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Abstract

Metabolism is the sum of the chemical interactions occurring inside a cell that process
nutrients into cellular constituents and energy. Research in the recent decades has enabled
the characterization of metabolic reaction networks for multiple organisms. Genome-scale
models (GEMs) have been utilized to mathematically describe and analyze these networks.
GEMs are stoichiometric models that can serve as basis for studying metabolism and
identifying metabolic states. However, stoichiometric models of metabolism do not account
for the dynamics of the system. An understanding of cellular dynamics and regulation is
essential for metabolic engineering of cells that produce certain metabolites of interest.
Kinetic models can provide invaluable knowledge about system dynamics of cellular
metabolism as metabolic control analysis (MCA) can offer information about the system’s
response to perturbations. Nonetheless, the construction of kinetic models is a challenging
endeavor as several hurdles have to be overcome. Kinetic models of metabolism are subject
to two general issues: diversity of network topologies and underlying uncertainty. Kinetic
models are often built on an ad hoc basis without clear explanation or justification about
their network contents, as there is no systematic protocol for their construction.
Furthermore, kinetic modeling is subject to uncertainty from various sources. Multiple
steady states can characterize an observed physiology. Additionally, the kinetic mechanisms

describing a system and the values of their kinetic parameters are often not known.

In this thesis, we tackle several issues that hinder the formulation of kinetic models. Firstly,
we apply model reduction algorithms to systematically reduce GEMs to construct study-
specific kinetic models of different degrees of complexity. We demonstrate that the MCA
outputs for these kinetic models are mostly independent of the complexity level because we
preserve model equivalency. Secondly, as published kinetic models to date are constructed
around a steady state of metabolism, we analyzed the impact of alternative steady states on
metabolic engineering strategies. We proposed a systematic workflow for deriving
conclusions that take into account the alternative feasible steady states of a physiology. We
concluded that MCA outputs are more sensitive to the metabolite concentrations than to
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the metabolic fluxes of the system. Hence, it is essential to consider alternative metabolic
states for a given physiology. Thirdly, since multiple kinetic models can describe a
physiology due to the given uncertainties, it is important to consider them in populations. In
order to derive conclusions from populations of kinetic models, it is essential to quantify
with what certainty we make such predictions. We tested different statistical methods for
assigning confidence levels to our conclusions and make recommendations applicable to
any kinetic models. Finally, we implemented a sensitivity analysis approach that can
elucidate which input parameters of a kinetic model contribute the most to the uncertainty
in MCA outputs. The approach appears to predict correctly the sources of uncertainty and
can be applied to any large-scale kinetic models. Overall, the work from this thesis
contributes towards establishing a systematic workflow for building more consistent and

comprehensible kinetic models for observed physiologies under uncertainty.

Keywords: metabolism, metabolic engineering, kinetic model, uncertainty, topology, model
complexity, metabolic control analysis (MCA), steady state, multiplicity, confidence level,

sensitivity analysis.



Résumé

Le métabolisme est I'ensemble des interactions chimiques qui se déroulent au sein d’une
cellule pour transformer des nutriments en constituants cellulaires et en énergie. Les
recherches menées au cours des dernieres décennies ont permis de décrire des réseaux de
réactions métaboliques pour plusieurs organismes, et des modeéles a I'échelle du génome
(GEM) ont été utilisés pour analyser ces réseaux et les décrire d’un point de vue
mathématique. Les GEM sont des modeles stoechiométriques qui, s’ils servent de base a
I’étude du métabolisme et a I'identification des états métaboliques, ne rendent pas compte
de la dynamique d’un systeme. Or, une bonne compréhension de la dynamique et de la
régulation cellulaires est indispensable a I'’étude métabolique des cellules produisant des
métabolites dignes d’intérét. Les modeéles cinétiques fournissent en revanche des
informations précieuses sur la dynamique des systémes en métabolisme cellulaire, étant
donné que I'analyse du contréle métabolique (MCA) met en lumiere les réponses d’'un
systeme a des perturbations. Toutefois, la construction de modeéles cinétiques est une
démarche semée d’écueils. Les modeéles cinétiques du métabolisme doivent faire face a
deux obstacles: la diversité des topologies des réseaux et l'incertitude sous-jacente. Les
modeles cinétiques sont souvent construits sur une base ad hoc sans pour autant qu’une
explication claire ou qu’une quelconque justification ne soit fournie quant au contenu de
leur réseau, et sans que leur construction ne soit systématiquement documentée. La
modélisation cinétique est en outre soumise a différentes sources d’incertitude. Plusieurs
états stationnaires sont susceptibles de caractériser la physiologie observée. De plus, les
mécanismes cinétiques qui décrivent un systéme ainsi que les valeurs des parametres

cinétiques concernés demeurent souvent inconnues.

Dans cette thése, nous abordons ces difficultés qui entravent la formulation de modéles

cinétiques. D’abord, nous utilisons des algorithmes de réduction de modeles destinés a

Q-

réduire systématiquement les GEM pour construire des modeéles cinétiques spécifiques
I’étude envisagée et présentant des degrés de complexité différents. Nous démontrons que
les résultats de la MCA pour ces modeles cinétiques sont principalement indépendants du
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niveau de complexité puisque I'équivalence est préservée. Deuxiemement, compte tenu du
fait que les modeles cinétiques actuels sont généralement construits autour d’un état
stationnaire du métabolisme, nous avons analysé son impact sur les conclusions en
considérant les résultats de la MCA. Nous proposons un workflow systématique permettant
de tirer des conclusions qui tiennent compte des états stationnaires possibles pour une
physiologie donnée. Cela nous a permis d’en déduire que les résultats de la MCA sont plus
sensibles aux concentrations de métabolites qu’aux flux métaboliques du systeme, ce qui
signifie qu’il est essentiel de se pencher sur d’autres états métaboliques pour une méme
physiologie. Troisiemement, puisque plusieurs modeéles cinétiques peuvent décrire une
physiologie donnée en raison de la marge d’incertitude évoquée, il est important de les
étudier en populations. Pour que des populations de modeles cinétiques donnent lieu a des
conclusions, il convient de quantifier le degré de certitude de nos prédictions. Nous avons
testé différentes méthodes statistiques pour attribuer un degré de confiance a nos
conclusions et pour émettre des recommandations applicables a n’importe quel modeéle
cinétique. Enfin, nous avons développé une approche fondée sur I'analyse de sensibilité et
capable de distinguer quels parametres d’un modele cinétique créent le plus d’incertitude
dans les résultats de la MCA. Cette approche semble prédire correctement les sources
d’incertitude et peut étre appliquée a n’importe quel modele cinétique a grande échelle. De
maniéere générale, cette these pose les jalons d’'un workflow systématique permettant de
créer des modeles cinétiques plus cohérents et compréhensibles pour les physiologies

observées en conditions d’incertitude.

Mots-clés: métabolisme, ingénierie métabolique, modele cinétique, incertitude, topologie,
complexité des modeles, analyse du contréle métabolique (MCA), états stationnaires,

multiplicité, degré de confiance, analyse de sensibilité.



Table of Contents

AcCKNOWIEAZEMENTS ....iiiiieeiiiiiiiiiiiiiiiiiirrrenin s rrrsassss s s s e essessssssneesssssssssssnnnsssssssnns 3
Y <1 4 Vot 5
RESUME ....uiiiiiiiieiiiiiiiiiiiiiiiniieresesisssnnesaesssssrssnssssssstnnsssssssssssssssssssssssssnssssssssssssnsssssssssnnnns 7
(L o] T BT LSRN 13
List Of tables ..cceuuuriiiiiiiiiciiiiirricnnn s s s s s s s s e ne 19
List of abbreviations .........ccoiiviieiiiiiiiiiiiiiiiiiinr s 21
2T Yol (4= TU T3V« [N SRS 23
1.1. Mathematical modeling in metabolic engineering .......ccccceciririiiiiniiiiieiiiieeenienenan. 24
1.1.1. Constraint-based MOAEIING .......ccuveiieeiiie e e 24
1.1.2. KiNetic MOAEIING. ... e e e e e e e e s rr e e e e e e e e e eeas 26

1.2. Towards consistent large-scale kinetic models of metabolism ..........ccccccerrenannnnnene. 27
1.3. Thesis OULIING .....coiiiiiiiiiiiiiiiiiiirrrr s ssses s s s s s s anassssssssennnnes 32
1.4. Articles included in this thesis.........cccceveiiiiiiiiinniiiiiiiinnc e, 32

2. The effects of model complexity and size on metabolic flux distribution and control ... 33

25 W 14 o o 110 4 o Yo TPt 33
2.2. Results and diSCUSSION .....cccuiiieeiiiiieiiiiieniiiitniiiiinieiinsierieniesissiesienssssssnssssssnnsnns 35
2.2.1. Reduced E.cOli MOEIS.......cuueiiiiieieeee e 35
2.2.2. Thermodynamic-based variability analysis .......cccccoovriiiiiiieie e, 38
2.2.3. Model @QUIVAIENCY ccoveeiiee e 39
2.2.3.1. SCaling UP StEAAY-STAtES ...uuviriiiiiie ittt et e e e e e e e e e e e e st b r e e e e e e e e e e e snrrareeeeas 39
2.2.3.2. Equivalence in KinetiC Parameters ........couiiiieiiiiieeeneee ettt e e ee e s 42
2.2.4. Consistency in MCA across MOUEIS .....uuuueueiiiiiiieieeeeieeeeeeereriririrrere e e e e eeeeeeeeens 42
2.2.4.1. Ranking enzymes for fluX CONTIOL ........oiiiiiiiiieecee et et e 42
2.2.4.2. MCA consistency across reduced MOAeIS.......ccuuuiiiiiieiiiiiiiiiieee et earre e e e e e 44
2.2.4.3. Study of UNCErtainty in IMCA ........oii ittt e e e e ae e st e e e etr e e e esraeesabeeeeensnsraeeenses 48

P20 R 0o T3 Vol 1113 T 4 OO 50
2.4. Materials and methods..........cciiiiiieiiiiiiiiiir s sessssssaenns 52



P9 Y, o Yo L= I g =T LU ot f (o] o FOURTT PP TPRROTRTTN 53

2.4.2. Flux directionality assumMpPtionsS.........ceeeeieeiiiiiie e 54
2.4.3. ThermodynamicC @nalysSiS......ccccciuriiiiiiiieieee e e e e e e e e e e e e e e eneaeeaeeeees 55
2.4.4. Maximum equivalency between steady-states.........ccccveeeeeieeiiiiiie e, 55
2.4.5. Constructing kinetic Models.........uueiieeieiiiii e 56
2.4.6. Control coefficient deviation iNAeX ........cccueeiiiiiiiiiiiiiniiiee e 57
2.5, APPENIX A....eeiiiecirieeiciieierrenee s reneeesenasesrenssessenasesennssrennssesesnsseseenssssenssasaananans 58

3. Kinetic models of metabolism that consider alternative steady-state solutions of

intracellular fluxes and concentrations.......cccccoiieeiiiiiiiiiiiciciiercre e seseenes 61
25 I 1 4 o Yo 11T 4 o Yo TSRt 61
3.2. Results and diSCUSSION .....ccc.iiiieiiiiiieiiiiiiiiierenreneiereneeeresasesssnssessensssssensssssenannns 63

3.2.1. Multiplicity of flux directionality profiles .........cccooeeieiccciiee e, 64
3.2.2. Comparative analysis of alternative flux directionality profiles..........cccceeeunnnnnis 67
3.2.2.1. Reference steady states (RSSS) Of FDPS.......cccoiiiiiiiiiiieeecieeeeeite e et e e et e e evae e e sataeeeearee e e s eenneas 67
3.2.2.2. Analysis Of CONTIOl PAtLEINS.....cciiii i e e e et r e e e e e e e s e e e s eararaeeeas 71
3.2.2.3. Ranking target enzymes for fluX CONTrol ........cccuiiiiiiiiii i e e 72
3.2.2.4. Study Of UNCEITAINTY iN FCCS..uiiiiiiiiiiiiiieeee e e et e e e e e r e e e e s e e s bt e r e e e e e e e s e e seasaennaeeas 74
3.2.3. Impact of flux and concentration profiles.........cccoeoviiiieeiiiiiiie e, 76
3.2.3.1. Flux uncertainty propagation t0 CONTIol ........ccccuviiiiieiiiiiiireee e e e reee s 77
3.2.3.2. Concentration uncertainty propagation to CoONtrol.........ccccvvveeiiiiiiiiiiieee e 78
3 0 0o T Lol 1T oo TN PRt 80
3.4. Materials and methods.........c.cciiiiiiiiiiiciiiiire e srenesssesessssennsans 81
3.4.1. Reduced E. €Oli MOAEI ...ccciiiiiie et e e e e e e e e e 81
3.4.2. Identification of alternative flux directionality profiles..........ccccceeeivieiiiiiiinennnns 82
3.4.3. Computation of reference and extreme steady states for alternative FDPs......... 82
3.4.4. Analysis of alternative solutions between FDPs...........ccooieiiiieeeecciieee e, 83
3.4.4.1. Thermodynamic displacement @nalysiS.....c..ccoeccuuiiiiiieiiiiiiiiie e eee s 83
3.4.4.2. Kinetic parameter SAMPIING ....eeii it e e e e e e e s e e saebareeeeeeesns sennnereeeeas 85
3.4.4.3. General statistics 0N FCCS @CroSs FDPS........uiiiiiiiiieiiieee ettt e st e s e e e s 85
3.4.5. Characterizing the distribution of kinetic parameters ........ccccccvvveeiieiiiiicccinnnnnee. 86
3.4.5.1. Beta diStriDULIONS ..ceioeiieiiiiiieeeiiee ettt et st e e s e e s e e s satr e e e snabeeesenbree e saneeas 86
3.4.5.2. Implying prior beta distributions for SAMPIiNG .......coccvviriiiriiiin e 87

10



3.4.6. Analysis of alternative solutions within FDPs...........cccccciiiiiiiieieeeeee e, 87

3.4.7. Metabolic Engineering and Synthetic Biology Design ........cccceeeeeeeeeeerieeicccninineee, 88
T Y o T o L= 4 T - Y 88
4, Statistical inference in ensemble modeling of cellular metabolism........ccccccccerrrvennnnnnnns 89
0 T 14 Yo [T 4o T o 89
4.2. Results and diSCUSSION .....ccceiiiiiiiiiiiiiiiiieenie e s 92
4.2.1. Kinetic model derivation ..........cooouiiiiiiiiiiiee e 92
4.2.2. Uncertainty in flux control coefficients........ccceeeeveeeiiiiiii e, 94
4.2.3. Confidence INTEIVAlS....cccuiiiiieece e e 94
4.2.4. Case study: mean difference confidence intervals ..........cooccoiiiiiieeee e, 97
e TR 0o T 1] 1] o o N 100
4.4. Materials and methods..........ccooiiiiiiiiiiiiiiiiiiiiii e, 101
4.4.1. MOdel redUCTION...co.iiiiiiiie e 101
4.4.2. Kinetic parameter SAMPlING ....ooeeeee i 101
4.4.3. Simultaneous Cls for variable significance ........ccccvvveveeeieeii e, 102
4.4.3.1. Univariate and Simultan@ous Cl.........ccocveiiiiiiiiiiniieiieeniee et 102
4.4.3.2. Bonferroni’s simultaneous confidence interval (BCl) .......cccoveeeiiiieeiiiieeeeiiee e eeivee e sieee e 102
4.4.3.3. The eXaCt NOIMAl (ENCI) ..eiiiiiiee ettt e s te e e et e e e eeatv e e e e ataaeeetbeeesensssaaeeeensanens 103
4.4.3.4. Bootstrapped simultaneous Cl (BOOTCI) ......cuueeeeiiiiiieeciiee e ciree e et e eetre e stree e e sire e seavae e e sraeae e as 103
4.4.4. Confidence intervals for comparison of cases.........cccovveveieciiiieeeccccieeee e, 104
4.4.5. Sample $ize CalCUIAtioN .....ceeeeiiiiiii e 104

L BTN oY o 1= o e [ G OO 105

5. Global sensitivity analysis of control coefficients derived with metabolic control analysis

...................................................................................................................................... 107
L0 T 141 o o 11 o1 4o 107
5.2. Results and DiSCUSSIONS .......iiiiiimmuniiiiiiimmmniiiiiiiimmuiiiiiiiemmiimmmmimmms. 109

5.2.1. KINEIC MOAEI ...eeiieiiieiiiee et s 110
5.2.2. Uncertainty from the pentose phosphate pathway.......ccccccevvvvreeeeeeiieeiiiiininennn, 111
5.2.2.1. Computation of sensitivity iINAICES ....c.ueiiiiiiiieeccie e e eare e e sere e e e 112
5.2.2.2. Kinetic Model tighTENING ......uviiiiiiii e e e e e e e e e e e e nrrenees 114
5.2.2.3. Application and ValidatioNn ..o s e 115



5.2.3. Future opportunities and limitations .......ccccceeeeiiiii e, 117

LR JR 0o o ol ¥ o T o LN 119
5.4. Materials and methods...........ccccoiiiiiiiiiiiiiiiiiiinii e, 119
5.4.1. MCA, sampling saturations .........ccccoiiiiiiiiiiiiec e e e e e e e e 119
5.4.2. GSA, calculating sensitivity iINdiCES.......uuuuiiiieiiiiiieiiie e, 121

TSIV o] o =14 Lo 13T 0 2O PTOP 122
6. Conclusions and future PerspPectives.....cccccciieciciieeiiiiesiciieiieriesesrensereenssessenssessennes 125
R I 0o o ol o T o LN 125
6.2. FUTUre PersPeCtiVeS ...cicuiiiieiiieiiieiiiiiiiieniieeeienieineieieessiasissssissnsssensssssssssnssssnssrannes 130
6.2.1. Personalized MediCine ...........cooiiiiiiiiiiiiiiie e 131
6.2.2. Targeted metabolic engineering strategies.....cccccceeeeiiee e, 132
6.2.3. Models combining metabolism with signaling...........ccoooeoiiiiiiiiiiiee e, 133

(231 o [T T4 =T o] 1 |V POt 135

12



List of figures

Figure 2. 1. E.coli network diagram illustrating the core topologies studied for D1, D2 and
D3. Edges represent the metabolic reactions and the nodes correspond to the metabolites.
The reactions (edges) and metabolites (nodes) are coloured according to their pertinence to
D1, D2 and D3, in blue, red and green, respectively. The reaction labels are coloured in black
when the reaction is unidirectional. The bidirectional reactions’ labels are coloured if the
reaction can operate in both forward and backward directions in D1, D2 or D3 in blue, red
and green, respectively. The reactions that are bidirectional in a smaller model were also
bidirectional in the larger model(s), as it is an expansion around the same core. Diagram
does not include all the reactions of the systems. ..o, 36
Figure 2. 2. Metabolites connecting subsystems and the number of pairwise connections
they achieve. Central carbon metabolites that change in connectivity (A) between D1 and
D2, and (B) between D2 and D3. .....eeeiiiiiiiiiiiieiiiiiitiiiireeeee et e et eessessbbar e e e e e e e e e e sesnnaanes 38
Figure 2. 3. lllustration and analysis of core metabolism connections to biomass building
blocks via lumped reactions. The schematic representation (A) of the studied metabolic
networks where the edges are reactions and the nodes are metabolites. The blue edges and
nodes belong to the core network of D1. The red edges and nodes correspond to additions
from the D2 expansion. The dashed arrows are lumped reactions of the system, connecting
the core to the biomass, where: black represents lumped reactions that are present in all
the models, blue is for lumped reactions existing only prior to the expansion in D1 and red is
for lumped reactions existing only after network expansion in D2. Biomass building blocks
(BBBs) are represented by the green ovals. The black solid arrows indicate fluxomics data
that were integrated for optimally grown E.coli [61]. Venn diagrams highlight differences in
the lumped reactions of D1, D2 and D3 in terms of (B) subnetworks and in terms of (C)
=T Lot o o 13O PP PPOPPT 41
Figure 2. 4. Cellular growth (u) control across models. Pairwise illustration of the union of
the top 7 enzymes across the models in terms of absolute control over cellular growth for
(A) D1 versus D2, and (B) D2 versus D3. The whiskers give the upper and lower quartiles of
the FCC populations and the bars give the Means. ........cccccevvieieeciiiiiiieeeeeee e 43
13



Figure 2. 5. E.coli network diagram illustrating the deviation index (DI) of reactions when
scaling up from D1 to D2. The reactions added by the modular redGEM expansion from D1
to D2 are given in blue and the 271 enzymatic reactions in common between D1 and D2 are
color-coded based on the DI. The reactions were categorized into low DI (0-25 percentile),
medium DI (25-75 percentile) and high DI (75-100 percentile), and are given in dark green,

light green and red, respectively. Diagram does not include all the reactions of the systems.

Figure 2. 6. E.coli network diagram illustrating the deviation index (DI) of reactions when
scaling up from D2 to D3. The reactions added by the modular redGEM expansion from D2
to D3 are given in blue and the 307 enzymatic reactions in common between D2 and D3 are
color-coded based on the DI. The reactions were categorized into low DI (0-25 percentile),
medium DI (25-75 percentile) and high DI (75-100 percentile), and are given in dark green,

light green and red, respectively. Diagram does not include all the reactions of the systems.

