
jumps from �

ffiffiffiffiffi
Te
p

to þ
ffiffiffiffiffi
Te
p

(or vice-versa), and a similar discon-
tinuity arises for vke. A smoothing function is applied in the
vicinity of Br to avoid such discontinuity (see Ref. 33). At the
inner radial boundary, r¼ rmin, we use an ad hoc set of boundary
conditions, i.e., @rf¼0 for all fields f, except for x and /, for
which we impose x¼0 and /¼ kTe. The presence of the source

FIG. 3. Visualisation of the GBS computational domain and toroidal coordinates (r,
h, u) used to implement the double-null configuration in Eq. (18).
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of plasma and temperature at r > rmin helps decouple the inner
ad hoc boundary conditions to the edge and SOL dynamics.

We note that a more complete version of the equations
implemented in GBS for diverted magnetic configurations is
presented in Ref. 33. The GBS version for a limited configuration
additionally solves neutral dynamics and can be run without the
Boussinesq approximation for the vorticity and with electro-
magnetic effects.32

We finally remark that the drift-reduced Braginskii’s equa-
tions are solved using a numerical scheme based on a fourth
order finite difference algorithm with the explicit Runge-Kutta
fourth order method for the time stepping.33

B. Simulation results

The simulation is run on a numerical grid Nr�Nh�Nu

¼ 156� 450� 80,with a time step Dt¼ 2� 10�5.
After an initial transient, the simulation reaches a quasi-

steady state where a strong blob activity is present on the low-
field side (LFS) of the device, leading to the transport of the
plasma out-flowing from the tokamak closed flux surface region
to the far SOL. Typical snapshots in this turbulent regime for
different plasma quantities appearing in the drift-reduced
Braginskii’s equations are shown in Fig. 4. Here, the turbulence
level is considerably lower in the HFS (high-field side) with
respect to the LFS, due to the favourable magnetic curvature in
the region, resulting in a SOL width 6 times smaller at the HFS.

This asymmetry is present also in single null scenarios, but it is
accentuated when using double null configurations.42,43 The
density n (top-left plot) peaks in the closed flux surface region,
around the plasma source location. The blobs at the equatorial
midplane of the LFS present a mushroom shape typical of high
collisionality regimes.37 At the blob locations, fluctuations in the
electric potential / (top-right plot) reveal the presence of the
dipolar structure responsible for the blob motion. The GBS
physical model allows Te to vary (bottom-left plot in Fig. 4). A
temperature difference between blobs and the background
increases the drive for the blob radial motion through the
enhancement of the C(pe) term in the vorticity equation and
causes the blob to rotate due to E�B drift13 because / / Te in
the SOL in the sheath-limited regime. The rotation of the blob
dipole can reduce its outwards radial motion. We assume that
these effects are negligible (or balance) and use the two-region
model, which is isothermal, to analyse the results. The parallel
current Jk in Fig. 4 exhibits turbulent behaviour at the LFS where
the blobs are located.

IV. BLOB TRACKING TECHNIQUE AND EVALUATION OF
BLOB PARAMETERS

The analysis of blob motion is performed in a time window
of 73R0/cs0 time units during the quasi-steady state. To detect
blobs in the GBS simulation, we use a pattern recognition algo-
rithm similar to the one presented in Ref. 25. The analysis is car-
ried out in the poloidal plane since the large inverse aspect ratio

FIG. 4. From left to right, top to bottom,
typical snapshots of plasma density, elec-
tric potential, electron temperature, and
plasma current in the GBS double-null
simulation considered for our blob analysis
(the separatrix is traced by the white line).
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and large safety factor assumptions allow us to approximate the
plane perpendicular to b with the poloidal plane. We define as a
blob a structure of enhanced density (at least 2.5 times the fluc-
tuation level) which moves coherently (i.e., it exists for Dt > 0.2).
More precisely, blobs are detected from the simulation results
as follows. We first identify the regions Xb,high with the density
larger than the average density, nbg, by 2.5 times the fluctuation
level, rn, that is

nðr; h; tÞ > nbg þ 2:5rn: (20)

