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Abstract

This thesis deals with exploiting the low-dimensional multi-subspace structure of speech

towards the goal of improving acoustic modeling for automatic speech recognition (ASR).

Leveraging the parsimonious hierarchical nature of speech, we hypothesize that whenever

a speech signal is measured in a high-dimensional feature space, the true class informa-

tion is embedded in low-dimensional subspaces whereas noise is scattered as random high-

dimensional erroneous estimations in the features. In this context, the contribution of this

thesis is twofold: (i) identify sparse and low-rank modeling approaches as excellent tools for

extracting the class-specific low-dimensional subspaces in speech features, and (ii) employ

these tools under novel ASR frameworks to enrich the acoustic information present in the

speech features towards the goal of improving ASR. Techniques developed in this thesis focus

on deep neural network (DNN) based posterior features which, under the sparse and low-rank

modeling approaches, unveil the underlying class-specific low-dimensional subspaces very

elegantly.

In this thesis, we tackle ASR tasks of varying difficulty, ranging from isolated word recogni-

tion (IWR) and connected digit recognition (CDR) to large-vocabulary continuous speech

recognition (LVCSR). For IWR and CDR, we propose a novel Compressive Sensing (CS) per-

spective towards ASR. Here exemplar-based speech recognition is posed as a problem of

recovering sparse high-dimensional word representations from compressed low-dimensional

phonetic representations. In the context of LVCSR, this thesis argues that albeit their power

in representation learning, DNN based acoustic models still have room for improvement in

exploiting the union of low-dimensional subspaces structure of speech data. Therefore, this

thesis proposes to enhance DNN posteriors by projecting them onto the manifolds of the

underlying classes using principal component analysis (PCA) or compressive sensing based

dictionaries. Projected posteriors are shown to be more accurate training targets for learning

better acoustic models, resulting in improved ASR performance. The proposed approach is

evaluated on both close-talk and far-field conditions, confirming the importance of sparse

and low-rank modeling of speech in building a robust ASR framework. Finally, the conclusions

of this thesis are further consolidated by an information theoretic analysis approach which

explicitly quantifies the contribution of proposed techniques in improving ASR.

Keywords: automatic speech recognition, deep neural network, sparsity, dictionary learning,

low-rank, principal component analysis.
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Résumé

Cette thèse traite de l’exploitation de la structure multi-sous-espaces de la parole en dimen-

sion réduite, où le but est d’améliorer la modélisation acoustique pour la reconnaissance

automatique de la parole (RAP). En tirant parti de la nature hiérarchique parcimonieuse de la

parole, nous émettons l’hypothèse que chaque fois qu’un signal de parole est mesuré dans

un espace de grande dimension, les informations de classe réelles sont incorporées dans des

sous-espaces de faible dimension, tandis que le bruit est éparpillé de façon aléatoire dans des

estimations erronées de paramètres dans cet espace de grande dimension. Dans ce contexte,

la contribution de cette thèse est double: (i) l’identification d’approches de modélisation

clairsemées et de bas rang, qui s’avèrent être d’excellents outils pour extraire les sous-espaces

de faible dimension spécifiques à la classe dans les fonctionnalités vocales, et (ii) l’utilisation

de ces outils dans de nouveaux cadres de RAP pour enrichir l’information acoustique présente

dans les caractéristiques vocales dans le but d’améliorer les performances de la RAP. Les

techniques développées dans cette thèse se concentrent sur les caractéristiques postérieures

basées sur les réseaux neuronaux profonds (DNN, pour deep neural network) qui, sous les

approches de modélisation rares et de bas rang, dévoilent très élégamment les sous-espaces

de basse dimension spécifiques aux classes.

Dans cette thèse, nous abordons des tâches de RAP de difficulté variable, allant de la re-

connaissance de mots isolés (RMI) et de la reconnaissance de chiffres connectés (RCC) à la

reconnaissance vocale continue à grand vocabulaire (RVCGV). Pour la RMI et la RCC, nous

proposons une nouvelle perspective d’aquisition comprimée avec la RAP en vue. Dans ce

cas, la reconnaissance de la parole basée sur l’exemple est posée comme un problème de

récupération de représentations de mots de grande dimension éparses à partir de représenta-

tions phonétiques compressées de faible dimension. Dans le contexte de la RVCGV, cette thèse

soutient que, malgré leurs capacités dans l’apprentissage par représentation, les modèles

acoustiques basés sur les DNNs ont encore une certaine marge de manœuvre pour exploiter

la structure de l’union des sous-espaces de faible dimension des données de parole. Par con-

séquent, cette thèse propose d’améliorer les postérieurs des DNNs en les projetant sur les

variétés des classes sous-jacentes en utilisant des dictionnaires basés sur l’analyse en com-

posantes principales (ACP) ou la détection par compression. Les postérieurs projetés se

révèlent être des cibles d’entraînement plus précises pour apprendre de meilleurs modèles

acoustiques, ce qui se traduit par une amélioration de la performance de la RAP. L’approche
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proposée est évaluée à la fois dans des conditions de conversation rapprochée et dans des

conditions distantes, confirmant l’importance de la modélisation clairsemée et de faible rang

de la parole dans la construction d’un système de RAP robuste. Enfin, les conclusions de cette

thèse sont encore consolidées par une approche d’analyse théorique de l’information qui

quantifie explicitement la contribution des techniques proposées dans l’amélioration de la

RAP.

Mots clefs: reconnaissance automatique de la parole, réseau de neurones profond, rareté,

apprentissage de dictionnaire, bas rang, analyse en composantes principales.
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1 Introduction

Automatic speech recognition (ASR) is defined as the task of converting a speech signal into

text using a computer. The availability of massive amounts of data and faster computational

resources coupled with the advancements in deep learning [LeCun et al. (2015)] has recently

resulted in the development of a wide range of ASR technologies and applications. High

performance gains in large vocabulary continuous speech recognition (LVCSR) have made

it possible to use ASR systems in commercial products like smartphones which are used by

billions of people on a daily basis. Smart personal assistants (like Siri, Alexa, and Google

assistant), speech-controlled smart-home devices, systems for transcribing conversations like

meeting recordings, automatic subtitle generation for broadcast news or movies, military, and

healthcare industry usages are some of the major applications of ASR.

The recent progress has resulted in an ever-increasing need for improving the existing technol-

ogy to continually address the open challenges in the field of ASR. For example, the recognition

of unconstrained conversational speech in noisy conditions, possibly corrupted with overlap-

ping speech, is still a very challenging task and the performance of current state-of-the-art

systems is far from reaching parity with human performance. Developing systems suitable for

far-field reverberated speech is another major challenge and is an active area of research. It

also remains difficult to recognize speech in unseen noise or mismatched conditions.

State-of-the-art hybrid ASR techniques typically employ deep neural networks (DNN) for

estimating the probability distribution over speech data under a hidden Markov model (HMM)

based back-end which is used for sequence modeling of speech. Although the hybrid DNN-

HMM approach has undoubtedly advanced the field of ASR, there are certain fundamental

properties of speech which are still not fully exploited by it. One such important property is the

hierarchical parsimony in the structure of speech. Modeling speech by utilizing its inherent

internal structure not only holds the key towards a robust and improved ASR framework but

also towards a critical understanding of speech modeling for ASR in general. The research

presented in the current thesis addresses this very quest by proposing novel applications of

sparse and low-rank modeling approaches towards improving ASR. In this pursuit, we first

develop sparse modeling based ASR solutions for relatively simpler tasks of isolated word
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recognition and connected digit recognition. Lessons learned from this research direction are

then applied to tackle the harder problem of LVCSR for conversational speech in a meeting

scenario where close-talk, as well as far-field microphone conditions, are considered. Along

with empirical verification, the conclusions of this thesis are also consolidated by a novel

information theoretic analysis approach which serves as a tool for measuring the contribution

of sparse and low-rank modeling in improving ASR.

The rest of this chapter is organised as follows. Section 1.1 provides the general motivation

behind the approaches proposed in this work. Section 1.4 summarizes the contributions

of this thesis. Section 1.5 gives a chapter-wise outline for the rest of the thesis and finally,

Section 1.6 lists the notations used in this thesis.

1.1 Motivations

Speech production is a hierarchical and parsimonious process by nature. Speech utterances

are formed as a union of words which in turn consist of phonetic components and sub-

phonetic attributes. Each linguistic component is produced through activation of a few

highly constrained articulatory mechanisms leading to the generation of speech data in a

union of low-dimensional subspaces [Deng (2004); King et al. (2007); Lee et al. (2001)]. While

understanding the hierarchical nature of speech is straightforward (as visualized in Figure 1.1),

the parsimonious nature of speech signifies that out of the many possibilities for a speech unit

(e.g., phonemes or words), only one or very few possibilities are realized at any given instance.

For example, only one word and its corresponding phonetic sequence will be spoken at a

given time instance from the whole vocabulary.

The hierarchy1 and parsimony in the structure of speech are interconnected to each other (refer

Figure 1.1). Movements of the articulatory mechanisms are low-dimensional phenomena

which lead to the production of phonetic and sub-phonetic sounds in a relatively higher

dimensional space. Unique sequences of phonemes result in the realization of distinct words

which are enormously more in numbers than phonetic sounds. Similarly, sentences formed

by sequences of words live in an exponentially high-dimensional space whose dimensionality

is limited only by the extent of the human imagination. As we move higher in the hierarchy,

the space becomes increasingly high dimensional and sparse. Note that this parsimonious

nature of speech is not dependent on our measurement of the speech signal. It is an intrinsic

property which is an outcome of the way human languages are hierarchically structured.

An important consequence of the parsimonious hierarchical structure of speech is the exis-

tence of class-specific low-dimensional subspaces in speech features [Stevens (1998); Jansen

and Niyogi (2006)]. For example, recent advancement in DNN based acoustic modeling relies

1Speech production mechanism is often expressed as a motor control system where a sensory feedback loop
guides the production process. However, there is evidence [Hickok (2012)] from a psycholinguistic perspective
that even a feedback-based speech production process is hierarchically organized across different levels which
span phonetic, word and phrase-level units.
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Figure 1.1: Parsimonious hierarchical structure of human speech. Part of the image has been
taken from [Lee et al. (2001)].

on the estimation of posterior probabilities of context-dependent subphone units. These

probability vectors, termed as posterior features or simply DNN posteriors in this thesis, are

typically very high dimensional and sparse. Only a few non-zero dimensions in the posterior

features are significant as they form different low-dimensional subspaces which belong to

factors like (1) underlying acoustic events such as a particular phonetic sound being realized

or (2) unique variations in pronunciation which are characteristic of a specific speaker. The

current thesis concerns specifically with the modeling of low-dimensional subspaces in DNN

posteriors which are occupied by acoustic events like the realization of words, phonemes, and

subphonetic components.

As argued in [Bengio (2009)], there are two ways of modeling a phenomenon whose underly-

ing causative factors are low-dimensional- (1) as compressed low-rank representations for

each factor’s subspace individually, or (2) as a common high-dimensional sparse representa-
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Figure 1.2: Modeling class-specific low-dimensional subspaces in speech data using low-rank
v/s sparse modeling approach. sk denotes k th subspace in the data.

tion where all the factors reside together in different subspaces. Low-rank representations

model the subspaces in a compressed manner by discarding irrelevant dimensions of the data,

whereas sparse representations achieve the same goal by projecting data in a high-dimensional

sparse space where the underlying structures are disentangled, and only the relevant dimen-

sions are activated (non-zero). The application of low-rank and sparse representations for

modeling speech forms the core of the research conducted in this thesis. In Table 1.1 and

Figure 1.2, we contrast the low-rank and sparse modeling approach. Note that the low-rank

modeling here refers to classwise low-rank models and not a common low-rank model for the

whole multi-class data considered together.

Representation Low-rank Sparse

Information Densely packed Sparse, in a few non-zero
dimensions

Underlying factors Entangled Disentangled

Structure Classwise low-dimensional
representation

Common high-dimensionsal
representation for all classes

Approaches Principal component analysis,
Independent component

analysis, etc.

Dictionary learning and sparse
coding using `0 or `1-norm

constraints

Table 1.1: Contrasting low-rank and sparse modeling approaches.

1.2 ASR as a Compressive Sensing Problem

One of the major approaches considered in this thesis is exemplar-based sparse representa-

tions for ASR, which has been explored previously in [Sainath et al. (2011); Gemmeke et al.
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(2011, 2009); Sainath et al. (2010)]. The core assumption of this approach is that any possible

realization of the data in the test set lies in a vector space spanned by a sparse selection of

exemplars already seen in the training set. Thus, a large collection-of-exemplars is tradition-

ally used in practice to capture all possible variability in the data. In this thesis, we pose

the exemplar-based sparse representation approach for ASR as a Compressive Sensing (CS)

problem. Instead of relying on the large collection-of-exemplars method, we pursue the

goal of finding an over-complete set of basis vectors such that a sparse linear combination

of these vectors can be used to generate all the points in the test data. The over-complete

basis set termed as a dictionary in CS theory, has a much lower cardinality than the typical

collection-of-exemplars set used in previous approaches. Moreover, sparse recovery algo-

rithms, borrowed from CS literature, ensure that sparse linear combinations of the dictionary

columns (termed as atoms) can still adequately span the variability in the space. Further, if

the dictionaries are designed in a particular manner, our compressive sensing approach can

be given a very intuitive probabilistic interpretation in terms of the ASR theory (as we shall see

in Chapter 4). Thus, there is a strong motivation to devise a compressive sensing framework

for exemplar-based ASR.

In addition to the reasons mentioned above, one of the driving motivations for exploring sparse

modeling in speech research comes from the field of neuroscience and psycho-acoustics which

have provided evidence2 that human brain exploits sparse coding and hierarchical analysis of

the stimuli at the level of cognitive processing and neural activities [Allen (1994); Olshausen

and Field (1996)].

1.3 ASR as a Low-dimensional Subspace Modeling Problem

Speech data lies on low-dimensional manifolds, which can be efficiently modeled using low-

rank [Liu et al. (2013)] or sparse modeling [Elhamifar and Vidal (2013)] approaches. However,

state-of-the-art DNN based acoustic modeling in DNN-HMM hybrid approach utilizes low-

rankness and sparsity typically only for model compression or model regularization [Kang

et al. (2015); Yu et al. (2012); Srivastava et al. (2014)] and not specifically for modeling of class-

specific low-dimensional manifolds to improve ASR performance. Therefore, an important

focus of this thesis is on explicitly exploiting the low-dimensional multi-subspace structure of

speech towards the goal of improving acoustic modeling for ASR.

In a typical large vocabulary ASR system, DNN posteriors usually have a dimension in the

order of ∼ 103 which is equal to the number of senones (context-dependent subphone units,

defined later in Chapter 2) in the system. If these posterior features are seen as intermediate

high-dimensional measurements, then the underlying acoustic information is embedded in

unique low-dimensional subspaces which are usually superimposed with high-dimensional

unstructured noise. While the low-dimensional structures are global and pertain to the whole

population of a class, the noise is local and could be a result of erroneous estimations by the

2although not conclusive
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DNN.

Our motivation is to extract these class-specific subspaces using either sparse3 (dictionary

based) or low-rank (PCA based) representations, and model them explicitly to bring improve-

ments in ASR performance. Towards this goal, the current thesis postulates acoustic modeling

for ASR as a problem of recovering low-dimensional class information from high-dimensional

DNN posterior features.

1.4 Summary of Contributions

The goal of this thesis is to devise novel approaches to exploit low-dimensional structures

in speech for improving state-of-the-art ASR approaches on challenging tasks (see datasets,

described in Section 2.3). More specifically, the main contributions of this thesis can be

summarized as follows:

• Sparse modeling for word classification: A novel compressive sensing and sparse recovery

based framework is implemented for the task of Isolated Word Recognition (IWR) using

dictionary learning algorithms and sparse modeling in the context of exemplar-based

speech recognition. The proposed system is shown to outperform the conventional

‘collection of exemplars’ model commonly used in exemplar-based approaches. Combi-

nations of a variety of dictionary learning and sparse recovery algorithms are evaluated

on this IWR task, and the best algorithms suitable for ASR are identified [Dighe et al.

(2015)].

• Sparse modeling for word sequence recognition: The sparse modeling framework is ex-

tended for the task of Connected Digit Recognition (CDR). Use of context appending and

Collaborative Hierarchical sparsity is also investigated for modeling sequential informa-

tion with results showing potential for future research. Unlike previous exemplar-based

ASR methods, this approach is a stand-alone sparsity-based method which is not hy-

bridized with HMM outputs [Dighe et al. (2015)].

• Robust DNN posteriors using dictionary based sparse projection: Explicit modeling

of senone-specific low-dimensional subspaces is proposed using dictionary learning

and sparse coding over the DNN posteriors. DNN posteriors are transformed into

projected posteriors which are shown to be more suitable targets for training acoustic

models. Improvements in ASR performance on CDR task are shown for both clean and

noisy conditions paving a way towards an effective robust ASR framework using DNN

in unseen conditions. Presence of low-dimensional structures is further confirmed

through Robust PCA (RPCA) analysis [Dighe et al. (2016)].

• Low-rank and sparse soft targets for LVCSR: In the context of LVCSR on meeting scenario

3sparse representations, in this case, are used for classwise low-dimensional modeling and not for the modeling
of the whole multi-class data considered together.
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conversations, this thesis shows that low-rank and sparse coding based reconstruction

of DNN posteriors leads to a more accurate estimation of probabilities for underlying

senone classes, thus leading to better ASR accuracy. Enhanced soft targets thus obtained

are also shown to enable semi-supervised training using untranscribed data. Proposed

approach is advanced further by incorporating sMBR sequence discriminative training

criteria for training DNN acoustic models [Dighe et al. (2017a,b, 2018c)].

• Improving Far-field ASR: Improvements in far-field ASR are shown using low-rank and

soft targets from parallel close-talk speech data. Another direction of research focuses

on the enhancement of far-field speech acoustic features using low-rank and sparse

models learned on close-talk speech. Under a multi-task learning framework, acoustic

models for far-field ASR are improved by a parallel task of mapping distant speech

acoustic features to their low-rank and sparse projections. Unlike previous works, the

proposed approach does not need a complete parallel close-talk training set, but only

the forced alignments and principal component matrices or sparse dictionaries [Dighe

et al. (2018a)].

• Quantifying quality of acoustic models using information theory: This thesis proposes

an information theoretic analysis that quantifies the satisfaction of various conditional

independence assumptions made by hidden Markov models in HMM based ASR ap-

proaches. The analysis is used to compare the quality of a variety of HMM based ASR

acoustic models such as GMMs, DNNs, recurrent neural networks (RNN) and time delay

neural networks (TDNN). The analysis also substantiates why the low-rank and sparse

reconstruction of DNN posteriors leads to better ASR [Dighe et al. (2018b)].

In addition, this thesis provides scripts [Dighe (2017)] for implementing the proposed tech-

niques under the framework of Kaldi speech recognition toolkit [Povey et al. (2011)].

1.5 Thesis Outline

We describe below the main organization of this thesis, briefly describing the main goal of

each of its constituting chapters

Chapter 2, Background on automatic speech recognition, presents the key components of the

ASR pipeline with a particular focus on state-of-the-art DNN based acoustic modeling.

Chapter 3, Background on compressive sensing and sparse recovery, explains the basics of

compressive sensing theory and gives details of various dictionary learning and sparse re-

covery algorithms which are considered in this thesis. A background of low-rank modeling

approaches which are relevant to this thesis is also presented.

Chapter 4, A posterior-based sparse modeling approach towards ASR, presents our novel ASR

approach which is based on hierarchical sparse modeling of DNN posteriors. Evaluation of this

approach is shown on the tasks of isolated word recognition and connected digit recognition.
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Chapter 5, A low-dimensional senone subspace modeling approach towards ASR, proposes

the modeling of DNN posteriors in a classwise fashion using CS dictionaries and princi-

pal components. The motivation for this idea is provided through a rank analysis of DNN

posteriors which reveals that senone-specific low-dimensional subspaces exist beneath the

high-dimensional posterior space. The proposed approach is evaluated on a connected digit

recognition task as well as a harder LVCSR task.

Chapter 6, Applications of sparse and low-rank modeling for far-field speech ASR, exploits the

ideas and techniques built in the previous chapters to improve ASR performance on far-field

speech. In this context, we use our techniques to perform speech enhancement as well as

improve acoustic omdeling of far-field speech using parallelly recorded close-talk data.

Chapter 7, On quantifying the quality of acoustic models in hybrid DNN-HMM ASR, presents

a novel information theoretic analysis framework for the qualitative assessment of acoustic

models used in HMM based ASR.

Chapter 8, Conclusions and directions for future work, derives the main conclusions of this

thesis and provide some possible directions for future work.

1.6 List of Notations

The conventions followed in this thesis are as follows:

¦ R: set of real numbers.

¦ RD : set of D dimensional vectors over R.

¦ {·} denotes a set.

¦ [·] denotes a row vector.

¦ < · > denotes a sequence.

¦ [·]> denotes a column vector.

¦ Non bold capital letters indicate size of dimensions and random variables.

¦ Non-bold small letters indicate scalars or functions.

¦ Bold capital letters indicate matrices.

¦ Bold small letters indicate column vectors.

¦ Subscript i to a matrix denotes i th column of the matrix.

¦ Subscript [i ] to a matrix denotes i th row of the matrix.

¦ Subscripts i : j and [i : j ] to a matrix denote a range of columns and rows of the matrix,

respectively.

¦ Subscript i to a vector usually denotes the i th temporal instance of the vector.

¦ Subscript i to a scalar usually denotes that the scalar is i th element of corresponding

bold-faced vector or i th member of a set.

¦ Use of superscripts is explained in the text wherever necessary.
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2 Background on Automatic Speech
Recognition

In this chapter, we provide a brief background on hidden Markov models (HMM) and the

components of an HMM-based ASR system which are relevant to this thesis in Section 2.1.

This section also provide details of the acoustic features and the various hierarchies of speech

recognition units that we consider for modeling in this thesis. Section 2.2 describes the

overall hybrid ASR pipeline with a special focus on DNN-based acoustic modeling. For a more

detailed reading on HMM, conventional HMM-based ASR, and the neural network based

hybrid connectionist approach to ASR, we refer the reader to the following resources: [Rabiner

(1989); Jelinek (1997); Bourlard and Morgan (1994); Huang et al. (2001)]. Finally, Section 2.3

gives details of the databases that were used for evaluating the methods proposed in this

thesis.

2.1 Hidden Markov Models

Over the last 40 years, hidden Markov models have served as the backbone of virtually all

large-scale ASR systems [(Jelinek, 1976; Rabiner, 1989; Bourlard and Morgan, 1994)]. As a

general framework, HMMs are often considered as the “wheel” of sequence processing in

general, and speech processing in particular. Here, we introduce the basics of a Markov chain

and use it to define HMMs.

2.1.1 Markov Chain

A Markov chain is a stochastical model that is used to describe random processes that satisfy

Markov property. Markov property refers to a memory-less (or very limited memory) process,

i.e., during the evolution of the process, the future states dependent only on a limited number

of past few states and not on all the past. In a first-order Markov process, the conditional

probability distribution of the future state is only dependent on the current state, and the

process has no memory of the past. In terms of random variables, if the sequence of random
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variables Q=<Q1,Q2, . . . ,QT > follows a Markovian assumption, then

P (Qt |Qt−1
1 ) = P (Qt |Qt−1) (2.1)

where Qt−1
1 =<Q1,Q2, . . . ,Qt−1 >. This also leads to the probability of the whole sequence Q

being simplified as:

P (Q) = P (Q1)P (Q2|Q1) . . .P (Qt |Qt−1
1 ) . . .P (QT |QT−1

1 )

= P (Q1)
T∏

t=2
P (Qt |Qt−1)

If the random variables can take values from a set of K distinct states Q= {q1, q2, . . . , qK }, then

the Markov chain can be defined by the following two sets of probabilities:

• Prior probabilities: The probability that the Markov chain will start with a particular

state.

πk = P (Q1 = qk ) s.t . πk ≥ 0 ∀k,
K∑

k=1
πk = 1 (2.2)

• Transition probabilities: The probability that the Markov chain will go from one particu-

lar state to another.

ak,k ′ = P (Qt = qk ′ |Qt−1 = qk ) s.t . ak,k ′ ≥ 0 ∀k ′,
K∑

k ′=1
ak,k ′ = 1 (2.3)

In a Markov chain, the state itself at each time step can be considered as a deterministic

observation. A natural extension to Markov chains is a hidden Markov model as defined below.

2.1.2 Hidden Markov Model

A hidden Markov model is a Markov chain where each state generates an observable dis-

crete symbol or a continuous-valued vector as per a state-conditional probability distribution

function. While the emitted observations are visible to an observer, the underlying Markov

process is hidden. The hidden state sequence is non-deterministic and can only be proba-

bilistically estimated based on the observation sequence and the parameters of the model.

Here, we consider only continuous density HMMs which emit real-valued multi-dimensional

vectors as observations. The random variable denoting the observed sequence is defined as

X =< X1, X2, . . . , XT >.

Thus, a HMM can be completely defined by following components:

• Set of states Q= {q1, q2, . . . , qK }: Random variable Qt , denoting hidden state at time t ,

takes values from this set

12
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• Set of observations, Rm : Random variable X t , denoting the observation emitted at time

t , takes a value xt ∈Rm

• Prior probabilities πk from (2.2)

• Transition probabilities ak,k ′ from (2.3)

• Emission probabilities bk (x): Probability of an observation x ∈ Rm being generated

when the underlying hidden state is qk .

bk (x) = P (x|qk ) (2.4)

An HMM based on a first-order Markov chain involves two important assumptions (which will

be revisited again in Chapter 7). The first assumption is the first-order Markovian assumption

as explained in (2.1) i.e.

P (Qt |Qt−1
1 ) = P (Qt |Qt−1)) (2.5)

The second assumption, famously called HMM conditional-independence assumption, states

that the observation emitted at time t is dependent only on the hidden state at time t , and is

conditionally independent of the past hidden state as well as observations, i.e.

P (X t |X t−1
1 ,Qt

1) = P (X t |Qt ) (2.6)

2.1.2.1 Gaussian Mixture Model HMMs

One of the most commonly used versions of continuous probability density HMMs is based

on multivariate Gaussian Mixture Models (GMM). In a GMM-HMM, each hidden state qk in

the set Q has a GMM associated with it such that the emission function bk (x) can be defined

as:

bk (x) =
C∑

c=1
wkc N (x,µkc ,Σkc ) (2.7)

where N (·,µkc ,Σkc ) denotes the Gaussian probability density function with mean µkc and

variance Σkc for c th Gaussian mixture component of the GMM associated with state qk ,

wkc denotes the weight of c th component, and C denotes the total number of Gaussian

components.

Employing HMMs for any task usually results in one or more of the following three standard

problems - 1) finding the posterior probability of an observation sequence given the HMM pa-

rameters, 2) finding the most likely hidden state sequence given an observation sequence and

the HMM parameters, and 3) finding the parameters of the HMM given a set of observation

sequences. Associated with addressing these three problems are the famous HMM-based algo-

rithms - namely Forward-backward algorithm, Viterbi algorithm, and Baum-Welch algorithm

respectively. We refer the reader to [Rabiner (1989)] for complete details on these algorithms.

13
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2.2 Automatic Speech Recognition

ASR is the task of correctly converting a speech signal into the sequence of words which were

spoken by the speaker. We formalize this problem mathematically as follows.

2.2.1 Mathematical Formulation of HMM-based ASR

In a typical HMM based ASR framework, the hypothesised word sequence Ŵ is estimated

from the sequence of acoustic features X = {x1, . . . ,xt , . . .xT }, where X t is a standard acoustic

feature at time t , as

Ŵ = argmax
W

P (W |X ) (2.8)

= argmax
W

p(X |W)P (W)

p(X )
= argmax

W
p(X |W)P (W) (2.9)

where p(W) is the probability of word sequence W estimated from a language model and

p(X |W) is the likelihood of the acoustic sequence conditioned on the word sequence, esti-

mated from an acoustic model. In the last step, we ignore the denominator probability p(X )

as it is independent of the word sequence W in the maximization argument. Assuming that

the observation sequence X is generated by a hidden Markov model, the task at hand is to

compute its probability by marginalizing over all possible hidden state sequences Q (i.e. using

the Forward-Backward algorithm). Thus, p(X |W) is computed as

p(X |W) =∑
Q

p(X |Q,W)P (Q|W)

≈ max
Q

p(X |Q,W)P (Q|W)

=π(qk1 )
T∏

t=2
aqkt−1 qkt

T∏
t=1

p(xt |qkt )

(2.10)

where Q̂ =< qk1 , . . . , qkt , . . . , qkT > is the most probable state sequence obtained from the

Viterbi algorithm [Rabiner (1989)] for decoding and πqk1
, aqkt−1 qkt

and p(xt |qkt ) have usual

meanings in context of a HMM as described in Section 2.1. The marginalization over all

possible hidden state sequences Q is typically approximated just by using the most probable

hidden sequence.

2.2.2 Key Components in the ASR Pipeline

A typical ASR system has been shown in Figure 2.1. The concerned speech signal for ASR is

first passed through a signal processing component. This component enhances the signal

to reduce noise and distortions due to the channel and outputs multi-dimensional acoustic

features for the signal. The acoustic features are then passed through an acoustic modeling

block. An acoustic model looks for the evidence of phonetic information in the acoustic

features. It computes the data-likelihoods conditioned on various phonetic states, and this
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Speech Signal

Hypothesis 
Word Sequence
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Processing

Acoustic Features  
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Figure 2.1: Key components of the ASR pipeline.

information is passed to the decoder. A decoder could be considered as an implementation of

an HMM which composes multiple hierarchies of speech together in a graph. The decoder

combines the likelihoods from the acoustic model and various word sequence probabilities

from a language model to search for the most probable (i.e., the least cost) path in the decoding

graph to output the hypothesized word sequence.

The present thesis mainly focuses on improving the acoustic modeling component of the ASR

pipeline using sparse and low-rank methods (Chapter 4 and Chapter 5). In the later part of the

thesis (Chapter 6), we focus on both signal processing and acoustic modeling components

jointly towards the goal of improving acoustic modeling by performing speech enhancement.

In Chapter 7, we specifically focus on the acoustic modeling component as we do a qualitative

analysis of different acoustic modeling techniques using concepts of information theory. We

did not explore modifications or improvements in the language modeling component in this

thesis.

Before we delve into details of the acoustic modeling component, we present below some

standard type of acoustic features relevant to this thesis. We also discuss the units of speech

usually modeled by the acoustic model.

2.2.3 Acoustic Features

In this thesis, we employ two standard types of acoustic features, namely log-Mel filterbank

energy features (Fbank) and Mel-frequency cepstral coefficients (MFCC). The procedure to

generate Fbank and MFCC features is almost similar except a few extra steps in the case of

MFCC, as follows:

1. Sampling and pre-emphasis: Speech signal is captured at a fixed sampling rate, typ-

ically 8kHz or 16kHz. Sampling at a high-frequency rate can result in low-frequency

components of the signal having high energy whereas the high-frequency components
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might be subdued. Hence, a pre-emphasis operation is done to the original signal s(t )

as follows to amplify the high-frequency components of the signal:

s′(t ) = s(t )−αs(t −1) (2.11)

where α, the first-order filter coefficient, is typically taken to be 0.97.

