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Abstract

DYN3D is a well-established Light Water Reactor (LWR) simulation tool and is being

extended for safety analyses of Sodium cooled Fast Reactors (SFRs) at the HZDR1. This

thesis focuses on the first stage of the development process, that is, the extension and

application of DYN3D for steady-state and transient SFR calculations on reactor core

level.

In contrast to LWRs, the SFR behavior is especially sensitive to thermal expansions of

the reactor components. Therefore, a new thermal-mechanical module accounting for

thermal expansions is implemented into DYN3D. At first step, this module is capable

of treating two important thermal expansion effects occurring within the core, namely

axial expansion of fuel rods and radial expansion of diagrid.

In order to perform nodal calculations with DYN3D, pre-generated homogenized few-

group cross sections (XS) are necessarily needed. Therefore, prior to the development

of thermal expansion models, a general methodology for XS generation is established

for SFR nodal calculations based on the use of the Monte Carlo code Serpent.

The new methodological developments presented in this thesis are verified against the

Monte Carlo solutions of Serpent. Two SFR cores are used for testing: the large oxide

core of the OECD/NEA benchmark and a smaller core from the Phenix end-of-life

tests. Finally, the extended DYN3D is validated against selected IAEA benchmark tests

on the Phenix end-of-life experiments that contain both steady-state and transient

calculations.

The contribution to the SFR-related developments at the HZDR, as presented in this

thesis, makes it possible of performing steady-state and transient calculations for

SFRs on reactor core level by using DYN3D. With this study, the basis of the next stage

of DYN3D developments is established, that is, the up-scale of SFR analysis to system

level can continue by coupling with a sodium capable thermal-hydraulic system code.

1Helmholtz-Zentrum Dresden-Rossendorf
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Kurzfassung
Der Code DYN3D ist der etablierte Kernsimulator für Leichtwasserreaktoren (LWR)

am Helmholtz-Zentrum Dresden-Rossendorf (HZDR). Dieser soll für die Sicherheits-

analyse von natriumgekühlten schnellen Reaktoren (SFR) erweitert werden. Diese

Arbeit konzentriert sich auf die erste Phase dieses Entwicklungsprozesses welche die

Erweiterung und Anwendung von DYN3D für Berechnungen stationärer als auch

transienten SFR Analysen auf Reaktorkernebene zum Inhalt hat.

Im Gegensatz zu Leichtwasserreaktoren ist das SFR Verhalten besonders empfindlich

gegenüber thermischer Ausdehnung von Reaktorkomponenten. Daher wurden neue

thermomechanische Modelle in DYN3D implementiert welche diese Wärmeausdeh-

nungen berücksichtigen. Im ersten Schritt wurden diejenigen Modelle entwickelt,

die die zwei wichtigsten Wärmeausdehnungseffekte innerhalb des Kerns behandeln.

Dies betrifft die axial Ausdehnung der Brennstäbe und die radiale Ausdehnung der

Kerntrageplatte.

Um Diffusionsrechnungen auf nodaler Ebene mit DYN3D durchführen zu können, war

die Erzeugung von Mehrgruppen Wirkungsquerschnittsdaten (XS) notwendig. Daher

wurde, vor der Entwicklung der Ausdehnungsmodelle, eine allgemeine Methodik für

die Erstellung von SFR-Querschnittsbibliotheken für nodale SFR Analysen mit Hilfe

des Monte-Carlo Programm Serpent etabliert.

Die in dieser Arbeit vorgestellten Entwicklungen wurden gegen die mit Serpent be-

rechneten Monte-Carlo Referenzlösungen verifiziert. Zum Testen wurden folgenden

zwei SFR Kernkonfigurationen verwendet. Der große oxydische Kern des OECD/NEA

Benchmark und ein kleinerer Kern aus den Experimenten zum Zyklusende des Phenix.