We remark that the average background density is computed by
time and toroidally averaging the density during the quasi-
steady state, nbgðr; hÞ ¼ hnit;u, and the standard deviation is

defined as rnðr; hÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðnðr; h;uk; tmÞ � nbgðr; hÞÞ2it;u

q
. Once the

regions Xb,high where Eq. (20) is satisfied are detected, a pattern
recognition algorithm groups the points that are connected and
therefore belong to and form the same blob. A blob is then
tracked from one time frame to the next by checking whether
there is spatial overlapping between Xb,high belonging to two
subsequent time frames. Splitting and merging of blobs are also
allowed by checking if two blobs end up corresponding to one
single blob in the following time frame or vice-versa. The blob
detection is carried out in one poloidal plane, and we analyse
only the blobs detected around the outboard midplane. This also
avoids counting the same blob twice, when the blob extends
over the magnetic field bymore than one toroidal turn.

Having detected the blobs, we determine their size and
velocity. The algorithm described above is efficient in tracking
blobs, but it often underestimates the blob size, as it only
detects the high density peak of a blob, which is shown by the
striped region in Fig. 9. In order to determine the blob size in a
way consistent with the analytical two-region model, one needs
to detect the region corresponding to the density fluctuation
above the half maximum, n0. This corresponds to the colored
region that we will refer to as Xb in Fig. 9. To determine Xb, we
take an area Xb,ext larger thanXb,high by�30qs0 in every direction
and re-define the blob as the set of connected (r, h) points in
Xb,ext for which

nðr; h; tÞ > n0 ¼ nbg þ dn ¼ nbg þmaxXb:highðtÞ
n� nbg

2
: (21)

We note that the poloidal radius of Xb is the half-width half-
maximum (HWHM) of the blob density perturbation, corre-
sponding to ay of the two-region model (see Fig. 9). The blob
HWHM is commonly used to indicate the blob size in blob
studies.25,44

The blob detection algorithm also verifies the presence of
sufficient overlapping in the subsequent time frames

jjXbðtmÞ \ Xbðtmþ1Þjj
jjXbðtmÞjj

> 0:8; (22)

as well as

jjXbðtmÞjj � jjXbðtmþ1Þjj
jjXbðtmÞjj










 < 0:2; (23)

to assess that the blob size does not change abruptly. If the blob
domain Xb changes considerably from one time frame to the

next, we consider them as two different blobs. The threshold
coefficients 0.8 and 0.2 in the double-null case are chosen so
that the blobs have size and shape that are continuous enough,
without incurring excessive splitting.

In order to compare the two-region model in Sec. II with
the simulation results, we estimate ax, ay, K, H ¼ â5=2

¼ ðab=a�Þ5=2, and v̂ ¼ vx=v� from the blob parameter in region 1.
We focus on blobs detected in the proximity of the midplane,
and therefore, we require the blob center of mass to be at most
50qs0 away from midplane, �50<ZCM < 50, with the center of
the mass location (RCM, ZCM) defined as

RCM ¼
hRnðR;ZÞiXb

hniXb

; ZCM ¼
hZnðR;ZÞiXb

hniXb

: (24)

In the proximity of the midplane, x and y directions correspond
approximately to the radial and vertical directions, R and Z.
Therefore, we approximate the blob radii ax¼ aR and ay¼ aZ to
correspond to half of the extension of Xb along the R and Z
directions.

To have a better estimate of the blob size, we use the aver-
age between the top 10% of the DZ and DR values for each blob,
where DZ (DR) is the vertical (radial) extension of the blob area
at a given R (Z).

To estimate the quantity n0,1 in Eqs. (4) and (6), we take the
minimum value of n in Xb, as suggested by Fig. 9, averaging over
the lowest 10% density values. To compute the density pertur-
bation Dxn1 that we use to approximate @xn1, we look at the max-
imal blob density difference along R, for every fixed Z with (R, Z)
2 Xb, which we denote DnbjZ, and we take the average of the top
10% values. Analogously, to compute dn1 in Eq. (6), we consider
the largest blob density difference along Z. Note that if the
background density value is constant in the radial direction
(across the blob domain), then dn1¼Dxn1 and the two estimates
coincide. Finally, we compute the Larmor radius qs which in GBS
dimensionless units corresponds to

ffiffiffiffiffi
Te
p

, using a similar tech-
nique to the one used to evaluate n0,1.