Figure 2. 7. Comparison of flux and absolute deviations in FCCs for glycolytic reactions for
(A) D1 versus D2, and (B) D2 versus D3. The absolute deviations computed per subsystem
correspond to the sum of the absolute deviations in FCCs of reaction i with respect to all
enzymes of the subsystem j. The reactions contained in a subsystem are as defined in the
original GEM that was reduced [77]. The flux values shown did not deviate by more than 1%
between Pairs Of MOEIS. ....ccc.uiiiiie e s e e e aare e e e e e snneas 49
Figure 2. 8. Comparison of flux and absolute deviations in FCCs for PPP reactions for (A) D1
versus D2, and (B) D2 versus D3. The absolute deviations computed per subsystem
correspond to the sum of the absolute deviations in FCCs of reaction i with respect to all
enzymes of subsystem j. The reactions contained in a subsystem are as defined in the
original GEM that was reduced [77]. The flux values shown did not deviate by more than 1%
between Pairs OFf MOEIS. ... e e e e e e e e e s eeannes 50
Figure 2. 9. Workflow for building consistent reduced kinetic models. The various steps are
discussed with further detail within the chapter. ..o, 53

Figure 2. 10. Derivation of the deviation index (DI) from the summation theorem. ............ 58

14



Figure 3. 1. Procedure for characterizing and analyzing multiplicities in metabolic networks.
The procedure consists of several computational steps wherein the available data are
integrated, the alternative solutions are identified, the populations of non-linear models are
built, and the output variables are analyzed to make robust conclusions (for details see main
110 4 ) PR 64
Figure 3. 2. Multiple operational configurations for the same observed physiology of
aerobically grown E. coli. (A) Representation of E. coli network. The fluxomics data that were
integrated are indicated as uptake, secretion and growth rates. The bidirectional reactions
are colored: phosphoglucose isomerase, (PGl, magenta) and fumarase, (FUM, red). (B)
Representation of the four FDPs for the physiology under study. (C) Flux and
thermodynamic displacement distributions of PGl and FUM reactions for each of the four
generated FDPs. The boxplots show distributions for 5,000 samples. The central red line
indicates the median, and the bottom and top edges of the box indicate the 25" and 75™
percentiles, respectively. The whiskers correspond to approximately + 2.7, which is the
standard deviation, or 99.3% coverage if the data are normally distributed. Outliers are the
points not covered by the range of the whiskers and are plotted individually using
the '+' symbol. The black diamond is the RSS value. Full metabolite names are given in
supplementary materials (APPENAIX BL). ....uuieiiiiiiiiiiee e e et e e eerre e e e e e 66
Figure 3. 3. Optimally grown aerobic E. coli metabolic network. Each of the 10 reactions
labeled in red has an associated graph with the respective flux and thermodynamic
displacement distributions for each FDP. The boxplots show distributions for 5,000 samples.
The central red line indicates the median, and the bottom and top edges of the box indicate
the 25" and 75™ percentiles, respectively. The whiskers correspond to approximately t 2.7,
the standard deviation, or 99.3% coverage if the data are normally distributed. Outliers are
the points not covered by the range of the whiskers and are plotted individually using
the '+' symbol. The black diamond is the RSS value. Full enzyme and metabolite names are
given in supplementary materials (APPeNndiX BL).......cccovciiiiieeiiiiiiiieeeesieee et 69
Figure 3. 4. Cluster analysis of thermodynamic displacements across FDPs. Heat map
showing thermodynamic displacements of the reactions across each FDP. Reactions differed
the most in thermodynamic displacement across FDPs based on categorization of
displacements (Methods). The rows represent the similarity between reactions and the
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columns represent the similarity between FDPs. The distances between the dendrograms
were computed based on the Euclidean distance between the thermodynamic
displacements, both column- and row-wise. Full enzyme names are given in supplementary
Materials (APPENAIX BL). ..ooii ettt e e e et re e e e e e eta e e e e e e s araeeeeeeeasaeeeeeenannans 70
Figure 3. 5. General statistics on FCCs across FDPs. Histogram displaying the fraction of
reactions that have FCCs with a certain sign pattern across the FDPs. There are three main
categories of the FCCs: (i) consistent among all FDPs, (ii) FDP specific, and (iii) two FDPs
contradicting two other FDPs. The FCCs were averaged over the 50,000 samples for each
FDP, and the ones selected for analysis had a mean absolute value larger than 0.1 (10% fold
change). For example, to assist reading the figure, the column “FDP 1 specific” has two
possible scenarios as it contains FCCs that are positive in FDP1 and negative in the other
three FDPs as well as FCCs that are negative in FDP1 and positive in the three other FDPs. 72
Figure 3. 6. Flux control across FDPs for cellular growth, u. lllustration of the union of the
top five enzymes across the FDPs in terms of absolute control over cellular growth. The
whiskers correspond to the upper and lower quartiles of the 50,000 FCC populations, and
the bars correspond to the means. Full enzyme names are given in supplementary materials
7AYo T=T T D = 3 ) U 74
Figure 3. 7. Principal component analysis (PCA) of FCCs of cellular growth across FDPs. PCA
was carried out on the cellular growth FCCs of the 50,000 samples for each FDP. Only
cellular growth FCCs with respect to non-transporter and non-exporter reactions were
considered. The two principal components, namely PC1 and PC2, were plotted to study the
variance in the FCC samples. The values in brackets correspond to the variance covered by
the principal components (PCs). Full enzyme names are given in supplementary materials
AN T o =T Vo ) = ) SRR 76
Figure 3. 8. Flux control patterns across extreme steady-state solutions. lllustration of the
union between the top 10 enzymes across the (A) flux and the (B) concentration ESSs in
terms of absolute control over glucose uptake. FCCs were sorted in decreasing order of
absolute magnitude of the RSSs (reference). The enzyme names in black indicate that the
FCCs were sign-consistent (in agreement) and red if they were sign-inconsistent (in

opposition). Full enzyme names are given in supplementary materials (Appendix B1). ....... 79
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Figure 4. 1. Schematic diagram of workflow carried out in the study. Information about key
STEPS OFf Tthe WOIKFIOW. .cccieeiiiie e e e e ee s 91
Figure 4. 2. E.coli network diagram illustrating the core topology studied. Diagram does not
include all the reactions of the systems. Full reaction and metabolite names are given in the
supplementary (APPENIX BL)...cccouuiiiieieciiiiee ettt e e e e e e e sarr e e e e e e eaar e e e e e e enaaeeaaeas 93
Figure 4. 3. Top control coefficients for glucose transport (GLCptspp). The diamonds indicate
the mean of the FCCs in decreasing order of absolute mean. Cls were derived using (A)
univariate t-test, (B) Bonferroni, (C) exact normal and (D) bootstrapping (see Materials and
Methods). The lower and upper whiskers correspond to the Cls. The Cl is blue if it contains
210 and, red if it OBS NOL. ...oiiieiee et e e e e e e e e 95
Figure 4. 4. Top flux control coefficients of glucose uptake (GLCptspp) with confidence
intervals determined by different statistical approaches. The top 10 FCCs based on absolute
mean are reported with diamonds. The whiskers indicate the Cls for univariate t-test
(magenta), Bonferroni (blue), exact normal (red) and bootstrapping (black). The reader is
referred to the Materials and Methods for technical details on Cl computation................... 926
Figure 4. 5. Case study: differences of means using bootstrapping. Comparison of the
differences in means of 15 FCCs for GLCptspp across 4 cases using the bootstrapping
method (see Materials and Methods). The whiskers indicate the Cls and the diamonds
report the estimates of the differences in means. The tests were carried out globally on the

90 estimates even though we report each case comparison as a separate plot. .................. 99

Figure 5. 1. Global sensitivity analysis workflow for characterizing sources of variability in
large-scale kinetic models. Diagram providing details of the various steps required for the

characterization of parameters responsible for variance in kinetic models and their outputs.

Figure 5. 2. E.coli network diagram illustrating the reactions of the kinetic model. The
reactions indicated in red correspond to the PPP reactions whose uncertainty we studied
using variance-based global sensitivity analysis. Diagram does not include all the reactions of
11 0 (=R A] 1] 4 TR U UUPRRRRRRRIRt 111
Figure 5. 3. Sobol sensitivity indices for flux control coefficient with respect to PPP enzymes’

saturation levels. Sobol sensitivity indices for St (green) and Si (yellow) of PPP enzymes for
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(A) glucose uptake control coefficient with respect to glucose-6-phosphate dehydrogenase 2
(G6PDH2r) and (B) pyruvate transporter control coefficient with respect to ribulose-
phosphate 3-epimerase (RPE). Enzyme saturation levels were sampled uniformly between 0
and 1. The 200’000 samples were split into three groups, and the mean and the standard
deviation were calculated based on these. The whiskers indicate the standard deviation and
the bars report the MEAN. ... e e e e e e e e e e e e e e eeas 113
Figure 5. 4. Sobol sensitivity indices for flux control coefficient with respect to PPP enzymes’
saturation levels. Sobol sensitivity indices for St (green) and Si (yellow) of PPP enzymes for
(A) glucose uptake control coefficient with respect to glucose-6-phosphate dehydrogenase 2
(G6PDH2r) and (B) pyruvate transporter control coefficient with respect to ribulose-
phosphate 3-epimerase (RPE). Enzyme saturation levels were sampled uniformly between 0
and 1 for the PPP-reactions. The non-PPP reactions’ saturation ranges were anchored to
10% around mid saturation levels determined from the mean value taken over a previous
population of kinetic models (further explanations in the main text). The 350’000 samples
were split into three groups, and the mean and the standard deviation were calculated

based on these. The whiskers indicate the standard deviation and the bars report the mean.

Figure 5. 5. Sobol sensitivity indices for flux control coefficient with respect to PPP enzymes’
saturation levels. Sobol sensitivity indices for St (green) and Si (yellow) of PPP enzymes for
ethanol transporter (ETOHtrpp) with respect to transketolase (TKT1). Enzyme saturation
levels were sampled uniformly between 0 and 1 for the PPP-reactions. The non-PPP
reactions’ saturation ranges were anchored to 10% around mid saturation levels
determined from the mean value taken over a previous population of kinetic models
(further explanations in the main text). The 350’000 samples were split into three groups,
and the mean and the standard deviation were calculated based on these. The whiskers

indicate the standard deviation and the bars report the mean. .........covvviiiiiiiciiiiieneeeeeennn, 116

Figure 6. 1. Workflow for constructing consistent kinetic models of metabolism............... 129
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1. Background

Metabolism is the set of the biochemical reactions that occur inside all the cells of a living
organism to transform nutrients into energy and organic materials in order to sustain life.
Living organisms can also be utilized to produce certain metabolites of interest. In fact, one
of the oldest examples dates back several millenniums with the usage of yeast for the
manufacturing of alcoholic beverages. In this light, recent advances in biotechnology are
enabling the construction of cell factories that utilize - mainly bacteria, yeast and plants - to
produce certain specific materials of interest. The construction of cell factories relies on
metabolic engineering, which is the use of genome editing to modify the metabolism of
living organisms. Hence, understanding how metabolism is influenced by environmental
factors and genetics is indispensable for performing metabolic engineering. Moreover,
information about the enzymes that are rate-limiting or that have the highest impact on the

phenotype of interest is quintessential to achieve certain metabolic engineering objective.

Biotechnological developments have facilitated DNA sequencing for multiple organisms and
allowed researchers to connect genotype to phenotype. Indeed, annotation of the genome
with metabolic functions elucidates the interconnectivity of the metabolites involved in the
biological system. A stoichiometric matrix can mathematically represent the identified
biochemical reactions occurring inside a cell. These stoichiometric matrices can serve as
invaluable scaffolds for constructing dynamic models of metabolism that shed light onto the
rate-limiting processes within a cell by unraveling regulatory properties of cellular
metabolism. Understanding the complex regulatory mechanism of metabolism within cells
could open up new avenues to metabolic engineers in the design of cell factories. In this
thesis, we explore how mathematical modeling can provide information about regulatory
characteristics of metabolism in living organisms and thus help in formulating metabolic

engineering strategies.
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1.1. Mathematical modeling in metabolic engineering

1.1.1. Constraint-based modeling

As increasing numbers of stoichiometric representations of the biochemical reactions
occurring inside living entities and high-dimensional experimental data sets are becoming
more abundant, more sophisticated methods for analyzing these are required. Constraint-
based modeling has surfaced as the predominant approach for studying genome-scale
metabolic networks. These networks are based on annotated genomes and experimental
literature to integrate the known cellular biochemistry into stoichiometric matrices [1, 2].
Constraint-based methods can incorporate additional data into these mathematical
representations with various formulations [3]. The models that encapsulate available data

from different sources can then be used for physiological studies of an organism.

Flux balance analysis (FBA) [4-6] has been used extensively to study stoichiometric models
of metabolic networks. FBA uses the stoichiometric matrix that describes metabolic
reactions and a set of linear programming constraints to predict fluxes across reactions
throughout the network. Consequently, a FBA model is constrained by both the mass
balance by reaction stoichiometry and the constraints that can be imposed on fluxes in the
form of inequalities. In FBA, tasks that the network has to perform to represent the
physiology of the system are defined as objective functions or constraints and can be
defined in different ways [7]. There are no explicit definitions of these tasks for all cells and
physiologies but generally, maximization of biomass production has been presumed as one
main objective in normally developing organisms [4, 6]. FBA problems are solved using
simple linear problem algorithms to obtain flux distributions. The flux distributions give the
possible fluxes through the reactions of a physiology based on the mass balances and the
inequalities that constitute an underdetermined system [8, 9]. With the increased
availability of omics data, efforts in constraint-based modeling have been made to further

incorporate different types of data into models and thus reduce the flux ranges.

Several methodologies for incorporating thermodynamic constraints into models have been
proposed [10-15]. Ataman and Hatzimanikatis reviewed these alternative methods and

concluded that thermodynamic-based flux analysis (TFA), also known as Thermodynamics-
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based flux balance analysis (TFBA), provides the most complete formulation that
incorporates the least possible bias on reaction directionalities into systems [16]. TFA uses a
mixed-integer linear programming (MILP) formulation to integrate information about the
second law of thermodynamics by estimating Gibbs free energy of reaction [17, 18]. The TFA
constraints can be used to compute concentration ranges of metabolites within the
predefined bounds and to include experimental metabolite concentration measurements
into the model [13]. As the TFA problem still remains underdetermined, there is a solution
space of metabolic states that can be sampled to gather study-specific populations of

thermodynamically feasible steady-states [8, 9].

Further efforts have been made to integrate various types of data into metabolic models in
order to improve their predictive capability. Certain studies have successfully incorporated
gene expression data into constraint-based models in order to relate metabolic flux with
gene expression levels [19-21]. More recent studies are further integrating proteomics data
into such models in order to link gene and protein expression directly to metabolic flux [22-
24]. Another alternative to these approaches has been proposed to constrain flux so that it
does not exceed allowable maximum defined by a reaction’s enzymatic properties [25]. It
should be noted that these approaches neglect the physicochemical constraints that laws of
thermodynamics define. Hence, TFA remains the most comprehensive constrain-based
method to date for making metabolic steady-state predictions for phenotype without
violating thermodynamics or introducing excessive bias about reaction directionalities [16].
These constraint-based models rely on the quasi-steady state assumption, which assumes
that there is no accumulation of metabolites in the system. Yet, with these approaches, it is

difficult to quantify the extent to which system perturbations affect metabolic outputs [26].

Work has been carried out to utilize FBA for studying system perturbations/dynamics. An
iterative FBA formalism [4] was initially developed by Varma and Palsson to predict changes
in metabolic pathway utilization upon cell culture environment modifications and has been
applied to further study diauxic growth in E.coli [27]. The FBA problem is solved in multiple
specific time instants in order to model dynamic change in cellular state. This approach can
successfully predict transitions in cellular metabolic states but it does not account for the
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time taken by regulatory changes that have to occur at genetic and enzymatic levels to
facilitate these changes [4]. Several recent developments [28-30] integrate various types of
omics data into iterative FBA formalisms to examine dynamic cellular behavior in genome-
scale models. However, these methodologies have been studied and compared previously,
and it appears that these approaches may not adequately account for complex dynamic
cellular behavior [31]. Information about cellular kinetics is necessary for mechanistically
describing the impact of perturbations in enzyme levels and/or in metabolite concentrations
on the system. Understanding how a cell regulates itself and responds to perturbations in its
environment is crucial for the development of biofuels, petrochemicals, pharmaceutical

products and specialty chemicals of interest.

1.1.2. Kinetic modeling

In metabolic engineering, we frequently attempt to increase specific target productivity by
finding rate liming steps of a system and/or developing de novo pathways. Such studies
enable the design of cell factories that produce desired target chemicals in novel and more
efficient manners [32, 33]. Hence, kinetic models are essential for understanding the
underlying dynamics of biological systems and for providing guidance in designing cell
factories. In recent years, constraint-based modeling has been supplemented with attempts
to integrate kinetic information into models to analyze metabolism and its regulation more
comprehensively. Models incorporating kinetics should be able to assess, in theory, how

modifying the activities of molecular components affect the performance of the cell.

Kacser and Burns suggested to use control coefficients to quantitatively describe a
metabolic network’s response to imposed perturbations [34]. In this light, metabolic control
analysis (MCA) has surfaced as a tool facilitating the study of cellular regulation [34, 35].
MCA quantifies the extent to which reactions of a metabolic network affect and control
fluxes and metabolic concentrations at a steady state [36]. As MCA is a local sensitivity
analysis tool, the technique can only be applied to estimate impacts of small perturbations
to biological systems [37]. Nevertheless, MCA is a well established method and has been
successfully applied in the field of metabolic engineering, synthetic biology and disease

treatment [38-42]. Furthermore, MCA does not require the evaluation of dynamic non-
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linear kinetic model integrals, making it computationally tractable when having to consider

multiple alternative kinetic models.

As kinetic parameter data and knowledge about cell regulatory mechanisms are still scarcely
available, constructing large-scale kinetic models is a demanding endeavor [43]. The
uncertainty in the regulatory mechanisms and in the values of kinetic parameters results in
the existence of multiple viable kinetic models, describing the same observed physiology
[33]. Ensemble modeling (EM) [44-47] and Optimization and Risk Analysis of Complex Living
Entities (ORACLE) [48-53] propose workflows for sampling the kinetic parameter space and
for constructing populations of large-scale kinetic models around a given steady-state. The
EM approach uses experimental data to prune the populations of kinetic models in order to
find a unique dynamic model that describe cellular behavior. ORACLE constructs populations
of kinetic models, where nonlinear mechanistic rate laws describe reaction kinetics, and
their algebraic system of equations is solved to compute model parameters. No bias is
imposed as the entire populations of viable kinetic models are considered. Additionally,
ORACLE readily computes the MCA sensitivity coefficients for populations of kinetic models.
These properties and the efficient sampling of kinetic parameters make ORACLE more
suitable for building large-scale and genome-scale kinetic models [54, 55]. Despite these
considerable advances in frameworks for building kinetic models of metabolism, several
issues such as bringing models to larger scale and, description and consideration of

uncertainty are hindering the advancement of large-scale kinetic models.

1.2. Towards consistent large-scale kinetic models of metabolism

Metabolic network models found in literature vary significantly in terms of form and size
depending on the purpose of different studies. Researchers use smaller ad hoc models that
capture the essential biological features of the system and decrease computational costs.
However, the trade-off between simplification and consistency remains a pertinent issue in
computational modeling [33]. For instance, Teusink and colleagues built a reduced kinetic
model of Saccharomyces cerevisiae but their initial model did not converge to the

experimentally observed state. They added branches to the network in order to reach the
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evidenced steady state [56]. The paper suggests that kinetic models can be curated in order
to mirror experimentally observed in vivo phenomena but the model reduction process
follows an ad hoc approach. Some reduced models focus on certain pathways and sub-
systems instead of capturing genome-scale model features. Chassagnole and co-workers
produced a dynamic model of central carbon pathway for Escherichia coli and applied MCA
principles for studies. They compared simulations with experimental observations, which
gave credibility to their simulations [39]. However, like the model from Teusink and team,
the reduction is ad hoc and does not include a biomass reaction to simulate growth
requirements [39, 56]. While these models have provided useful insights, they were neither

thermodynamically consistent, nor stoichiometrically balanced.

The largest published kinetic model to date is the k-ecoli457 genome-scale Escherichia coli
model that was developed by Khodayari and Maranas [45]. Their modeling approach
removes reactions that do not carry any flux under the experimentally observed
physiological conditions and they then use a simplified biomass equation to model cellular
building blocks’ biosynthesis. This strategy works for querying/predicting properties of the
modeled physiology but, the approach for simplifying the cellular biosynthesis function is
physiology-specific and cannot be directly applied to other observed physiologies. Several
methods have been proposed for reducing the complexity of metabolic networks in a
systematic way [57-59]. To circumvent issues arising from case-specific model
simplifications and ad hoc model reductions, Ataman and colleagues have developed
algorithms, redGEM and lumpGEM, that reduce genome scale models systematically [57,
58]. The methods ensure that the reduced stoichiometric model is consistent with its
genome-scale counterpart in terms of flux profiles, metabolic concentrations, Gibb’s free
energy and the stoichiometry of biomass [57, 58]. This approach provides promising
opportunities for reducing the complexity of genome-scale models in order to build kinetic

models that are more tractable and context-specific.

But to what extent do model complexity reductions change our conclusions on the cell
behavior? Palsson and Lee have studied model complexity and its impact on the predictions

of their kinetic models [60]. Their study suggested that model complexity highly affects
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numerical values of the MCA-derived sensitivity coefficients. However, they did not apply a
systematic model reduction method. Sensitivity coefficients can be used to compare how
the topology of the model impacts the regulatory properties of the network. Hence, these
MCA sensitivity coefficients can serve as quantifiable outputs of kinetic model for measuring
how network complexity affects model predictions. In Chapter 2, a workflow for building
consistently reduced kinetic models around a steady-state that characterizes the system is
suggested. The workflow applies redGEM and lumpGEM algorithms to build study-specific
stoichiometric models of different complexity levels [57, 58]. A procedure for scaling up the
steady-states between these modular models of different complexity is proposed. Additions
to the ORACLE workflow were made to construct populations of kinetic models around the
steady-states of the reduced stoichiometric models, whilst ensuring parametric equivalency
between the populations. The proposed workflow allowed the construction of populations
of study-specific kinetic models that shed light into the effect of model complexity on MCA

outputs.

A combination of model reduction algorithms, constraint-based methods and experimental
data can be used to construct more comprehensive kinetic models of metabolism. Despite
these important advances, biological systems remain highly underdetermined and there are
numerous possible steady-states that could characterize a physiology. These systems are
usually continuous and discrete at the same time, resulting in complex and high-
dimensional solution spaces. The modeled physiology of optimally grown E.coli [61] could
not be uniquely defined and multiple flux distributions describe the system as some
reactions are bidirectional [62]. Bidirectional reactions are reversible reactions that can
operate in both forward and backward directions when applying the thermodynamics-based
constraints of the network and any other imposed constraints [14]. However, in a flux
directionality profile (FDP), reactions can only operate in a unique direction. Consequently,
models of metabolism can have numerous possible FDPs, resulting in multiple feasible
steady states due to bidirectional reactions [63]. Nevertheless, kinetic models to date are

generally constructed around a unique steady-state describing a given physiology [55].
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How does the selection of a steady-state impact the conclusions drawn from kinetic
models? As the impact of the steady-state on kinetic models and their outputs has not been
studied previously, it was essential to inquire how this uncertainty in model variables
propagates into conclusions drawn from kinetic models. Chapter 3 develops a workflow that
takes into account the multiplicity of feasible steady-states describing a given physiology
when constructing kinetic models. The solution space for an observed physiology can be
separated into different FDPs where directionality is assigned to each bidirectional reaction
to get alternative convex solution spaces for the different feasible states of the metabolic
network. Different FDPs were compared in order to understand their impact on kinetic
model outputs. The effects of concentration and flux were decoupled to study how their

uncertainty affects conclusions drawn from MCA outputs.

The populations of MCA outputs describe the average behavior of the system and can
highlight enzymes that could be of interest for genetic manipulation. Previous studies that
considered distributions of MCA outputs compared their mean behavior and accounted for
the uncertainty with errors bars that represent the first and third quartiles of the
populations [48, 64]. A statistical method that can be used for accounting for uncertainty is
to consider confidence intervals that define ranges for observed variables that will contain
their estimated values for a given probability. Confidence intervals are constructed with
underlying assumptions about the nature of the data. Usually they assume that the
modeled data follows a normal behavior and the confidence intervals are generated
independently for each variable. Work has already been done in incorporating this approach
into kinetic modeling framework [65]. However, populations of MCA outputs will not have a
normal distribution and it is important to consider alternative methods for deriving

confidence intervals for such data in order to derive statistically significant conclusions.

In order to quantify the uncertainty in model outputs, confidence intervals can be derived
using different statistical procedures. In Chapter 4, alternative statistical approaches for
ranking distributions of MCA outputs were considered. The models from Chapter 3 were
used to compare how effectively these statistical methods can be applied for deriving
meaningful conclusions. Furthermore, researchers in systems biology often have to
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compare different sets of data that could for instance stem from models of different
physiologies. Hence, these different statistical approaches were also used for making
meaningful comparisons of distributions. The methodologies were benchmarked in order to
suggest a workflow for deriving conclusions from populations of MCA outputs. Discussions
around the advantages and disadvantages of these methods provide guidelines that will
help selecting the appropriate statistical method for deriving statistically significant
conclusions. These methods can be readily applied for different sets of data encountered in

systems biology and are not only limited to applications with MCA outputs.

Uncertainty stemming from the variables (concentration and flux) of kinetic models was
studied in Chapter 3. However, kinetic models and their conclusions are subject to
parametric uncertainty as they contain numerous parameters for which the numerical
values are not known. Gutenkunst et al. suggested that a majority of the parameters of a
kinetic model are “sloppy” and that generally, only several parameters will be constrained
to narrow regions [66]. The iISCHRUNK classification algorithm was developed by Andreozzi
et al. to underpin such parametric patterns that they call “rules” in populations of kinetic
models [49]. Another alternative to such machine learning approaches is to perform global
sensitivity analysis (GSA) on kinetic parameters. However, previous applications of GSA to
kinetic models of metabolism are limited to smaller models [67]. Chapter 5 demonstrates
how parameter uncertainty can be studied with GSA using a variance-based approach. GSA
has been performed in studies of metabolism on significantly smaller dynamic models. As
the model complexity increases, the computational expenses increase exponentially and it
becomes challenging to carry out such studies [68]. A workflow that applies a variance-
based approach, developed by Saltelli et al., was proposed for unraveling the contribution
of kinetic parameters to the variance of study-specific MCA outputs [69]. The workflow can
be used to source uncertainty and guide the design of experiments that will reduce
uncertainty in parameters. Knowledge about the uncertainty associated with kinetic
parameters is particularly useful as the techniques for experimentally estimating various

kinetic parameters develop [70].
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1.3. Thesis outline

From a global perspective, Chapters 2-5 contribute towards the objective of defining an
overall workflow that will guide the construction of comprehensive and consistent kinetic
models of metabolism under uncertainty. Chapter 2 considers how model complexity
should be assessed in order to obtain consistent and context-specific kinetic models. In
Chapter 3, the reader is exposed to the importance of considering alternative steady-states
of metabolism. Chapter 4 provides statistical tools that can be used to construct confidence
intervals on kinetic model data to derive statistically significant conclusions. Then, Chapter 5
presents an approach that can be applied to reduce uncertainty in kinetic models and
further assist in experimental design. Finally, Chapter 6 discusses around the applications of

the workflows developed in this thesis and the future opportunities in the research field.