2. Windowing and FFT: The next step is to convert the pre-emphasized time-domain

signal to the frequency-domain in order to analyze the evolution of different frequency

components over time. A Fourier transform of the whole signal is not a suitable choice

since the signal is not stationary and a signal-level transform would result in losing the

information about the evolution of the frequency contours. To avoid these issues, the

signal is analyzed in a sliding window fashion because we can assume stationarity for

very short durations of time. Therefore, we apply fast Fourier transform (FFT) to one

window at a time to get a frequency-domain representation of the short duration signal

in the window. FFT of each window results in one spectral feature frame in frequency-

domain, and all the frames of spectral features concatenated together adjacently are

called the spectrogram of the signal. A typically used window length is 25ms which

would contain 400 samples of the pre-emphasized time-domain signal if the sampling

rate used is 16kHz. Before applying FFT, a Hamming window function is also applied

to compensate for the fact that FFT assumes the time-domain signal to be of infinite

length. The spectrogram output from FFT is converted to a power spectrum by taking

square of the amplitudes in the spectrogram.

3. Filterbank analysis: In this step, Mel-scale filters are applied to the power spectrum

to imitate human auditory perception which is more discriminatory for the lower fre-

quencies as compared to the higher ones. Typically 40 overlapping triangular filters

are applied whose centers are placed at equal intervals in the Mel-frequency domain.

Finally, we compute the log of energy under each Mel-filter. At this stage, each frame of

the spectrum has 40 Mel-filterbank energies. These features are called log Mel-filterbank

energies or simply Fbank.

4. Decorrelating by DCT: The dimensions of the Fbank energy features are highly correlated.

In order to decorrelate these features for enabling Gaussian modeling with diagonalized

covariance as well as to discard high-frequency components of the power spectrum,

we take discrete cosine transform (DCT) of the Fbank features and pick the first few

coefficients (usually 13) which are significant for ASR. These coefficients are called

Mel-frequency cepstral coefficients or simply MFCC.

In practice, both MFCC and Fbank features are typically used after appending first and second

order delta features with them. MFCCs are used for GMM-HMM modeling as they have been

decorrelated whereas DNNs can be directly trained with Fbank features as they are not very

sensitive to correlated dimensions.
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2.2.4 Speech Units for Acoustic Modeling: Words, Phonemes, and Senones

Selecting an appropriate speech unit for acoustic modeling is one of the most crucial aspects

of an ASR system. The speech unit chosen should be such that distinct classes of the unit can

be modeled with discriminable probability distributions over the acoustic features. There

should be enough data available for modeling each class of the unit accurately. Also, the

speech unit should be easily generalizable for unseen speech data such that test utterances

with new words can still be recognized.

2.2.4.1 Words

One of the most natural choices for modeling speech could be at the word level. Words are

language specific units having semantic meanings. For a small vocabulary task, they are a

good choice for acoustic modeling as we might have enough data for training separate word

models and as well as their context-dependent variations. On the contrary, the need for more

data explodes with the size of the vocabulary in a large vocabulary speech recognition task. A

significant amount of training data is required in this case, possibly with many variations of

each word, for robust and accurate word models. Moreover, word models from the training

data are not readily generalizable to new unseen words in the test data. Due to this, LVCSR

systems typically do not employ word-based acoustic modeling whereas small vocabulary

tasks such as digit recognition can work with word-based models.

2.2.4.2 Phonemes

Phonemes are linguistically distinct speech units which do not have any semantic meaning.

Since they are defined only with respect to the constituent sound, they are not language-

dependent. However, a given language might have a different set of phonemes than another

language due to different sets of sounds needed to pronounce words in their respective

vocabularies. There are nearly 40 phonemes in English as compared to about 170,000 words.

Therefore, distinct phoneme models are easily trainable than word models as there is usually

enough data for each phoneme class. A large vocabulary of words can be modeled as sequences

of phoneme models concatenated together in an LVCSR task. Furthermore, a linguist can

prepare a dictionary of all the words in the vocabulary mapped to their phonetic sequences,

which makes it possible to generalize the phoneme-based acoustic model to unseen words in

the test data. An example of a word to phonetic sequence is shown in Figure 2.2(a).

A phonetic model is typically modeled by a 3-state left-to-right HMM topology (Figure 2.2(b))

where each state could be modeled using a separate GMM. The states of the phone-HMM

are sub-phonetic units which model the beginning, middle, and end of the phone. A similar

HMM model is used to model the silence class. In phone-based acoustic modeling (termed as

monophone ASR usually), the acoustic features are typically modeled using distinct proba-

bility distributions belonging to the phone-states. A downside of the monophone modeling
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approach is that we consider all the instances of a phoneme in the data to be acoustically

similar. For example, when a phoneme qi appears in two different phonetic contexts, e.g.

q j −qi −qk and q j ′ −qi −qk ′ , the left and right states of the phoneme qi HMM might exhibit

significant dissimilarities in acoustic features due to the context-dependent variations. A

monophone model ignores these variations and models all instances of the phoneme under

a common probability distribution function, resulting in a somewhat weak and inaccurate

acoustic modeling. The term (allo)phone refers to a phoneme’s acoustic realization which

usually varies depending on the surrounding phoneme context and variations in the coar-

ticulation mechanism. Modeling of phones is typically addressed by context-dependent

sub-phonetic modeling described below.

2.2.4.3 Senones

To incorporate context-dependency in phoneme modeling, monophone HMMs are replaced

with triphone HMMs. A triphone has a unique left and right context phoneme around the

central phoneme. Therefore, a triphone is an example of allophones. States of the triphone

HMMs are clustered across different phonetic models if the phonetic context is similar. This

state tying limits the number of different models to be trained. Acoustic data assigned to each

triphone state is further split using a decision tree [Young et al. (1994); Hwang et al. (1996)]

such that each node asks a linguistic question to reduce the entropy or increase the likelihood

of the data after the split. The leaves of the decision tree are termed as senones, and they are

the most commonly used units for acoustic modeling in LVCSR systems because they provide

a significant improvement in ASR performance over the monophone acoustic models. While

the total number of logical states in a speech modeling HMM could be very large, the number

of senones obtained after state tying is typically in the order of few thousands. A senone

decision tree is shown in Figure 2.2(b).

Figure 2.2: (a) Example of the phoneme sequence for a word. (b) An example of 3-state
triphone HMM and the senone decision tree.
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Figure 2.3: A deep neural network based acoustic model which predicts HMM state posterior
probablities at the output using a context-appended acoustic feature as input.

In this thesis, we explore monophone-based acoustic models in the context of small vocabulary

ASR and work with senones-based acoustic models for large vocabulary tasks.

2.2.5 DNN-HMM Hybrid Acoustic Models

In a hybrid DNN-HMM ASR system [Bourlard and Morgan (1994); Hinton et al. (2012)], the

traditional GMM based modeling of state-specific probability distribution functions is re-

placed by a deep neural network model. As depicted in Figure 2.3, the DNN takes as input a

context-appended acoustic feature vector and predicts the posterior probabilities of all senone

classes at the output layer. The mapping from the acoustic features to the state posterior

probabilities is done through multiple layers of non-linear transformations.

In a Bayesian GMM-HMM system, the frame likelihood p(xt |qt ) required in (2.10) can be

directly computed using the state-specific GMMs. In case of DNN-HMM acoustic models, it

has to be indirectly approximated as follows:

p(x|qk ) ∼ p(x|qk )

p(x)
= P (qk |x)

P (qk )
(2.12)

where the state posterior probability P (qk |x) is obtained at the output of the DNN and P (qk )

is the prior probability of the state qk obtained from its frequency count in the training data,

yielding to an estimate of the scaled likelihood p(x|qk )
p(x) .
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The DNN acoustic model shown in Figure 2.3 is a feedforward network but, in practice, it

can be replaced by other neural network architectures like recurrent neural networks or

convolutional neural networks [Sak et al. (2014); Waibel et al. (1990); Peddinti et al. (2015)].

Since the outputs of the network represent probabilities of the HMM states, we use a softmax

layer as the last layer of the network. The vector of state posterior probabilities at the output

layer of the DNN is also called a posterior feature (or simply a DNN posterior). Posterior

features are more robust to speaker and environmental variations as compared to acoustic

features at the input of the DNN. They are also known to be spiky and sparse as they live

on a probability simplex. In this thesis, we heavily exploit the posterior features for sparse

and low-rank modeling of speech for improving DNN-HMM ASR performance. Due to the

dimensions of posterior features having a one-to-one correspondence with HMM states, they

unveil the underlying class-specific low-dimensional subspaces very elegantly under sparse

and low-rank modeling approaches.

2.2.5.1 DNN Training for ASR

Training of a DNN-HMM ASR system usually starts with training a GMM-HMM system first.

For a typical LVCSR task, training the GMM-HMM system involves (1) creating the set of

senones using decision tree based state tying and (2) learning the HMM parameters using

the training data. Once the GMM-HMM system is learned, we force-align a sequence of

senones over the training utterances using their ground-truth text transcript under the Viterbi

algorithm. Framewise senone alignments of the training data provide us with outputs for

training the DNN acoustic model. For this, the senone labels are converted into binary

posterior vectors with probability 1 for the labeled senone and 0 everywhere else.

A DNN acoustic model can be trained either towards the goal of minimizing the framewise

senone classification error or towards minimizing the sentence level error. Framewise training

of the DNN is typically done by minimizing a cross-entropy (CE) loss function, whereas

sentence-level errors can be minimized by using sequence discriminative loss functions such

as sMBR or bMMI criteria [Povey]. We provide details of CE and sMBR loss functions in this

section as they are relevant to the work in this thesis.

DNNs are trained using the error backpropagation algorithm [Rumelhart et al. (1986)] which

utilizes the chain rule of calculus in order to compute the derivate of the loss with respect

to each trainable parameter . These loss derivates are used to update the parameters of a

feed-forward neural network as follows:

Wl
t+1 ← Wl

t −ε∆Wl
t (2.13)

bl
t+1 ← bl

t −ε∆bl
t (2.14)

where ε is the learning rate, Wl
t and bl

t are weight matrix and bias vector of the layer l after

t th update, and ∆Wl
t and ∆bl

t are the average gradients of the selected loss function L with

respect to the weight and bias respectively over a minibatch of examples from the training
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data.

Cross Entropy Loss: On a training example, if the target posterior vector is t and the DNN

predicts a posterior vector o, then the cross entropy loss is given by:

L(W,b;t,o) =−
K∑

k=1
tk log(o)k (2.15)

where tk and ok are k th components of DNN target and output vectors, respectively. By mini-

mizing the CE loss over the whole training data, we minimize the Kullback-Liebler distance

between the target probability distribution and the DNN output distribution.

sMBR Objective Function: Minimum Bayes risk (MBR) criteria [Goel and Byrne (2000);

Veselỳ et al. (2013)] minimize the sentence level expected error with respect to different

hierarchies of target alignments. In this thesis, we employ the state alignments based sMBR

objective function for sequence discriminative training of DNN acoustic models. The sMBR

objective is defined as:

LsMBR =
U∑

u=1

∑
W p(Xu |SW )κP (W )A(W,Wu)∑

W ′ p(Xu |SW ′)κP (W )
(2.16)

where u is the utterance identifier, Wu and W denote reference and hypothesized word

sequences, and A(W,Wu) is the raw accuracy of the labels in state alignment for hypothesized

word sequence W with respect to the state alignment for reference word sequence Wu . Xu

denotes the acoustic feature sequence < x1,x2, . . . ,xT > and κ is acoustic score scaling factor.

The numerator and denominator in the sMBR objective function are sums taken over all word

sequences in decoding lattice for the utterance u such that HMM topology and the effect of

language model are taking into consideration. sMBR criterion essentially computes a weighted

average raw accuracy A(W,Wu) over all word sequences W ’s in the lattice. Maximizing this

objective results in minimizing the expected state-error rate. Sequence discriminative training

of a DNN acoustic model is done by first training a DNN by minimizing the CE loss function.

The CE loss based DNN is then used to generate decoding lattices for all the utterances in the

training data. Finally, the DNN parameters are tuned to maximize the sMBR criterion.

2.2.6 KL-HMM Based Acoustic Modeling

Kullback-Leibler divergence based HMM (KL-HMM) formulation was proposed in [Aradilla

et al. (2007, 2008)]. In this approach, each HMM state qk is characterized by a target multino-

mial distribution parametrized via a probability simple vector yk . The state-conditional data

likelihoods required in (2.10) are replaced by a cost function associated with each state. The

cost for state qk at time t is given by the KL divergence between its target distribution yk and
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the current posterior feature zt as:

ck (t ) = KL(yk‖zt ) =
K∑

k ′=1
yk

k ′ log
yk

k ′

zt (k ′)
(2.17)

where yk
k ′ and zt (k ′) represent the k ′ th element of yk and zt respectively. With this interpreta-

tion, hybrid DNN-HMM framework can be seen as a particular case of a KL-HMM where state

target distributions are predefined as binary probability vectors.

In the description above, we have assumed that the state-specific target distributions yk and

the posterior features zt correspond to K -dimensional vectors where K is the total number

of states. In practice [Bahaadini et al. (2014)], one can compute D-dimensional posterior

features (where D 6= K ) at the output of a DNN such that the posterior probabilities relate

to some speech modeling unit other than the K -class HMM state units. Accordingly, the

state-specific distributions are also learned as D-dimensional probability simplex vectors, and

the KL divergence based cost can still be computed using (2.17). Formulating the KL-HMM

this way provides the liberty to model a different speech modeling unit at the output of the

DNN as compared to the one used for constructing the HMM back-end.

2.2.7 ASR Evaluation Metric

The most commonly used metric for measuring the performance of an automatic speech

recognition system is word error rate (WER). In this thesis, we mainly used WER to compare

the performance of various systems. Given the reference word sequences over some test data

and the word sequences hypothesized by an ASR system, the word error rate is defined as:

WER (in %) = 100× Substitutions+Deletions+ Insertions

Number of words in the reference
(2.18)

where the numerator has a count of substitutions, deletions and insertions in the hypothesized

word sequences as compared to the reference sequences. WER is typically presented as a

percentage, and a lower WER signifies higher accuracy in speech recognition.

In some experiments based on isolated word recognition, we use the word recogntion accuracy

for evaluating the performance of various ASR systems. This accuracy is defined as follows:

Word Recognition Accuracy (in %) = 100× Number of words recognized correctly

Total number of words
(2.19)

2.3 Databases

The databases considered in this thesis for ASR lie in three different categories of varying

difficulty. Experiments based on a novel compressive sensing ASR approach in Chapter 4

22



2.3. Databases

have been conducted on databases involving isolated word and connected digit recordings.

For LVCSR experiments using enhanced low-rank and soft targets in Chapter 5, we utilize

databases involving conversational speech recordings. In addition, we also utilize speech data

from other sources for semi-supervised training. Details of all the databases used in this thesis

are given below.

2.3.1 PhoneBook: NYNEX Isolated Words

PhoneBook is a phonetically-rich telephone-speech database [Pitrelli et al. (1995)] created

specifically for developing isolated word recognition and keyword spotting technology. The

database has single channel recordings of isolated words recorded at 8kHz sampling rate. The

complete database has nearly 8k distinct words with an average of 11.7 examples of each word

spoken by different speakers. More details of PhoneBook database are given in Table 2.1. All

the word utterances are spoken by native American English speakers. We perform experiments

on two different subsets of PhoneBook for isolated word recognition task - an easier 75 words

vocabulary task and a more challenging 600 words vocabulary task. For each word, we use 4

examples for training the word-based models and the rest of the examples (typically 7-8) for

testing.

Table 2.1: Details of PhoneBook database.

Detail Count
Speech data (in hours) 23
Number of utterances 93,667
Distinct words 7,979
Samples per word 11.7 (from different speakers)
Distinct speakers 1,358

2.3.2 Numbers Database

Numbers database is a subset of Numbers’95 corpus [Cole et al. (1995)] which contains strings

of spoken digits recorded over a telephone channel at 8kHz sampling rate. The subset contains

those utterances of Numbers’95 corpus which contain only the 30 most frequent words in the

original corpus. The rest of the utterances are discarded. Therefore, the vocabulary size of

Numbers database in 30. Examples of the utterances in the database include phone numbers,

zip codes and birthdays. The database is partitioned as shown in Table 2.3.

Another smaller subset of Number database is referred to as Digits database [Aradilla (2008)]

containing spoken sequences of only the 10 digits (from ‘zero’ to ‘nine’) and an alternative

pronunciation ‘oh’ for zero. For this dataset, there are 12 distinct word classes corresponding

to the 11 words plus one for silence or pause. The training set consists of 8253 utterances (4.5

hours of speech) and the test set contains 2820 utterances.
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Table 2.2: Details of Numbers database.

Detail
Count (partition-wise)
Train Dev Test

Speech data (in hours) 6.2 2.2 2.3
Number of utterances 10,441 3,582 3,621
Running words 50,358 17,597 17,835

2.3.3 AMI Meeting Corpus

The AMI corpus [McCowan et al. (2005)] (http://groups.inf.ed.ac.uk/ami/corpus/) contains

recordings of spontaneous conversations between a group of participants in meeting scenarios.

The meeting scenarios have been designed such that the participants freely discuss and

debate over some ideas. The meetings were recorded in English, although the speakers were

mostly non-native. The recordings were done in three different rooms with different acoustic

environments across three geographical locations in the UK, the Netherlands, and Switzerland.

AMI corpus is multi-modal and provides audio recordings from close-talk as well as far-field

microphones. Other modalities include individual and room-view video cameras, output

from a slide projector and an electronic whiteboard, and individual electronic pens. In this

thesis, we focus on speech data recorded using close-talk and far-field microphones. Due to

the conversational style of speaking and the speakers frequently overlapping and interrupting

other speakers’ speech, the AMI corpus has proved to be a challenging task in recent large

vocabulary ASR research.

The close-talk microphone speech is termed as individual headset microphone (IHM) con-

dition in AMI, whereas the far-field microphone speech is termed as the single distant mi-

crophone condition. All meeting rooms had eight far-field microphones in a circular array

between the meeting participants. The first microphone (mic-id 1) is typically used as the

source of SDM data for far-field ASR. Both the close-talk and far-field speech streams have

been recorded parallelly. They are time synchronized, and the word transcripts are obtained

by force-aligning using a speech recognition system.

Table 2.3: Details of AMI database.

Detail
Count (partition-wise)
Train Dev Test

Speech data (in hours, approx.) 81 9 9
Number of utterances 108,221 13,059 12,612
Running words 802,604 94,914 89,635

The dataset is available at 16kHz sampling rate with nearly 100 hours of meeting recordings

divided approximately as 81 hours train set, 9 hours dev and 9 hours eval set. We use 10%

of the training data for cross-validation during DNN training, whereas the dev set is usually

used for tuning the hyper-parameters of our proposed approaches. We use a pronunciation

dictionary of ∼47K words and a trigram language model for decoding in our ASR experiments
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on AMI.

2.3.4 ICSI Meeting Corpus

The ICSI meeting corpus [Janin et al.] is an in-domain speech database with respect to the AMI

meeting corpus. It contains ∼72 hours of speech recordings from 75 meetings. The meetings

were recorded at ICSI Berkeley and consisted of conversational speech among the participants.

The recordings were done using both close-talk and far-field microphones at 48kHz sampling

rate. We only use the close-talk subset of ICSI corpus for experiments, and it is downsampled

to 16kHz to match the conditions in AMI meeting corpus. This database is used in this thesis

for semi-supervised training of acoustic models. Therefore, we do not use the transcriptions

provided with this database. The details of this corpus are summarized in Table 2.4.

Table 2.4: Details of ICSI meeting corpus.

Detail Count
Speech data (in hours) 72
Distinct words (approx.) 13k
Running words (approx.) 795k
Distinct speakers 53

2.3.5 Librispeech Corpus

LibriSpeech corpus [Panayotov et al. (2015)] is a speech database consisting of approximately

1000 hours of read English speech at 16kHz sampling rate. The recordings contain read

audiobooks which are fairly different than conversational speech. Therefore, we consider

LibriSpeech as an out-of-domain database with respect to the AMI meeting corpus. In this

thesis, we use a 100 hour subset of Librispeech for semi-supervised training of acoustic models.

The details of this 100 hour subset is summarized in Table 2.5.

Table 2.5: Details of 100 hour subset of Librispeech database.

Detail Count
Speech data (in hours) 100.6
Distinct words (approx.) 34k
Running words (approx.) 990k
Distinct speakers 251
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3 Background on Compressive Sensing
and Sparse Recovery

This thesis relies heavily on the concepts of compressive sensing (CS) theory towards the goal

of improving ASR. Therefore, we devote this chapter to an appropriate background of the same.

We provide a brief introduction to CS theory in Section 3.1 followed by an overview of some

relevant dictionary learning and sparse coding algorithms in Section 3.2 and Section 3.3 re-

spectively. In Section 3.4, we discuss principal component analysis, a popular data processing

technique, which has been exploited in this thesis for low-dimensional modeling of speech.

3.1 Introduction

Compressive sensing is a relatively recent area of research in signal processing [Candès and

Wakin (2008)] which deals with efficiently sampling and reconstructing a signal by exploiting

its intrinsic sparse structure. Since its inception, CS has found successful applications in a

wide variety of technological domains such as compression of natural audio, image and video

signals [Plumbley et al. (2010); Usevitch (2001); Schmid-Saugeon and Zakhor (2004)], data

denoising [Jafari and Plumbley (2009); Aharon et al. (2006)], medical imaging [Mailhé et al.

(2009); Tošić et al. (2010)], netword tomography [Firooz and Roy (2010)], etc.

According to the Nyquist-Shannon sampling theorem [Shannon (1949)], the sampling rate

required to capture a signal fully must be at least twice of the maximum frequency present in

the signal. While this so-called Nyquist rate puts a lower bound on the minimum number of

samples required to capture a signal, the CS theory asserts that under certain conditions, the

signal can be efficiently reconstructed from a far fewer number of samples than as governed

by the Nyquist rate. In doing so, the CS theory assumes that many natural signals such as

images and audio have an internal structure which is inherently sparse and leads to a very

small information rate. This assumption is well supported by the famous Ockham’s razor1

which favors fewer variables and simpler explanations to describe a natural phenomenon

rather than other competing complex explanations. It is important to mention here that the

sampling theorem concerns itself with the bandwidth of the signal to determine the sampling

1Also called “lex parsimoniae” in Latin, which means “the law of parsimony”.
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rate for a full recovery of the signal. On the other hand, CS relies on the internal structure of

the signal for an efficient but not necessarily an exact reconstruction. Therefore, CS theory

dictates that given an appropriate basis set, a sparse signal can be expressed very concisely. In

this regard, Compressive Sensing theory has the following two related tasks at hand:

• Compressive sensing of a signal: Given a signal a of dimension M , find a sensing

matrix D ∈RK×M such that the signal can be captured efficiently and non-adaptively by

correlating it with the rows of D, thus making only K measurements where K < M . The

compressed K -dimensional signal z can be represented as:

zk = 〈dk ,a〉, k = 1, . . . ,K (3.1)

where zk is the k th measurement of the signal a corresponding to its correlation with

dk , the k th row of the sensing matrix.

• Sparse recovery of a compressed sparse signal: Given a compressed signal z of di-

mension K , find an appropriate dictionary D ∈ RK×M so as to express z as a linear

combination of a very few atoms (column vectors) of the dictionary as

z = D a (3.2)

where the sparse representation of z over atoms (columns) of D leads to the reconstruc-

tion of the underlying sparse signal a of dimension M .

The signal a ∈RM is called N -sparse if only N ¿ M entries of a have nonzero values. We call

the set of indices corresponding to the non-zero entries as the support of a. The CS theory

asserts that only K =O(N log(M/N )) linear measurements, denoted by z ∈RK and obtained

as zk = 〈Dk ,a〉 in (3.1), suffice to reconstruct a, where K < M . The sensing matrix D ∈RK×M

can also be interpreted as an over-complete dictionary designed for recovering the sparse

representation a as per (3.2). Overcompleteness [Lewicki and Sejnowski (2000)] refers to the

dictionary D having more basis vectors M than the dimension K of the compressed signal

space. Please note that the sensing dictionary used in (3.1) for compressing a signal and the

overcomplete dictionary used in (3.2) for recovering a sparse signal have theoretically different

roles and applications and more details can be found in [Foucart and Rauhut (2013)]. The

application of CS theory in this thesis concerns mostly with the sparse recovery (or signal

reconstruction) problem described by (3.2) and we do not consider the sensing problem (3.1)

here.

Formally, sparse recovery of a is achieved by solving the following optimization problem:

min
a∈RM

‖a‖0 subject to z = D a (3.3)

where the counting function ‖.‖0 :RM −→N returns the number of non-zero components in

its argument, i.e. the `0-norm of a. Due to K < M , we have more unknowns in (3.3) than the

number of equations, leading to infinitely many solutions for a. An underdetermined system
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of linear equations like (3.3) is in general an NP-hard problem [Donoho (2006)]. Moreover,

there are
(M

N

)
combinatorial choices for an N-sparse solution, and a brute-force search for the

best N-sparse solution is still infeasible due to the exponential complexity of the problem.

In practice, the non-convex objective of (3.3) is often relaxed to `1-norm based convex opti-

mization problem which can be solved in polynomial time. The modified problem is stated as:

min
a∈RM

‖a‖1 subject to z = D a (3.4)

where the `1-norm, ‖a‖1 is defined as sum of the absolute values of the components of a. It

has been shown in literature [Donoho and Elad (2003)] that (3.3) and (3.4) lead to equivalent

sparse solutions for a.

According to [Candes and Tao (2005)], the successful reconstruction of a by solving the op-

timization problem in (3.4) requires that (1) a is sufficiently sparse and (2) the dictionary D

satisfies the restricted isometric property (RIP). According to this property, if there exists a

constant δN , where 1 ≤ N ≤ M , such that for every N -dimensional vector aN and every K ×N

submatrix DN of D, the following condition holds:

(1−δN )‖aN‖2
2 ≤ ‖DN aN‖2

2 ≤ (1+δN )‖aN‖2
2 (3.5)

then, the dictionary D is said to satisfy the restricted isometric property with the isometry

constant δN . Since obtaining an appropriate dictionary is crucial for efficient reconstruction

of the signal, dictionary learning is considered as an equally important aspect of CS theory as

sparse recovery. We point the reader to the following sources [Elad (2010); Rish and Grabarnik

(2014); Tosic and Frossard (2011)] for detailed reviews of various dictionary learning and sparse

recovery algorithms.

In the following subsections, we review some dictionary learning and sparse recovery tech-

niques that are relevant to the work done under this thesis. These methodologies mostly focus

on solving the sparse recovery problem as expressed in (3.3) and (3.4).

3.2 Dictionary Learning

The goal of dictionary learning is to optimize for an overcomplete basis set such that the

training feature vectors can be characterized as a sparse linear combination of the basis vectors.

This approach assumes that the training data lives in a low-dimensional (non-Euclidean)

space that can be modeled as a union of sub-spaces. An overcomplete dictionary attempts

not only to capture the broad range of variability that the data can exhibit but also helps in

decompressing the initial compact feature-space to a high dimensional sparse space where

discrimination between various data phenomena becomes easier. This desirable property

of dictionary learning is precisely what we need for the task of speech recognition where the
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variability comes from countless sources like gender, age, accent, surroundings, etc. The other

requirement for our task is the efficient scalability of the dictionary learning algorithm to

larger datasets. With the availability of huge datasets, an algorithm which can utilize all the

available knowledge is preferred.

Given a training set of features Z = [z1, ...,zT ] ∈ RK×T , a dictionary D ∈ RK×M and sparse

representation A = [a1, ...,aT ] ∈ RM×T for Z; the `1-norm based sparse recovery objective

function for classical dictionary learning techniques is defined as

min
D,A

1

T

T∑
t=1

(
1

2
‖zt −D at‖2

2 +λ‖at‖1

)
(3.6)

where λ is the regularization parameter. The first term in this expression, quantifies the

reconstruction error whereas the second term controls the sparsity of at . The joint optimization

of this objective function with respect to both D and at simultaneously is non-convex. On

the other hand, it can be solved as a convex objective function by optimizing for one quantity

while keeping the other one fixed. Depending on the task, the cost functions other than

Euclidean distance (i.e. `2-norm) may also be preferred such as Kullback-Leibler divergence.

In this thesis, we focus on the performance of two main approaches to dictionary learning-

namely, K-SVD and online dictionary learning algorithm. Details of these techniques are

briefly summarized below.

3.2.1 K-SVD Algorithm

K-SVD algorithm, developed by [Aharon et al. (2006)], is one of the most prominent algorithms

for dictionary learning. It roughly generalizes the idea of K-means clustering to the task

of dictionary learning. The dictionary is learned atom by atom using the singular value

decomposition (SVD) technique to minimize the quadratic reconstruction error associated

to each atom. In the original paper [Aharon et al. (2006)] on K-SVD algorithm, K denotes

the number of atoms of the dictionary which is denoted by M in this thesis. Therefore, as

per the notations defined in this thesis for (3.6), the dictionary has M atoms and it projects

M-dimensional data to a K -dimensional space. The K-SVD algorithm works as follows. The

dictionary is first (warm) initialized as D and the sparse representation A of the training

features Z is obtained through any convenient sparse recovery algorithm. Then, a residual error

E j is defined when atom d j is removed from the dictionary along with the its corresponding

coefficients, i.e. j th row of A which is denoted as a[ j ]. Therefore, the residual can be written as:

E j = Z− ∑
i 6= j

di a[i ] (3.7)

In terms of the residual E j , the reconstruction error term of (3.6) can be written as:

‖Z−DA‖2
F = ‖E j −d j a[ j ]‖2

F (3.8)
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Now, the goal is to update each dictionary atom and its associated sparse coefficients through

dnew
j , a new

[ j ] = argmin‖E j −d j a[ j ]‖2
F, for j = 1, . . . , M (3.9)

The SVD is then used to find the closest (in least square terms) rank-1 decomposition of E j to

update d j and a[ j ]. To ensure that sparsity constraint is enforced on a new
[ j ] in (3.9), only those

columns of E j are used for SVD decomposition that correspond to zt ’s in Z which use the atom

d j in their sparse representation. This procedure is repeated for all atoms of the dictionary.

dnew
j ,a new

[ j ] = SVD
Rank-1

(
E

using relevant columns
j

)
(3.10)

The column d j in the dictionary is updated with dnew
j whereas a new

[ j ] is discarded.

3.2.2 Online Dictionary Learning

An online optimization algorithm for dictionary learning was proposed by [Mairal et al. (2010)]

based on stochastic approximations. The algorithm alternates between a step of sparse recov-

ery for the current training feature zt and then optimizes the previous estimate of dictionary

D(t−1) to determine the new estimate D(t ) using stochastic gradient descent. The algorithm

employs LARS-Lasso algorithm for the sparse recovery which is explained in Section 3.3. Due

to its online nature, this algorithm can handle very large datasets which makes it a favorable

candidate for application in ASR. It has also been shown to be dramatically faster as compared

to full-batch algorithms [Aharon et al. (2006); Olshausen and Field (1997)] typically used for

learning dictionaries from large-scale datasets. The algorithm has been shortly summarized

in Algorithm 1 and complete details can be found in [Mairal et al. (2010)].