The radial velocity vx¼ vR (in cs0 units) is computed by
tracking the radial center of the mass location RCM during a blob
lifetime

vRðtiÞ ¼
RCMðtiþ1Þ � RCMðtiÞ

tiþ1 � ti
q�1� ; (25)

where ti is the snapshot time (in the present study, tiþ1 � ti
¼0.05).

In the considered double-null configuration, the magnetic
field line length in the upstream region 1, L1, is approximately 2/
3 of the magnetic field line length from the target to the mid-
plane Lk (in the proximity of the separatrix). This can be com-
puted numerically as

Lk ¼
1
2

ð
dlk ¼

1
2

ð
q�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
pol þ B2

tor

q
Bpol

ds; (26)

where B2
tor¼BuBu¼ 1;B2

pol¼BhBhþBrBr¼ e2ðð@r̂wÞ2þð@hw=r̂Þ2Þ,
with e being the inverse aspect ratio, and the integral from the
lower to the upper strike point is performed along a flux surface.
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Finally, we rewrite the expression for K, H (or â), and v̂,
in Eqs. (1)–(5) using quantities appearing in the drift-
reduced Braginskii model [Eqs. (7)–(12)] units, with x! R and
y! Z

K ¼ �n1L2
1

L2qs
; (27)

H ¼ â
5
2 ¼ ab

a�

� �5
2

¼

2aZ
p

� �4=5

a1=5R

2q�1�
DRn1

n0;1
q4
s L

2
2

� �1=5

2
66664

3
77775

5=2

; (28)

v̂ ¼ vR
v�
¼ vR

q2
�q

7
sL2

� �1
5

8
dn5

1

DRn2
1 n

3
0;1

paR
2aZ

� �2
" #�1=5

: (29)

V. COMPARISON BETWEEN SIMULATION RESULTS
AND ANALYTICAL PREDICTIONS

Figure 5 (left) locates the detected blobs in the (H, K) plane.
The normalised velocity v̂ of each blob as a function of its size â
is shown in Fig. 5 (right). The detected blobs belong to the RB
and RX regimes, with the threshold between the two regimes
being at H/K¼ 1. The analytical scalings of the two-region
model for the blob velocity in the RB and RX regimes, traced by
continuous blue and red lines, respectively, are shown to be
upper bounds of the measured blob velocities. The log(h/K) col-
ormap indicates whether a blob belongs to the RB or to the RX
regime (the RB blobs are blue and the RX blobs are red/yellow).
The transition in the color/regime agrees with the change in
the velocity trend.We also plot the velocity scaling of the sheath
connected, Cs, regime (black dashed line), whose velocity to the
size trend is â�2 (see Fig. 5 left), which differs from the RX scaling

FIG. 5. Characterisation of blob regimes
in the (H, K) plane (left panel). The blobs
belong to the resistive ballooning (RB)
and resistive X (RX) regimes. The normal-
ised blob velocity v̂ ¼ vZ=v� as a func-
tion of the normalised size â ¼ ab=a�

(right panel). Good agreement with the
analytical scalings of RB and RX regimes
(blue and red solid lines), and very differ-
ent behaviour with respect to the Cs
sheath connected regime (black dashed
line) is shown. The color-scheme indicates
log(H/K), with the transition between the
RB and the RX regime being at H ¼ K.

FIG. 6. Effect of various approximations of
blob scaling. From left to right, top to bot-
tom, the impact of excluding dn/n effects,
approximating the magnetic field line
length in region 1 with Lk ¼ ðL1 þ L2Þ,
considering ab to be the average between
the radial blob radius aR and the vertical
size aZ, and removing the 2/p factor in ab
and v*. The qualitative behaviour is similar,
but quantitatively the agreement with the
analytical scaling is worse than in Fig. 5.
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only by the multiplying factor K � 10. In the RX regime, the high
collisionality causes the blob to partially disconnect from the
sheath, and as a consequence, the blob sustains its self-induced
electric field more efficiently, resulting in a faster outwards
motion. The simulation results show that the sheath connected
scaling significantly underestimates the blob velocity, confirm-
ing that the large â blobs belong to the RX regime. To our knowl-
edge, this is the first time that RX behaviour is observed and
studied in blob simulations or experiments.