The supplementary material for this thesis is organized chapter-wise and is available in an
electronic format at the following link:

https://zenodo.org/record/2534074#.XDR6ZJNKhBw
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2. The effects of model complexity and size

on metabolic flux distribution and control

2.1. Introduction

Kinetic models of cellular metabolism can provide comprehensive understanding on the
dynamics of the cell and its response to environmental changes and perturbations. In depth
understanding of cellular metabolism can allow metabolic engineers to tailor cells according
to sought specifications and objectives. This could enable the design of cell factories where
flux is directed towards the production of biofuels, pharmaceuticals or other specialty
chemicals. To be useful though, a kinetic model should represent the dynamics of the cell
accurately enough to provide the required study-specific knowledge [71]. To date,
important strides towards building large- and genome-scale kinetic models of metabolism
have been made [48, 50, 72, 73]. Despite the emergence of methodologies for building
kinetic models, the research community knows that several challenges remain to be

confronted.

With larger and better quality kinetic models, the mathematical representations become
increasingly complex. Furthermore, the parameter sensitivities of systems biology models
are in general “sloppy” [66]. Hatzimanikatis and coworkers noted that metabolic models are
often built around certain central carbon pathways or, ad-hoc reduced models of genome-
scale metabolic network models (GEMs) [57]. Such models do not account for the full
information contained in the GEMs and, the ad hoc reduced models do not come with
explicit explanations and justifications on how the model was reduced. Several studies have
built kinetic models around ad hoc reduced models and computed Metabolic Sensitivity
Coefficients (MSCs) for the system with metabolic control analysis (MCA) [48, 64, 71, 74,
75]. MSCs are desirable outputs of the kinetic models as they give insight into control

patterns of the cell, assuming that the model is correct and accurate. However, Palsson and

33



Lee showed that network complexity significantly affected the numerical values and the
interpretation of MSCs [76]. Their study showed that three different red cell metabolic
models produced MSCs that have opposite signs. This suggested that the analysis of

incomplete metabolic models could lead to misleading and inaccurate information.

Palsson and Lee acknowledge that their models were reduced in an ad hoc manner to
analyze how significantly network complexity can affect the MSCs of kinetic models [76].
However, nowadays algorithms for reducing GEMs are starting to emerge [57-59]. The
NetworkReducer algorithm aims to reduce the network around certain “protected”
metabolites and reactions by iteratively removing reactions that do not obstruct their
activity [59]. Ataman and coworkers developed the redGEM and lumpGEM algorithms which
allow reduction of GEMs around selected subsystems by retaining linkages and the
information captured in GEMs [57, 58]. The algorithm performs consistency checks with the
GEM to ensure that the reduced model is consistent in terms of flux profiles, essential genes
and reactions, thermodynamic feasible ranges of metabolite concentrations and ranges of
Gibbs free energy of reactions. The redGEM and lumpGEM algorithms can be used to build
thermodynamically feasible models with different levels of complexity consistent with the
GEM for the same chosen subsystems. These algorithms open up the possibility to
investigate how MSCs are affected by model complexity for consistently reduced models by

building kinetic models around them.

In this chapter, we used the redGEM and lumpGEM algorithm to reduce the E.coli iJ01366
GEM to three different models, namely D1, D2 and D3, encompassing 271, 307 and 327
enzymatic reactions and 160, 188 and 197 metabolites, respectively. The thermodynamic
formulation of the stoichiometric models allowed integration of fluxomics and
metabolomics data for aerobically grown E.coli (Appendix Al) [61]. Due to the topological
differences between the three models, we proposed a technique for scaling up the flux
profile and concentration vector reference steady states from D1 into the larger models D2
and D3. This scale-up procedure ensures physiological equivalency of the models by
assuring that their steady states are numerically similar. All the three models satisfy
thermodynamic constraints and are consistent with the GEM. We used the Optimization
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and Risk Analysis of Complex Living Entities (ORACLE) workflow to construct kinetic models
for D1, D2 and D3 around their scaled reference steady states. We fixed kinetic parameters
from the smaller model into the larger one to further ensure equivalency of the models and
hence a fair comparison. As integral part of the ORACLE workflow, we compute the MSCs
for the stable kinetic models. We studied the MSCs across the three models and
demonstrate that there is consistency amongst MSCs and that we can make metabolic

engineering decisions, independent of model complexity.

2.2. Results and discussion

2.2.1. Reduced E.coli models

We applied redGEM and lumpGEM algorithms [57, 58] to systematically derive modular,
reduced, E.coli stoichiometric models (Methods) from the iJO1366 GEM [77]. We selected
glycolysis, pentose phosphate pathway (PPP), tricarboxylic acid (TCA) cycle, glyoxylate cycle,
pyruvate metabolism and electron transport chain (ETC) as the subsystems (as defined in
the i1J01366 GEM [77]) around which reduction was performed to different degrees of
connectivity, similarly to Ataman et al. [57]. These subsystems contain the 12 essential
biomass precursors defined by Neidhart et al. [78] and capture the central carbon
metabolism of E.coli. Reduced stoichiometric models D1, D2 and D3 inter-connect the
subsystems between each other with up to one, two and three reactions, respectively.
Consequently, D1, D2 and D3 model cores generated via redGEM are constituted of 271,
307 and 327 enzymatic reactions and 160, 188 and 197 metabolites, respectively (Figure
2.1). The cores were connected to biomass production via lumped reactions, generated by
the lumpGEM, to characterize the rest of the GEM (further discussion on lumped reactions

around Figure 2.2 and 2.3 later in this section).
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Figure 2. 1. E.coli network diagram illustrating the core topologies studied for D1, D2 and
D3. Edges represent the metabolic reactions and the nodes correspond to the metabolites.
The reactions (edges) and metabolites (nodes) are coloured according to their pertinence
to D1, D2 and D3, in blue, red and green, respectively. The reaction labels are coloured in
black when the reaction is unidirectional. The bidirectional reactions’ labels are coloured if
the reaction can operate in both forward and backward directions in D1, D2 or D3 in blue,
red and green, respectively. The reactions that are bidirectional in a smaller model were
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also bidirectional in the larger model(s), as it is an expansion around the same core.
Diagram does not include all the reactions of the systems.

The additional reactions in D2 include xylose isomerase (XYLI2), hexokinase D-fructose
(HEX7) and D-fructose 6-phosphate phosphatase (F6PP), that connect D-glucose with D-
fructose 6-phosphate via D-fructose (Figures 2.1 and 2.2). D2 also includes the maltodextrin
system which connects the D-glucose to D-glucose 1l-phophate via the maltodextrin
phosphorylase and maltodextrin glucosidase reactions. In D2, dihydroxyacetone phosphate
can react to methyglyoxal, which in turn can react to D-Lactate, providing increased
connectivity between glycolysis and the pyruvate node. Additionally, pyruvate can react to
2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate, which can react to form 2-
oxoglutarate, thus connecting the TCA cycle with the pyruvate metabolism. D2 also includes
three different ways to connect with two reactions from fumarate to L-aspartate, which - via
argininosuccinate, adenylsuccinate and adenylosuccinate - further link the TCA cycle with
the ETC. The adentylate kinase (ADK3), nucleoside-diphosphate kinase (NDPK1) and
nucleoside-triphosphatase (NTP3) enzymes provide D2 model with additional flexibility in

the system’s energy metabolism.

D3 has additional reactions enabling the transformation of methylglyoxal into D-lactate and
L-lactate. Methylglyoxal is a hub metabolite that provides connectivity between upper
glycolysis to the pyruvate node. The pyruvate and phosphoenolpyruvate nodes are
connected to the TCA cycle via chorismate. Fruthermore, the glutamin and glutamate
synthases provide additional flexibility in allowing conversion between L-glutamate and L-
glutamine. In D3 the presence of AMP nucleosidase (AMPN) provides an additional
connection between the PPP and the ETC. However, the expansion from D1 to D2 resulted
in more central carbon metabolites that change in connectivity than the expansion from D2
to D3 (Figure 2.2). Several hub metabolites like methylglyoxal, isochorismate, pyruvate, D-

lactate and 2-oxoglutarate change in connectivity between the three models.
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Figure 2. 2. Metabolites connecting subsystems and the number of pairwise connections
they achieve. Central carbon metabolites that change in connectivity (A) between D1 and
D2, and (B) between D2 and D3.

2.2.2. Thermodynamic-based variability analysis

Within the thermodynamic formulation [15] of the stoichiometric models D1, D2 and D3, we
integrated fluxomics and metabolomics data for aerobically grown E.coli (Appendix Al).
Several assumptions were made on reaction directionalities, based on literature [61, 79-82],
to further constrain the models (Methods). We performed a thermodynamic-based
variability analysis (TVA) [83] on D1, D2 and D3 and we found they had 9, 17 and 18 bi-
directional reactions, respectively (Appendix A2).

Analysis of reaction flux ranges from TVA for D1, D2 and D3 revealed several considerable
differences between the central carbon reactions. When comparing the ranges between D1
and D2, the largest differences were noted in adenylate kinase (ADK1), tartronate
semialdehyde reductase (TRSARY), glucose-6-phosphate isomerase (PaGl),
phosphoglucomutase (PGMT), D-lactate dehydrogenase (LDH_D), triose-phosphate
isomerase  (TPl), phosphoglycerate kinase (PGK), glyceraldehyde-3-phosphate
dehydrogenase (GAPD), phosphoglycerate mutase (PGM) and enolase (ENO) (Appendix A2).
Performing the same analysis between D2 and D3 reveals that only transketolase (TKT2) and
glutamate dehydrogenase (GLUDy) changed considerably in ranges amongst central carbon
reactions. In fact, GLUDy became bidirectional with this expansion. Other differences were
noted in the peripheral reactions pertaining to additions from expansion from D2 to D3.

Generally, most differences in the flux variability ranges resulted from the bypass routes
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that additional reactions provided, which resulted in certain reactions becoming bi-
directional (Figure 2.1).

The TVA was also performed on concentration ranges of the models and we notice several
differences in the allowable ranges of metabolite concentrations between D1, D2 and D3.
Most noticeable concentration range differences between D1 and D2 occurred in D-glucose
6-phosphate, D-fructose 6-phosphate, fumarate, L-arinine and S-Dihydroorotate (Appendix
A2). However, between D2 and D3, noticeable differences were only noted in the ranges of
D-glucose 6-phosphate and D-fructose 6-phosphate. The comparison of these TVA ranges in
metabolite concentrations and reaction fluxes reveals that more considerable differences

occurred between D1 and D2 than between D2 and D3.

2.2.3. Model equivalency

Despite the inclusion of omics data for aerobically grown E.coli, D1, D2 and D3 remained
underdetermined systems, resulting in the existence of multiple alternative steady-states
that can characterize the studied E.coli physiology. A representative steady-state is required
for the flux profile and for the metabolite concentration vector, to build a kinetic model
around the selected steady state. Furthermore, in light of benchmarking the outputs of
kinetic models, the models are required to themselves be as close to each other as possible
to allow for an unbiased comparison. Hence, their representative steady-states were kept

similar so that the models describe the same operational state of the cell.

2.2.3.1. Scaling up steady-states

We sampled the flux and the concentration solution spaces for D1 and we used PCA to
select representative steady states (Methods). To preserve equivalency across the kinetic
models, it was desirable that the flux profile and the concentration vector steady states in
D2 and D3 resemble the ones selected in D1. The topological modularity of the core models
generated with redGEM eased the transferability of steady-states across models, allowing
us to preserve similar values for fluxes and concentrations for the overlapping reactions of
the three models.

We connected the core models to the biomass building blocks (BBBs), as defined by

Neidhart et al. [78], via lumped reactions generated with the lumpGEM algorithm by
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applying approaches developed by Ataman and Hatzimanikatis [58]. A lumped reaction is a
reaction that collapses a subnetwork of reactions into one mass-balanced reaction. D1-3
had 247, 189 and 196 lumped reactions, respectively. The models’ lumped reactions are
indeed not the same across D1-3. Consequently, lumped reactions impose certain
stoichiometric constraints that can require flux to pass through alternative metabolic routes
within the models. For instance, a BBB can be produced by a completely different lumped
reaction (Figure 2.3A), as we can generate it via a different subnetwork of reactions in the
systems with larger cores. Thus, having distinct lumped reactions results in the
redistribution of the flux profiles across models. An example of this is the hub metabolite
methylglyoxal that provides new alternatives for lumped reactions in D2 and D3, thus
contributing to differences in flux distribution across the models.

We studied the lumped reactions and in D1-3 and observed that 103 were common
between the models (Figure 2.3B). D1, D2 and D3 have 126, 57 and 66 lumped reactions
that are unique to themselves. D1 requires considerably more lumped reactions in order to
produce the BBBs from the core subsystems. If we consider the lumped reactions as
subnetworks of reactions, 474, 453 and 458 reactions are used to build the lumped
reactions of D1-3, respectively (Figure 2.3C). Interestingly, 446 reactions are common

between the pools of reactions that constitute the lumped reactions of D1-3.

In order to ensure equivalency between D1-3, we proposed a procedure that uses a Mixed
Integer Linear Programming (MILP) formulation that imposes similarity between the
representative steady states of the models (Methods). The D2 fluxes of central carbon
reactions are within below one percent deviation from the reference flux of D1 (Appendix
A3). The only central carbon fluxes in D3 that deviate from D2 reference flux with more than
one percentage are transaldolase (TALA) and xylose isomerase (XYLI2) with 4.5% and 33.2%
respectively. The concentration profile of D2 is within one percent of D1 reference steady
state, except for ADP, CoA, S-dihydroorotate and L-glutamine with 16%, 45%, 303% and 94%
deviations from D1. On the other hand, the D3 metabolite concentration steady-state is
within one percentage from the D2 metabolite concentration vector. The modularity and
the consistency of redGEM and lumpGEM algorithms in GEM reduction allowed the steady-
states to be transferred and communicated between models efficiently.
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Figure 2. 3. lllustration and analysis of core metabolism connections to biomass building
blocks via lumped reactions. The schematic representation (A) of the studied metabolic
networks where the edges are reactions and the nodes are metabolites. The blue edges
and nodes belong to the core network of D1. The red edges and nodes correspond to
additions from the D2 expansion. The dashed arrows are lumped reactions of the system,
connecting the core to the biomass, where: black represents lumped reactions that are
present in all the models, blue is for lumped reactions existing only prior to the expansion
in D1 and red is for lumped reactions existing only after network expansion in D2. Biomass
building blocks (BBBs) are represented by the green ovals. The black solid arrows indicate
fluxomics data that were integrated for optimally grown E.coli [61]. Venn diagrams
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highlight differences in the lumped reactions of D1, D2 and D3 in terms of (B) subnetworks
and in terms of (C) reactions.

2.2.3.2. Equivalence in kinetic parameters

We constructed kinetic models around the selected reference steady-states of D1-3 using
the ORACLE workflow [50, 84-86]. Uniform Monte Carlo sampling of the degrees of
saturation of the enzyme active sites allowed us to study the kinetic parameter space, as
proposed by Wang and colleagues [84]. The local stability of the models generated was
tested by verifying that the eigenvalues are not positive. We first sampled 50’000 stable
kinetic models for D1. To ensure equivalency at kinetic parameter level between D1-3, we
adapted the ORACLE workflow to allow fixing the sampled saturation states from one model
to another (Methods). From the 50’000 stable D1 kinetic models, we found 96.1% (48'080)
to be stable in D2, of which 98.4% (47°299) were stable in D3. We then computed the MSCs
for these stable models in order to compare how MCA-based decisions are affected by

metabolic network size.

2.2.4. Consistency in MCA across models

2.2.4.1. Ranking enzymes for flux control

Some fundamental cellular tasks for a given physiology include metabolite excretion,
substrate uptake and cellular growth, u. As we studied the physiology of optimally grown
E.coli, we considered control over u across models to assess the consistency in conclusions
based on MCA outputs. The flux control coefficients (FCCs) of u were ranked for D1-3 based
on their absolute means across stable models. The models were compared pairwise in
increasing order of size (i.e. D1 versus D2, and D2 versus D3) to assess the impact of
systematic network expansion on MCA (Figure 2.4).

The cellular growth FCCs with respect to PGI, phosphofructokinase (PFK) and ATP
maintenance (ATPM) are the most consistent in terms of sign and magnitude when
comparing D1 with D2 (Figure 2.4A). Pyruvate kinase (PYK), fructose biphosphate aldolase
(FBA) and 2-oxogluterate dehydrogenase (AKGDH) are also in agreement in terms of sign
but magnitude can differ significantly. Some enzymes have control in D1 but no control in
D2, such as ribulose 5-phosphate 3-epimerase (RPE) and phosphoglycerate mutase (PGM).

Others, vice versa, have control in D2 but no control in D1 such as phosphoglycerate kinase
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(PGK) and glucose 6-phosphate dehydrogenase (G6PDH2r). Ribose-5-phosphate isomerase
(RPI), on the other hand, has opposing control on cellular growth in the two models.
Differences in FCCs of cellular growth between D1 and D2 suggest that the modular

expansion of D1 to D2 significantly affects the control scheme.
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Figure 2. 4. Cellular growth (u) control across models. Pairwise illustration of the union of
the top 7 enzymes across the models in terms of absolute control over cellular growth for
(A) D1 versus D2, and (B) D2 versus D3. The whiskers give the upper and lower quartiles of
the FCC populations and the bars give the means.

We then compared top cellular growth FCCs in D2 and D3, which are in great sign and
magnitude agreement (Figure 2.4B). PGI, PFK and PYK are the top three enzymes in terms of
cellular growth control according to both D2 and D3. The consistency between these FCCs
suggests that the modular expansion of D2 to D3 does not affect the control pattern as
significantly as the network expansion from D1 to D2. An analogous analysis was carried out
for the flux control of glucose uptake and several other cellular excretions (Appendix A4),
and we observed a similar trend. The differences in control patterns appear to be significant
when expanding from D1 to D2, but of lesser importance when expanding from D2 to D3.
This finding could suggest that entire genome-scale kinetic models are not necessary to
capture the essential physiological features of a cell as long as the model reduction is done
systematically around carefully selected subsystems of study interest. Additionally, this

could mean that D1 is possibly missing on some important information for performing MCA.
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Clearly, a study-specific resolution criterion in terms of model size/complexity that has to be

met needs to be established before a model is used for further analysis.

2.2.4.2. MCA consistency across reduced models

As the study above revealed, certain flux control patterns can change significantly between
models due to network complexity. We tried to locate, analyze and understand the
differences and the similarities in MSCs that occur due to the topological alterations in
kinetic model complexity. According to MCA theory, the FCCs conform with the summation
theory [87, 88]. We proposed a deviation index (DI) that provides a quantitative measure on
how much a reaction’s FCCs differ between two models, postulated from the summation
theory (Methods). The DI served as a metric to classify reactions with respect to their
consistency in FCCs across the reduced models.

We estimated the DI of 271 common enzymatic reactions when expanding from D1 to D2 to
predict deviations in FCCs for the system. Reactions with the lowest DI (0-25 percentile)
were mostly from the central carbon metabolism (Figure 2.5). The reactions with the
highest DI (75-100 percentile) were mostly located in the ETC. The only central carbon
metabolism reactions having a high DI were TALA, acetyl-CoA synthase (ACS),
phosphoenolpyruvate synthase (PPS) and NAD malic enzyme (ME1). TALA produces D-
fructose 6-phosphate and, PPS and ME1 involve transformation of pyruvate. D-fructose 6-
phosphate and pyruvate are both central carbon metabolites around which the expansion
adds reactions (Figure 2.2 and 2.5). ACS is only one reaction away topologically from

pyruvate, around which the expansion adds a reaction (Figure 2.2 and 2.5).
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Figure 2. 5. E.coli network diagram illustrating the deviation index (DI) of reactions when
scaling up from D1 to D2. The reactions added by the modular redGEM expansion from D1
to D2 are given in blue and the 271 enzymatic reactions in common between D1 and D2 are
color-coded based on the DI. The reactions were categorized into low DI (0-25 percentile),
medium DI (25-75 percentile) and high DI (75-100 percentile), and are given in dark green,
light green and red, respectively. Diagram does not include all the reactions of the systems.

We repeated the above analysis for D2 and D3, where we analogously compute the Dls for
the 307 common enzymatic reactions (Methods). Similar observations were made for the
reactions having low DlIs (0-25 percentile) as most were located in central carbon
metabolism, within the subsystems around which reduction was performed (Figure 2.6). The
reactions with higher DlIs (75-100 percentile) are predominantly located around the ETC,
with the exception of several reactions pertaining to central carbon metabolism. As with the
previous analysis of D1 versus D2, ME1 and ACS had high DIs. The D3 expansion adds
reactions around pyruvate (Figure 2.2 and 2.6), which could explain this observation.

Aspartate transaminase (ASPTA), phosphoenolpyruvate carboxykinase (PPCK) and succinate
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dehydrogenase (SUCDi) from the central carbon metabolism exhibited high Dls (Figure 2.6).
ASPTA is directly connected via 2-oxoglutarate with NADPH glutamate synthase (GLUSy),
which is a newly added reaction by the D3 expansion. PPCK is connected via
polyenolpyruvate to 3-phosphoshikimate 1-carboxyvinyltransferase (PSCVT), another add by
the D3 expansion. Furthermore, SUCDi is topologically connected with the added reaction
ubiquinone L-Lactate dehydrogenase (L-LACD2), as cofactors ubiquinone-8 and ubiquinol-8
partake in both reactions. Interestingly, periplasmic glucose dehydrogen (GLCDpp), where
ubiquinone-8 and ubiquinol-8 also participate, has a high DI as well. GLCDpp possibly causes
its neighbouring reactions gluconokinase (GNK) and D-gluconate transport (GLCNt2rpp) to
have high DIs too, due to stoichiometric coupling. These observations suggest that
alterations in flux split ratios around important branching points - caused by network
expansion - could result into higher Dls in reactions at their vicinities.

Overall, lower DIs were observed for reactions having a higher flux, pertaining to the core
central carbon metabolism around which the models D1-3 were reduced (Figures 2.5 and
2.6). Since the cores of the reduced models contain the 12 precursor metabolites for
biomass, their control patterns were expected to be similar. Stephanopoulos and Vallino
point out that metabolic pathways of organisms have evolved over time to resist flux
alterations at branching points [89]. The control architecture of an organism is built such
that it preserves the flux splitting ratios of essential metabolic nodes. However, if two
models have differences in the number of reactions and/or in the flux splitting ratios around
an important branching point, the control architecture of the two systems can differ
considerably.

Since we studied optimally grown E.coli, it was expected that the D1 to D2 expansion with
the addition of XYLI2, F6PP and HEX7 would have influence on control patterns: the flux
splitting ratios around the essential biomass precursor D-fructose 6-phosphate is altered. D-
fructose 6-phosphate is a critical metabolic node for producing cell wall biomass building
blocks and is located relatively upstream in the process of glucose catabolism. Altering flux
splitting ratios around D-fructose 6-phosphate will have direct implications on the fate of

the carbon flow across the whole network, particularly due to its upstream location.
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Figure 2. 6. E.coli network diagram illustrating the deviation index (DI) of reactions when
scaling up from D2 to D3. The reactions added by the modular redGEM expansion from D2
to D3 are given in blue and the 307 enzymatic reactions in common between D2 and D3 are
color-coded based on the DI. The reactions were categorized into low DI (0-25 percentile),
medium DI (25-75 percentile) and high DI (75-100 percentile), and are given in dark green,
light green and red, respectively. Diagram does not include all the reactions of the systems.

The expansion from D2 to D3 results in different flux splitting ratios around three biomass
precursors: pyruvate, polyenolpyruvate and 2-oxoglutarate. Again, we can expect flux
control patterns across the models to differ as the proportion of carbon flow directed
towards certain biomass building blocks is affected. However, within the central carbon
metabolism, these precursors are located relatively downstream to the glucose uptake,
compared to for instance D-fructose 6-phosphate. Consequently, we can expect that these
flux splitting ratios have less impact on the growth control of the system than D-fructose 6-
phosphate. If we were discussing the production of certain amino acids of interest, rather

than just cellular growth, these ratios could be of higher importance to the analysis. The
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significance of a metabolic node is strongly subject to the scope of the study. Hence, it is

I”

difficult to imagine a “one-size-fits-all” model due to the complexity of the problems
encountered in metabolic engineering.

