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Tout homme est tiraillé entre deux besoins, le besoin de la pirogue,

c’est-à-dire du voyage, de l’arrachement à soi-même, et le besoin de l’arbre,

c’est-à-dire de l’enracinement, de l’identité, et les hommes errent constamment

entre ces deux besoins en cédant tantôt à l’un, tantôt à l’autre; jusqu’au jour

où ils comprennent que c’est avec l’arbre qu’on fabrique la pirogue.

— Mythe mélanésien de l’île de Vanuatu

À tout mes bienveillants. . .
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Abstract
In the past twenty years, far-reaching studies of molecular and cellular processes have reached

a milestone in their maturation, and the knowledge from these studies was ready to apply

at higher organizational levels. At that time, rodent models were long established. However,

methods were inappropriate to image a whole rodent organ, such as the mouse brain, which

drove the emergence of a new range of imaging techniques, later gathered under the name

mesoscopy. Mesoscopic techniques filled a gap between classical microscopy and medical

imaging techniques, such as magnetic resonance imaging, and X-ray computed tomography.

They allow the acquisition of centimeter-sized samples. In this thesis, we focus on one of

these mesoscopic imaging techniques called optical projection tomography, or OPT, and its

potential application to Alzheimer’s disease (AD) research. We review the fundamentals of

OPT and describe the filtered back-projection algorithm, which is the primary tomographic

reconstruction method of this technique. We also go through the implementation of OPT for

whole mouse brain imaging, including sample preparation. We show that OPT is suitable to

image the whole brain anatomy based on endogenous fluorescence, and the whole neural

vasculature as well as amyloid plaques (a hallmark of AD) with adequate fluorescent markers.

Then, we dwell on the characterization of OPT instruments. We give some insights on the

instrument point spread function and discuss the influence of the number of projections on

the quality of the reconstructed image. Afterward, we illustrate the application of OPT to study

amyloidosis progression in a preliminary cross-sectional study, where we have used supervised

learning to quantify the amyloid plaque load. In this study, we show that OPT can be used

to quantify amyloidosis in whole mouse brains and that comparison between individuals of

different age can be performed. Imaging of a whole mouse brain is unquestionably necessary.

At this scale though, it has some constraints. We present the limitations of OPT, and we share

how we think they can be circumvented by combining this modality with another microscopy

technique, namely structured illumination microscopy. We see that this other microscopy

technique has the potential to produce high-resolution zooms in selected regions of interest

based on a prior OPT acquisition. The results presented in this work have led to the duplication

of our OPT instrument in Lund University, and we hope they will help to foster advances in

OPT and broaden its range of application. We also hope that this work will contribute to

making OPT more accessible and user-friendly.

Key words: optical projection tomography (OPT); Alzheimer’s disease (AD); whole mouse

brain imaging; 3D fluorescence mesoscopy
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Résumé
Au cours des vingts dernières années, des études de grande portée sur les processus molé-

culaires et cellulaires arrivées à maturité et la connaissance de ces études était prête à être

appliquée à des niveaux organisationnels plus élevés. À cette époque, les modèles de rongeurs

étaient établis depuis longtemps. Cependant, les méthodes existantes étaient inappropriées

pour imager des organes de rongeurs entiers, tel que le cerveau de souris. Cela conduisit à

l’émergence d’une nouvelle gamme de techniques d’imagerie, plus tard rassemblées sous le

nom de mesoscopie. Ces techniques mesoscopiques comblèrent le vide entre la microscopie

classique et les techniques d’imagerie médicales, telles que l’imagerie par résonance magné-

tique et la tomodensitométrie aux rayons X, en permettant l’acquisition d’échantillons de

taille centimétrique. Dans cette thèse, nous nous intéressons à une techniques d’imagerie

mesoscopique appelée tomographie par projection optique, ou TPO, et à son application

à la recherche sur la maladie d’Alzheimer. Nous revisitons les fondamentaux de la TPO et

nous décrivons l’algorithme de rétro-projection filtrée, qui est le moyen de reconstruction

tomographique au cœur de cette technique. Nous allons passons également en revue une

implémentation de la TPO pour l’imagerie de cerveaux de souris entiers incluant la prépara-

tion des échantillons. Nous montrons que la TPO est adéquate pour l’imagerie de l’anatomie

des cerveaux entiers basée sur la fluorescence endogène et la vascularisation cérébrale, ainsi

que les plaques d’amyloïde (une signature caractéristique de la maladie d’Alzheimer) avec

des marqueurs fluorescents adéquats. Nous nous penchons ensuite sur la caractérisation

des instruments de TPO. Nous donnons un aperçu de la fonction d’étalement du point de

l’instrument et nous discutons l’influence du nombre de projections dans la qualité de l’image

obtenue après reconstruction. Après quoi, nous illustrons l’application de la TPO à l’étude de

la progression de l’amyloïdose dans une étude transversale préliminaire où nous avons utilisé

l’apprentissage supervisé pour identifier et quantifier la charge de plaque d’amyloïde. Dans

cette étude, nous montrons que la TPO peut être utilisée pour quantifier l’amyloïdose dans les

cerveaux de souris entiers et qu’une comparaison entre individus d’âges différents peut être

réalisée. L’imagerie de cerveaux de souris entiers est sans conteste nécessaire. À cette échelle

cependant, elle impose certaines contraintes. Nous présentons les limitations de la TPO et

nous partageons comment nous pensons qu’elles peuvent êtres dépassées en combinant cette

modalité avec une autre technique de microscopie, la microscopie à illumination structurée.

Nous verrons que la microscopie à illumination structurée a le potentiel de produire des

zooms à haute résolution dans des régions d’intérêts basée sur une acquisition TPO antérieure.

Les résultats présentés dans cette thèse ont conduit à la duplication de notre instrument de
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TPO à l’univérsité de Lund et nous espérons qu’ils pourront aider à favoriser les avancées en

TPO et élargir son champ d’applications. Nous espérons aussi que ce travail contribuera à

rendre la TPO plus accessible et facile à utiliser.

Mots-clés : tomographie par projection optique (TPO); maladie d’Alzheimer; imagerie du

cerveau de souris entier ; mesoscopie de fluorescence en 3D
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1 Introduction

3D imaging is an essential field of biomedical research [1] with numerous applications in

medicine and life sciences. From drug evaluation studies [2] to cellular and molecular diag-

nostics [3], tridimensional imaging of biomedical specimen is performed at different scales, as

summarized in Figure 1.1. Until twenty years ago, the techniques were mainly divided into

two categories.

MICRO MESO MACRO
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R
es
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ut
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m
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0 
μm

1 
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Confocal  microscopyi
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Optical cohenrence microscopyh
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Ultramicroscopyg

Micro-CTc
Micro-MRId

Optoacoustic tomographye

Bioluminescencej

Ultrasound imaingk

Figure 1.1 – Representation of the trade-off between resolution and specimen size in common
3D biomedical imaging techniques. Until twenty years ago, there was a gap between micro-
scopic and macroscopic imaging techniques. Mesoscopic imaging techniques have started to
fill it since then due to a growing interest in small animal imaging. aKhalil et al. [4], bStucht et
al. [5], c du Plessis et al. [6], d Baltes et al. [7], e Ntziachristos et al. [8], f Sharpe et al. [9], g Pende
et al. [10], hFercher et al. [11], i Ntziachristos [12], j Rehemtulla et al. [13], k Deffieux et al. [14].

On one hand, macroscopic imaging techniques, such as X-ray computed tomography (CT) [15,

16], positron emission tomography (PET) [17], single-photon emission computed tomography

1



Chapter 1. Introduction

(SPECT) [4] and magnetic resonance imaging (MRI) [18], are used to diagnose human patients.

They can produce 3D images of the whole human body with different levels of specificity and

a resolution from 0.2 to 8 mm.

On the other hand, optical microscopic imaging techniques, such as confocal microscopy [19],

multiphoton microscopy [20], and optical coherence microscopy [11], are used for cell and

tissue imaging [21]. In optical microscopy, the specimen size generally falls between 100 µm

and 1 mm with a resolution from 5 µm, down to a few hundreds of nanometers [22] (for

super-resolution microscopy).

Over the past decades, a growing interest for small animal imaging [23] has fostered the emer-

gence of 3D imaging techniques operating at an intermediate regime called mesoscopy [12].

In this regime, the specimen size range from few millimeters to several centimeters with a

resolution of 200 µm to 3 µm, filling the gap between microscopy and the macroscopic imaging

techniques.

Mesoscopy

A variety of imaging techniques are today available in the mesoscopic imaging range. A

subset of these techniques is adapted from their macroscopic counterpart. Micro-CT [24], for

example, is the equivalent of CT for small animal imaging. Driven by recent technological

progress, micro-CT is widely used in small animal cancer research [25]. It offers a resolution of

approximately 50 µm in whole rodents and a sensitivity to tumors in vivo. Micro-MRI [26] is the

equivalent of MRI for small animal imaging. The resolution increase is obtained by different

means, such as increasing the magnetic field strength [27] and using cryogenic detection

devices [7]. Micro-MRI has been used for in vivo visualization of amyloid plaques [28] (a

hallmark of Alzheimer’s disease, see below), it has a resolution of 30 to 80 µm and excellent

sensitivity to soft tissues. Micro-CT and MRI have both similar resolutions, they mainly differ

in their contrast mechanism which leads to differences in specificity, and can be performed

in vivo. However, they require expensive instruments that have a high maintenance cost,

restricting their availability. Fortunately, these two imaging techniques are only a small sample

of the available mesoscopic technologies.

Functional ultrasound imaging (fUS) [14] measures echoes from sound waves transmitted

through the organ to retrieve 3D images in vivo. It is sensitive to blood flow, allowing to

perform functional imaging of the brain at a high temporal resolution and with a spatial

resolution down to 100 µm.

Optoacoustic tomography (OA) [29, 30] detects ultrasounds upon absorption of an excitation

light beam, increasing the detected signal resolution in deep tissues. In the mesoscopic regime,

OA has a resolution of approximately 100 µm [8] and has been used to image the vasculature

in whole mouse brains in vivo [31]. This technique requires direct contact with the specimen

to guarantee a good transmission of the sound waves.

2



Bioluminescence imaging (BLI) [32] is an optical imaging technique based on the detection

of chemically-induced fluorescence. BLI has been used in small animal cancer research [13]

and can be used in vivo. Bioluminescence imaging in mammals requires the introduction

of a transgene leading to the expression of enzymes such as Firefly or Renilla luciferase,

which upon interaction with their substrates generate light. The method is characterized by a

high sensitivity as the intrinsic bioluminescence background signal is absent in mammalian

cells. Due to a pronounced scattering of the emitted photons in biological tissues, the spatial

resolution of BLI is approximately 1 mm.

Ultramicroscopy [33] and light-sheet microscopy [34] are probably the most commonly used

among the mesoscopic fluorescence imaging techniques. Both techniques use a sheet of light

to illuminate a single section of the sample selectively. The subtle difference between these

two is that, in state-of-the-art light sheet microscopy, the trend is in increasing the resolution

and going towards super-resolution microscopy [35], while in ultramicroscopy, the aim is to

enhance the light-sheet performance at the mesoscopic-scale and to provide small animal

imaging capacity [36, 37, 38, 39]. Ultramicroscopy has been used in developmental studies of

whole zebra fish in vivo [40], and fruit flies [41, 10]. Ultramicroscopy also found applications

in imaging of the whole mouse brain neuroanatomy [42] and amyloidosis in an Alzheimer’s

disease model [43]. This technique can achieve a resolution down to the cellular level in whole

model organisms using engineered sheets of light [10].

Finally, optical projection tomography (OPT) [9] finds a sweet spot among this range of

mesoscopic imaging techniques.

Optical projection tomography

OPT is sometimes described as an optical equivalent of CT [44]. It can have a resolution down

to 5 µm in centimeter-sized samples [45], and it can use fluorescent and colored dyes [9].

OPT has been applied to the zebra fish vasculature in vivo [46], whole mouse pancreas in the

study of diabetes [47, 48, 49], and whole mouse brain neuroanatomy [50]. Additionally, helical

scanning enables imaging of elongated samples, such as the mouse spinal cord [51]. Another

interesting feature is that open hardware allows transforming any microscope into an OPT

instrument [52] or building one from the ground up [45]. Moreover, improved reconstruction

methods can provide an increase in the resolution [53, 54].

In this thesis, we developed a custom OPT instrument for whole mouse organ imaging [55].

We characterized the instrument using fluorescent microparticles, and we investigated the

influence of the number of projections on the final image. Finally, we evaluated the use of

OPT in Alzheimer’s disease (AD) research in a preliminary cross-sectional study with mice.
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Chapter 1. Introduction

Alzheimer’s disease

AD is a neurodegenerative disorder and the most prevalent cause of dementia [56]. Dementia

is a syndrome altering functional, cognitive, and behavioral ability, hampering independent liv-

ing capacity, and ultimately leading to death [57]. In 2001, a panel of 12 experts estimated 24.3

million people with dementia worldwide and projected 4.6 million new cases each year [58].

The same experts also predicted that the increase in new cases will double every 20 year and

that by 2040 dementia will affect 81.1 million people. Another study reported a projection of

106.2 million people with AD in 2050, confirming the alarming numbers [59] and making AD a

public health priority [60].

In 2011, a review of the diagnostic guidelines for AD, established in 1984 [61], suggested that

the clinical diagnosis of AD, based on multiple information such as medical history, cognitive

and personality tests, etc., had a sensitivity of 81 % and a specificity of 70 % based on 27 years

of experience [62]. Additionally, there can be a long period between the earliest pathogenic

events in the brain of an AD patient and the first evidence of cognitive decline; this is referred

to as the preclinical states of AD [63]. The preclinical states of AD are asymptomatic and, in

some cases, will remain so until the patient’s death. In this case, only a diagnosis post mortem

can unveil the characteristic brain lesions.

Two hallmark proteins have been identified in the brain of AD patients: the amyloid-β and

tau protein [64]. In this thesis, we focus on the amyloid-β and the amyloid cascade hypothe-

sis [65, 66]. Amyloid-β is the principal component of amyloid plaques, which deposit in the

extracellular space in the form of small aggregates from 10 to 100 µm in size. In the amyloid

cascade hypothesis, it is believed that amyloid plaques are the crucial event of AD pathology.

In this regard, the visualization of amyloid plaques plays a pivotal role in AD research, as

illustrated in Figure 1.2.

The recent development of the Pittsburgh Compound-B (PIB) in 2004 [67] revolutionized in

vivo imaging of amyloid pathology in humans with PET (Figure 1.2(a)). There have been efforts

to incorporate PET of amyloid-β in the clinical diagnosis of AD, and its importance regarding

asymptomatic preclinical states has been highlighted [69] as previous guidelines failed to

establish a diagnostic before the patient’s death. The binding of PIB to amyloid-β assemblies

is well characterized [70], and the tracer design gives the specific spatial representation of

the amyloid burden in PET images. However, the resolution of PET is insufficient to study

individual amyloid plaques, which is rather performed on transgenic mouse models [71].

In histopathology, the brain is mechanically sliced and marked with probes of amyloid

plaques [72]. The tissue sections are then imaged with a widefield microscope (Figure 1.2(b)

and (c)). The resolution of modern microscopes allows visualizing individual amyloid plaques,

but histopathology is rarely applied in 3D and suffers from cutting artefacts due to mechanical

slicing. Additionally, histopathology is performed ex vivo.

Ultramicroscopy can provide whole 3D images of ex vivo AD mouse brains using an amyloid-
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Figure 1.2 – Amyloid plaque imaging. (a) in vivo PET images of human subjects with Pittsburgh
Compound-B (edited from Figure 4 in the work of Klunk et al. [67]). Left: 67-year-old healthy
control subject; right: 79-year-old AD patient. (b) Histological section from a mouse brain of
an AD model marked for amyloid plaques. (c) Corresponding zoom in the histological section.
(d) Ultramicroscopy images of AD mouse brains at different age and marked for amyloid
plaques (edited from Figure 3 in the work of Jährling et al. [43]). Scale bar: 1 mm. (e) OCM
image of amyloid plaques in an AD mouse brain with intrinsic contrast (edited from Figure 3
in the work of Bolmont et al. [68]). (f) Micro-MRI images of plaques with intrinsic contrast in
AD mouse brains (edited from Figure 3 in the work of Jack et al. [28]).

probe (Figure 1.2(d)) with cellular resolution [43]. OCM can perform 3D intrinsic imaging of

the plaques in regions of interest of an AD mouse brain in vivo [68] (Figure 1.2(e)) but is hardly

applicable to a whole mouse brain. Micro-MRI also shows an in vivo intrinsic contrast of the

amyloid plaques in whole AD mouse brains [28] in 3D. However, to the best of our knowledge,

there has not been an attempt to image amyloid plaques in the whole brain of an AD mouse

with OPT.

Main contributions

The main scientific contributions of this thesis consist of three first author papers, each

composing a chapter (Chapter 3-5).

In the first research article by D. Nguyen, P. J. Marchand, A. L. Planchette, J. Nilsson, M. Sison, J.

Extermann, A. Lopez, et al. called “Optical projection tomography for rapid whole mouse brain

imaging” published in Biomedical Optics Express [55], a custom OPT instrument designed

for whole mouse organ imaging is described. The OPT instrument can image samples as

large as 8 cm3 with a resolution of approximately 30 µm in a matter of minutes. Additionally,
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Chapter 1. Introduction

sample preparation is described and includes an optimized clearing protocol, the duration

of which is reduced to a couple of days instead of weeks. Finally, images of the mouse brain

neuroanatomy, vasculature, and amyloid plaque demonstrate the instrument performance.

In the second research article by D. Nguyen, O. Martin, A. C. Descloux, D. Van De Ville, T.

Lasser, and A. Radenovic called “Practical aspects of optical projection tomography imaging

exemplified with whole mouse organs” submitted to Optics Express (December 2018), several

practical considerations related to the use of OPT are investigated. A new agarose embedding

protocol, which standardizes sample preparation and reduces the risk of image artefacts,

is detailed. Images of fluorescent microparticles are shown in view of understanding the

instrument specifications, and the effect of the number of projections on the reconstructed

image quality is studied.

In the last research article by D. Nguyen, V. Uhlmann, A. L. Planchette, P. J. Marchand, D. Van De

Ville, T. Lasser, and A. Radenovic called “Supervised learning to quantify amyloidosis in whole

brains of an Alzheimer’s disease mouse model acquired with optical projection tomography”

submitted to Biomedical Optics Express (December 2018), OPT images of amyloid plaques in

whole mouse brain are quantified relying on a supervised learning algorithm to evaluate the

disease progression in a preliminary cross-sectional study.