The two-region scaling presented in Sec. II differs to some
extent from the one in Myra et al.37 as it retains density effects,
and the difference between magnetic field line lengths in the
upstream and divertor regions, as well as blob ellipticity and the
way blob size, is measured. In Fig. 6, we test the influence of
these effects on the velocity scaling. The top-left panel of Fig. 6
shows that removing the density perturbation effects shifts the
blob distribution to the left and the normalised velocity is
reduced. This is due to an increase in both reference size a*

and reference velocity v* since we are dropping the terms
ðDxn1=n0;1Þ1=5 < 1 and ðdn5

1 =ðDxn2
1n

3
0;1ÞÞ

1=5 < 1 in Eqs. (4) and (6),
respectively. Considering the total magnetic field line length
from the target to the midplane, Lk, rather than the field line
length in region 1, L1, (top-right panel of Fig. 6) reduces â and
impacts the value of K, resulting in a slightly worse agreement
between the RB/RX regime transitions, as indicated by the color
code and as suggested by the velocity to the size dependence.
Finally, taking ab to be the average between aR and aZ instead of
Eq. (3) (bottom left panel of Fig. 6) significantly impacts the two-
region prediction since most blobs are now estimated to belong
to the RX regime, with the blob distribution moving to the right
and the normalised size â being overestimated. This is partly
due, in this case, to the fact that we drop the (2/p)4=5 term in ab,
introduced when relating the wavenumber k1 in region 1 to aZ
(i.e., k1¼ 2aZ/p). Removing the (2/p)4=5 factor contributes to
overestimation of the blob size, as shown in the bottom-right
panel of Fig. 6.

FIG. 7. A resistive-X (RX) blob. From left
to right, top to bottom: density fluctuation
n � nbg in (R, Z), potential fluctuation /
� /bg in (R, Z) (blob perimeter traced by
the continuous black line), density fluctua-
tion along the flux surface, and parallel
current Jk ¼ nðvk;i � vk;eÞ along the flux
surface (square indicating the blob center
of the mass location). The u ¼ 0 poloidal
plane is represented in the top panels.
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In Figs. 7 and 8, the difference between RB blobs and RX
blobs is investigated further by looking at the density, potential,
and parallel current of typical blobs belonging to the two
regimes. Typically, RB blobs are localised closer to the separatrix,
and they do not extend to the divertor region. On the other
hand, RX blobs are localised in the far SOL and develop parallel
dynamics, reaching the wall. Nonetheless, the associated poten-
tial perturbation is relatively small in region 2. A typical
blob contoured by a solid black line in the RX regime is shown in
Fig. 7. As it can be seen from the top panels, the blob structure
extends to the wall and reappears periodically in the poloidal
plane, at the locations (identified by red circles) where the mag-
netic field line that passes through the center-of-mass of the
detected blob comes back on the poloidal plane. The blob gets
stretched as it approaches the X-points because of the flux
expansion present in these regions. The blob elongation along
the magnetic field is also confirmed by the bottom panels that
show the plasma density and parallel current on the flux surface

of the center-of-mass of the blob in the (s, u) plane, where s is
the poloidal distance from themidplane, along themagnetic flux
surface of the blob, and u is the toroidal angle (the square iden-
tifies the blob center-of-mass at u¼0, which is also shown in
the top panels).We remark that the presence of the parallel cur-
rent in region 1 and region 2 is not negligible. Furthermore, even
though the structure can be traced up to the wall, the fluctua-
tions in density and potential decrease moving from the mid-
plane to the wall, indicating partial disconnection of the blob
between the sheath and the midplane.