Algorithm 1 Online Dictionary Learning

Require: : Z = [z1, ...,zT ] ∈RK×T ,λ ∈R : regularization parameter, initial estimate for dictio-
nary D(0) ∈RK×M

1: for t = 1 to T do
2: Sparse Coding of zt to determine at :

at = argmin
a

{
1

2
‖zt −D(t−1)a‖2

2 +λ‖a‖1

}
(3.11)

3: Updating D(t ) with D(t−1) as warm restart:

D(t ) = argmin
D

{
1

t

t∑
i=1

(
1

2
‖zi −Dai‖2

2 +λ‖ai‖1)

}
(3.12)

4: end for
5: return D(T )
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3.3 Sparse Recovery

The computational methods to solve the sparse recovery problem expressed in (3.3) and (3.4)

are reviewed in [Tropp and Wright (2010)]. Two of the major sparse recovery approaches

reviewed in this chapter are based on- 1) greedy pursuit of basis vectors using orthogonal

matching pursuit (OMP) and 2) convex relaxation of the problem to `1-norm using Lasso (Tib-

shirani, 1996). We also discuss some variants of Lasso here- namely hierarchical group Lasso

and its collaborative version. The details of these algorithms are summarized below.

3.3.1 Orthogonal Matching Pursuit

One of the major algorithmic approaches to sparse recovery relies on a greedy pursuit of basis

vectors referred to as orthogonal matching pursuit (OMP). The OMP is an iterative greedy

method which finds a solution for the `0-norm sparse recovery problem mentioned in (3.3) by

repeatedly identifying one or more atoms of the dictionary that yield the highest improvement

in minimization of the reconstruction error [Davis et al. (1997); Tropp and Wright (2010)]. A

significant advantage of this approach is that it does not need to relax the `0-norm criterion,

so one can control the sparsity as required. The stopping criterion can be chosen by fixing

the number of dictionary atoms which will have non-zero coefficients. The steps followed by

OMP have been summarized in Algorithm 2.

Algorithm 2 Orthogonal Matching Pursuit

Require: : A signal z ∈RK and a dictionary D ∈RK×M

1: Initialize an index setΩ0 =;, a residual error r0 = z, and a counter c = 1.
2: Find an atom d ĵ of D which has the highest correlation with the previous residual rc−1 as:

ĵ = argmax
j

|〈rc−1, d j 〉| (3.13)

and setΩc =Ωc−1 ∪ { ĵ }.
3: Find the best coefficients corresponding to the dictionary columns that have been chosen

so far.

ac = argmax
a

‖z−DΩc a‖2 (3.14)

where DΩc is a sub-matrix of D corresponding to the columns indexed by the index setΩc .
4: Update the residual:

rc = z−DΩc ac (3.15)

Repeat steps (2)-(4) until desired number of atoms have been selected from D.
5: Return sparse representation a with non-zero coefficients from the final execution of (4).
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3.3.2 Lasso

An alternative to the greedy sparse recovery is to relax the problem stated in (3.3) by replacing

the non-convex `0-norm based objective with a convex `1-norm based objective function

referred to as the least absolute shrinkage and selection operator (Lasso) [Tibshirani (1996)]. It

is known that relaxing the combinatorial problem of `0-norm to `1-norm constraint leads to

equivalent sparse solutions for a (as shown in Figure 3.1(a)). While the former is NP-hard, the

relaxed formulation admits efficient polynomial time algorithms. Furthermore, the solutions

of `1-norm minimization are less sensitive to noise. The optimization problems which is

solved in Lasso is

min
a

1

2
‖z−Da‖2

2 +λ‖a‖1 (3.16)

The standard Lasso problem can be solved by various convex optimization techniques. One

of the efficient and computationally fast techniques is least angle regression (LARS) imple-

mentation whose details can be found in [Efron et al. (2004)]. In this thesis, we employ LARS

implementation for sparse recovery of a using Lasso objective function in (3.16).

The compressive sensing based ASR framework proposed in Chapter 4 poses DNN posterior

features (as described in Section 2.2.5) elegantly into formulations which lead to group, hierar-

chical and collaboratively structured sparsity. Therefore, we leverage some variants of Lasso

which specifically deal with these cases, as briefly discussed below.

Group Lasso In some sparse recovery problems, the goal is not to identify individual atoms

of the dictionary which are responsible for the signal reconstruction, but to determine a group

of atoms which when activated together can define a particular subspace spanned by the

dictionary. If a dictionary D has M atoms, we define a set of groups G = [G1, · · · ,Gl , · · · ,GL],

which is simply a partitioning over the dictionary atom indices, where Gl ⊆ {1, . . . , M }. Using

the partitioning G, the Group Lasso objective proposed in [Yuan and Lin (2006)] can be written

as:

min
a

1

2
‖z−Da‖2

2 +λψG(a) (3.17)

where ψG is defined as ψG :=∑
G∈G ‖aG‖2 and ‖aG‖2 is the `2 norm of a subvector of a which

corresponds to the indices in the partition G . Therefore, group lasso objective generalizes the

`1-norm sparsity to the level of groups. While a very few groups from G are selected during

sparse recovery, the atoms inside the selected groups can be densely activated (as shown in

Figure 3.1(b)).

Hierarchical Lasso (HiLasso) In HiLasso [Friedman et al. (2010); Meier et al. (2008); Sprech-

mann et al. (2011)], sparsity is sought at a group level as well as the level of the individual

atoms of the dictionary (Figure 3.1(c)). The objective for hierarchical group sparse recovery is

33



Chapter 3. Background on Compressive Sensing and Sparse Recovery
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Figure 3.1: Lasso and its variants for sparse recovery: (a) Lasso, (b) group Lasso, (c) hierarchical
group Lasso, and (d) collaborative hierarchical group Lasso.

expressed as

min
at

1

2
‖zt −Dat‖2

2 +λψG(at )+λ1‖at‖1 (3.18)

where ψG is the group Lasso regularizer as defined before.

Collaborative Hierarchical Lasso (C-HiLasso) C-HiLasso, as developed in [Sprechmann

et al. (2011)], enables to incorporate the dependency among a sequence of signals zt ’s by

defining a collaborative objective function. By collaboration, we mean that the sequence

of zt ’s share the same non-zero components in the sparse representation at ’s. Thus, the

collaborative group Lasso problem is simply formulated by extending the vector expression

in (3.18) to its matrix counterpart as defined in (3.19). Here the `1-norm constraint is extended

to all frames. Thus, the collaborative group lasso objective [(Sprechmann et al., 2011)] is

defined as:

min
a

1

2
‖Z−DA‖2

F +λ2ψG(A) (3.19)

By further introducing hierarchical sparsity in this formulation, the resulting objective function

becomes the C-HiLasso problem as:

min
a

1

2
‖Z−DA‖2

F +λ2ψG(A)+λ1

T∑
t=1

‖at‖1 (3.20)

where we also seek `1-norm sparsity in individual at ’s (Figure 3.1(d)).

Note that in all group-based Lasso objective functions, it is assumed that the dictionary has an

internal subspace-wise structure as defined by the partitioning G.
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The following subsection focuses on principal component analysis (PCA) and its relationship

with dictionary learning and sparsity in general.

3.4 PCA: Links to Compressive Sensing

PCA is a commonly used technique for data analysis and dimensionality reduction. Given

a dataset, it sequentially projects the data in mutually orthogonal directions of maximum

variation in the data. In other words, the goal of PCA is to express the dataset in terms of a new

basis set which has the following properties: 1) the basis vectors correspond to directions of

maximum variance of the data in a decreasing order, and 2) the basis vectors are orthonormal

to each other which results in decorrelated dimensions, thus reducing the redundancy in

data representation. The basis vectors are termed as principal components and they can be

computed by either calculating SVD of the original dataset or eigenvector decomposition of

the covariance of the dataset (for more details refer [Shlens (2014)]).

Computing principal components In this thesis, we employ the eigenvector decomposition

based approach for performing PCA.

Let X̃ ∈RM×N be the given dataset where M denotes the dimension of data and N denotes

number of data samples. First, we mean-center the data by subtracting off the mean of each

dimension:

xi = x̃i −µX̃, i = 1, · · · , N

where x̃i is i th column of X̃, µX̃ is a column vector having mean of each row of X̃, and X =
[x1, · · · ,xN ] is the mean-centered data matrix. Next, we compute the covariance of the mean-

centered data as follows:

C = 1

N −1
XX>

The covariance matrix C is factorized using eigenvalue decomposition:

C = PSP>

where P ∈RM×M are eigenvectors of C and S is a diagonal matrix containing the sorted eigen-

values. The columns of P are the principal components of X and the associated eigenvalues in

S convey the amount of variance captured by each principal component.

The principal components can be used to transform the original dataset as follows:

Y = P>X (3.21)

where Y is a rotated and shifted version of X such that the dimensions are decorrelated and

35



Chapter 3. Background on Compressive Sensing and Sparse Recovery

they are more meaningful in terms of capturing the dynamics of the data. Data in Y is said

to be in the principal component space. We can project the data back to the original space

simply by transforming Y by multiplying with P as:

PY = PP>X = X

where PP> results in an identity matrix as P is orthonormal.

Low-rank modeling using PCA The major utility of PCA for dimensionality reduction arises

from the observation that, for most natural data, the eigenvalues associated with principal

components die off to insignificantly small values very quickly. For a dataset whose intrinsic

structure is low-dimensional whereas the measurement dimension M is very large, PCA

would reveal that a very few eigenvalues will be large and significant. Principal components

corresponding to the large eigenvalues in S constitute the frequent regularities in the data,

whereas other components carry the high-dimensional unstructured noise. We exploit this

observation as follows. We first define a low-rank projection matrix DLR as:

DLR = P1:l ∈RM×l

where P1:l is a truncation of P that keeps only the first l principal components and discards

the variations captured by other M − l components. The original data X can be projected on

the low-dimensional principal component space as:

YLR = D>
LR X (3.22)

where Y ∈Rl×N and we can reconstuct an approximation of the data, XLR , as

XLR = DLR YLR = DLR D>
LR X (3.23)

Here XLR is a reconstructed version of X which contains the variability captured by only first

l principal components. This procedure is often used to either reduce the dimension of a

dataset by projecting it into the PC space using (3.22), or for denoising the data by low-rank

reconstruction using (3.22) followed by (3.23).

Principal Components v/s Over-complete Dictionary The principal components matrix

is a basis set with as many basis vectors as the dimensions of the space, thus rendering it a

complete dictionary.

In terms of compressive sensing, let us assume that we have a signal z ∈RM and a dictionary

D ∈RM×M composed of principal components as column vectors. The goal is to represent z

as a sparse linear combination of very few atoms of the dictionary. If we ignore the need for

sparsity, then we can trivially find a dense representation using the properties of principal
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components as follows:

z = DD>z = Dadense (3.24)

where adense = D>z.

Next, we consider the case where we expect the input signal z to have a sparse representation

over D. This implies that only a few atoms of the dictionary (i.e. a few principal components)

would be selected for a linear combination to express z. Due to the variance-wise ordering of

the principal components in the dictionary D, we know that a sparse representation aspar se

should have non-zero values only for the first few components, and zero elsewhere. We can

construct aspar se as a l-sparse vector by choosing first l principal components from D as

follows:

aspar se (i ) =
{

Di
>z 1 ≤ i ≤ l

0 l < i <≤ M
(3.25)

where aspar se (i ) is the i th coefficient of aspar se and Di is the i th principal component. The

above operation essentially projects the original data into a l-dimensional PCA space and

appends M − l zeros to make aspar se a M-dimensional vector. Now, the signal z can be

conveniently approximated as a sparse linear combination of the dictionary atoms as:

z ≈ Daspar se (3.26)

The approximation here results from the fact that we discard the information stored in the last

M − l principal components resulting in an inexact reconstruction. Assuming that the data is

actually low-dimensional, a good choice of l (i.e. the number of principal components to be

used) can still reconstruct the data without much loss of information.

From the discussion above, we can conclude that PCA based low-rank reconstruction of data

can be viewed as a complete dictionary based compressive sensing. However, it has some

major differences with compressive sensing using overcomplete dictionaries. Firstly, the

principal components are ordered as per their importance in capturing the dynamics of the

data. Therefore, we always choose the same set of l components for every input signal during

reconstruction. In the case of an over-complete dictionary, there is no ordering among the

basis vectors. For each signal, a different set of dictionary atoms can be chosen for linear

combination. Thus, an overcomplete dictionary can model data on non-linear manifolds

using a union of low-dimensional subspaces. On the other hand, PCA assumes that the data

lives in a linear subspace. Another significant difference is due to the orthogonality of principal

components. PCA assumes that the data has a Gaussian distribution and it can not model

non-orthogonally distributed data accurately. On the other hand, an overcomplete dictionary

does not make any such assumptions, and it can easily fit a non-orthogonal distribution by

having appropriate basis vectors [Lewicki and Sejnowski (2000)].
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In this thesis, we employ both principal components and overcomplete dictionaries towards

the common goal of modeling the low-dimensional subspaces in speech. While sparse recov-

ery using overcomplete dictionaries allows modeling of non-linear subspaces, a PCA based

linear modeling also stands accurate if the underlying subspaces are linear.
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4 A Posterior-based Sparse Modeling
Approach Towards ASR

4.1 Introduction

Speech data lies on or near non-linear manifolds [Stevens (1998); Jansen and Niyogi (2006)].

An efficient way of modeling non-linear manifolds is through overcomplete dictionaries which

express the manifolds as unions of low-dimensional subspaces. Therefore, the main goal of

this chapter is to fully exploit the unique low-dimensional multi-subspace structure of speech

through a dictionary learning and sparse modeling approach. The major hypothesis that this

thesis and particularly the current chapter are based on can be summarized in the following

statement:

Sparse modeling using overcomplete dictionaries can accurately characterize speech

data lying on non-linear manifolds; exploiting this structure appropriately can

lead to improvements in ASR.

Verifying the above hypothesis stands crucial not only for building new sparse modeling-based

ASR solutions but also for modifying the existing frameworks to exploit the unique structure

of speech data. Since sparse modeling of speech using overcomplete dictionaries is a novel

direction of research, this chapter conducts a preliminary study where each aspect of the

proposed framework is analyzed. Once the key elements of the proposed approach have been

thoroughly investigated, we expose our technique to two relatively simpler ASR tasks- namely

isolated word recognition (IWR) and connected digit recognition (CDR). The lessons learned

from these tasks are used to understand the benefits and limitations of our approach. Finally,

the conclusions of this chapter lead to the development of sparse and low-rank modeling

approaches that are used in later chapters for improving ASR on full-fledged LVCSR tasks.

Hereafter, this chapter is organized as follows: Section 4.2 discusses the exemplar-based

sparse representation approach which is central to our idea of employing dictionary based

modeling of speech. Section 4.3 introduces our novel sparse modeling approach to ASR. In

Section 4.4, we analyze the key aspects of our approach and evaluate it on ASR tasks. Section 4.5

summarizes the lessons learned through this study and gives directions for research presented

in the next chapters.
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4.2 Exemplar-based ASR

4.2.1 Background

Hidden Markov model (HMM) based modeling and exemplar-based template matching tech-

nique are the two major lateral approaches towards automatic speech recognition (ASR). In the

last three decades, HMM-based approaches have been dominant because of their flexibility

and their ability to be trained and generalized to unseen data. In comparison, exemplar-based

techniques use labeled speech segments (called exemplars ) directly for speech recognition.

Assuming an “infinite” amount of such exemplars, as well as the “right” representation space

and the “right” distance measure, “optimal” recognizers could be sought in theory [Devijver

and Kittler (1982)]. It was argued in [Banko and Brill (2001)] that “The more training data used,

the greater the chance that a new sample can be trivially matched to samples in the training

data, thereby lessening the need for any complex reasoning that may be beneficial in the cases

of sparse training data.” Exemplar-based approaches typically employ template matching

techniques for speech recognition instead of a model learning step as done in HMM-based

systems. However, there is still a necessity to train an HMM based segmentation model to

generate labeled speech segments for phonetic and sub-phonetic units. A trade-off with an

exemplar-based system is that it may have a huge space and time complexity. However, with

the ever-increasing amount of training data, as well as the growing computational and mem-

ory resources, it has become possible to exploit the potential of exemplar-based approaches.

In context of speech recognition, they have been explored extensively in [Sainath et al. (2012,

2011); Gemmeke et al. (2011); De Wachter et al. (2007)].

One of the significant approaches in exemplar-based ASR relies on exemplar-based sparse

representations in which a test speech exemplar is expressed as a sparse linear combination

of the exemplars in the training dataset. Thus, a large collection of training exemplars is used

to capture all possible variability in the data. The core assumption of this approach is that

any possible realization of the data in the test set lies in a vector space spanned by a sparse

Figure 4.1: Exemplar-based sparse representation of speech which employs a union of low-
dimensional subspace modeling.
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selection of exemplars already seen in the training set i.e. the speech exemplars live in a union

of low-dimensional subspaces (refer to Figure 4.1).

4.2.2 Motivations of this Work

Existing exemplar-based sparse approaches typically use spectral or cepstral features as

templates [Sainath et al. (2011); Gemmeke et al. (2011, 2009); Sainath et al. (2010)]. Deviating

from the previous work, this thesis proposes to use DNN-based posterior features as exemplars.

There are two sources of motivations to use posterior features as exemplars.

Firstly, posterior features are computed after multiple layers of non-linear transformations

using a DNN acoustic model. As they get transformed through these non-linear operations,

they become increasingly robust to noise, speaker, and environmental variations. There-

fore, posterior features are expected to be more accurate and better representatives of the

underlying acoustic information as compared to the spectral features.

Secondly, DNNs are discriminative models trained to project the input speech features onto a

probability simplex such that the outputs are the phone or subphone posterior probabilities.

When posterior probability vectors are used as exemplars for dictionary learning, we can derive

a very elegant probabilistic interpretation for the sparse recovery problem. In short, if the DNN

outputs a phone posterior probability vector zt = [P (q1|xt ), · · · ,P (qk |xt ), · · · ,P (qK |xt )] for the

input feature xt , we demonstrate an efficient way of converting this vector to a sparse word

posterior probabilities P (W |xt ) using the dictionary learning and sparse recovery approach.

The underlying idea is that phone probability vectors are a compressed version of the actual

high-dimensional word probability vectors which are inherently sparse. This follows from

our discussion in Section 1.1. The probabilistic interpretation of posterior based dictionary

learning and sparse modeling is developed in detail in Section 4.3. Note that the direct

recovery of word posterior probabilities using our approach is a unique feature of this work.

In comparison, existing exemplar-based sparse representation methods [Sainath et al. (2012,

2011); Gemmeke et al. (2011)] generally rely on computing state conditional data likelihoods

from the sparse recovery process and use these likelihoods under HMM-based decoding for

inferring the word sequence.

Another inspiration for exploring the sparse modeling based ASR approach comes from the

issues faced by the previous exemplar-based sparse representation approaches in dictionary

designing. Typically, prior works have used a collection of training data exemplars as dictionar-

ies in their frameworks. We term such a dictionary as “collection-of-exemplars” in this thesis.

It was reported in [Gemmeke et al. (2009)] that increasing the size of exemplar collection in

exemplar-based ASR systems improves the ASR performance only up to a certain limit, after

which the improvement becomes sub-linear. At a certain point, the additional information

brought by new exemplars is insignificant as they lie close to the already existing exemplars in

the collection. This suggests a need for a better procedure to design a limited-sized dictionary

that can exploit the information in all available training data without the need of continually
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increasing the dictionary size. In this work, we propose to use the well-principled dictionary

learning algorithms (refer to Section 3.2) to precisely address this need. We demonstrate exper-

imentally in Section 4.4.3 that the dictionary learned using an appropriate algorithm can have

a far smaller cardinality than the size of a collection-of-exemplars based dictionary. Moreover,

such a dictionary also improves the characterization of the vector space as compared to the

collection-of-exemplars dictionary.

Next, we focus on the modeling of temporal dependencies in speech features in the context

of exemplar-based ASR. Existing exemplar-based sparse representation approaches follow

two techniques to exploit the temporal information in speech- 1) using context-appending

of adjacent features and 2) using Viterbi decoding on the data likelihoods generated from

the sparse representation approach [Gemmeke et al. (2011, 2009)]. In this work, we aim

to develop an all dictionary learning plus sparse modeling approach for ASR. Consecutive

speech features generally belong to the same class out of many possible classes (e.g. the same

word out of very many words). Hence, the sparse representations of consecutive exemplars

should have non-zero activations for the same group of dictionary atoms which correspond

to the currently active class. This structure in the sparse representations is leveraged by

using a collaborative group sparse recovery approach [Sprechmann et al. (2011)]. This sparse

recovery approach seeks a collaboration among the sparse codes of the consecutive exemplars.

Therefore, it enables us to exploit the temporal dependencies in the input exemplars. Our

idea is to demonstrate how sparse modeling can lead to capturing temporal information by

offering a collaborative structure instead of enforcing only the Markovian inter-dependency.

In addition, we also let our approach benefit from the existing context-appending and Viterbi

decoding techniques.

To summarize, the sparse modeling framework proposed in this chapter is different from the

existing exemplar-based sparse representation approaches in the following ways:

• Exemplar type: Spectral features are replaced by phone posterior features as they are

more robust and provide a way to directly recover underlying word posterior probabili-

ties.

• Dictionary type: Collection-of-exemplar based dictionaries are replaced by algorithmi-

cally learned dictionaries which can limit the dictionary size, while still being able to

extract information from all the training data.

• Temporal Modeling: Context-appending and Markovian structure based Viterbi decod-

ing techniques for exploiting temporal dependencies in speech are complemented by a

collaborative hierarchical sparse recovery approach.

• Word Inference: HMM-based decoding of the best phone sequence to infer the under-

lying word sequence is contrasted with the direct word inference which is enabled by

the sparse modeling of posterior exemplars in a sliding window-based fashion.

42



4.3. A Compressive Sensing Perspective to Posterior-based Sparse Modeling

Figure 4.2: Posterior features are extracted using a neural network taking the acoustic features
as input. Context of c=4 frames is shown here at input.

The next section introduces the novel compressive sensing and sparse modeling based ap-

proach to ASR.

4.3 A Compressive Sensing Perspective to Posterior-based Sparse

Modeling

In this section, we formulate the traditional HMM-based ASR approach as a sparse modeling

task where isolated words or word sequences can be inferred using sparse recovery over

learned dictionaries.

4.3.1 Formalism

Speech recognition aims to recover the sequence of words from the observed acoustic features.

The space of sub-word1 units is low-dimensional and comparatively denser than the space

of words (as explained in Section 1.1). Let K be the number of sub-word units in a DNN

based ASR system and L denotes the size of the word vocabulary, then L À K . Given the

compressed sub-word observation sequence, the goal of speech recognition can be defined as

reconstructing the high-dimensional word observation sequence.

The sub-word information in an utterance can be extracted using a DNN-based acoustic

model in terms of the framewise phone posterior probability vectors. The setup for extracting

the phone posterior features is illustrated in Figure 4.2 [Aradilla and Bourlard (2009)]. Acoustic

features, e.g. MFCC vectors, with their first and second order derivatives, are computed over a

sliding window of 25ms with a shift of 10ms. A DNN takes as input a context of these features

and generates the phone posterior probabilities. In a traditional hybrid DNN-HMM ASR

1In this study, we consider phones as the observed sub-word units. In principle, the sub-word units can also
corresponded to other entities like phone-HMM states [Bahaadini et al. (2014)] or syllables.
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framework, the output phone probability vectors can be directly processed by a decoder for

outputting the word sequences. In this thesis, we consider the posterior features as new

kind of acoustic features for further modeling. Therefore, the DNN acoustic model acts as a

feature extractor. Note that the output layer includes an additional unit for representing the

silence/pause along with the other phones.

While the phone posterior observations live in RK , the equivalent word posteriors would live

in RL - a very high dimensional space compared to RK . The key idea is that the representation

of linguistic information in the word representation space is highly sparse. This is because

only a few words are spoken in an utterance and typically only one word is expected to be

spoken during a very short segment of speech. The word posterior probabilities should have a

nil probability for all the words but a few. Therefore, we propose to cast the speech recognition

problem as sparse reconstruction of word posterior probabilities given the compressed (low-

dimensional) sub-word posterior probabilities.

More precisely, we consider phones as the sub-words units modeled by the DNN. We de-

fine the set of phones as {qk }K
k=1. Given an input of context-appended feature vectors

[xt−c , · · · ,xt , · · · ,xt+c ] at time t , the posterior probability p(qk |xt ) is estimated at the DNN

output where qk is associated with the k th phone. The phone posterior probability relates to

the word level posterior probabilities through a marginalization over L latent word variables

wl as follows:

p(qk |xt ) =
L∑

l=1
p(qk , wl |xt ) =

L∑
l=1

p(qk |wl ,xt )p(wl |xt ) =
L∑

l=1
p(qk |wl )p(wl |xt ), (4.1)

where wl denotes the l th word in the vocabulary and the last equality holds due to the

assumed conditional independence of the acoustic observation xt and the current phone

qk given a super-phone lexical unit such as the word wl . Dropping the dependence of the

phone posterior probability on the current acoustic observation xt enables us to define a

static dictionary below which comprises of word-conditional phone posterior probabilities

without depending on the current acoustic observation being modeled. However, we lose the

information about how phone probabilities evolve within the words. As discussed later, this

issue is taken care of by modeling each word using a word-based dictionary.

The marginalization in (4.1), when expanded and expressed for all the phones {qk }K
k=1 together,

leads to the following matrix multiplication equation:


p(q1|xt )

p(q2|xt )
...

p(qK |xt )


︸ ︷︷ ︸

zt

=


p(q1|w1) · · · p(q1|wl ) · · · p(q1|wL)

p(q2|w1) · · · p(q2|wl ) · · · p(q2|wL)
...

...

p(qK |w1) · · · p(qK |wl ) · · · p(qK |wL)


︸ ︷︷ ︸

Dictionary: D=[d1...dl ...dL ]

×



p(w1|xt )
...

p(wl |xt )
...

p(wL |xt )


︸ ︷︷ ︸

at

(4.2)
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where we consider the phone posterior feature
[
p(q1|xt ), · · · , p(qK |xt )

]> as an observation zt .

The matrix on RHS of the equation naturally takes form of an overcomplete dictionary D such

that the atoms are exemplars obtained by conditioning the phone posterior probabilities on

different words wl ’s. Each column of this matrix is word-specific and defined as:

dl = [p(q1|wl ) · · ·p(qk |wl ) · · ·p(qK |wl )]>

Designing the dictionary in this manner, we now view the column vector on RHS as at , a word

posterior probability based sparse representation where:

at =
[
p(w1|xt ), · · · , p(wl |xt ), · · · , p(wL |xt )

]> (4.3)

Equation (4.1) can be expressed in the form of the `1-norm based sparse recovery equation

(3.4) as:

min ‖at‖1 subject to zt = D at (4.4)

Based on (4.1), if zt and D are composed of posterior features, at is also a posterior vector.

The hidden variable wl does not necessarily need to be associated with a word only; it can be

interpreted as any other linguistic unit. In fact, (4.2) demonstrates how a posterior feature zt for

a given linguistic class can be used for recovering the posterior probabilities of a linguistically

super-class as a high-dimensional sparse vector at . The dictionary D which enables this

process needs to be constructed using appropriate exemplars i.e. representatives of the

associated super class. For instance, phone or phone-HMM state posteriors can be converted

using (4.1) to word posterior probabilities which are high-dimensional and sparse.

In practice, construction of the dictionary as described in (4.2) requires modeling the sub-

space of each word using the word-conditional phone posterior probabilities. To characterize

the posterior probabilities of each word, we learn word-specific dictionaries such that each

column dl of the dictionary in (4.2) has a sparse representation stated as


p(q1|wl )

p(q2|wl )
...

p(qK |wl )


︸ ︷︷ ︸

dl

=


p(q1|sw wl

1 ) · · · p(q1|sw wl
s ) · · · p(q1|sw wl

Swl
)

p(q2|sw wl
1 ) · · · p(q2|sw wl

s ) · · · p(q2|sw wl
Swl

)

...
...

p(qK |sw wl
1 ) · · · p(qK |sw wl

s ) · · · p(qK |sw wl
Swl

)


︸ ︷︷ ︸

Word manifold modeling dictionary:Dwl

×



p(sw wl
1 |wl )
...

p(sw wl
s |wl )
...

p(sw wl
Swl

|wl )


︸ ︷︷ ︸

awl

(4.5)

where sw wl
s denotes the s th basis vector required to span the subspace of the word wl and

Swl is the total number of basis vectors in Dwl . Each basis vector can also be interpreted as

spanning the subspace of some sub-segment of the word, for instance the beginning, middle or

end of the word. Therefore, such a multicolumn word-specific dictionary takes care of how the
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phone probabilities change in different parts of the word. If the dictionary Dwl is overcomplete,

then it models the word wl as a union of low-dimensional subspaces. Consequently, it can

be used for sparse recovery of the vector awl which contains the posterior probabilities of

various sub-segments of the wl . The overcompleteness of Dwl also allows it to capture the

variations in the pronunciation of word wl . Equations (4.2) and(4.5) lead us to a very intuitive

and natural representation of speech in terms of posterior features and word-to-subword

hierarchical dictionaries. Therefore, the phone posterior-based sparse modeling dictionary is

obtained as:

D = [Dw1 · · ·Dwl · · ·DwL ] (4.6)

The dictionary D, has an internal partitioning defined by the boundaries of individual sub-

dictionaries Dwl . Ideally, an input posterior feature zt belonging to a realization of word wl ,

when sparse coded using the dictionary above, will have a sparse representation at such that

only the atoms corresponding to the subdictionary Dwl , henceforth denoted as awl
t , will have

non-zero values. This sparse recovery process can be visualized as:

zt = Dat = [Dw1 · · ·Dwl · · ·DwL ]×



aw1
t
...

awl
t
...

awL
t


(4.7)

where each subvector awl
t can be expressed using awl from (4.5) as:

awl
t =



p(sw wl
1 |xt )
...

p(sw wl
s |xt )
...

p(sw wl
Swl

|xt )

=



p(sw wl
1 |wl )×p(wl |xt )

...

p(sw wl
s |wl )×p(wl |xt )

...

p(sw wl
Swl

|wl )×p(wl |xt )

= awl p(wl |xt ) (4.8)

The sparse representation at ’s can be directly used as features for modeling state-specific

multinomial distributions under the KL-HMM framework as described in Section 2.2.6. This

approach has been successfuly explored in [Bahaadini et al. (2014)]. In the present thesis, we

focus on posterior features only to devise novel sparse modeling based ASR paradigms, and

do not consider the KL-HMM approach. In the following sections, we describe the application

of the posterior-based sparse modeling formalism for automatic speech recognition tasks.
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4.3.2 Isolated Word Recognition

Given a posterior feature zt and the dictionary D defined in (4.6), we first obtain the sparse

representation at using sparse recovery methods2 described in Section 3.3. The coefficients of

the sparse code at corresponding to the word-specific dictionary Dwl are denoted by awl
t as

expressed in (4.8). Therefore, the posterior probability p(wl |xt ) for word wl is estimated as

p(wl |xt ) := ‖awl
t ‖1 (4.9)

assuming a union of disjoint events due to sparse recovery over the multi-word dictionary D.