Thesis organization

In Chapter 2, the general theory of tomographic reconstruction is introduced, and the filtered

back-projection algorithm is derived. Then, the use of optical projections in tomographic

reconstruction and underlying artefacts that might arise are discussed. In Chapter 3, the imple-

mentation of a custom OPT instrument designed for whole mouse organ imaging is described

in the form of a first research article. This work also showcases whole mouse brain imaging of

the neuroanatomy, vasculature, and amyloid plaques, together with the corresponding sample

preparation protocols. Practical aspects of OPT acquisition are examined in Chapter 4. This

second research article includes a new agarose embedding protocol, images of fluorescent

microparticles, and an evaluation of the influence of the number of projections on the recon-

structed image quality. In Chapter 5, OPT is combined with supervised learning to quantify

the progression of amyloidosis in mouse brains of an Alzheimer’s disease model in a third

research article. Preliminary results to bridge imaging scales by merging OPT with structured

illumination microscopy are presented in Chapter 6. The remaining challenges are discussed

with a focus on optical aberrations arising in whole mouse organ imaging, and the thesis

concludes with a personal paragraph summarizing my work at the Laboratoire d’Optique

Biomédicale. Finally, a collection of unpublished images are showcased in a portfolio gallery

in Appendix A.
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2 OPT theory, algorithm, and practical
aspects

Fully grasping the 3D representation of an object is an ambitious exercise. Instead, we prefer

to understand the spatial nature of things by looking at their cross-sections. Think of the floor

plan of a building or a technical drawing in a user manual. We call “tomography” the range of

techniques that can produce 3D images of objects in cross-sections. From that definition, it

follows that optical projection tomography (OPT) is the reconstruction of 3D images in cross-

sections based on optical projections of a sample. A projection is the flattened representation

of an object via a physical phenomenon. For example, the shadow we cast on the floor is a

projection resulting from sunlight absorption and reflection by our body. Projections differ

from cross-sections in the sense that they are not a strict representation of the object in a

plane of observation. Instead, they describe the response to a physical phenomenon from a

certain point of view. In the shadow example, it is deformed by the sun’s position and changes

throughout the day. For optical projections, the physical phenomena are essentially light

absorption and fluorescence emission.

In this Chapter, I introduce a general scheme for tomographic reconstruction (Section 2.1)

adapted from the book of Kak and Slaney [73]. This scheme has notably been applied to

X-ray computed tomography (CT), and I will discuss it first in that context. I will start with a

mathematical definition of the projection process, also known as the Radon transform (Sec-

tion 2.1.1). I will pursue with the central slice theorem (Section 2.1.2), another essential result

to understand tomographic reconstructions. Then, I will present the classical tomographic

reconstruction scheme (Section 2.1.3), called filtered back-projection (FBP). I will also discuss

the peculiarities of optical projections, how to implement tomographic reconstruction in OPT

(Section 2.2), and the possible image artefacts that might arise (Section 2.2.1). Finally, I will

give some details about the practical aspects of OPT and in particular the optional optical

clearing necessary for opaque samples (Section 2.3). These aspects will be further discussed

in a dedicated chapter (Chapter 4).
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Chapter 2. OPT theory, algorithm, and practical aspects

2.1 Tomographic reconstruction

Our journey to understanding tomographic reconstruction begins with the concept of radio-

graphs. A radiograph is a photographic film that was exposed to X-rays passing through a

specimen. Being initially transparent, the film darkens upon an increasing X-rays exposure.

Hard tissues, such as bones, absorb a substantial amount of radiation, leaving transparent

zones on the film. Soft tissues such as organs, in contrast, have lower radiation absorption,

resulting in translucent shades on the film. Radiographers then place the exposed film over a

homogenous light-emitting surface to appreciate the different contrasts in view of a patient’s

diagnosis. A radiograph is, therefore, a projection based on X-ray absorption in a specimen.

This physical phenomenon is described by the Beer-Lambert law [74] as

A = log10
I0

I
=µl , (2.1)

where A is the absorbance, I0 is the initial radiation intensity, I is the radiation intensity after

a distance l traveled inside the specimen, and µ is a specimen-and-radiation-dependant ab-

sorption coefficient. In Section 2.1.1, we derive a mathematical formulation for the generation

of projections which captures the problem of radiography.

2.1.1 Radon transform

The Radon transform, defined as

Pθ(t ) =
Ï ∞

−∞
f (x, y)δ(x cosθ+ y sinθ− t )dxdy, (2.2)

with δ the Dirac impulse, transforms a 2D function f , with spatial coordinates (x, y), into

a line integral Pθ, with remaining spatial coordinate t , along a straight direction given by

arbitrary angle θ. This transform was first introduced by the Austrian mathematician J. Radon

in 1917 [75] and sets a formalism for the generation of projections. An illustration of the Radon

transform applied to a mouse brain section is shown in Figure 2.1. In this example, parallel

X-rays, represented by gray arrows, traverse the sample f (x, y) at an arbitrary angle θ. Each

ray accumulates the values of f in its direction of propagation and determines the value Pθ(t )

of the line integral at the corresponding position t . This line integral is a 1D radiograph of

the mouse brain section, and Pθ describes the absorbance of X-rays under an angle θ. In 3D,

the radiograph of a specimen is a 2D image composed of the 1D radiographs of each of its

sections.

Figure 2.1 also depicts the fundamental limitation of radiographs, which is that the projection
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2.1. Tomographic reconstruction

Figure 2.1 – Illustration of the Radon transform. A 2D section of a mouse brain f is projected
to a line integral Pθ at arbitrary angle θ.

is made at the expense of a reduction in data dimensionality materialized by a loss of depth

information. In other words, it is impossible to know which depth of the brain section con-

tributed most to a given value Pθ(t ) in the line integral. Similarly, it is unrealistic to deduce the

morphology of a person based solely on the shadow cast on the floor at one point in time. The

inclusion of a time notion was intentional here because if that person starts to move and turns

herself or himself around, we can get a better feeling for morphology by looking at the shadow

over time. This is the underlying concept of CT.

In CT, a collection of projections are acquired at different angles over 180◦ to recover the

otherwise lost depth information. The intuition that the 3D nature of an object can be retrieved

based on projections at different angles is formalized by the direct inversion of the Radon

transform, i.e.,

fbp (x, y) =
∫ π

0
Pθ(x cosθ+ y sinθ)dθ, (2.3)

where fbp is the reconstructed specimen section, also called the “back-projection”. By applying

this inversion to each section, a 3D image of the specimen can be reconstructed. The back-

projection of a single specimen section is illustrated in Figure 2.2. The acquisition of three

mouse brain projections is shown by the line integrals P 1
9π

, P 4
9π

, and P 7
9π

in Figure 2.2(a).

These projections are then back-projected in the reconstruction space in Figure 2.2(b). In this
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Chapter 2. OPT theory, algorithm, and practical aspects

process, each projection is replicated throughout the reconstruction space in its direction of

acquisition. This is carried out because the depth information has been lost and it is impossible

to determine from which depth each contribution to the line integral originated from. Finally,

in Figure 2.2(c), a back-projection from 600 projections separated by 0.3◦ is shown. The result

is a blurred reconstruction of the original specimen section. While the overall morphology can

be deduced, from that image, fine details disappear. The principal method to circumvent this

issue is to incorporate an additional filtering step in the back-projection operation. Before

diving into the details of the filtered back-projection, another essential mathematical result

is needed. This result is known as the central slice theorem (Section 2.1.2), also sometimes

called the projection slice theorem or the Fourier slice theorem.

(a)(a) (b) (c)

Figure 2.2 – (a) Acquisition of three mouse brain projections, represented by the line integrals
P 1

9π
, P 4

9π
, and P 7

9π
, at corresponding angles 1

9π, 4
9π, and 7

9π in radians. (b) Direct inversion of
the Radon transform from the three projections. Each projection is copied along the direction
of acquisition throughout the whole depth of the reconstruction space. This process is referred
to as back-projection. (c) Back-projection of the mouse brain section based on 600 projections
separated by 0.3◦, the result is a blurred image of the mouse brain section.

2.1.2 Central slice theorem

The central slice theorem relates the Fourier transform to the Radon transform, and is stated

as

f̂pol(ω,θ) = P̂θ(ω), (2.4)

10



2.1. Tomographic reconstruction

where f̂pol is the 2D Fourier transform of a section in polar coordinates (ω,θ), and P̂θ is the 1D

Fourier transform of the line integral from the Radon transform at corresponding angle θ. The

proof of this theorem is given here for θ = 0.

Proof. The definition of the 2D Fourier transform in polar coordinates is expressed as

f̂pol(ω,θ) =
Ï ∞

−∞
f (x, y)e−jω(x cosθ+y sinθ)dxdy. (2.5)

When θ = 0, (2.5) becomes

f̂pol(ω,0) =
Ï ∞

−∞
f (x, y)e−jωx dxdy. (2.6)

Since there is only an x-dependency in the exponential factor, the integration order in (2.6)

can be rearranged as

f̂pol(ω,0) =
∫ ∞

−∞

(∫ ∞

−∞
f (x, y)dy

)
e−jωx dx, (2.7)

where the parentheses denote the line integral of f at θ = 0. Therefore, (2.7) becomes

f̂pol(ω,0) =
∫ ∞

−∞
P0(x)e−jωx dx, (2.8)

where the x- and t−coordinates of the Radon transform (2.2) are confounded. Finally, what

remains on the right-hand side of (2.8) is the definition of the 1D Fourier transform of the line

integral that is

f̂pol(ω,0) = P̂0(ω). (2.9)

This proof holds without loss of generality to other values of θ thanks to the rotation properties

of the Fourier transform.
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The central slice theorem tells us that an infinite number of Fourier-transformed line integrals

are equivalent to the 2D Fourier transform of an object section f . Since the inversion of the

Fourier transform is a well-known result of mathematics, the central slice theorem gives us

a different way of reconstructing the object section. Indeed, we can acquire line integrals

from an object, apply a Fourier transform to each of them, compose a 2D spectrum, and then

use an inverse Fourier transform in 2D. This algorithm is also referred to as direct Fourier

reconstruction. In practice, the number of line integrals we can acquire is finite, and the

Fourier space is interpolated, which is a delicate operation prone to artefacts during the

reconstruction [76]. However, the central slice theorem provides a framework to filter line

integrals in the Fourier domain, which leads us to the filtered back-projection algorithm.

2.1.3 Filtered back-projection

The filtered back-projection algorithm is the most used approach for tomographic reconstruc-

tion. It can be derived from the definition of the 2D inverse Fourier transform

f (x, y) = 1

(2π)2

Ï ∞

−∞
f̂ (ωx ,ωy )ej(ωx x+ωy y)dωx dωy , (2.10)

where f̂ is the 2D Fourier transform of f in Cartesian spatial frequencies (ωx ,ωy ). This 2D

Fourier transform can be rewritten in polar coordinates in (2.10), which leads to

f (x, y) = 1

(2π)2

∫ 2π

0

∫ ∞

0
ω f̂pol(ω,θ)ejω(x cosθ+y sinθ)dωdθ, (2.11)

where ω=
√
ω2

x +ω2
y , θ = arctan

ωy

ωx
, and ωdωdθ = dωx dωy . Using the central slice theorem

(2.4), (2.11) becomes

f (x, y) = 1

(2π)2

∫ 2π

0

∫ ∞

0
ωP̂θ(ω)ejω(x cosθ+y sinθ)dωdθ. (2.12)

The next step in the derivation of the FBP algorithm is to split the integration over θ in (2.12)

in order to get an integration span from 0 to π. Assuming f (x, y) = i1 + i2, we can write

i1(x, y) = 1

(2π)2

∫ π

0

∫ ∞

0
ωP̂θ(ω)ejω(x cosθ+y sinθ)dωdθ, (2.13)
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and

i2(x, y) = 1

(2π)2

∫ 2π

π

∫ ∞

0
ωP̂θ(ω)ejω(x cosθ+y sinθ)dωdθ. (2.14)

A change of variables in (2.14) allows us to integrate θ over the interval [0,π[ as

i2(x, y) = 1

(2π)2

∫ π

0

∫ ∞

0
ωP̂θ−π(ω)ejω

(
x cos(θ−π)+y sin(θ−π)

)
dωdθ. (2.15)

We can then rewrite (2.15) as

i2(x, y) = 1

(2π)2

∫ π

0

∫ ∞

0
ωP̂θ−π(ω)e−jω(x cosθ+y sinθ)dωdθ. (2.16)

Besides, it can be shown that

P̂θ−π(ω) = P̂θ(−ω). (2.17)

Proof. Using (2.4) we can rewrite the left-hand side of (2.17) as

P̂θ−π(ω) = f̂pol(ω,θ−π). (2.18)

From the definition in (2.5), the right-hand side of (2.18) becomes

f̂pol(ω,θ−π) =
Ï ∞

−∞
f (x, y)e−jω

(
x cos(θ−π)+y sin(θ−π)

)
dxdy

=
Ï ∞

−∞
f (x, y)ejω(x cosθ+y sinθ)dxdy

= f̂pol(−ω,θ).

(2.19)
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Using again (2.4), we can rewrite the right-hand side of (2.19) as

f̂pol(−ω,θ) = P̂θ(−ω). (2.20)

Therefore, by combining (2.18), (2.19), and (2.20) we get

P̂θ−π(ω) = P̂θ(−ω). (2.21)

So that (2.16) becomes

i2(x, y) = 1

(2π)2

∫ π

0

∫ ∞

0
ωP̂θ(−ω)e−jω(x cosθ+y sinθ)dωdθ. (2.22)

Then, a last change of variable allows us to integrate ω from −∞ to 0 as

i2(x, y) = 1

(2π)2

∫ π

0

∫ 0

−∞
(−ω)P̂θ(ω)ejω(x cosθ+y sinθ)dωdθ. (2.23)

We can now rewrite (2.12) as the sum of (2.13) and (2.23) as

f (x, y) = 1

(2π)2

∫ π

0

∫ ∞

−∞
|ω|P̂θ(ω)ejω(x cosθ+y sinθ)dωdθ, (2.24)

which is the FBP. It is equivalent to a back-projection (2.3), where each line integral is Fourier-

transformed, multiplied by a term |ω|, and transformed back to the spatial domain, exactly as

in a filtering operation. The filter transfer function H , defined as

H(ω) = |ω|, (2.25)

describes a ramp emphasizing high spatial frequencies in the line integrals and compensating

for the blurring occurring in the back-projection process. This filter is also known as the
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Ram-Lak filter (see Figure 2.3).
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Figure 2.3 – Plot of the FBP filters transfer function. The Ram-Lak filter is used to reconstruct
an image from noiseless projections. It linearly emphasizes the high spatial frequencies in the
line integrals to retrieve a sharp reconstruction after back-projection. In practice, projections
are usually corrupted by high-spatial-frequency noise, which would be amplified by the Ram-
Lak filter. To mitigate this effect, the Shepp-Logan filter can be used. It is the Ram-Lak filter
windowed by a cardinal sine function, which attenuates the gain in the very high spatial
frequencies.

The FBP algorithm is illustrated in Figure 2.4. A specimen section, such as a mouse brain

(Figure 2.4(a)) is Radon-transformed at multiple angles over 180◦. The resulting line integrals

form the columns of a matrix called a sinogram (Figure 2.4(b)). A ramp filters the sinogram in

the Fourier domain (Figure 2.4(c)), and is then back-projected to retrieve a sharp reconstruc-

tion of the specimen section (Figure 2.4(d)). Practically, the FBP algorithm is implemented

with a finite number of line integrals, and spatial-domain-interpolation is required to fill the

reconstruction space consistently. Throughout this work, we use linear interpolation for this

purpose. Moreover, the Ram-Lak filter is an ideal filter, which does not account for noise in the

projections. Indeed, the high-frequency-noise recorded during the acquisition of projections

is intensified by the ramp |ω|. Therefore, FBP filters are usually combined with a window

function that attenuates the gain in the highest spatial frequencies. In the remainder of this

work, we use the Shepp-Logan filter (see Figure 2.3), which is a combination of the ramp with
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a cardinal sine function. The Shepp-Logan filter transfer function HSL is defined as

HSL(ω) = |ω|sinc(ω). (2.26)

(a) (b) (c) (d)

Figure 2.4 – Main steps of the filtered back-projection algorithm. (a) Multiple line integrals
from a specimen section are acquired. (b) Each line integral is placed in the columns of a
matrix called a sinogram. (c) The sinogram is filtered column by column in the Fourier domain
with a ramp. (d) The back-projection of the filtered sinogram results in a sharp reconstruction
of the specimen section.

The given description of the FBP algorithm holds for X-ray CT with parallel beams. In Sec-

tion 2.2, I explain how OPT differs from CT. Then, I discuss how the optical projections are

realized and what consequences they have on the sample preparation. Finally, I introduce the

requirements that allow us to use the FBP algorithm with optical projections.

2.2 Optical projections

The essential difference between X-ray CT and OPT is the source radiation spectrum. In

OPT, it is the visible light spectrum (400-700 nm). Working with visible light is usually safer

than X-rays, and it is less cumbersome to manipulate. On the other hand, it has a shallower

penetration depth in tissues, around 10-20 µm [12]. To enhance the penetration depth in

opaque and semi-transparent samples, such as rodent organs, optical clearing methods are

needed [77]. There are two fundamental ways of generating optical projections with visible

light.

First, white light can be shined through the sample and detected on a camera with appropriate

imaging optics. This is known as the absorption mode of OPT (Figure 2.5(a)). In this mode,

light is absorbed in a different amount by the tissues it has to traverse following a Beer-Lambert

law. Depending on the tissue thickness and density, various shades of gray will appear on
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the detector with a white background where no absorption occurs. Similarly to X-ray CT, the

absorption mode of OPT is intrinsically unspecific. There exist some ways of staining the

samples which can give additional contrast in the projections [9], but these are not commonly

used.

This lack of specificity brings us to the fluorescence mode of OPT (Figure 2.5(b)). In this mode,

an excitation beam is shined orthogonally to the detection optics to trigger the fluorescence of

a marker or the endogenous tissue fluorescence. The fluorescence signal is then recorded on

the detector. The resulting projection is mostly dark with bright regions where the fluorophores

are. The fluorescence mode of OPT can be combined with the multitude of fluorescent markers

that exist among the life science community. In the remainder of this work, I will concentrate

on the fluorescence mode due to its high specificity.

(a)

(b)

white
light

ex
cit

ati
on

lig
ht

Sample

Sample

Detector

Detector

Imaging optics

Imaging optics

Transmission OPT

Fluorescence OPT

Figure 2.5 – The different operating modes of OPT. (a) In transmission OPT, white light is
shined through the sample. Dense tissue regions absorb a significant amount of light and
result in lower intensity values on the detector. (b) In fluorescence OPT, excitation light
is generally shined on the side of the sample to generate a fluorescent signal from tissues
(autofluorescence) or specific markers. The higher the fluorescence signal, the higher the
intensity values on the detector.
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Then, I want to give a few words on the imaging optics and what is needed to be able to use the

FBP algorithm in OPT. First, the depth of field (DOF) need to be equivalent to the maximum

sample thickness. In Inoué and Spring [78], the DOF is defined as

DOF = n
( λ

NA2 + e

M ·NA

)
, (2.27)

where n is the surrounding medium refractive index, λ the emission wavelength, e the pixel

size in the detector plane, M the system magnification, and NA the numerical aperture of the

system. In this definition, we observe that the DOF inversely depends on NA. However, we

also know that the resolution of an optical system, which can be defined by the Airy radius r ,

depends on NA as

r = λ

2 ·NA
. (2.28)

Therefore, to reach a certain DOF, the resolution has to be reduced (the value of r increases).

