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Training deep neural networks with the error backpropagation algorithm is considered implausible
from a biological perspective. Numerous recent publications suggest elaborate models for biologically
plausible variants of deep learning, typically defining success as reaching around 98% test accuracy on
the MNIST data set. Here, we investigate how far we can go on digit (MNIST) and object (CIFAR10)
classification with biologically plausible, local learning rules in a network with one hidden layer and
a single readout layer. The hidden layer weights are either fixed (random or random Gabor filters)
or trained with unsupervised methods (Principal/Independent Component Analysis or Sparse Coding)
that can be implemented by local learning rules. The readout layer is trained with a supervised, local
learning rule. We first implement these models with rate neurons. This comparison reveals, first, that
unsupervised learning does not lead to better performance than fixed random projections or Gabor
filters for large hidden layers. Second, networks with localized receptive fields perform significantly
better than networks with all-to-all connectivity and can reach backpropagation performance on
MNIST. We then implement two of the networks - fixed, localized, random & random Gabor filters in
the hidden layer - with spiking leaky integrate-and-fire neurons and spike timing dependent plasticity
to train the readout layer. These spiking models achieve >98.2% test accuracy on MNIST, which is
close to the performance of rate networks with one hidden layer trained with backpropagation. The
performance of our shallow network models is comparable to most current biologically plausible
models of deep learning. Furthermore, our results with a shallow spiking network provide an important
reference and suggest the use of data sets other than MNIST for testing the performance of future

models of biologically plausible deep learning.
© 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CCBY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

While learning a new task, synapses deep in the brain un-
dergo task-relevant changes (Hayashi-Takagi, et al., 2015). These
synapses are often many neurons downstream of sensors and
many neurons upstream of actuators. Since the rules that govern
such changes deep in the brain are poorly understood, it is ap-
pealing to draw inspiration from deep artificial neural networks
(DNNs) (LeCun, Bengio, & Hinton, 2015). DNNs and the cerebral
cortex share that information is processed in multiple layers of
many neurons (Kriegeskorte, 2015; Yamins & DiCarlo, 2016) and
that learning depends on changes of synaptic strengths (Hebb,
1949). However, learning rules in the brain are most likely dif-
ferent from the backpropagation algorithm (Crick, 1989; Marble-
stone, Wayne, & Kording, 2016; Whittington & Bogacz, 2019).
Furthermore, biological neurons communicate by sending dis-
crete spikes as opposed to real-valued numbers used in DNNs.
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Differences like these suggest that there exist other, possibly
nearly equally powerful, algorithms that are capable to solve
the same tasks by using different, more biologically plausible
mechanisms. Thus, an important question in computational neu-
roscience is how to explain the fascinating learning capabilities
of the brain with biologically plausible network architectures and
learning rules. Moreover from a pure machine learning perspec-
tive there is increasing interest in neuron-like architectures with
local learning rules, mainly motivated by the current advances in
neuromorphic hardware (Nawrocki, Voyles, & Shaheen, 2016).
Image recognition is a popular task to test the performance
of neural networks. Because of its relative simplicity and popu-
larity, the MNIST data set (28 x 28-pixel gray level images of
handwritten digits, LeCun, 1998) is often used for benchmarking.
Typical performances of existing models are around 97%-99%
classification accuracy on the MNIST test set (see Section 2 and
Table 2). Since the performances of many classical DNNs trained
with backpropagation (but without data augmentation or con-
volutional layers, see table in LeCun (1998)) also fall in this
region, accuracies around these values are assumed to be an
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Table 1
Alphabetical list of abbreviations in this paper.
Abbreviation Description
AE Autoencoder
ANN Artificial Neural Network
BP (Error-) Backpropagation
CNN / Conv. Convolutional Neural Network
DBN Deep Belief Network
DNN Deep Neural Network
FA Feedback Alignment
ICA Independent Component Analysis
I—... Localized connectivity between input and hidden layer
LIF Leaky Integrate-and-Fire
PCA Principal Component Analysis
RBM Restricted Boltzmann Machine
RG Random Gabor filters
RL Reinforcement Learning
RP Random Projections
SC Sparse Coding
SGD Stochastic Gradient Descent
SNN Spiking Neural Network
SP Simple Perceptron
STDP Spike Timing Dependent Plasticity
SVM Support Vector Machine
empirical signature of backpropagation-like deep learning