Indeed, the importance of a metabolic branching point is very study-specific as objectives
can vary significantly. Had we, for instance, been interested in the study of D-lactate
production, it would have been essential to include the metabolism of methylglyoxal, D-
lactate and L-lactate into the subsystems around which model reduction is performed.
However, as we are not interested in the production of D-lactate, we are not that concerned
about the high DI of D-lactate transporter (D-LACt2pp) when comparing D2 and D3 (Figure
2.6). Furthermore, if we were interested to produce D-lactate, it would be essential to
consider implication of attempting to deviate flux towards the metabolism of D-lactate. If
the redirection of flux towards D-lactate imposes important changes in the flux splitting

ratios of significant metabolic nodes of wild-type E.coli, it may be worth considering other

organisms that cause fewer modifications in flux distribution [89, 90].

2.2.4.3. Study of uncertainty in MCA

The MCA results of D1-3 were further studied by comparing their absolute deviations in the
FCCs. We considered with respect to the central carbon subsystems to find which central
carbon enzymes contributed in most uncertainty across the networks. The FCCs of reactions
in the glycolysis (Figure 2.7) appear to have most absolute deviation stemming from
enzymes in the glycolysis and in the PPP. When comparing D1 with D2 (Figure 2.7A),
enzymes in glycolysis contribute most to the uncertainty whereas in the comparison of D2
and D3 (Figure 2.7B), the PPP contributes the most. Again, the additional connections
around D-fructose 6-phosphate (Figures 2.1 and 2.2) when expanding from D1 to D2 could
explain this. Differences in flux splitting ratio around D-fructose 6-phosphate affect the
redistribution of the flux in the network and hence the control pattern. Generally, reactions
with a larger flux exhibit less absolute deviations in their FCCs. This parallels the observation

that central carbon reactions carrying higher flux are perhaps more rigid in control patterns.
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Figure 2. 7. Comparison of flux and absolute deviations in FCCs for glycolytic reactions for
(A) D1 versus D2, and (B) D2 versus D3. The absolute deviations computed per subsystem
correspond to the sum of the absolute deviations in FCCs of reaction i with respect to all
enzymes of the subsystem j. The reactions contained in a subsystem are as defined in the
original GEM that was reduced [77]. The flux values shown did not deviate by more than
1% between pairs of models.

We perform a parallel analysis on FCCs of PPP reactions and similar observations were
made. The expansion from D1 to D2 has most absolute deviations coming from enzymes
from glycolysis (Figure 2.8A), whereas, the expansion from D2 to D3 has most deviations
due to PPP enzymes (Figure 2.8B). Again, reactions carrying higher flux have less absolute
deviation in their FCCs between the pairs of models. We analyzed FCCs individually in terms
of absolute deviation (Appendix A5), for both pairs D1 and D2 as well as, D2 and D3. PGI, TPI
and PFK were the top three central carbon enzymes that resulted in the most absolute
difference in flux control across the network. From the PPP enzymes, RPI resulted in the
most absolute deviation in flux control. We also recall that RPI had sign-wise opposing
control on cellular growth in the comparison of D1 and D2 (Figure 2.4A). Due to the highly
non-linear nature of the studied systems, it is difficult to make direct conclusions on the
causality of the observed deviations in control patterns of the networks. Most of the
deviations were observed amongst peripheral transport reactions, rather than central
carbon metabolism (Appendix A5). Nevertheless, we could still find metabolic engineering
decisions relevant to our study, independent of the complexity based on MCA outputs

(Figure 2.4).
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Figure 2. 8. Comparison of flux and absolute deviations in FCCs for PPP reactions for (A) D1
versus D2, and (B) D2 versus D3. The absolute deviations computed per subsystem
correspond to the sum of the absolute deviations in FCCs of reaction i with respect to all
enzymes of subsystem j. The reactions contained in a subsystem are as defined in the
original GEM that was reduced [77]. The flux values shown did not deviate by more than
1% between pairs of models.

2.3. Conclusion

This work studied the impact of model complexity on the metabolic engineering decisions
derived from MCA outputs. The redGEM and the lumpGEM algorithms were used to
consistently reduce the E.coli iJ01366 GEM. Omics data for the physiology of optimally
grown E.coli was integrated into the reduced stoichiometric models. The modularity of the
reduced models assisted us in the development of a workflow allowing to preserve
maximum equivalence between the flux profile and metabolite concentration steady states.
The ORACLE framework was used to generate populations of stable kinetic models around
these reduced stoichiometric models. Our workflow ensured that we preserve equivalency
amongst the populations of the kinetic parameters for the stable kinetic models. The MSCs
were computed within the ORACLE framework for the populations of stable kinetic models.
Analysis of the MSCs, revealed that we can derive context-specific metabolic engineering
conclusions that are independent of the model’s complexity, as long as the reduction is

performed consistently.
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The “usefulness” of a kinetic model is highly dependent on the objectives of the study being
undertaken. We selected the subsystems for the GEM reduction such that we: (1) cover the
essential biomass precursor metabolites according to Neidhart as we focused primarily on
cellular growth control and, (2) that we capture the ETC essential to account for redox
potentials. The addition of reactions around D-fructose 6-phosphate when expanding from
D1 to D2 appeared to significantly affect growth control patterns (Figure 2.4A). However,
the expansion from D2 to D3 had considerably less impact as top cellular growth FCCs are
consistent (Figure 2.4B). As D-fructose 6-phosphate is an essential precursor for cell wall
fabrication, a network expansion affecting flux distribution around it can be expected to
have significant impact on cellular growth control structure. Hence, it is essential to consider
the importance of certain metabolic nodes with respect to the study goals in order to
ensure no information is lost in the reduction. Again, importance of a metabolic node is
strongly influenced by the nature and the objectives of the analysis.

The MCA summation theorem was used to postulate a deviation index (DI) that gave a
numerical indication on the consistency of the FCCs with respect to a reaction. Most of the
reactions around central carbon metabolism, carrying a higher carbon flux, appeared to
have lower Dls. Flux control for reactions with larger fluxes were more robust, particularly if
the number of connecting reactions did not change between models for the metabolites
participating in the reaction. The larger DIs were noted in the ETC and peripheral reactions.
Nevertheless, the consistency in the control patterns across reduced models allows us to
make conclusions that are independent of the network complexity. In fact, we may not need
full genome-scale kinetic models when the model reduction is done consistently as the
essential, study-specific, information is accounted for by the reduced model.

This chapter demonstrates that systematic and modular model reduction algorithms ease
the scale-up of kinetic models of metabolism. Our workflow describes an MILP formulation
for insuring maximum equivalence between models when transferring steady-states.
Furthermore, the workflow ensures that the kinetic parameters are kept as similar as
possible between the populations of stable kinetic models built around the reduced
stoichiometric models. To our knowledge, this is the first effort to date demonstrating
transferability of steady-states between large-scale kinetic models, whilst obtaining
consistent, study-specific, metabolic engineering decisions. As systematic model reduction
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algorithms gain momentum in the field, we hope to pave a path towards building more
robust and transferable kinetic models for the community.

In this chapter, we studied how steady-states can be transferred from one kinetic model to
another one of different complexity level. However, it is known that due to the
underdetermined nature of the biological system, multiple steady-state solutions could
characterize the physiology. In the next chapter, we will discuss the importance of
considering alternative steady-states when constructing kinetic models, as they can

significantly affect conclusions drawn from model outputs.

2.4. Materials and methods

We developed a workflow for building consistently reduced kinetic models from a genome-
scale metabolic model (Figure 2.9). We used the redGEM algorithm to construct core
models of increasing network size from the E.coli iJ01366 genome-scale model. The
lumpGEM algorithm was used to generate lumped reactions for the biosynthesis of biomass
building blocks (BBBs) for these models. We used thermodynamic-based variability analysis
(TVA) [83] to study the flexibility of the models. We proposed a procedure for scaling up the
flux and concentration steady-states from one model to another one using the MILP
formulation. The ORACLE framework was enhanced, allowing us to keep parametric
equivalency between the populations of kinetic models around the steady states of the

reduced models. These steps are further detailed below.
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Figure 2. 9. Workflow for building consistent reduced kinetic models. The various steps are
discussed with further detail within the chapter.

2.4.1. Model reduction

The stoichiometry of the core networks was defined with the redGEM algorithm, which
reduces systematically genome-scale model reconstructions of metabolism [57]. The E. coli
iJ01366 genome-scale model was reduced, with aerobic minimal media, glucose as the sole
carbon source, and the selected starting subsystems corresponding to central carbon
metabolism (glycolysis/gluconeogenesis, citric acid cycle, pentose phosphate pathway,
pyruvate metabolism, and glyoxylate metabolism). We incorporated all the reactions that
use metabolites of the quinone/quinol pools (ubiquinone, ubiquinol, menaquinone,

menaquinol, 2-dimethyl menaquinone and 2-dimethyl menaquinol) as the electron
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transport chain subsystem in order to account for the energy metabolism of the system.
redGEM allows the user to define a degree of connection, D, to define the level of
connectivity of the core. D is an input parameter of the redGEM and lumpGEM. D
corresponds to the number of reaction required to connect the pairs of metabolites
between starting subsystems, as defined in redGEM [57]. We generated core networks with
a D of 1,2 and 3, which gave rise to models D1, D2 and D3 respectively. The lumpGEM
algorithm [58] was used to generate lumped reactions for the biosynthesis of the BBBs for
these core networks. Lumped reactions are sub-networks of reactions composed of non-
core reactions that can be used to produce a BBB. Alternative lumped reactions of the
minimal sub-network size were kept for each of the BBBs. Reactions that could not carry flux

were considered as blocked and were removed.

For some of intracellular metabolites, a corresponding transport reaction has not been
biochemically characterized and does not appear in the E. coli iJ01366 and in our reduced
model. However, these metabolites, unless they are highly polar or very large, are subject to
passive diffusive transport through the cell membrane. Therefore, we explicitly added
transport reactions for these metabolites that operate at least at basal level (107-6

mmol/(gDW*h)).

2.4.2. Flux directionality assumptions
We make the following directionality assumptions for several bi-directional reactions:
e Fructose-biphosphate aldolase (FBA) that is part of mid-lower glycolysis is set
towards catabolism [79].
e The bi-directional transports of magnesium and phosphate are both set towards
uptake [80, 81].
e Acetate kinase (ACKr) and phospho-transacetylase (PTAr) are both set towards the
acetate production, because acetate is one of the main by-products [61].
e The succinyl-CoA synthetase (SUCOAS) is set towards the production of succinate
[61].
The polyphosphate kinases (PPK2r, and PPKr) are set towards the polyphosphate

polymerization [82].
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2.4.3. Thermodynamic analysis

The available fluxomics and metabolomics data for the optimal growth of E.coli under
aerobic conditions and minimal media was integrated in our models. The MILP formulation
of the thermodynamics-based flux analysis was used to implement these data into D1, D2
and D3. Since the models were used to build kinetic models, it was undesirable for reactions
to be at thermodynamic equilibrium, which would result in them having equal backward
and forward fluxes. We imposed MILP constraints to ensure that the thermodynamic

displacement, I [52, 84, 87], is not at equilibrium. For reactions near equilibrium I = 1.

2.4.4. Maximum equivalency between steady-states

We sampled the flux space of D1 in order to characterize the solution space without
violating physiological, thermodynamic and directionality constraints. The convexity of the
solution space enabled us to efficiently sample using the Artificial-Centering Hit-and-Run
sampler in the COBRA Toolbox [8, 9]. We sampled flux vectors and used Principal
Component Analysis (PCA) [91] to select a mean reference state. Similarly, we sampled and
selected the reference state with PCA for the concentration solution space of this selected
flux profile.

In order to make the comparison of the models equitable, we wanted to maintain most
similar steady states between the models. For instance, for D2 we would like the flux vector
to be the equal possible to the one from D1. Topological differences in the models make it
impossible to have numerically exactly the same flux distribution in larger model for the
same reactions. Hence, we take the representative flux from D1 and apply it with
percentage relaxation with upper and lower bounds, F“brxn,i and F'brxn,i respectively, into D2.
Consequently, we use an MILP formulation to minimize the number of violations of flux
boundaries that we are trying to impose. For each intracellular reaction that is shared
between the two models we create a binary variable z., i so that when it is equal to 1, the
constraints that we impose become inactive. We add for each of these reactions the
following constraints:

ub ub
NI:rxn,i + (F rxn,i -UB rxn,i)* ern,i< F rxn,i
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Ib Ib
NFrxn,i + (F rxn,i -LB rxn,i)* ern, P> F rxn,i

where, UB and LB are the upper and lower bounds of the net fluxes NF of the reactions. We
minimize the sum of the binaries, z., ;, in order to have minimal violation of the flux
constraints:

Minimize:

#Fluxes
E ern,i

Subject to:

We implied a 1% relaxation to apply and test how many flux constraints we can impose
without violation (minimal number of active binary variables z., ;). After applying the
constraints that are not violating model boundaries of D2, we proceed to sampling the
solution space. We selected a sample based on mean PCA as with the representative flux of
D1. We then implied in a similar manner the concentration profile from D1 into D2 with a
1% relaxation and sampled the concentration space for this flux profile. We repeat this

procedure when scaling up the flux and concentration steady states from D2 into D3.

2.4.5. Constructing kinetic models

We used the ORACLE framework to build 50’000 kinetic models around the steady states for
D1, D2 and D3. Available kinetic properties of enzymes from the literature [92] and the
databases [93, 94] were incorporated. Reversible Hill kinetics [95] and convenience kinetics
[96] were used for reactions with unknown kinetic mechanism (Appendix A6). Kinetic
mechanisms with no or partial information about their parameter values were sampled
within the space of kinetic parameters in the form of degree of saturation of enzyme [84].
We parameterized a population of kinetic models and performed consistency tests [51, 54,
84]. We then computed the flux and concentration control coefficients [84, 97]. For further

details on the ORACLE workflow the reader is referred to [48, 50-52, 84-86, 98].
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We preserved equivalency between populations of kinetic models for D1-3 by fixing the
degree of saturation of enzymes from less complex models into the more complex models.
We wanted to preserve model equality so that we can fairly compare MCA outputs of the
models. Within the ORACLE framework, we added a feature for fixing the degree of
saturation of enzymes. For the parameters that were common between D1 and D2, we fixed
the degrees of enzyme saturations from D1 models into D2 models and we sampled the rest
of the D2-specific parameters uniformly, until we found a stable model. A maximum of
1’000 trials were made to obtain a stable model. Hence, we preserved equivalency of the
kinetic parameters between D1 and D2. Analogously, we repeated this procedure to imply

the degrees of enzymes saturations from D2 into D3.

2.4.6. Control coefficient deviation index

In MCA the FCCs conform with the summation theorem defined in [87, 88]. The theorem
implies that all the metabolic fluxes are systemic properties of the model and that their
control is shared by all the reactions within the system. The summation theorem makes the
assumptions that: (1) the parameters for which we compute flux control coefficients are of
first order with respect to the flux, and that (2) the sum of a flux’s control coefficients with
respect to all the parameters of the system is equal to one. We proposed a deviation index
(DI) derived from the summation theorem to quantify the discrepancies in control patterns

of a flux between two different models (Figure 2.10).
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Figure 2. 10. Derivation of the deviation index (DI) from the summation theorem.

2.5. Appendix A

Al Table. Fluxomics and metabolomics data incorporated in the model. Table with the

fluxomics data in mmol/gDW/h and the concentration data in log(M).

A2 Table. Thermodynamics-based variability analysis of models. Spreadsheet with the list
of metabolites and reactions inside the models with variability analysis of metabolic flux and

metabolite concentrations.

A3 Table. Flux and concentration steady states. Spreadsheet providing metabolic flux and

concentration reference steady-states across the models with a comparative study.

A4 Figure. Flux control coefficients of (a) glucose uptake, (b) formate excretion and (c)
acetate excretion across the models. Pairwise illustration of the union of the top 7 enzymes

across the models in terms of absolute control over cellular growth for D1 versus D2, and D2
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versus D3. The whiskers give the upper and lower quartiles of the FCC populations and the

bars give the means.
A5 Table. Analysis of absolute deviations in means of flux control coefficients for the
entire systems. Further assessment of deviations in flux control coefficients between

model expansions from D1 to D2 and from D2 to D3.

A6 Supporting information. Kinetic mechanisms used for the models.
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3. Kinetic models of metabolism that
consider alternative steady-state solutions

of intracellular fluxes and concentrations

3.1. Introduction

Over the last decades, advances in genome editing technologies have allowed the
redirection of carbon flow within the organism towards specialty products of interest and
desired physiologies [32]. Identifying candidate enzymes is fundamental for genetic
modifications that have seen applications in metabolic engineering, basic and applied
biology, biotechnology and medical sciences [99-101]. Increasingly available high-
throughput sequencing data has enabled the construction of stoichiometric genome-scale
metabolic models (GEMs) that describe mathematically the balanced metabolic fluxes
within an organism [2]. Metabolic models such as these GEMs have been extensively used
to characterize overall network behavior of organisms, which can provide guidance about
the genes that can be modified to improve a desired product biosynthesis. Improved
guidance for metabolic engineering and basic biology will be achieved with kinetic models of

the reactions/networks in GEMs.

The construction of a kinetic model of metabolism requires knowledge of steady states
and/or dynamics of metabolic fluxes and metabolite concentrations that can be used to
estimate the unknown kinetic parameters that describe these data. However, there are
many sources of uncertainty in metabolic fluxes and metabolite concentrations that result
in partial knowledge. Advances in C13 isotopomer techniques facilitated the measurement
of fluxes across cellular reactions and promoted the development of metabolic flux analysis
(MFA) [102]. One main uncertainty in fluxes is the flux directionality as reactions can be

thermodynamically bidirectional [16]. Metabolomics and thermodynamics can be used as it
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is done in thermodynamic-based flux analysis (TFA) [14-16] to constrain the direction of
some of these fluxes. But even when information about the directionality of all the reactions
and fluxomics from labeling experiments are used, there is still a great uncertainty on exact
estimation of fluxes as the degrees of freedom remain high, especially as we increase the
size of the networks. The addition of constraints based on measured gene expression data
[19, 103] and enzymatic data [25] can reduce the degrees of freedom. However, the system
remains underdetermined, resulting in multiple alternative steady-state flux distributions
corresponding to the physiology under study. Different steady-state solutions could directly
affect the predictions of kinetic models, leading towards very distinct conclusions and

guidance for metabolic engineering.

Several promising methods exist for constructing kinetic models around representative
steady states of metabolic fluxes and metabolite concentrations [44, 54]. The Optimization
and Risk Analysis of Complex Living Entities (ORACLE) workflow [50, 51, 84] and frameworks
built around ensemble modeling [45, 47] have made significant strides towards genome-
scale kinetic modeling of metabolism. These methods generate populations of non-linear
kinetic models around a selected reference steady state (RSS) that is chosen based on its
ability to characterize the observed physiology. Methods commonly used for selecting a RSS
include using the computed optimal solution to an objective function that defines
physiological tasks [104], fitting the data from MFA [102], or performing principal
component analysis (PCA) on a sampled solution space [50]. Once a RSS is established,
kinetic models are constructed around it, which allows the study and prediction of cellular
metabolic response to perturbations [105]. These populations of kinetic models can be
studied using statistical procedures to identify target enzymes, sensitively analyze kinetic
parameters, and design experiments [48, 49]. There is no unique and evident approach for
selecting a RSS for such an underdetermined system. To our knowledge, the impact of
alternative RSSs describing a physiology using the kinetic parameters and the outputs of

these kinetic models have not been studied.

Hereby, this chapter examines how uncertainty in intracellular flux solutions and metabolite
concentrations influences the metabolic control analysis (MCA) of populations of non-linear
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kinetic models built around alternative steady states. We integrated physiological data from
E. coli grown aerobically in a batch cultivation [61] into a reduced core model derived from
the iJO1366 E. coli GEM [57, 58, 77] and found that the data were not sufficient to uniquely
determine the steady state metabolic flux distribution as several reactions could operate in
either the forward or reverse direction. These so-called bi-directional reactions result in the
existence of multiple feasible flux directionality profiles (FDPs) that represent the same
physiology, because in any FDP, reactions operate only in one direction [14]. We
constructed populations of kinetic models for 4 selected FDPs to demonstrate how

significantly MCA outputs and metabolic engineering decisions are affected.

3.2. Results and discussion

The procedure for characterization and analysis of steady-state multiplicities arising from
the underdetermined nature of the system is a constitutive part of the ORACLE workflow
[48, 50, 51, 84-86, 98]. The workflow assists with more reliable and robust MCA-based
metabolic engineering decisions that will enable the identification of study-specific target
enzymes, independent of the steady state. Various types of biological data are combined
into a thermodynamically feasible stoichiometric model of a given physiology (Figure 3.1).
We follow this workflow to discuss our results. At first, we identify the bi-directional
reactions and determine feasible flux directionality profiles (FDPs). In a FDP, reactions can
only operate in a unique direction. We discuss how alternative FDPs affect the conclusions
of kinetic models. We then consider how the flux values and the metabolite concentration
levels within a FDP affect kinetic model predictions. The MCA outputs of the kinetic models
are studied to systematically derive metabolic engineering decisions. For further
information on the methodologies used, we refer the reader to the methods section of the

chapter.
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Figure 3. 1. Procedure for characterizing and analyzing multiplicities in metabolic networks.
The procedure consists of several computational steps wherein the available data are
integrated, the alternative solutions are identified, the populations of non-linear models
are built, and the output variables are analyzed to make robust conclusions (for details see

main text).

3.2.1. Multiplicity of flux directionality profiles

64

To derive a reduced E. coli metabolic model from the 101366 GEM [77], we used the
redGEM and lumpGEM algorithms as they provide a systematic and modular way for
reducing GEMs, whilst preserving growth and gene essentiality [57, 58]. The obtained core
stoichiometric model of the E. coli metabolism consisted of 277 reactions and 160
metabolites distributed over the cytosol and the extracellular space (Methods). To constrain
the model and derive alternative steady states, we integrated fluxomics and metabolomics
data, as we did in chapter two [61] (Appendix Al) within the thermodynamic formulation

(Appendix B1) of the stoichiometric model for aerobically grown E.coli. Hence, we set the



glucose uptake to 7.54 mmol/gDW/h, the growth rate to 0.61 /h and, the excretions of
acetate, formate and succinate to 3.5 mmol/gDW/h, 0.5 mmol/gDW/h and 10
mmol/gDW/h, respectively (Figure 3.2A). For the reactions previously reported in literature
we used assumptions about reaction directionalities [61, 79-82] (Methods).
Thermodynamic-based variability analysis (TVA) [83] suggested the presence of seven bi-
directional reactions in our model: fumarase (FUM), triose-phosphate isomerase (TPl),
ribulose-5-phosphate 3-epimerase (RPE), transaldolase (TALA), transketolase 1 (TKT1),
transketolase 2 (TKT2), and glucose-6-phosphate isomerase (PGl). All combinations of these
seven reactions operating in one or the opposite direction could theoretically lead to up to
128 (2’) FDPs. However, due to the stoichiometric and thermodynamic coupling in the

network, only 25 out of 128 FDPs were feasible.