In practice, the loss of resolution is mitigated by keeping only the front part of the specimen in

focus while rotating over 360◦ instead of 180◦.

Second, we need to conserve the system magnification throughout the detection axis. This

property of optical systems is known as telecentricity. It guarantees that two objects of the

same size will appear with the same size on the detector independent of their position along

the detection axis. Our eyes, for example, are not telecentric. If we see two people at a different

distance from us, the person farther will appear smaller. This is not desirable in OPT as we

want to have a strict representation of our sample with constant magnification. Telecentricity

is achieved by having the image of the system aperture located at infinity. However, even with

perfect telecentricity and sufficient DOF, artefacts might still arise in OPT images.

2.2.1 Image artefacts

We will now discuss some of the relevant image artefacts that might arise in fluorescence OPT

images based on the work of Walls et al. [79].

First, the stability of the light source is a considerable cause of image artefacts in OPT (see Fig-

ure 2 in the work of Walls et al. [79]). While a majority of fluorescence OPT system use mercury

arc gas discharge lamps, some designs take advantage of light emitting diodes (LEDs) [80].

LEDs generally have better stability, and fluctuations are avoided by using quality power

supplies [81].

Second, photobleaching can cause a signal decay over the acquisition of multiple projections
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(Figure 3 in the work of Walls et al. [79]). This decay can be corrected by multiplying each

projection by a correction factor corresponding to the exponential decay. However, this also

causes an increase in the noise level.

Third, individual pixel variations in photon response can cause ring artefacts (Figure 2.6(a)). In

the worst case, “bad” pixels will always take the maximum or minimum value of the detector

dynamic range causing white and black rings to appear in the reconstructed image. Ring

artefacts can be reduced by applying a median filter to each projection, also decreasing the

resulting imaging resolution (Figure 2.6(b)).

(a) (b)

Figure 2.6 – Illustration of ring artefacts caused by pixel-to-pixel variations in photon response.
(a) Original OPT reconstruction of a mouse brain highlighting the characteristic circles em-
anating from the center of the image. (b) Result of the apodization of the ring artefacts by
applying a median filter to each projection.

Lastly, precise knowledge of the position of the center of rotation is essential to perform

accurate reconstructions of the specimen. This can be done by iteratively applying the FBP

with different centers of rotation and each time trying to maximize the reconstructed image

variance [82]. This procedure has a sub-pixel accuracy and guarantees a good reconstruction

quality. However, multiple reconstructions of the same image have to be performed which is

time-consuming and requires sufficient computer power.

2.3 Practical aspects

OPT imaging of whole mouse organs is often performed ex vivo [47, 50]. To extract the

organs, the mouse is deeply anesthetized, and an operation called “transcardiac perfusion”

is performed [83]. To put it briefly, after verification of the depth of anesthesia using the toe

pinch-response method, precise incisions in the abdominal wall give direct access to the

heart. The needle of a perfusion apparatus (usually syringes and valves) is inserted in the

left ventricle, and another incision is made in the right atrium. Several milliliters of a buffer

solution is perfused through the heart to wash away the blood, significantly reducing the

tissue autofluorescence during imaging later. Then, a few more milliliters of a fixation solution

is perfused to fix the whole mouse in a life-like state. Finally, the organs can be harvested
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following a protocol such as the one by Antal et al. [84]. In this work, we mainly harvested the

mouse brain, kidney, and lung but most organs can be acquired with an OPT instrument if the

magnification is adapted.

In medical CT scanners, the patient is placed on a table. Then, the source and detector are

rotated around the patient to acquire the projections. In OPT, it is simpler to have the source

and detector fixed while the specimen is turned, because of its size (few centimeters). The

sample is firmly attached to a motorized rotation stage with glue [85, 86]. However, direct

contact with glue would damage the sample. Therefore, mouse organs are mounted in an

agarose gel. The gel is poured in a large petri dish with the organ, and after it cooled down, a

small block containing the specimen is trimmed away.

Light penetration in mouse organs is limited to few tens of micrometers [12]. Therefore,

an additional clearing step is necessary to make tissues semi-transparent in view of OPT

acquisition. There exists a variety of clearing techniques [77], but one of them stands out by

its simplicity and reliability in whole mouse brain preparation. This technique consists in the

dehydration of the sample in ethanol for 7 days and rehydration in a 1:2 solution of benzyl

alcohol and benzyl benzoate (BABB) for 2 days [33].

Finally, the last step before OPT acquisition and FBP reconstruction is to choose a num-

ber of projections which also determines the angular increment of the motor. Originally,

400 projections were used [9], and more recently, 1200 projections were tried in the mouse

brain [50].

In Chapter 3, we discuss how to implement an OPT instrument with a specific resolution and

DOF for large specimen (in the order of a few centimeters), while guaranteeing telecentricity.

Additionally, we introduce a means of retrieving the center of rotation based on convolution

between mirrored projections (separated by 180◦), and an optimized clearing protocol for

whole mouse brains that last approximately 3 days. We also showcase whole mouse brain

images of the neuroanatomy, vasculature and amyloid plaques in a model of AD. Moreover, in

Chapter 4, we present a series of improvements of the practical aspects of OPT.
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The design of custom optical projection tomography instruments (OPT) [45, 51] allows the

exploration of new biomedical imaging applications. In neuroscience, custom OPT instru-

ments are used for neuroanatomical phenotyping of the mouse brain [50], based on tissue

autofluorescence. A next step to explore in this domain is the potential application of OPT to

the study of neurodegenerative diseases. In this work, a custom OPT instrument was designed

for 3D whole-mouse brain imaging with fluorescent markers of vasculature and amyloidosis,

the latter being a hallmark of Alzheimer’s disease. It features a 17 cm3 imaging volume with

50 µm resolution and epi-fluorescence illumination using light emitting diodes (LEDs).

Moreover, this OPT instrument has been duplicated at Lund University and is applied to

the study of autoimmunity in the research group of Professor Dan Holmberg (also available

to other users in the university through the OPT imaging platform web page [87]). The

instrument design and underlying sample preparation protocols are the topics of a research

article published in Biomedical Optics Express in 2017 [55] (doi: 10.1364/BOE.8.005637). The

rest of this section is composed of the postprint version of the article, followed by a detailed

list of author contributions.
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Abstract

In recent years, three-dimensional mesoscopic imaging has gained significant importance

in life sciences for fundamental studies at the whole-organ level. In this manuscript, we

present an optical projection tomography (OPT) method designed for imaging of the intact

mouse brain. The system features an isotropic resolution of ~50 µm and an acquisition time

of four to eight minutes, using a 3-day optimized clearing protocol. Imaging of the brain

autofluorescence in 3D reveals details of the neuroanatomy, while the use of fluorescent labels

displays the vascular network and amyloid deposition in 5xFAD mice, an important model of

Alzheimer’s disease (AD). Finally, the OPT images are compared with histological slices.

Introduction

Since its invention in the 19th century, histopathology has been and continues to be a widely

used method for tissue-based medical diagnosis. While it excels at producing two-dimensional

images of tissue sections, extracting information from whole three-dimensional tissues re-

mains challenging. As a complement to histopathology, a new imaging regime, termed

mesoscopy [12] emerged at the beginning of the century for 3D visualization of samples

spanning a scale from a few millimeters to several centimeters. Over time, various techniques

have been developed within this regime.

Micro-optical sectioning tomography (MOST) [88] is a block-face imaging method where the

process of histology is automatized via simultaneous imaging and sectioning of the tissue. This

technique has been successfully applied to image a whole mouse brain with a submicrometric

resolution [89]. However, the acquisition time of approximately two weeks represents an

experimental limitation for studies involving numerous animals.

Light-sheet microscopy [90] is probably the most prolific example of these mesoscopic tech-

niques. Light-sheet microscopy performs three-dimensional imaging by scanning an engi-

22



3.1. OPT for rapid whole mouse brain imaging

neered sheet of light orthogonal to the optical axis. This illumination mechanism achieves

optical sectioning without slicing the tissue along with minimal photobleaching. The penetra-

tion depth of light-sheet microscopy is enhanced in naturally-transparent or cleared samples

due to the reduction in light scattering. Recent research on light-sheet microscopy has mainly

been focused on in vivo imaging. Improved illumination strategies (for example with optical

lattices [35]), and solutions for specimen mounting in a physiological environment [40] have

been developed. Additionally, the combination of light-sheet microscopy with structured illu-

mination microscopy has increased the visibility through opaque samples [41], thus avoiding

optical clearing (a process often done ex vivo due to its toxicity). Efforts have also been directed

towards imaging larger samples, such as entire neural [33] and vascular networks [91, 92], or

Alzheimer’s disease (AD) hallmark amyloid deposition [43] in whole mouse brains. These par-

ticular results have helped to establish light-sheet microscopy as a tool for mouse phenotyping

and investigations of disease models. Light-sheet microscopy produces outstanding 3D image

quality with subcellular resolution over large volumes, which typically translates into big data

sets. These require excessively long image processing time and terabytes of data handling [93].

Moreover, the optical design and image processing pipeline of such systems can be complex

for inexperienced users. For these reasons, we propose optical projection tomography (OPT)

as an alternative.

OPT is a three-dimensional imaging technique developed by James Sharpe in 2002 [9] for 3D

microscopy and gene expression studies. Considered as an optical analogue of X-ray com-

puted tomography (CT) [73], OPT allows sample reconstruction from projections acquired

at different angles. These projections are images taken over 360◦, by rotating the sample,

with a depth of field (DOF) covering half the specimen. Depending on the illumination, the

projections either provide information on the light absorption or the integration of a fluores-

cence signal through the sample [44]. In both cases, the reconstruction of inner structures

strongly depends upon the sample’s transparency. For enhanced penetration depths, OPT

requires naturally-transparent or cleared samples. Recently, custom OPT systems have been

developed [45], including helical OPT [51], where a vertical translation is introduced dur-

ing the acquisition process to enable imaging of elongated samples, such as rodent spinal

cords and large intestines. Along with these hardware improvements, OPT benefited from

several artifact-correction [79] and resolution improvement [94] algorithms. For example,

to automatically recover the center of rotation (COR) in the projections [82] or to account

for fluorescence absorption in tissues with a normalized Born approach [95]. Additionally,

accelerated reconstruction procedures have been achieved by taking advantage of either

iterative algorithms [96], or parallel processing on the graphics processing unit (GPU) [97].

Various applications highlight the performance of OPT. These include in vivo imaging of

the zebrafish vasculature [46], fruit fly pupae head eversion process [98], morphogenesis of

salivary glands and wing imaginal discs [99], as well as fluorescence lifetime in living zebrafish

embryos [100], and visualization of plant development [101, 102]. Furthermore, OPT has

been used for whole organ imaging in mice to study the pancreas and beta-cell tissue in

the development of diabetes [48, 49], the spinal cord and optic nerve in the development of
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experimental autoimmune encephalomyelitis (EAE) [103], and to perform neuroanatomical

phenotyping [50, 104]. So far, OPT is limited in resolution by the depth of field required for

imaging. However, its rapidity and simplicity in image acquisition and processing make OPT

convenient for various routine applications.

In this paper, we present a novel OPT methodology for whole mouse brain imaging. It includes

an OPT design which uses the principle of epifluorescence, a feature known to maximize the

rejection of stray light and homogenize the illumination in the sample plane. In addition

to the setup design, we provide an outline of the software processing and demonstrate 3D

imaging of the brain with an optimized solvent-based clearing protocol. A dehydration step

of a single day in 100 % methanol with one refresh in the clearing protocol is shown to be

sufficient to reveal details of the mouse neuroanatomy (while several days and increasing

concentration of solvent solution were previously required [33, 43, 50]). Furthermore, our

sample preparation has been successfully combined with different standard labeling protocols

from fluorescence imaging technology to image the vasculature of wild-type mouse brains

as well as the distribution of amyloid plaques in the brain of transgenic mice that coexpress

five familial AD mutations (5xFAD mice) [105], an important model of the disease. Finally, we

show a comparison of the OPT images with histological slices from the same mouse brain.

Materials and methods

Optical Projection Tomography

Our mesoscopic OPT setup (Figure 3.1) is designed for 3D imaging of whole intact mouse

brains. As shown in blue in Figure 3.1(A) and 3.1(B), the detection arm consists of a 4f sys-

tem with an objective lens Lo (f = 300 mm, AC508-300-A-ML, Thorlabs) and a tube lens Lt

(f = 150 mm, AC508-150-A-ML, Thorlabs), both achromatic. This configuration results in

a 0.5X magnification on the detector (ORCA-Flash 4.0 V2, Hamamatsu), providing a field

of view (FOV) of 26.6 × 26.6 mm2 over 1024 × 1024 px2 in a 2 × 2 binning mode (initially

2048 × 2048 px2). A DOF of approximately 15 mm (according to the definition of Inoué and

Spring [106], equation 2.18) is obtained by placing a 4 mm diameter diaphragm in the rear focal

plane of the objective lens, which also makes the system telecentric. The resulting numerical

aperture (NA) of 0.01 provides a diffraction-limited lateral resolution of 28 µm (according to

the definition of Inoué and Spring [106], equation 2.7). However, this diffraction-limited lateral

resolution is currently hindered by the pixel-limited resolution of 52 µm (twice the binned

pixel size). The projections are captured at angular steps of 0.3◦ (or 0.9◦ in Figure 3.6(E)) by

rotating the sample over 360◦ i.e., 1200 projections (or 400 projections in Figure 3.6(E)), in a

step-and-shoot mode. The reconstruction of samples as thick as 26 mm (limited by the FOV) is

typically achieved within minutes (see Table 3.1 for details on exposure and acquisition time).

As illustrated in green in Figure 3.1(A), the sample is illuminated by switchable LEDs. In this

manuscript, we use a 420 nm LED (M420D2, Thorlabs) and a 470 nm LED (M470D2, Thorlabs),

also described in Table 3.1. These LEDs are collimated by an aspheric lens Lc (f = 16 mm,
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ACL25416U, Thorlabs). The resulting illumination beam is magnified by another 4f system

composed of an achromatic relay lens Lr (f = 150 mm, AC254-150-A-ML, Thorlabs) and the

objective lens, providing a uniform full-field illumination of the sample plane while maximiz-

ing the rejection of stray light. A kinematic fluorescence filter cube (DFM1/M, Thorlabs) is

used to introduce and filter the illumination beam in the detection path (epifluorescence),

and a modular LED switching mechanism (Figure 3.1(C)) allows the user to choose between

different fluorescence configurations (described in Table 3.1).

Table 3.1 – OPT configuration to visualize different features of interest. Stated are LEDs, filters,
exposure time, and total acquisition time. Filters references are from Chroma: EX, excitation
filter; DC, dichroic mirror; EM, emission filter.

Feature
Figure LED Filters

Exposure Acquisition

(marker) time [s] time [min]

neuroanatomy
(autofluorescence)

3.3 420 nm
EX, AT420/40x

0.2 4DC, AT455dc

EM, AT465lp

vascular network
(FITC-albumin

hydrogel)
3.4, 3.6(B)-(C) 470 nm

EX, AT480/30x

0.2-0.4 4-8DC, AT505dc

EM, AT535/40m

amyloid plaques
(Methoxy-X04)

3.5, 3.6(E) 420 nm
EX, AT420/40x

0.15-0.3 3-6DC, AT455dc

EM, AT465lp

Before imaging, the sample embedded in agarose is glued (Loctite 454, Loctite) on a holder

and attached to a motorized rotation stage (8MR190-2, Standa) using a magnet, as depicted in

Figure 3.1(D). The OPT imaging takes place across a cuvette (704-001-30-10, Hellma Analytics)

filled with a 1:2 mixture of benzyl alcohol and benzyl benzoate (BABB) for index matching.

Three motorized linear stages (8MT167-100, Standa) provide additional degrees of freedom for

aligning and focusing the sample. We use the translation along the y-axis to align the rotation

axis on the center of the detector, and the magnet to align the sample gravity center on the

rotation axis. These alignment procedures are necessary to keep the sample within the FOV

of the setup but can be carried out approximately since the COR is numerically retrieved in

the reconstruction algorithm. The tilt of the rotation axis has been minimized by precisely

manufacturing the custom components and does not significantly affect the reconstruction

process. More control on this parameter can be achieved by adding a tip-tilt mount on the

rotation stage and using the alignment protocol described by Wong et al. [45].

Image Processing

As illustrated in Figure 3.2, image acquisition with the OPT system produces a stack of 1200 or

400 projections, separated by the same angular distance and depicting the sample over 360◦.

These projections are pre-processed with Fiji [107] depending on the sample preparation.

Brain autofluorescence reconstructions sometimes present ring artifacts [79], presumably due
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Figure 3.1 – OPT design. The optical layout (A) and the corresponding CAD rendering (B)
illustrate the detection (blue) and illumination (green) arms. A detailed view of the LEDs
mount (C) demonstrates the system for alignment and switching. It is composed of a custom
heat sink (yellow), a spring (red, C.254.250.0250.A, Vanel), and a ring (blue, SM1RR, Thorlabs)
stacked inside a 1-inch tube (SM1L20, Thorlabs) and screwed to a quick-release translation
mount (CXY1Q, Thorlabs). The custom sample holding mechanism (D) consists of a base
tube (yellow) glued to a magnet (green) to hold the magnetic stainless steel cylinder (red). The
sample is glued to the blue cylinder which can be screwed to the whole mechanism.

to a variation in the pixels response of the camera. A median filter (3 × 3, radius 0.5 px) is

applied to the projections to mitigate this effect. Vasculature-labeled brain reconstructions

display an increased contrast by applying a mean filter of the same size to the projections.

No pre-processing step is applied to amyloid-labeled brain projections. A line is fit on the

maximum values of the convolution of the first projection I0◦ with the opposite projection

I180◦ along the vertical direction. This line forms a vector containing the CORs (shown with a

green dotted line in Figure 3.2), for each vertical position in the projection stack. These COR

values are crucial to avoid artifacts in the reconstruction. The projection stack is transformed

into a sinograms stack, by permuting the dimensions of the stack, and each sinogram is

high-pass filtered with a Shepp-Logan filter. A 3D image of the sample is obtained by back-

projecting each sinogram around the corresponding COR value with a linear interpolation. The
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sinograms’ filtering and back-projection compose the conventional filtered back-projection

(FBP) algorithm [73] and are implemented in CUDA (Nvidia) to take advantage of massive

parallelization on the GPU. A desktop computer operated with Windows 7 Enterprise SP1

64-bit (Microsoft) and equipped with two Xeon CPU E5-2650 v2 (Intel), 64 GB DDR3 RAM, a

GeForce GTX TITAN Black embedding 2880 CUDA cores, and 6 GB GDDR5 memory allows

processing the samples in approximately 2 minutes for a resulting 8-bits stack of 1024 × 1024

× 1024 px3 (around 0.5 GB in size). Finally, three-dimensional image rendering is performed

with the Imaris (Bitplane) software.