(Lillicrap, Cownden, Tweed, & Akerman, 2016; Sacramento, Costa,
Bengio, & Senn, 2017; Tavanaei, Ghodrati, Kheradpisheh, Masque-
lier, & Maida, 2018; Whittington & Bogacz, 2019). It is note-
worthy, however, that several of the most promising approaches
that perform well on MNIST have been found to fail on harder
tasks (Bartunov, Santoro, Richards, Hinton, & Lillicrap, 2018)
or at least need major modifications to scale to deeper net-
works (Moskovitz, Litwin-kumar, & Abbott, 2018).

There are two obvious alternatives to supervised training of
all layers with backpropagation. The first one is to fix weights
in the first layer(s) at random values , as proposed by general
approximation theory (Barron, 1993) and the extreme learning
field (Huang, Zhu, & Siew, 2006). The second alternative is un-
supervised training in the first layer(s). In both cases, only the
weights of a readout layer are learned with supervised training.
Unsupervised methods are appealing since they can be imple-
mented with local learning rules, see e.g. “Oja’s rule” (Oja, 1982;
Sanger, 1989) for principal component analysis, nonlinear ex-
tensions for independent component analysis (Hyvarinen & Oja,
1998) or algorithms in Brito and Gerstner (2016), Liu and Jia
(2012), Olshausen and Field (1997), Rozell, Johnson, Baraniuk, and
Olshausen (2008) for sparse coding. A single readout layer can be
implemented with a local rule as well. A candidate is the delta-
rule (also called “perceptron rule”), which may be implemented
by pyramidal spiking neurons with dendritic prediction of so-
matic spiking (Urbanczik & Senn, 2014). Since straightforward
stacking of multiple fully connected layers of unsupervised learn-
ing does not reveal more complex features (Olshausen & Field,
1997) we focus here on networks with a single hidden layer (see
also Krotov et al., 2019).

The main objective of this study is to see how far we can go
with networks with a single hidden layer and biologically plau-
sible, local learning rules, preferably using spiking neurons. To
do so we first compare the classification performance of different
rate networks: networks trained with backpropagation, networks
with fixed random projections or random Gabor filters in the
hidden layer and networks where the hidden layer is trained with
unsupervised methods (Section 3.1). Since sparse connectivity is
sometimes superior to dense connectivity (Bartunov et al., 2018;
Litwin-Kumar, Harris, Axel, Sompolinsky, & Abbott, 2017) and
successful convolutional networks leverage local receptive fields,
we investigate sparse connectivity between input and hidden

layer, where each hidden neuron receives input only from a few
neighboring pixels of the input image (Section 3.2). Finally we
implement the simplest, yet promising and biologically plausible
models - localized random projections and random Gabor filters
- with spiking leaky integrate-and-fire neurons and spike timing
dependent plasticity (Section 3.3). We discuss the performance
and implications of this simplistic model with respect to current
models of biologically plausible deep learning.