Zur Validierung wurden schließlich mehrere Tests, die sowohl stationäre als auch

transiente Fälle aus den Phenix-Experimenten enthalten, mit der erweiterten DYN3D

Version berechnet.

Der Beitrag dieser Arbeit zur SFR bezogener Entwicklungen am HZDR ermöglicht

nunmehr die Analyse von stationären und transienten SFR Fälle auf Reaktorkerne-

bene mit Hilfe von DYN3D. Durch diese Studie wurde die Grundlage für die nächste

v



Abstract

Stufe der DYN3D Entwicklung geschaffen, welche die Erweiterung der SFR-Analyse

auf Systemebene durch Kopplung mit einem Natrium-fähigen thermohydraulischen

Systemcode beinhalten kann.

Schlüsselwörter: SFR, Wärmeausdehnung, Wirkungsquerschnittsdaten, Nodal Metho-

den, 3D-Neutronenkinetik, Monte Carlo, Serpent, DYN3D
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1 Introduction

This introductory chapter provides an overview on the Sodium cooled Fast Reactors

(SFR) by summarizing the operated units of the past and pointing out the current

trends for the new designs (Section 1.1). The state-of-the-art computational tools for

SFR safety analyses are reviewed in Section 1.2. The reactor dynamics code DYN3D,

as the selected tool for SFR calculations in this study, is presented in Section 1.3.

The objectives of this study are stated in Section 1.4, while the thesis structure is

introduced at the end of the chapter (Section 1.5).

1.1 The sodium cooled fast reactor technology

In 2016, the nuclear reactors provided around 14% of the total electricity generation

worldwide (IAEA, 2017b). There are 454 nuclear power reactors in operation (IAEA,

2018b), from which around 85% are Light Water-cooled Reactors (LWRs), as of 2018

(Table 1.1). The rest of available types is comprised of 49 Pressurized Heavy Water

cooled Reactors (PHWR), 14 Gas Cooled Reactors (GCR) and three Sodium cooled Fast

Reactors (SFR). By utilizing such a LWR-dominated nuclear reactor fleet, the currently

identified uranium resources would be only sufficient for over 135 years, considering

uranium requirements of about 56 600 tU (NEA, 2016b).

The need to tackle this challenge of resource-ecological sustainability was one of the

main motivations to form the Generation IV International Forum (GIF) (NEA, 2014).

The GIF became a knowledge exchange platform on the development of next gener-

ation nuclear energy systems and serves as a guide for international and domestic

research and development (R&D) programs. Additionally, the GIF sets up ambitious

1



Chapter 1. Introduction

Table 1.1: Operational nuclear power reactors worldwide, as of (IAEA, 2018b).

Reactor type Descriptive name of reactor type
Number of

reactors

Total net

electrical

capacity [MW]

LWR Light Water Reactor 387 363933

PHWR Pressurized Heavy Water Reactor 49 24598

GCR Gas Cooled Reactor 14 7720

SFR Sodium Fast Reactor 3 1400

Total 453 397651

technological goals in order to drive innovative R&D programs to obtain such eco-

nomically affordable systems that are capable of efficient utilization of nuclear fuel.

These systems are also required to minimize long lived radioactive waste, and meet

enhanced standards of safety and proliferation resistance (NEA, 2014).

Six potential reactor concepts were selected by GIF that with further R&D could cover

these goals of next generation (IV) systems (overview in Table 1.2): Sodium cooled

Fast Reactor (SFR), Lead cooled Fast Reactor (LFR), Gas cooled Fast Reactor (GFR),

Molten Salt Reactor (MSR), Supercritical Water cooled Reactor (SCWR) and Very High

Temperature Reactor (VHTR).

Three of the selected Generation IV designs are operated in fast neutron spectrum.