Image acquisition
(projections)

Pre-processing

=*
Center of rotation retrieval

CORI0° I180°

1024 px

10
24

 p
x

1200

Sinograms filtering

1200 px

1024

10
24

 p
x

1024 px

10
24

 p
x

10
24

Back-projection

Filered back-projection
(GPU implementation)

Rendering

Figure 3.2 – Image processing pipeline illustrating the filtered back-projection (FBP) as well as
the automatic retrieval of the COR algorithms. After a pre-processing step (described in text),
the sinograms are filtered and the corresponding COR is retrieved. Following these operations,
the sinograms are back-projected to form the virtual tissue sections, and 3D rendering is
applied.

Mouse Model

5xFAD genetically-modified mice [105] were purchased from The Jackson Laboratory on a

congenic C57BL/6J background (34848-JAX, MMRRC). They were bred and maintained in-

house with SJL/J mice (000686, The Jackson Laboratory) to generate the experimental animals

on a hybrid B6SJL F1 background, which demonstrates a more robust amyloid phenotype. This

model of AD is extensively used in research and displays many of the phenotypes associated

with the disease [105]. In particular, the mice are known to develop an early and severe amyloid

deposition starting from 1.5 months of age [105].
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Sample Preparation

All animal procedures were carried out according to Swiss regulations under the approval of

the veterinary authority of the canton of Vaud.

Amyloid plaques labeling. Similar to the protocol reported by Jährling et al. [43], 5xFAD

mice and their littermate controls, on a B6SJL F1 background, received two consecutive

intraperitoneal (IP) injections of 30 mg/kg Methoxy-X04 (Tocris) in DMSO (10 mg/ml) with a

24-h interval. During the second injection, 100 µl (30 µg/ml) buprenorphine in 0.9 % NaCl was

also administered subcutaneously (SC) for analgesia. Two hours later, the animals were deeply

anesthetized IP with sodium pentobarbital (150 mg/kg) in aqueous solution (150 mg/ml).

Once the depth of anesthesia was sufficient (assessed with toe pinch reflex), the animals were

transcardially perfused with 2 ml of heparinized (5 I.U./ml) 1X PBS (pH 7.4), followed by 15 ml

of 10 % formalin solution (HT501128, Sigma), at 4◦ C and 1.5 ml/min, for tissue fixation. After

the perfusion, the brains were extracted and postfixed in 40 ml of formalin at 4◦ C overnight.

Vasculature labeling. B6SJL F1 mice were anesthetized as described above (including the

injection of buprenorphine). Subsequently, an identical transcardial perfusion was performed

with the additional 10 ml of hydrogel [92] at 40◦ C and 1.5 ml/min. The hydrogel is a mixture

of 2 % (w/v) gelatin (G1890, Sigma) in 1X PBS (prepared at 60◦ C) and 0.1 % (w/v) FITC-

conjugated albumin (A9771, Sigma) done at 40◦ C (0.22 µm-filtered). Before organ harvesting

and fixation (as described above), the mouse head was incubated in ice-cold water for 10

minutes to solidify the hydrogel.

Organ clearing. After fixation, the organs were mounted in 1.5 % (w/v) agarose (16500500,

Invitrogen) at 45◦ C with Milli-Q water (0.22 µm-filtered and degassed) and dehydrated in

40 ml of 100 % methanol (ME03161000, Scharlau) on a rotator (10 RPM) for 24 h with a renewal

of the methanol after 15 h. Similar results (not shown here) were obtained by dehydration

in ethanol. Then, the organs were transferred to a 40 ml solution of BABB (148390010 and

105860010, ACROS Organics) for optical clearing. This process can last for several days, but

after approximately 48 h, the brain transparency is sufficient for imaging.

Histology. After fixation, the brains were split into hemispheres. One hemisphere was cleared

and imaged with OPT. The other hemisphere was transferred to a 40 ml solution (0.22 µm-

filtered) of 30 % (w/v) sucrose in 1X PBS (pH 7.4) at 4◦ C for approximately 48 h, or until

the sample sunk at the bottom of the tube. Then the sample was partially dried on a tissue,

placed in an embedding mold (such as 27112, Ted Pella Inc), and immersed in Cryomatrix

(6769006, Thermo Scientific). Following the immersion in Cryomatrix, the mold was dipped in

a bath of isopentane (avoid contact between Cryomatrix and isopentane) and dry ice until the

Cryomatrix became completely opaque. Afterwards, the samples were stored at -80◦ C before

slicing, with a sliding microtome, and mounting. The hemisphere sections were imaged on

an Apotome (Zeiss) with a 5X, 0.15 NA air-objective, as well as a DAPI and wtGFP filter sets

(for plaques and vasculature respectively). The Fiji plugin MosaicJ [108] was used to stitch the

Apotome images together and create an image of the whole section.
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Results and discussion

Neuroanatomy

To demonstrate the performance of our novel OPT approach, we started by clearing 2- to

8-month-old B6SJL F1 mouse brains (n>5). Figure 3.3(A) shows a representative image of a

cleared brain at the age of 8 months. The transparency is sufficient to see through the organ and

is adequate for OPT imaging (see Figure 3.3(B) and 3.3(C)). Standard BABB clearing techniques

require tissue immersion in increasing series of methanol concentration for dehydration to

prevent cellular distortions and excessive shrinkage of the tissue. However, we found that it is

not needed for OPT as the agarose embedding acts as a protective coating. The samples are

directly dehydrated in 100 % methanol, and this simplifies the clearing protocol. Although

not shown in Figure 3.3, we observed shrinkage of the organs, a known side-effect of BABB

clearing [109].

Images of the same 8-month-old brain were further acquired using the OPT system with the

420-nm excitation illumination, and a 3D rendering is shown in Figure 3.3(B). With its 0.5X

magnification and 15-mm DOF, the setup successfully captures the whole three-dimensional

nature of the organ. Individual coronal sections (Figure 3.3(C)) reveal details of the neu-

roanatomy down to the deepest structures. For example, the lateral (vl) and third (v3) ventri-

cles are cavities in the brain, which get filled with BABB and therefore appear as dark regions

in the sections. The caudoputamen (cp), identified through its sponge-like structure, and the

thalamus (th), appear brighter. More brain regions can be identified via the different autofluo-

rescence contrasts, such as the cortex (ctx), culmen (cul), and medial mammillary nucleus

(mm), which present a higher contrast, the optic chiasms (och), which appear as a bright tube

with a dark, presumably hollow, core, but also the corpus callosum (cc), the hippocampal

region (hip), the inferior colliculus (ic), and the central lobule (cent). The identification of

these different brain regions using the autofluorescence contrast confirms the ability of our

OPT system to perform neuroanatomical phenotyping as described previously [50].

Vascular network

Vascular abnormalities play an important role in cognitive decline and inflammation in some

AD patients. To demonstrate the compatibility of our clearing protocol with a fluorescence

labeling of the vasculature, we perfused the animals with an FITC-albumin hydrogel. This

labeling method was performed on 4-month-old B6SJL F1 mouse brains (n=2) and the resulting

images, acquired using the OPT system with the 470-nm excitation illumination, are shown in

Figure 3.4. In this configuration, we can identify a variety of vascular compartments, including

the superior sagittal sinus (SSS) and the sigmoid sinus (SS), which are venous sinuses found

within the dura mater, the outermost layer surrounding the central nervous system, and

located on top of the brain (Figure 3.4(A)). The caudal rhinal vein (CRV), running on the side

of the brain in a sagittal manner (Figure 3.4(B)), the anterior cerebral artery (ACA), which

partly forms the circle of Willis, ring-shaped system of arteries, situated at the base of the
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Figure 3.3 – Photograph of a mounted and cleared 8-month-old B6SJL F1 mouse brain (A).
3D rendering of the OPT image obtained from tissue autofluorescence (B, Visualization 1
[available online]). Single coronal sections of the OPT image (C) showing the inner morphology
of the intact organ: cc, corpus callosum; cent, central lobule; cp, caudoputamen; ctx, cerebral
cortex; cul, culmen; hip, hippocampal region; ic, inferior colliculus; mm, medial mammillary
nucleus; och, optic chiasm; p, pons; th, thalamus; v3, third ventricle; vl, lateral ventricle. Grid
spacing (in A): 1 cm. Scale bars: 1 mm.

brain (Figure 3.4(C)), and the middle cerebral artery (MCA) traveling from the circle of Willis

to the top of the brain. To better appreciate the 3D nature of the blood vessels, we created

maximum intensity projections from 20 consecutive OPT sections at different positions of

the brain (Figure 3.4(D)). These artificial sections represent half a millimeter of the whole

brain sliced coronally and highlight penetrating vessels several millimeters in depth. However,

smaller vessels, such as capillaries, have a diameter of typically less than 10 µm and fall beyond

our resolution limit. The innermost vessels of the brains are seemingly undetected. This

could be due to the depletion of the fluorescence signal propagating through the sample as

well as the shadowing from the surface vasculature. Ultimately, the identification of large

brain vessels with the hydrogel perfusion extends the phenotyping capacity of OPT and has

potential application in the study of aneurysms, strokes, and vascular development [110].

Amyloid deposition

New amyloid imaging agents, based on the chemical structure of histologic dyes, are now

making it possible to track amyloid pathology along with disease progression. To show the

compatibility of our clearing protocol with fluorescence labeling of amyloid deposits, we

injected the animals IP with an amyloid-binding dye called Methoxy-X04. This labeling

method was performed on 8-month-old 5xFAD mouse brains (n=3) and the resulting images,
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Figure 3.4 – Visualization of the brain vasculature in a 4-month-old B6SJL F1 mouse. The
brain was perfused with an FITC-albumin hydrogel and imaged with OPT. 3D rendering from
the top (A), side (B), and bottom (C) view (see Visualization 2 [available online]). Maximum
intensity projections of 20 coronal sections through the whole brain (D) showing the penetrat-
ing venules/arterioles. ACA, anterior cerebral artery; CRV, caudal rhinal vein; MCA, middle
cerebral artery; SS, sigmoid sinus; SSS, superior sagittal sinus. Scale bars: 1 mm.

acquired using the OPT system with the 420-nm excitation illumination, are shown in Fig-

ure 3.5. Individual sections of the three-dimensional OPT image (Figure 3.5(A)) reveal a mixed

contrast between the brain anatomy and amyloid plaques, seen as bright dot agglomerates

(denser zones pointed out by the arrows), caused by the overlap of the autofluorescence

and the Methoxy-X04 emission spectra. The 3D rendering of the whole brain, presented in

Figure 3.5(B), reveals the amyloid distribution in the organ and highlight an important aggre-

gation in the subiculum (Figure 3.5(B) and 3.5(C)). This result adds to the findings of Oakley et

al. [105], who used histology to localize amyloid deposition, providing deeper insights into the

3D distribution of the amyloid plaques. Interestingly, the pathological phenotype observed in

the 5xFAD mice shows differences in the 3D distribution compared to the APPPS1 model used

in the work of Jährling et al. [43] at a comparable age. This observation further demonstrates

the high potential of OPT for fast phenotyping. Small plaques (below 50 µm) are blurred out

due to the system’s resolution.

Histology comparison

The proposed framework for rapid mouse brain imaging with OPT extends the current 3D

capability of traditional histology. For this reason, we performed a qualitative comparison of
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A B C

Figure 3.5 – 3D imaging of amyloid deposition in an 8-month-old 5xFAD mouse. Single coronal
sections (A) with the arrows pointing to regions with high deposition and three-dimensional
rendering of the OPT image (B, Visualization 3 [available online]). A 3D image of the subiculum
(green) is shown within a whole mouse brain (C) to compare with the location of amyloid
deposition. Image (C) was obtained from the Allen mouse brain atlas [111]. Scale bars: 1 mm.

both techniques by splitting labeled mouse brains into hemispheres. The hemispheres were

then processed separately: one was prepared for histology (Figure 3.6(A) and 3.6(D)), and the

other one for OPT (Figure 3.6(B)-(C) and 3.6(E)).

First, the result of this comparison for the vasculature in a 9-month-old B6SJL F1 mouse brain

is shown in Figure 3.6(A)-(C). The histological slice (Figure 3.6(A), Visualization 4 [available

online]) displays details of the microvasculature as well as larger vessels, pointed by pink

arrows. However, the acquisition and stitching of the images took almost an hour for a single

section. Additionally, stitching artifacts, such as the one pointed by the blue arrow, remain

visible in the figure. On the other hand, some of the large vessels (pink arrows) can be identified

in the OPT section (Figure 3.6(B)), but the microvasculature is not resolved. Additionally, we

used the 3D capability of OPT to produce a maximum intensity projection (Figure 3.6(C)) from

20 consecutive sections (approx. 0.5 mm in thickness), which reveals a range of penetrating

vessels otherwise difficult to obtain in histology.

Second, the result of the comparison for the amyloid plaques in a 3-month-old 5xFAD mouse

brain is shown in Figure 3.6(D)-(E). The histological slice (Figure 3.6(D), Visualization 5 [avail-

able online]) present a high-resolution mixed contrast between tissue autofluorescence and

amyloid plaques (regions of accumulation pointed by green arrows). However, the acquisition

and stitching took approximately an hour, and the resulting section suffers from microtome

artifacts (blue arrows). On the other hand, the regions of plaques accumulation (green arrows)

32



3.1. OPT for rapid whole mouse brain imaging

could be retrieved in the OPT section (Figure 3.6(E)) with a lower resolution. Additionally, we

observed an opposed contrast in some regions of the brain, such as the corpus callosum (cc),

which is bright in the histological section but appears dark in OPT. This might be caused by

the chemical clearing.

These results highlight the complementarity of traditional histology and OPT. Mechanical

slicing associated with wide-field fluorescence microscopy produces high-resolution images

of the features of interest in 2D. However, this method can be cumbersome (particularly the

cutting and stitching parts) and is hardly suitable for 3D imaging. On the other hand, OPT

produces low-resolution 3D images of the whole organ in about 5 minutes with a user-friendly

sample preparation.

A B C

D E
cccc

Figure 3.6 – Comparison of histological and OPT slices. 40 µm-coronal section of a 9-month-
old B6SJL F1 mouse brain hemisphere labeled for vasculature (A, Visualization 4 [available
online]) and corresponding single OPT section (B). A maximum intensity projection (C) taken
over 20 consecutive OPT sections, which represents approximately 0.5 mm in thickness, gives
a better representation of the penetrating vessels and highlights the 3D advantage of this
technique. 40 µm-coronal section of a 3-month-old 5xFAD mouse brain hemisphere labeled
for plaques (D, Visualization 5 [available online]) and corresponding single OPT section (E),
some regions such as the corpus callosum (cc) show an inverted contrast. Scale bars: 2 mm.

Conclusion

In this manuscript, we present a novel OPT method for whole mouse brain imaging. This

method is based on a custom OPT system, designed for mouse brain imaging, and an opti-

mized sample preparation. The OPT system provides an FOV of 26.6 × 26.6 mm2 and can
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image samples as thick as 26 mm typically within less than 5 minutes. It incorporates an

epifluorescence arm, which provides a uniform full-field illumination and is easily config-

urable by switching the excitation LEDs and filters. The sample preparation consists of a

simple and rapid solvent-based clearing of the organ (3 changes of clearing solution in 3 days).

This can be complemented with fluorescence labeling of the vasculature, through perfusion

of a fluorescent hydrogel, or labeling of amyloid deposition in a mouse model of AD, via 2

consecutive injections of an amyloid-binding dye. Based on this method, we imaged B6SJL F1

mouse brains without markers. The results demonstrate the quality of the clearing and reveal

details of the organ structure, an essential requirement of neuroanatomical phenotyping [50].

Additionally, by imaging the vasculature of B6SJL F1 mouse brains, we identify major vessels,

as well as penetrating arterioles/venules in 3D down to several millimeters in depth. We also

imaged 5xFAD mouse brains with labeled amyloid deposition. Individual sections of the OPT

image revealed regions of accumulated amyloid plaques. Through 3D rendering, we could

identify the subiculum as the region with the densest accumulation, in concordance with the

literature [105]. Finally, we performed a qualitative comparison of histological and OPT slices

in the different hemispheres of the same brain to illustrate the complementarity of these two

techniques.

The rapid acquisition of whole mouse brains with our OPT system is achieved through a long

DOF and a low magnification, which currently limit the resolution to ~50 µm. Additionally,

the low NA of the system restricts the light collection efficiency. This would be a plausible

explanation for why finer structures such as capillaries and small amyloid plaques (<50 µm)

were undetectable. Furthermore, the method requires embedding of the sample in agarose

for mounting purposes. While the surrounding agarose simplifies the clearing protocol, by

creating an interface with the solvents and avoiding the use of increasing concentration

solutions, it has not been tested yet with other clearing methods such as CLARITY [112],

SeeDB [109], Scale [113], or 3DISCO [114].

In the future, other clearing methods optimized for OPT might improve the current results

obtained with BABB; new amyloid imaging agents with a distinct excitation/emission spec-

trum will help to discriminate between the tissue autofluorescence and the amyloid plaques.

Additionally, our imaging method shows high potential for the use in neuropathology and

the study of disease progression, similarly to the work and research in diabetes [48, 49], by

imaging the mouse pancreas at different ages. Ultimately, our OPT setup with its large FOV is

well suited for the imaging of other organs, such as the liver, lung, and kidney.

Supporting information

The 3D reconstructed OPT datasets used to generate Fig. 3.3-3.5 can be downloaded from our

website at https://lob.epfl.ch/files/content/sites/lob/files/shared/downloads/brainOPT.zip/.
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4 OPT optical and tomographic instru-
ment characterization

In the previous chapter (Chapter 3), the implementation of a custom OPT instrument for

mouse organ imaging was described. In parallel to the development of this instrument, we

contributed to the characterization of OPT instruments in various areas. First, we aimed

to standardize the mounting procedure to decrease sample preparation variability, which

we achieved by molding agarose in conical tubes. The new mounting procedure facilitates

sample preparation and is less prone to image artefacts, due to the agarose block shape

in the original procedure. Second, we performed microparticle imaging to understand the

instrument’s transfer function through its point spread function. This approach to characterize

the instrument has rarely been applied in standard OPT, and our results suggest that it is

relevant to perform it on every instrument at least once because it can reveal imperfections

in the motorized rotation stage. Finally, ever since the introduction of OPT in 2002, the

choice of a number of projections for OPT acquisitions has never been discussed. It was

originally suggested to use 400 projections (separated by 0.9◦) [9]. Later, researchers worked

with empirical numbers such as 360 projections (separated by 1◦) [97] and 1200 projections

(separated by 0.3◦) [50], but without any justification on their choice. Although these number

of projections lead to good quality OPT images, we decided to challenge their empirical values.