2. Related work

In recent years, many biologically plausible approaches to
deep learning have been proposed, see e.g. (Marblestone et al.,
2016; Tavanaei et al., 2018; Whittington & Bogacz, 2019) for
reviews. Existing approaches usually use either involved archi-
tectures or elaborate mechanisms to approximate the backprop-
agation algorithm. Examples include the use of convolutional
layers (Kheradpisheh et al., 2018; Lee, Srinivasan, Panda, & Roy,
2018; Tavanaei et al., 2018; Tavanaei & Maida, 2016) (and tables
therein), dendritic computations (Guergiuev et al., 2016; Hussain
et al.,, 2014; Sacramento et al., 2017) or backpropagation approxi-
mations such as feedback alignment (Baldi et al., 2016; Bartunov
et al., 2018; Kohan et al., 2018; Lillicrap et al., 2016; Ngkland,
2016; Samadi et al,, 2017) equilibrium propagation (Scellier &
Bengio, 2017), membrane potential based backpropagation (Lee
et al., 2016), restricted Boltzmann machines and deep belief net-
works (Neftci et al., 2014; O’Connor et al., 2013), (localized) dif-
ference target propagation (Bartunov et al., 2018; Lee et al., 2015),
using reinforcement-signals (Pozzi et al., 2018; Rombouts, Bohte,
& Roelfsema, 2015) or approaches using predictive coding (Whit-
tington & Bogacz, 2017). Many models implement spiking neu-
rons to stress bio-plausibility (Kulkarni & Rajendran, 2018; Liu,
Pineda-Garcia, Stromatias, Serrano-Gotarredona, & Furber, 2016;
Liu & Yue, 2018; Neftci et al., 2017; Tavanaei et al., 2018; Wu
et al., 2018) (and tables therein) or coding efficiency (O’Connor
et al.,, 2017). The conversion of DNNs to spiking neural networks
(SNN) after training with backpropagation (Diehl, et al.,, 2015) is
a common technique to evade the difficulties of training with
spikes. Furthermore, there are models including recurrent activity
(Bellec, Salaj, Subramoney, Legenstein, & Maass, 2018; Spoerer,
McClure, & Kriegeskorte, 2017), starting directly from realistic
circuits (Delahunt & Kutz, 2018), or combining unsupervised and
supervised training (Krotov et al., 2019) as in this paper. We refer
to Table 2 for an extensive list of current biologically plausible
models tested on MNIST (see Table 1 for abbreviations).

3. Results

We study networks that consist of an input (Iy), one hidden
(l;) and an output-layer (I;) of (nonlinear) units, connected by
weight matrices W; and W, (Fig. 1). Training the hidden layer
weights W; with standard supervised training involves (non-
local) error backpropagation using summation over output units,
the derivative of the units’ nonlinearity (¢’(-)) and the trans-
posed weight matrix W} (Fig. 1a). In the biologically plausible
network considered in this paper (Fig. 1b & c), the input-to-
hidden weights W, are either fixed random, random Gabor filters
or learned with an unsupervised method (Principal/ Independent
Component Analysis or Sparse Coding). The unsupervised learn-
ing algorithms assume recurrent inhibitory weights V; between
hidden units to implement competition, i.e. to make different
hidden units learn different features. For more model details we
refer to Appendix A-Appendix D. Code for all (rate & spiking)
models discussed below is publicly available at https://github.
com/EPFL-LCN/pub-illing2019-nnetworks.
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Table 2

MNIST benchmarks for biologically plausible models of deep learning compared with models in this paper (bold). SNN: Spiking Neural Network, for other abbreviations
see Section 3. Models are ranked by MNIST test accuracy (rightmost column). Parts of this table are taken from Diehl and Cook (2015), Kheradpisheh, Ganjtabesh,
Thorpe, and Masquelier (2018), Tavanaei et al. (2018). Models using convolutional layers (CNN) are marked in italic. See Table 1 for abbreviations. For conventional

ANN/DNN/CNN MNIST benchmarks see table in LeCun (1998).

Model Neural coding

Conv. SNN (Wu, Deng, Li, Zhu, & Shi, 2018) Spikes
Conv. SNN (Diehl, et al., 2015) Rate
Conv. Spiking AE (Panda & Roy, 2016) Spikes
I-RG (this paper) Rate
[-BP (this paper) Rate
I-ICA (this paper) Rate
I-FA (Bartunov et al,, 2018) (& this paper) Rate
SNN (Lee, Delbruck, & Pfeiffer, 2016) Spikes
spiking LIF [-RG (this paper) Spikes
(Stoch.) Diff. Target Prop. (Lee, Zhang, Fischer, & Bengio, Rate
2015)

Nonlin. Hebb + SGD (Krotov, Hopfield, & Lee, 2019) Rate
I-RP (this paper) Rate
I-SC (this paper) Rate
Conv. SNN (Kheradpisheh et al., 2018) Spikes
SNN (O’Connor, Gavves, & Welling, 2017) Pseudo-spike
Direct FA (Ngkland, 2016) Rate
Spiking FA (Lillicrap et al., 2016) Spikes
spiking LIF [-RP (this paper) Spikes
I-PCA (this paper) Rate
Q-AGREL (RL-like) (Pozzi, Bohté, & Roelfsema, 2018) Rate
Forward propagation (FP) (Kohan, Rietman, & Rate
Siegelmann, 2018)