Some of these reactions such as PGl and FUM are commonly considered as unidirectional.
However, Rabinowitz and coworkers reported that these seven identified reactions are bi-
directional in E.coli, yeast and immortalized baby mouse kidney cells [62]. This suggests
that, for previously uncharacterized physiologies and/or for reactions with no fluxomics
data, we should consider all feasible reaction directionalities. This is a way of ensuring that
we account for the flexibility of cellular metabolism. For simplicity and clarity of further
discussion, we wanted to analyze four FDPs with the most distinct physiologies out of 25
feasible ones. We assumed that changing the directionality of reactions with the largest TVA
flux range would result in the most distinct FDPs. PGl and FUM had the largest feasible TVA
flux ranges from the seven bi-directional reactions. Hence, to generate these four distinct
FDPs (Figure 3.2B), we were changing the directionality of both PGl and FUM in either the
forward or backward direction (Figure 3.2C) while keeping the directionalities fixed for the 5
remaining bi-directional reactions. The directionality of these 5 bi-directional reactions
(other than PGI and FUM) was determined as follows. We first defined and calculated the
flux variability score for each of the 25 FDPs (Methods). A higher flux variability score
suggests that the reactions of the FDP are on average more flexible and can operate in
relatively wider flux ranges. We then took the directionalities of the remaining five bi-
directional reactions from the FDP with the highest score. In this study, we assessed the
model predictions and their implications on metabolic engineering decisions around these
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four FDPs. Nevertheless, different study-dependent criteria for selecting the FDPs could be

devised.
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Figure 3. 2. Multiple operational configurations for the same observed physiology of
aerobically grown E. coli. (A) Representation of E. coli network. The fluxomics data that
were integrated are indicated as uptake, secretion and growth rates. The bidirectional
reactions are colored: phosphoglucose isomerase, (PGl, magenta) and fumarase, (FUM,
red). (B) Representation of the four FDPs for the physiology under study. (C) Flux and
thermodynamic displacement distributions of PGl and FUM reactions for each of the four
generated FDPs. The boxplots show distributions for 5,000 samples. The central red line
indicates the median, and the bottom and top edges of the box indicate the 25" and 75"
percentiles, respectively. The whiskers correspond to approximately + 2.7, which is the
standard deviation, or 99.3% coverage if the data are normally distributed. Outliers are the
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points not covered by the range of the whiskers and are plotted individually using
the '+' symbol. The black diamond is the RSS value. Full metabolite names are given in
supplementary materials (Appendix B1).

3.2.2. Comparative analysis of alternative flux directionality profiles

3.2.2.1. Reference steady states (RSSs) of FDPs

In building kinetic models, we must have steady state flux values and metabolite
concentrations around which we construct them. In the case of uncertainty, we sampled
steady states for the flux values and the metabolite concentrations for each FDP and used
principal component analysis (PCA) to select their RSSs (Methods). There were considerable
differences in the RSS values for the fluxes and thermodynamic displacements of reactions
across the network, particularly for TPI, enolase (ENO), phosphogluconate dehydrogenase
(GND), and aconitase A (ACONTa) in the central carbon metabolism (Figure 3.3). This is
because the relative activity of the oxidative tricarboxylic acid (TCA) cycle, the glyoxylate
shunt, and both the oxidative and the non-oxidative pentose phosphate pathway (PPP)
change between FDPs. Since PGl and FUM are the only two reactions changing
directionalities amongst the four FDPs, it is reasonable to expect the most affected fluxes of
reactions to be in their topological vicinity, which is true for GND, TPI, ACONTa, and
succinate dehydrogenase (SUCDi) (Figure 3.3). However, we found large changes in flux
magnitudes across the FDPs that were associated with reactions farther away from FUM
and PGI, such as the electron transport chain (ETC) reactions, NADH dehydrogenase
(NADH16pp) and NAD transhydrogenase (NADTRHD). The TVA studies explain this as the
ETC compensates in FDPs 2-4 for producing NADPH (Appendix B2 and B3). Additionally, the
RSS flux value for GND was considerably smaller in FDP1 than in the other FDPs, resulting in
reduced NADPH production via the oxidative branch of the PPP that is coupled with the ETC
(Appendix B2). For further comparative TVA studies of the FDPs, we refer the reader to

supporting information (Appendix B3).
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Figure 3. 3. Optimally grown aerobic E. coli metabolic network. Each of the 10 reactions
labeled in red has an associated graph with the respective flux and thermodynamic
displacement distributions for each FDP. The boxplots show distributions for 5,000
samples. The central red line indicates the median, and the bottom and top edges of the
box indicate the 25" and 75" percentiles, respectively. The whiskers correspond to
approximately * 2.7, the standard deviation, or 99.3% coverage if the data are normally
distributed. Outliers are the points not covered by the range of the whiskers and are
plotted individually using the '+' symbol. The black diamond is the RSS value. Full enzyme
and metabolite names are given in supplementary materials (Appendix B1).

The differences in the RSS concentration vectors across the FDPs translate into distinctive
distributions of the Gibbs free energy across the networks for each FDP. The metabolite
concentration values in the RSSs varied the most across the FDPs for the reaction cofactors
NAD", NADH, NADP, AMP, and ATP (Appendix B2). We also noticed significant differences in
some central carbon metabolite RSS concentrations, such as: 6-phospho-D-gluconate, D-
glucose-6-phosphate, D-fructose-6-phophate, D-xylulose 5-phosphate, sedoheptulose 7-
phosphate, D-erythrose 4-phosphate, phosphoenolpyruvate, fumarate, L-malate, citrate,
and oxaloacetate (Appendix B2). These metabolites and the aforementioned cofactors
participate in most of the network reactions, causing the thermodynamic displacements of
reactions including GND, NADH16pp, SUCDi, adenylate kinase (ADK1), and ME2 to change
considerably across RSSs of the FDPs (Figure 3.3). As observed for the RSS fluxes, reactions
that were either topologically close to the bidirectional reactions FUM and PGl and some
topologically distant reactions in the ETC displayed the most considerable changes in
thermodynamic displacement (Figures 3.2 and 3.3). It is particularly important to recognize
that the change in directionality of one reaction between two FDPs can actually cause
thermodynamic displacements to change across the whole metabolic network (Figure 3.4).
Hence, the FDP affects the Gibbs free energy distribution across the network, which in turn
can affect a greater part of the network than just the topological neighbors of the bi-

directional reactions that change directionality between FDPs.
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Figure 3. 4. Cluster analysis of thermodynamic displacements across FDPs. Heat map
showing thermodynamic displacements of the reactions across each FDP. Reactions
differed the most in thermodynamic displacement across FDPs based on categorization of
displacements (Methods). The rows represent the similarity between reactions and the
columns represent the similarity between FDPs. The distances between the dendrograms
were computed based on the Euclidean distance between the thermodynamic
displacements, both column- and row-wise. Full enzyme names are given in supplementary
materials (Appendix B1).
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3.2.2.2. Analysis of control patterns

Controlling the levels of various enzymes in a target organism can help to achieve the
desired levels of bioengineered products or metabolites. Determining the degree of control
of various enzymes in each FDP can help find the key locations to target, and we did this by
sampling the kinetic parameter space uniformly (Methods) using the ORACLE [48, 50, 51,
84-86, 98] workflow, generating a population of 50,000 stable kinetic models for each FDP.
The kinetic parameter space was sampled based on the degree of saturation of the enzyme
active sites, as proposed previously by Hatzimanikatis and colleagues [84]. ORACLE verifies
the local stability of the model around the steady state by testing that the Jacobian matrix
has no positive real eigenvalues for the sampled set of parameters. We then calculated, for
the stable models, the flux control coefficients (FCCs), representing the fold change in a
specific flux with respect to the perturbation of an enzyme’s activity, of 275 enzymatic
reactions with respect to their enzymes. We then compared the differences in FCCs across
FDPs for the populations of stable kinetic models.

If the signs of a FCC are not the same across FDPs, the FCC depends on the FDP, and making
metabolic engineering decisions is ambiguous. This means that the alternative steady states
have a significant impact on the FCC, and we should be careful when deriving conclusions.
FCC values with an absolute mean value larger than 0.1 across all the FDPs have significant
control over the fluxes in the network (Methods). Fluxes smaller than 0.01 mmol/gDW/h
were not considered, as we focused around central carbon metabolism. To investigate the
differences in control patterns for each FDP, we compared the sign of these FCCs across the
FDPs (Figure 3.5) because the sign determines the increase or decrease in magnitude of a
flux upon perturbation of an enzyme level. Hence, the sign can indicate if it may be possible
to overexpress, down-regulate, or even suppress a gene to achieve a target enzyme level for
bioengineering purposes. If the signs of the mean FCCs are equal across all FDPs, we have
consensus, and the FCCs are independent of the FDP. This indicates that the predictive
conclusions drawn should be valid for all the tested alternative steady states, suggesting
that our metabolic engineering conclusions are more robust. Nearly 75% of the FCCs studied
agreed in sign across all the FDPs, meaning that most metabolic flux response predictions
are consistent (Figure 3.5), though the 25% of potentially inconsistent predictions highlights
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the importance of considering alternative steady states. As we sampled the kinetic
parameter space uniformly for the FDPs, differences in the thermodynamic displacement
(Figure 3.4) between these FDPs are the main reason behind these variations in their control
pattern. Further discussions around these differences are in the supplementary document

(Appendix B3).

FCC Analysis Across FDPs
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Figure 3. 5. General statistics on FCCs across FDPs. Histogram displaying the fraction of
reactions that have FCCs with a certain sign pattern across the FDPs. There are three main
categories of the FCCs: (i) consistent among all FDPs, (ii) FDP specific, and (iii) two FDPs
contradicting two other FDPs. The FCCs were averaged over the 50,000 samples for each
FDP, and the ones selected for analysis had a mean absolute value larger than 0.1 (10% fold
change). For example, to assist reading the figure, the column “FDP 1 specific” has two
possible scenarios as it contains FCCs that are positive in FDP1 and negative in the other
three FDPs as well as FCCs that are negative in FDP1 and positive in the three other FDPs.

3.2.2.3. Ranking target enzymes for flux control
Some of the fundamental biological tasks performed by a cell include substrate uptake,

product excretion, and cellular growth, represented by u. Since we modeled the physiology
72



of optimally grown E. coli, we first studied what enzymes have control over cellular growth.
These enzymes were considered as attractive target candidates for genetic manipulation to
improve cellular growth. We selected the top five enzymes with high absolute FCC values
for each FDP and computed the control exerted by these enzymes over cellular growth
(Figure 3.6). Several enzymes such as PGM, RPE, TPI, PPC, and NAD kinase (NADK) had
considerably different control patterns for u across FDPs in terms of magnitude and sign.
Because of the abovementioned differences in the thermodynamic displacement of
enzymes across the FDPs, it was not surprising to see opposing FCC signs. For instance, TPl is
far away from equilibrium for FDP1 and near equilibrium for FDP2 (Figure 3.4), resulting in
different conclusions when considering control coefficients of cellular growth (Figure 3.6). In
contrast, PGM is always far away from equilibrium but, due to kinetic coupling, has
considerably different degrees of control across FDPs, indicating the importance of
considering alternative steady states. More importantly, we also found enzymes that agreed
in terms of sign across the FDPs. NADTRHD, phosphofructokinase (PFK), and ATP
maintenance (ATPM) were the top target enzymes — independent of the FDP — for
improving the cellular growth of optimally grown E. coli.

Because in the studied physiology, growth is based solely on glucose, we decided to study
how consistent the FCCs of glucose uptake via D-glucose transport (GLCptspp) were across
FDPs. PGM, PFK, RPI, and RPE agreed across all the FDPs in terms of sign and the magnitude
of their FCCs, making them attractive metabolic engineering targets for increasing GLCptspp
flux (Appendix B3, Figure S4). Based on a consistent magnitude across all the FDPs, PGM and
PFK were the top two target enzymes that seemed to control the glucose uptake of
optimally grown E. coli. TPl, PPC, NADTRHD, glucose 6-phosphate dehydrogenase
(G6PDH2r), and 6-phosphogluconolactonase (PGL) control GLCptspp in at least one FDP but
not across all. As for the control of cellular growth, the differences in thermodynamic
equilibrium and kinetic coupling between the FDPs explain these results.

These observations emphasize the importance of considering enzyme kinetics and the
existence of alternative steady states before making metabolic engineering conclusions
based off kinetic models, especially given that further similar observations were made for
FCCs of other fluxes. Generally, we noticed that the enzymes whose control remained
unchanged across FDPs were found in the central carbon metabolism. Inconsistent enzyme
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control was observed in peripheral and transport reaction enzymes topologically further

away from the central carbon.
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Figure 3. 6. Flux control across FDPs for cellular growth, u. lllustration of the union of the
top five enzymes across the FDPs in terms of absolute control over cellular growth. The
whiskers correspond to the upper and lower quartiles of the 50,000 FCC populations, and
the bars correspond to the means. Full enzyme names are given in supplementary
materials (Appendix B1).

3.2.2.4. Study of uncertainty in FCCs

To characterize the variability of cellular growth FCCs with respect to all central carbon
enzymes (i.e. no transporter nor exporter) for the populations of 50,000 models (Figure 3.7),
we studied the uncertainty across the four FDPs using PCA (Methods). The first two principal
components (PCs) covered a majority of the variance, with 93%, 62%, 56%, and 69% for
FDP1-4, respectively. For FDP2—4, at least seven, eight and six PCs, respectively, were
required to account for more than 90% of the variance between the FCC populations. This
suggests that the uncertainty in the cellular growth FCCs was considerably more distributed
for FDP2-4 than for FDP1 that required only two.

In PCA, each variable has a score on the PCs that are under consideration, which

corresponds to its contribution to the variability described by the given PC. In FDP1, the
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growth FCC of the enzymes NADK and NADPPPS corresponded to the highest PC scores
above absolute 0.5 on the first PC, suggesting that most of the uncertainty comes from
these ETC enzymes (Figure 3.7). Their scores on both PCs were strongly opposed in terms of
sign, suggesting that these FCCs anti-correlate. In fact, the cellular growth FCCs of NADK and
NADP phosphatase (NADPPPS) had a -1.00 Pearson correlation coefficient, further indicating
that they were exactly anti-correlated. On the other hand, enzymes PGM and RPM had very
similar PC scores, and we note that the correlation coefficient of these FCCs was 0.91,
indicating a near-perfect correlation.

Similarly to FDP1, we studied FDP2-4 to find underlying covariance patterns between the
cellular growth FCCs (Figure 3.7). We noticed that certain trends were preserved between
the FDPs as, for instance, the PCA scores of NADPPPS and G6PDH2r tended to have an
opposing sign across the four FDPs for at least one of the plotted PCs. In fact, NADPPPS and
G6PDH2r cellular growth FCCs had Pearson correlation coefficients of -0.81, -0.84, -0.53,
and -0.71 for FDP1-4, respectively. Hence, we can use PCA to explore and unravel
covariance patterns in FCCs to understand their underlying functional relationships.
Although fully describing the relationship between FCCs remains a non-trivial task, PCA
makes strides towards interpreting the various sources of uncertainty.

NADTRHD, PFK, and ATPM were the top candidates for improving cellular growth, as
determined previously based on absolute means (Figure 3.6). If we had to select one of
these three enzymes for genetic engineering, we want it to be the one with the least
uncertainty for this purpose. We observed that PFK scores lower than NADTRHD and ATPM
on the PCs across all the FDPs (Figure 3.7), demonstrating the least uncertainty and
suggesting that it could be the most prominent target enzyme. A similar analysis could be
performed for other FCCs, such as glucose uptake (Appendix B3, Figure S5). We conclude
that to improve growth of aerobically grown E. coli, PFK would also be a top candidate
enzyme to metabolically engineer, despite the uncertainties.

The uncertainty in the kinetic parameters and its impact on our studies remains difficult to
qguantify due to the underdetermined nature of this highly non-linear solution space but it
has been further characterized by previous work done by Andreozzi et al. [49]. For our
study, when we next compare the effect of uncertainties stemming from the flux and the
concentration steady-state solutions, we decided to fix the distributions of the sampled
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enzyme saturations using beta distributions (Methods). This allowed us to keep the same

level of uncertainty in all the kinetic parameters for our comparisons.
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Figure 3. 7. Principal component analysis (PCA) of FCCs of cellular growth across FDPs. PCA
was carried out on the cellular growth FCCs of the 50,000 samples for each FDP. Only
cellular growth FCCs with respect to non-transporter and non-exporter reactions were
considered. The two principal components, namely PC1 and PC2, were plotted to study the
variance in the FCC samples. The values in brackets correspond to the variance covered by
the principal components (PCs). Full enzyme names are given in supplementary materials
(Appendix B1).

3.2.3. Impact of flux and concentration profiles

We next assume that we know the directionality of each reaction in our network but the
system still remains underdetermined and we have multiple feasible flux and concentration
steady states within the allowable solution space. Because of this, we then studied how the
underlying uncertainty that results in alternative steady states within a FDP affected the
predictions of kinetic models. For this analysis, we selected FDP1 because it has: (1) reaction

directionalities corresponding to the more frequently observed E. coli wildtype operational
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state of glycolysis and TCA cycle [62, 106-108], (2) the largest flux variability score, and (3)
the highest specificity in control (Figure 3.5). FDP1 was then more exhaustively sampled
with 100,000 iterations of concentrations and fluxes. We chose RSSs from the flux and
concentration samples as previously done with the four FDPs and also used PCA to
determine four extreme steady states (ESSs) for the concentrations and four ESSs for the
flux solution spaces (Methods). The ESSs are samples with the most distant behavior from
the “average” displayed by the RSS. An ESS is a steady state that is located along a PC at one

of its extremes and can be used to characterize the “extreme” behaviors of the FDP1.

To study the impact of flux and concentration ESSs on MCA outputs, we had to decouple
their effects (Methods), so we isolated the effects of flux and concentration separately in
our analysis. Therefore, when we studied the effect of flux, we kept the same concentration
RSS and paired it with the four flux ESSs, meaning that we had four pairs of flux ESSs with
the same RSS concentration. Similarly, when we decoupled the effect of concentration, we
paired the flux RSS with the four concentration ESSs. Therefore, we had a total of eight
extreme pairs of flux and concentration steady states to study. We compared these extreme
pairs to the reference case, where we had the flux and concentration RSSs paired. For the
reference case, we sampled the saturation state space for 50,000 stable kinetic models. We
used the distributions of the kinetic parameters from this reference case to generate
models for the ESSs (Methods). We sampled 50,000 stable kinetic models for each ESS and
computed the FCCs using MCA. We performed a comparative analysis like the comparative
analysis of the FDPs to assess the degree of confidence of our conclusions with respect to

both the extreme flux profiles and the extreme concentration profiles.

3.2.3.1. Flux uncertainty propagation to control

Like the comparison of FDPs, the ESS flux profile magnitudes mainly differed in peripheral
fluxes, such as glutamate transport, glycogen metabolism, and ETC reactions (Appendix B2).
Noticeable differences in the central carbon fluxes of greater than 1 mmol/gDW/h were
seen in pyruvate kinase (PYK), fumarate reductase (FRD3), ME2, NADH17pp, NADH18pp,
and NADTRHD. To assess how this variability in fluxes affected the degree of confidence in
our MCA conclusions, we considered control over glucose uptake and cellular growth. For
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glucose uptake, the top enzymes of the flux ESSs, aspartate transaminase (ASPTA), PFK,
AKGDH, TKT1, ENO, and TPI, are reasonable candidates for improving uptake because they
are all qualitatively in agreement across the flux ESSs and have a control value larger than
absolute 0.1, indicating significant control over their networks. This excludes PDH (Figure
3.8A). Citrate synthase (CS) and G6PDH2r, may appear to be attractive targets based on
some of the ESSs, but since this property is not in consensus agreement across all ESSs, they
are less reliable targets. The top enzymes controlling cellular growth were sensitive to the
ESSs, as just 47% of them were in agreement sign-wise with each other (Appendix B3, Figure
S6). However, we can still find reliable target enzymes, such as ENO, AKGDH, and glutamate
dehydrogenase (GLUDy), mainly in the central carbon reactions that have a reasonable

magnitude and consensus agreement.

3.2.3.2. Concentration uncertainty propagation to control

We repeated the previous analysis for ESS concentration vectors to study how they impact
MCA outputs. The main concentration differences between the extreme concentration
vectors were for amino acids (R-glycerate, L-glutamine, L-lysine, D-alanine, L-proline),
inorganics (potassium, iron, and cobalt), cofactors (NAD and AMP), and several biomass
building blocks (Appendix B2). We considered the top enzymes for glucose uptake FCCs
(Figure 3.8B) and noticed that the MCA conclusions were more sensitive to concentration
values than to variations in flux values. Candidate target enzymes to improve glucose
uptake would be PFK, GAPD, ENO, and RPI, as at least three out of five of the steady states
are consistent and have a control value larger than 0.1 (Figure 3.8B). Hence, the metabolic
engineering decisions derived from the MCA outputs appear to be more sensitive to
concentration values rather than flux values. As the biomass building block and amino acid
metabolite concentrations were changing between these ESS concentration vectors, it
makes sense that they would have a higher FCC variability. The concentration values in turn
directly impact the thermodynamic displacements and the enzyme saturation states, which
impact the MCA conclusions. The cellular growth FCCs were very sensitive to the ESS
metabolite concentration vectors because most them were in sign disagreement (Appendix
B3, Figure S6). NADTRHD and ATPM were the most appealing enzymes for controlling
cellular growth due to sign and magnitude consistency across the ESSs of their FCCs.
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Figure 3. 8. Flux control patterns across extreme steady-state solutions. lllustration of the
union between the top 10 enzymes across the (A) flux and the (B) concentration ESSs in
terms of absolute control over glucose uptake. FCCs were sorted in decreasing order of
absolute magnitude of the RSSs (reference). The enzyme names in black indicate that the
FCCs were sign-consistent (in agreement) and red if they were sign-inconsistent (in
opposition). Full enzyme names are given in supplementary materials (Appendix B1).
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3.3. Conclusion

This chapter studied the impact of alternative concentration and flux steady states on the
conclusions derived from the MCA outputs of the non-linear kinetic models built around
them using the physiology of optimally grown E. coli. We show that different FDPs can lead
to distinct metabolic engineering conclusions when analyzing output FCCs of the non-linear
models. The ME2, PPC, and PGl examples illustrate how thermodynamics and kinetic
coupling can change the control from one FDP to another. These enzymatic reactions were
topologically close to the bidirectional reactions that changed between the FDPs, though,
less intuitively, we noticed that there were changes in thermodynamic displacements across
FDPs in enzymes that were topologically far away from the bidirectional reactions. We then
studied the uncertainty within a single FDP, and using PCA to study the extremes of the
solution space, found that within a FDP, MCA outputs appeared to be more sensitive to
concentration values rather than flux values. These observations emphasized the
importance of considering alternative solutions when studying a physiology as the steady
state affects directly the decisions for hypothesis generation in basic research and design in
synthetic biology and metabolic engineering. Hence, we propose a workflow for assessing
this uncertainty to make more reliable metabolic engineering decisions that can be broadly
applied to any kinetic model to improve the predictions resulting from it.

We then used our workflow to pick target enzymes for genetic modification, identifying
NADTRHD, PFK, and ATPM as the top target enzymes independent of the FDP for improving
the cellular growth of optimally grown E. coli. PFK and PGM were selected as top enzymes
independent of the FDP for improving glucose uptake of optimally grown E. coli. We stress
the importance of selecting target enzymes that exhibit control across all the FDPs to make
more reliable decisions, highlighting the need to consider alternative steady states when
building non-linear kinetic models for a given physiology, as they have imminent
implications on the conclusions derived from the MCA. The herein proposed workflow can
be used to suggest metabolic engineering decisions for a given study and can provide
insights into the design of experiments, as the ranking of candidate enzymes can highlight

reactions or enzymes that need further characterization and study due to their variability. In
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this light, the next chapter discusses how statistical methods can be used to attribute

confidence intervals to variables of kinetic models and their outputs.

3.4. Materials and methods

3.4.1. Reduced E. coli model

The model stoichiometry for this study was derived from E. coli iJ01366 [77] using redGEM,
a systematic framework for developing core models that are consistent with their genome-
scale counterparts [57, 58]. The resulting reduced models are context-specific and in the
process of reduction it is important to define the carbon sources, the content of media and
also the metabolic subsystems of interest for the study. We used a minimal media with
glucose as the sole carbon source and the selected starting subsystems were ones
pertaining to central carbon metabolism (glycolysis/gluconeogenesis, citric acid cycle,
pentose phosphate pathway, pyruvate metabolism, and glyoxylate metabolism). Omics data
for the physiology of optimally grown E. coli under aerobic conditions were extracted
(Appendix Al) from McClosekey et al.[61]. The data were integrated in the form of
constraints into the MILP formulation of the thermodynamics-based metabolic flux analysis

[83].

We make the following directionality assumptions for several bi-directional reactions:
e Fructose-biphosphate aldolase (FBA) that is part of mid-lower glycolysis is set
towards catabolism [79].
e The bi-directional transports of magnesium and phosphate are both set towards
uptake [80, 81].
e Acetate kinase (ACKr) and phospho-transacetylase (PTAr) are both set towards the
acetate production, because acetate is one of the main by-products [61].
e The succinyl-CoA synthetase (SUCOAS) is set towards the production of succinate
[61].
The polyphosphate kinases (PPK2r, and PPKr) are set towards the polyphosphate

polymerization [82].