The results suggest that the number of projections to be acquired depends on the type of

sample to be imaged and its spatial frequency content. Moreover, when evaluated in mouse

organs, the number of projections required to compute accurate reconstructions was always

higher than the original 400. These contributions are detailed in a research article submitted to

the Journal of Biomedical Optics in December 2018. This section is composed of the preprint

version of the article, followed by a detailed list of author contributions.
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Abstract

Optical projection tomography (OPT) is a mesoscopic imaging tool holding invaluable poten-

tial for life sciences, as the understanding of biological processes goes through 3D visualization

at the centimeter scale. We address key technical aspects of OPT to improve reconstructions

quality. An agarose embedding procedure based on molding in conical tubes is presented, and

images of fluorescent microparticles are shown. We also introduce a method to investigate

the effects of the number of projections on the reconstruction’s quality. All of this showcased

in different mouse organs endogenously and with a vasculature staining. We hope that these

insights will make OPT more accessible and that they will open the door to new applications

of mesoscopic 3D imaging.

Introduction

Mesoscopic imaging is a branch of optical microscopy focusing on large samples, typically

with a size ranging from a few millimeters to several centimeters in at least one direction [12].

The principal modalities of mesoscopic imaging include light sheet fluorescence microscopy

(LSFM), opto-acoustic (OA) microscopy, and optical projection tomography (OPT) [116]. These

methods have critical applications in life sciences and hold an invaluable potential to extend

the molecular and cellular knowledge to a higher level of structural organization. LSFM [90]

uses a planar illumination shined orthogonally to the detection axis to produce fluorescent

optical sections of a specimen and reconstruct 3D volumes. This method has been applied

to the visualization of neural [33], and vascular [91, 92] networks in whole mouse brains, as

well as the recording of neuronal activity in whole zebrafish brains [38] and the imaging of

the fruit fly nervous system [10]. OA microscopy [117] records optical absorption in tissues by

measuring pressure changes upon excitation with a light pulse. This method has been applied

for the visualization of the whole mouse [29] and zebrafish [118] anatomy. Lastly, OPT [9]

takes a series of in-focus images at different angles, called projections, over a complete turn
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to compute a 3D reconstruction of the specimen with a filtered back-projection algorithm

(FBP) [73]. OPT has been used since 2002 for 3D fluorescence imaging of biological specimen.

It was originally described as a tool for gene expression studies in mouse embryos [44], but its

field of application proliferated.

For instance, whole mouse pancreas imaging with OPT plays a key role in diabetes research [47,

48, 49], providing scientists with a quantitative overview of the disease progression in the

entire organ. Similarly, whole mouse brain imaging is performed with OPT for the study

of Alzheimer’s disease [55]. In vivo OPT imaging of zebrafish embryos [119, 100] can also

be applied to study the cardiovascular system [46]. Technological advances have closely

followed the application growth in OPT. Helical scanning [51] allows acquisition of elongated

samples, such as the mouse spine, without compromising the field of view. Normalized

born approach [95] has been proposed in fluorescence OPT to account for tissue absorption

properties. A point-spread-function based method to reconstruct OPT images increases

signal-to-background ratio and resolution [53, 54]. However, these features aim to improve

OPT resolution, and few papers have been dedicated to the fundamental aspects of OPT

imaging. These include investigations of the importance of correct determination of the

center of rotation [82], and correction of image artefacts in OPT [79], although the latter is

mostly restricted to simulation cases.

This work aims to consider other fundamental and recurring aspects of OPT acquisition and

to present preliminary studies highlighting interesting avenues for the future development of

OPT technology.

While standard OPT sample preparation protocols exist [85, 86], they rely on the critical

trimming of the sample-enclosing agarose block. As a means to uniformize sample shape

and reduce the risk of sample damage and imaging artefacts, we introduce a nearly cut-free

specimen embedding procedure in agarose via molding in conical tubes. Then, we rely on

imaging microparticles to qualitatively characterize the point spread function (PSF) of our OPT

instrument, to better understand imaging and reconstruction artefacts. Images of fluorescent

microparticles also illustrate the space-varying nature of the PSF in OPT. The last aspect we

study concerns an essential parameter of OPT acquisition, which is the number of projections.

It is well known in X-ray computed tomography that the number of projections plays a crucial

role in reconstruction accuracy [120], and that reconstruction from an insufficient number of

projections leads to heavy image artefacts. We investigate the influence of increasing the num-

ber of acquired projections on the resulting reconstruction quality in various samples, namely

the mouse brain, lungs, kidney, and fluorescent microparticles. The comparison between

specimen reconstructions from a different number of projections is based on correlations. To

the best of our knowledge, it is the first time that the effect of the number of projections is

investigated in OPT.

In Section 4.1, we review the OPT sample preparation and present our different specimen

embedding procedure. We describe the OPT instrument PSF qualitatively through the use
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of fluorescent microparticles in Section 4.1. Finally, in Section 4.1, we present the results of

modulating the number of projections on image reconstruction quality in OPT, followed by

concluding remarks in Section 4.1.

Animal ethics statement

Animal procedures were carried out according to Swiss regulations (animal protection ordi-

nance 455.1) under the approval of the veterinary authority of the canton of Vaud (license:

VD3058) and all efforts were made to minimize suffering, following the principle of the

3Rs [121].

Sample preparation with a different embedding procedure

Standard protocols for OPT imaging are usually composed of three parts: organ extraction,

specimen embedding, and optical clearing [85, 86]. Each of these is briefly reviewed in

the following paragraphs, and a different specimen embedding procedure is presented in

Subsection 4.1.

Organ extraction

Organ extraction methods differ depending on the experiment’s design but can include deep

anesthesia and perfusion of the animal to be sacrificed, as well as organ harvesting. Staining is

an optional step that can be performed at different points of organ extraction. For example,

amyloid plaques in a mouse brain with Alzheimer’s disease are stained before sacrifice [55],

whereas antibody staining is performed after the organ has been harvested [104]. In this work,

we used 4 B6SJL F1 mice, one of 8, two of 23, and the last of 51 weeks of age, which were

primarily sacrificed for other experiments but were re-used in our experiments. The mice were

deeply anesthetized with pentobarbital and perfused with 2 ml of heparinized PBS, and 10 ml

of 10 % formalin (HT501128, Sigma). In the 51-week-old mouse, the vasculature was stained

by perfusing the animal with 10 ml of a hydrogel containing FITC-conjugated albumin [92].

After perfusion, we harvested the brain from the 8-, and 23-week-old mice (3 mouse brains).

We also harvested the lungs and a kidney from the 51-week-old mouse (2 mouse organs). All

organs were postfixed in 40 ml of formalin overnight.

Specimen embedding

OPT imaging often requires the sample to be glued on a motorized rotation stage [85]. Direct

contact of the sample with glue impairs imaging and is avoided by embedding the specimen in

agarose gel. Embedding starts by filling a container, such as a Petri dish, with warm 1.5 % (wt/v)

agarose gel. Then, the specimen is transferred to the container’s center and is maintained

in this position until the gel solidifies. Finally and critically, a block containing the sample
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is carved from the gel according to the following principles. Firstly, the amount of agarose

around the sample is minimized to reduce its effect on light penetration. Secondly, the block is

“shaved” to remove acute angles, which could cause light scattering. Lastly, approximately 1 cm

of agarose is left on the side of the sample which will be glued to the rotation stage. Trimming

an agarose block can be a problematic operation as it is brittle. The block’s translucence

results in refraction effects that make it difficult to precisely cut around the sample. Moreover,

edge quality depends on several factors, including block temperature, and blade quality and

handling. Ultimately, trimming is a contributor to variability in the resulting images.

We propose an embedding protocol that significantly reduces related artefacts and associated

variability. Conical-tube-based molds are used to produce agarose cylinders, virtually free

from light-scattering edges (see Figure 4.1). The required materials include: microtome blades,

a pair of inoculation loops, ice in a container and a 15 ml conical tube (Figure 4.1a). The

conical tube is cut with a saw along the 10 ml graduation line, and the conical tip is discarded.

Deburring and rinsing the mold with acetone helps to prevent bubbles when pouring the

agarose inside. The mold is placed on ice and filled with approximately 4 ml of warm 1.5 %

(wt/v) agarose in Milli-Q water (0.22 µm-filtered). The specimen can then be sunk in the

agarose gel and maintained at the mold’s center with inoculation loops (Figure 4.1b). When

the agarose begins to solidify, the inoculation loops are removed. Since only 5-10 ml of

agarose gel are used, the solidification occurs within minutes and is faster than in a whole

Petri. The mold is allowed to cool until complete gel solidification at 4◦ C (Figure 4.1c), and is

subsequently immersed into hot water (approximately 90◦ C) for 10-30 seconds (Figure 4.1d)

to facilitate unmolding (Figure 4.1e). Finally, the cylinder can be trimmed at its extremities,

while remembering to keep at least 1 cm of agarose on one side of the sample. The critical

step of this protocol is to maintain the sample at the center of the mold before agarose gel

solidification. Different mold sizes can be obtained with other conical tube volumes, but 15 ml

tubes were found to be the most suitable for mouse brains, kidneys, and lungs.

OPT images acquired with the custom embedding protocol (Figure 4.2a) are comparable to the

ones from standard embedding protocols (Figure 4.2b and c). In Figure 4.2c, the agarose block

interface is emphasized in the image (red arrowheads) due to poor cut quality performed by

an inexperienced user. However, even if trimming is performed cautiously by an experienced

user, it does not prevent the occurrence of cutting artefacts (red arrowheads in Figure 4.2b).

These images also reveal the presence of a cavity (blue arrowheads) in the agarose block, which

corresponds to the original specimen morphology. After optical clearing with BABB (described

below), specimens were found to have shrunk, as already documented previously [109]. The

custom embedding protocol preserves image quality while the risk of damaging the sample

and introducing cutting artefacts is reduced.

Optical clearing

Optical clearing is an essential part of OPT sample preparation for opaque specimens, such

as mouse organs. Its purpose is to enhance light penetration by making these specimen
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(a) (b) (c) (d) (e) (f)

Figure 4.1 – Agarose mounting in custom molds made from 15 ml conical tubes. (a) Start with
ice in a container, a sharp blade, two inoculation loops, and the part with the cap of a 15 ml
conical tube which was cut along the 10 ml graduation line. (b) Pour warm 1.5 % agarose
solution in the mold on the ice, add the specimen, and, with the inoculation loops, maintain
it at the center of the mold until it starts solidifying. (c) Once the specimen stops moving,
remove the loops quickly and wait for complete solidification. (d) Sink the mold into hot water
for 10-30 seconds. (e) Unmold by gently opening the cap. (f) If necessary, trim the uneven
circular surfaces of the cylinder, while always keeping at least 1 cm of agarose on the end of
the cylinder to be mounted on the instrument.

(a) (b) (c)

Figure 4.2 – Comparison between the different embedding protocols on OPT images of mouse
brain hemispheres. Each image is a maximum intensity projection through 100 slices, which
corresponds to 1.3 mm of tissue thickness. (a) Trimming-free procedure with agarose molding
in conical tubes. (b) Standard trimming procedure performed by an experienced user. (c)
Standard trimming procedure performed by an inexperienced user. The images are saturated
to better visualize mounting artefacts. Blue arrowheads: agarose cavity due to specimen
shrinkage after optical clearing. Red arrowheads: artefacts from agarose trimming. Scale bar:
2 mm.

transparent. In this work, we use the clearing protocol from our previous work [55]. Briefly,

samples are dehydrated in methanol for a day and incubated for two days in a 1:2 solution of

benzyl alcohol and benzyl benzoate (BABB) before imaging.
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Microparticles imaging for OPT characterization

The characterization of an imaging instrument is important to understanding its inherent

limitations and minimizing their effects through methods adaptation. Among the properties

of an imaging system, the point spread function (PSF) is probably the most relevant [122].

The PSF describes the response of the instrument to an ideal point source. In practice, ideal

point sources are taken as known objects which are much smaller than the actual PSF of the

system. For fluorescence microscopy, including OPT, fluorescent microparticles are the tool of

choice [123]. The size of the particles can be determined by estimating the resolution of the

system, which is a measure of the PSF size. We carried out this approach using a custom OPT

instrument [55] built for large-scale specimen imaging. The field of view is 26.6 × 26.6 mm2

with a diffraction-limited resolution of approximately 28 µm. The resolution was improved by

using a camera chip without binning (2048 × 2048 px2), at the expense of image processing

time and storage expenditure. The other instrument’s features are a numerical aperture of

0.01, a magnification of 0.5X, and a working distance of 300 mm. For this characterization,

we opted for 5 µm fluorescent FITC-labeled microparticles (75908-5ML-F, Sigma). These

particles are more than five times smaller than the system’s resolution, which satisfies the

sampling theorem [124], and are sufficiently bright to be imaged by the OPT instrument. The

preparation of the microparticles for OPT imaging uses the molding procedure described in

Section 4.1, where the beads are the specimen. Approximately 0.01 µl of particles are mixed to

10 ml of agarose solution before molding. The acquisition is performed without clearing steps,

which would otherwise bleach the fluorescent signal from these microparticles. The difference

in refractive index between BABB and water in the agarose gel causes light scattering and

aberrations (although negligible with a numerical aperture of 0.01) at the interface of the

agarose cylinder. In this particular case, image acquisition and reconstruction can still be

performed normally. Additionally, BABB and water do not mix. Over time, this makes the

agarose block opaque. Consequently, the microparticle samples are used once and discarded

after imaging.

The results of imaging samples with fluorescent microparticles using our OPT instrument

are presented in Figure 4.3. A total of 99 slices are reconstructed, and a depth color-coded

maximum intensity projection image is generated (Figure 4.3a-c). The instrument shows a

space-varying PSF with a circular shape close to the center of rotation, symbolized with a red

cross (Figure 4.3b). When moving away from the center of rotation, the PSF takes the shape of

an arrowhead pointing toward the exterior of the sample. Furthermore, the size of the PSF

increases with the distance to the center of rotation. Due to the translucent nature of the

agarose gel without clearing, each microparticle is only visible on approximately half of the

projections. This phenomenon is illustrated in the sinogram (0.9 mm in depth) of Figure 4.3d,

where some microparticle traces (blue arrowheads) do not span the 360◦.

In summary, the PSF size of our OPT instrument increases with the distance from the center

of rotation and transforms from a circular to a growing-arrowhead shape pointing towards

the agarose cylinder surface. The varying shape of the PSF currently hinders the computation
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Figure 4.3 – Fluorescent microparticles imaging with the OPT instrument. (a) Depth color-
coded maximum intensity projection of a section from the agarose cylinder mixed with
microparticles. Red arrowheads indicate ring artefacts, which can be used to identify the
center of rotation (red crosses). Color-coded tiles correspond to zoom-in views in (b) and
(c). (d) Sinogram of the microparticle sample at 0.9 mm depth. Blue arrowheads points to
incomplete single particle traces. Scale bar: 1 mm.

of the system’s resolution and depth of field. Additionally, this PSF differs from what was ob-

served by Van Der Horst et al. [125] and Trull et al. [53, 54]. Both reported a radius-dependent

tangential blurring of their PSF from the center of rotation, although with a different instru-

ment. However, the nature of the changes in the PSF shape of our system has led us to think

that these artefacts are related to something else than optics. Indeed, the large increase in

the PSF size cannot be explained with regards to the large depth of field of the instrument

(15.4 mm). Rather, we believe it is caused by the mechanical rotation of the motorized stage.

There could be an eccentricity in the rotation, and there might also be an inaccuracy to gen-

erate constant angular increments. In the future, we want to characterize the rotation stage

motion, measure its positioning precision, and eventually try to correct for systematic errors

we find to improve reconstruction accuracy. However, in the following organ images acquired

with the OPT instrument, the effect of the PSF degradation is difficult to judge and the image

quality is already sufficient to see details of the vascular network.

Assessment of image quality with projection number

OPT imaging requires projections acquired at different angles, over a complete turn, and with

a depth of field covering at least half of the sample thickness to be used by the filtered back-

projection (FBP) algorithm [73] and compute a 3D reconstruction of the sample. In practice,

the number of acquired projections is a parameter chosen by the experimentalist, bearing in

mind that it is directly related to the image reconstruction quality. Indeed, decades of research

in X-ray computed tomography, where FBP was initially applied, have shown that reconstruc-

tions using an insufficient number of projections contain image artefacts [120]. Although a
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greater number of projections imply a higher reconstruction fidelity, several factors limit the

number of angles that can be considered in OPT. More projections imply a prolonged exposure

to the excitation light, which eventually leads to photobleaching of the fluorescence signal. It

also means greater computational memory consumption and longer image processing times,

which is a growing issue for experiments involving numerous specimens. Additionally, the

precision of the motorized rotation stage imposes a minimal angular displacement, although

new motors have a resolution far below 0.1◦ thus enabling acquisitions with more than 3600

projections. Currently, most OPT acquisition protocols rely on 400 projections that are pro-

cessed by the reconstruction algorithm, as was suggested in the original OPT paper [9]. We

believe that the appropriateness of this number depends on the sample type to be imaged

and should be evaluated on a case-by-case basis, as discussed hereafter.

We propose a correlation-based approach to assess how image quality improves with the

number of projection and suggest a method for estimating the appropriate trade-off. Our

method requires a specific acquisition protocol, described as follows. Firstly, a large number of

projections is acquired for the sample of interest, and the resulting high-quality reconstruction

is defined as ground truth. In the present case, 3000 projections were used. Secondly, a series

of reconstructions with a different total of projections (ranging from 100 to 3000 by steps of

100 projections in this case) is computed. The smaller stacks of projections are obtained by

linear interpolation of the ground truth stack. Thirdly, each reconstruction is correlated with

the ground truth and the Pearson correlation coefficient ρX ,Y (PCC), defined as

ρX ,Y = cov(X,Y)

σXσY
, (4.1)

where X is the reconstruction from fewer projections, Y is the ground truth, cov is the co-

variance, and σX and σY are the corresponding variances, is computed. Finally, a plot of

the PCC against the number of projections can be generated. This acquisition protocol was

tested on three samples: a mouse brain, lung, and kidney. The subsequent 3D reconstructions

of these samples are shown in Figure 4.4. Additionally, the protocol was also tested on the

microparticles sample presented in Section 4.1. To reduce the processing time, only a selected

subvolume of the sample underwent the correlation procedure. For mouse organs, 49 slices

were processed, and for microparticles, 99 slices were processed. Ground truth acquisition

times were approximately 9, 12.5, 7.5, and 25 minutes for the brain, lung, kidney, and mi-

croparticles, respectively. During all acquisitions, signal decay due to photobleaching did not

exceed 10 %.

The PCC curves of each sample (mouse brain, lung, kidney, and microparticles) are shown in

Figure 4.5. All curves present a similar behavior. They are almost monotonically increasing

and asymptotically approach 1. However, their growth pattern is specific to the sample utilized.