These reactors are capable to significantly reduce the radiotoxicity levels of the spent

fuel such that the time burden of the long-term storage facilities can be lessened by

several orders of magnitude to as low as couple thousand years. It has to be noted,

that such progress can be only achieved by utilizing FBRs in a closed fuel cycle where

plutonium of the spent fuel is reused while the minor actinides are transmuted after

separation. Furthermore, the fast spectrum in the system is the base requirement for

breeding of fissile fuel from fertile uranium. By utilizing such Generation IV FBRs, the

uranium resources could be substantially extended and the global nuclear reactor

fleet could be potentially fueled for thousands of years (NEA, 2008).

Among all innovative designs, the SFR is one of the leading concepts due to the vast

operational experience accumulated since the first experimental SFR, the EBR-I, was

brought to criticality in 1951 by the USA (Michal, 2001). Several experimental designs

followed in the USA, while the rest of the world also picked up and produced several

2



1.1. The sodium cooled fast reactor technology

Table 1.2: Design parameters of the six Generation IV concepts (NERAC and GIF, 2002;
Waltar et al., 2012).

Generation IV

system

Neutron

spectrum

Coolant ma-

terial

Outlet coolant

temperature (◦C)

Power density

(MWth/m3)

SFR fast sodium 550 350

LFR fast lead 550 77

GFR fast helium 850 100

MSR fast / thermal F− salts 700 22

SCWR thermal / fast water 510 100

VHTR thermal helium 1000 6-10

experimental reactors. Starting from the 70’s, five demonstration units (>500 MWth)

were built and operated by the USSR (BN-350, BN-600), France (Phenix), UK (PFR)

and Japan (MONJU) (IAEA, 2006, 2012). Two commercial size SFRs were successfully

built in the past. First is the Superphenix reactor with nominal power of 2990 MWth

sparsely operated till 1997 in France (Schneider, 2009). Second is the recently started

BN-800 in Russia with 2100 MWth nominal power (WNN, 2016a). The list of all SFRs

that were able to gain operational experience so far, are presented in Table 1.3 beside

the only two not Na-cooled fast reactors that ever reached criticality. One of them

is the first ever-built fast reactor Clementine that was cooled with mercury, and the

other is the only sodium-potassium cooled fast reactor DFR (IAEA, 2006, 2012).

Currently, several countries still consider the SFRs as one of the most promising

Generation IV concepts based on their own past experience. Not just the fact that

Russia, India and China are operating two experimental and three power generating

SFR units (Table 1.3), but also the intentions stated by other countries for national

SFR R&D programs (IAEA, 2015), confirm the dedication towards the sodium cooled

technology. Table 1.4 summarizes all intended near- and mid-term deployments of

fast reactors, where the majority of SFRs is clearly seen.

In EU, four Generation IV demonstrators are planned to be constructed: the SFR-

prototype ASTRID (Rouault et al., 2015; Venard et al., 2015; Beck et al., 2017, 2018), the

ALFRED lead cooled fast reactor (Grasso et al., 2014), the ALLEGRO gas cooled fast

reactor (Stainsby et al., 2011) and the MYRRHA lead-bismuth eutectic (LBE) cooled

fast reactor (Van den Eynde et al., 2015). The latter one is intended to be used in critical

and subcritical mode in order to exploit both concepts at reasonable power scale for

3
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Table 1.3: Fast reactors achieved criticality (adopted from (IAEA, 2006, 2012)).

Reactor Type Country
First

critical

Coolant,

Design
Fuel MWth Status

CEFR E CHI 2010 Na, Pool oxide 65 In op.

Rapsodie E FRA 1967 Na, Loop oxide 40 Shutdown

Phénix D FRA 1973 Na, Pool oxide 563 Shutdown

Super-

Phénix
C FRA 1985 Na, Pool oxide 2990 Shutdown

KNK-II E GER 1972 Na, Loop oxide 58 Shutdown

FBTR E IND 1985 Na, Loop carbide 40 In op.

JOYO E JAP 1977 Na, Loop oxide 140 Suspended

MONJU D JAP 1994 Na, Loop oxide 714 Suspended

BR-10 E RUS 1958 Na, Loop

oxide

carbide

nitride

8 Shutdown

BOR-60 E RUS 1968 Na, Loop oxide 55 In op.