81



For some of intracellular metabolites, a corresponding transport reaction has not been
biochemically characterized and does not appear in the E. coli iJ01366 and in our reduced
model. However, these metabolites, unless they are highly polar or very large, are subject to
passive diffusive transport through the cell membrane. Therefore, we explicitly added
transport reactions for these metabolites that operate at least at basal level (107-6

mmol/(gDW*h)).

3.4.2. Identification of alternative flux directionality profiles

As first step (Figure 3.1), in order to identify the reactions that are able to operate in both
directions, flux variability analysis (FVA) was performed [16, 83]. If the system has a number
z of bi-directional reactions, it could have up to 2° FDPs. We enumerated the FDPs by
adjusting the boundaries of the bi-directional reaction so that they can only operate in a

unique direction. We define the coefficient of variability, CV;, as:

UBflux,i - LBflux,i
Fflux,i

CVflux,i =

where, UB and LB are the upper and lower bounds respectively of the flux i derived using
thermodynamic-based variability analysis (TVA) [16, 83]. F is the average of UB and LB. We
define the flux variability score of each FDP as the Euclidean norm of the vector whose
entries are the CV of each flux. The FDP with the highest flux variability score has the highest

relative flexibility in terms of the allowable flux ranges.

3.4.3. Computation of reference and extreme steady states for alternative FDPs

For each of the identified FDPs, in step two (Figure 3.1), we sample the solution space of
concentrations and fluxes without violating physiological, thermodynamic and directionality
constraints. The convexity of these solution spaces enables us to efficiently generate sets of
flux and concentration samples using the Artificial-Centering Hit-and-Run sampler in the
COBRA Toolbox [8, 9, 109]. We perform principal component analysis (PCA) on the

generated samples to select reference and extreme samples [91]. The first seven principal
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components (PC) were used as for the fluxes and the concentrations they covered above
90% of the sample variance. The reference sample is chosen so that its vector projections
onto the seven PCs are minimal. We get the two extreme samples of a PC, PCmax and
PCmin, by respectively finding the 0.1% top and the 0.1% bottom samples based on their
magnitude of vector projections onto the given PC. Out of the 0.1% top and the 0.1%
bottom samples we chose the samples that have the smallest magnitude of vector

projections onto the other PCs (Appendix B3).

3.4.4. Analysis of alternative solutions between FDPs

3.4.4.1. Thermodynamic displacement analysis

Within each FDP, in step 3 (Figure 3.1), we compute the displacement of the reactions from
thermodynamic equilibrium, T [52, 84, 87]. For a simple uni-uni reaction with a substrate S

and a product P, the thermodynamic displacement, I, is defined as:

1 [P]

"~ keq [S]

where, keq is thermodynamic equilibrium. More specifically, we first use the vector of the
reference steady-state concentrations together with values of standard Gibbs free energies
of reactions to compute I. For reactions with negative Gibbs free energy, 0 < I < 1. For
reactions that are far away from equilibrium I is close to 0, and for reactions near
equilibrium I = 1. We then classify the reactions in terms of I in the following four classes:
reactions that operate (i) near equilibrium (NE), 0.9 < I < 1; (ii) near to middle equilibrium
(NM), 0.5 £ I <£0.9; (iii) middle to far from equilibrium (MF), 0.1 < [ £ 0.5; and (iv) far from
equilibrium (FE), 0 < I £ 0.1. The information about I is important, as it is known that
enzymes that operate near equilibrium do not have control over fluxes and concentrations
in the network [84].

Within the MCA framework, Kaeser and Burns [88] define the concentration control
coefficients, Cj, and the flux control coefficients, C, as the fracitonal change of metabolite

concentrations and metabolic fluxes, respectively, in response to fractional change of
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system parameters. According to the log(linear) formalism [110, 111], we can derive C; and
Cy as:

C} = —(NVE)"'NVII

Cy=ECy+1I

where, N is the stoichiometric matrix, V is the diagonal matrix whose whole elements are
the steady-state fluxes, E is the elasticity matrix with respect to metabolites and II is the
matrix of elasticities with respect to parameters. If we now consider a uni-uni reaction, i,

with a substrate S and a product P we write its reaction rate v; as follows:

1-rlgt
vi:Vmax%-l_%-l_l

where, Vpyox is the maximum velocity at enzyme saturation, and, KMS and KMP, are the

Michaelis constants of S and P, respectively. We define, as done previously by

Hatzimanikatis and coworkers [50], the elasticities with respect to S and P, respectively, as:

51
s Sdv 1 K,
gv_:——: —_
i “pds (1-I) [S], [P]
—+—+1
Ky " Ky,
1Pl
, Pdv r Ky,
&, = ——== = — -
i pdp (1-I) [S], [P]
—+—+1
Kus * Ku,

where, s;fl. and efi are entries of the elasticity matrix E. Evidently, if the reaction is at
thermodynamic equilibrium (i.e. I = 1), the first terms of the elasticity terms e,fi and e{,’i tend
towards infinity and we consequently have no control with respect the considered enzyme.
However, if the reaction is far away from thermodynamic equilibrium (i.e. I = 0), the second
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terms of egi and sﬁi can have impact on the elasticities, potentially resulting in control.
Hence, it is essential to consider thermodynamic displacement with the kinetics in order to
understand control at systems level. The elasticity matrix E is directly affected by I, and

hence the control coefficients C;y and C will also be impacted.

3.4.4.2. Kinetic parameter sampling

We build populations of kinetic models for the computed vectors of the reference steady-
state fluxes and concentrations. We integrate the information about the kinetic properties
of enzymes available from the literature [92] and the databases [93, 94]. We use the
reversible Hill kinetics [95] and convenience kinetics [96] for reactions with unknown kinetic
mechanism. For kinetic mechanisms with no or partial information about their parameter
values we sample the space of kinetic parameters by direct sampling of the degree of
saturation of the active site of an enzyme considering one [84] or multiple enzymatic steps
[52]. We then parameterize a population of kinetic models (Appendix B4 and B5), perform
consistency verifications [51, 54, 84], and compute the flux and concentration control
coefficients [84, 97]. The consistency verifications include a stability test of the model that
verifies the Jacobian matrix has no eigenvalues with positive real part for the sampled set of
parameters. This test relies on the assumption that the observed RSSs for flux and
metabolite concentration are in a stable steady state at the observed time point. For more
details about the ORACLE workflow for construction of large-scale kinetic models that are
consistent both with thermodynamics and the observed data, the reader is referred to

literature [48-52, 84-86, 98].

3.4.4.3. General statistics on FCCs across FDPs
We computed FCCs of the 275 enzymatic reactions with respect to their 275 enzymes as a
guantitative output to compare how our MCA conclusions were consistent across the FDPs.

Thus, we calculated the FCCs

N dlnv;  py 0y
Pk dlnp,  v; Opy
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where, v; is the flux across a reaction i and, p, is the concentration perturbation of an
enzyme k. We then compute the mean of the FCCs, C?, across the kinetic models for an FDP
(Table 3.1).

We considered the FCCs for fluxes that were larger than 0.01 mmol/gDW/h across all FDPs
because we wanted to focus our study around the reactions that carry more significant
amount of carbon (i.e., central carbon metabolism fluxes). Only 126 reactions satisfied this
condition, which left us with 34’650 (126 reactions x 275 enzymes) FCCs (Appendix B3,
Figure S7). To compare more significant FCCs, we only considered ones that had more than
absolute 0.1 fold change across the 4 FDPs so that we focus on FCCs with significant control.

This meant that we kept 1’263 out of the previous 34’650 FCCs (Appendix B3, Figure S8).

V1 V1 V1 U1
CP1 sz CP3 Cpm
] ] VU2 v2
CP1 sz CP3 Cpm
U3 U3 U3 VU3
CP1 sz CP3 Cpm
Un Un Un Un
Cm sz Cp3 Cpm

Table 3. 1. Mean of flux control coefficients of a population of models.

3.4.5. Characterizing the distribution of kinetic parameters

3.4.5.1. Beta distributions

The kinetic parameter solution space is studied in step 4 (Figure 3.1) by sampling uniformly
the degree of saturation of an enzyme’s active site as defined by Wang et al. [84]. We obtain
distributions of scaled metabolite concentrations from this sampling and consequently,
kinetic parameter distributions. The degree of saturation of an enzyme’s active site has a
well-defined range from zero to one, allowing us to resort to parametric distributions for
their characterization. Beta distributions provide an efficient way of quantitatively
expressing variability over a fixed range by estimating its two parameters [112]. These
parameters can be obtained and compared for populations of kinetic parameters generated

with different operational configurations.
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3.4.5.2. Implying prior beta distributions for sampling

In this work we compare how alternative steady states describing a physiology impact
metabolic engineering conclusions. It is thus desirable to ensure that the sampled degrees
of saturation of enzyme active sites are similar for the populations of kinetic models built
around alternative steady states within FDPs in step 5 (Figure 3.1). Hence, we compute beta
parameters describing the distributions of the kinetic parameters of a given RSS. These beta
parameters are used to sample degrees of saturation of enzyme active sites for alternative
steady states from similar density distributions using the prior samples. The Beta
distribution parameters are implied within the ORACLE workflow as input for sampling
degrees of saturations of enzymes when parameterizing new kinetic models. Beta
distributions hence bias sample densities for the sampling of degrees of saturation states for

an enzyme.

3.4.6. Analysis of alternative solutions within FDPs

We investigate in step 5 (Figure 3.1) how different flux profiles and metabolite
concentration vectors, within FDPs, affect the populations of control coefficients. We
separately studied the effects of the flux profiles and the metabolite concentration vectors,
in order to decouple their effects on control coefficients. We take the reference steady-
state concentration vector and we form the pairs with the extreme steady-state flux profiles
computed in step 2 of the procedure (Figure 3.1). We then generate populations of kinetic
models as described in step 3. In the generation of missing kinetic information, we use the
distributions of kinetic parameters that have been characterized in step 4 for this FDP. This
way, we obtain alternative populations of kinetic models that have in common the
reference steady-state concentration and the distribution of kinetic parameters. We
compare these populations of kinetic models together with the population of kinetic models
that was computed in step 3 for the reference steady state of this FDP. This enables the
assessment of the effects of alternative flux profiles within the FDP onto the control
coefficients.

The effects of alternative values of concentrations on control coefficients are estimated in
an analogous way, where we take the reference steady-state flux and we form the pairs

with the extreme steady-state concentrations and we repeat the procedure discussed
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above. Taken together these two comparisons of alternative solutions allow us to identify
sets of enzymes within a FDP whose control over the fluxes and concentrations in the
network is robust both with respect to the alternative concentrations and fluxes. We also
identify enzymes that are robust only with respect to the alternative concentrations or

alternative fluxes.

3.4.7. Metabolic Engineering and Synthetic Biology Design

We next analyze in step 6 the results obtained in steps 3-5 (Figure 3.1) in the light of
metabolic engineering and synthetic biology design. We single out the enzymes whose
control over fluxes and concentrations of interest is consistent over all FDPs and within
FDPs. In this step we can also design the experiments that would give sufficient information

for discriminating alternative solutions between FDPs and within FDPs.

3.5. Appendix B

B1 Table. Thermodynamics-based metabolic flux analysis model. Spreadsheet giving the
list of metabolites, reactions, variables, constraints and compartmentalization in the flux

directionality profile 1.

B2 Table. Thermodynamic variability analysis. Spreadsheet giving the flux ranges and

Gibb’s free energy ranges for reactions and the metabolite log(M) concentration ranges.

B3 Supplemental Material. Additional information and supplemental figures.

B4 Text. System of ordinary differential equations describing FDP1. Non-linear kinetic

model of E.coli for FDP1 giving the system of ordinary differential equations.

B5 Table. Reaction mechanisms describing the systems.

88



4. Statistical inference in ensemble

modeling of cellular metabolism

4.1. Introduction

Kinetic models are becoming essential computational tools for studying the metabolism of
organisms and understanding the dynamics of their cellular biochemical interactions [105].
However, the construction of kinetic models remains a challenging endeavor as large
uncertainties are associated with the rate expressions describing all the reactions making up
these cellular interactions [32]. Reaction mechanisms are rarely fully characterized for an
organism, making it difficult to select appropriate rate expressions for reactions and,
information on the parameter values required by these expressions is very scarce. Several
ensemble modeling (EM) approaches that assign kinetic mechanisms to reactions,
incorporate experimental data and sample unknown kinetic parameter values have
emerged for generating populations of kinetic models [47, 65, 84, 113]. Yet, given the
promising methodologies that exist for constructing populations of large-scale kinetic

models, the community lacks in procedures for examining their uncertainty.

Kinetic models are generally constructed with a particular objective such as improving a
substrate’s production, increasing cellular growth or advising experimentalists on
physiological properties to measure [105]. Irrespective of the objective, comparing
populations of variables - such as metabolic control analysis (MCA) sensitivity coefficients -
computed from the kinetic models in order to derive conclusions is a fundamental step in
computational modeling and engineering. To meaningfully compare populations of
variables, it is important to consider their associated uncertainty, for which innumerous
statistical approaches exist, making it sometimes a dubious task to select the “correct”
method [114]. Despite originating from statistical mechanics, EM has only been employed in
systems biology for two decades [55] and its use of statistical methods for managing

uncertainty remains, to our knowledge, untapped.
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Kinetic models of metabolism are generally constructed around a given steady state of
interest, characterizing the system. Assuming that we know the metabolite concentrations,
the flux values and the reaction mechanisms describing the system, we still have uncertainty
in the kinetic parameter values. The Optimization and Risk Analysis of Complex Living
Entities (ORACLE) framework handles this uncertainty by considering multiple alternative
possible sets of models by sampling the parameter space until enough models are obtained,
such that the mean and several other statistical modes of the model outputs converge [52,
84, 115]. Another EM approach generates populations of models to search for a unique
model that best fits experimental data to construct a time-course dynamic model which
describes the system [45, 47]. A workflow for constructing kinetic models considers
populations and assesses statistical significance using univariate analysis of uncertainty in
variables [65]. However, these frameworks for building kinetic models do not appear to

consider multivariate statistical methods when accounting for uncertainty.

The purpose of this chapter is to suggest how statistical approaches can be used to consider
uncertainty in kinetic models arising from sampling their kinetic parameter space by
constructing simultaneous confidence intervals (Cls). To achieve this goal, as there is no
unique approach for constructing simultaneous Cls, we review several methods. Each one
comes with certain underlying assumptions and caveats that should be taken into
consideration before application. We decided to compare how different approaches can be
applied to our data and make recommendations on how such approaches can serve the

community in attributing statistical significance to variables and handling uncertainty.

A simultaneous Cl is a range that contains the true means of a set of variables with a fixed
probability called coverage. Unlike well-known univariate Cls, simultaneous Cls account for
the multiplicity of variables to achieve the coverage. Their constructions can be approximate
or very technical, depending on the underlying distribution of the data. In this chapter, we
expose three methods: Bonferroni’s correction (BCI), the exact normal (ENCI), and the
bootstrap (BootCl). We discuss their advantages, disadvantages, and assumptions, to
suggest how these methods can be applied successfully for comparing variables.
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For the application, we use a published kinetic model [116] of aerobically grown E.coli that
was derived in chapter three. The ORACLE framework is used to compute populations of flux
control coefficients (FCCs) derived with MCA. The FCCs represent the fold change in a
specific flux with respect to the perturbation of an enzyme’s activity of p=275 enzymatic
reactions with respect to their enzymes. We studied the FCCs of n=50"000 kinetic models
with the three previously mentioned methods for constructing simultaneous Cls and

suggested a workflow (Figure 4.1) for applying them.

Quantitative inputs: Structural inputs:
- Metabolomics - Stoichiometry
- Fluxomics - Regulatory

- Kinetics architecture

- Transcriptomics /

- Parameterization
- Stability check
- MCA

e >|  Kinetic modeling [~

A 4

- Convergence
----- > - Confidence level

Statistical analysis : :
- Confidence intervals

A\ 4

e ] Confidence level - Define error margin
passed? [ ° > . Estimate required
; number samples
1yes
I
v

- Metabolic engineering interventions
- Design of experiments

Figure 4. 1. Schematic diagram of workflow carried out in the study. Information about key
steps of the workflow.

The rest of the chapter is organized as follows. In the Results and Discussion section we first
demonstrate and discuss how three different statistical approaches can be used to
construct simultaneous Cls and we then apply them to a case study (Figure 4.1). The

Conclusion highlights our key findings. The Materials and Methods section provides further
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information about the statistical procedures used in this chapter. The supplementary

material (Appendix C1) includes the algorithms used for constructing the simultaneous Cls.

4.2. Results and discussion

4.2.1. Kinetic model derivation

A reduced stoichiometric model of E.coli [116] was obtained with the redGEM and
lumpGEM algorithms [57, 58] from the iJO1366 genome-scale metabolic model [77]. The
reduced model is constituted of 277 enzymatic reactions and 160 metabolites distributed
over cytosolic and extracellular space (Figure 4.2). Experimental flux and metabolite
concentration data describing the optimal aerobic growth of E.coli were integrated within
the thermodynamic formulation of the reduced stoichiometric model for aerobically grown
E.coli from McCloskey et al. [61]. After integrating experimental data, alternative steady-
state solutions could characterize the flux and the metabolite concentration of the studied

physiology as the system was underdetermined (see Materials and Methods).

To construct kinetic models, we had to assume a steady state for the fluxes and for the
metabolite concentrations [116]. As this study focused on comparing statistical methods for
deriving Cls around the outputs of populations of kinetic models, we did not discuss the
differences in the alternative steady-state solutions nor their biological implications. For a
given case study, we assumed a solution for the fluxes and for the metabolite
concentrations. We considered different case studies that were constructed around
alternative steady states. For each case study that we considered, we had to sample the
kinetic parameters for the kinetic mechanisms describing the molecular interactions of the

cell.
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Figure 4. 2. E.coli network diagram illustrating the core topology studied. Diagram does not
include all the reactions of the systems. Full reaction and metabolite names are given in
the supplementary (Appendix B1).
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We assigned reversible Michaelis-Menten enzyme kinetics (Uni-Uni, Uni-Bi, Bi-Bi, Bi-Ter
etc...) to the reactions of the metabolic network [92]. If, for some reactions, the mechanism
was not known, we resorted to using generalized reversible Hill kinetics [95] or convenience
kinetics [96]. This resulted in a kinetic space of 1411 enzyme saturations for which we had
to sample 1411 corresponding K, values. We sampled uniformly all the enzyme saturations
between 0 (non-saturation) and 1 (full saturation) using the ORACLE framework [84]. The

local stability of models around the given steady state was tested and only stable models
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were kept (see Materials and Methods). As an inherent part of the ORACLE workflow, we

compute control coefficients for each stable model with MCA.

4.2.2. Uncertainty in flux control coefficients

FCCs derived from MCA have been used for metabolic engineering purposes to give insight
on the rate limiting steps of a metabolic network. Hence, it has been desirable to compare
FCCs to find which enzyme could be edited and to achieve certain target metabolic state of
the cell. For a given flux profile and metabolite concentration vector, referred to as case 1,
we considered n=50’000 stable kinetic models generated with the ORACLE workflow.
Alternative cases are used in the next section but, for the illustration of the different
simultaneous Cl in this section, we only focused on case 1. We consider p=275 FCCs of
glucose uptake (GLCptspp) to determine which enzymes have the most control on it and
could be of interest for editing. GLCptspp was chosen as an example, rather than for any
specific biological reasons/objective. The p=275 FCCs will be considered as the variables, for
which we have n=50’000 observations. To get some insight into which variables have the

largest population mean u, Figure 4.3 shows sample means sorted by absolute value.

4.2.3. Confidence intervals

We considered the four methodologies for building Cls presented in Materials and Methods;
one without correction, and three that account for the simultaneous coverage level. We
used the case 1 as an example to study and compare the Cls. We pre-processed case 1 data
by removing variables that had a standard deviation below a tolerance level of 10°.

When we applied the Bonferroni’s corrections to case 1, we noted that the Cl ranges were
considerably larger than the ones obtained via t-distributions without correction (Figure
4.3A and 4.3B). This was expected as the coverage levels were adjusted for simultaneity and
thus more conservative.

Regarding the BootCls, they were generally slightly smaller than the ones derived with the
exact normal method (see Figure 4.3C and 4.3D). This was expected, as the BootCls are less
conservative than the exact normal ones. Nevertheless, when the distribution was heavily
skewed, the asymmetric Cl could be considerably larger on one side of the data point. The

happened with the oxygen transport (O2tex), phosphofructokinase (PFK), phosphate
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transport (Pltex) and carbon dioxide transport (CO2tex) (Figure 4.4). As the bootstrapping
method uses the observed data to derive the Cls, they appear more representative and

adapted to the studied data.
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Figure 4. 3. Top control coefficients for glucose transport (GLCptspp). The diamonds
indicate the mean of the FCCs in decreasing order of absolute mean. Cls were derived using
(A) univariate t-test, (B) Bonferroni, (C) exact normal and (D) bootstrapping (see Materials
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and Methods). The lower and upper whiskers correspond to the Cls. The Cl is blue if it
contains zero and, red if it does not.
The computational times for obtaining BCls, ENCIs and BootCls were recorded as 0.12 s,
0.47 s and 3520 s, respectively (Mac Pro, 2.7 GHz 12-Core Intel Xeon E5, 64 GB 1866 MHz
DDR3 ECC). As expected, the computation of BootCls was considerably longer than both the
Bonferroni’s and the exact normal methods. This is due to its intense re-sampling as

exposed in Materials and Methods.
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Figure 4. 4. Top flux control coefficients of glucose uptake (GLCptspp) with confidence
intervals determined by different statistical approaches. The top 10 FCCs based on
absolute mean are reported with diamonds. The whiskers indicate the Cls for univariate t-
test (magenta), Bonferroni (blue), exact normal (red) and bootstrapping (black). The reader
is referred to the Materials and Methods for technical details on Cl computation.

Due to the underdetermined nature of our system, alternative steady-state solutions could
describe the experimentally observed E.coli physiology. Consequently, we constructed
populations of kinetic models around alternative solutions and, we then wanted to compare

their MCA outputs. Studying these outputs can help elucidate why steady-state solutions
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affect the MCA-based control patterns and metabolic engineering decisions. Fortunately,
these three statistical techniques presented in this chapter can be applied for building
simultaneous Cls for the average difference between two data sets for our case study (see

also Appendix C1).

4.2.4. Case study: mean difference confidence intervals

We were interested in studying four different steady-state solutions that can characterize
the physiology of aerobically grown E.coli. We constructed populations of 50’000 stable
kinetic models for these four cases using the ORACLE workflow. The first case referred to as
case 1 was already presented previously to demonstrate the different methods for
constructing Cls. The three other cases will be referred to as case 2, case 3 and case 4, as we
do not discuss their biological differences in this chapter. These four cases correspond to
different flux directionality profiles (Figure 3.2) that were discussed in the previous chapter
in detail. Here, we want to compare how different the FCCs for GLCptspp were for these

four cases.

In order to make this case study more comprehensible, we made a prior selection of the
FCCs for GLCptspp that we wanted to compare. For each case, we built the bootstrapped
simultaneous Cls and kept the seven FCCs with the largest absolute value in mean amongst
those significantly different from zero. The union of these top seven FCCs of the cases was
selected for the comparisons, resulting in 15 FCCs to be compared. The bootstrap was
selected because it appeared the most appropriate technique to study data that can be
highly skewed. Both the Bonferroni’s and exact normal methods could have been used also.
Since we wanted to compare these 15 FCCs between all the cases, this resulted in 90

comparisons overall (15 x 3 x 2).

The three statistical methods exposed in Materials and Methods were used to construct Cls
for these 90 comparisons. Again, the bootstrapping approach is expected to be the most
appropriate because of the aforementioned skewedness of the data. Overall, as shown on
Figure 4.5, 45 comparisons were significant based on the bootstrapping approach. In

comparison, The Bonferroni’s and the exact normal methods resulted in 44 and 39
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significant comparisons, respectively (Appendix C2 and C3). Since the variables have little
correlation in this case study, the complexity of the exact normal over the BCls seems not to

be needed.

We also noted that the comparison of nicotinamide adenine dinucleotide kinase (NADK)
between cases 1 and 2 and between cases 1 and 3 appeared to be significant when using
the bootstrapping approach, whereas the other two approaches would suggest it is
insignificant. This is an excellent example evidencing that the approaches relying on the
normality assumption may lead to different conclusions than the bootstrapping method,
when having to deal with skewed distributions. Yet, overall, there were no major differences

in the widths of the Cls derived for the 90 comparisons for these three statistical methods.