For example, the mouse brain curve systemically has higher values than the other curves for a

given number of projections. Before we can hypothesize on the reasons behind this behavior,
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(a) (b) (c)

Figure 4.4 – Maximum intensity projections through ground truth reconstruction (from 3000
projections) acquired with the OPT instrument. The specimens are: (a) a 8-week-old mouse
brain morphology, and the vasculature from (b) a 51-week-old mouse lung and (c) a 51-week-
old mouse kidney. Blue arrows indicate the subvolumes used for correlations. Scale bar:
2 mm.

we should notice that all nervous tissues have similar levels of autofluorescence and they

create a rather homogeneous distribution of intensities across the organ (see Figure 4.6). The

resulting image is therefore mainly composed of low spatial frequencies, which are better

captured than high spatial frequencies with fewer projections. The vasculature curves (lungs

and kidney samples) confirm this hypothesis. The vascular network is made of intricate blood

vessels, which result in high spatial frequency image features in the 3D reconstruction (see

Figure 4.6). Therefore, the lungs and kidney require more projections to reach a PCC value

that compares to that of the brain for a given number of projections. Consequently, the small

differences (at least below 1500 projections, as discussed below) observed between the kidney

and lungs curves could indicate a difference in the tissue-specific type of vascularization.

Additionally, the microparticles curve requires an even higher number of projections to reach

a given PCC value (at least below 1500 projections), which is also in favor of the hypothesis

that the curve growth depends on the spatial frequency content of the image. Microparticles

indeed reflect the PSF of the OPT instrument, which is by definition the highest detectable

spatial frequency. Finally, around 1500 projections, the PCC curves of the kidney vasculature,

lungs vasculature, and microparticles intersect. Correlation values above this number of

projections do not have a particular trend. We think this can be attributed to noise in the close

to ground truth reconstruction regime. Therefore it is probably not useful to acquire more than

1500 projections with the current instrument for these types of samples. The autocorrelation

of the ground truth (PCC=1) has been omitted on the plot of Figure 4.5 because it introduced a

jump in the PCC curves at 3000 projections. This jump is another indication that with more

than 1500 projections, differences in the reconstruction are mostly attributed to noise and the

correlation level saturates before reaching 1.
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Figure 4.5 – Plot of the PCC and corresponding fit against the number of projections for
different samples studied in this work. The curves are monotonically increasing and approach
1 in an asymptotic manner. The amount of projections required to reach a given PCC value
depends on the sample type. Samples with higher spatial frequency content require more
projections, up to a saturation level of approximately 1500 projections. The blue line indicates
400 projections, as suggested in the original OPT paper.
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Figure 4.6 – Selected slices from the 3D reconstructions of the mouse brain and right part
of the lungs vasculature. Color-coded tiles indicate zoom-in view reconstructed with an
increasing number of projections (from 100 to 3000).
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As hypothesized, PCC curves could be an indication of the spatial frequency content in an

image. They can assist in deciding the appropriate number of projections to acquire for

OPT imaging of a particular sample. It is worthwhile also looking at reconstructions with a

different number of projections in a single slice of each sample. Such an analysis is shown

in Figure 4.6 for the mouse brain and part of the vasculature of the mouse lung. From these

images, it is clear that reconstructions based on 100 projections are inaccurate and heavily

corrupted by reconstruction artefacts. At 500 projections, streak artefacts remain present in

the lung image, and the brain image has a granular texture. At 1000 projections both images

have considerably fewer artefacts. From 1500 projections onward, image improvements

become marginal, which agrees with our hypothesis that, after 1500 projections, PCC values

reflect more noise fluctuations than improvements on reconstruction quality. Since little

signal decay (<10 %) was observed during the acquisition of ground truth images, we do

not expect this to be a problem at 1500 projections. Additionally, signal decay in that order

of magnitude can be corrected [79]. Regarding acquisition time, the 1500 projections of

mouse specimens presented in this work took 5 minutes, and the memory expenditure for

that amount of projections is approximately 12 Gbytes (2048 × 2048 × 1500 px3 in 16 bits).

The approach described in this section aims at helping OPT users choosing the number of

projections considering their samples and instrument. In our case, we found that mouse

brain anatomy, as well as lungs and kidney vasculature, are accurately reconstructed with

1500 projections without prohibitively compromising the acquisition duration or memory

consumption. Moreover, the computation of a PCC curve from microparticle images can

provide information on the number of projections at the limit of the instrument resolution,

which can serve as an upper bound to the number of projections. Since microparticle images

are likely to be acquired infrequently in OPT instruments, we suggest to select a large number

of projections for their reconstructions as the improvement in image quality is not fully

understood yet. In our case, we would still acquire 3000 projections for our microparticles

samples.

Finally, we fitted the PCC curves with an exponential function

ρX ,Y (n) = a −b exp−cn , (4.2)

where n is the number of projections and a, b, and c are the fit coefficients. These fits are

plotted in Figure 4.5 and the coefficients are summarized in Table 4.1 with the resulting R-

square value. They can be used to infer on the PCC value for any given number of projections.

Conclusion

In this paper, we discussed several aspects of OPT imaging: sample preparation, with a focus

on specimen embedding, instrument characterization with fluorescent microparticles and

48



4.2. Author contributions

Table 4.1 – Fit coefficient and R-square value for the four different PCC curves in Figure 4.5.

Sample a b c R-square

Brain 0.9892 0.3303 0.004256 0.9823
Lungs 0.9649 0.6108 0.003656 0.9918

Kidney 0.9727 0.576 0.00286 0.9922
Micro particles 0.975 0.7023 0.002736 0.9958

the influence of the number of projections on the subsequent reconstruction with the FBP

algorithm. Each aspect provides a starting point to be further investigated. Microparticle

imaging can serve to understand the instrument behavior and specifications, such as the point

spread function and resolution. A better knowledge of these features can help in designing

deconvolution methods for OPT as suggested by Van Der Horst et al. [125]. However, as

microparticle imaging depends on the instrument properties, such as numerical aperture,

motorized rotation stage precision, and detector, it needs to be systematically conducted

on different setups. Similarly, the analysis of the number of projections could be used to

find an adaptive criterion for the automatic determination of this parameter, given a sample.

Ultimately, in discussing these aspects, we aim to help standardize the OPT technology and

make it more accessible to life scientists.
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5 OPT applied to Alzheimer’s disease

In the last two chapters (Chapter 3 and 4), we have demonstrated the performance of OPT in

the context of mouse whole-organ imaging, with an emphasis on the brain. An essential part

of neurodegenerative diseases research is done on mouse brains, and its role in elucidating

the etiology of diseases such as Alzheimer’s disease (AD) is critical. In the OPT images of

amyloid plaques in whole mouse brains, we have seen a mixed contrast between the tissue

autofluorescence and the plaque-specific signal. This mixed contrast makes it difficult to

separate the plaques from their surroundings. A means of isolating amyloid plaques for

quantification would be extremely valuable to observe the disease progression and assess

treatments efficacy. In this chapter, we demonstrate for the first time segmentation and

quantification of amyloid plaques in whole mouse brains of AD mice with a supervised

learning algorithm based on random forests [126]. The performance of the method was

evaluated in a preliminary cross-sectional study, and the results are presented in a research

article submitted to Biomedical Optics Express in December 2018. This section is composed

of the preprint version of the article, followed by a detailed list of author contributions.
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Abstract

Alzheimer’s disease (AD) is characterized by amyloidosis of brain tissues. This phenomenon is

studied with genetically-modified mouse models. We propose a method to quantify amyloido-

sis in whole 5xFAD mouse brains, a model of AD. We use optical projection tomography (OPT)

and a random forest voxel classifier to segment and measure amyloid plaques. We validate our

method in a preliminary cross-sectional study, where we measure 6136±1637, 8477±3438,

and 17267±4241 plaques (AVG ± SD) at 11, 17, and 31 weeks. Overall, this method can be

used in the evaluation of new treatments against AD.

Introduction

Amyloidosis in brain tissues is associated with several neurodegenerative diseases, including

Parkinson’s and Alzheimer’s disease (AD). In AD, toxic extracellular aggregates of a truncated

and thus misfolded amyloid precursor protein form deposits known as amyloid plaques [127,

128]. These plaques have a spherical shape, and their size varies between approximately ten

and one hundred micrometers. The neuropathological nature of the plaques is hypothesized

to play a central role in the etiology of AD and is at the core of Alzheimer’s disease research [66].

The mechanisms of plaque formation and their consequences remain elusive and are com-

monly studied in genetically modified rodent models, such as the 5xFAD mouse model [105].

Such models are designed to reproduce the age-dependent amyloid deposition observed in
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humans [129].

The standard technique used to visualize and quantify amyloid plaques is histopathology

wherein sections of brain tissue are sliced, mounted on glass cover slides, stained, and imaged

with either a widefield or a fluorescence microscope. Histopathology is an invaluable diagnos-

tic tool but has some limitations. Strict sample preparation protocols and a well-practiced and

meticulous expertise are required. In addition, reproducibility across samples is challenging

to obtain, and artefacts related to sample preparation are nearly unavoidable. Furthermore,

three-dimensional renderings of whole brains remain prohibitively time-consuming. As a

consequence, this technique only allows observing the development of amyloid plaques in

local, arbitrarily chosen areas of the brain, making an objective comparison between speci-

men difficult. Other less invasive techniques exist to image amyloid plaque growth in vivo,

such as two-photon microscopy [130], optical coherence microscopy [68], and photoacoustic

microscopy [131]. All three techniques can resolve individual plaques consistently while

preserving brain integrity through the use of cranial windows. They can cover several square

millimeters of tissue over hundreds of micrometers in depth, but fail at imaging over the

whole brain. Differential phase contrast tomography [132] and contrast-enhanced magnetic

resonance microscopy [133] can produce images of amyloidosis in whole intact rodent brains

with a resolution of a few tens of micrometers. However, they require expensive instruments

with specific sample preparation protocols and are therefore not routinely used. Ultrami-

croscopy [134] is another technique for visualizing amyloidosis in whole-excised mouse

brains [43, 135]. It is a mesoscopic adaptation of light sheet microscopy, where a sheet of light

illuminates the sample orthogonal to the detection path, thus producing optically sectioned

fluorescence images of the organ with minimal photobleaching. Similarly, optical projection

tomography (OPT) [9] can perform whole mouse brain neuroanatomical phenotyping [50] and

amyloidosis imaging [55] by acquiring fluorescence projections of the organ at different angles

over a complete turn. Although ultramicroscopy and OPT are complementary techniques,

ultramicroscopy often offers a better resolution, while OPT is generally easier to implement

and more robust to misalignment.

To quantify amyloidosis progression from image data, the standard protocol is to process

specimen with an amyloid plaques-specific staining such that the plaques stand out from

other tissue elements. A segmentation mask is then obtained by identifying which image

elements correspond to amyloid plaques. From there, the number of plaques and volume they

occupy can be estimated. When imaging the whole brain at once, a significant challenge is

the staining of the intact organ. For amyloid plaques, Methoxy-X04 [136] is one of the only

probes that can be used due to its ability to penetrate the blood-brain barrier. However, the

excitation of Methoxy-X04 (in the near-UV/blue) also generates a strong signal from tissue

autofluorescence. Therefore, quantitative image-based analysis of amyloidosis relying on

voxel intensity thresholding, as typically used in histopathology data, cannot be performed.

Amyloid plaques are indeed indistinguishable from tissue autofluorescence based on intensity,

henceforth requiring a more complex image analysis approach. In the work of Jährling et

al. [43], plaques could be isolated in ultramicroscopy images by applying intensity thresholding
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since small sub-volumes called cubes were considered instead of the whole brain volume.

Quantitative analysis was then run through six of these cubes per sample. Statistical analyses

are performed on the sub-volumes but they do not reflect the brain-wide plaque distribution.

In this paper, we propose a supervised learning pipeline relying on random forest voxel

classifiers to segment and quantify amyloid plaques in whole 5xFAD mouse brains of different

ages acquired with OPT.

Learning-based automated classification for AD has gained a strong interest in recent years.

The disease is indeed currently diagnosed based on clinical examination, and classification

of AD samples, preferably at an early stage of the pathology, holds a strong potential for

adding validity to the diagnosis. Signal-based classification already allowed identifying mark-

ers to aid in Alzheimer’s disease diagnostic from diffusion tensor imaging scans [137], EEG

signals [138], intracellular recordings [139], or multiple sources including various 3D imaging

modalities [140].

Regarding tissue imaging data, BioVision [141] was proposed as a supervised training approach

for image-based identification of histopathological objects. This approach, relying on a pixel-

based Bayesian classifier, has been used for the quantification of amyloid plaques in histology

images [142]. A similar approach was followed by Vandenberghe et al. [143] on the same type

of data, showing that random forest classifiers exhibited better performance. The work of

Li et al. [144] also illustrates the good performance of pixel-based decision tree algorithms,

this time for the pixel-based classification of MRI image data. An essential aspect of these

previous works is that the classification algorithm operates on pixels in 2D slices. Another

way to approach the problem of identifying brain components from images is atlas-based

segmentation [145, 143]. In this setting, a labeled model (the atlas) of the 3D organ is deformed

to fit the 3D image volume at once. From the resulting boundaries of each labeled regions,

statistics can be derived at the local level.

As no atlas labels are available for mouse brain in OPT data, the approach we propose considers

3D voxels in image volumes without an underlying atlas. It is, to the best of our knowledge, the

first attempt to introduce a learning-based method for amyloid plaques detection in OPT im-

age data and, more generally, to quantify amyloid plaques relying on a pipeline incorporating

information from all three dimensions in an atlas-free setting.

Our manuscript is structured as follows. Firstly, we briefly describe the sample preparation

and imaging setup, which we introduced in our previous work [55]. Secondly, we present the

supervised learning pipeline for segmentation and quantification of amyloidosis. Supervised

learning provides an efficient way to learn, from a set of manually annotated examples, how

image features such as e.g., grayscale intensity and textures [146], should be combined to

segment objects of interest in images [147]. In particular, pixel- and voxel-based random forest

classifiers have proved their efficiency for bioimage segmentation tasks [148, 149]. We choose

to rely on that specific type of algorithms for two main reasons: first, random forests are well-

suited for classification tasks with few training data; and second, they can be used through
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the ilastik [150] interface. ilastik is an open-source image analysis software, which provides

a user-friendly GUI for training and reusing trained classification workflows for prediction.

In that way, we aim at making our image analysis pipeline easily reusable with or without

additional training. Thirdly, we showcase the results of the segmentation and quantification

in 5xFAD mouse brains of different ages. Finally, we discuss the impact and limitations of our

study and give some recommendations based on our preliminary results.

Materials and methods

Sample preparation

Experiment animals, 5xFAD mice [105] on a B6SJL F1 background, were generated by crossing

5xFAD transgenic females on a C57BL/6J background (34848-JAX, MMRRC) with wild type

SJL/J males (000686, The Jackson Laboratory) in the local animal facility (housing conditions

are described below). The disease phenotype is observed to be more robust on this hybrid

background [151]. The 5xFAD mouse model is commercially-available and widely-used in

AD research. The mice develop a severe amyloid pathology starting around 1.5 months with

high levels of accumulation in the subiculum [105]. Animal procedures were carried out

according to Swiss regulations [152] (animal protection ordinance 455.1) under the approval of

the veterinary authority of the canton of Vaud (license: VD3058), and all efforts were made to

minimize suffering, following the principle of the 3Rs [121]. Experiment animals were housed

in ventilated cages (maximum 5 animals per cage) under a 12h light/dark cycle (lights on at 7

a.m.) and controlled atmosphere (23 ◦C and 50% relative humidity) with ad libitum access

to food and water. Two 5xFAD transgenic females on a C57BL/6J background were housed

with one wild type SJL/J male in the breeding cages under the same conditions as experiment

animals, but the extreme aggression of SJL/J males [153] hampered the breeding capacity.

Indeed, 5 out of 12 females in the 6 breeding cages (that we shared with other experimentalists)

were found dead with lethal lesions from fights with the males. To refine our breeding protocol,

we decided to move the males in individual cages when the females were pregnant. However,

this measure was not sufficient to prevent casualties in the breeding cages, and it reduced

the number of experiment animals that could be generated, more details can be found in the

discussion section.

Brains were processed as described previously [55]. In summary, the mice were injected with

Methoxy-X04 (Tocris) [136], a fluorescent marker that targets amyloid plaques. Then, they

were deeply anesthetized using an overdose of pentobarbital and perfused with a 10% formalin

solution. The brains were extracted and post-fixed in formalin overnight. Each organ was

mounted in a 1.5% agarose gel and cleared using BABB before imaging. An illustration of these

steps is shown in Fig. 5.1A.

Ten experiment animals could be retrieved from the breedings and were divided into three

age-groups after amyloidosis onset (Tg/0): a young one at 11 weeks old (n = 3), a middle-aged

one at 17 weeks old (n = 4), and an old one at 31 weeks old (n = 3). A fourth control group
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Figure 5.1 – Sample preparation and experimental setup. (A) Photographs of a mouse brain
through the different steps of the preparation protocol. (B) Scheme of the optical projection
tomography setup. AL, aspheric lens; RL, relay lens; EX, excitation filter; DC, dichroic mirror;
M1/2, mirrors; OL, objective lens; EM, emission filter; DI, diaphragm; TL, tube lens; ro,
rotation.

(n = 2) was formed with B6SJL F1 mice (+/+) that did not have the transgenes. The control

group followed the same sample preparation as the experiment groups, including Methoxy-

X04 injection. All samples and their corresponding group are recapitulated in Table 5.1. As

indicated in the third column, some samples are composed of only one hemisphere of the

brain, as some specimen had to be shared with other experimentalists.

Optical projection tomography

Whole brain imaging was performed with a custom OPT setup [55] shown in Fig. 5.1B. The

instrument is similar to an epifluorescence microscope. It uses a 420-nm LED light source and

a 300-mm achromat objective lens (OL) to produce fluorescence projections of the sample

with a 0.5X magnification. The fluorescent light is filtered using a custom filter set from

Chroma composed of a dichroic (DC) mirror (AT455dc), an excitation (EX) filter (AT420/40x),

and an emission (EM) filter (AT465lp). A diaphragm (DI) in the rear focal plane of the OL

enlarges the depth of field to guarantee a sharp focus through the front half of the sample.

Projections are acquired over 360 degrees by steps of 0.3 or 0.9 degrees in approximately

five minutes. The three-dimensional reconstruction of the sample is achieved by applying a

filtered back-projection [73] to these projections. To do so, we perform the same procedure

as described previously in [55], and refer the reader to the latter work for more details. In
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Table 5.1 – List of samples processed. The ∗ indicates samples, which were partially annotated
for the training of the random forest classifiers. The † indicates samples, which were used to
generate Fig. 5.4. Tg/0, transgenic animals; +/+, wild type animals.