Figure 8 shows the density poloidal snapshot of a RB blob.
With respect to the RX blob, it is smaller in size and it is located
just outside the separatrix. The electric potential shows the
presence of a dipole, which extends outside of the blob perime-
ter (top right). We note that the blob structure does not reap-
pear periodically on the poloidal plane. Focusing on the flux
surface passing through the blob center of mass, we observe
that the blob extends along the magnetic field line on the flux

FIG. 8. A resistive ballooning RB blob.
From left to right, top to bottom: density
fluctuation n � nbg in (R, Z), potential fluc-
tuation / � /bg in (R, Z) (blob perimeter
traced by the continuous black line), den-
sity fluctuation along the flux surface, and
parallel current Jk ¼ nðvk;i � vk;eÞ along
the flux surface (square indicating the blob
center of the mass location). The u ¼ 0
poloidal plane is represented in the top
panels.
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surface, without reaching region 2 that starts at jsj 	 150. Finally,
the bottom right plot shows that the parallel current,
Jk ¼ nðvk;i � vk;eÞ, is almost negligible for a RB blob, in agreement
with the model that predicts for a RB blob that the curvature
drive is compensated by the perpendicular ion-polarisation cur-
rent, with the parallel dynamics playing a minor role.

We remark that the analytical models used to analyse the
results of our simulations are obtained assuming a single blob
moving in uniform background fields. Despite this strong
assumption, the single blob models appear to be predicting well
the simulation results. Indeed, a recent study by Militello et al.45

shows that blobs travelling in the SOL can be considered essen-
tially as independent entities. The scattering of the blob veloci-
ties with respect to the analytical expectations in Fig. 5 could be
due to the non-uniform background where the blob propagates
which results from our self-consistent simulations.

VI. CONCLUSIONS

The GBS code is used to investigate blob dynamics in the
presence of an X-point. An analytical scaling for the blob velocity
as a function of the blob size and plasma collisionality is derived in
a diverted geometry following closely the two-region model pre-
sented in Ref. 37. This model accounts for the differences in the
physical mechanisms and in the magnetic field geometry that
characterise the outboard mid-plane and the divertor regions.
The scaling is re-derived starting from a simplified version of the
drift-reduced Braginskii’s equations for density and vorticity, pro-
viding a closure for the parallel dynamics, using Ohm’s law and the
magnetic pre-sheath physics. The scaling retains the effects of
blob plasma density and blob ellipticity, as well as the difference in
themagnetic field line length in regions 1 and 2.

A simulation is run in a double-null configuration, and a
blob detection/tracking algorithm is developed and used to
compute the blob velocity, size, and other physical parameters
needed to perform a comparison between simulation results
and the analytical scaling. The blobs appear to be in the high-
collisionality Resistive Ballooning and Resistive X regimes of the
two-region model, where the curvature drive is balanced by the
perpendicular ion polarisation current and parallel current flow
between the two regions, respectively. The analytical scaling
constitutes an upper bound for the detected blob velocities as a
function of their sizes. The effect of blob density and ellipticity
is shown to be quantitatively important, although the qualitative
trends are unchanged. A detailed analysis of two blobs, one in
Resistive X and one in Resistive Ballooning, shows density and
electric potential fluctuations and parallel current profiles that
are in agreement with the theoretical expectations. This is the
first time that a blob velocity scaling is investigated using full-3D
turbulent simulation in diverted geometry.
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APPENDIX: RE-DERIVATION OF THE TWO REGION
MODEL

The drift-reduced Braginskii’s equations for density [Eq.
(7)] and vorticity [Eq. (11)] can be simplified around the equato-
rial midplane as

@x1

@t
þ q�1� /1;x1½ � ¼ 1

n1
rkJk;1 þ

2Te

n1
Cðn1Þ

@n1

@t1
þ q�1� /1;n1½ � ¼ 0

(A1)

and in the divertor region as

@x2

@t
þ q�1� /2;x2½ � ¼ 1

n2
rkJk;2

@n2

@t
þ q�1� /2;n2½ � ¼ 0:

(A2)

With respect to the drift-reduced Braginskii density equation
[Eq. (7)], the parallel streaming and magnetic curvature terms
are neglected, as they are smaller than the dominant E�B
drift. In the vorticity equations, the parallel terms associated
with the polarisation current are neglected, and in the diver-
tor region, the interchange drive is also discarded. The large
aspect ratio approximation is used, allowing us to drop the
normalised magnetic field strength B that appears in Ref. 37.