Spiking FA (Neftci, Augustine, Paul, & Detorakis, 2017) Spikes
Predictive coding (Whittington & Bogacz, 2017) Rate
Spiking CNN (Tavanaei & Maida, 2016) Rate/Spikes
Equilibrium Prop. (Scellier & Bengio, 2017) Rate
Dendr. BP (Sacramento et al.,, 2017) Spikes
Spiking FA (Samadi, Lillicrap, & Tweed, 2017) Spikes
Sparse/Skip FA (Baldi, Sadowski, & Lu, 2016) Rate
Spiking CNN (Thiele, Bichler, & Dupret, 2018) Spikes
Spiking FA (Guergiuev, Lillicrap, & Richards, 2016) Spikes
2 layer network (Diehl & Cook, 2015) Spikes
Spiking RBM/DBN (O’Connor, Neil, Liu, Delbruck, & Rate
Pfeiffer, 2013)

2 layer network (Querlioz, Bichler, Dollfus, & Gamrat, Spikes
2013)

Spiking HMAX/CNN (Liu & Yue, 2018) Spikes
Spiking RBM/DBN (Neftci, Das, Pedroni, Kreutz-Delgado, Rate
& Cauwenberghs, 2014)

Spiking RBM/DBN (Neftci et al., 2014) Spikes
SP (this paper) Rate
Spiking CNN (Zhao, Ding, Chen, Linares-Barranco, & Tang, Spike
2015)

Dendritic neurons (Hussain, Liu, & Basu, 2014) Rate

Learning type Comments Test accuracy (%)
Supervised 5 conv. layers, Spatio-Temporal BP 99.3
Supervised Conversion: rate — spike 99.1
Un/Supervised Stacked conv. AE with BP + sym. weights 99.1
Un/Supervised Only output layer learned 98.9
Supervised BP-benchmark of this paper 98.8
Un/Supervised ICs as features for SGD 98.8
Supervised FA with localized rec. fields 98.7
Supervised BP approx., weight symmetry 98.7
Supervised STDP (only output layer learned) 98.6
Supervised Layer-wise AE, Target Prop. 98.5
Un/Supervised nonlin. Hebb + SGD (similar to this paper) 98.5
Supervised Only output layer learned 98.4
Un/Supervised SC for 1. layer, SGD for 2. layer 98.4
Unsupervised 3 Conv. layers, STDP, ext. SVM 98.4
Supervised Sparse, discrete activities, STDP 98.3
Supervised Many hidden layers 98.3
Supervised 3 hidden layers 98.2
Supervised STDP (only output layer learned) 98.2
Un/Supervised PCs as features for SGD 98.2
RL-like RL-like BP-approx. 98.2
Supervised FP: BP approximation 98.1
Supervised Direct FA 98
Supervised BP approx. by pred. coding 98
Unsupervised Semi-online, STDP, ext. SVM 98
Supervised 1-3 hidden layers 97-98
Supervised Dendritic comp. for BP approx. 97.5
Supervised 3 hidden layers 97
Supervised Sparse- & Skip-FA 96-97
Unsupervised Recurrent Inhib., STDP 96.6
Supervised Dendritic comp. for BP approx. 96.3
Unsupervised Recurrent Inhib., purely unsuperv. 95
Supervised Conversion rate — spike 94.1
Unsupervised Memristive device 935
Supervised STDP, HMAX preprocess. 93
Supervised Neural sampling 92.6
Supervised Neural sampling 919
Supervised Direct classification on MNIST data 91.9
Supervised Tempotron rule, sensor MNIST 91.3
Supervised Nonlin. dendrites, neuromorphic appl. 90.3