Regarding the overall results in the applications, we observed very few differences between
statistical methods, which gave us a preference for the Bonferroni’s method due to its
simplicity. The absence of any major differences between these methods can be explained
by the fact that the correction for simultaneity is the first and most important aspect, before
accounting for the dependence and for the skewness of the distribution. This was probably
due to the very large number of variables/comparisons in our considered examples. In
addition, it was evident that the main factor driving the Cls was the standard deviation of
the distributions. We had a clear example of variance inhomogeneity between the variables.
If all these techniques take reasonably well into account this inhomogeneity, it is not
surprising to see that most variation from one Cl to another is indeed due to the standard
deviation. This was probably why taking one technique or another did not change the

practical results too noticeably.

It should also be mentioned that the Bonferroni’s method, in its full simplicity, allows a
sample size calculation to estimate the number of samples required to achieve a certain
level of confidence (see Materials and Methods, Section 5). This is an a posteriori calculation
that is done based on the samples that we already have. For instance, in order to attain BCls
that have a maximal margin of error of 0.1, we would require around 1.9 million samples for
our case studies based on these 90 comparisons that we performed here. Obviously, this
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estimated number of samples required is subject to the basic and conservative assumptions

of the Bonferroni’s method and only serves as an indication.
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Figure 4. 5. Case study: differences of means using bootstrapping. Comparison of the
differences in means of 15 FCCs for GLCptspp across 4 cases using the bootstrapping
method (see Materials and Methods). The whiskers indicate the Cls and the diamonds
report the estimates of the differences in means. The tests were carried out globally on the
90 estimates even though we report each case comparison as a separate plot.

However, we noted that bootstrapping provided certain minor advantages over the other
methods, at the cost of higher computational efforts, particularly when the distributions are
heavily tailed or asymmetric. Hence, if the additional computational costs are not too
significant, for security, it may be more beneficial to apply the bootstrapping approaches
when dealing with these kinds of data sets. As this was clearly the case for us, and we had
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the computational resources, it was certainly worth investigating and applying the
bootstrapping approach for our results. Should the bootstrapping approach be too complex
to implement computationally, it is worthwhile considering the exact normal method over

the Bonferroni’s one in the presence of high dependencies between the variables.

4.3. Conclusion

We hereby introduced, to our knowledge, the first computational workflow for assigning
simultaneous Cls to populations of FCCs derived from kinetic models of metabolism. This
work studied how alternative statistical approaches can be applied for computing Cls for the
MCA outputs of populations of non-linear kinetic models of the metabolism of aerobically
grown E.coli. We investigated the differences in three distinct methods — Bonferroni’s
correction, exact normal, and bootstrap — in calculating simultaneous Cls and discussed
their particularities and assumptions. We evidenced with FCCs that we could successfully
use these three methods to build Cls for populations of models. There were no considerable
differences in the Cls derived using the three methods in the exposed data. However, the
Bonferroni’s correction was remarkable for its simplicity and for its readiness for estimating
sample sizes required for achieving certain confidence level. We highlighted that the
bootstrapping approach, although more complicated computationally and algorithmically,
provided certain clear advantages when handling data with highly asymmetric and/or
skewed distributions. Independent of the method used, it was crucial to consider the
correction of Cls for their simultaneity. Hence, we propose a workflow (Figure 4.1) that can
be used to construct Cls for the outputs — not only limited to control coefficients derived
from MCA — of populations of kinetic models.

The statistical methods developed in this chapter allowed us to quantify uncertainty in
control coefficients by using three different methods for deriving simultaneous confidence
intervals. However, it is of interest for the community to reduce this uncertainty in control
coefficients. In the next chapter, we study how sensitivity analysis can be used to source
kinetic parameters that contribute the most to the uncertainty associated with selected

control coefficients.
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4.4. Materials and methods

4.4.1. Model reduction

The stoichiometric model for this study was obtained from the E. coli iJ01366 [77] using
redGEM and lumpGEM, a set of frameworks for developing core models consistent with
their genome-scale counterparts [57, 58]. In the process of reducing the E. coli iJ01366 [77],
we defined the carbon source, the content of the cell media and the metabolic sub-systems
of interest for the study, allowing us to derive context-specific models. Glucose was the sole
carbon source and the subsystems of interest were ones from the central carbon
(glycolysis/gluconeogenesis, pentose phosphate pathway, citric acid cycle, pyruvate
metabolism and glyoxylate metabolism). We integrated the omics data available for the
physiology of optimally grown E. coli under aerobic conditions from McClosekey et al. [61]

into the mixed integer linear programming formulation of the model thermodynamics [83].

4.4.2. Kinetic parameter sampling

Ensembles of kinetic models were constructed around the computed vectors of the
reference steady-state fluxes and concentrations for each case [116]. We integrated the
applicable information about the kinetic properties of enzymes available from the literature
[92]. The reversible Hill kinetics [95] and the convenience kinetics [96] were used for
reactions with unknown kinetic mechanism. When no or partial information is available
about kinetic parameters, we sampled the space of kinetic parameters by direct sampling of
the degree of saturation of the active site of an enzyme considering one [84] or multiple
enzymatic steps [52]. Ensembles of kinetic models were parameterized in order to perform
consistency verifications [51, 54, 84], and compute MCA control coefficient [84, 97]. As part
of consistency verifications, the ensembles of models were tested for not having any
eigenvalues with positive real part. We assumed for this test that the observed reference
steady-state solutions for flux and metabolite concentration were in a stable steady state at
the observed time point. Further details about the ORACLE workflow for construction of
large-scale kinetic models that are consistent both with thermodynamics and the observed

data are available in literature [48, 51, 52, 84-86, 98, 115].

101



4.4.3. Simultaneous Cls for variable significance

A Cl is an interval that contains the population mean u with a probability of 1 — «, called the
coverage. The population mean can be thought of the limit sample mean as n tends to
infinity. The Cl is built from the sampled data and is thus random. The coverage is to be
understood as the proportion of times the Cl would contain u if the sampling were repeated
a large number of time.

The variable significance is judged by its population mean u estimated by the sample
average. This estimate is tainted by uncertainty due to the variation of the data. This
uncertainty is quantified by Cls. Because of the equivalence between statistical test and Cl,
to be of real importance, a variable sample average should be large in absolute with a Cl
bounded away from zero to ensure that this large estimated value is due to pure chance. In

the following, several constructions of Cl are presented.

4.4.3.1. Univariate and simultaneous CI

Cls can be built using innumerous techniques and for any parameters. The most well known
Cls for the mean are univariate and based on the t-distribution. To account for the
variability, univariate CI at level of 1 — a, for a = 5%, are added around each sample mean
(see Figure 4.3). Checking that the Cl contains 0 is equivalent to making a statistical test that
u =0 at level a. All technical details are recall in supplementary materials (Appendix C1).
Used as such, univariate Cl are misleading since a correction for the fact that we inspect p
variables is needed. This need, well-known for multiple testing [117], is the same for Cls.
Indeed, the simultaneous coverage of several Cls, which is the probability of containing all
population means, may be much lower than each univariate coverage. In the remaining of

this section, we present three ways to build corrected Cl, called simultaneous Cls.

4.4.3.2. Bonferroni’s simultaneous confidence interval (BCl)

The Bonferroni’s correction, probably the most used method, guaranties the simultaneous
coverage 1—¢, by dividing the univariate « levels by p, giving o= / p. For example,
with variables, each Cl is built at «=.025 and the simultaneous coverage is

(1-)* =.975* =.951. On a larger scale, for example with our 275 variables, without
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correction the simultaneous coverage would be .95°” =.00, if the variables are all
independent. Hence, it is almost sure that at least one of the population means is not
contained in the corresponding Cl.

This correction is approximate and correct only if the variables are all independent (see
Appendix C1). Otherwise, it is often too conservative which means that the Cls are too wide
[118].

An important aspect is that, even when the Bonferroni’s correction (or any other) is

appropriate, the univariate coverage will be 1—-a >1-¢;. Thus, taken individually, each Cl

is conservative. This is the cost of having simultaneous correction. This is illustrate in Figure
4.3B.

The independence assumption of the Bonferroni’s correction is not often satisfied, as shown
in our case (Appendix C4). Hence, we felt encouraged to consider alternative approaches

that account for the dependency of the variables being compared.

4.4.3.3. The exact normal (ENCI)

The exact normal method [119] attempts to release the Bonferroni’s assumption of
independence between the Cls. The method uses multivariate normal distributions N,(0, I
to correct for the dependencies of the p variables using an estimate of I, the correlation
matrix of the observations. If the variables exhibit dependence, the resulting simultaneous
Cls are expected to be smaller than the ones derived with Bonferroni’s correction. The price
to pay is in terms of computation and mathematical complexity. For the technical details,
see supplementary materials (Appendix C1).

Both the exact normal and the Bonferroni’s correction rely on the normal distributions
assumption for constructing Cls. However, extreme observations and asymmetry in the data

justify using methods relaxing this assumption.

4.4.3.4. Bootstrapped simultaneous Cl (BootCl)
Originated from Beran’s work [120], the BootCls generalize the exact normal by relaxing the
normality assumption. The approach is based on the re-sampling of the data in order to

estimate a root statistic distribution. Coupled with a pre-pivoting technique and tail
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balancing, and under some technical assumptions, the method provides asymmetric
simultaneous Cls with

- The correct target simultaneous coverage

- Equal marginal coverages

- Outside tail balance, i.e. the same probability on both sides out of the

Cls.

The bootstrap assumption is lighter than the normality assumption but it has to be valid.
Unfortunately, it cannot be validated in practice and remains an a priori assumption.

The BootCls are the most general available without any further assumption to our
knowledge. They are always more correct than Bonferroni’s and exact normal in that if the
assumptions of the former are valid, the bootstrapped one are also valid. The price to pay is
yet another level of technicity and computation complexity. For the technical details, see

supplementary materials (Appendix C1).

4.4.4. Confidence intervals for comparison of cases

The comparison of two cases is made by building Cls on the difference of their means. When
cases are compared along several variables, simultaneous Cls must be used and can be built
using the three methods seen in Section 0. In applications, simultaneous Cls are used for
multiple comparisons (for example see [121] for a detailed treatment). Because of the
correction for simultaneity, the variables along which the cases differ can be tested: the
differences are significant whenever zero does not belong to the interval (see Figure 4.3 for
the application). The mathematical details are reported in supplementary materials

(Appendix C1).

4.4.5. Sample size calculation

The use of confidence intervals and of power analysis are well known in the computation of
the required sample size (for example see [122] for a good overview in clinical research
context). The general concept is that the length of a Cl diminishes when the sample size
increases. Since this length is measuring the uncertainty on the corresponding mean, the

required sample size to achieve a given length can be computed.
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However, the sample size computation requires prior knowledge or prior data gathering.
Indeed, the length of the Cl depends also on the standard deviation that has to be guessed
or estimated beforehand. In our application, we thus make an a posteriori sample size
computation based on the estimated standard deviation from the available sample. We also
used the BCI because it is the only method allowing the formulation of an explicit sample
size calculation (Appendix C1). Even if approximate, this calculation would be quite

demanding with the other methods, if not intractable for the bootstrapping approach.

4.5. Appendix C

C1 Supporting Information. Algorithms and further details for deriving confidence

intervals.

C2 Figure. Case study: differences of means using bonferroni method. Comparison of the
differences in means of 15 FCCs for GLCptspp across 4 cases using the bonferroni method
(see Materials and Methods). The whiskers indicate the Cls and the diamonds report the
estimates of the differences in means. The tests were carried out globally on the 90

estimates even though we report each case comparison as a separate plot.

C3 Figure. Case study: differences of means using exact normal method. Comparison of the
differences in means of 15 FCCs for GLCptspp across 4 cases using the exact normal method
(see Materials and Methods). The whiskers indicate the Cls and the diamonds report the
estimates of the differences in means. The tests were carried out globally on the 90

estimates even though we report each case comparison as a separate plot.

C4 Figure. Heatmap of correlation matrix for case 1 variables.
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5. Global sensitivity analysis of control
coefficients derived with metabolic control

analysis

5.1. Introduction

New computational frameworks are enabling the construction of genome-scale kinetic
models that are consistent with stoichiometric, thermodynamic and physiological
constraints [123]. Despite the advances of experimental methods for estimating kinetic
parameters, significant uncertainty in their nominal values and ranges remains. Adding to
this uncertainty, the number of kinetic parameters that characterize the system increases
with the size of kinetic models. To overcome the problem of assigning unique kinetic
parameter values, one solution is to sample the kinetic parameter space, generating
multiple alternative models [26, 45, 47, 124]. This uncertainty in kinetic parameters, as
demonstrated by Andreozzi et al., can result in kinetic models with contradicting properties
and conclusions [49]. Their work mirrors the findings by Gutenkunst and coworkers who
suggest that models in systems biology are ‘sloppy models’ and that there are usually only
few parameters that affect model outputs [66]. Hence, information about which kinetic
parameters, if measured experimentally, would reduce the most the uncertainty in kinetic

model outputs is essential for the design of experiments and improving model predictions.

Different sensitivity analysis approaches exist for the identification of model inputs that
contribute the most to the uncertainty of model outputs [67-69, 125]. Variance-based global
sensitivity analysis (GSA) approaches are the most established techniques for performing
sensitivity analysis on systems described by nonlinear ordinary differential equations [67].
Their ability to estimate variance-based sensitivity indices allows them to quantify
parameter-parameter interactions and their impact on model outputs. The model itself is
treated as a “black box”, making these methods applicable to any type of model.

107



Kiparissides and Hatzimanikatis developed a GSA procedure for analyzing genome-scale
stoichiometric models that have thermodynamic constraints [126]. However, it appears to
our knowledge that GSA approaches have not been applied to large-scale nonlinear kinetic

models.

Both local and global sensitivity analysis methods have been applied to kinetic models of
smaller scale, extending to reaction networks the size of pathways and subsystems [67,
127]. Performing GSA on genome-scale kinetic models of metabolism is challenging and can
be computationally very expensive. We utilize the Optimization and Risk Analysis of
Complex Living Entities (ORACLE) framework to construct population of kinetic models [26,
124]. ORACLE efficiently samples the kinetic parameter space using enzyme saturations
(Methods) and computes Metabolic Control Analysis (MCA) sensitivity coefficients. The MCA
outputs are mathematically derived from the sampled enzyme saturation levels that can be
considered as inputs to the system. Hence, we developed a variance-based GSA approach

for assessing the sensitivity of MCA outputs to the input enzyme saturation levels.

We use an E.coli model that was reduced [57] from the iJO1366 genome-scale model [77] to
perform the sensitivity analysis. The model is constituted of 271 enzymatic reactions, 247
lumped reactions and 160 metabolites, resulting in a total of 3083 enzyme saturation levels
to be sampled. It would be very computationally intensive to perform GSA with respect to
all the enzyme saturation levels due to the size of the model. Variance-based sensitivity
indices to study the total and first order effects of input parameters were computed based
on Sobol indices [128]. Higher order effects would require considerably larger
computational efforts. Hence, we first developed a workflow for identifying parts of the
network that contribute the most to the variance of model outputs using a coarse-grain
sampling approach. Once we have identified these parts of the network, we can perform a
fine-grain sampling of the input parameters to identify the ones contributing the most to
the variance of model outputs. The workflow was used to rank input parameters based on
their contribution to the variance of MCA outputs and can be applied to different large-scale

nonlinear models.
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5.2. Results and Discussions

We have been developing a workflow (Figure 5.1) that performs variance-based global
sensitivity analysis on metabolic control analysis (GMCA) of large-scale kinetic models and
some results are presented here. The workflow required as an input a kinetic model for a
given physiology and certain study specifications. These specifications, also referred to as
the study scope, described which parts of the network we want to study and the resolution
of the sensitivity analysis. By resolution we refer to whether we are considering parameters
in groups or several parameters independently. The first step of the procedure involved
sampling the kinetic parameters so that we can characterize the solution space. After this,
subject to the study specifications, new populations of kinetic parameters were sampled.
Then, these populations of kinetic models were used to compute Sobol indices (Methods)
for desired model outputs. Based on these sensitivity indices, we determined parameters
that were responsible for the variance of the kinetic model outputs, which in this case were
the flux control coefficients (FCCs) computed with MCA. We then fixed some of these kinetic
parameters in order to validate the findings. These findings could also be used to devise

further experimental designs and/or metabolic engineering decisions.
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Figure 5. 1. Global sensitivity analysis workflow for characterizing sources of variability in
large-scale kinetic models. Diagram providing details of the various steps required for the
characterization of parameters responsible for variance in kinetic models and their
outputs.

5.2.1. Kinetic model

We used a kinetic model, referred to as “D1” in chapter two, describing the physiology of
aerobically grown E.coli for the purpose of this study (Figure 2.1). Although being the
smallest model presented within chapter two, it still had 3083 Km values to be sampled. To
characterize the kinetic parameters in our system, we used the ORACLE workflow for
constructing populations of kinetic models. The same steady states for the metabolite
concentrations and the metabolic fluxes as well as the kinetic mechanisms were used for
this kinetic model as the one described in chapter two and its supplementary material

(Appendix A2 and A6).
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5.2.2. Uncertainty from the pentose phosphate pathway

We decided to focus on the pentose phosphate pathway (PPP) for this analysis because it
contained 12 reactions that overall entail 38 Km parameters, making the scope of the study
more tractable (Figure 5.2). We considered the parameters for these reactions in groups in
order to find which reactions contributed the most to the variability of the kinetic models
(Table 5.1). Since these reactions involved different numbers of parameters, it could be fair
to expect - even without accounting for their location within the network topology - that
they have different impact on the variability of the kinetic model outputs. We performed

GMCA on the populations of kinetic models in order to rank the PPP reactions based on

their contributions to uncertainty in FCCs (Methods).
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Figure 5. 2. E.coli network diagram illustrating the reactions of the kinetic model. The
reactions indicated in red correspond to the PPP reactions whose uncertainty we studied
using variance-based global sensitivity analysis. Diagram does not include all the reactions
of the system.
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Reaction Number of Km parameters Km Parameters

EDA 3 Kepa,2ddgsps Kepa g3p> KepA pyr

EDD 2 Kepp,6pecs KEDD,2ddg6p

FBA3 3 Krpa3,s170p, Kras,dhap» KrBas,eap

G6PDH2r 4 KGeppHar,g6p> KGeppH2rnadps KGeppHzrepels KGeppH2rnadph
GND 4 KGND nadp> KGND,6pges KGND,nadphs KGND rusp-D
PFK 3 4 Kprk 3,atp>» K PFK 3,57ps K PFK 3.adps K PFK 3,5170p
PGL 2 KpaL6pgls KpGL,epec

RPE 2 KRpE rusp-> KRrPE xusp-D

RPI 2 Krprrusp-D> Krpissp

TALA 4 Krara,gps Kraraszps Krara,esps Krarasop
TKT1 4 Kerkr1,e5ps Kkt xusp-0s Krkr1,63p, KrkT1,579
TKT2 4 Kerkr2,04ps KrrT2,x05p-D> KK T2, 605 KTKT2,03p

Table 5. 1. PPP reactions and their corresponding kinetic model Km parameters. These
reactions correspond to the groups of parameters for which we studied their uncertainty
contribution to flux control coefficients.

5.2.2.1. Computation of sensitivity indices

The bounds of the enzyme saturations for all the reactions were initially left unbounded
such that we sample them uniformly between 0 and 1, allowing us to consider the full range
of kinetic parameter values. We then computed the total effects (St) and first order effects
(Si) of the PPP reactions using the Sobol approach (Methods). The St accounted for the
contribution to FCC variance of the Km values of a reaction and its interactions with other
kinetic parameters. The Si indicates the independent contribution of a reaction’s
parameters to the variance of the studied model output. Hence, the Si should by definition
always be lower or equal to the St value. The closer the Si is to the St, the more the reaction
in question uniquely, without interactions, contributes to the variance of the system output

variable.

112




We computed Sobol sensitivity indices for the PPP enzymes for multiple FCCs for a
population of 200’000 kinetic models. Since the PPP is composed of twelve enzymatic
reactions, we resampled kinetic models to obtain both St and Si for each enzyme (i.e. 2x12 +
1 runs), resulting in a simulation running time of two weeks (Mac Pro, 2.7 GHz 12-Core Intel
Xeon E5, 64 GB 1866 MHz DDR3 ECC). The St and Si values for the FCCs of glucose uptake
(GLCptspp) with respect to glucose-6-phosphate dehydrogenase 2 (G6PDH2r) (Figure 5.3A)
and pyruvate transport (PYRt2rpp) with respect to ribulose-phosphate 3-epimerase (RPE)
(Figure 5.3B) summarize a general trend that was observed in FCCs and their Sobol indices.
Hence, these FCCs were rather selected for demonstration purpose than for their biological
significance. The Si values are always zero for all the parameters studied whereas the St
appear to be significant in magnitude (Figure 5.3). This suggested that the PPP reactions’
parameters could interact with the other non-PPP reactions’ parameters to an extent that is
considerably more important than their first order effects on the FCCs. Hence, fixing or
knowing the parameter values of these PPP reactions would not reduce drastically the
uncertainty in the FCCs studied, due to the interactions of the PPP with the rest of the

system.

A Sensitivity of CJeoPi*PP B Sensitivity of CPYRt2reP

0.9

0.9-""" o.a-"'—j',

-0.1

0.8F T 7 T T 1 07t T i g
07 ] 1 06 . a 1
0.6 1 — 1 05F T ]
05 T — 1 0.4t ]
0.4t g 0.3f d
0.3 B 0.2 4
0.2 0.1 4
01 l 0

0 el & > N Ged S > ~

& &

Figure 5. 3. Sobol sensitivity indices for flux control coefficient with respect to PPP
enzymes’ saturation levels. Sobol sensitivity indices for St (green) and Si (yellow) of PPP
enzymes for (A) glucose uptake control coefficient with respect to glucose-6-phosphate
dehydrogenase 2 (G6PDH2r) and (B) pyruvate transporter control coefficient with respect
to ribulose-phosphate 3-epimerase (RPE). Enzyme saturation levels were sampled
uniformly between 0 and 1. The 200’000 samples were split into three groups, and the
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mean and the standard deviation were calculated based on these. The whiskers indicate
the standard deviation and the bars report the mean.

5.2.2.2. Kinetic model tightening

As the Si values were zero in the previous example (Figure 5.3), we hypothesized that having
the bounds of the non-PPP reactions’ parameters unconstrained contributed too
significantly uncertainty into the FCCs. We can “tighten” the system by sampling the kinetic
parameters for the non-PPP reactions from a smaller range. This reduces the sources of
uncertainty stemming from kinetic parameters as the solution space is reduced. The initial
results from the previous section were used to compute mean values of the kinetic
parameters and we fixed the sampling ranges for the non-PPP reactions to ten percent
around this mean. We then repeated the previous experiment to compute St and Si for the

tightened kinetic models.

The FCC of GLCptspp with respect to G6PDH2r (Figure 5.4A) does not appear to show
significant Si indices, which suggests that the interactions of parameters outside of the PPP
dominate and that non of the PPP reactions’ kinetic parameters, if known/fixed, can
significantly reduce the variance of this FCC. Nevertheless, we notice that the Si values have
now become significant for some FCCs (Figure 5.4B). The FCC of PYRt2rpp with respect to
RPE appears to be most sensitive to RPE, transketolase (TKT1) and ribose-5-phosphate
isomerase (RPI) from the PPP, displaying Si values of 0.26, 0.25 and 0.08, respectively.
Hence, fixing the parameters in RPE and TKT1 should reduce the variance of this FCC by up
to 50%. However, we noted that the interactions of PPP reactions with other parameters
remain significant in terms of decomposition of variance of FCCs. Hence, reducing the size of
the kinetic parameter ranges for network parts that are not part of the study scope is an
efficient method for artificially reducing the sources of uncertainty, allowing one to focus on
determining which parameters, or groups of parameters, from the study scope contribute
most to uncertainty. However, it could be beneficial to further study different levels of

tightening as multiple different ways and degrees of tightening can be devised.
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Figure 5. 4. Sobol sensitivity indices for flux control coefficient with respect to PPP
enzymes’ saturation levels. Sobol sensitivity indices for St (green) and Si (yellow) of PPP
enzymes for (A) glucose uptake control coefficient with respect to glucose-6-phosphate
dehydrogenase 2 (G6PDH2r) and (B) pyruvate transporter control coefficient with respect
to ribulose-phosphate 3-epimerase (RPE). Enzyme saturation levels were sampled
uniformly between 0 and 1 for the PPP-reactions. The non-PPP reactions’ saturation ranges
were anchored to 10% around mid saturation levels determined from the mean value
taken over a previous population of kinetic models (further explanations in the main text).
The 350’000 samples were split into three groups, and the mean and the standard
deviation were calculated based on these. The whiskers indicate the standard deviation
and the bars report the mean.