By balancing the divergence of Jk with the resistive term
in Ohm’s law Jk ¼ �rk/=� in the electron velocity Eq. (8) in the
upstream region, we approximate

rkJk;1 ¼
/1 � /2

�L2
1

; (A3)

where L1 is the length of the magnetic field line from the equa-
torial midplane to the entrance of the divertor region (nor-
malised to R0). In the divertor region, a closure for the parallel
current can be obtained by integrating rkJk along the parallel
direction from the interface with the upstream region to the
sheath entrance, i.e.,

ðsh
2
rkJk;2 dl ¼ Jkjsh2 ¼ �

/1 � /2

�L1
þ n2cs

Te
ð/2 � /fÞ; (A4)

where the sheath current Jk ¼ ncsð1� expðk� /=TeÞÞ is linear-
ised around / � /f¼ kTe/e. By applying the current closures
and evaluating the curvature terms at the outboard midplane
[using Eq. (16)], the two-region model becomes

@

@t
þ R0

qs0
vE;1 � r

� �
r2
?/1 ¼ r1

/1 � /2

n1
� b
n1

1
r
@n1

@h
; (A5)

@

@t
þ R0

qs0
vE;1 � r

� �
n1 ¼ 0; (A6)
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@

@t
þ R0

qs0
vE;2 � r

� �
r2
?/2 ¼ �r2

/1 � /2

n2
þ að/2 � /fÞ; (A7)

@

@t
þ R0

qs0
vE;2 � r

� �
n2 ¼ 0; (A8)

having defined

r1 ¼
1
�L2

1
; r2 ¼

1
�L1L2

; b ¼ 2q2
s ; a ¼ 1

qsL2
; (A9)

with L2 in the magnetic field line length from the X-point to
the wall (in R0 units). In addition, in Eqs. (A5)–(A8), the Poisson
bracket terms are rewritten as advective terms due to the
E�B velocity vE, for example,

/;x½ � ¼ b � r/�rx ¼ vE � rx; (A10)

where vE is dimensionalised over cs0 and r over qs0.
In order to make analytical progress in the analysis of the

blob velocity, we linearise the two-region model. We indicate
the radial w and binormal v directions (ev¼b�ew) with x and
y, respectively (they are normalised to qs0 units), and Fourier
decomposes /1,2 and n1,2 along the y direction, allowing for
different wavenumbers in the two regions, i.e.,

/1 ¼ d/1ðxÞe�ixtþik1y; n1 ¼ n0;1ðxÞ þ dn1ðxÞe�ixtþik1y; (A11)

/2 ¼ d/2ðxÞe�ixtþik2y; n2 ¼ n0;2ðxÞ þ dn2ðxÞe�ixtþik2y: (A12)

The background density is given by nbg¼n0 � dn and the
peak blob density by npeak¼n0 þ dn (see Fig. 9). We then
approximate r2

?d/1 ’ �k21 d/1 (assuming the blob electric
potential to vary along the x direction on longer scales than
along y, consistently with the physical picture of a dipole gen-
erating in y), and we work in the E�B frame of reference, so

that the background equilibrium potentials /0,1 and /0,2 vanish
(assuming that they are constant and equal to each other). The
linearized two-region model obtained is the following:

ixk21 d/1 ¼
r1

n0;1
d/1 � d/2ð Þ � ibk1

dn1

n0;1
; (A13)

�ixdn1 � q�1� ik1d/1
@n1

@x
¼ 0; (A14)

ixk22d/2 ¼
r2

n0;2
d/2 � d/1ð Þ þ ad/2; (A15)

�ixdn2 � q�1� ik2d/2
@n2

@x
¼ 0; (A16)

where we made use of Eq. (A10) to write vE;j � r 
 �ikjd/j@x
( j¼ 1 and 2). Equation (A14) allows us to express dn1 as a func-
tion of d/1, that is,

dn1 ¼ �
1
x

q�1� k1
@n1

@x
d/1: (A17)