After sparse recovery, the sparse representation at is normalized to sum 1 so that the wordwise

`1-norm terms ‖awl
t ‖1 lie in the probability simplex and represent word posterior probabilities

conditioned on the acoustic observation xt .

Consider a sequence of posterior features Z estimated using a DNN acoustic model from

acoustic features X. A sequence of word posterior sparse representations A is obtained using

the sparse recovery algorithms on Z. Using the frame level word-posterior probabilities

p(wl |xt )’s from equation (4.9), the maximum-a-posteriori word recognition can be obtained

for X through

wrecognized := argmax
wl

p(wl |X) = argmax
wl

T∏
t=1

p(wl |xt ) (4.10)

where T indicates the length of the test utterance in IWR. In the last step in (4.10), we assume

framewise independence to use the product rule of probability to ensure the continued

realization of word wl from time frame t = 1 to t = T .

For IWR tasks, another approach can be used to compute the framewise word posterior prob-

ability p(wl |xt ) in (4.9). Sparse recovery can be done using word-specific dictionaries Dwl

exploiting the prior knowledge of the internal partitioning of the multi-word dictionary D. In

this case, we obtain the sparse codes awl
t for each Dwl directly, instead of at . This approach

leads to word-wise sparse recovery with a caveat that the word posterior probabilities stated

in (4.2) as at can not be directly obtained. This is because for each word wl , a sparse repre-

sentation awl
t is computed through an independent non-competing sparse coding process

using dictionary Dwl . Therefore, awl
t ’s can not be simply vertically concatenated to get at .

Word recognition decisions for a sequence of posterior features Z can now be made using

minimization of least-square reconstruction error over all dictionaries Dwl . This reconstruc-

tion error has been successfully applied for classification task [Wright et al. (2009)] and linear

predictive HMM [Kenny et al. (1990)]. If the reconstruction error for sparse recovery of zt

using dictionary Dwl is denoted by ewl
t such that:

ewl
t = ‖zt −Dwl awl

t ‖2
2 (4.11)

2To obtain the non-negative sparse word posterior probabilities, the algorithm are revised to project the non-
zero coefficients onto the non-negative orthant. These are separable constraints on the coordinates so it does not
compromise the convergence of the method. Lastly, they are `1 normalized.
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Figure 4.3: Flowchart of the ASR framework using the proposed posterior-based sparse mod-
eling approach.

The word recognition for the complete sequence Z can again be done using (4.10). By assuming

a Gaussian noise with zero mean and unit variance, the product of probabilities in (4.10) can

be expressed as a sum of squared errors in the following way:

wrecognized := argmin
wl

T∑
t=1

ewl
t (4.12)

Equation (4.10) and (4.12) directly output the word posterior probabilities and do not rely on

data likelihoods and word prior probabilities as required under a Bayes decision rule based

approach.
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4.3.3 Continuous Speech Recognition

The difficulty in continuous speech recognition is rooted in the unknown word boundaries.

Hence, T frames may encapsulate several word classes with pauses in between. We learn a

separate dictionary for the pause/silence class. The pause state is also defined in the output

layer of the neural network. However, the neural network is not perfect in pause detection

and learning a pause dictionary is beneficial for sparse modeling of continuous speech. For

continuous speech recognition, we can either employ a sliding window based analysis or a

C-HiLasso based approach. These techniques are discussed below.

4.3.3.1 Word Dictionary based Sparse Recovery

Similar to IWR, sparse recovery can be done using word-specific dictionaries Dwl . We just

need to convert the reconstruction errors ewl
t into empirical word posterior probabilities. Let

M denote the maximum value of the error ewl
t over all words wl . The empirical word posterior

probabilities are then obtained through

p(wl |xt ) := M −ewl
t∑L

l=1(M −ewl
t )

(4.13)

Since the end goal is continuous speech recognition using a sliding window, we compute such

empirical word probabilities for each slide of the window and use them under a dynamic pro-

gramming based Viterbi decoder with appropriate word transition probabilities and duration

penalties to decode a word sequence.

4.3.3.2 C-HiLasso based Sparse Recovery

When a sequence (matrix) of consecutive posterior feature vectors Z = [z1, . . . ,zt1 , . . . ,zt2 , . . . ,zT ],

extracted from a speech utterance, is sparse coded using dictionary D (4.2), it yields a sparse

representation matrix A = [a1, . . . ,at1 , . . . ,at2 , . . . ,aT ] that exhibits a collaborative hierarchical

group sparsity structure among its coefficients. This has been shown in Figure 4.4. Consecutive

posterior feature vectors [zt1 , . . . ,zt2 ] that belong to occurrence of the same word wl excite only

those atoms of dictionary D that correspond to the word-specific subdictionary Dwl . Thus,

they collaborate from time instant t1 to t2 to activate a higher level group awl
t corresponding to

Dwl . Moreover, the sparse representation at is sparse at two hierarchical levels: (i) in terms of

the number of groups awl
t activated (which is equal to one when only one word is spoken at a

given time) and (ii) in terms of the non-zero coefficients of awl
t . This collaborative hierarchical

structure is leveraged by using the C-HiLasso algorithm for the objective function formulated

in (3.20) [Sprechmann et al. (2011)] and depicted in Figure 4.4. It may be noted that C-HiLasso

forces activation of the same group (or groups) for all the posterior feature vectors that are

being sparse coded together. Thus, an utterance with a sequence of words spoken one after

another has to be sparse coded using C-HiLasso in a sliding window fashion. This ensures

activation of a single group (word) in each position of the sliding window (more details in
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Figure 4.4: Given a sequence of acoustic features Z, the sparse representation matrix A will
have a sparse block structure associated to the word-specific dictionaries (Dwl )’s where the
inner block coefficients are sparse as well. This collaborative hierarchical sparsity structure
can be exploited using C-HiLasso algorithm [Sprechmann et al. (2011)] based on the sparse
recovery objective expressed in (3.20).

Sections 4.3.3 and 4.4.7 ).

Given test utterance Ztest, a sliding window of appropriate length T ′ can be used to process a

collection of frames Ztest
t ...t+T ′−1 using C-HiLasso, where the window contains frames from time

instant t to t +T ′−1. The window length T ′ should be short enough to capture only a single

word and long enough to group the sequence of frames into a single consistent class. Hence,

the choice of T ′ is not trivial and should be learned during the recognition task. It may be

noted that the collaborative hierarchical Lasso requires the full dictionary D for computing

sparse representation at . The word posterior probabilities from (4.9) are then simply used

under a Viterbi decoder to obtain the word sequences.

Figure 4.3 illustrates the flow chart of the proposed posterior-based sparse modeling approach

for speech recognition.

4.4 Key Aspects of the Sparse Modeling Approach To ASR

In this section, we present a series of experiments for empirical evaluation and analysis of

various key aspects of the proposed sparse modeling approach. The experiments are devised

to-

– evaluate different computational methods for dictionary learning and sparse recovery

(Section 4.4.2),

– compare algorithmically learned dictionary with collection-of-exemplars based dictio-

nary(Section 4.4.3), and

– provide empirical insights into structured sparsity and context modeling (Section 4.4.4
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and Section 4.4.5),

– compare the union of subspace model with DTW and HMM models (Section 4.4.6).

Finally, we study the performance of the proposed posterior-based sparse modeling approach

for exemplar-based automatic speech recognition in Section 4.4.7.

4.4.1 Databases and Features

Two databases are used for experiments in this section: (1) PhoneBook speech corpus [Pitrelli

et al. (1995)] for IWR task and (2) Digits database, a subset of Numbers 95 [(Cole et al., 1995)],

for connected word recognition task. We perform two sets of experiments with PhoneBook for

IWR task - an easier 75 words vocabulary task and a more challenging 600 words vocabulary

task (refer Section 2.3.1). Each word has around 11-12 utterances from different speakers, out

of which we use 4 for learning dictionaries and the rest for testing. Due to different speakers

in training and testing conditions, this setup is expected to generalize on speech data from

unseen speakers. The setup is similar to the experiments in [Soldo et al. (2011)]. Since the

amount of training data is small for PhoneBook, each dictionary is initialized with one of the

four templates in the training data, and the rest are used for dictionary learning. Hence, the

dictionary size is 25% of the size of training data.

For connected word recognition, we work with Digits database (refer Section 2.3.2). For

training word or digit specific dictionaries, the digit sequences in the training data are split

into digit-specific utterances where the digit-based segmentation is obtained using GMM-

HMM based forced alignment. We use a concatenation of 100 such utterances for initializing

the word-specific dictionaries, and the rest of the training data utterances for each word are

used for learning the respective dictionaries. As there are ∼3000 training exemplars per word,

the dictionary size is ∼3% of the size of training data.

For both databases, the features are extracted in the following manner. We compute 13-

dimensional MFCC feature vectors over a sliding window of 25 ms with a shift of 10 ms. Along

with their first and second order derivatives, the MFCC features are mapped to the phone

posterior probabilities using a DNN acoustic model as explained in Section 2.2.5. A context of 9

frames is used at the input of the DNN. Phone posteriors at the output of the DNNs correspond

to monophone units for PhoneBook and Digits database which are 42 and 27 respectively

(including a phone for silence class in each case). For Phonebook, the DNN architecture has

351 (= 13×3×9) input units, 600 hidden units, and 42 output units. For Digits, the DNN

architecture has 351 inputs units, 1000 hidden units and 27 output units. The networks have

sigmoid non-linearities and they are trained using cross entropy loss minimization criterion.

4.4.2 Comparison of Dictionary Learning and Sparse Recovery Algorithms

Dictionary learning and sparse recovery are the two pillars of our sparse modeling framework.

We conduct our experiments using the state-of-the-art dictionary learning and sparse recovery
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techniques described in Chapter 3 to learn dictionaries from posterior-based exemplars and

obtain word posterior sparse representations for speech recognition. The comparison of

various algorithms is done through their evaluation PhoneBook 75-vocabulary IWR task. The

results are listed in Table 4.1. In this study we consider the online dictionary learning [Mairal

et al. (2010)] and KSVD [Aharon et al. (2006)] algorithms for learning the dictionary of context-

appended posterior exemplars (c = 20) (Section 4.4.5). The LARS implementation of LASSO

[Efron et al. (2004)] and OMP [Tropp and Wright (2010)] algorithms are used for reconstruction

of word posterior sparse representation. The word recognition is obtained through (4.12).

The best recognition performance is obtained using the online dictionary learning algorithm

with Lasso sparse recovery with an accuracy of 97.2%. The online dictionary learning algorithm

has been found to work fast with LARS Lasso [Efron et al. (2004)] with higher accuracies. K-SVD

performs poorly in comparison. One of the weaknesses of K-SVD is that the algorithm can

get stuck in local minima because of the non-convexity of the problem [Aharon et al. (2006)].

Hereafter, we use the online algorithm for dictionary learning and LARS Lasso implementation

for sparse recovery in all the experiments. An optimization of sparsity controlling parameter λ

resulted in values 0.1 and 0.2 for PhoneBook and Digits database, respectively.

Lasso OMP

Online Algorithm 97.2 93.5
KSVD 55.8 88.9

Table 4.1: Word recognition rate (%) on PhoneBook 75-vocabulary dataset using different
computational methods to dictionary learning and sparse recovery.

4.4.3 Dictionary Learning vs Collection of Exemplars

In this section, we conduct experiments to compare dictionaries learned through principled

dictionary learning algorithms discussed in Section 3.2 versus the collection-of-exemplars

based dictionaries for posterior-based sparse representation.

In IWR experiment on PhoneBook 75-vocabulary dataset, the posterior exemplars from a

single utterance of each word are used as a warm start for dictionary initialization. The

posterior exemplars from the remaining three utterances in the training set are then used for

updating the dictionary columns using the online dictionary learning algorithm. Alternatively,

the posterior exemplars from all the four training utterances are concatenated to form a

dictionary for sparse representation. This is the collection-of-exemplars dictionary. Similarly,

for CDR on Digits database, we can either learn word-specific dictionaries, or we directly

represent each word using all training exemplars (Gemmeke et al., 2011). The results are

listed in Table 4.2. We observe that the dictionary learning procedure is more effective than

the collection-of-exemplars model. It benefits from the abundance of the training data and

enables us to keep the dimensionality of the dictionary small while simultaneously improving

the performance. The size of training data in PhoneBook is small as we only have four training

exemplars per word. In this case, the dimension of dictionary exemplars (number of learned
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atoms) is 25% of the full training set. The amount of training data in Digits corpus is larger

than PhoneBook, and the dimension of dictionary exemplars is ∼3% of the full training set.

Approach PhoneBook Digits

Dictionary Learning 97.2 85.4
Collection-of-exemplars 97.0 78.6

Table 4.2: Comparing the speech recognition accuracy (in %, 100−WER) on PhoneBook and
Digits database using dictionary learning versus collection-of-exemplars approach.

4.4.4 Structured Sparsity

The high dimensional sparse representations obtained using (4.7) exhibit some structures that

can be exploited for speech recognition. We discuss these structures below.

4.4.4.1 Sequencing pattern

We demonstrate that controlled initialization of the word-level dictionaries Dwl as defined in

(4.5) and (4.6) enables preserving the temporal information during the learning procedure.

Using PhoneBook data, the word-specific dictionary is initialized with an utterance of the

word. Dictionary learning explained in Section 3.2 leads to the atoms being updated such that

the temporal evolution of the word is embedded in the sequence of the atoms. We can verify

this hypothesis from the sparse representation A of a sequence of posterior features Z using

the word-specific dictionaries. Figure 4.5 illustrates the sparse representations A obtained for

a sequence of the posterior features of the word ‘Accumulation’. This text utterance is sparse

coded using the the correct dictionary, i.e., DAccumulation as well as using a wrong dictionary, e.g.

DAlleviatory. The sequence pattern is exhibited as a left-to-right descending ladder activations

when DAccumulation is used for sparse recovery. On the other hand, the sequencing pattern is

distorted when the wrong dictionary DAlleviatory is used. The word utterance and corresponding

dictionaries in this analysis are taken from the setup on PhoneBook database.

The sequencing pattern can be justified using (4.5): each of the dictionary column behaves

like the subword probabilities p(qk |sw wl
s ) which are evolving with time. As a sequence of

subwords sw wl
s comprise the word wl , the subword sparse representations get activated for

coefficients corresponding to various subword probabilities p(sw wl
s |xt ) sequentially, thus

exhibiting a ladder pattern. The sequence pattern encourages us to look for mechanisms of

incorporating the temporal information in sparse recovery process. One approach is through

the use of structured sparse recovery based on C-HiLasso (3.20) that is studied below.

4.4.4.2 Collaborative Hierarchical Sparsity

The existence of collaborative hierarchical sparsity in word posterior probability based sparse

representations is discussed in Section 4.3.3.2. We verify this intuition using C-HiLasso ob-
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Figure 4.5: Sparse representation of the word “Accumulation” when the dictionary used for
sparse recovery corresponds to (a) DAccumulation and (b) DAlleviatory. In case of the correct word
dictionary (a), all the dictionary atoms are activated whereas only a few atoms get non-zero
activations when an incorrect dictionary (b) is used for sparse modeling. The sequencing
pattern observed in the sparse representation obtained from the correct word dictionary (a) is
due to the correct temporal ordering of the atoms within the dictionaries.

jective function ((3.20) in Section 3.3.2) to obtain the word posteriors for a connected digit

sequence. A sample utterance is taken from Digits database. Figure 4.7 demonstrates the

sparse representation of this test digit sequence 0-2-1-4-4 using C-HiLasso when it is sparse

coded using the complete multi-word dictionary D. The results are contrasted with Figure 4.6

where the collaborative hierarchical sparsity structure is ignored during sparse recovery.

Frames →

D
ic

ti
o
n

a
ry

 A
to

m
s 

→

20 40 60 80 100 120

oh

zero

one

two

three

four

five

six

seven

eight

nine

pause

Figure 4.6: Sparse representation of con-
nected digit sequence 0-2-1-4-4 using full dic-
tionary (D) and Lasso sparse recovery.
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Figure 4.7: Sparse representation of con-
nected digit sequence 0-2-1-4-4 using full dic-
tionary D and C-HiLasso sparse recovery.

The sparse representations in these figures demonstrate that exploiting the structured sparsity

of the sparse coefficients leads to better discrimination of the individual classes. C-HiLasso

based sparse recovery uses a sliding window of 3 frames with a shift of 1 frame, whereas

traditional Lasso based recovery uses frame-level posterior features. An alternative strategy to

exploit the temporal information is by using the context-appended posterior features. This

technique is discussed next.
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4.4.5 Context Size Optimization

To incorporate the contextual information associated with the temporal evolution of posterior

features, one effective way is to append the neighboring frames to the current posterior vector.

More specifically, for a context size of c , a frame-level posterior feature zt ∈RK is mapped to a

segmental feature z̃t ∈RK (2c+1) by appending c features on its right and left accordingly. This

technique was successfully applied in [Bahaadini et al. (2014)]. Learning a dictionary this way

improves the effectiveness of word-specific sub-dictionaries significantly, as shown below.

Figure 4.8: Optimization of the context size that is appended to the posterior exemplars for
improving isolated word recognition using word-specific dictionaries for sparse recovery. The
best performance is achieved when a context of 20 frames for PhoneBook database and a
context of 30 frames for Digits Corpus is used.

Figure 4.8 illustrates the improvement in IWR word recognition accuracy for different context

sizes using PhoneBook and Digits database. A context size of c = 20 frames was found to be op-

timal for PhoneBook corpus and the performance stagnates for larger values of c . This context

size is applied for the rest of the ASR experiments on PhoneBook data. Similar obeservations

are made on Digits database where the recognition performance initially improves with in-

crease in the context size and then stagnates. The average word length in Digits database is

∼ 30 frames. Therefore, longer context indicates that each context-appended posterior vector

might represent one complete word utterance. In this case, the sparse representation models

the input posterior feature as a linear combination of the full word posterior exemplars. The

context size optimization is done using word-specific dictionaries.

It may be noted that the use of context-appended features is complementary or even alterna-

tive to the collaborative hierarchical structured sparse recovery. In fact, our experiments on

CDR presented in Section 4.4.7.2 reveal that once the “optimal” context size is applied, the
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HMM Template-matching Sparse Modeling

Theory Data is generated from
probability distribution

Data lives in space
spanned by all training

templates

Data lives in a union of
low-dimensional

subspaces

Modeling GMM/KL-HMM
(Multinomial fitting)/DNN

Collection of Templates Dictionary Learning

Algorithm Viterbi Decoding DTW Matching Sparse Recovery

Table 4.3: Comparing HMM, DTW-based template matching, and sparse modeling ap-
proaches to ASR.

block-wise sparse recovery using word-specific dictionaries outperforms C-HiLasso based

sparse recovery. Nevertheless, the compromise between smaller context and structured sparse

recovery is an interesting feature of this work.

4.4.6 Contrasting Exemplar-based Sparse Modeling with HMM and DTW

In this section, we discuss the links between sparse modeling, HMM, and DTW-based template

matching. Table 4.3 summarizes the key features of each approach. A detailed comparison

between template-based approaches and HMM is also given in [De Wachter et al. (2007)].

The HMM and DTW are devised to find the best match between the acoustic input and a set

of reference exemplars. In the case of HMM, the training exemplars are exploited to learn the

parameters of a statistical model. Assuming that a probability distribution is a good hypothesis

for the underlying generative process of the data, the HMM framework enables modeling the

speech manifold with a Markovian structure through the design of a parametric dictionary

where each atom characterizes the underlying probability distribution. The parametric design

approach can lead to better generalization of the model with a fewer amount of training data.

Modern HMM-based models use DNNs for estimating the probability distribution of the

data. As compared to generative GMM models, a DNN is a discriminative model and requires

a large amount of data for training. Instead of parametric probability distributions, DNNs

rely on multiple layers of non-linear transformations of the data for finding discriminatory

boundaries between the classes. On the other hand, DTW is a non-parametric approach where

the word manifold is assumed to be spanned by all the exemplars from the training data. A

test data point is characterized by the closest training exemplar based on DTW distance. In

that sense, a DTW dictionary is the set of all training exemplars.

The sparse modeling approach relies on modeling the low-dimensional word manifold through

dictionary learning rather than parametric design developed through HMM. In its essence,

the dictionary models a union of low-dimensional sub-spaces through an overcomplete set of

basis vectors instead of learning parameters of a GMM, multinomial distribution or DNN3.

3The multinomial distribution arises in the derivation of KL-HMM (Aradilla et al., 2008) framework which has
been shown to be a suitable acoustic modeling framework using posterior features.
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Given K exemplars in a dictionary, the sparse modeling approach uses a linear combination

of k exemplars, where 1 ≤ k ¿ K , to characterize a test data point. In comparison, DTW based

template matching uses exactly one closest exemplar from the training data to match the test

data point, thus, resulting in a 1-sparse representation. An HMM-based model, on the other

hand, is an all-averaged model because the probability distribution parameters are learned by

combining all the training data points (e.g., KL-HMM state representatives or GMM means).

Investigating the Union of Subspaces Model Our hypothesis is that the sparse modeling

approach is more accurate in the characterization of the test data posterior exemplars. More

specifically, we want to verify that representing a posterior exemplar as a k-sparse combination

of the training exemplars is more accurate than a 1-sparse (DTW-based) or an all-averaging (KL-

HMM-based) characterization. To validate this hypothesis, we perform a simple experiment

using DTW-based template matching for the 75-word dataset of PhoneBook. Out of ∼11

utterances for each word, we keep 4 utterances as training templates and use the rest for

testing. For each word, the 4 training utterances are time-aligned using DTW with respect

to the longest utterance among them. The aligned utterances are then averaged to obtain

a single template. The averaging is done by choosing from 1 up to 4 utterances at a time,

thereby resulting in
∑4

k=1

(4
k

)= 15 combinatorial ways of averaging. For example, if a word has

4 training utterances- U1, U2, U3, and U4, then the various k-sparse templates are as follows:

• 1-sparse templates : TU1 ,TU2 ,TU3 ,TU4

• 2-sparse templates: TU1U2 ,TU1U3 ,TU1U4 ,TU2U3 ,TU2U4 ,TU3U4

• 3-sparse templates: TU1U2U3 ,TU1U2U4 ,TU2U3U4 ,TU1U3U4

• 4-sparse(all averaged) template: TU1U2U3U4

We then quantify the distance of the test utterances for each word with all of the different

k-sparse templates constructed above. The distance used in this context is the weighted sym-

metric KL divergence as it was shown to be an appropriate distance measure in the posterior

feature space [Aradilla et al. (2008)]. A smaller distance indicates a better characterization of

the test template. The experiment is run on 464 test utterances from the 75-word vocabulary.

For each test utterance, we determine the closest matching template for it. If this closest

matching template is k-sparse, we assign the current test utterance to a group which is best

characterized by k-sparse templates. In this way, we count the total number of test utterances

assigned to each value of k. The observations of this experiment are given in Table 4.4.

We observe that only 4.9% of the test utterances have the least characterization error using

a single closest template (DTW assumption). Moreover, only 9.7% utterances are best char-

acterized by the model obtained from averaging the full training set (KL-HMM assumption

[Aradilla et al. (2008)]). On the other hand, all remaining 85.4% of the utterances have the least

characterization error using the templates which are obtained as a combination of a few (2 or

3) training utterances. This observation confirms the effectiveness of the union of subspace

approach to model the posterior feature space.
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1-sparse 2-sparse 3-sparse 4-sparse

# of test utterances (out of 464) 23 177 219 45
% of test utterances 4.9 38.1 47.2 9.7

Table 4.4: Comparison of k-sparse templates for characterization of the test word utterances.

4.4.7 ASR Experiments Using Proposed Approach

In this section, we focus on evaluation of the proposed system on some simple automatic

speech recognition tasks, through which we can understand the benefits and limitations of

our approach.

4.4.7.1 Exemplar-based Isolated Word Recognition

The IWR evaluation is conducted on PhoneBook database. A word utterance is a sequence of

42-dimensional phone posterior vectors obtained from a DNN acoustic model. Prior studies

[Aradilla and Bourlard (2009); Soldo et al. (2011)] have shown that posterior features perform

well under DTW based template matching algorithm when the training data is limited to a

few exemplars. Hence, we consider the DTW-based template matching as the baseline for

this study. The DTW approach keeps all the utterances of a word in the training data available

during testing. For each test utterance, the DTW matching is done with all the training data

utterances to determine the closest matching training template. The class of the closest

matching training template is thus assigned to the test utterance.

In this work, we follow the posterior-based sparse modeling approach explained in Sec-

tion 4.3.2 and Figure 4.3. Word specific dictionaries are learned using the online dictionary

learning algorithm from the 4 training exemplars for each word. The posterior features are

context-appended with c = 20 neighboring frames from both left and right. Sparse recovery

is done using Lasso algorithm with λ= 0.1, and sparse representations are projected in the

positive quadrant as mentioned earlier in Section 4.3.2. The inference of the word is made

using the dictionary which fulfills the least accumulation of error criteria in (4.13). Since the

sparse modeling approach uses Euclidean distance metric for reconstruction, we keep the

same metric for template matching using DTW.

System PB75 PB600

DTW 84.7 73.5

Sparse Modeling 97.8 93.2

Table 4.5: Word recognition accuracies (in %) for the IWR task on PhoneBook database with
75-word vocabulary (PB75) and 600-word vocabulary (PB600) sets.

Table 4.5 shows the results for these experiments on 75-vocabulary and 600-vocabulary sets.

We observe that the proposed posterior based sparse modeling framework performs better
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than the DTW template-matching system in both cases. It should be noted that the word

recognition accuracy of a state-of-the-art hybrid DNN-HMM system presented in [Pinto et al.

(2009)] is 98.8% for the 75-vocabulary set and 96.0% for the 600-vocabulary set. This system

uses a 3-state left-to-right HMM for each phone, and the corresponding DNN is used to

estimate posterior probabilities of these states. In comparison, our DNN acoustic model is

non-complex as it is trained to simply predict the monophone probabilities instead of the

HMM state probabilities. Previous work by [Soldo et al. (2011)] showed that DTW-based

template matching approach gives its best performance when the weighted symmetric KL

divergence is used as the distance metric. We did not experiment with KL divergence based

approach here because an equivalent combination of dictionary learning and sparse modeling

approach for exploiting KL divergence is not available.

4.4.7.2 Exemplar-based Connected Digit Recognition

The continuous speech recognition evaluation is conducted on Digits subset of Numbers

database (details in Section 2.3.2) which contains connected sequences of digits ‘zero’ to

‘nine’ plus an alternative pronunciation ‘oh’ for digit zero. On a similar digit recognition task

on Aurora-2 corpus [Hirsch and Pearce (2000)], previous approaches [Gemmeke et al. (2009,

2011)] employ a collection-of-exemplars based dictionary for sparse representation. Typically,

the two-dimensional spectrogram of a word utterance is flattened by these approaches to

form a spectral feature exemplar of the word. A collection of such exemplars is referred to as

the dictionary in these approaches.

In this thesis, we employ the continuous speech recognition system discussed in Section 4.3.3

and Figure 4.3. We consider exemplars which are based on posterior features. Context

appending is done similar to the prior approaches, but we do not create one exemplar per

word. Instead, we optimize the context size by tuning it on a development set to encode the

dynamics of the posterior features. The whole posterior feature data is therefore transformed

into a context-appended posterior feature space. A context of 17 frames (c = 8) is found to be

optimal on a development set, and the context-appended posterior exemplars are generated

with a shift of one frame at a time.

CDR can now be approached using two techniques for computing the word posterior prob-

abilities (Section 4.3.3)- block-wise word search and C-HiLasso based sparse recovery. In

the former technique, the word posterior probabilities are estimated for each input frame

using the reconstruction error based formulation in (4.13). On the other, the latter technique

uses (4.9) for directly estimating the word posterior probabilities from the sparse representa-

tion. A sequence of T ′ = 3 context-appended feature frames are considered for C-HiLasso to

exploit the collaborative group sparsity structure in the sparse representations. After obtaining

the word posterior probabilities from block-wise search or C-HiLasso sparse recovery, a Viterbi

decoder [Rabiner (1989)] is employed to decode the word sequence from these probabilities.

The decoder uses a flat language model for digit sequences. For each digit, we learn the maxi-

mum and minimum durations from the training set. The decoder applies duration penalties
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# System WER(in %)

1 Collection of (posterior) exemplars 21.4
2 Word Dictionary (block-wise search) 14.6
3 Word Dictionary (C-HiLasso) 18.5

Table 4.6: Performance of dictionary-based sparse modeling versus collection-of-exemplars
based approach (in WER % ) on CDR task on Digits database.

to all the paths where these duration constraints are violated. Duration modeling is crucial

here to distinguish a single instance of a digit from the consecutive occurences of the same

digit more than once. Without duration penalties, our sparse modeling approach has no way

of finding word boundary between repeated occurence of the same word.

The results are presented in Table 4.6. System 1 presents the performance of a collection-of-

exemplar based approach where each word dictionary has posterior exemplars from ∼3000

training utterances. To create such a dictionary, the digit sequences in the training data

of Digits database split into short digit-specific segments. The algorithmically designed

dictionaries in our approach use a concatenation of 100 utterances for initialization of the

dictionary, and the remaining utterances are used for updating the atoms of the dictionary

using the online dictionary learning algorithm. Systems 2–3 in Table 4.6 depicts the results

of our approach. We observe that the block-wise dictionary learning (System 2) performs

better (14.6% WER) as compared to the baseline collection-of-exemplars approach (System 1).

Although the performance of C-HiLasso approach (System-3) is worse than the block-wise

search approach, it still achieves satisfactory results. The window size for C-HiLasso is an

important parameter, and we obtain the best results for this approach after optimizing it

to a window size of 3 frames. The most interesting aspect of C-HiLasso approach is that it

generates the true word posterior probabilities using (4.9). We speculate that the block-wise

search performs better than the C-HiLasso approach due to a more tractable sparse recovery

problem enabled by the smaller word-specific dictionaries.

4.5 Conclusions

The present work demonstrates a novel study on exemplar-based sparse modeling of speech

using DNN based posterior features. In this context, the posterior features not only prove

competent for exemplar-based ASR but also provide an elegant probabilistic interpretation

to the sparse modeling approach. We show that exemplar-based speech recognition systems

can benefit from dictionary learning algorithms by reducing the collection of all training

exemplars into a small learned “basis” set. The dictionary learned in this manner is effective

in characterizing the non-linear manifolds associated with the linguistic units, e.g., words. We

confirm the hypothesis stated in 4.1 that the posterior features can be effectively characterized

using sparse modeling over overcomplete dictionaries.
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4.5. Conclusions

We observe that the temporal sequencing information can be exploited by using either context-

appended segmental features or collaborative hierarchical sparse recovery. Structured sparse

modeling ensures that the representation coefficients collaborate to activate a common set of

dictionary atoms corresponding to the same word. The choice of appropriate window size to

be used for context-appending as well as structured sparse recovery is a parameter dependent

on the speech units being recognized.