3.1. Benchmarking biologically plausible rate models and backprop-
agation

To see how far we can go with a single hidden layer, we
systematically investigate rate models using different methods to
initialize or learn the hidden layer weights Wy (see Fig. 1 and
methods Appendix A-Appendix C for details). We use two differ-
ent ways to set the weights Wy of the hidden layer: either using
fixed Random Projections (RP) or Random Gabor filters (RG), see
Fig. 1b & blue curves in Fig. 2, or using one of the unsuper-
vised methods Principal Component Analysis (PCA), Independent
Component Analysis (ICA) or Sparse Coding (SC), see Fig. 1c &
red curves in Fig. 2. All these methods can be implemented with
local, biologically plausible learning rules (Hyvarinen & Oja, 1998;
Oja, 1982; Olshausen & Field, 1997). We refer to the methods
Appendix B for further details. As a reference, we train networks
with the same architecture with standard backpropagation (BP,
see Fig. 1a). As a step from BP towards increased biologically
plausibility, we include Feedback Alignment (FA, Lillicrap et al.,
2016) with fixed random feedback weights for error backprop-
agation (see methods Appendix D for further explanation). A
Simple Perceptron (SP) without a hidden layer serves as a fur-
ther reference, since it corresponds to direct classification of the

input. We expect any biologically plausible learning algorithm to
achieve results somewhere between SP (“lower”) and BP (“upper
performance bound”)

The hidden-to-output weights W, are trained with standard
stochastic gradient descent (SGD), using a one-hot representation
of the class label as target. Since no error backpropagation is
needed for a single layer, the learning rule is local (“delta” or
“perceptron”-rule). Therefore the two-layer network as a whole is
biologically plausible in terms of online learning and synaptic up-
dates using only local variables. For computational efficiency, we
first train the hidden layer and then the output layer, however,
both layers could be trained simultaneously.

We compare the test errors on the MNIST digit recognition
data set for varying numbers of hidden neurons ny (Fig. 2). The
PCA (red dashed) and ICA (red dotted) curves in Fig. 2 end
at the vertical line n, = d = 784 because the number of
principal/independent components (PCs/ICs), i.e. the number of
hidden units ny, is limited by the input dimension d. Since the PCs
span the subspace of highest variance, classification performance
quickly improves when adding more PCs for small n, and then
saturates for larger n,. ICA does not seem to discover significantly
more useful features than PCA, leading to similar classification
performance.
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Fig. 1. The proposed network model has one hidden layer (I;) and one readout layer (I;) of nonlinear units (nonlinearity ¢(-)). Respective neural activations (e.g. ao ;)

and update rules (e.g. AW, ;) are added. (f(-)) g(-), h

(-) & h(-) are (non-)local plasticity functions, i.e. using only variables (not) available at the synapse for the

respective update. a Training with backpropagation (BP) through one hidden layer is biologically implausible since it is nonlocal (e.g. using W, & ¢'(-) from higher
layers to update Wy, see Appendix D). b & ¢ Biologically plausible architecture with fixed Random Projections (RP) or fixed random Gabor filters (RG) (blue box in
b) or unsupervised feature learning in the first layer (red box in c¢), and a supervised classifier in the readout layer [, (green boxes). All weight updates are local.
W stands for feed-forward, V for recurrent, inhibitory weights. (Crossed out) brain icons in a,b & c¢ stand for (non-)bio-plausibility of the whole network. d & e
[lustration of fully connected and localized receptive fields of Wj. f For localized Principal/Independent Component Analysis (I-PCA/I-ICA) and Sparse Coding (I-SC)
the hidden layer is composed of independent populations. Neurons within each population share the same localized receptive field and compete with each other
while the populations are conditionally independent. For more model details, see Appendix A-Appendix D. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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Fig. 2. MNIST classification with rate networks according to Fig. 1a-c with full
connectivity (Fig. 1d). The test error decreases for increasing hidden layer size n,
for all methods, i.e. Principal/Independent Component Analysis (PCA/ICA, curves
are highly overlapping), Sparse Coding (SC), fixed Random Projections (RP) and
fixed random Gabor filters (RG) as well as for the fully supervised reference
algorithms Backpropagation (BP) and Feedback Alignment (FA). The dash-dotted
line at 90% is chance level, the dotted line around 8% is the performance of a
Simple Perceptron (SP) without hidden layer. The vertical line marks the input
dimension d = 784, i.e. the transition from under- to overcomplete hidden
representations. Note the log-log scale. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)

SC (red solid line) extracts sparse representations that can be
overcomplete (n, > d), leading to a remarkable classification
performance of around 96% test accuracy. This suggests that the
sparse representation and the features extracted by SC are indeed
useful for classification, especially in the overcomplete case.