5.2.2.3. Application and validation

The results from the previous section suggested that if we knew the kinetic parameter
values of RPE and TKT1 kinetic parameters (Figure 5.4B), we could reduce the variability of
the FCC of PYRt2rpp with respect to RPE by around 50%. The initial variance of this FCC was
recorded to be 0.27. When we reduced the ranges of the sampled kinetic parameters for
RPE and TKT1 to a range of 10% around medium saturation level, rather than sampling
uniformly between 0 and 1, we reduced the variance of this FCC to 0.07. This is a reduction
in variance of 74%, which is larger than expected based on the Si of RPE and TKT1 combined
(Figure 5.4B). The error bars on the Si estimates are relatively large based on the
distributions that provide approximations of the Sobol indices. Taking this uncertainty in the
Sobol indices into account, the obtained reduction of variance isn’t far away from our

estimate.
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We also ranked the enzymes from PPP for the FCC of ethanol transporter (ETOHtrpp) with
respect to transketolase enzyme (TKT1) according to our GMCA workflow (Figure 5.5).
Based on the Si values, we could reduce the variability of the FCC of ETOHtrpp with respect
to TKT1 by around 68% by fixing transketolases TKT1 and TKT2. The initial variance of this
FCC was recorded to be 0.0071 but, when we reduced the ranges of the sampled kinetic
parameters for TKT1 and TKT2 to a range of 10% around medium saturation level, we
reduced the variance of this FCC to 0.0005. This is a reduction in variance of 93%, which is
again larger than expected based on the Si of TKT1 and TKT2 combined (Figure 5.5). This
suggests that the Sobol approach appears to well indicate the parameters that contribute to
the uncertainty, but, the indices should be studied with care as we note that the St indices
have error bars that are sometimes very large (Figure 5.4 and 5.5). The Sobol indices may
not entirely converge, which could be due to the complicated nature of the distributions of

some of the studied FCCs.
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Figure 5. 5. Sobol sensitivity indices for flux control coefficient with respect to PPP
enzymes’ saturation levels. Sobol sensitivity indices for St (green) and Si (yellow) of PPP
enzymes for ethanol transporter (ETOHtrpp) with respect to transketolase (TKT1). Enzyme
saturation levels were sampled uniformly between 0 and 1 for the PPP-reactions. The non-
PPP reactions’ saturation ranges were anchored to 10% around mid saturation levels
determined from the mean value taken over a previous population of kinetic models
(further explanations in the main text). The 350’000 samples were split into three groups,
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and the mean and the standard deviation were calculated based on these. The whiskers
indicate the standard deviation and the bars report the mean.

As we discussed in chapter four, the FCCs have distributions that are generally complex, do
not behave normally and usually have relatively heavy tails. We computed the kurtosis for
the previous run, when fixing TKT1 and TKT2 parameters, that this measure of distribution
skewedness does not fully converge for the FCC (Appendix D1). Consequently, even larger
sample sizes and better sampling methods should be considered for future studies to ensure
convergence of the different statistical modes. Nevertheless, the Si coefficients’ error bars
are relatively small, indicating their correctness as their implications seem biologically viable
(Figure 5.4 and 5.5). However, as expected [129], the St requires more samples than the Si
in order to converge and its error bars are considerably larger than for the Si. Different

metrics for quantifying the convergence of Sobol indices should be considered.

5.2.3. Future opportunities and limitations

We developed a workflow for applying variance-based sensitivity analysis approaches to
large-scale kinetic models of metabolism with an example around PPP. However, this
method can be adapted to different study scopes. We could for instance compare how user-
defined groups of parameters contribute to the variance of control coefficients. This is what
we refer to as a coarse-grain sampling approach as we are grouping multiple parameters.
Alternatively, we could focus around comparing how several parameters independently
contribute to the variance in kinetic model outputs. This is a higher resolution method that
we refer to as fine-grain sampling. However, we must note that this method becomes
computationally very expensive as we wish to increase the number of parameters to be
studied. Nevertheless, this can be used for experimental design in determining for instance
which Km value from a given reaction we should measure in order to maximize variance

reduction of FCCs.

We previously pointed towards the main limitation of this method, which is the
requirement for very large numbers of samples in order to reach convergence. This is
particularly hindering when dealing with very skewed distributions such as the FCCs. The

distributions of the FCCs do not generally behave in a normal manner and we occasionally
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observe outliers that contribute to the distributions having heavy tails. Furthermore, the
convergence of statistical modes for FCCs can take large numbers of samples due the
complexity of the system and the nature of the data. Consequently, it takes even more
samples and computational resources to reach convergence of the Sobol indices. Sensitivity
analysis and the convergence of underlying sensitivity indices has been studied in
pharmacokinetic [130] and environmental [129] modeling and similar observations have
been made. For an environmental model with fifty parameters, around half a million
samples can be required for convergence of Sobol indices [129]. However, with
technological advances and the increasing availability of computational power, variance-
based sensitivity analysis approaches are becoming more accessible for large-scale kinetic
models. Alternatively, Kiparissides and coworkers have suggested that derivative-based
global sensitivity measures (DGSM) [68] provide a more efficient method for performing

sensitivity analysis.

Another area of investigation would be to further study the populations of kinetic
parameters to understand how they result in the FCC distributions having such heavy tails. It
could be expected from previously done research that several kinetic parameters explain
this behavior [49, 66]. Hence, it could be interesting to use machine learning algorithms
such as the iSHRUNK workflow [49] that is based around classification and regression tree
(CART), to study which kinetic parameters contribute to the complexity of the FCC
distributions. The CART approach could reveal which parameters cause this behavior and
unravel information about parameter ranges and limits. It would not be surprising if regions
of bistability can be found in these systems as they have been observed in biological
organisms [131, 132], including E.coli [133]. Nevertheless, understanding what parameters
cause the FCCs distributions to have heavy tails could further help characterize sources of
uncertainty, and it may be advisable in future studies to perform such analysis prior to
carrying out variance-based sensitivity analysis. The iISHRUNK workflow could be a useful

starting point for performing these studies [49].
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5.3. Conclusions

We hereby introduced a workflow that performs variance-based sensitivity analysis on
large-scale kinetic models of metabolism. To our knowledge, this type of study has not been
carried out on kinetic models that were as large, as most previous studies were performed
on systems with several dozens of parameter. We demonstrated how we can complete a
sensitivity analysis around the PPP in order to rank the reactions based on their contribution
to uncertainty in FCCs and suggested how this method can be adapted to different study
scopes. We highlighted that the method can be computationally very expensive but, as
computational resources are becoming increasingly available with technological advances,
the study can readily be applicable to large systems, like the one demonstrated here. We
drew the readers attention to the point that care should be taken when analyzing outputs of
kinetic models with variance-based sensitivity analysis, particularly when they behave in a
non-normal manner. It may be advisable to study the kinetic model outputs first, prior to
engaging into sensitivity analysis. We point out that machine learning approaches, such as
iSHRUNK [49], could open up new avenues for unraveling information about parameters
that contribute to uncertainty, particularly when having to handle data that is of a complex
nature. As an alternative, we also suggest that DGSM [68] could provide more efficiency in

performing a sensitivity analysis.

5.4. Materials and methods

5.4.1. MCA, sampling saturations
Kaeser and Burns [34] defined the concentration control coefficients (C5) and the flux
control coefficients (CY) as the fractional change of the metabolite concentrations, x, and

metabolite fluxes, v, respectively, in response to a fractional change in system parameters

p. From the log(linear) formalism, we can derive them as:

CX = —(NVE)~'NVII

CY = ECE +1I
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where, N is the stoichiometric matrix, V is the diagonal matrix containing the steady-state
fluxes, E is the elasticity matrix with respect to metabolites and II is the matrix of elasticities
with respect to parameters.

If we consider a uni-uni reversible Michaelis-Menten enzymatic reaction S < P, its

thermodynamic displacement, [, is defined as:

where, K¢ is the thermodynamic equilibrium constant of the reaction.

The rate expression for this reaction would hence be given by:

S
Loy, YRS o a-s
i — Vmax,i — Vmax,i 5 ~
14+ i + L 1+ Si + Pl
KmS,i KmP,i

where, [ is the thermodynamic displacement of the reaction i and vy, is its maximum
flux. Kjnsi and Kyyp; correspond to the Michaelis-Menten constants of metabolites S and P,
respectively. S; and P are the metabolite concentrations S and P scaled by their
corresponding Michaelis-Menten constants.

The kinetic parameter space is characterized by uniformly sampling the saturation terms of
reaction mechanisms [84]. The saturation, o, is the fraction of a binding site that is occupied
by a substrate and is by definition well bounded € [0,1]. We define the saturation of the

enzyme of reaction i with respect to S as:

S ~
mS,i Si
° S 1+
1+ i
KmS,i
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As illustrated by Fell and Sauro [134], the elasticities of the reaction with respect to its

metabolites directly depend on the scaled concentrations and are given as:

_ aani 1 S~i
¥ 0lnxg 1-T; 1+S +P

E aani Fi pi
P 0k T 1-T; 1485, +5
Sampling saturations facilitates the computation of scaled concentrations that can directly

be used to populate the elasticy matrix E required for computing the control coeffcients.

5.4.2. GSA, calculating sensitivity indices

Generate matrix A as the base case, consisting of N samples and k input parameters. The

input parameters are the sampled o values. We compute matrix B; by fixing parameters of
the column j of matrix A into Bj and we resample the rest for b. Similarly, we compute C; by
fixing all parameters of A except the column j into it, essentially meaning that we only

resample columnj.

by, g by x
B; = :

by 1 an,j by x

a11 C1j dgk
9l Dl )

an,1 CN,j ank
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The matrices B; and C;j are constructed by resampling the values of b and c, respectively.

Sometimes a stable model can not be obtained for a set of parameters (row) from A. We

attempted up to 1000 trials for each sample of A in order to generate B; and C;. We
evaluate the models to generate output vectors y,, Y and ye;s which are the flux control

coefficients in this case.

Sensitivity indices are calculated as follows for an output Y:

L Vi (EX~1‘ (Y|Xj)) _ YAIEIIBj —f§

W B
St X (Bxy(Y[X-)) _ YAI\}IICj — f§
T vw T kg

where, Si and St are the first order and total effects, respectively. The Si corresponds to the
independent contribution of a parameter to the variance of the measurable output Y. The St
is the total contributions of a parameter (including its interaction with other parameters) to

the variance of the model output Y. Hence, by definition:

0<Si<St<1

When Si is equal to St, we can say that the parameter in question is uniquely responsible for
the variance of a model output. For full derivations of the sensitivity indices the reader is

referred to Sobol’s publication [128].

5.5. Appendix D

D1 Figure. Kurtosis convergence plot. Plot of kurtosis convergence for flux control
coefficient of ethanol transporter (ETOHtrpp) with respect to transketolase (TKT1). Enzyme

saturation levels were sampled uniformly between 0 and 1 for the PPP-reactions. The non-
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PPP reactions’, TKT1 and TKT2 saturation ranges were anchored to 10% around mid
saturation levels determined from the mean value taken over a previous population of

kinetic models (further explanations in the main text).
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6. Conclusions and future perspectives

Despite being the most understood cellular process to date, metabolism is still not
completely comprehended. Mathematical modeling of metabolism has been proven to
provide, when combined with experimental studies, invaluable information about
physiologies and cellular behavior [32]. As advances in technology are enabling gene editing
and the elaboration of cellular factories that can produce chemicals of interest, constructing
mathematical models that provide useful and correct information is essential in guiding
these developments [105]. In Chapter 1, we established that kinetic modeling of
metabolism could elucidate regulatory properties about cells and direct experimentalist in
designing insightful investigations. We also identified certain hindering knowledge gaps that
we investigated in Chapters 2-5 in order to develop a workflow for constructing more
comprehensive and consistent kinetic models of metabolism. This chapter concludes with
the main contributions of this thesis to the field and discusses some future opportunities for

research.

6.1. Conclusions

When examining the state of the art of mathematical modeling in Chapter 1, we identified
that the key issues that underlie the construction of kinetic models are related to two
general themes: network topology and handling the various sources of uncertainty. In terms
of network topology, we identified that most of the kinetic models constructed to date are
built via ad hoc protocols and that there are often no systematic justifications nor
explanations for their size and content. The other recognized problem is the management of
underlying uncertainty in constructing kinetic models that can be categorized into three
types: steady state (metabolite concentrations and metabolic fluxes), kinetic mechanisms
describing the system and the numerical values of parameters making up kinetic

mechanisms.
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In Chapter 2 we addressed the issue of network topology as, to our knowledge, there are no
evident and systematic procedures for constructing kinetic models of metabolism for a
physiology. We used the redGEM and the lumpGEM algorithms [57, 58] to construct three
consistently and modularly reduced stoichiometric models from the iJO1366 genome-scale
model [77] for aerobically grown E.coli [61]. These three models were of increasing
complexity in terms of network topology and served as basis for building kinetic models
using the ORACLE framework [50, 51, 84-86]. We proposed a way for scaling up steady
states of the metabolic fluxes and the metabolite concentrations from one model to
another and developed a methodology for fixing kinetic parameters between the models in
order to preserve equivalency. We performed metabolic control analysis (MCA) around the
populations of kinetic models and compared the MCA control coefficients as measurable
outputs. We demonstrated that we can systematically reduce genome-scale models to
construct kinetic models of different complexity levels for a phenotype that, independent of

network complexity, lead to consistent MCA-based metabolic engineering conclusions.

In Chapter 3 we studied the uncertainty in the metabolite concentrations and the metabolic
fluxes as the publications to date generally consider only a steady state when constructing
kinetic models. We integrated fluxomics and metabolomcis data for aerobically grown E.coli
[61] into a consistently reduced model and demonstrated that it was impossible to uniquely
determine a steady state due to the underdetermined nature of the system. We built
populations of kinetic models around alternative steady states to demonstrate that the
selection of a representative steady state can highly impact model-based conclusions. We
highlighted that the MCA control coefficients derived for populations of kinetic models were
more sensitive to uncertainty in the metabolite concentrations than the metabolic fluxes. A
workflow was suggested that allowed the derivation of MCA-based conclusions from kinetic

models without neglecting the uncertainty in the fluxes and the concentrations.

In Chapter 4 we developed some tools for quantifying uncertainty that arises when working
with kinetic models. Populations of kinetic models of metabolism are generally constructed
in order to derive conclusions about the dynamics of the modeled physiology under
uncertainty. However, computational frameworks for building populations of kinetic models
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do not handle systematically the uncertainty underlying model-based conclusions [55].
Although kinetic models could suggest that modifying the level of certain enzymes would on
average increase a flux of interest, this information is incomplete if we do not know with
what certainty these model predictions are made. Statistical inference approaches can be
used to derive confidence intervals that quantify the level of confidence for which certain
model conclusions lie within the intervals. We demonstrated how Bonferroni, exact normal
and bootstrapping methodologies can be applied to construct confidence intervals around
conclusions derived from populations of kinetic models. There were no considerable
differences in the confidence intervals derived with these three methods. The Bonferroni
method was notable for its simplicity and for its readiness for estimating the required
number of models to attain a level of certainty. We stressed that bootstrapping, despite
being complicated computationally and algorithmically, provides certain clear advantages
when handling data with highly skewed and/or asymmetric distributions. Regardless of the
method used, it is crucial to consider confidence intervals in order to properly quantify

uncertainty.

In Chapter 5 we presented a variance-based global sensitivity analysis (GSA) workflow that
can source the uncertainty in populations of large-scale kinetic model outputs to the various
input parameters of the system. This appeared to be to date the largest implementation of
a sensitivity analysis on kinetic modes of metabolism. We computed sensitivity indices for
defined groups of input parameters in order to rank their contribution to the uncertainty of
the MCA outputs of the kinetic models. We demonstrated how reactions of the pentose
phosphate pathway (PPP) could be ranked in terms of their kinetic parameters’
contributions to the uncertainty of MCA flux control coefficients. Information derived from
the sensitivity analysis can guide the design of experiments in order to measure/estimate
parameters that contribute significantly to uncertainty. This workflow can readily be
adapted to different study scopes as the user can define parts of the network for analysis.
Admittedly, the workflow is computationally expensive but can become more accessible as
computational power, and access to it, improves with technological advances. Additionally,
derivative-based sensitivity analysis approaches [67, 135] could provide new opportunities
for further developing the current work and reducing computational costs.
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Overall, this thesis contributed towards establishing a general workflow (Figure 6.1) for
constructing comprehensive study-specific kinetic models of metabolism and proposed
approaches and tools for coping with the underlying uncertainties. The workflow was
developed with studies of E.coli metabolism but it could be applied to other organisms for
carrying out similar work. Such studies can provide valuable information about the
metabolism of different living entities and deliver insight into designing experimental
studies and making metabolic engineering decisions. This computational workflow that
combines data from various sources could be coupled with further experimental studies to
validate and enhance the undertaken analysis, thereby completing and re-iterating the

systems biology cycle.
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Figure 6. 1. Workflow for constructing consistent kinetic models of metabolism.
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6.2. Future perspectives

As technological advances are enabling the characterization of various physiological
properties of diverse living organisms, the future of systems biology promises plenty of
opportunities for incorporating these data into mathematical models. With the increasing
availability of metabolomics data [61, 106, 136], these can be integrated into models to
reduce uncertainty in reaction directionalities via thermodynamic constraints [13-16], as we
have done in Chapter 2 and Chapter 3. As metabolite concentrations and their change with
time can be measured more precisely, experiments could explain metabolic interactions and
provide detailed accounts on cellular regulation for some enzymatic reactions [137, 138].
Such advances could facilitate the incorporation of more detailed mathematical descriptions

of kinetic mechanisms into models and thus improve their accuracy and reliability.

As data about kinetics become increasingly available [93, 94], the inclusion of Km data into
kinetic models will reduce uncertainty in these parameters. Since we sample Km values
between defined ranges of enzyme saturations, we could also use Km data to constrain
metabolite concentrations in stoichiometric models, particularly if experimental
measurements of their concentration are not available. Additionally, as proteomic and
catalytic turnover rate data are becoming more abundant [139, 140], the estimation of
Vmax values could allow further constraining of allowable fluxes across enzymatic reactions.
Inclusion of such data within the thermodynamic-based framework would further reduce
uncertainty when selecting representative steady states for constructing kinetic models of
the physiology [25]. Because reaction rates are not di per se measurable, experiments
employing 13C tracers [106-108] could provide estimation of the fluxes across reactions,

thus helping to characterize steady states.

Besides expecting an exponential increase in available physiological data, new approaches
may be required in order to cope with and analyze vast quantities of data and to derive
meaningful conclusions. Certain algorithms that employ machine learning (Figure 6.1), like
the iISHRUNK workflow [49], have already been applied successfully to study populations of
kinetic models and could provide useful guidance in the future. Exploration of the various

omics data with machine learning algorithms could offer new insight on regulatory
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mechanisms and enhance understanding about system dynamics [141, 142]. Until more
precise data about cellular dynamics and kinetic mechanisms become available, kinetic
modeling will heavily rely on Monte Carlo sampling approaches [143] in order to generate
values for unknown parameters and build populations of models. Nevertheless, the work
from this thesis can be applied for the development of personalized medicine, targeted
metabolic engineering strategies and models combining metabolism with signaling, as we

discuss below.

6.2.1. Personalized medicine

Many people are taking medication that will not benefit them [144]. This is because every
individual can respond differently to the ingested medication. Genetics and environmental
factors can vary strongly between people and hence their body will react differently.
However, medication is generally designed based on average observations and response of
patients to certain clinical trials. The problem with this approach is that it assumes that
people will respond similarly to administered pharmaceuticals. Hence, it is important to
consider patients individually or in groups defined by certain physiological traits when
designing treatments. Systems biology of metabolism can provide significant insight into
such developments [145, 146] and the workflow (Figure 6.1) devised in this thesis can be

applied.

Genome-scale models of human metabolism have been published [147-149] and can serve
as chassis for constructing kinetic models [150]. The lumpGEM and redGEM algorithms [57,
58] can be used for model reduction based on study specifications. The gut microbiome
changes considerably between individuals and could be held responsible for differences in
response to medication in humans [144]. Technologies have enabled the comprehensive
metabolite profiling of blood [151] and the gut microbiome [152, 153]. Data about the gut
microbiome could be integrated into reduced stoichiometric models in order to mirror
alternative cellular environments/media of different patients. These stoichiometric models
can be used to construct personalized kinetic models using our workflow (Figure 6.1) and
could unravel metabolic signatures and variations in the regulatory mechanisms across

individuals. Such knowledge derived from the kinetic models can help pharmaceutical
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companies and the health care institutions to identify biomarkers and hence, to devise

personalized and precision medicine.

6.2.2. Targeted metabolic engineering strategies

Metabolic engineering is the targeted improvement of physiological traits of cells via
modification of certain biochemical reactions and/or the incorporation of new ones via
genome editing. The former approach requires information about which enzymes should be
modified in order to achieve certain flux distribution and, MCA has been suggested as a
computational approach that could provide such knowhow [154]. The latter method
requires knowledge about reactions or pathways that should be added to the system in
order to achieve a desirable physiology. To this end, computational frameworks that
propose biochemical and novel reactions/pathways that connect study-specific pairs of
metabolites [155, 156] can be combined with pathway evaluation methods to suggest such
metabolic engineering strategies [157]. Whichever methodology is used, if not a hybrid of
both, information about the regulatory properties of the system are desirable in order to

further optimize the metabolic engineering strategies [158].

The workflow (Figure 6.1) can be applied to these systems in order to derive systematically
reduced kinetic models for the physiology in question. We could also construct kinetic
models around certain competing physiologies in order to compare how their metabolic
control patterns differ based on MCA. Mixed-integer linear programming (MILP)
optimization techniques [110] can be applied to MCA outputs to find optimum strategies for
these physiologies and, coupled with expert knowledge, they can be compared and
evaluated. Such analysis could be carried out with the same organism for alternative
physiologies or even, it could be extended to comparing how different organisms would fair
as cell factories. E.coli and yeast provide robust organisms for designing cell factories as they
are the best characterized in terms of available physiological data [159, 160]. Nevertheless,
as genome-scale metabolic models of multiple organisms exist [161] and are being
published, numerous opportunities lie out there for testing how other organisms could
perform as cell factories for metabolic engineering using our workflow and, the above

suggestions.
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6.2.3. Models combining metabolism with signaling

Cellular function can be studied at different levels: metabolism, transcriptional regulation
and signaling. These three processes have generally been studied independently even
though it is known that there is interplay between them [162]. Limitations and advances in
integrating information from these different levels together into mathematical models have
been discussed extensively in reviews [31, 163, 164]. Signaling is known to be in control of
cellular growth and metabolism [165]. However, combining data about signaling and
metabolism into a kinetic model remains challenging. Signaling is generally modeled using
discrete Boolean state variables that are difficult to translate into continuous time-resolved
predictions [166]. Metabolism is usually modeled as a continuous process that can be
described by ordinary differential equations (ODEs). Despite these differences in modeling
approaches employed in studies of signaling and metabolism, new methodologies [166,

167] could be applied to integrate these two processes into kinetic models.

For instance, insulin plays an important role in controlling metabolism in humans [168]. The
workflow (Figure 6.1) developed in this thesis could serve as basis for deriving kinetic
models of human metabolism from published genome-scale models [147-149]. These
kinetic models provide the system of ODEs describing cellular metabolism. Information
about metabolic actions of insulin in humans [169] could then be integrated into these
kinetic models via techniques for transforming Boolean models into continues ones [167].
As experimental technologies have significantly advanced, optical intracellular tracking of
proteins [170] could further elucidate details about interactions between signaling and
metabolism. The construction of kinetic models could be coupled with such experimental
studies in order to comprehensively integrate signaling and metabolism into mathematical

models.
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