Our approach also has certain limitations. Firstly, extending the exemplar-based sparse

representation approach to LVCSR tasks is not trivial. For a large vocabulary, we might not have

enough data for each word to learn the individual word-specific overcomplete dictionaries.

Therefore, some word dictionaries might not capture enough variability as required. Secondly,

sparse recovery over a large vocabulary of word classes is a L-way classification problem where

L is the vocabulary size. As L increases, the time complexity for computing word posterior

probabilities by sparse recovery using block-wise search increases linearly and may blow up

quickly. Similarly, seeking for structured sparsity using C-HiLasso over the complete multi-

word dictionary D is not scalable as the size of the dictionary grows linearly with increasing

L. Nevertheless, our approach has huge potential for tasks like keyword spotting and query-

by-example spoken word detection. The diagonal sequence pattern (in Figure 4.5) visible in

the sparse representation when a sequence of test posterior exemplars are sparse coded with

the correct dictionary can be detected using a DTW matching [Ram et al. (2018a)] algorithm

or a convolutional neural network [Ram et al. (2018b)] in order to identify a keyword or a

query-by-example.

In the next chapter, we devise clever ways to overcome the limitations of our approach. We

extend the application of our framework to LVCSR tasks, perform a thorough analysis of its

workings, and get deeper insights into its implications.
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5 A Low-dimensional Senone Subspace
Modeling Approach Towards ASR

5.1 Introduction

This chapter focuses on explicitly exploiting the low-dimensional senone subspaces in speech

towards the goal of improving acoustic modeling for ASR. Specifically, it investigates the

application of (1) dictionary based sparse modeling and (2) PCA based low-rank modeling for

characterizing the senone subspaces. This chapter is organized as follows. In Section 5.1.1, we

present the motivations and contributions of this work. Section 5.2 discusses the presence

of low-dimensional senone subspaces that underlie beneath DNN posteriors. Section 5.3

shows how to employ sparse representations to explicitly enhance DNN acoustic modeling.

In Section 5.4, we exploit sparse and low-rank soft targets to train enhanced DNN acoustic

models under a student-teacher framework. Lastly Section 5.5 draws the conclusions of the

work presented in this chapter.

5.1.1 Motivation and Our Approach

A typical large vocabulary ASR system works with DNN acoustic models that output posterior

probabilities for ∼ 103 senones (defined in Section 2.2.4 and [Young et al. (1994)]). If the DNN

posteriors are seen as intermediate features in the ASR pipeline (Section 2.2), we hypothesize

that there exist low-dimensional senone-specific subspaces embedded beneath them. These

latent subspaces carry the important speech information which is crucial for ASR. However,

posterior features are often corrupted with high-dimensional noise arising from data mis-

match or inaccuracies in DNN estimations which make the senone subspaces inaccessible.

Therefore, the major goal of this chapter is to extract the senone subspaces from noisy DNN

posteriors and consequently improve DNN-HMM based ASR.

To motivate our approach, we invoke the subspace-sparse recovery (SSR) property developed

in [Elhamifar and Vidal (2013)] as follows. According to this property, we consider DNN poste-

riors as compressed signals which exhibit a unique subspace belonging to each underlying

senone. If there are K senones, the DNN posteriors are K -dimensional vectors. Let S = {Sk }K
k=1
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Figure 5.1: Extracting the senone-specific subspaces in a DNN posterior by projecting it to a
high-dimensional space. In (a) an overcomplete multi-class dictionary is used for projection,
and in (b) a senone-specific undercomplete dictionary is used.

be the set of linear disjoint senone-specific subspaces associated with the K senone classes in

RK such that the dimensions of individual subspaces {Rk }K
k=1 are smaller than the dimension

of the posterior space, i.e. ∀k, Rk < K .

Posterior features z lie in the union ∪K
k=1Sk of these low-dimensional subspaces. Let Dk ∈

RK×Nk be the class-specific overcomplete dictionary for senone-specific subspace Sk where

Nk is the number of atoms in Dk and Nk > Rk . Each data point in Sk can then be represented

as a sparse linear combination of the atoms from Dk . The subspace-sparse recovery (SSR)

property [Elhamifar and Vidal (2013)] for union of disjoint subspaces asserts that the `1-

norm sparse representation of a data point over the collection of all class-specific dictionaries

{Dk }K
k=1 can lead to separation of the class-specific subspaces by selecting atoms only from

the underlying class of the data point for its reconstruction. The collection of all class-specific

dictionaries is the multi-class overcomplete dictionary D. Thus, the sparse representation

obtained for a posterior z belonging to senone class k has activations only for those atoms in

D which correspond to the subspace Sk where z lives.

Note that, considering a speech utterance as a union of words, phones or sub-phonetic com-

ponents, the subspaces Sk can be modeled at different levels (time granularity) corresponding

to any of these speech units. Consequently a dictionary D can be constructed by learning basis

sets Dk for individual classes. In the present study, we focus on context-dependent senones

due to their superior quality for acoustic modeling in DNN-HMM framework. Nevertheless,

there is no theoretical/algorithmic impediment in applying it for larger units such as words.

The rigorous proof of SSR property (see Theorem 2 in [Elhamifar and Vidal (2013)]) requires

specific conditions and assumptions on disjoint subspaces. Since we train DNNs with binary

senone target outputs, the intersection of senone subspaces is expected to be a rare event

64



5.1. Introduction

and suggests disjointedness of subspaces. Although we consider further theoretical analysis

beyond the scope of the present work, the experiments conducted in this chapter empirically

confirm that SSR property indeed holds for subspace-sparse modeling of senones.

As shown in Figure 5.1(a), the multi-class dictionary D captures each senone-specific subspace

using a sub-dictionary Dk . Posterior feature z can be projected on this overcomplete dictionary

so as to disentangle the underlying low-dimensional subspaces. As per SSR property, only the

correct senone subspace is activated through the appropriate dictionary atoms in the sparse

representation a. The projected vector Da in Figure 5.1(a) retains only the information of the

correct underlying subspace and discards the high-dimensional noise. We term this vector as

the projected or enhanced posterior.

In practice, for any labeled training data, we already know the senone classes of DNN posterior

features. Therefore, we do not need to employ sparse recovery using the complete dictionary

D and rely on the SSR property to pick the correct sub-dictionary. Instead, we can directly

project a posterior z on the class-specific dictionary Dk to get the projected posterior Dk ak

as shown in Figure 5.1(b). While the multi-class dictionary D is overcomplete, the senone-

specific dictionaries Dk ’s are undercomplete. Sparse recovery using Dk assumes that the

senone subspace Sk underlying the posterior z has lower dimensionality than the size of

the sub-dictionary, i.e., the condition Rk < Nk holds. In this chapter, we explore both of the

approaches shown in Figure 5.1.

Following the theory explained above, we first confirm that the senone specific posterior data

is indeed compressible by showing that it has a very low rank as compared to the dimension

of the posterior space. Next, we propose the modeling of senone subspaces using basis

sets obtained from CS based dictionary learning as well as a principal component analysis

(PCA) approach. DNN posteriors exhibit class specific low-dimensional structures which

are usually superimposed with high-dimensional unstructured noise. While the structures

are global and pertain to the whole population, the noise is local and could be a result of

erroneous estimations by the DNN on the individual input frames. The basis sets learned

using dictionary learning or PCA focus on capturing the global patterns and do not model the

local misinformation present in individual posteriors. To be specific, a CS dictionary used for

sparse recovery learns to model the non-linear speech manifold as a union of low-dimensional

subspaces whereas the strength of PCA lies in capturing the linear regularities in the data

[Hutchinson et al. (2015)]. Once the basis set is learned using a dictionary or PCA, any posterior

sample can be expressed concisely by a simple projection over the basis set. The projection

process discards the random high-dimensional noise present in the posterior whereas the

global low-dimensional patterns of the correct subspace are enforced. Finally, we project

the concise representation back onto the original dimensions of the posterior space to get

an enhanced version of the original posterior. We call this process as enhancement of DNN

posteriors using sparse (dictionary based) or low-rank (PCA based) modeling of the senone

subspace.
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We provide experimental evaluation of our approach on Numbers database [Cole et al. (1995)]

and AMI corpus [McCowan et al. (2005)]. Details of these databases can be found in Section

2.3. For Numbers database, we utilize the multi-class dictionary based sparse recovery and use

the enhanced posteriors directly for decoding. In case of AMI corpus, we employ the enhanced

DNN posteriors as soft targets (non-binary probability vectors) to train more accurate DNN

acoustic models.

Apart from the empirical analysis provided in this chapter, we also offer a more theoretical

insight into why enhanced DNN posteriors act as better targets for acoustic model training.

To do so, we develop an information theoretic analysis of our approach which is explained in

Chapter 7. Please note that this work investigates low-dimensional subspaces at the hierarchy

of senones and not of phones, phone states or words. We consider senone subspaces because

senone posteriors have interpretable correlations as explained in Section 5.2.2 and because

modern hybrid ASR systems work directly with data likelihoods conditioned on senone states

for HMM-based decoding. Another choice we make is performing senone subspace modeling

on DNN posteriors instead of acoustic features. As explained in Chapter 4, posteriors are more

robust, and they are expected to extract acoustic information which is invariant towards the

speaker and environmental variations in speech.

5.1.2 Prior Research

Earlier works on exploiting low-dimensionality in DNN acoustic modeling focus on exploiting

low-rank and sparse representations to modify DNN architectures for small footprint imple-

mentation. In [Xue et al. (2013); Sainath et al. (2013)] low-rank decomposition of the neural

network’s weight matrices enables a reduction in DNN complexity and memory footprint.

Similar goals have been achieved by exploiting sparse connections [Yu et al. (2012)] and sparse

activations [Kang et al. (2015)] in hidden layers of DNN. An important work in exploiting

sparsity for model regularization is Dropout training of neural networks [Srivastava et al.

(2014)] where a fraction of hidden neurons are randomly turned off during model training to

reduce the capacity of the network. This leads to the training of a collection of many sparsely

connected DNNs which are then averaged into a combined network during testing. Manifold

regularization has been explored in [Tomar and Rose (2014)] to preserve the underlying low

dimensional manifold based relationships amongst speech features during DNN training. An-

other way of exploiting low-rankness of speech features is by using a bottleneck layer in DNN

acoustic models. A low-dimensional bottleneck layer achieves model compression as well as

model regularization. Bottleneck features have been famously employed in the tandem ASR

approach [Hermansky et al. (2000)] and for transfer learning [Pan and Yang (2009)] for various

speech processing tasks. A major difference between bottleneck layer DNNs and the low-rank

approaches proposed in this chapter is that a bottleneck layer assumes all the underlying

senone classes to live in a common low-dimensional subspace whereas our approach learns

unique low-dimensional subspaces for each senone class separately.
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5.2. Senone Subspaces in DNN Posteriors

Figure 5.2: Rank of senone subspaces in “correct” DNN posteriors is found to be very small
(mean=37) as compared to the dimension of DNN posteriors which is 4007 here. “Incorrect”
posteriors are noisy resulting in a higher rank(mean=49).

In another line of research, soft targets based DNN training has been found effective for en-

abling model compression [Hinton et al. (2015); Chan et al. (2015)] and knowledge transfer

from an accurate complex model to a smaller network [Jinyu Li (2014); Price et al. (2016)].

Sparse subspace modeling has also been successfully utilised with state-of-the-art perfor-

mance in spoken term detection [Ram et al. (2018a, 2016, 2015)] and for extracting deep sparse

representations for speech recognition [Sharma et al. (2017)].

5.2 Senone Subspaces in DNN Posteriors

This section presents a study of DNN posteriors which is conducted to confirm the presence

of low-dimensional senone subspaces. The study comprises of a rank-analysis of posteriors

followed by a discussion on why senone classes are correlated with other.

5.2.1 Rank Analysis

The presented rank-analysis is based on posteriors generated from DNN acoustic models

trained for ASR on Numbers database and AMI corpus. Details of the acoustic models are

given in Section 5.3.1 for Numbers and Section 5.4.2 for AMI. These systems have 557 and 4007

senones respectively, which are also the dimensions of DNN posterior space in each case. With

the help of forced senone alignment from a GMM-HMM system, we segregate the posteriors

in senone-specific matrices. For each matrix, we compute the number of singular values

required to preserve 95% variability of the data in it. Due to the skewed distribution of the

posteriors, we convert the data matrices to the logarithmic domain before performing singular

value decomposition. We refer to the number of required singular values as an approximation
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Chapter 5. A Low-dimensional Senone Subspace Modeling Approach Towards ASR

of the true rank of senone matrices.

Numbers AMI

Rank-Correct 36.6 36.9
Rank-Incorrect 45.5 48.9

Table 5.1: Comparison of “Rank” of “correct” DNN posteriors versus “incorrect” DNN posteri-
ors for Numbers database and AMI corpus.

An ideal posterior should have its maximum component at the support indicating its asso-

ciated class. Hence, we categorize the posteriors as “correct” if the maximum component

corresponds to the correct class and “incorrect” if the maximum component corresponds

to the incorrect class. Table 5.1 provides the results of this analysis. For “correct” posteriors,

the mean over all classes is found to be ∼ 37. Since the dimension of the posterior spaces is

much higher for both the databases, this indicates the presence of low-dimensional senone

subspaces underlying the DNN posterior matrices. In contrast, the “incorrect” posteriors have

a higher mean rank of ∼ 46 for Numbers and ∼ 49 for AMI. While both categories have a rank

far lower than the dimension of DNN posterior space (= 4007), it is important to note that

the information bearing components in “correct” senone posteriors are fewer than those in

“incorrect” posteriors resulting in matrices which have a lower rank. For AMI, we also depict

this analysis in the form of histograms in Figure 5.2. Our analysis suggests that the “incorrect”

posterior are exposed to some high-dimensional spurious noise which degrades their quality.

Therefore, we conclude that there is a scope to enhance the posterior probability estimates by

discarding the unwanted noise and enforcing the information bearing components in DNN

posteriors.

5.2.2 Correlation Among Senone Classes

If all senones classes were mutually uncorrelated, then DNN posteriors labeled as a particular

senone would have an ideal rank of 1 corresponding to the dimension of that senone. However,

the rank analysis in Figure 5.2 shows that senone subspaces are complex and even for the

“correct” posteriors, the rank(∼ 37) is much higher than unity. These multi-dimensional

senone subspaces are formed due to correlations among various senones, and we identify

here- sequential and structural dependencies- as two possible reasons for these correlations.

5.2.2.1 Sequential Correlations

During training of a conventional DNN acoustic model for ASR (Section 2.2.5.1), hard targets

are used to assign a particular senone label to a relatively long sequence of (∼10 or more)

input acoustic frames. In contrast, senone transitions are quite frequent, and their durations

are usually shorter than the length of the input context window. Thus, a long context of input

frames may lead to a presence of acoustic features corresponding to multiple senones in the

input (Figure 5.3(a)) which renders the assumption of binary outputs inaccurate. We argue
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5.2. Senone Subspaces in DNN Posteriors

Figure 5.3: Correlation among senones due to: (a) long input context and (b) acoustically
similar root in decision trees.

that soft DNN posteriors quantify such sequential information using non-zero probabilities

for multiple senone classes. Senones which frequently appear in the neighboring context of

each other would exhibit these correlations in their DNN posterior space. The contextual

senone dependencies arising in soft targets can also be attributed to the ambiguities due to

phonetic transitions [Gillick et al. (2011)].

5.2.2.2 Structural Correlations

The procedure of senone extraction using decision trees [Young et al. (1994)] can lead to

correlations among multiple senone classes. A family of senones corresponding to the same

phone-HMM state are context dependent acoustic variations of each other as they all share

the same root in the decision tree (Figure 5.3(b)). Due to this structural correlation, these

senones may be confused with one another during DNN based posterior estimation, and this

can result in correlated dimensions in the DNN outputs.

Figure 5.4(c) depicts the presence of unique global patterns in the population of DNN posteri-

ors belonging to a particular senone. These patterns are visible clearly when the unstructured

high-dimensional noise is removed. The noise in DNN posteriors may originate from random

local effects, inaccuracies in DNN training or training-testing data mismatch. In the next

section, we propose our approach of enhancing the noise-prone posteriors obtained from a

hard target based DNN acoustic model.
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Figure 5.4: We show examples of DNN posterior features for a particular senone class (in
blue barplots) which highlight low-dimensional patterns (green boxes) super-imposed with
unstructured noise. PCA and dictionary-based projection (Section 5.4) enable recovery of
the underlying patterns by discarding the unstructured noise, and provide more reliable soft
targets for DNN training. K denotes the size of DNN outputs which is equal to total number of
senones.

5.3 Sparse Representations Based Enhanced Acoustic Modeling

In this section, we provide an empirical analysis of the theoretical discussion presented in

Section 5.1.1. Specifically, we focus on sparse modeling of DNN posteriors using multi-class

dictionaries as shown in Figure 5.1(a). The experiments in this section are based on Numbers

database. They confirm that the information bearing components of DNN posteriors can

be enhanced using projection on an overcomplete dictionary which removes the effect of

high-dimensional noise leading to improvement in DNN-HMM based ASR performance.

5.3.1 Database and Speech Features

We use Numbers subset of Numbers’95 corpus (Section 2.3.2) for this study where only the

utterances with 30 most frequent words are kept from the original corpus. Context-dependent

triphone state-tying results in 557 senones for this database. The training data is forced aligned

to these senones Kaldi speech recognition toolkit [Povey et al. (2011)]. A DNN is trained with

cross-entropy loss minimization criteria with 3 hidden layers each having 1024 nodes. For

every 10 ms speech frame, the DNN input is a vector of MFCC+∆+∆∆ features with a context

of 9 frames (39×9=351 dimension). The DNN output is a vector of posterior probabilities

corresponding to 557 senone classes.
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5.3.2 Generating Enhanced Posteriors Using Sparse Modeling

Building on our experiments presented in Chapter 4 on dictionary learning for sparse modeling

of posterior features, we use the online dictionary learning Mairal et al. (2010) algorithm and

Lasso sparse solver for learning dictionaries and solving the `1 sparse coding problem.

Class-specific data of senone posterior features is obtained through GMM-HMM based forced

alignment on training data, which is then used to learn individual over-complete basis set

Dk for each senone subspace Sk using dictionary learning algorithm. These class-specific

dictionaries are concatenated into a larger dictionary D = [D1 · · ·Dk · · ·DK ] for subspace-sparse

acoustic modeling. Since any posterior feature obtained from DNN lies in a union of subspaces

∪K
k=1Sk , a test posterior feature z can be reconstructed using the atoms of dictionary D.

According to SSR property, only the atoms associated to the correct class (underlying subspace)

of z will be used for sparse representation.

We use group sparsity based hierarchical Lasso algorithm [Sprechmann et al. (2011)] for sparse

coding to enforce group sparsity in a based on the internal partitioning of dictionary D into

senone-specific sub-dictionaries Dk . For each test data DNN posterior feature ztest, the high

dimensional group sparse representation atest is computed by sparse recovery over D. Since

dictionary D is learned from training data posteriors, the projection of the test posterior

feature ztest on training data space is given by computing Datest.

Note that Datest is an approximation of posterior feature ztest based on `1-norm sparse re-

construction using atoms of D. Consequently, it has the same dimension as ztest and it is

forced to lie in a probability simplex by normalization after the sparse recovery. Figure 5.1(a)

summarizes this procedure.

5.3.3 Rank Analysis Continued

To supplement the rank analysis done in Section 5.2.1, here we provide a similar study on

the sparse modeling based enhanced posteriors. Table 5.2 shows that the reconstruction of

the DNN posteriors using overcomplete dictionaries significantly reduces the rank of DNN

posteriors. The analysis in both cases has been done on a development set. This observation

confirms that using sparse recovery, the low-dimensional senone subspaces beneath DNN

posterior become accessible and the high-dimensional noise is removed.

To further study the true underlying dimension of the senone-specific subspaces, we con-

DNN Projected Robust PCA

Rank-Correct 36.6 11.9 7.6
Rank-Incorrect 45.5 21.7 11.7

Table 5.2: Comparison of “Rank” of DNN posterior matrix, projected posterior matrix and
RPCA senone posterior matrix. The dimension of corresponding posterior vectors is 557 here.
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Figure 5.5: Decomposing a DNN estimated senone posterior matrix Mspeech into a low-rank
matrix Lspeech of enhanced posteriors and a sparse matrix Nspeech of spurious noise using
RPCA.

sider a robust principle component analysis (RPCA) based decomposition of the senone

posteriors [Candès et al. (2011)]. The idea of RPCA is to decompose a data matrix M as

M = L+N (5.1)

where matrix L has low-rank and matrix N is sparse (Figure 5.5). The low-rank component L

corresponds to the enhanced posteriors whereas the high dimensional erroneous estimates

are separated out in the sparse matrix N.

We collect posterior features for each senone from training data using ground truth based

GMM-HMM forced alignment. RPCA decomposition is applied to data of each senone-class

to reveal the true underlying dimension of the class-specific senone subspaces. The rank of

senone posteriors (i.e., rank of L) obtained after RPCA decomposition for both “Correct” and

“Incorrect” classes are listed in Table 5.2. We observe that the true dimension (rank∼7.6) of

the class-specific subspaces of senone posteriors is indeed far lower than the DNN posteriors

(rank∼36.6) and yet lower than the projected posteriors (rank∼11.9).

5.3.4 Enhanced DNN-HMM Speech Recognition

In this section, ASR decoding is done using both DNN posteriors and projected posteriors in

the framework of conventional hybrid DNN-HMM. The same HMM topology learned during

training of the hybrid DNN-HMM is used in all cases. Hence, all parameters of different ASR

systems shown here are the same, and the only difference is in terms of senone posterior

probabilities at each frame which results in different best paths being decoded under the

Viterbi algorithm.

To demonstrate the increased robustness in projected posteriors as compared to the DNN

posteriors, we also examined their performance in noisy conditions where an artificial white

Gaussian noise was added at the signal level to the test utterances at signal-to-noise (SNR)
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ratios of 10 dB, 15 dB and 20 dB. The DNN acoustic model trained on clean speech is used for

computing posteriors from the noisy test spectral features so that the artificially added noise

acts as an unseen variation in the data for the DNN.

Posteriors
Test Data Condition

Clean 20 dB 15 dB 10 dB

DNN Output 2.6 4.0 6.8 14.0
Projected 2.2 3.5 6.2 13.9

Table 5.3: Comparison of ASR performance (in WER %) using DNN posteriors and projected
posteriors in clean and noisy test conditions on Numbers database. Clean data is used for
training.

Comparison of ASR performance is shown in Table 5.3 in terms of Word Error Rate (WER)

percentage. We observe that the projected posteriors outperform DNN posteriors in all

cases suggesting that projection based on Da is more accurate for DNN-HMM decoding than

original posteriors. We also compare the GMM-HMM based forced senone alignment (ground

truth) with senone alignments achieved by best Viterbi paths in projected posterior and DNN

posterior systems. Senone classification error of 24.1% in case of DNN posteriors is reduced to

19.8% in case of projected posteriors. Improvement in senone alignments and subsequent

reduction in WER proves the superior quality of projected posteriors over DNN posteriors and

supports the hypothesis that projection moves the test features closer to the subspace of the

correct classes.

Finally, RPCA posteriors (matrix L obtained from low-rank and sparse decomposition as

explained in Section 5.3.3) which have ranks close to the true underlying dimensions of

senone subspaces perform exceptionally well in ASR. WER of 2.6% using DNN posteriors

(rank∼36.6) reduces to a WER of 2.2% using projected posteriors (rank∼11.9), i.e., a relative

improvement of 15.4%, and when RPCA posteriors (rank∼7.6) are used, it is reduced to a mere

0.4%. Since RPCA based low-rank reconstruction of posteriors has been done using ground

truth senone alignment, ASR performance, in this case, is the best case scenario and indicates

the possible scope of improvement.

5.4 Low-rank and Sparse Soft Targets Based Enhanced DNN Acous-

tic Modeling

In Section 5.3, we exploit the multi-class dictionary for enhancing the DNN posterior proba-

bilities. The experiments conducted on Numbers database involved a set of 557 senones only

owing to a small-sized vocabulary used in the utterances (which comprise of sequences of

numbers). On the contrary, an LVCSR task may need a much larger set of senones which is usu-

ally in the order of ∼ 103−104. Consequently, the DNN posteriors are equally high-dimensional

and our approach needs to learn as many senone-specific dictionaries as the dimension of the

posterior. For a large value of K (denoting the number of senone classes), the sparse recovery
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problem solved in Section 5.3 is not trivially scalable. Firstly, the size of the dictionary would

be very huge to encompass the variability of all the senones subspaces and be overcomplete

as well. Secondly, framewise group sparse recovery algorithm [Sprechmann et al. (2011)]

in such a high-dimensional space is not tractable and computationally very slow. Owing to

these reasons, our efforts were not fruitful when we employed a multi-class dictionary for

enhancing DNN posteriors in the ASR setup for the large-vocabulary AMI meeting corpus.

Therefore, we employ two different strategies to enhance DNN posteriors for improving ASR

on large-vocabulary tasks like the AMI corpus. We discuss these strategies in the following

sections.

5.4.1 From DNN Posteriors to Enhanced Soft Targets

5.4.1.1 Sparse Soft Targets Using Dictionary-based Reconstruction

For an LVCSR task where the number of senones is very large, we do the sparse recovery

based enhancement of DNN posteriors only on the training data. Since the senone labels

are known for the training data, we can directly use senone-specific dictionaries for sparse

recovery. This approach is shown in Figure 5.1(b). The enhanced training data posteriors, thus

obtained, are then considered as soft targets for training an enhanced DNN acoustic model

under the student-teacher training framework. Student-teacher training of DNNs has been a

well-known technique for knowledge transfer and distillation [Jinyu Li (2014); Hinton et al.

(2015); Chan et al. (2015); Price et al. (2016)]. The basic idea behind this technique is that a

teacher DNN (often trained with hard targets) provides soft targets for training a student DNN.

The intuition is that the soft targets encode the knowledge of the teacher-DNN through the

inter-dependencies among the output dimensions.

Note that the original DNN posteriors can also be considered as soft targets for training a

student DNN. However, the potential of original posteriors is reduced due to the presence of

unstructured noise. Therefore, to obtain reliable soft targets, we rely on the sparse modeling

based enhancement procedure.

We do a brief recap of the sparse modeling based posterior enhancement procedure here with

respect to senone specific dictionaries. Given an already learned overcomplete dictionary DSP

for senone class k, where subscript SP denotes sparse, the sparse representation a of a DNN

posterior z is obtained by the Lasso optimization problem stated in (3.4) as:

â = argmin
a

‖z−DSP a‖2
2 +λ‖a‖1. (5.2)

The enhanced posterior is obtained by projecting the sparse code a on dictionary DSP as:

zSP = DSP â (5.3)

The regularization parameter λ in (5.2) controls the sparsity of the sparse code a. Owing to

sparsity constraints, the reconstruction term in (5.2) enforces the sparse recovery process to
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extract and emphasize only the subspace specific global patterns in the reconstruction zSP

whereas the random noise, which is local to z, is discarded. While a low value of λ (less sparse

solutions) may result in inefficient noise reduction, a higher value (more sparse solutions)

may discard even the essential information contained in the posterior. Thus, an optimal value

of λ is desired for dictionary learning and sparse recovery. We tune the value of λ for better

ASR on a development set.

5.4.1.2 Low-rank Soft Targets Using PCA-based Reconstruction

The rank analysis using RPCA approach discussed in Section 5.3.3 suggests that the end goal

for obtaining accurate posterior probabilities through an acoustic model should be to access

the low-dimensional senone subspaces. Towards this end, we propose a low-rank modeling

of DNN posteriors for enhancing their quality. Explicitly, we rely on principal component

analysis (refer to Section 3.4) to characterize the subspace of each senone separately. If a

large population of DNN posteriors is collected for a particular senone class, the frequent

dependencies (visible in Figure 5.4) are exhibited as the regularities among the correlated

dimensions in senone posteriors. As a result, the matrix formed by concatenation of senone-

specific posteriors has an intrinsic low-rank structure.

If Mk ∈RK×N denotes a matrix of N mean-centered posteriors in the log-domain such that they

are labeled as senone k in the forced alignment, then we can obtain the principal component

matrix P ∈RK×K using eigenvector decomposition. The columns of P are eigenvectors of

M arranged in the order of decreasing singular values associated with them. Eigenvectors

in P which correspond to the large eigenvalues in constitute the frequent regularities in the

subspace, whereas others carry the high-dimensional unstructured noise. Hence, we define a

low-rank projection matrix as:

DLR = P1:l ∈RK×l (5.4)

where the subscript LR stands for low-rank. P1:l is truncation of P that keeps only the first

l eigenvectors and discards the erroneous variability captured by other K − l components.

We select l such that relatively σ% variability is preserved in the low-rank reconstruction of

original senone matrix M.

The eigenvectors stored in the low-rank projection Pl are referred to as “eigenposteriors” of

the senone space. Using the eigenposterior matrix DLR , the low-rank reconstruction of a

mean-centered log posterior z̃t , denoted by z̃LR
t can be estimated as:

z̃LR
t = DLRDLR

>z̃t (5.5)

Finally, we add the mean of the log-posteriors for senone class k to the reconstructed posterior

z̃LR
t and exponentiate it to obtain a low-rank senone posterior zLR

t . The enhanced posterior

zLR
t can now be used as soft targets for learning improved DNN acoustic models (Fig.5.6).
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We assume that σ% variability, that quantifies the low-rank regularities in senone spaces, is a

parameter independent of the senone class. Tuning σ changes the dimensions of the senone-

specific subspaces in low-rank modeling. While σ = 100% leads to perfect reconstruction,

i.e., no noise reduction, a very small σ might result in losing subspace specific information.

Similar to the hyperparameter λ used in sparse recovery, we tune the value of σ for better ASR

on a development set.

5.4.1.3 Overview of the Student-Teacher Training Approach Using Enhanced Soft Targets

The low-rank and sparse enhancement procedure described above requires ground-truth

based forced senone alignments so that the correct senone-specific dictionary or eigenposte-

rior matrix can be picked for enhancing each posterior frame. Thus, this procedure can be

applied only to transcribed training data for which the forced alignments are readily available.

We term this procedure as supervised enhancement of training data posteriors.

To enhance the posteriors of unseen (test) data where the alignments are missing, we propose

an alternative approach. First, we train a DNN using training data acoustic features as input

and the enhanced posteriors as soft targets. Enhanced soft targets are obtained using the dic-

tionary or eigenposterior based reconstruction process as explained in the previous sections.

Now, we can forward pass unseen test data through this newly trained DNN to get posteriors

for ASR decoding. The new DNN can be considered as an enhanced student network which

combines the knowledge from two sources:

1. Baseline teacher model, which has the acoustic modeling knowledge, and

2. Dictionaries/eigenposterior matrices, which store the knowledge of the low-

dimensional senone subspaces.