As expected, the performance of RP (blue solid) for small
numbers of hidden units (n, < d) is worse than for feature
extractors like PCA, ICA or SC. Also for large hidden layers, perfor-
mance improves only slowly with ny, which is in line with theory
(Barron, 1993) and findings in the extreme learning field (Huang
et al., 2006). However, for large hidden layers sizes, RP outper-
forms SC.

As a reference, we also studied fixing the hidden layer weights
to Gabor filters of random orientation, phase and size, located at
the image center (RG, blue dashed, see Appendix C). For hidden
layers with more than 1000 neurons, SC is only marginally better
than the network with fixed random Gabor filters.

For all tested methods and hidden layer sizes, performance is
significantly worse than the one reached with BP (black solid in
Fig. 2). In line with Lillicrap et al. (2016), we find that FA (black
dashed) performs as well as BP on MNIST. Universal function
approximation theory predicts lower bounds for the squared
error that follow a power law with hidden layer size ny for both

P (O(1/ny)) and RP (O (1/n2/d) where d is the input dimension
(Barron, 1993; Barron, Brandy, & Yale, 1994)). In the log-log-plot
in Fig. 2 this would correspond to a factor d/2 = 784/2 = 392
between the slopes of the curves of BP and RP, or at least a factor
daff/2 ~ 10 using an effective dimensionality of MNIST (see
methods A). We find a much faster decay of classification error
in RP and a smaller difference between RP and BP slopes than
suggested by the theoretical lower bounds.

Taken together, these results show that the high dimension-
ality of the hidden layers is more important for reaching high
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performance than the global features extracted by PCA, ICA or SC.
Tests on the object recognition task CIFAR10 lead to the same
conclusion, indicating that this observation is not entirely task
specific (see Section 3.2 for further analysis on CIFAR10).

3.2. Localized receptive fields boost performance

There are good reasons to reduce the connectivity from all-
to-all to localized receptive fields (Fig. 1e & f): local connectivity
patterns are observed in real neural circuits (Hubel & Wiesel,
1962), useful theoretically (Litwin-Kumar et al.,, 2017) and em-
pirically (Bartunov et al., 2018), and successfully used in convo-
lutional neural networks (CNNs). Even though this modification
seems well justified from both biological and algorithmic sides,
it reduces the generality of the algorithm to input data such as
images where neighborhood relations between pixels (i.e. input
dimensions) are important.

To obtain localized receptive fields (called “I-” methods in the
following) patches spanning p x p pixels in the input space are
assigned to the hidden neurons. The centers of the patches are
chosen at random positions in the input space, see Fig. le &
f. For localized Random Projections (I-RP) and localized random
Gabor filters (I-RG) the weights within the patches are randomly
drawn from the respective distribution and then fixed. For the
localized unsupervised learning methods (I-PCA, I-ICA & I-SC) the
hidden layer is split into 500 independent populations. Neurons
within each population compete with each other while different
populations are independent, see Fig. 1f. This split implies a min-
imum number of n, = 500 hidden neurons for these methods.
For I-PCA and [-ICA a thresholding nonlinearity was added to the
hidden layer to leverage the local structure (otherwise PCA/ICA
act globally due to their linear nature, see methods Appendix B).

We test I-RP for different patch sizes p and find an optimum
around p ~ 10 (see Fig. 3a). Note that p = 1 corresponds to
resampling the data with random weights, and p = 28 recovers
fully connected RP performance. The other methods show similar
optimal values around p = 10 (not shown). The main finding here
is the significant improvement in performance using localized
receptive fields. All tested methods improve by a large margin
when switching from full image to localized patches and some
methods (I-RG and [-ICA) even reach BP performance for n, =
5000 hidden neurons (see Fig. 3b). To achieve a fair comparison
BP is also implemented with localized receptive fields (I-BP)
which leads to a minor improvement compared to global BP. This
makes local random projections or local unsupervised learning
strong competitors to BP as biologically plausible algorithms in
the regime of large, overcomplete hidden layers n, > d — at least
for MNIST classification.