Id Age [weeks] Structure Genotype Image size [px3] Group

0† 11 Whole Tg/0 407x344x514
Young1∗ 11 Hemisphere Tg/0 283x288x517

2 11 Hemisphere Tg/0 268x321x569
3 17 Whole Tg/0 300x274x590

Middle-aged
4 17 Whole Tg/0 317x243x650
5† 17 Hemisphere Tg/0 446x307x602
6 17 Hemisphere Tg/0 442x320x577
7∗,† 31 Whole Tg/0 420x357x603

Old8 31 Whole Tg/0 411x389x597
9 31 Whole Tg/0 427x384x615
10 7 Whole +/+ 352x340x512

Control
11† 31 Whole +/+ 432x334x576

this configuration, the OPT setup has an isotropic resolution of approximately 50 µm over

the whole organ. The current resolution does not allow to measure small plaques (10-50 µm).

However, the intense brightness of the plaques still makes them detectable for counting.

Image segmentation and quantification

The overall image-based segmentation and quantification process from reconstructed pro-

jections is depicted in Figure 5.2. Once 3D image volumes are reconstructed with a filtered

back-projection algorithm, images are normalized using Fiji [107] and its contrast enhance-

ment tool before segmentation to accommodate for differences in dynamic range stemming

from variations in, e.g., image acquisition time. During normalization, 0.1% of the total

amount of voxels (stack histogram) is allowed to be saturated in the image to account for

outliers. This normalization step is crucial for the quality of the subsequent segmentation

of amyloid plaques. As voxel intensity is part of the feature set considered by our proposed

supervised learning approach, all image volumes must be brought to a comparable dynamic

range, both in the training and prediction phases.

We segment plaques from background and brain image elements using a supervised learning

approach. To do so, we designed a 3D voxel classification workflow in the open-source image

analysis software ilastik [150]. The image analysis pipeline consists of two steps. First, training

is performed from manual annotations of a few voxels in a small selection of image data. Then,

the trained supervised learning algorithm predicts the type of the remaining unannotated

voxels in these image data, as well as the type of each voxel for the ones left aside during

training. In our case, random forests [126] are used as learning algorithm. The working
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Quantitative
measures

Reconstruction Normalization Classification Threshold
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Statistics
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Figure 5.2 – Processing pipeline. From OPT acquisition, the projections are used to recon-
struct a 3D image with a filtered back-projection algorithm. After a normalization step, a
random forest classifier identifies voxels corresponding to plaques in the image volume. Quan-
titative measurements can be extracted from the segmentation mask, and statistical analyses
can be conducted.

principle of this approach is as follows. A set of numerical measurements, called features, is

computed for each object to be classified (in our case, the voxels). These measurements aim

at describing the object in terms of, e.g., color, shape, neighborhood and serve to distinguish

objects belonging to different classes (in our case, plaques versus everything else). The specific

nature of the features we rely on is described hereafter.

In the training phase, given (a) a collection of objects, (b) their feature values, and (c) their

known class labels, several decision trees are built by randomly picking features and searching

for proper decision boundaries to separate between classes. Starting from the root, each

intermediate node in a decision tree corresponds to a specific feature, while leaves correspond

to class labels. In the prediction phase, given an object and its collection of computed features,

each tree is explored to predict the class as follows: the value of the feature corresponding

to the root node is examined, and dictates which branch to follow. This process is repeated

at each intermediate node until a leaf is reached, which predicts the class of the object. The

final class probability estimates are obtained as the percentage of trees predicting the object

to belong to each considered class. The overall classification procedure with random forests is

illustrated in Fig. 5.3.

The choice of a specific supervised learning algorithm among the vast variety of those available

is generally dictated by the constraints that are inherent to the considered problem. In our case,

following the principles of the 3Rs, we want our approach to be able to train based on a small

number of samples. Moreover, we aim at maximizing the reusability of our pipeline, which

implies limiting handcrafted steps and relying on well-established processing environments.

These considerations guided our choice for random forests to segment plaques. Random

forests indeed provide an excellent trade-off between generalization capability and ability

to learn from few training examples [154]. This last point specifically makes them preferred

over the currently popular convolutional neural networks, which require training datasets of

significantly larger size than the ones considered in this work. In addition, random forests
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are available through the ilastik GUI, which maximizes user-friendliness during the training

phase and ease of use when predicting on new data.

In the training phase, manual annotations were provided for each of the three classes, here

corresponding to background, brain, and plaques. Our underlying assumption motivating this

setting is that, although plaque signal cannot easily be separated from the autofluorescence

signal from brain tissues using a simple intensity-based threshold, it does stand out when

considering a combination of texture, intensity and shape measurements. The random

forest classifier, therefore, acts as an adaptive way to learn a complex threshold combining

these different features to isolate plaques from the rest of the image volume content. The

specific voxel features we rely on were computed through the 3D volumes. They can be

grouped in three categories: color-based (i.e., voxel intensity values), edge-based (i.e., various

edge detectors such as gradient filter, difference of Gaussians, and Laplacian of Gaussians),

and texture-based (e.g., eigenvalues of structure tensor, Hessian matrix). All features were

computed at various image scales; that is, on the original image volume as well as on the

image volume processed by various levels of Gaussian smoothing.

When relying on learning-based approaches, the selection of training elements, which are

used as ground truth, is of major importance as it influences the generalization capability

and overall performance or the algorithm. We selected samples 1 and 7 (see Table 5.1) for

training. These two image volumes, one corresponding to a young and one to an old specimen,

were chosen to avoid age-induced batch effects [155]. A few manually labeled voxels were

distributed through the whole volume along the X, Y and Z planes to minimize training bias

and reduce the risk of overfitting. Once trained, the pipeline was used to predict plaques in

all remaining dataset. To assess the false positive rate of the random forest classifier trained

in this way, we also ran the pipeline on brain image volumes of negative control specimen to

report the amount of erroneously predicted plaques. Results are provided in Table 5.2 and

testify the specificity of the method.

We then reused the same background and brain voxel labels but removed the plaque class to

train a 2-class random forest voxel classifier and retrieve a whole brain segmentation mask.

This second step allows us to compute an estimate of total brain volume, which is used to

extract the ratio of plaque volume to the whole brain.

Due to data size (see Table 5.1 for details), all considered image volumes were first converted

from .tif stacks to .h5, processed with ilastik, and converted back from .h5 to .tif for visualiza-

tion purpose.
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Figure 5.3 – Classification procedure with random forests. For the sake of simplicity, 2D
pixels and a 2-class problem are depicted. (A) Training phase. A few voxels from each classes
(here A, the object, and B, the background) are manually labeled as ground truth. A collection
of measurements, referred to as features, are extracted to characterize these voxels. Here,
only two (intensity and texture-based features) are shown. A forest of decision trees is then
constructed. Each stage of a decision tree is built by randomly picking a feature and choosing
a boundary value that best separates each class according to this measurement. Here, three
trees are shown. (B) Classification, or prediction, phase. For each unlabeled voxel, the same
set of features as in training phase are extracted. These measurements are then fed to the
random forest trees, which provide class prediction. The final probability is retrieved as the
percentage of trees predicting each class.

Results

Imaging of amyloid pathology progression

Selected three-dimensional brain images from the three groups of mice are shown in Fig. 5.4A-

C. As reported previously [55], the emission signal of Methoxy-X04 is deeply mixed with tissue

autofluorescence. Therefore, both the amyloid plaques and brain anatomy can be visualized

in a single OPT acquisition. Amyloid plaques can be identified from the strong fluorescent

signal they emit as well as from their characteristic small spherical shape. As expected, strong

age-dependent amyloidosis is observed in the subiculum, indicated by the white arrows. These

images already give us a qualitative feeling for the progression of the amyloid pathology, which

worsens with age. However, as previously mentioned, thresholding based solely on voxel

intensity as often performed on histopathology data is inefficient for quantitative analysis.

The cerebellum, indicated by the blue arrows, indeed exhibits similar voxel intensity levels as

plaques, possibly caused by different autofluorescence contrast mechanisms. Likewise, the

cortical barrel fields (white arrowheads), which are dense anatomical features of the mouse

brain, reach high levels of autofluorescence intensity. Ultimately, perfusion artefacts, such as
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blood-containing vessels (blue arrowheads), also corrupt the outcome of intensity threshold-

based segmentation due to the strong autofluoresence of hemoglobin. Therefore, correct

isolation of amyloid plaques from the whole brain requires to rely on a combination of several

visual aspects such as their texture, shape, and intensity. A brain image from the control group

is shown in Fig. 5.4D. While there is a strong signal from nervous tissues, there is an absence of

amyloid plaques.

3 mm

A B C

Tg/0
11 weeks

Tg/0
17 weeks

Tg/0
31 weeks

E F G

D

H

+/+
31 weeks

Figure 5.4 – Imaging of amyloid pathology progression. (A-C) Renderings of OPT images
from the three age-groups: young, middle-aged, and old, respectively. Blue arrows, cerebellum;
White arrows, amyloid plaques in the subiculum; Blue arrowheads, blood vessels; White
arrowheads, cortical barrel fields. (D) Rendering from the control group. (E-H) Corresponding
renderings after random forest classification and thresholding. The amyloid plaques, in yellow
(thresholded at 0.5), are overlaid with the brain anatomy, in grey (thresholded at 0.7), whose
transparency is reduced for visualization purposes.

Quantification of the amyloid plaques

The outcome of the voxel classification workflow described above provides an efficient way to

segment amyloid plaques based on a mixture of their visual features. For each voxel in an OPT

image volume of a diseased brain, the 3-class random forest classifier returns a probability

value (0-1), yielding a 3D probability map image. The value of each voxel in the probability

map image corresponds to the likelihood that the corresponding voxel in the original image

belongs to an amyloid plaque. A segmentation mask isolating amyloid plaques is thus obtained

by thresholding the 3D probability map at 0.5. This threshold can be directly interpreted as
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retaining only voxels with a higher-than-50-percent chance of belonging to a plaque. We

found it to be sufficiently sensitive for plaque detection against the strong background while

maintaining a certain level of specificity, which is discussed at the end of this section. The

same procedure can be carried out to segment brain anatomy relying on the probability map

output of the 2-class random forest classifier and a threshold of 0.7. The sensitivity to brain

tissues is indeed observed to be higher due to a consistency in the autofluorescence signal,

allowing us to increase the threshold value to gain more specificity. Segmentation results of the

selected brain images from the three age-groups are shown in Fig. 5.4E-H. The transparency

of the brain anatomy channel was reduced to enhance the visibility of amyloid plaques. As

expected, we observe an increase in the number of plaques with age.

Moreover, the classifier seems to have captured the different features that make amyloid

plaques apparent in OPT images. For example, the cerebellum is properly excluded as it

does not appear to show amyloid deposition, which is in agreement with known results [105].

Despite its strong fluorescence intensity, it does not meet the other visual criteria to be

associated with the amyloid plaque class. The same observations hold for the cortical barrel

fields and perfusion artefacts.

After segmentation, we perform a quantitative analysis of the amyloid plaques in the brain

by computing the ratio of plaque volume to the total organ volume. This measure is referred

to as plaque load and is expressed in percentage. Additionally, the total plaque count pro-

vides another quantitative measure of amyloidosis. Regions of dense deposition, such as the

subiculum, exhibits the formation of clusters of amyloid plaques in OPT images due to the

resolution of the instrument and the normalization step. To refine our estimate of plaque

count, we measured the average size of a single plaque and divided the total area of all larger

plaque clusters by this value in each sample. Since small plaques have a size comparable to

the instrument resolution, we might overestimate the plaque load.

Additionally, as mentioned previously and reported in Table 5.1, some samples of our study are

single brain hemispheres. To allow for a fair comparison of the total number of plaques with

full brain samples, we reported twice their measured plaque count. This choice is motivated

by current observations of brain amyloidosis, which suggests a symmetry of the pathology

between brain hemispheres [156]. To further validate this procedure, the 3D image of a whole

31-week-old brain (sample 7 in Table 5.1) was digitally split and the number of plaques was

counted in each hemisphere. A total amount of 8418 and 7467 plaques in the left and right

hemisphere were obtained respectively, which corresponds to a ratio of 0.53 and 0.47 when

divided by the total number of plaques. We thus believe that assuming that the plaque count

in a single hemisphere roughly corresponds to half of the total plaque count in the whole

brain is a reasonable hypothesis. The results of the quantitative analysis of all samples are

summarized in Table 5.2.

Providing results from alternative methods for a reasonable comparison to our approach

appears to be challenging. Existing solutions for the automated image-based assessment
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of amyloid plaques are indeed designed for imaging modalities of entirely different nature

(e.g., histopathology, MRI) and, most importantly, trained at a pixel (and not voxel) level.

Considering the choice of the algorithm, random forests through ilastik pragmatically appears

to be the most efficient solution to maximize user-friendliness in re-training and prediction

mode, while ensuring good performance based on a small training set. We are not aware of a

convolutional neural network or support vector machine implementation that provides these

two features at once.

Unfortunately, no gold standards are available for the labeling of amyloid plaques in 3D OPT

image volumes. Although this prevents a rigorous evaluation of the performance, we relied on

expert opinion to assess the validity of the segmentation results from a qualitative point of

view. They were considered to be accurate from a purely visual perspective.

Since our method has been designed to be easily reusable, all results provided in this paper

can be directly reproduced by importing the image analysis pipeline in ilastik, which holds

all the necessary information regarding algorithmic parameters, and running it on the raw

data (the image analysis pipeline and raw data are available at the Open Science Framework).

Annotations provided for training can as well be visualized and the algorithm re-trained from

user-provided brush strokes on images through ilastik’s GUI.

Table 5.2 – Quantitative measurements of amyloid plaque quantity in all samples. The
∗ indicates samples which were partially annotated for the training of the random forest
classifiers. The † indicates samples, which were used to generate Fig. 5.4. The mean and
standard deviation (SD) is included for each measure and group, which are compared in this
study. The control group serves as quality control.

Id Plaque load [%] Total number of plaques Group

0† 0.05
Mean: 0.11

SD: 0.07

4595
Mean: 6136

SD: 1637
Young1∗ 0.09 5958

2 0.19 7854
3 0.42

Mean: 0.25
SD: 0.14

12642
Mean: 8477

SD: 3438
Middle-aged

4 0.28 9784
5† 0.12 4898
6 0.16 6582
7∗,† 0.27

Mean: 0.42
SD: 0.15

13602
Mean: 17267

SD: 4241
Old8 0.56 21913

9 0.43 16287
10 0.001 Mean: 0.002

SD: 0.001
114 Mean: 143

SD: 41
Control

11† 0.003 172

Ultimately, we performed a statistical analysis of our results, illustrated with boxplots in

Fig. 5.5. For the plaque load, there is no statistically significant difference between groups as

determined by one-way ANOVA (F (2,7) = 4.733, p = .05). However, we still performed a post-
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∗
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n.s.

Figure 5.5 – Representation of the amyloidosis statistical analysis Boxplots of the quantita-
tive measures of amyloid progression for each group of mice. *, p < .05 (Tuckey’s test); n.s.,
not statistically significant.

hoc Tuckey comparison since p =α= .05, and we found a statistically significant difference

between the young and old group (p < .05) (with a 5% chance of it being a false positive).

Moreover, a statistically significant difference in total plaque number is observed by one-way

ANOVA (F (2,7) = 9.609, p = .01). Tuckey’s test showed that the old group differs significantly

(p < .05) from the middle-aged and the young group.

As a quality control, we performed the quantitative analysis on negative controls (Table 5.1).

Both the plaque load and plaque count show a reasonably low amount of false positives

(Table 5.2), demonstrating the specificity of our analysis.

Discussion

The segmentation of amyloid plaques from whole images of 5xFAD mice brains acquired with

OPT shows promising results, as seen in Fig. 5.4E-H. However, limited statistically significant

differences are drawn from the group analysis. We believe that this restricted statistical

significance, observed in spite of the visually encouraging segmentation outcome obtained

with our method, can be attributed to three different factors: the plaque load, number of

plaques and number of samples. We now describe in more details how these three aspects

affected results in our experimental setting, and propose solutions to minimize their adverse

effect in further experimental designs.

Firstly, plaque load is a standard measure of amyloidosis in sections with high plaque density

from histopathology data. In our experimental design, sample calculation is based on the

findings of Bolmont et al. [68], who observed a difference of approximately 1.6 percent in the

plaque load between 2 and 4 months of age, using a different mouse model. However, when

calculated for the whole brain of 5xFAD mice, plaque load hardly reached 0.5 percent, with

differences of 0.1−0.2 percent between groups. Therefore, our design is not appropriate to
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observe such small differences: there is not enough plaque load difference between the age

groups we consider when observing the whole brain at once, as opposed to studying a small,

specific local section of it. Moreover, comparison of sections in OPT images is hard to achieve

due to the difficulty of reliably finding matching sections in the image volumes. Larger groups

should thus be considered to observe a statistically significant difference in amyloid plaque

load.

Secondly, only limited information about the total number of plaques can be found in the

literature. Jährling et al. [43] observe a difference of several thousands of plaques between

young (10 weeks old) and old (28-34 weeks old) animals. Although these measurements

come from a different mouse model of amyloidosis and the total plaque count does not

represent a whole brain, they were the most sensible known results for our work and thus

served as a basis for our experimental design. Our results suggest that their plaque number

estimate was a reasonable starting hypothesis, but that the variability in total plaque count

was underestimated. The inter-specimen plaque number variance observed in small cubes

is indeed drastically lower than in the entire brain volume. The young (11 weeks old) and

middle-aged (17 weeks old) groups seem to be too close in terms of age to be able to observe a

statistically significant difference. Our quantification method might not be sensitive enough to

capture changes in amyloidosis under 6 weeks of age difference, as there is not enough disease

progression in this period to detect a statistically significant difference in levels of amyloidosis.

For that reason, we recommend having at least 8 weeks (2 months) of age difference between

groups.

Thirdly, when using 5xFAD mice on a B6SJL F1 background, the extreme aggressivity of

the SJL/J males in the breeding cages must be considered in the experimental design as

casualties are more likely to happen, thus reducing the number of generated specimens.

Having witnessed this, we suggest using the congenic 5xFAD strain, on a C57BL/6J background

instead. Animals should then be generated by back-crossing females 5xFAD (34848-JAX,

MMRRC) with C57BL/6J males (000664, The Jackson Laboratory). We nevertheless believe

that the results of our quantitative analysis can be used as a preliminary study. Based on our

findings, in order to observe a statistically significant difference of 0.15 percent with a standard

deviation of 0.15 percent in the plaque load relying on a one-tailed t-test, 16 animals are

required in each age-group (α= .05 and power = .85). Concerning the experiment duration, in

our experience, 8-12 animals can be sacrificed per day, and the remaining sample preparation

takes 4 days (count 1 day to embed the samples in agarose and 10−20 minutes per following

day to change clearing solutions) plus 1 day of imaging.

In summary, it is noteworthy to take into consideration that quantifying the plaque load in

whole mouse brains is inherently subject to more variability compared to other techniques,

which focus on smaller regions of interest. Therefore, a more substantial amount of samples

is necessary and care must be taken in the experimental design to take into account the

variability factors mentioned above. However, our technique, which considers the organ in its

entirety, offers a wealth of information for AD research. When looking at individual images,
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our approach allows to isolate amyloid plaques from the rest of the brain adequately. The

plaque patterns are also observed to be similar to what has been previously observed [105].