Therefore, we argue that the student DNN learns to estimate the posterior probabilities on

globally characterized low-dimensional subspaces.

In the next section, we give details of our experimental setup, results and subsequent analysis.

5.4.2 Database and Speech Features

The AMI corpus [McCowan et al. (2005)] contains recordings of spontaneous conversations

between a group of participants in meeting scenarios. The meeting scenarios have been

designed such that the participants freely discuss and debate over some ideas. Due to the

conversational style of speaking and the speakers frequently overlapping and interrupting

other speakers’ speech, the AMI corpus has proved to be a challenging task in recent large

vocabulary ASR research. In this chapter, we use the close-talk speech recordings in AMI

from the individual headset microphone (IHM) setup. The dataset has nearly 100 hours of

recordings divided approximately as 80 hours train set, 10 hours dev and 10 hours eval set.

10% of training data is used for cross-validation during DNN training in all cases, whereas the
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Figure 5.6: (a) Segregating DNN posteriors into senone-specific matrices. (b) Low-
dimensional reconstruction of posterior features is done to achieve more accurate soft targets
for enhanced DNN acoustic model training: PCA is used to extract eigenposteriors of the linear
subspaces of individual senone classes. Sparse reconstruction over a dictionary is used for
non-linear recovery of low-dimensional structures.

dev set is used to tune the σ and λ parameters discussed before.

The Kaldi toolkit [Povey et al. (2011)] is used for training the DNN-HMM systems. In this

section, we use tri2 Kaldi scripts where a context dependent senone set and subsequent

GMM-HMM forced alignments are learned using MFCC+∆+∆∆ features. All DNNs have

9 frames of temporal context at input and 4 hidden layers with 1024 neurons each. Target

dimension of DNNs correspond to 4007 senones and the input features have a dimension of

351 (39 dimensional MFCC+∆+∆∆ features × 9 frame context). For dictionary learning and

sparse coding, SPAMS toolbox [Mairal et al. (2014)] is used. All the results reported in this

paper are reproducible using the standard AMI Corpus [McCowan et al. (2005)] setup, Kaldi

toolkit [Povey et al. (2011)] and our scripts provided in [Dighe (2017)].

Details of Baseline Model Our baseline is a hybrid DNN-HMM system trained using forced

aligned targets from a GMM-HMM system. The baseline, as well as all other DNNs, are

randomly initialized and trained using cross-entropy (CE) loss backpropagation. We discuss

the use of sMBR objective based sequence discriminative training later in Section 5.4.4. Word

error rate (WER%) using the baseline system is 32.4% on AMI test set. We use this baseline
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network to generate the DNN posteriors which are then used to learn principal component

matrices and dictionaries for sparse coding as shown in Figure 5.6. After enhancement of

DNN posteriors, the soft targets thus obtained are used to train better acoustic models.

Another baseline is a student DNN trained using non-enhanced soft targets from the baseline.

Non-enhanced soft targets refer to training data DNN posteriors which have been generated

using the baseline DNN, but they were not enhanced using sparse or low-rank post-processing.

This system gives a WER of 32.0%.

5.4.3 ASR Using Enhanced Student Models

For both dictionary learning and PCA based approach, we collected at most N = 104 pos-

teriors from each senone to form senone specific data matrices. The analysis described in

Section 5.2.1 revealed that the average rank of senone classes for AMI tri2 setup based DNN

posteriors is ∼ 37 for correctly classified posteriors. We set the dictionary size for sparse coding

to be 500 columns big to fulfill the condition for the undercomplete dictionary that the dictio-

nary size should be more than the dimension of the subspace being modeled. The procedure

as depicted in Fig. 5.6(b) is implemented to generate sparse and low-rank soft-targets.

In order to make the soft targets based training of DNNs fast and feasible, we need to store the

target senone probabilities for all the frames of training and cross-validation data on disk. In

doing so, we encounter memory issues as soft targets for the complete training data require

a significant amount of storage space (similar to [Chan et al. (2015)]). Hence, we preserve

precision only up to the first two decimal places in soft targets, followed by normalizing each

vector to sum 1 before storing the data on the disk. We assume that essential information

might not be in dimensions with very small probabilities. Although such thresholding can

be a compromise to our approach, we did some experiments with higher precision (up to 5

decimal places), but there was no significant improvement in ASR. Both low-rank and sparse

reconstruction were still computed on full soft-targets without any rounding-off. We perform

thresholding only when storing the final soft targets on the disk.

First, we need to tune the sparsity regularizer λ and the variability preserving low-rank recon-

struction parameterσ for achieving better ASR performance in AMI dev set (shown in Table 5.4

and Table 5.5). A value of λ= 0.1 was found to be the optimal value for sparse reconstruction.

When σ= 70% of variability is preserved using eigenposteriors, the most accurate soft targets

are achieved for DNN acoustic modeling resulting in the smallest WER on the development set.

It may be noted that in both low-rank and sparse reconstruction, there is an optimal amount

of enhancement needed for improving ASR. While less enhancement leads to a continued

presence of noise in soft targets, too much of it results in loss of essential information.

We then compare the ASR performance using DNNs trained with the new soft targets obtained

from low-rank and sparse reconstruction (column Approach-0 of Table 5.6). System-1 is built

by using senone posteriors from System-0 as soft targets for training the DNN acoustic model.

78



5.4. Low-rank and Sparse Soft Targets Based Enhanced DNN Acoustic Modeling

Table 5.4: Tuning λ for sparse modeling on AMI dev set.

λ 0.01 0.05 0.1 0.2 0.5 1.0

WER 29.7 29.5 29.4 29.6 29.8 30.0

Table 5.5: Tuning σ for low-rank modeling on AMI dev set.

σ (in %) 50 60 70 80 90 95

WER 29.7 29.7 29.0 29.5 29.4 29.5

These non-enhanced soft targets bring a small improvement of 0.4% in WER. In comparison,

the supervised enhancement of soft outputs obtained from System-0 using PCA (System-2)

reduces the WER by 1.2% absolute and dictionary-based System-3 achieves 0.8% absolute

reduction in WER.

We also verified how the enhanced student models affect the lattice generation process in Kaldi

and subsequently affect the ASR decoding. This analysis is required to confirm that the ASR per-

formance does not improve simply because the beam search gets pruned differently in the case

of low-rank and sparse soft targets based student DNNs. In all experiments, we used standard

Kaldi nnet1 decoding scripts with a settings of –min-active=200 and –max-active=7000 to

constrain the number of active states at each frame. Along with this, a decoding –beam=13 was

used. During lattice generation1, the pruning is governed by the minimum of maximum active

states at each frame and the decoding beam. Same parameters were used for decoding in all

experiments. An analysis experiment on a split of the development data showed that- with

similar parameters, the pruning is governed by both the beam and the maximum active states

without any observable patterns using different acoustic models. Specifically, the maximum

active states are in the same range for different experiments.

5.4.4 Integration with Sequence Discriminative Training

Sequence discriminative training [Veselỳ et al. (2013)] enforces the acoustic model to learn

utterance level sequential dependencies in the acoustic features such that the model prefers

one particular alignment of senones over other competing ones. In contrast, the procedure of

low-rank and sparse enhancement relies on the characterization of the senone level global

dependencies in the DNN posteriors at the individual frame level. The enhancement process,

while projecting the posteriors to class-specific subspaces, can result in breaking the sequential

dynamics of the utterance initially present in the DNN posteriors. Thus, combining sequence

discriminative training with our approach is not straightforward, and we discuss it in detail

below.

We consider employing the sMBR objective for sequence discrimination which directly opti-

mizes the DNN parameters to minimize the Bayes risk in state-level alignment [Veselỳ et al.

1More details are available at http://kaldi-asr.org/doc/lattices.html
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Table 5.6: ASR performance on AMI IHM eval set (in WER%). Approach-0 shows improve-
ments using our approach without sequence training. Approach-1 and Approach-2 provide
ways to combine sequence discriminative training with low-rank and sparse enhancement
approach. Right arrow ‘→’ depicts the sequence of training/processing steps. Enhance refers
to generating enhanced soft targets and subsequent cross-entropy loss based training of a
student network.

Sys#
Approach-0 Approach-1 Approach-2

Training Targets
CE→Enhance

CE → Enhance CE → sMBR
→ sMBR → Enhance

0 Hard (Baseline) 32.4 29.6 29.6
1 Soft (Non-enhanced) 32.0 28.8 29.4
2 PCA (σ= 70) 31.2 28.3 30.7
3 Dictionary (λ= 0.1) 31.6 28.2 30.2

(2013)]. sMBR training can be incorporated with posterior enhancement in following two

ways:

• Approach-1 (sMBR training after enhancement): A student DNN is first trained using

the enhanced soft targets coming from cross-entropy trained baseline DNN. Sequence

training using sMBR objective is then applied on this improved student network. This

approach essentially shields the low-rank and sparse enhancement procedure from the

effects of sequence discriminative training.

• Approach-2 (Enhancement after sMBR training): We can use the sequence discrimina-

tively trained DNN as our baseline teacher acoustic model. Thus, we generate posteriors

for training data using sMBR based teacher DNN and then use these posteriors to learn

principal components or dictionaries for senone classes. Training data posteriors are

then enhanced using eigenposteriors or dictionary to train an improved DNN acoustic

model. The task requires that the student model not only learns to generate enhanced

low-rank posteriors but also captures the sequence discrimination knowledge of the

teacher DNN. Note that we use forced alignment from the sMBR based teacher DNN

instead of GMM-HMM based alignments in this approach for PCA and dictionary-based

enhancement. Also, the student model is trained for frame level classification using

cross entropy loss.

Experimental results on the above two approaches are provided in Table 5.6. In Approach-1,

sMBR based baseline DNN gives a WER of 29.6% as compared to 32.4% by the cross-entropy

loss based baseline. Thus, we have an absolute reduction of 2.8% in WER just by employing

sMBR sequence training. When we apply sMBR based sequence training on the best per-

forming PCA and dictionary-based student DNNs, we observe significant performance gains

of 2.9% and 3.4% absolute WER reductions respectively. This suggests that the gains in ASR
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performance from sequence discriminative training and low-rank or sparse enhancements

are actually complementary to each other.

In Approach-2, System-0 is trained using sMBR objective and has no enhancement whereas

System-1 to 3 are trained using cross entropy loss with soft targets from System-0. We observe

performance improvement using non-enhanced soft targets based System-1 as compared to

System-0 which shows that soft targets have the potential to capture the essence of sequence

discrimination knowledge in them and transfer it to a student DNN (also confirmed in [Wong

and Gales (2016)]). Next, System-2 and 3 are trained using PCA and dictionary-based enhanced

soft targets respectively (with values of σ= 70% and λ= 0.1 which were tuned in 5.4.3 under

Approach-0). These systems are unable to bring any improvements over the sequence trained

baseline System-0 and the performance actually degrades. The best versions of System-2

and 3 under Approach-2 were in fact found to be operating at σ= 100% and λ= 0.0 respec-

tively which trivially correspond to non-enhanced soft targets based System-1. We conclude

from this observation that sequence discriminative training essentially modifies the senone

subspaces and underlying senone correlations in such a way that PCA and overcomplete

dictionaries are no longer capable of capturing them. Hence, it is not possible to improve the

acoustic modeling by low-rank and sparse enhancements in this case. These experiments

demonstrate that Approach-1 is the suitable strategy for complementary integration of se-

quence discriminative training with our enhanced soft targets based acoustic modeling to

improve ASR performance.

5.4.5 Exploiting Untranscribed Data Using Semi-supervised Training

Given an accurate DNN acoustic model and some untranscribed input speech data, we can

obtain soft targets for the new data through a simple forward pass. These additional soft targets

can be used to augment our original training data. An important assumption here is that the

given initial model can generalize well on the unseen data resulting in highly accurate soft

targets. In this section, we propose to learn better DNN acoustic models using the augmented

training set. This method is reminiscent of the knowledge transfer approach [Hinton et al.

(2015); Chan et al. (2015)]. In our experiments, we keep the architecture of the DNN trained

with augmented training set the same as the initially given DNN.

DNNs trained with low-rank and sparse soft targets are used to generate soft targets for ICSI

corpus and Librispeech (LIB100) which are sources of untranscribed data. Table 5.7 shows

interesting observations from various experiments using data augmentation. First, System-2 is

built augmenting enhanced AMI training data with ICSI soft targets generated from System-1.

We consider ICSI corpus, consisting of spontaneous speech from meeting recordings, as in-

domain with AMI corpus. While PCA based DNN successfully exploits information from the

additional ICSI data showing significant improvement from System-1 to System-2, the same is

not observed using sparsity-based DNN. Next, System-3 is built by augmenting enhanced AMI

data with Librispeech(LIB100) soft targets obtained from system 1. Read audiobook speech
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data from Librispeech is out-of-domain as compared to spontaneous speech in AMI. Still,

System-3 achieves similar reductions in WER as observed in System-2 which was built using

in-domain ICSI data.

Surprisingly, DNN soft targets obtained from sparse reconstruction are not able to exploit

the unseen data in all the systems. We speculate that dictionary learning for sparse coding

captures the non-linearities specific to AMI database. These nonlinear characteristics may

correspond to channel and recording conditions which vary over different databases and

cannot be transcended. On the other hand, the local linearity assumption of PCA leads to

extraction of a highly restricted basis set that captures the most critical dynamics in the senone

probability space. Such regularities mainly address the acoustic dependencies among senones

which are generalizable to other acoustic conditions. Hence, the eigenposteriors are invariant

to the exceptional effects due to channel and recording conditions. Sparse reconstruction can

mitigate the undesired effects as long as they have been seen in the training data. We believe

that sparse modeling might be powerful if some labeled data from unseen acoustic conditions

are made available for dictionary learning. It may be noted that training with additional

untranscribed data is not effective if non-enhanced soft targets are used. In fact, Systems 2-3

without low-rank or sparse reconstruction, perform worse than System-1 although they have

seen more training data.

In literature, there have been recent improvements on ASR on AMI corpus. Notably, alignments

generated using a speaker adaptively trained baseline GMM system (Kaldi tri4a setup) leads

to a more competitive baseline hybrid DNN-HMM system that gives a WER of 29.6% on AMI

IHM dataset [Renals and Swietojanski (2017)]. Further, a recent state-of-the-art lattice-free

MMI training criteria over a time-delay neural network (TDNN) leads to significantly lower

WER of 22.4% [Povey et al. (2016)].

5.5 Conclusions

In this chapter, we show how to explicitly model low-dimensional structures in speech using

dictionary learning and sparse coding over the DNN posteriors. In spite of their power in

Table 5.7: Performance of various systems (in WER%) when additional untranscribed training
data is used. System 0 is hard-targets based baseline DNN. In parantheses, SE-0 denotes
supervised enhancement of DNN outputs from system 0 and FP-1 shows forward pass using
System-1.

Sys# Training Data PCA(σ=70) Sparsity(λ=0.1)
Non-Enhanced

Soft Targets

0 AMI (Baseline WER 32.4%) - - -
1 AMI(SE-0) 31.2 31.6 32.0
2 ICSI(FP-1) + AMI(SE-0) 31.0 31.8 32.4
3 LIB100(FP-1) + AMI(SE-0) 30.9 31.7 32.4
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representation learning, DNN based acoustic modeling still has room for improvement in 1)

exploiting the union of low-dimensional subspaces structure underlying speech data and 2)

acoustic modeling in noisy conditions. Using dictionary learning and sparse coding, DNN

posteriors are transformed into projected posteriors which are shown to be more accurate.

Sparse reconstruction moves the test posteriors closer to the subspace of the underlying

senone class by exploiting the fact that the true information is embedded in a low-dimensional

subspace, thus separating out the high dimensional erroneous estimates. Improvements in

ASR performance are shown for both clean and noisy conditions on a small vocabulary task on

Numbers database. The importance of low-dimension structures is further confirmed through

RPCA analysis. The limitation of this approach is that it is non-trivial to scale its success to

LVCSR tasks where the number of senone subspaces is too large and sparse recovery is not

tractable.

To deal with the above limitation, we investigate the sparse and low-rank reconstruction

of DNN posteriors in a “one senone subspace at a time” manner. Using senone-specific

dictionaries and principal components, the training data DNN posteriors are transformed

into projected posteriors which are shown to be more suitable targets for training better

acoustic models. Improvements in ASR performance are achieved on large vocabulary ASR

task on AMI meeting corpus. We also demonstrate that the performance gains from our

enhancement approach and sequence discriminative training have different sources and

they can be combined in a complementary way. Finally, sparse and low-rank modeling

based enhancement is also found to be crucial for exploiting untranscribed data and further

improving the acoustic model performance using semi-supervised training.

In the next chapter, we explore the applications of the approaches developed until this chapter

to improve ASR in far-field conditions where speech is corrupted by noise, overlapping speech,

and reverberation.
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6 Applications of Sparse and Low-rank
Modeling for Far-field Speech ASR

This chapter explores the utility of the approaches developed in this thesis in improving far-

field speech ASR. Specifically, it focuses on enhancing the back-end and front-end of far-field

ASR by exploiting low-dimensional subspace information learned from close-talk speech

data. The chapter is organized as follows. Section 6.1 presents an approach to improve far-

field DNN acoustic models by using enhanced soft targets from parallelly recorded close-talk

data. Section 6.2 focuses on far-field speech enhancement using sparse and low-rank models.

Section 6.3 concludes the results of this chapter.

6.1 Far-field ASR Using Enhanced Soft Targets from Parallel Data

In this section, we focus on improving the back-end of far-field speech ASR. Training accurate

DNN acoustic models using far-field speech is often considered a challenging task due to

the poor quality of framewise senone alignments available with it. For example, a distant

microphone might pick up strong background speech or other additive noise, and align spoken

words in the transcription with these unintended regions [Peddinti et al. (2016)]. These effects

degrade the quality of target senone alignments which in turn results in poor DNN based

acoustic modeling. A common way to tackle this problem is to parallelly record speech data

using close-talk microphones and use close-talk speech to generate better quality senone

alignments [Qian et al. (2016)] (as shown in Figure 6.1). DNN acoustic models trained with

clean alignments from parallel data have been consistently shown to outperform models

which use alignments from the far-field data [Qian et al. (2016); Himawan et al. (2015)].

In this work, we extend the parallel data approach by exploring the use of enhanced soft

targets for training far-field acoustic models. We had shown in Chapter 5, that enhanced soft

targets are successful in improving close-talk ASR performance. Low-rank reconstruction

using eigenposteriors and sparse reconstruction using overcomplete dictionaries [Candès and

Wakin (2008)] are principled ways of preserving the global low-dimensional structures in soft

targets while discarding the random high-dimensional noise. In this chapter, we use the sparse

and low-rank soft targets obtained from a close-talk ASR system to train DNN acoustic models
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Figure 6.1: Using hard alignments from parallel close-talk speech data to train DNN acoustic
models for far-field speech.

for far-field speech.

Prior research in far-field ASR using parallel data can be categorized into front-end and back-

end based approaches. In front-end approaches [Qian et al. (2016); Du et al. (2014); Sim et al.

(2017)], the far-field acoustic features are first enhanced by mapping them to parallel close-talk

features. The enhanced acoustic features are then used for ASR. We explore this approach

in Section 6.2. In contrast, the back-end approaches focus on employing stronger acoustic

models like CNN [Swietojanski et al. (2014)], LSTM-RNN and their variants [Zhang et al. (2016);

Kim et al. (2017)], or adapting the back-end model by knowledge sharing [Qian et al. (2016);

Kim et al. (2018)] with a parallel close-talk based acoustic model. Another common approach,

as discussed earlier, is to use hard alignments from clean speech data. This approach has been

explored successfully in [Peddinti et al. (2016); Himawan et al. (2015); Weninger et al. (2015)].

6.1.1 Motivation and Contribution

Our motivation for using enhanced soft targets for learning far-field DNN acoustic models is

twofold. Firstly, in a reverberated speech signal, the acoustic realization of a senone would be

continuously smudged by the presence of neighboring senones. Hence, any acoustic feature

frame of reverberated speech can possibly have evidence of multiple senones which would

actually appear in a comparatively more discrete sequence if the speech was captured using a

close-talk microphone. This suggests an increased amount of temporal correlation exhibited

by senones in the acoustic feature space of far-field speech. As argued in Chapter 5, such

temporal correlation among senones is better characterized by soft targets as they are obtained

by processing a context of neighboring acoustic feature frames at the input of the close-talk

DNN.
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Figure 6.2: Schematics of our system which uses low-rank and sparse soft targets for training
the far-field DNN acoustic models. Required soft targets are obtained by PCA or dictionary
based enhancement of close-talk speech DNN posteriors.

Secondly, as shown in [Peddinti et al. (2016)], far-field acoustic features might lead to a

choice of different pronunciations for the same word transcription. In such a case, it will

be preferable to have soft targets as DNN outputs so as to support possibilities of multiple

phonetic sequences rather than hard alignments which enforce one particular pronunciation

of the underlying word sequence. Finally, we need the soft targets not to associate with

unstructured local noise in the far-field acoustic features. This motivated us to work with

enhanced low-rank and sparse soft targets which primarily focus on the intra-class global

patterns and the inter-class correlations rather than local erroneous probability estimates

present in the original DNN posteriors.

Experimental evaluations are conducted on the AMI corpus [McCowan et al. (2005)] which pro-

vides audio recordings that were parallelly recorded using close-talk and distant microphones.

This provides a perfect use case for our experiments on improving far-field ASR. We show

in Section 6.1.2.2 that low-rank and sparse soft targets lead to improved ASR performance

using DNN, long short-term memory networks (LSTM) as well as time-delay neural networks

(TDNN) acoustic models. We achieve nearly 4-5% absolute WER reduction as compared to

the traditional far-field data based DNN baseline.

6.1.2 Improving Far-field ASR Using Senone Subspace Modeling

We present our system for far-field acoustic modeling in Figure 6.2. Instead of using hard

targets from parallelly recorded close-talk speech data, we are using low-rank and sparse

soft-targets. First, a close-talk acoustic model is trained traditionally (shown as baseline close-

talk DNN in Figure 6.2) with hard targets obtained from GMM-HMM forced alignments. The
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close-talk DNN thus trained is used to generate soft targets from the close-talk speech features.

These soft targets are then passed through a PCA or dictionary based enhancement process

as explained in Section 5.4.1 to generate enhanced soft targets. The enhanced soft targets

are used with the far-field speech to train more accurate DNN acoustic models (shown as

enhanced far-field DNN in Figure 6.2). Below we describe the details of our ASR experiments

and the subsequent analysis to evaluate the performance of our approach on far-field ASR.

6.1.2.1 Database and Features

We demonstrate our approach on the AMI corpus. Single distant microphone (SDM) data with

mic-id 1 is used in our experiments for far-field speech and individual headset microphone

(IHM) as the source of close-talk speech. The rest of the details for this database can be found

in Section 5.4.2.

The Kaldi toolkit [Povey et al. (2011)] is used for training DNN-HMM systems. The input fea-

tures to the DNN have a dimension of 1320 (40-dimensional log-Mel filterbank energies+∆+∆∆

features × 11 frame context). Senone set generated using IHM data consists of 3992 senones

and those generated using SDM data consist of 3932 senones. All DNNs have 6 hidden layers

with 2048 neurons each. The experiments are based on the Kaldi tri3b system where the

senone set and the subsequent GMM-HMM forced alignment are learned after LDA+MLLT

transforms1 [Rath et al. (2013)]. All DNNs are randomly initialized and trained using cross-

entropy (CE) loss backpropagation followed by sequence discriminative training to minimize

the sMBR objective. For sequence training using sMBR loss, the alignments and denominator

lattices are generated using the CE trained DNNs. AMI pronunciation dictionary has ∼47K

words and a trigram model for decoding. All the results reported in this paper are reproducible

using the standard AMI Corpus [McCowan et al. (2005)] setup, Kaldi toolkit [Povey et al. (2011)]

and scripts provided in [Dighe (2017)].

For generating low-rank and sparse soft targets, a value of σ= 95% and λ= 0.1 was found to

be optimal while optimizing WER on dev set. Setting σ= 95% results in a different number

of principal components being retained for different senone classes. The average number of

retained principal components over all classes was found to be ∼40 as compared to the overall

dimension of 3992 senones.

Experiments based on long short-term memory (LSTM) and time-delay neural network

(TDNN) (Section 6.1.2.2) are based on standard recipes and parameter settings from Kaldi

nnet3 scripts. Both LSTM and TDNN are trained using the same input Fbank features and

output senone labels as the baseline DNN acoustic model. Some architectural details of these

models follow here. The LSTM and bidirectional(Bi-) LSTM use a recurrence of 20 time steps

for back-propagation and have 3 hidden layers each of size 1024. Splicing is done at the input

1This additional feature transformation step renders Kaldi tri3b setup different from the tri2 setup which was
used in the experiments discussed in Chapter 5. Also, we use filterbank energies instead of MFCC features in this
chapter.
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Table 6.1: ASR performance on AMI SDM eval set (in WER%) when soft targets are derived
from eigenposteriors and dictionaries learned using SDM senone set and corresponding
baseline DNN.

System # Training Targets
Network Type

CE CE+sMBR

1.1 SDM (Hard) 58.6 54.4

1.2 SDM (PCA) 57.9 53.1
1.3 SDM (Dictionary) 60.8 55.7

to include a left and right context of 2 frames each and delta features are not appended. TDNN

acoustic model is based on [Peddinti et al. (2015)] and uses layerwise splicing of {-2,2 ; -1,2 ;

-3,3 ; -7,2 ; -3,3 ; 0 ; 0}. Each ‘;’ separated pair of numbers gives the left (with ‘-’ symbol) and

right context for splicing at each successive layer of the TDNN model. Similar to LSTM models,

we do not append delta features to Fbank features at the input of TDNN. Our LSTM and TDNN

setup is more comparable to the previous works presented in [Swietojanski et al. (2013)] and

[Peddinti et al. (2015)]. In contrast to the system in [Peddinti et al. (2016)], we do not employ

speaker-adaptive training for acoustic modeling.

6.1.2.2 Experimental Analysis

We use the SDM eval set for evaluation here. Scoring is done using NIST asclite tool [Fiscus

et al. (2006)] for up to 4 overlapping speakers. Our initial results, shown in Table 6.1, are

entirely based on SDM data. ASR word error rates (WER %) are provided for DNN acoustic

models which are first trained with CE loss and then subsequently sequence discriminatively

trained with the sMBR loss. The first row depicts a traditional baseline system (System 1.1)

trained using far-field acoustic features with hard alignments from SDM which works at 54.4%

WER with sequence training. We enhance the soft targets generated from System 1.1 using PCA

and sparse coding to train System 1.2 and 1.3 respectively. While PCA based System 1.2 gives a

small (1.3% reduction in WER) performance improvement, sparse coding-based System 1.3

turns out to perform even worse than the hard target based baseline itself. We noticed this

performance degradation over a range of values for σ and λ for ASR on the dev set as well. This

experiment confirms the poor quality of SDM based senone alignments as well as the DNN

in System 1.1 which generated the soft targets. We conclude that our approach is not able to

learn meaningful senone subspace information with SDM senone set and SDM based DNN

posteriors. Next, we do experiments with soft targets from IHM data.

The baseline system in the experiments with parallel data uses hard targets from IHM close-

talk data as shown in Figure 6.1. Table 6.2 depicts this as System 2.1. In these experiments, we

also provide results for ASR on IHM data to compare how ASR performance improvements on

IHM data relate to those on SDM data. These results are based on Kaldi tri3b setup, and are

different from the tri2 setup experiments conducted in Chapter 5. As expected, System 2.1
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with IHM hard targets performs better than System 1.1 which uses SDM hard targets. We use

System 2.1 (CE loss-based IHM system) to generate soft targets which are enhanced and used

to train System 2.2 and 2.3. The original soft targets didn’t bring any significant improvements

on IHM data in Chapter 5 and we do not consider them here. On IHM data, we notice that

PCA soft targets based System 2.2 performs the best at 26.8% WER with sequence training.

Although sparse soft targets based System 2.3 outperforms the IHM hard target baseline, the

improvements are still lower than PCA based System 2.2. However, on far-field SDM data, both

System 2.2 and 2.3 give significant WER reductions, and System 2.3 with sparse soft targets

outperforms System 2.2 trained using PCA based soft targets. Compared to the SDM hard

target based sequence trained baseline, the overall improvement by using System 2.3 is 4.4%

absolute (∼8% relative) and compared to IHM hard targets, it is 2.1% absolute (∼4% relative).

An interesting observation here is that the sparse soft targets result in better acoustic modeling

than their low-rank counterparts for SDM data, whereas we observe the contrary on IHM

data. The success of sparse soft targets for SDM shows that the non-linear low-dimensional

modeling of senone subspaces, enabled by dictionaries, is highly beneficial for mapping

reverberated noisy speech acoustic features to underlying senone classes. We also note that

the performance improvements using enhanced soft targets are observed in both CE and

sMBR loss based systems, and we conclude that the benefits of enhanced soft targets are

complementary to those of sequence training, as shown previously in Chapter 5.

In Table 6.3, we further evaluate our approach on state-of-the-art recurrent and time-delay

neural network architectures. We observe in Table 6.3 that the enhanced soft targets are

superior for training the LSTM and TDNN based acoustic models than IHM hard targets.

The WER reductions are noticeably smaller for these strong baselines, but we consistently

achieve ∼5% absolute improvement in WER as compared to the SDM hard targets baseline,

and ∼1% absolute improvement as compared to IHM hard targets based systems. Bi-LSTM

based System 3.2 and 3.3 with low-rank, and sparse targets perform equally well and give

the best WER of 49.3%. These experiments further confirm the importance of modeling low-

dimensional senone subspaces for improving ASR. Note that the low-rank and sparse soft

targets from the parallel IHM data were still obtained from CE loss based IHM System 2.1

Table 6.2: ASR performance on AMI IHM and SDM eval set (in WER%) when soft targets
are derived from eigenposteriors and dictionaries learned using IHM senone set and the
corresponding IHM DNN acoustic model.

System # Training Targets

Training & Evaluation Data
IHM SDM

CE CE+sMBR CE CE+sMBR

1.1 SDM (Hard) - - 58.6 54.4

2.1 IHM (Hard) 30.5 28.0 54.9 52.1
2.2 IHM (PCA) 29.4 26.8 52.9 51.5
2.3 IHM (Dictionary) 30.4 27.3 52.1 50.0
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Table 6.3: ASR performance using recurrent and time-delay NN architectures on AMI SDM
eval set (in WER%) when soft targets are derived from eigenposteriors and dictionaries learned
using IHM senone set and the corresponding IHM DNN acoustic model.

System # Training Targets
Network Type

LSTM Bi-LSTM TDNN

1.1 SDM (Hard) 54.9 54.2 55.0

3.1 IHM (Hard) 51.3 49.7 51.0
3.2 IHM (PCA) 50.1 49.3 49.8
3.3 IHM (Dictionary) 50.2 49.3 50.2

depicted in Table 6.2. A recent state-of-the-art lattice-free (LF-) MMI training criterion over

a time-delay neural network (TDNN) leads to significantly lower WER of 46.1% [Povey et al.

