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2 What is MPM
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=» MPM is a recent particle-in-cell method that discretizes material
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domain Q with a set of material points in the initial configuration

throughout deformation.

» Fach material points has internal state variables such as mass, volume,

density, Cauchy stress tensor, velocity etc.



3 Why are we interested in MPM ¢

» To reproduce the wear mechanism observed in atomistic simulations at a

larger scale where material can be described as a continuum.



D) Eulerian vs Lagrangian description
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Figure 1. Eulerian vs Lagrangian description
(Vinh Phu Nguyen, Material Point Method: basics and applications)



Governing Equations

Balance Laws (conservation of mass, conservation of momentum and
conservation of energy)

Constitutive equation

Kinematics equation

Boundary conditions (displacement and traction boundary)



Weak Formulation of Updated
Lagrangian Formulation

» Weak formulation is the way to solve partial differential equations numerically with
inifial and boundary conditions.
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» This weak form equation can be written in terms of virtual work of the internal force,
external force and inertial force.
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Sy virtual displacement P density
ii; acceleration da area element
dv volume element Swimt | virtual work of internal force
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7)) Particle Quadrature
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= For MPM, weak formulation is rewritten in terms of — in order to integrate on
all material points.
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ALGORITHM

= Algorithm divided into 4 main parts:

= 1) Mapping from particles to nodes
= ?) Imposing Boundary condition
» 3) Update momenta

= 4) Mapping from nodes to particles



1) Mapping from particles to nodes

Description Theory Application
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2)

Imposing boundary conditions

Description Theory Application
Impose boundary condition g it =
Impose boundary condition g = pr. =

3) Update the momenta
Description Theory Application

Update grid nodal momentum
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4) Mapping from nodes to particles

Description Theory Application
Update particle velocity based
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12 First Application: Vibration of a single
material on a 1D bar

Young's modulus, E 41 MPa
Length, h 1 cm
Density, p 1 g/cm3
Mass, m, 1 g
Volume, V, 1 cm3

Initial velocity, v, 1 mm/s



xp-time graph for both numerical and analytical solution
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energy-time graph for both numerical solution
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Second Application: Vibration of a confinuum bar
modeled by multiple material points

Property

Young's modulus, E 100 MPa

Length, h 25cm

Density, p 1 g/cm3

Mass, my, e

Volume, V, 1 cm3

Initial velocity, v, V(x,0) = v sin(Bx) mm/s

(B =n/(2L) and v,=1 mm/s)
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energy-time graph for numerical solution
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Wear Mechanism

» The experiment was performed by Brockley and Fleming in 1965 based on
model copper junction experiments to observe metallic wear. Experiment
reveals that a linear relationship exists on wear rate and simulated load
area for series of models plotfting.

adges of
clamping piates

.
-

_+ Geometry of the model junction

thitkPess -t




» Contacting surfaces lead to adhesive wear due to adhesive force
between them. At the end of experiment, it is concluded that all junctions
that are used lead to a wear particle.
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Demonstration of contact surfaces

Critical length scale to generate debiris particles



20 Third Application: Applied shear on a box

Property

Young's modulus, E 128000 MPa

Length of x, y, z direction 25 mm, 25 mm, 1 mm
respectively

Density, p 8.96x103 g/cm3
Mass, m, 9219

Poisson rafio, v 0.3

Applied force 1443 N
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» Eﬂergy plO'l'

energy(109 x J)
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-Transient regime is the case

*Total energy cycles show
oscillations that they are
continuous until boundary
conditions will make it stable if
longer loop time is applied as
assumed.



23 4 Simulation




Conclusion

= No advection term appears in MPM method so it allows easier treatment large

deformation.

» FEasy to implement 1D and with respect to FEM has advantages tested for

complex problems as seen in Tsinghua study.
= Total energy is constant in the system.

= There is no damping in MPM. Thus, it oscillates but boundary conditions make it

stable after a while.



25 Further Study

» To reach precise constant total energy from third application, code could be run for

longer time.

= From the different trials for third example, it was seen that separation of particles include
formation of new surfaces which is fracture at the end. Implementations are required to

obtain undistorted behaviour such as enlarging background grid.

= To get better capture of fracture behavior, implementing different constitutive laws

(plasticity, hardening behavior) would be helpful to understand fracture behaviour where

wear formation occurs.



Conservation of mass gf = J.
Conservation momentum o - V+ pt = prt
Conservation of energy pé=D:o

Constitutive equation &%= ¢%(D,q, ...)

1
Rate of deformation 2 =3+
- T = v
Boundary conditions 477
(n-oclilt=t

Initial conditions  w(x,0) = v, (x)
ulX,0) = u,(X)

p density

o Cauchy stress

A gradient operator

v acceleration

av Jaumann rate

I velocity gradient tensor

determinant of deformation gradient

body force per unit mass acting onthe continuum

change of internal energy per unit mass

rate of deformation tensor

unit normal of traction boundary
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Meumann boundary conditions (displacement boundary)

Dirichlet boundary conditions (traction boundary)