To test whether localized receptive fields only work for the
relatively simple MNIST data set (centered digits, uninformative
margin pixels, no clutter, uniform features and perspective etc.)
or generalize to more difficult tasks, we apply it to the CIFAR10
data set (Krizhevsky, 2013). We first reproduce a typical bench-
mark performance of a fully connected network with one hidden
layer trained with standard BP (=~ 56% test accuracy, n, = 5000,
see also Lin & Memisevic, 2016). Again, classification performance
increases for increasing hidden layer size n, and localized recep-
tive fields perform better than full connectivity for all methods.
Furthermore, as on MNIST, we can see similar performances for
local feature learning methods (I-PCA, [-ICA & [-SC) and local
random features (I-RP, I-RG) in the case of large, overcomplete
hidden layers (see Table 3). Also on CIFAR10, localized random
filters and local feature learning reach the performance of bi-
ologically plausible models of deep learning (Bartunov et al.,
2018; Krotov et al., 2019) and come close to the performance
of the reference algorithm [-BP. However, the difference remains

statistically significant here. Given that the state-of-the-art per-
formance on CIFAR10 with deep convolutional neural networks
is close to 98% (e.g. Real, Aggarwal, Huang, & Le, 2018), the
limitations of our shallow local network and the well-known
differences in difficulty between MNIST and CIFAR10 become
apparent.

In summary, the main message of this section is that unsu-
pervised methods, as well as random features, perform signifi-
cantly better when applied locally. Equipped with local receptive
fields our shallow network can outperform many current models
of biologically plausible deep learning (see Table 2). On MNIST
some models (I-RG & I[-ICA) even reach backpropagation per-
formance, while on CIFAR10 large differences to state-of-the-art
deep convolutional networks remain.

3.3. Spiking localized random projections

Real neural circuits communicate with short electrical pulses,
called spikes, instead of real numbers such as rates. We thus ex-
tend our shallow network model to networks of leaky integrate-
and-fire (LIF) neurons. The network architecture is the same as
in Fig. 1b. To keep it simple we implement the two models with
fixed random weights with LIF neurons: fixed localized Random
Projections (I-RP) and fixed localized random Gabor filters (I-RG)
with patches of size p x p — as in Section 3.2. The output layer
weights W, are trained with a supervised spike timing dependent
plasticity (STDP) rule.

The spiking dynamics follow the usual LIF equations (see
methods Appendix E) and the readout weights W, evolve ac-
cording to a supervised delta rule via spike timing dependent
plasticity (STDP) using post-synaptic spike-traces trj(t) and a
post-synaptic target trace tgt;(t)

rtrdt;"t(t) = -0+ Y 8 (1) (1)
f

Awyjj = a - (tgt,POSt(t) - tf,POSt(t)) ) (t - tjf) ,

where « is the learning rate. Thus, for a specific readout weight
wy i, the post-synaptic trace is updated at every post-synaptic
spike time t{ and the weight is updated at every pre-synaptic

spike time tjf . The target trace is constant while a pattern is
presented and uses a standard one-hot coding for the supervisor
signal in the output layer (I).