(2016)] on AMI SDM dataset without using parallel IHM dataset. Application of our low-rank

and sparse modeling approach on LF-MMI training of acoustic models is an open area of

research.

6.2 Far-field Speech Enhancement Using Sparse and Low-rank

Modeling

In this section, we focus on improving the front end for far-field speech ASR. One of the

primary reasons for the degradation of ASR performance on far-field speech is the poor quality

of the captured acoustic signal. A distant microphone is prone to capturing noise, overlapping

speech as well as reverberations. Hence, spectral features generated from noisy far-field speech

are far inferior in quality then their counterparts generated using clean close-talk microphone

speech. This is evident from Table 6.2 where ASR performance using SDM condition data

gives a WER of 54.9% as compared to a WER of just 30.5% for IHM condition. Both these

systems use IHM forced alignments as targets for training the acoustic models. But, the

difference in the quality of input acoustic features leads to a substantial difference in the ASR

performance. Figure 6.3 contrasts the spectrograms of a speech utterance when it is captured

using a close-talk microphone versus using a distant microphone. The far-field spectrogram is

visibly more noisy than the close-talk case as the speech information is heavily corrupted in it

due to additive and convolutional noise. The front end approaches for improving far-field ASR

concentrate on enhancing the quality of far-field speech features by removing this unwanted

noise and effects of reverberation. These approaches collectively fall into the category of

speech enhancement techniques.

A set of speech enhancement techniques aim to use deep neural networks to map far-field

speech features to parallelly recorded time-synchronous close-talk speech features [Xu et al.

(2014); Qian et al. (2016); Giri et al. (2015); Gao et al. (2015); Chen et al. (2015); Du et al. (2014);

Mimura et al. (2015)]. In context of ASR, such techniques typically have a front-end speech

enhancer (SE) DNN and a back-end acoustic modeling (AM) DNN. The acoustic modeling
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Figure 6.3: Comparing a close-talk speech spectrogram with a far-field speech spectrogram.
Due to noise and reverberation, the far-field features are an erroneous and redundant version
of the close-talk features - which are clean and low-rank.

process benefits from the front-end speech enhancement operation which results in improved

ASR performance.

While a variety of architectures have been proposed in the previous literature [Qian et al.

(2016); Gao et al. (2015)] for integrating the SE and AM DNN, the most common approach

combines them in a serial order where the outputs of the SE DNN are fed as inputs to the AM

DNN. Both the networks in this architecture can be either 1) trained separately or 2) stitched

together and trained jointly under a multi-task learning framework. Figure 6.4 depicts a typical

joint training architecture for the speech enhancement and acoustic modeling. The first few

hidden layers map the far-field features to close-talk speech features, and the later layers solely

focus on predicting the senone targets for subsequent ASR decoding. One of the intermediate

hidden layer acts as the output layer for a regression task where a mean squared error loss

LSE is computed with respect to the clean speech features. On the other hand, the final layer

of the network focuses on the senone classification task using a cross entropy loss LAM . The

network is trained to jointly minimize a combination of both the losses as:

LJoint =LSE +αLAM (6.1)

where α controls the ratio of the two losses and decides the importance of each task during

the training of the network. Once the network is trained, the outputs of the final layer are used

for ASR, and the outputs of the intermediate layer can be ignored.

It is important to note that the speech enhancement DNN expects one-to-one mapping

between the far-field features and close-talk features. Typically parallel far-field and close-

talk datasets can be obtained in two ways: either by simultaneously recording speech using

close-talk as well as distant microphones or by creating artificial far-field speech by corrupting

close-talk clean speech data with additive and convolutional noise. Therefore, the DNN-based

92



6.2. Far-field Speech Enhancement Using Sparse and Low-rank Modeling

Figure 6.4: Joint speech enhancment and acoustic modeling (JSEAM) DNN architecture under
a multi-task learning framework. An intermediate hidden layer performs a regression task for
speech enhancement and the final hidden layer performs a classification task for acoustic
modeling.

speech enhancement approach depends on the availability of an equal amount of clean

speech data as the corrupted far-field data.

In this thesis, we explore the task of speech enhancement for improving ASR as a use case for

our sparse and low-rank modeling approach. Specifically, we propose to enhance far-field

speech features by projecting them on the low-dimensional senones subspaces learned from

close-talk speech features. Enhanced features, thus obtained, are used as targets for the speech

enhancement task under the architecture presented in Figure 6.4. In the following sections,

we motivate our approach and provide its experimental evaluation.

6.2.1 Motivations and Our Approach

If a speech signal is simultaneously recorded using a close-talk microphone and a distant

microphone, this thesis hypothesizes that- 1) the speech related acoustic information, which

is crucial for ASR, lives in low-dimensional subspaces, and 2) although this information is

readily accessible in close-talk features, it is densely superimposed with high-dimensional

noise in the case of far-field features, thus making it obscure.

The reason behind the above hypothesis is as follows. A far-field signal gets reverberated due

to its reflections from the surrounding environment. As discussed in Section 6.1.1, the acoustic

realization of speech in such a reverberated signal would be continuously smeared by the
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Dictionary 
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Features

senone k

Figure 6.5: Learning low-dimensional senone-specifc subspaces from the clean close-talk
speech using dictionary learning and PCA.

presence of incoming reflections and other sources of additive noise. This effect conceals the

low-dimensional speech information by smudging it across time and frequency dimension.

As a result, the captured signal will be noisy and high-dimensional, whereas the actual speech

information would be in low-dimensional subspaces. In other words, our hypothesis considers

the close-talk signal as a low-rank representation of the parallelly recorded far-field signal.

Therefore, we refer to the near-field spectrogram depicted in Figure 6.3 as a low-rank enhanced

copy of the noisy far-field spectrogram.

Our hypothesis naturally leads us to seek ways to project the high-dimensional far-field speech

data onto the underlying low-dimensional subspaces which contain the acoustic information

relevant for ASR. Close-talk speech features provide direct access to these low-dimensional

subspaces as they are relatively much cleaner than the far-field speech features. Since the

end goal is to improve ASR, we propose to learn these low-dimensional subspaces at the

hierarchy of senones (as done in Chapter 5 in the context of posterior features). Our approach

is depicted in Figure 6.5 and Figure 6.6.

We learn senone-wise dictionaries and principal components from close-talk speech spectral

Far-field  
Features

SDM features 
projected on IHM manifolds

Projected 
Features

Figure 6.6: Projecting noisy and high-dimensional far-field speech on the low-dimensional
manifolds learned from the close-talk speech data.
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features in a similar way as done for posterior features in Chapter 5. These methods model

the frequent regularities in the data as the senone-specific acoustic information, whereas

local errors and random noise is discarded. Close-talk speech features act as a clean and

reliable source of data to learn the sparse and low-rank models. Also, we need the GMM-HMM

based ground truth alignments for segregating the acoustic features before applying PCA or

dictionary learning algorithm.

In the next step, we project the far-field acoustic features on the low-dimensional subspaces

modeled by the close-talk speech dictionaries and principal component matrices. This step

again requires the senone labels from the forced alignment for supervised enhancement of

the far-field acoustic features. Therefore, we enhance only the labeled training data using this

approach. Since dictionary and PC projection reduce the rank of the data by only preserving

the class-specific information, we expect the projected features to be enhanced in quality. It is

important to note that the projection process relies solely on the senone subspace information

modeled by the dictionaries and the principal components; it does not try to map the far-field

feature to the parallelly measured close-talk features. In the final step, we use the projected

features in the joint speech enhancement acoustic modeling network described before in

Figure 6.4. We expect the projected features to act similarly as the parallelly recorded clean

speech features.

6.2.2 Experimental Evaluation

Parallel data from the AMI corpus as described in Section 6.1.2.1 is used in the experiments

here. For speech enhancement, we use 40-dimensional log-Mel filterbank energy (Fbank)

features. The close-talk features are spliced with a context of 5 neighbors frames for left

and right resulting in a 440-dimensional feature vector. Dictionaries and PC matrix are

learned on these context-appended vectors. Online dictionary learning algorithm (Section

3.2) and LARS Lasso algorithm (Section 3.3) are used for learning dictionaries and sparse

recovery respectively. A value of λ = 0.1 and σ = 80 was found optimal for sparse and low-

rank reconstruction of far-field acoustic features. After reconstruction, we retain only the

center frame of the context-appended projected acoustic feature. Using the GMM-HMM

forced alignments and close-talk speech dictionaries/PC matrices, we generate the projected

acoustic features for all the far-field training data.

DNN architecture used for joint speech enhancement and acoustic modeling (JSEAM) is as

follows. The input layer has a dimension of 1320 (=40 Fbank+∆+∆∆ features × 11) due to a

context of 5 frames from left and right. The first two hidden layers map the input layer to an

intermediate hidden layer which has the same dimension as the input layer. This intermediate

layer backpropagates a mean squared error loss with respect to the projected features. The

output of the intermediate layer is processed by 4 more hidden layers which are connected to

the final output layer of dimension 3992. The final output layer predicts senone classes. We

employ IHM hard targets as well as low-rank and sparse soft targets for training the acoustic
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Table 6.4: ASR performance using the joint speech enhancement-acoustic modeling (JSEAM)
approach on AMI SDM eval set (in WER%). Results are shown for different combinations of
speech enhancment and acoustic modeling training targets which are used during the training
of the JSEAM network.

SE Targets
AM Targets

IHM(Hard) PCA (σ= 95) Dictionary (λ= 0.1)

No enhancement 54.9 52.9 52.1
IHM 53.2 - -
SDM PCA Proj. (σ= 80) 53.4 52.3 -
SDM Dictionary Proj. (λ= 0.1) 53.2 - 51.7

modeling part of the network. In all experiments, cross entropy loss is used at the final output

layer. All hidden layers have a dimension of 2048 nodes. The intermediate output layer is

connected linearly to the next hidden layer. The speech enhancement part of the network is

first trained independently followed by joint training of both the networks.

Table 6.4 provides the results of speech enhancement based ASR experiments. We train a

variety of JSEAM networks based on different training targets for SE and AM tasks. For SE

task, close-talk IHM features are compared with the PCA and dictionary-based projected

far-field features. For AM task, IHM forced alignments are compared with sparse and low-rank

enhanced soft targets. As expected, speech enhancement helps improve the ASR performance

in all of the cases. Sparse modeling based network which uses dictionary reconstruction for

both SE and AM performs the best at 51.7% WER, thus giving a 1.5% absolute reduction over

an equivalent IHM-based JSEAM network which performs at 53.2% WER. We conclude that

the projected acoustic features act as a suitable replacement for close-talk features as we get

similar or even better WER reductions using the dictionary and PC-based projected data. This

observation suggests that the speech enhancement procedure using DNNs does not rely on

the actual close-talk speech features. Projected features can result in equally good speech

enhancement. In fact, the true acoustic information in close-talk features is embedded in

low-dimensional subspaces which can be efficiently modeled using dictionary learning or

PCA.

A unique feature of our approach is that we do not require the whole parallelly recorded

close-talk dataset to generate the projected features. Dictionaries and PCs are computed using

a limited amount of acoustic features for each senone class, after which the rest of the clean

speech data can be discarded. Nevertheless, the alignments generated using the close-talk

speech features are still needed for the supervised enhancement of the far-field speech.

6.3 Conclusions

In this work, we presented an application of our sparse and low-rank modeling approach

to improve far-field speech ASR. To improve the back-end, we use low-rank and sparse soft
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targets from parallelly recorded close-talk speech to enhance the DNN acoustic modeling for

far-field speech. PCA and dictionary learning encode the low-dimensional senone subspaces

present in DNN posteriors of a close-talk ASR system. Enhanced soft targets prove to be

better than hard targets from close-talk speech. Gains in ASR performance using sparse soft

targets are particularly promising and suggest a potential for exploring sparse modeling based

techniques to improve far-field ASR.

We also explore the application of low-dimensional senone subspace modeling in speech en-

hancement. Under this approach, far-field acoustic features are projected on low-dimensional

senone specific subspaces towards the goals of enriching the acoustic information in them and

discarding undesired noise. Through this process, far-field features are brought close to the

manifold where close-talk features live. Using a joint speech enhancement acoustic modeling

network, we exploit the projected far-field acoustic features to improve the performance of

far-field speech ASR. It is shown that the clean acoustic information present in close-talk

speech can be effectively compressed in the form of senone-specific dictionaries and principal

components.

In the next section, we develop an information theoretic analysis technique to quantify the

quality of any acoustic model under an HMM-based ASR framework. We use this technique to

examine the reasons why sparse and low-rank modeling of speech is indeed vital for improving

ASR.
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7 On Quantifying the Quality of Acous-
tic Models in Hybrid DNN-HMM ASR

This chapter studies the quality of acoustic models in terms of how well they comply with

HMM assumptions. We quantify the acoustic model quality in information theoretic terms

and relate it with their performance on speech recognition tasks. The information theory

based analysis technique developed in this chapter is also used to understand why sparse and

low-rank modeling of speech helps in improving HMM-based ASR.

This chapter is organized as follows. Section 7.1 motivates this work and briefly introduces

our approach. Section 7.2 provides background on HMM-based speech recognition and

discusses the relevant previous research in detail. Section 7.3 introduces a speaking-listening

perspective to the process of ASR using a novel z-HMM formulation. Section 7.4 introduces

the information theoretic analysis technique using a novel z-HMM formulation. Section 7.5

describes the experimental results and analysis of our findings. Finally, Section 7.6 concludes

our work in this chapter.

7.1 Motivations and Our Approach

Over the last 40 years, hidden Markov models (HMMs, and more recently DNN-HMM) have

served as the backbone of virtually all large-scale ASR systems [Jelinek (1976); Rabiner (1989);

Jelinek (1997)]. However, HMMs are built upon several major assumptions which are well

known and understood, yet often shattered in the speech community [Bourlard and Morgan

(1994); Bilmes (2006); Gillick et al. (2011)].

More specifically, the HMM theory relies on the following assumptions. Firstly, the probability

distribution associated with a hidden state depends only on that state. Therefore, the acoustic

observation is conditionally independent of all the rest given the underlying hidden state.

Secondly, HMMs used for modeling speech are typically first order, i.e., the probability of

the Markov chain to be in a particular state at a time step depends solely on the previously

visited state and nothing else. Although the first order Markovian assumption makes HMM

computations tractable, it limits the scope of capturing temporal dependencies. Furthermore,
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traditional HMM-based sequence modeling requires an a-priori definition of the state con-

ditional probability distributions, which were often considered as mixtures of multivariate

Gaussians in GMM based HMM systems.

In modern hybrid DNN-HMM architectures, the DNNs make no such assumption about the

statistical distribution of the observations and directly estimate the state-specific posterior

probabilities1 conditioned on some limited temporal context. Replacing GMM acoustic mod-

els by DNNs under the tandem [Hermansky et al. (2000)] or hybrid ASR approach [Bourlard

and Morgan (1994)] has been the single largest source of ASR performance improvement in

the last few years [Hinton et al. (2012)]. This leap in performance achieved by using DNN

acoustic models necessitates the study of the following fundamental questions:

Does DNN based acoustic modeling specifically fulfill the HMM assumptions better

than GMMs? And if so, can we formally identify some properties desired in an

acoustic model for improving ASR performance?

The work presented in this chapter is an attempt towards answering the above question by

deriving an information theoretic analysis framework for analyzing DNN-HMM speech recog-

nition. The core analysis depends upon conceptualizing the traditional HMM formulation

in a different manner. Instead of treating a continuous multi-dimensional acoustic feature

(e.g., an MFCC vector) as an observation, we do the following. We use the emission prob-

abilities predicted by the acoustic model to compute the gamma posterior probabilities of

HMM hidden states using the forward-backward algorithm [Rabiner (1989)]. Based on the

gamma posterior vectors, we predict categorical values for the hidden states at each time step.

These categorical predictions are treated as discrete observable features emitted by the actual

underlying hidden HMM states. We term this modified HMM framework as z-HMM (further

details in Section 7.3). Proposed z-HMM formulation facilitates the computation of some

useful information theoretic terms which are otherwise highly non-trivial to compute using

acoustic features. These information theoretic measurements allow us to analyze the quality

of acoustic models without computing full-fledged ASR-related measurements like frame

classification accuracy or word error rate (WER). We talk in detail about the contributions of

this chapter in Section 7.2.2. The important notations for the mathematical expressions are

listed in Table 7.1.

7.2 Background and Prior Research

Speech is a complex time-varying signal which is usually assumed as resulting from a piece-

wise stationary stochastic process so that the observed signal can be modeled by a hidden

Markov model. HMM is a probabilistic finite state model in which the state-specific emission

1DNN based state posterior probabilities, conditioned on a local context, simply provide an ad-hoc way of
computing emission probabilities of HMM states (or data likelihoods) as they are divided by the state prior
probabilities before decoding. We note that these state posterior probabilities are different than the gamma
posterior or state occupancy probabilities for hidden states which can be computed by full forward-backward
algorithm [Rabiner (1989)].
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Table 7.1: Notations and their associated meaning.

Notation Indication

Q= {
q1, . . . , qk , . . . , qK

}
Set of discrete values that a HMM hidden state
can take, could refer to set of senones which are
physical HMM states obtained after tying of logical
states.

Qt Hidden state random variable at time index t which
takes values from the set Q.

Q=<Q1, . . . ,Qt , . . . ,QT > Sequence of HMM hidden states underlying an ut-
terance.

X t and xt Acoustic feature random variable and its value∈Rn

denoting the acoustic observation at time t .

X =< X1, . . . , X t , . . . , XT > Sequence of acoustic features observed for an ut-
terance.

Zt Random variable denoting the state predicted from
the gamma posterior vector computed using the
acoustic model at time t ; it takes values from the
set Q.

zt = [P (Zt = q1|X ) . . .P (Zt = qK |X )]> K -dimensional gamma posterior probability vector
given by the acoustic model; superscript > denotes
transpose.

Z =< Z1, . . . , Zt , . . . , ZT > Sequence of states predicted framewise from the
gamma posteriors.

probability distribution is assumed to be independent of previous states and previous obser-

vations, and the transition probabilities follow a first-order Markovian structure. More details

on HMM and its application for ASR is explained in Section 2.2.1.

In addition to the terminology defined in Chapter 2, we introduce another HMM related

quantity here - the “gamma posterior probability” - which is relevant to the work presented in

this chapter. The gamma posterior probability is defined as:

γt (qk ) = P (Qt = qk |X ) (7.1)

hence representing the probability of hidden state Qt at time t taking the value qk given the

whole observation sequence X . The gamma posterior probability is computed using forward-

backward algorithm, details of which can be found in [Rabiner (1989)]. We term the vector

γt = [γt (q1), . . . ,γt (qk ), . . . ,γt (qK )]> as the gamma posterior vector at time t for the concerned

utterance. If γt (qk ) is summed over all time steps of all utterances, the quantity computed

can be treated as the posterior probability of the HMM hidden state being qk at time step t

conditioned on the whole utterance.

As discussed before, the hidden states usually correspond to senones in modern large vo-
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cabulary ASR. While the total number of logical states in a speech modeling HMM could be

very large, the number of senones obtained after state tying is typically in the order of few

thousands. Since senones are extensively used as physical HMM states in modeling large

vocabulary ASR systems, we assume here onwards that the possible values for HMM hidden

states come from the set of senones.

7.2.1 Prior Research

Building upon work initiated in the early 90’s [Bourlard and Morgan (1994)] and exploiting the

availability of larger amounts of training data and processing power, DNNs are now recognized

to outperform GMMs in HMM-based ASR [Hinton et al. (2012)]. Several studies have been

conducted to better understand the reasons behind the superior performance of DNN acoustic

models. We review the previous research findings to enlist some of these properties desired in

an acoustic model for improving HMM-based ASR.

7.2.1.1 Towards Better State Conditional Probabilities

A detailed discussion in [Bilmes (2006, 2004)] argues that accurate sequence decoding using

HMM requires the acoustic model to be structurally discriminative of the underlying classes.

Furthermore, the acoustic model should be designed to preserve maximum mutual informa-

tion between the input features and the underlying HMM states. Investigations in [Hinton

et al. (2012); Bengio (2009)] confirmed that deep neural networks indeed fulfill the above

requirements. One of the key factors contributing to the success of DNNs is their invariant

representation learning power for class discrimination. Unlike the generative GMM models,

DNNs derive discriminative representations of the data by applying non-linear transforms

through multiple hidden layers. They alleviate the need for an explicit probability distribution

function to model the data because the data-driven discriminative approach leads to more

accurate modeling of the underlying class (HMM states) distribution. In [Nagamine et al.

(2015)], it was found that the individual neurons in DNN hidden layers learn to be selectively

active in different ways towards distinct phone patterns. At the same time, information ir-

relevant to phonetic discrimination such as gender are discarded by the deeper (closer to

the output) layers. It was also confirmed analytically in [Huang et al. (2014)] that DNNs are

significantly better at phone classification compared to GMMs and, although robustness

against unseen noise and data/channel mismatch is a challenge, they still outperform GMMs

in these conditions.

In summary, the success of DNN based acoustic modeling in ASR is partly owed to the accurate

estimation of the state-specific probabilities and better discrimination of the boundaries

resulting in superior HMM state-level classification results.
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7.2.1.2 Acoustic Modeling Using Markovian Structure

Prior research has also investigated the effects of HMM structural hypotheses on ASR failures.

In particular, the conditional independence assumption of HMM is often acknowledged as the

number one limiting factor resulting in poor ASR performance and lack of robustness [Ravuri

and Wegmann (2016)].

Natural speech exhibits strong temporal correlations and contextual dependencies. This

correlation is partly present in the acoustic features. HMM conditional independence assump-

tion requires that the acoustic features associated with a specific sub-word (senone) state

are independent of the past and future states and acoustic features. To test this hypothesis,

earlier works [McAllaster et al. (1998); Gillick et al. (2011)] replaced real speech data with

synthetic data which strictly follow HMM assumptions. When the synthetic data strictly follow

conditional independence assumptions, the ASR performance was found to be nearly perfect

even using GMM-HMM architecture. Along this line, [Ravuri and Wegmann (2016); Gillick

et al. (2012)] have studied how DNNs cope with violation of HMM assumptions. It was shown

that using many hidden layers in DNNs yields acoustic models less sensitive to the contextual

dependencies. Each hidden layer successively makes the system more robust towards the

contextual dependencies existing in the real speech data, hence resulting in better ASR. From

the prior research summarized above, we conclude that for improving HMM-based ASR, the

acoustic model should be robust against the violation of Markovian conditional independence

assumption.

In contrast, a different approach to tackle the limitation of the conditional independence as-

sumption is to rely on alternative architectures that can capture longer temporal dependencies.

For instance, the segmental models proposed in [Ostendorf et al. (1996)] model a speech seg-

ment of long duration as a unit instead of the traditional frame-wise modeling procedure. In

segmental models, the HMM conditional independence assumptions are not enforced within

a segment, thus reducing the data-model mismatch. More recently, recurrent and convolu-

tional neural network architectures, e.g. long short-term memory (LSTM) RNNs [Hochreiter

and Schmidhuber (1997); Sak et al. (2014); Lu et al. (2016)] and time-delay neural networks

(TDNN) [Waibel et al. (1990); Peddinti et al. (2015)] based acoustic models respectively, have

also shown consistent improvements over the state-of-the-art DNN based ASR performance.

Acoustic models based on these architectures access a longer temporal context of acoustic

features to make the framewise prediction of HMM state posterior probabilities. Another

active area of research is towards developing end-to-end ASR systems based on connectionist

temporal classification [Graves et al. (2006)] and attention-based mechanisms [Bahdanau

et al. (2016); Chan et al. (2016)]. End-to-end systems typically do away with the traditional

HMM backend for ASR by directly focussing on neural network based sequence-to-sequence

modeling.
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7.2.2 Contributions of this Chapter

The contributions of the work presented in this chapter can be summarized as follows:

• We develop an analytical framework that does not rely on empirical evidence such as

phone classification errors and ASR accuracies. The proposed method quantifies the

desired acoustic model properties without performing ASR, and the deficiencies in the

system can be measured in disjoint aspects.

• Previous mutual information estimation method [Bilmes (1998)] based on GMMs uses

the expectation-maximization algorithm to learn a joint probability distribution which

quantifies the quality of GMM-based acoustic modeling. We propose a novel z-HMM

formulation that facilitates expressing the qualitative aspects of acoustic models in

information theoretic terms by directly using state posterior probabilities

• We theoretically quantify the contribution of DNNs in addressing the limitations im-

posed by HMM assumptions. We show that DNNs are not only more accurate in comput-

ing state conditional probabilities, but they are also more robust against the contextual

dependencies existing in the data which violate the HMM conditional independence

requirement. In addition, we provide a quantitative analysis of GMM, RNN, and TDNN

acoustic models. We also evaluate DNNs with different training criteria and model

architectures.

• We apply the proposed analysis technique to measure the effect of sparse and low-rank

modeling in improving DNN based ASR.

The next section introduces a speaking-listening perspective to the process of ASR, which

forms the basis of our z-HMM formulation.

7.3 Speaking-Listening z-HMM Perspective

The graphical model for a traditional speech recognition HMM (in Figure 7.1(a)) as discussed

in Section 7.2 consists of a sequence of hidden states which emit observable acoustic features

at each time step. In terms of random variables, the hidden state Qt underlies the generation

of feature X t . Acoustic feature X t can take a value xt ∈Rn and state Qt can take a value qt ∈Q
from the set of senones.

For the sake of the acoustic modeling analysis framework proposed in this paper, we introduce

a novel z-HMM formulation. This formulation is described here as follows: a DNN based

acoustic model estimates the posterior probabilities of senone classes based on the observed

acoustic feature2 X t . The state posterior probabilities are then converted to pseudo-likelihoods

by dividing them with the state prior probabilities as shown in (2.12). In the case of GMMs, the

data likelihoods are computed directly from the Gaussian probability distribution function.

2While the acoustic feature at time t is usually appended with a small context c to make predictions using a
DNN acoustic model, we assume in our definition of z-HMM that the context appended input feature vector as a
whole is the observed feature belonging to the frame at time t .
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Figure 7.1: (a) Classical HMM graphical model where hidden state Qt emits acoustic feature
observation X t ; (b) z-HMM graphical model: a hidden states Qt ∈Q emits a random variable
Zt ∈Q. From this new perspective, the sequence of states Q governs the speaking process (or
speech generation) in the domain of acoustic features X , whereas the sequence of acoustic
model predictions Z directs the listening process (or speech recognition) which is inferred
from X . (c) ASR is analyzed as a communication channel which transmits the sequence of
acoustic model predictions Z for decoding the hidden state sequence Q.

Using the data likelihood probabilities and ignoring any language model constraints, we run

the forward-backward algorithm with a controlled beam size to compute the gamma posterior

probabilities (as defined in (7.1)) for each state at each time step. Although the fixed beam

size provides us only with an approximation of the true gamma posteriors, it ensures that

the forward-backward algorithm is tractable to compute. At this stage, gamma posteriors are

the probabilistic predictions made by the acoustic model about the value taken by the HMM

hidden states Qt ’s at different time steps based on the complete observed sequence X . For

each time step t , the gamma posterior vector (γt ) can be seen as a categorical probability

distribution over the predicted value of Qt . In the proposed z-HMM, this categorical prediction

about the value taken by the hidden state random variable Qt is defined as a new random

variable Zt and is considered as an observable feature. The graphical model shown in Figure

7.1(b) depicts this process. This model here is referred to as z-HMM since the emission from

the hidden state Qt is denoted as the discrete random variable Zt .

The z-HMM formulation as defined above leads to following important observations:

• Since the observed feature Zt in z-HMM is simply a categorical prediction about Qt ,

both the random variables Qt and Zt take values from the same domain of possible

states, i.e., Q.

• The categorical probability distribution over Zt is conditioned over the whole acoustic

feature sequence X and is given by the forward-backward algorithm as the gamma

posterior vector zt = [P (Zt = q1|X ) . . .P (Zt = qK |X )]> at time t . We denote this prob-

ability distribution vector as zt instead of γt to emphasize that we are considering

the prediction about hidden state Qt as a different random variable Zt in the z-HMM

formulation.
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• Although random variable Zt is defined as an observed feature in z-HMM, we do not

actually have access to the exact values taken by any particular Zt . We only have access

to the acoustic model’s probabilistic prediction about the random variable Zt taking

values from the set Q conditioned on the observed feature sequence X .

• Since the language model constraints are ignored and the HMM transition probabilities

are kept fixed once the acoustic model is trained, the accuracy of gamma posteriors

zt ’s as computed by the forward-backward algorithm is directly dependent on the data

likelihoods (or state posteriors in case of DNN) generated by the acoustic model.

Under this framework, we can now introduce distinct interpretations for z-HMM’s hidden

state Qt and the observed feature Zt as separate random variables corresponding to

• Qt : Speaking random variable, and

• Zt : Listening random variable.

The speaker intends the production of speech under HMM state Qt = qk (where qk could

be representing a physical HMM state, e.g., senone) at time t . The acoustic features X
serve as the information bearing medium through which the listener infers the observed

feature Zt in a probabilistic manner in terms of the gamma posterior vector zt . Thus, the

task of speech recognition is for the listener to find the most likely speaker state sequence

Q given that the listener state sequence Z was observed. Therefore, we consider ASR as a

communication channel (Figure 7.1(c)) where the input is the sequence of listening random

variable Z , obtained from the acoustic model (e.g., DNN), and the output is the sequence

of speaker random variable Q. From this perspective, z-HMM can be interpreted as a joint

speaking-listening HMM where the speaking process is represented by the underlying hidden

sequence Q leading to the acoustic features X and the listening process, inferred from X by

the acoustic model, is represented by the observed feature sequence Z .

Note that the conception of z-HMM is only for the purpose of ensuing information theoretic

analysis, and it should not be thought of as a new approach towards ASR. In the next section,

we present the information theoretical analysis of the acoustic models based on z-HMM

formulation described above.

7.4 Information Theoretic Analysis of Acoustic Models

In the context of z-HMM described above, we consider the following two factors as critical

in judging the quality of an acoustic model- (1) how accurate are the data likelihoods or

state conditional posterior probabilities and (2) how well the acoustic model complies with

the HMM assumptions. These factors can be quantified using the following two mutual

information terms involving the random variables Qt and Zt as
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(i) I (Zt ;Qt ): the mutual information between the observed feature Zt and the underlying

hidden state Qt , and

(ii) I (Zt ;Qt−1|Qt ): the mutual information between the feature Zt and the former state

Qt−1 if the current underlying hidden state Qt is known.

The notion of mutual information is defined in Section 7.4.1. We explain the relation between

the above quantities and the desired properties of acoustic models in Section 7.4.2.

7.4.1 Mutual Information

In information theory, the mutual information of two random variables quantifies the infor-

mation conveyed about one random variable by the other random variable. This concept is

defined through the notion of entropy which measures the quantity of information held in a

random variable [Cover and Thomas (1991)].