Plaque load might be overestimated due to the instrument resolution, causing smaller bright

plaques to appear with a size of approximately 50 µm. To our knowledge, it is the first time that

the plaque load and the total number of plaques are measured in the whole brain of 5xFAD

mice.

Our approach, being atlas-free, does not provide information about the locality of the plaques.

As a trade-off, it results in a computationally lighter segmentation approach. Incorporating la-

bels to perform atlas-based segmentation is a natural future avenue to pursue. Such additional

structure knowledge could, in fact, be combined with our method by including atlas-based

information as features to be considered by the random forests.

Conclusion

In this paper, we propose an image-based analysis pipeline for the quantification of amy-

loidosis. The pipeline is applied to whole brain images of 5xFAD mice, a mouse model of

Alzheimer’s disease. Image volumes are acquired with an optical projection tomography

instrument, and amyloid plaques are segmented relying on a random forest voxel classifier.

The plaque load and the total number of plaques are then consistently measured in the whole

organ. The pipeline has been tested on 3D OPT images of brains of mice at different ages to

illustrate the age-dependent disease progression. This preliminary study shows a statistically

significant increase in the number of plaques in old animals (31 weeks old) compared to young

and middle-aged ones (11 weeks old and 17 weeks old, respectively). Although the other

group differences are not statistically significant, we believe the study should be repeated with

more animals to draw more complete conclusions with regards to the disease progression.

While there isn’t a strict statistically significant difference in the plaque load (p =α), a Tuckey

post-hoc analysis revealed that the old group differs significantly from the young one. Isolation

of plaques from the strong background autofluorescence signal is observed to be successful,

and tests on negative controls show a negligible false positive rate. We provide the image

volumes and manual annotations used for training, as well as the pre-trained ilastik workflows

for download and further use by the community at the Open Science Framework.

In the future, we would like to take advantage of the tissue autofluorescence to segment

regions of interest in the brain, such as the subiculum, which is the region where most of

the deposition occurs in 5xFAD mice and estimate a local plaque load. Additionally, the

pipeline could be reused for data acquired with other mesoscopic imaging modalities, such as

ultramicroscopy, and in different rodent models of amyloidosis. Ultimately, we would like to

use light sheet microscopy to establish a gold standard for amyloid plaques in the whole brain

and compare it with the performance of our OPT classification method.

66

https://osf.io/tnvyq/?view_only=dd1ba12edf744eaba80e95ca5122a8b1


5.2. Author contributions

Data availability

OPT reconstructed data sets and ilastik pipelines are available at the Open Science Framework

with a README document on how to use them.

Funding

D.N., AL.P., PJ.M., D.VDV., T.L., and A.R. were supported by the EU Framework Programme for

Research and Innovation (Grant agreement 686271). V.U. was supported partly by the Swiss

National Science Foundation (Grant 200020-162343), and partly by EMBL-EBI core fundings.

Acknowledgments

The authors would like to thank Dr. Arno Bouwens for the helpful discussions and suggestions

for amyloid plaques segmentation.

Disclosures

The authors declare that there are no conflicts of interest related to this article.

5.2 Author contributions

Author contributions are written based on the CRediT taxonomy [115].

David Nguyen generated and maintained the 5xFAD mouse colony with the help of the

EPFL animal facility (Methodology, Project Administration), and carried out the experiment

design (Conceptualization). He participated in the brain extractions and performed the rest

of the sample preparation (Methodology). He also acquired the OPT images, annotated the

training sets (Investigation), performed the segmentation and quantification (Software), and

rendered (Visualization) the 3D volumes and bar plots. David Nguyen co-wrote the original

draft (Writing – Original Draft Preparation), and is responsible for Data Curation.

Virginie Uhlmann proposed the random forest classification approach to segment amyloid

plaques (Conceptualization, Ressources), provided her expertise to annotate, interpret, and

evaluate the pertinence of the data sets (Validation, Supervision). She also co-wrote the

original draft (Writing – Original Draft Preparation), reviewed the manuscript (Writing –

review & editing), and participated in Data Curation.

Arielle Louise Planchette participated in the brain extractions (Methodology, Investigation),

was involved in the interpretation and evaluation of the results from the plaque classification

(Validation), and reviewed the manuscript (Writing – review & editing).

Paul James Marchand participated in the brain extractions (Methodology, Investigation),

67

https://osf.io/tnvyq/?view_only=dd1ba12edf744eaba80e95ca5122a8b1


Chapter 5. OPT applied to Alzheimer’s disease

discussed the experiment design (Conceptualization), and reviewed the manuscript (Writing

– review & editing).

Dimitri Van De Ville discussed the experiment design (Conceptualization), provided Supervi-

sion, was involved in Funding acquisition, and reviewed the manuscript (Writing – review &

editing).

Theo Lasser supervised the project (Supervision), provided funding (Funding acquisition),

and reviewed the manuscript (Writing – review & editing).

Aleksandra Radenovic discussed the experiment design (Conceptualization), provided Super-

vision, was involved in Funding acquisition, and reviewed the manuscript (Writing – review

& editing).

68



6 OPT towards cell imaging

In optical microscopy, there is a fundamental limitation given by the detector size and its

pixel number. Common scientific CMOS cameras have a square 1.3 × 1.3 cm2 detector with

2048 × 2048 px2 (the physical pixel size is 6.5 × 6.5 µm2). Imaging of a whole mouse organ

can require up to 2 × 2 cm2 in the case of the liver [157]. Therefore, a field of view (FOV) of

2.6 × 2.6 cm2 can be realized with such detectors using a 0.5X magnification, as featured in

the OPT instrument considered in this thesis. However, the image pixel size becomes 13 ×
13 µm2, and the maximum attainable resolution in a single image is given by twice this size

(following Shannon sampling theorem [124]), i.e., 26 × 26 µm2. There are then two approaches

to improve the resolution down to micrometer level. Both allow cell imaging but require the

acquisition of more images.

The first approach consists of acquiring a mosaic of smaller images with higher magnification

and stitch them together in a post-processing step. It is often the chosen solution in light sheet

microscopy [158]. However, in standard OPT, this approach provides a limited improvement

on projection resolution due to the depth of field (DOF) requirements, stated as follows.

Whatever the size of the image on the camera, the DOF is at least half the specimen thickness

in standard OPT (Section 2.2). Therefore, images at high magnification will have the same

resolution as lower magnification ones. There has been an attempt to perform OPT in a region

of interest (ROI) of the specimen with remote focal scanning OPT [52] but the acquisition

protocol only works in ring-like areas centered on the axis of rotation.

The other approach combines imaging modalities. For example, Arranz et al. [51] proposed

an OPT design incorporating a light sheet illumination arm. The idea is to acquire the whole

volumetric information with OPT, and then target ROIs with an enhanced resolution using

light sheet illumination. In the same manner, we investigated the combination of OPT with

structured illumination microscopy (SIM).

In this last Chapter, I will provide an outlook of how we aim to combine SIM and OPT. First, I

will give a brief description of SIM and its implementation within an OPT instrument (Sec-

tion 6.1). Then I will review the remaining challenges, which have yet to be overcome and our
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strategy to solve them (Section 6.2). Finally, I will conclude this thesis with a few words on the

impact of our achievements in the duration of this work (Section 6.3).

6.1 Structured illumination microscopy with OPT

Theory and algorithm

SIM is often referenced as a super-resolution (SR) imaging technique [159, 160], but in the

combination with OPT we are interested in its optical sectioning (OS-) capacity [161, 162]. In

OS-SIM, the intensity in the sample plane is modulated with sinusoidal patterns, sequentially

and equally phase-shifted by φ1 = 0◦, φ2 = 120◦, and φ3 = 240◦. These patterns Pi can be

expressed mathematically as

Pi = P0
[
1+ sin(2πk0x +φi )

]
with i ∈ {

1,2,3
}
, (6.1)

where P0 is the illumination intensity without modulation, k0 the modulation frequency, and

φi the corresponding phase-shift. The images Ii recorded by the detector can therefore be

written as

Ii (x, y) = (
Pi (x, y) ·O(x, y)

)∗h(x, y) with i ∈ {
1,2,3

}
, (6.2)

where O is the object in the sample plane, h the instrument point spread function (PSF), and

(x, y) the spatial coordinates. The optically-sectioned image IOS is then computed as

IOS =
p

2

3

√
(I1 − I2)2 + (I2 − I3)2 + (I3 − I1)2. (6.3)

To simplify image processing, we used the SIMToolbox [163] developed partially by a colleague

in the group to process OS-SIM images. This toolbox is based on maximum a posteriori

probability image estimation [164]. It is an iterative approach which solves the inverse problem

of computing the OS-SIM image based on the acquired images Ii . It has the advantage of not

requiring prior knowledge of the PSF and pattern positions.
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6.1. Structured illumination microscopy with OPT

Instrument design

The critical component of a SIM instrument is the spatial light modulator (SLM). In recent

designs, it is often a pixelated device that creates the illumination patterns by varying the

light beam intensity. There are two primary types of pixelated SLM: liquid crystals on silicon

(LCOS) [165] and digital micromirror devices (DMD) [166]. LCOS devices are a matrix of liquid

crystals on a mirror surface. They allow grayscale values of intensity modulation and have

smaller pixels. However, they are polarization-dependent. DMDs are composed of thousands

of micromirrors that can be tilted to separate the light beam into an “on” or “off” state. They

have a broader spectral response than LCOS and can be used without polarization control. We

chose to implement our OS-SIM instrument with a DMD and reuse the OPT LEDs as the light

source (see Figure 6.1). The pattern contrast is assumed to be better with a DMD when using

LEDs, due to their spectral bandwith [167].
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Figure 6.1 – SIM instrument design. It uses LEDs and a DMD to generate a patterned illumi-
nation on the sample. The resulting fluorescence signal is collected on an sCMOS detector
through a filter set. The filter set is composed of an excitation filter EX, an emission filter EM,
and a dichroic mirror DC. A 20X long-working-distance (19 mm) objective with a numerical
aperture (NA) of 0.4 is used in view of imaging whole mouse organs. AL, aspheric lens; L,
achromatic lens (f=150 mm); M, mirror; TL, tube lens.

The OS-SIM specifications in air with a 20X Nikon objective lens (TU Plan EPI ELWD, 20X ,

NA=0.4, working distance=19 mm) are a FOV of 0.67 × 0.67 mm2 and a resolution of approxi-

mately 0.7 µm. The instrument was first implemented in a stand-alone version to evaluate

its performance without disturbing the experiments running with the OPT instrument. Ul-

timately, the OS-SIM was meant to be combined with the OPT in a single apparatus (see

Figure 6.2). The two modalities cover different scales: a whole volumetric scan with OPT

provides an overview of the sample while a series of SIM images provides high-resolution

information in selected ROIs.

Next, we qualitatively validated the OS-SIM performance with a Zeiss fluorescence test slide
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Figure 6.2 – Combination of the SIM and OPT modalities in a single instrument. The number
above each lens indicates its focal length. Fluorescence filters are omitted for clarity. After a
whole volumetric scan of the sample with OPT, regions of interest can be imaged at a higher
resolution with SIM.

(see Figure 6.3) and a 460-nm high-power LED (PT-121-B, Luminus). This sample comes

from a highly autofluorescent flower Convallaria majalis. The average of the sample images

acquired with the different illumination patterns, which corresponds to a widefield fluores-

cence microscopy version of the sample, remains slightly blurred, although the focus was

adjusted precisely (Figure 6.3(a)). The blur is mostly caused by out-of-focus light coming from

the sample part that is not contained within the imaging plane. When processed with the

SIMToolbox (Figure 6.3(b)), the patterned images give a sharper result with increased contrast

(striking examples are pointed out by the white arrowheads). A complete characterization of

the OS-SIM setup would be desirable. However, we were more concerned about the challenges

of imaging thick specimens, such as mouse organs.

Whole mouse organs prepared for OPT require submersion in a glass cuvette filled with

refractive-index-matching liquid before imaging. In the OPT instrument, this change in

refractive index along the detection axis produces negligible aberrations on the projections

because of the low (0.01) NA used. However, in the OS-SIM instrument, the NA is 0.4 with an

objective lens designed to operate in air and aberrations have to be considered.

6.2 Aberration correction

Imaging of whole mouse organs requires the use of objectives with a long working-distance in

the order of the tissue thickness (approximately 10 mm). However, commercially-available
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(a)

(b) 50 um

Figure 6.3 – Validation of the OS-SIM instrument with the Zeiss fluorescence test slide. (a)
Average of the images recorded on the detector. (b) MAP-SIM result computed with the
SIMToolbox from the same images. Arrowheads point towards regions in the image where
optical sectioning improved the contrast.

solutions are usually designed for operation in air. When these objectives are used to image

in a surrounding medium that has a different refractive index, the image quality significantly

degrades as reported by Dodt et al. [168] in ultramicroscopy. Briefly, the refraction of light

occurring at the interface of a refractive-index mismatch causes strong spherical aberrations,

and the light beam fails to focus on a single point. This results in a distorted image on the

detector. To address the aberration problem, we used the OS-SIM in widefield mode, i.e.,

setting all the micromirrors to the “on” state and having a homogeneous illumination on the

sample.

The advances of mesoscopic imaging techniques over the past 20 years have recently fostered

the development of aberration-correction strategies to use commercial long-working-distance

objective lenses [10, 169]. However, these complex strategies are application- and objective-

lens-dependant. Before trying them, we decided to perform optical design simulations of

the OS-SIM instrument detection (see Figure 6.4) with OpticStudio 15 (Zemax LLC, America).

First, we modeled the objective lens with a lens tandem composed of two paraxial lenses

(f=9.5 mm, and f=−10 mm) separated by 9 mm (Figure 6.4(a)). This lens tandem has the same
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working distance (19 mm), and focal length (f=10 mm) as the Nikon objective lens. The tube

lens was a paraxial lens (f=200 mm). Then we added the BABB (10 mm) and the glass cuvette

wall (2.5 mm) starting from the sample plane (on the left in Figure 6.4(a)).
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(a)
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(d)

(e)

(f)

On axis On axis
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BABB BABB
Glass Glass

SIL

Objective lens Objective lens

Figure 6.4 – Spherical aberration correction concept. (a) Simulation of the detection rays on
the objective-lens side, a 10 mm layer of BABB and 2.5 mm of glass create an interface for
light refraction and aberrations. Blue rays come from the optical axis and green rays from
0.2 mm away in the same imaging plane. (b)-(c) Optical path difference of corresponding rays
measured in the detector plane. (d) Correction with a SIL that makes an orthogonal surface to
the rays and reduces the refraction effect. (e)-(f) Optical path differences after correction with
a SIL.

Finally, we measured the optical path difference (OPD) in the detector plane (Figure 6.4(b)-

(c)). The OPD is a quantity that expresses the deviation in the wavefront compared to an

aberration-free system. It is measured in waves, and if below 1, the imaging optics is said to be

diffraction-limited. The OPD measured with BABB and the glass cuvette wall is approximately

13 waves, which suggest that a strong degradation of the image quality will result. Images

of fluorescent microparticles with the OS-SIM instrument in air and through approximately

10 mm of BABB and 2.5 mm of glass concur the simulation result and highlight the degradation

in image quality experimentally (Figure 6.5(a), (d) and (b), (e)). The microparticle size in these

experiments was limited to minimum 5 µm because smaller ones vanished completely due to

aberrations.

Our approach to correct aberrations in the OS-SIM instrument is based on the solid immer-
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Figure 6.5 – Evaluation of the aberration correction with a SIL. (a) Five-micrometer fluorescent
microparticle imaged in air with the OS-SIM in brightfield mode. (b) Microparticle imaged
through approximately 10 mm of BABB and 2.5 mm of glass. (c) Microparticle imaged through
BABB and glass and a SIL. (d-f) Corresponding cross sections along the optical axis. (g) Line
plots through the microparticles in (a)-(c) showing their profile. The air curve is dotted because
it was acquired with different exposure time, 0.02 s instead of 0.5 s for the other two. Scale
bars: 5 µm.

sion principle [170]. We modeled a solid immersion lens (SIL) that is mounted on the glass

cuvette wall (Figure 6.4(d)) and calculated a surface curvature that minimizes the refraction

at the interface of refractive-index-mismatch. This condition is satisfied when the surface is

orthogonal to the focused rays. After optimization, we measured an OPD of approximately 2

waves (Figure 6.4(e)-(f)), which is still considered to be limited by aberrations but is closer to
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the diffraction limit. Finally, we imaged microparticles with the OS-SIM instrument, and a

SIL (LA1255-A, Thorlabs) glued to the cuvette wall (Figure 6.5(c) and (f)). With the aberration

correction, the microparticle has an improved contrast when compared to the case with BABB

and glass only (exposure time of 0.5 s in both images). However, the microparticle intensity is

still lower than the one obtained when it is imaged in air (exposure time of 0.02 s).

The current aberration-correction is insufficient to image whole mouse organs prepared for

OPT. The opportunity to try more advanced aberration-correction techniques such as adaptive

optics [171, 172] however remains open.

6.3 Final words

In my thesis, we fostered the development of optical projection tomography. We started by

designing a custom instrument for whole mouse organ imaging, which was fully described

in a first journal publication (2017) [55]. This instrument was duplicated in the group of

Professor Holmberg (Lund University, Sweden) where it is available and regularly utilized as a

platform for 3D imaging of large specimens. Then, we shared our practical experience with

the instrument in a second research article (submitted to Optics Express, December 2018).

We also highlighted the use of OPT in Alzheimer’s research by imaging whole mouse brains

with amyloidosis at different ages, as described in our last article (submitted to Biomedical

Optics Express, December 2018). Our efforts were oriented towards the dissemination of the

technology and making it more accessible to inexperienced users. We went on to try bridging

the scales in combining structured illumination microscopy and OPT, following the needs of

life scientists to have an overview of their samples and high-resolution images in regions of

interest. In this context, we demonstrated the use of solid immersion lenses for the correction

of spherical aberrations arising when imaging through a cuvette and index-matching liquid.

The complete correction of these aberrations will require more advanced techniques, such as

adaptive optics, but we are confident that this problem can be overcome.
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A Image portfolio

Seeing is believing
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Appendix A. Image portfolio
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Figure A.1 – Depth-color-coded maximum intensity projection of the vasculature in a whole
mouse lung acquired with optical projection tomography.
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Figure A.2 – Maximum intensity projection of the barbs in a cockatiel feather acquired with
optical-sectioning structured illumination microscopy. This image ranked among the top 10
winners of the “When Aesthetics meets Innovation” photo contest (EPFL, Switzerland).
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Figure A.3 – Maximum intensity projections of a wasp acquired with optical projection tomog-
raphy.
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Figure A.4 – CAD rendering of the OPT instrument.
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