To illustrate the LIF and STDP dynamics, a toy example con-
sisting of one pre-synaptic neuron connected to one post-synaptic
neuron is integrated for 650 ms. The pre- and post-synaptic mem-
brane potentials show periodic spiking (Fig. 4a) which induces
post-synaptic spike traces and corresponding weight changes
(Fig. 4b), according to Eq. (1). For the MNIST task, Fig. 4c shows
a raster plot for an exemplary training and testing protocol.
During activity transients after a switch from one pattern to
the next, learning is disabled until regular spiking is recovered.
We experienced that without disabling learning during these
transient phases the networks never reached a low test error. This
is not surprising, since in this phase the network activities carry
information both about the previously presented pattern and the
current one, but the learning rule is designed for network activ-
ities in response to a single input pattern. It is also known that
LIF neurons differ from biological neurons in response to step cur-
rents (see Naud, Marcille, & Clopath, 2008 and references therein).
During the testing period, learning is shut off permanently (see
methods Appendix E for more details). The LIF and STDP dynamics
can be mapped to a rate model (see e.g. Diehl, et al.,, 2015 and
Appendix E for details). However all following results are ob-
tained with the fully spiking LIF/STDP model.
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Fig. 3. Effect of localized connectivity on MNIST. a Test error for localized Random Projections (I-RP), dependent on receptive field size p for different hidden layer
sizes ny. The optimum for receptive field size p = 10 is more pronounced for large hidden layer sizes. Full connectivity is equivalent to p = 28. Note the log-lin
scale. b Localized receptive fields decrease test errors for all tested networks (compare Fig. 2): Principal/Independent Component Analysis (I-PCA/I-ICA), Sparse Coding
(I-SC), Random Projections (I-RP), Random Gabor filters (I-RG) and Backpropagation (I-BP). The effect is most significant for [-ICA and [-RG, which approach [-BP
performance for large n, and p = 10, while all other methods reach test errors between 1 — 2%. All other reference lines as in Fig. 2. I-PCA/I-ICA & I-SC use 500
independent populations in the hidden layer (see Fig. 1f) which constrains the hidden layer size to n, > 500. Note the log-log scale.

Table 3
Test accuracies (%) on MNIST and CIFAR10 for rate networks and spiking LIF models. The Simple Perceptron (SP) is equivalent to direct classification on the data
without hidden layer. All other methods use n, = 5000 hidden neurons and receptive field size p = 10. Note that CIFAR10 has d = 32 x 32 x 3 = 3072 input
channels (the third factor is due to the color channels), MNIST only d = 28 x 28 = 784. The rate (spiking) models are trained for 167 (117) epochs. Best performing
in bold.

SP I-PCA I-ICA I-sC I-RP I-RG I-BP
Rate CIFAR10 41.1 £ 0.1 50.8 £ 0.3 539 £ 03 50.2 £ 0.2 520 £ 04 55.6 £ 0.2 58.3 &+ 0.2
MNIST 919 £ 0.1 98.2 £ 0.02 98.8 £ 0.03 98.4 £ 0.07 98.4 £ 0.1 98.9 &+ 0.05 98.8 + 0.1
Spiking MNIST - 98.2 £+ 0.05 98.6 £+ 0.1 -

When directly trained with the STDP rule of Eq. (1), the spik-
ing LIF models closely approach the performance of their rate
counterparts. Table 3 compares the performances of the rate and
spiking LIF I-RP & I-RG models with the reference algorithm I-BP
(for same hidden layer size n, and patch size p, see Section 3.2).
The remaining gap (< 0.3%) between rate model and spiking LIF
model presumably stems from noise introduced by the spiking
approximation of rates and the activity transients mentioned
above. Both, the rate and spiking LIF model of I-RP/I-RG achieve
accuracies close to the backpropagation reference algorithm I-BP
and fall in the range of performance of prominent, biologically
plausible models, i.e. 98%-99% test accuracy (see Section 2 and
Table 2). Based on these numbers we conclude that the spiking LIF
model of localized random projections using STDP is capable of
learning the MNIST task to a level that is competitive with known
benchmarks for spiking networks.

4. Discussion

In contrast to biologically plausible deep learning algorithms
that are derived from approximations of the backpropagation
algorithm (Lillicrap et al., 2016; Pozzi et al., 2018; Sacramento
et al, 2017; Whittington & Bogacz, 2019), we focus here on
shallow networks with only one hidden layer. The weights from
the input to the hidden layer are either learned by unsupervised
algorithms with local learning rules; or they are fixed. If fixed,
they are drawn randomly or represent random Gabor filters. The
readout layer is trained with a supervised, local learning rule.

When applied globally, randomly initialized fixed weights/
Gabor filters (RP/RG) of large hidden layers lead to better classifi-
cation performance than training them with unsupervised meth-
ods like Principal/Independent Component Analysis (PCA/ICA) or
Sparse Coding (SC). Such observations also occur in different

contexts, e.g. Dasgupta, Sheehan, Stevens, and Navlakha (2018)
showed that (sparse) random projections, combined with dimen-
si