For a discrete random variable A which takes values a ∈A, the entropy H(A) is defined as

H(A) =−
∑
a∈A

P (A = a) log(P (A = a)) (7.2)

Accordingly, the conditional entropy H(A|B) of a random variable A given another random

variable B , which takes values b ∈B, is defined as

H(A|B) =
∑
b∈B

P (B = b)H(A|B = b) (7.3)

where

H(A|B = b) =−
∑
a∈A

P (A = a|B = b) log(P (A = a|B = b)) (7.4)

Entropy quantifies the uncertainty of a random variable; thereby, it increases as the uncertainty

about the underlying values grows, i.e., p(A) and p(B) tend to a uniform distribution.

Mutual information I (A;B) between two random variables A and B is the measure of mutual

dependence between the two variables. It quantifies the reduction in uncertainty of A due to

the knowledge of B , and vice versa. It is defined as

I (A;B) = H(A)−H(A|B) = H(B)−H(B |A) (7.5)

Accordingly, conditional mutual information is defined as

I (A;B |C ) = H(A|C )−H(A|B ,C ) (7.6)
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7.4.2 Desired Acoustic Model Properties

The z-HMM ASR communication channel discussed in Section 7.3 is most efficient when 1)

the observed feature Zt at the input and the underlying hidden state Qt which is to be inferred

have the highest mutual information I (Zt ;Qt ), and 2) the HMM conditional independence

assumption is well satisfied so that the mutual information between the feature and the former

hidden state is minimized if the current hidden state is known, i.e., I (Zt ;Qt−1|Qt ) approaches

zero.

7.4.2.1 Property 1: High Information Transmission Capacity (P1)

To maximize the amount of information transmitted by the acoustic model through the ASR

channel, it is desired to have a high mutual information between the feature Zt and the

underlying state Qt expressed as

I (Zt ;Qt ) = H(Zt )−H(Zt |Qt ) ∀t ∈ {1, . . . ,T } (7.7)

In an ideal scenario, no uncertainty should be left in the acoustic model’s prediction Zt by

revealing the underlying hidden state Qt . Therefore, H(Zt |Qt ) should be zero because of the

one-to-one logical mapping between random variables Qt and Zt . But, due to variability in

the intermediate acoustic features X and possible correlations between states, the acoustic

model’s prediction Zt is not deterministic and the probabilities P (Zt |Qt )’s are not binary,

leading to a non-zero value of H (Zt |Qt ). We rely on I (Zt ;Qt ) as the measure of the information

transmitted by the acoustic model in the ASR communication channel.

7.4.2.2 Property 2: First-order Markovian HMM Structure (P2)

It is desired that the acoustic model yields robustness to the HMM conditional independence

assumption that is often violated by the speech acoustic features. In other words, the feature

Zt emitted by an underlying state Qt should be independent of the past and future states as

well as observations if the current hidden state Qt is known. This property can be expressed as

Zt ⊥⊥
{
Q¬t , Z¬t

} |Qt (7.8)

In this work, we limit our analysis of conditional independence only to the preceding hid-

den state Qt−1 although our algorithmic approach is generally extendable to any order of

dependency computation. We quantify the following condition:

Zt ⊥⊥Qt−1|Qt (7.9)
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To measure the amount of mutual dependence between Zt and Qt−1, we deploy conditional

mutual information as

I (Zt ;Qt−1|Qt ) = H(Zt |Qt )−H(Zt |Qt−1,Qt ) (7.10)

In an ideal scenario, I (Zt ;Qt−1|Qt ) = 0 indicates that the acoustic model fulfills the first-order

Markovian requirement for HMM based decoding.

7.4.3 Computational Procedure Using Gamma Posterior Features

In this section, we develop the procedure to quantify the desired properties P1 and P2 by

using the gamma posteriors generated using the acoustic model. This procedure requires the

ground truth-based forced state alignments to compute the mutual information terms in P1

and P2.

To measure P1 and P2, the following entropy terms must be computed for calculation of the

mutual information measures in (7.7) and (7.10):

{H(Zt ), H(Zt |Qt ), H(Zt |Qt ,Qt−1)} (7.11)

The entropy terms, in turn, require computation of the following probabilities:

{P (Zt ), P (Zt |Qt ), P (Zt |Qt ,Qt−1)} (7.12)

Using forward-backward algorithm on the likelihoods obtained from the acoustic model, we

get the gamma posterior vector zt which is the categorical probability distribution over the

random variable Zt conditioned on the acoustic feature sequence X . Along with zt ’s, we

also generate the ground truth transcription based forced alignments for all the utterances

in the dataset. The forced state alignments (senones alignments in our experiments) are

considered as the underlying true hidden state sequence Q in the context of z-HMM. The

acoustic models are trained using a transcribed training data. We perform the analysis on

a separate development dataset which also has ground truth transcription available. While

gamma posterior vectors zt ’s are probabilistic, the forced alignments are one-hot vectors, i.e.,

they are simply framewise labels from the set of possible states Q.

The probability P (Zt ) required in (7.12) is approximated as the average gamma posterior

probability by marginalization over all frames in the dataset across all the utterances as:

P (Zt ) = [P (Zt = q1), . . . ,P (Zt = qK )]>

≈ 1

N

N∑
t=1

zt

(7.13)
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where N is the total number of frames in the dataset summed over all utterances in the

data. This is an approximation because the marginalization considers a uniform probability

distribution for all the observations sequences X in the dataset. Given a large sample size in

the analysis, this ensemble averaging can be assumed to yield a reliable estimate.

To obtain the state conditional gamma posterior probabilities P (Zt |Qt = qk ), we consider

only those frames for marginalization which are aligned to the state Qt = qk in the forced

alignments. Thus, we have

P (Zt |Qt = qk ) = [P (Zt = q1|Qt = qk ), . . . ,P (Zt = qK |Qt = qk )]>

≈ 1

Nqk

∑
t s.t.

Qt=qk

zt
(7.14)

where Nqk is the number of frames in the dataset aligned to senone qk . Similarly, we compute

P (Zt |Qt = qk ,Qt−1 = qk ′) by averaging the gamma posteriors only over those frames that are

aligned to state Qt = qk and the preceding frame is aligned to the state Qt−1 = qk ′ in the forced

alignment as

P (Zt |Qt = qk ,Qt−1 = qk ′ )

= [P (Zt = q1|Qt = qk ,Qt−1 = qk ′ ), . . . ,P (Zt = qK |Qt = qk ,Qt−1 = qk ′ )]>

≈ 1

Nqk ,qk′

∑
t s.t. Qt=qk
Qt−1=qk′

zt

(7.15)

where Nqk ,qk′ is the number of frames aligned to senone qk such that preceding frame is

aligned to senone qk ′ .

The steps to compute the entropies in (7.11) and the calculation of the required mutual

information quantities from probabilities computed in (7.13), (7.14) and (7.15) are listed

in Algorithm 3. The state prior probabilities P (Qt = qk ) and state transition probabilities

P (Qt = qk ,Qt−1 = q ′
k ) involved in Algorithm 3 are obtained by the frequency count approach

using the ground truth forced state alignment. Quality of the acoustic model can now be

measured based on a high value of I (Zt ;Qt ) (property P1) and a low value of I (Zt ;Qt−1|Qt )

(property P2).
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Algorithm 3 Computing I(Zt;Qt) and I(Zt;Qt−1|Qt) using gamma posterior probabilities

Require: : Gamma posterior vectors zt ’s and forced state alignments Q for the dataset.

1: P (Qt = qk ) and P (Qt = qk ,Qt−1 = q ′
k ) are estimated by the frequency count approach

using the forced state alignment.

2: P (Zt ) is estimated by averaging all the gamma posteriors zt from the data.

3: H(Zt ) is calculated using (7.2).

4: P (Zt |Qt = qk ) is estimated through averaging all posteriors zt aligned to state qk .

5: H(Zt |Qt = qk ) is calculated using (7.4).

6: P (Zt |Qt = qk ,Qt−1 = qk ′) is estimated by averaging all posteriors zt aligned to state qk

preceded by state qk ′ .

7: H(Zt |Qt = qk ,Qt−1 = qk ′) is calculated using (7.4).

8: H(Zt |Qt ) is calculated using (7.3) on the state specific entropies estimated in Step 5 and

probabilities P (Qt = qk ) from Step 1.

9: H(Zt |Qt−1,Qt ) is calculated using (7.3) on the state transition specific entropy terms

estimated in Step 7 and probabilities P (Qt = qk ,Qt−1 = q ′
k ) from Step 1.

10: I (Zt ;Qt ) is calculated using (7.7) and the entropies estimated in Steps 3 and 8.

11: I (Zt ;Qt−1|Qt ) is calculated using (7.10) and the entropies estimated in Steps 8 and 9.

7.5 Numerical Evaluation and Analysis

7.5.1 Experimental Setup

For our analysis, we work with AMI IHM dataset. The details of the setup are similar as in

Section 5.4.2. Note that a baseline GMM-HMM system is used to obtain the ground truth

based forced senone alignments over the train set and dev set. These alignments serve as the

hidden state sequences Q for our analysis.

Our baseline DNN acoustic model has 4 hidden layers with 1200 nodes each, and it is trained

using hard targets from the forced senone alignments. Details of LSTM based and TDNN

acoustic models are provided in Section 6.1.2.1. Details of the sparse and low-rank en-

hancements based student DNN models are discussed in Section 5.4.3. For our analysis,

the gamma posterior probabilities are obtained by employing the forward-backward algo-

rithm on emission probabilities generated by the concerned acoustic models. To approximate

the forward-backward algorithm, we generate very deep lattices by choosing a high value for

–lattice-beam=100 and setting –determinize-lattice=false in Kaldi lattice generation

scripts. We ignore the contribution of language model by setting –acoustic-scale=100
during decoding which essentially diminishes the language model scores. Finally, we also set

–lm-scale=0 and use a large value –beam=100 for beam search in Kaldi decoding scripts.

The information theoretic analysis of GMM versus DNN acoustic models is shown in Table 7.2.

The last row shows all the quantities by treating forced senone alignments as binary posterior

features. Hence, the entropy H(Zt ) here refers to the entropy of the prior probabilities of
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senone classes and this row essentially depicts the most ideal values we could hope to achieve

from an acoustic model.

7.5.2 Comparing DNN v/s GMM Acoustic Modeling

We compare the first two rows of Table 7.2 here. Our primary observation is that the DNN

acoustic model exhibits higher mutual information I (Zt ;Qt ) (property P1) as compared to

GMM. This indicates that the capacity of the ASR communication channel (Figure 7.1(c)) using

DNNs is higher than GMMs and the DNN based posteriors are more accurate in discrimination

of the underlying senone classes. This observation confirms the well known better modeling

capability of DNN as compared to GMM.

The low values of state conditional entropies (H(Zt |Qt ) and H(Zt |Qt ,Qt−1)) in the case of

DNN acoustic model suggests that DNN are able to learn a sharper distribution over senones

as compared to GMMs. When the DNN based sharp state conditional posterior vectors

P (Zt |Qt = qk ) are averaged across all the states, i.e., ∀qk ∈Q, the resulting posterior P (Zt ) has

comparatively more evenly spread out probability distribution than in the case of GMM. This

leads to the DNN having a higher entropy H(Zt ) than the GMM.

Next, we observe that the HMM conditional independence criterion (property P2) is better

satisfied by the DNN acoustic model than by the GMM acoustic model as the mutual infor-

mation I (Zt ;Qt−1|Qt ) is lower in the former case. In terms of classical HMM, the acoustic

features X violate the HMM conditional independence assumption to the same extent for

both DNN and GMM acoustic models. But in terms of z-HMM, the DNN acoustic model

transforms the acoustic features X to generate the observed feature sequence Z which is in

better compliance with property P2 than X . Hence, we conclude that DNNs are more robust

than GMMs against the violation of HMM conditional independence assumption.

When these models are used to perform ASR on test data, DNN performs significantly better

than GMM as expected. Since the information theoretic criteria are computed before actual

full-fledged decoding for ASR, this study essentially disentangles the contribution of the

acoustic modeling from the language modeling. The additional information conveyed by the

language model can be quantified nevertheless by re-estimation of the gamma posteriors after

a full-fledged ASR decoding.

7.5.3 Effect of Increasing Depth in DNN Acoustic Models

An interesting evaluation is to measure the contribution of increasing the number of DNN

hidden layers. The results are listed in Tables 7.2. We compare DNN architectures in a manner

similar to the study in [Ravuri and Wegmann (2016)] where the number of hidden layers

is increased with or without keeping the total number of network parameters equal to the

baseline DNN. DNN with 0 hidden layers is merely a logistic regression model with input layer

connected directly to the output layer.

112



7.5. Numerical Evaluation and Analysis

Table 7.2: Information theoretic analysis of different acoustic models to evaluate properties
P1 and P2: Higher mutual information I (Zt ;Qt ) (7.7) indicates higher accuracy of the acoustic
model and lower conditional mutual information I (Zt ;Qt−1|Qt ) (7.10) shows compliance with
the HMM conditional independence assumption. Information theoretic analysis is done on
AMI-dev set and AMI-eval set is used for evaluating ASR performance; last column shows
word error rate (WER, in %). xHL denotes number of hidden layers and EP denotes equal
parameters as the baseline DNN with 4 hidden layers.

Acoustic
H(Zt ) H(Zt |Qt ) H(Zt |Qt ,Qt−1) I (Zt ;Qt ) I (Zt ;Qt−1|Qt )

AMI eval

Model (WER%)

GMM 9.698 3.416 3.018 6.281 0.399 42.9

DNN(-4HL) 9.890 2.915 2.527 6.975 0.388 32.4

DNN-3HL 9.922 2.964 2.568 6.957 0.396 32.8

DNN-2HL 9.959 3.018 2.618 6.942 0.400 34.5

DNN-1HL 10.026 3.120 2.710 6.906 0.410 36.9

LogReg(-0HL) 10.302 3.719 3.252 6.583 0.466 52.0

DNN-3HL-EP 9.934 2.953 2.560 6.981 0.393 33.0

DNN-2HL-EP 9.943 3.013 2.613 6.930 0.399 34.0

DNN-1HL-EP 10.007 3.098 2.690 6.909 0.408 36.1

Forced Aligned 10.057 0 0 10.057 0 -

As expected, we observe that the mutual information I (Zt ;Qt ) increases with the depth of

the DNN leading to higher acoustic model accuracy. This trend is observed in both the cases-

when the number of model parameters is equal and when they are not. At the same time, the

mutual information I (Zt ;Qt−1|Qt ) gradually decreases with increasing depth which implies

that the property P2 is better satisfied. DNN with more hidden layer has increased robustness

against the violation of HMM conditional independence assumption by acoustic features.

The zero hidden layer logistic regression network (LogReg) has the highest correlation be-

tween the features and the past state, and subsequently performs the poorest in the ASR

task. Compared to this model, the GMM acoustic model performs significantly better in ASR.

While GMM has a low mutual information I (Zt ;Qt ) than LogReg model under property P1, the

former shows a much better compliance in case of property P2. This observation highlights the

importance of mutual information term I (Zt ;Qt−1|Qt ) being low for better ASR performance

under HMM-based frameworks. The comparison and subsequent equivalence of generative

GMM and discriminative log-linear modeling approaches has been studied extensively in

[Heigold et al. (2011)].
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7.5.4 Relations to Cross Entropy Training of DNN

As done for the random variable Zt , we can define another prediction random variable Z̃t

based on the frame level DNN posteriors. Z̃t is conditioned only on the acoustic feature X t at

current time step whereas Zt is conditioned on the complete sequence X . The distribution

of random variable Z̃t is given by the DNN output as P (Z̃t = qk |X t ), ∀qk ∈ Q. The frame

level cross entropy (CE) training of DNNs can be viewed as minimizing the Kullback-Leibler

divergence between frame level DNN predictions P (Z̃t = qk |X t ) and ground truth senone

alignment P (Qt = qk |X ) (which is a binary one-hot vector in case of Viterbi training).

The mutual information term I (Zt ;Qt ) in our analysis is, in fact, indirectly connected to the

CE loss based training of DNN. This is because minimizing the CE loss function between

P (Z̃t = qk |X t ) and P (Qt = qk |X ) leads to more accurate emission probability estimations for

the forward-backward algorithm which in turn gives the probability distribution for Zt . For

the qualitative analysis of the acoustic models, we consider the mutual information I (Zt ;Qt )

(= H(Zt )− H(Zt |Qt )) as a more interpretable quantity than the frame level CE loss. In the

context of z-HMM, it directly quantifies the decrease in uncertainty about the observation

Zt when the correct emitting state Qt is revealed. Hence, a more accurate model for the state

emission distribution leads to a bigger decrease in the uncertainty about the random variable

Zt .

7.5.5 Sparse and Low-rank Acoustic Model Enhancement

In Chapter 5, we modify the forward pass outputs of the baseline DNN using (1) principal

component analysis (PCA) based low-rank reconstruction and (2) overcomplete dictionary

based sparse reconstruction. We illustrated this process again in Figure 7.2(a). This process es-

sentially computes the projection of DNN posterior features on the correct senone subspaces.

In terms of information theory, the acoustic modeling component (Figure 7.2(b)) now consists

of DNN acoustic model followed by an additional block of principal component transform or

dictionary based sparse coding.

Table 7.4 summarizes the results for this section. Analysis of the first three rows shows that

when the DNN posteriors are enhanced using sparse or low-rank reconstruction, the subse-

quent gamma posteriors exhibit much lower entropies H(Zt ) and H(Zt |Qt ) than the baseline

DNN. Also, the mutual information I (Zt ;Qt ), between hidden senone state Qt and the observa-

tion Zt , increases significantly using low-rank and sparse enhancements. These observations

show that low-rank and sparse reconstructions project the DNN posteriors to their class-

specific manifolds and enforce them to capture more information related to the underlying

senone subspaces. This increase in mutual information I (Zt ;Qt ) explicitly quantifies the

additional information that is contributed by the enhancement process. Note that PCA and

dictionary-based reconstruction can exploit the global information about the senone sub-

spaces and thus, they ought to bring additional information to the DNN local estimates. This

information is available in terms of global patterns within each senone’s posterior features, but
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Figure 7.2: (a) Supervised enhancement of DNN based posterior features is illustrated using
low-rank and sparsity based reconstruction as proposed in Chapter 5. (b) PCA and sparse
coding are shown as a distinct and additional level of processing that captures global structures
for better acoustic modeling.

Table 7.3: Information theoretic analysis of different acoustic models to evaluate properties
P1 and P2 using AMI dev set. Rows with sparse and PCA projection results refer to supervised
enhancement of AMI dev set using dictionaries or principal component matrices. Rows with
results on sparse and PCA student refer to DNN acoustic models trained with sparse and
low-rank soft targets obtained from supervised enhancement of AMI train set DNN posteriors.
ASR evaluation on AMI eval set is shown only for the enhanced student models.

Acoustic
H(Zt ) H(Zt |Qt ) H(Zt |Qt ,Qt−1) I (Zt ;Qt ) I (Zt ;Qt−1|Qt )

AMI eval
Model (WER%)

DNN 9.890 2.915 2.527 6.975 0.388 32.4
Sparse Proj. 9.499 1.341 1.142 8.158 0.199 -
PCA Proj. 7.721 0.059 0.051 7.663 0.008 -
Sparse Student 9.852 2.865 2.479 6.987 0.386 31.6
PCA Student 9.902 2.903 2.512 6.999 0.391 31.2

it is not accessible to the baseline DNN during a local forward pass of the acoustic features. It

is only through the supervised enhancement using principal components or an overcomplete

dictionary that we are able to augment this global information in the local framewise posterior

features.

Another interesting observation is that the conditional independence assumption is also better

satisfied (low values of I (Zt ;Qt−1|Qt )) in case of low-rank and sparsity-based projections.

We explain it using Figure 7.3 as follows. The frames aligned with senone qk in the forced

alignment can appear in the neighborhood of different senones in different parts of the speech

utterances. These frames exhibit different contextual information in DNN posteriors due to

different neighboring senones. This contextual information which is always present in the real

data violates the conditional independence assumption of HMM and leads to compromise in

ASR performance. When posterior features are reconstructed using PCA or an overcomplete

115



Chapter 7. On Quantifying the Quality of Acoustic Models in Hybrid DNN-HMM ASR

dictionary, all the frames of senone qk are forced to lie on a common subspace which defines

qk . By controlling the parameters of PCA and sparse reconstruction, we ensure that only the

most important dynamics of the senone subspace are preserved during enhancement of DNN

posteriors. Context dependent information, which is local to an individual frame and does

not appear in the global patterns of the subspace, is reduced after reconstruction. Thus, the

enhanced posterior features fulfill the HMM conditional independence assumption better

than the posteriors before reconstruction.

A caveat here is that the sparse and low-rank enhancements are done in a supervised fashion

on the dev set by using the knowledge of the forced alignments. Such ground truth text-

based alignments cannot be assumed to be available for the test data, and therefore, we can

not perform supervised enhancements in a similar way. To alleviate this issue, we used the

reconstructed posteriors from the training data as enhanced soft targets to train improved

student acoustic models in Chapter 5. The enhanced student models can now be used to

evaluate the ASR performance of our approach on test data. These student DNNs trained

using enhanced soft targets are expected to learn- 1) the acoustic modeling function learned

by the baseline DNN as well as 2) the reconstruction transformation performed by PCA or

sparse coding. Last two rows in Table 7.4 provide the results of our information theoretic

analysis on enhanced student models. While both the sparse and PCA based student models

show an increase in the mutual information I (Zt ;Qt ), the decrease in mutual information

term I (Zt ;Qt−1|Qt ) is only observed in case of the sparse student model. Nevertheless, we get

ASR performance gains from both the models as compared to the baseline DNN suggesting

that the better satisfaction of property P1 outweighs property P2 here. The student models

learn to estimate the posterior probabilities in class-specific subspaces, thus leading to better

acoustic modeling.

Figure 7.3: Sparse and low-rank reconstruction enforces different posterior features of a
senone class to lie on a common low-dimensional subspace. Reconstructed posterior features
have reduced local contextual correlations and satisfy HMM’s conditional independence
criteria better.
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Table 7.4: Information theoretic analysis of LSTM and TDNN acoustic models to evaluate
properties P1 and P2 using AMI dev set. ASR evaluation is done on AMI eval set.

Acoustic
H(Zt ) H(Zt |Qt ) H(Zt |Qt ,Qt−1) I (Zt ;Qt ) I (Zt ;Qt−1|Qt )

AMI eval

Model (WER%)

DNN (CE) 9.890 2.915 2.527 6.975 0.388 32.4

DNN (CE+sMBR) 9.744 2.745 2.418 6.999 0.327 29.6

LSTM 9.948 2.958 2.562 6.991 0.396 30.9

Bi-LSTM 9.912 2.590 2.231 7.322 0.359 29.4

TDNN 9.837 2.655 2.271 7.182 0.384 29.7

7.5.6 Analysing Various State-of-the-art Acoustic Models

The first two rows in Table 7.4 compare the results of our analysis on the baseline CE loss

based DNN acoustic model with a sMBR loss based sequence discriminatively trained DNN

acoustic model. The sMBR objective for sequence discrimination directly optimizes the DNN

parameters to minimize the Bayes risk in the state-level alignment [Veselỳ et al. (2013)]. In our

experiments, the sequence trained model significantly outperforms the baseline model in ASR

performance on AMI eval set. This observation is strongly supported by our analysis on the dev

set which shows favorable results in terms of better satisfaction of both property P1 and P2 for

the sequence trained model. Specifically, we notice a big decrease in the mutual information

term I (Zt ;Qt−1|Qt ) as compared to the increase in the term I (Zt ;Qt ). This observation hints

that the superiority of sMBR loss based models originates more from the increased robustness

against the violation of HMM assumptions as compared to the increased accuracy in the

modeling of state emission probabilities.

Table 7.4 also compares the results of our analysis on LSTM and TDNN acoustic models. These

models are essentially different from conventional feed-forward DNNs as they use recurrent

or convolutional connections to exploit longer contexts of acoustic features as compared to

the simplistic splicing based context-appending done in the case of DNNs. The architecture

of these models is same as in the setup described in Section 6.1.2.1.

In our analysis, the Bi-LSTM model gives the best ASR performance followed by TDNN and

then the LSTM acoustic model. The strength of Bi-LSTM model is corroborated by the in-

creased value of mutual information I (Zt ;Qt ) and decreased value of I (Zt ;Qt−1|Qt ). This

confirms that Bi-LSTM model not only produces highly accurate state posterior probabili-

ties (property P1) but also satisfies the z-HMM conditional independence assumption better

than the baseline DNN (property P2). We notice similar results in the case of TDNN where

the improved ASR performance is in accordance with the expected changes in the mutual

information terms. In the case of LSTM acoustic model, while there is an improvement in

ASR performance, we notice a small unexpected increase in information term I (Zt ;Qt−1|Qt )

indicating an increased violation of HMM assumptions. However, we conjecture that this is

compensated by the increase in information I (Zt ;Qt ) leading to stronger acoustic modeling
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than the baseline DNN. This observation can also be partially attributed to the fact that prop-

erty P2 only considers the previous hidden state in analyzing the data-model mismatch. A

comprehensive verification of satisfaction of HMM conditional independence assumption

would require considering all the future and past hidden states as well as observations which

we regard out of the scope of the current work.

We also note here that it is non-trivial to infer how the recurrent and convolutional models

bring robustness against the data-model mismatch and violation of HMM assumptions. We

hypothesize that the longer temporal contexts allow the acoustic models to decorrelate the

correlated acoustic features better and generate gamma posteriors which better comply with

the HMM conditional independence assumption.

7.6 Conclusions

In this work, an information theoretic approach is presented to compare the quality of different

acoustic models in HMM-based ASR. The proposed analysis is based on a novel speaking-

listening z-HMM perspective to HMM-based ASR that exploits the state occupancy probability

distributions as categorical observations emitted by the HMM hidden states. The information

transferred through the ASR communication channel is quantified in our analysis using

random variables associated with the proposed z-HMM formulation. A higher amount of

information transferred through this channel indicates better modeling capability of the

acoustic model and results in improved ASR performance. The conditional independence

assumption of HMM is also evaluated in terms of the conditional mutual information between

the current observation and the previous state if the current hidden state is given. A lower value

of the conditional mutual information shows better compliance with the HMM structure.

Our experimental analysis yields quantitative measurements for different aspects of the su-

periority of DNN based acoustic modeling over GMMs. The contribution of the incremental

increase in the depth of DNN is also measured to study its role in improving the quality of

the acoustic modeling. The proposed analysis can be evaluated before using the acoustic

model for ASR on test data. As a use case, our analysis framework is applied on enhanced

student models trained using PCA and dictionary-based soft targets. These models are shown

to improve upon DNN acoustic modeling by bringing in additional global information about

the senone subspaces to the DNN local estimations. In another application, sMBR loss based

DNN acoustic models as well as LSTM and TDNN based acoustic models are evaluated. State-

of-the-art ASR performance by these models is explained well by the increased amount of

information transferred through the ASR communication channel as compared to baseline

DNN acoustic model. Furthermore, these models are also shown to have increased robustness

against violation of HMM conditional independence assumptions.
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8 Conclusions and Directions for Future
Work

In this chapter, Section 8.1 summarizes the conclusions of this thesis and Section 8.2 discusses

the directions of future research.

8.1 Conclusions

In this thesis, we addressed the problem of automatic speech recognition using sparse and

low-rank modeling techniques. We hypothesize that speech data lives in class-specific low-

dimensional subspaces whereas random unstructured noise is scattered in high dimensions.

In this regard, we identified DNN based posterior features as excellent representations for

modeling the class-specific low-dimensional subspaces of speech.

We exploited posterior features as exemplars for ASR under the exemplar-based sparse repre-

sentation approach. We demonstrated how posterior features provide an elegant compressive

sensing based interpretation to the HMM-based ASR formulation where word probabilities

can be directly obtained from phone probabilities using an overcomplete dictionary. We

introduced the use of dictionary learning algorithms and collaborative hierarchical sparse

recovery to develop a sparse modeling based solution for ASR. We successfully evaluated

this approach on isolated word and connected digit recognition tasks. As a limitation of our

approach, we identified that it is currently non-trivial to extend dictionary learning and sparse

recovery to LVCSR tasks due to lack of data availability and computational resources.

Next, we investigated explicit modeling of low-dimensional structures in speech using dic-

tionary learning and principal component analysis. We showed that albeit their power in

representation learning, DNN based acoustic modeling still has room for improvement in

exploiting the union of low-dimensional subspaces structure underlying speech data. Using

dictionaries and principal components, we transform DNN posteriors into projected posteri-

ors which act as high-quality soft-targets for training improved acoustic models. We motivated

this approach by performing a rank analysis of senone specific subspaces which revealed

that speech data indeed lies in low-dimensional subspaces which are corrupted by undesired
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high-dimensional noise. Using our approach, we showed improvements in ASR performance

on a difficult LVCSR task in both close-talk and far-field conditions. For far-field speech, we

used our approach to perform speech enhancement and improve acoustic modeling for ASR

simultaneously.

Lastly, we developed an analytical framework based on concepts of information theory to

understand why sparse and low-rank modeling of speech data leads to improvements in ASR.

Using a novel z-HMM formulation, this analysis quantified the exact gains brought in by our

approach in 1) increasing the accuracy of acoustic modeling, and 2) satisfying the assumptions

imposed by HMM. We also demonstrated the application of the proposed analysis framework

on a variety of conventional and recent state-of-the-art acoustic models.

To conclude, we conducted a comprehensive set of experiments to provide an empirical

justification for the hypotheses that this thesis is based on, and rigorous theoretical arguments

and analysis further consolidated the experimental validation.

8.2 Directions for Future Research

The research presented in this thesis can be further extended along the following lines:

• The sparse modeling approach developed in Chapter 4 can be formulated into a

Bayesian dictionary-based HMM where state-specific overcomplete dictionaries govern

the emission distribution of hidden states. EM algorithm based training of dictionary

atoms could be devised for this formulation which integrates the strength of exemplar-

based modeling with those of HMMs.

• In Chapter 5, we proposed dictionary and principal component analysis based enhance-

ment of DNN posteriors. In future, this specific operation could be integrated into the

neural network architecture such that the network promotes the global class-specific

patterns and suppresses local misinformation. Class-specific sparse autoencoders and

bottleneck NN architectures are promising tools in this direction. In general, we ad-

vocate the inclusion of sparsity and low-rankness constraints in designing robust and

generalizable models for speech recognition.

• We proposed far-field speech enhancement using dictionary learning and sparse mod-

eling of acoustic features in Chapter 6. The promising results achieved in the context

of ASR suggest that this approach can be used in a supervised fashion to improve the

quality of far-field speech.

• Projection of speech features on low-dimensional class-specific subspaces resulted in

noise robust ASR in Chapter 5 and 6. Further applications of the proposed approach can

be sought on more challenging speech recognition tasks like tackling accented speech,

multi-channel reverberant speech, multi-lingual databases, and ASR under speech

disorder condition, etc. An example of an application would be as follows. Accented

speech features could be projected on sparse modeling dictionaries that are learned

from native speakers’ speech. Transformation of the accented phonetic space to native
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phonetic space may lead to improvements in accented speech recognition task.

• In future, the information theoretic analysis framework proposed in Chapter 7 could

be extended to evaluate the quality of the acoustic modeling component along with

the language modeling component, or to just compare various language modeling

techniques against each other.
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