Note that the background density can vary in the radial direc-
tion, n0,j¼n0,j(x) in Eqs. (A11) and (A12). In the case of uniform
background, @xnj¼ @xdnj¼ dnj/ax, with ax half of the radial
blob size. Equation (A17) can be substituted in Eq. (A13) to
obtain

x2d/1 ¼ �i
r1

n0;1k21
x d/1 � d/2ð Þ þ b

q�

1
n0;1

@n1

@x
d/1: (A18)

Introducing the characteristic frequencies xr;j ¼ rj=ðn0;jk21 Þ
and c2mhd ¼ �bq�@xn1=n0;1, this can be written as

x2d/1 ¼ �ixr;1x d/1 � d/2ð Þ � c2mhdd/1; (A19)

and using the same notation, Eq. (A15) becomes

xd/2 ¼ ixr;2
k21
k22

d/1 � d/2ð Þ � ixa;2d/2; (A20)

where xa;2 ¼ a=k22. From Eqs. (A19) and (A20), the following dis-
persion relation is derived:

x2 þ c2mhd þ
ðixr;1xÞðxþ ixa;2Þ

xþ ixr;2k21 =k
2
2 þ ixa;2

¼ 0: (A21)

Since we can approximate k2¼ k1/ev, with ev inversely propor-
tional to the flux tube fanning, Eq. (A21) becomes

x2 þ c2mhd þ
ðixr;1xÞðxþ ie2vxa;1Þ
xþ ie2vxr;2 þ ie2vxa;1

¼ 0: (A22)

In Table I, we compare the characteristic frequencies,
cmhd, xr,j, and xa,j, with the ones in Myra et al.,37 in physical
units. For an easier comparison, we express our results also in
physical units. We note that with the hypothesis of ~L1 ¼ ~L2

and ~n1 ¼ ~n2, our frequency expressions in physical units
reduce to the large aspect ratio limit of the ones derived in
Ref. 37. For xr, we use the relation � ¼ e2n0R0=ðmirkcs0Þ.

Dividing Eq. (A22) by c2mhd, we obtain

1þ x̂2 þ
ix̂Hðx̂ þ ie2vHÞ

Kðx̂ þ ie2vHÞ þ ie2v
xr;2

xr;1
H
¼ 0; (A23)

FIG. 9. Blob cut along the vertical direction, y, showing potential and density wave-
like profiles as expressed in Eqs. (A11) and (A12) and their relation to the blob den-
sity peak npeak and the density background value nbg. We also show the link
between wavenumber k1 and half width ay taken at the half maximum location (cor-
responding to n ¼ n0), i.e., k1 ¼ p/(2ay).
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where the normalised frequency x̂ ¼ x=cmhd is introduced, as
well as the parameters that mostly affect the blob motion, i.e.,
H ¼xa,1/cmhd and K ¼xa,1/xr,1. The H and K parameters
describe the importance of the sheath resistivity with respect
to the interchange drive and with respect to the plasma resis-
tivity, respectively. Let us estimate the values of K and H as
functions the blob properties

K ¼ n1a
r1
¼ xa;1

xr;1
¼ �n1

L2
1

L2qs
; (A24)

H ¼ xa;1

cmhd
¼ k�41 ax

2q4
s L

2
2
Dxn1

n0;1
q�1�

2
64

3
75

1
2

¼fig 9
ð2ay=pÞ

4
5a

1
5
x

2q4
s L

2
2
Dxn1

n0;1
q�1�

� �1
5

2
664

3
775

5
2

¼ ab
a�

� �5
2

¼ â
5
2: (A25)

Here, Dxn1 is an estimate of the variation of the blob density
in x, such that @xn1 can be approximated with Dxn1/ax, where
ax represents the blob radius in the radial direction. In the
general case of background density varying in x over the blob

extension, Dxn1 6¼ dn1 and ax is half of the radial extension of
the entire perturbation above the background. In addition, ab
¼ ð2ay=pÞ4=5a1=5x is used to estimate the blob size, while a* is
the reference size, which is given by the balance between
the curvature drive b and the sheath current a [defined in
Eq. (A9)]

a� ¼ 2q4
s L

2
2
Dxn1

n0;1
q�1�

� �1
5

¼ b
a2

Dxn1

n0;1
q�1�

� �1
5

: (A26)

We now derive an analytical prediction for the blob radial
velocity, as a function of the normalised blob size â (or H) and
the collisionality K. As a first step, we express the radial veloc-
ity vx as a function of the frequency x. Since the radial blob
motion is due to the E�B drift, using the linearised continuity
Eq. (A14), one can write

vx ¼ vE ¼ ImðxÞ qs0

R0

dn1

Dxn1
ax; (A27)

as @xn1¼Dxn1/ax and vE¼�ik1d/1. The reference velocity v* is
chosen such that the normalised velocity, v̂ ¼ vx=v�, reads

v̂ ¼ Imðx̂Þâ1=2: (A28)

By using Eqs. (A27) and (A28), the reference velocity reads

v� ¼ vx
Imðx̂Þâ�1=2

¼ cmhd
qs0

R0

dn1

Dxn1
axâ

�1=2

¼ qs 8
dn5

1

Dxn2
1 n

3
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pax
2ay

� �2
q2
sL2q

2
�

" #1
5

: (A29)

We note that the chosen reference velocity can be interpreted
as the radial velocity of a blob of size â ¼ 1, when the resistive
ballooning is the dominant instability, for which the drive in
region 1 is balanced by the inertia in the same region [i.e., the
first and last terms in Eq. (A19)] and xRB¼ icmhd. The main blob
parameter expressions as derived here and as reported in the
reference article37 are summarised in Table II.

In the high collisionality case K� 1, of interest in the pre-
sent paper, one can incur either in the RB, if K � H, or in the
RX regime, if K� H. Since K� 1, then xa� xr, and the line-
arised vorticity equation in region 2 [see Eq. (A20)] reduces to

x ’ ixr;2
d/1

d/2
� ixa;2: (A30)

Since xr,2 is small relatively to xa,2, either the parallel current
term ixr,2d/1/d/2 drops completely or alternatively d/1� d/2.
In the first case, the two regions are completely disconnected
and the perturbation does not extend to region 2, and there-
fore, d/2 � 0, and in region 1, the inertia balances the drive (RB
regime). From Eq. (A19)

x2d/1 ¼ �c2mhdd/1; (A31)

which leads to x̂RB ¼ i and v̂RB ¼ â
1
2.46,47 On the other hand, if

d/1� d/2 (RX regime), in region 1

x2 ¼ �ixr;1x� c2mhd; (A32)

i.e., the parallel current balances the interchange drive

TABLE I. Comparison of the characteristic frequencies of the two-region model as
derived in the present work and as derived by Myra et al.37 In the first column, the
dimensionless frequencies are written in GBS dimensionless units, the second col-
umn translates them in physical units, and finally, the third column reproduces the
expressions from the referenced article. The physical expression xr,j is evaluated
imposing � ¼ e2n0R0=ðmirkcs0Þ, with rk being the parallel conductivity.
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TABLE II. Comparison of main blob parameter expression as derived here and as
reported in the reference article.37 Columns 1 and 2 contain the same expressions in
GBS units and in physical units, respectively. Myra’s expression in physical units is
reported in the third column. In v*, CðnÞ ¼ ðdn51=Dxn21n
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x̂RX ¼ i
cmhd

xr;1
¼ i

K
H
; (A33)

and v̂RX ¼ Kâ�2. The transition threshold between the two
regimes is at H¼K, as it can be observed in Eq. (A32)

x̂2 þ i
H
K

x̂ þ 1 ¼ 0: (A34)

If K > H (RB regime), first and third terms balance, and alter-
natively, if K < H, the second and the third terms balance (RX
regime), and the first term drops since jx̂2j ¼ ðK=HÞ2 � 1. The
same result for these two regimes can be obtained more for-
mally but less intuitively, by taking the limit of the dispersion
relation in Eq. (A23) for high values of K and obtaining directly
the above Eq. (A34).
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