BN-350 D KAZ 1972 Na, Loop oxide 750 Shutdown

BN-600 D RUS 1980 Na, Pool oxide 1470 In op.

BN-800 C RUS 2014 Na, Pool oxide 2100 In op.

DFR E GBR 1959
NaK,

Loop
metal 60 Shutdown

PFR D GBR 1974 Na, Pool oxide 650 Shutdown

Clemen-

tine
E USA 1946 Hg, Loop metal 0.025 Shutdown

EBR-I E USA 1951
NaK,

Loop
metal 1.2 Shutdown

LAMPRE E USA 1961 Na, Loop metal 1.0 Shutdown

EBR-II E USA 1963 Na, Pool metal 65.5 Shutdown

Fermi-1 E USA 1963 Na, Loop metal 200 Shutdown

SEFOR E USA 1969 Na, Loop oxide 20 Shutdown

FFTF E USA 1980 Na, Loop oxide 400 Shutdown

E – Experimental, D – Demonstrator, C – Commercial

4



1.1. The sodium cooled fast reactor technology

Table 1.4: Fast reactors for near- and mid-term deployment (adopted from (IAEA,
2015)).

Reactor Type Country Plan
Coolant,

Design
Fuel MWe Status

TWR-P D CHI 2022a Na, Pool metal 600 Design

TWR C CHI 2020sa Na, Pool metal 1150 Design

CFR-600 D CHI 2025 Na, Pool oxide 600 Design

CFR-1000 C CHI 2030 Na, Pool
oxide,

metal
1000 Design

ASTRID D FRA 2025 Na, Pool oxide 600 Design

ALLEGRO D EU1 2030 He, Pool
oxide,

carbide
75 Design

ALFRED D ROM 2025b Pb, Pool oxide 120 Design

MYRRHA E BEL 2025c PbBi, Pool oxide 100th Design

PFBR D IND 2016d Na, Pool oxide 1250
Under

const.

JSFR D JAP 2025 Na, Loop oxide 750 Susp.

Prototype

SFR
D KOR 2028 Na, Pool metal 150 Design

SVBR-100 C RUS 2025e PbBi, Pool
oxide,

nitride
100 Design

BREST-300 D RUS 2020f Pb, Pool nitride 300 Design

MBIR E RUS 2020 Na, Pool
oxide,

nitride
30

Under

const.

BN-1200 C RUS 2025 Na, Pool
nitride,

oxide
1220 Postp.

R – Research, D – Demonstrator, C – Commercial
1. Czech Republic, Hungary or Slovakia.
a. (WNN, 2015), b. (WNN, 2013), c. (SCK•CEN, 2016), d. (Narasimhan, 2016),
e. (Petrochenko et al., 2017), f. (WNN, 2016c).
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LBE technology. In subcritical mode, it is planned to utilize an accelerator driven

system (ADS) to obtain criticality. In European Union, the ASTRID is considered as

the reference technology beside the lead cooled (LFR) and gas cooled alternatives

(ESNII Task Force, 2010). Currently, the biggest European collaborative project on SFR

systems is the ESFR-SMART (Mikityuk et al., 2017), which aims to further improve the

safety of the Generation IV SFRs.

In Russia, after the recent begin of operation of the BN-800, the new multipurpose

sodium cooled fast neutron research reactor (MBIR) is already under construction.

BOR-60, the only in the world operating fast research reactor (WNN, 2016b) will be

replaced by the MBIR. India is expecting to achieve first criticality of the Prototype

Fast Breeder Reactor (PFBR) when the advanced stage of commissioning will be finally

passed (Narasimhan, 2016). China plans of building the first demonstration unit

based on experience of the currently operating CEFR, moreover, the country agreed

to host first travelling wave reactor (TWR), which will be cooled with liquid sodium

(WNN, 2015).

Despite all the experience gained from building and operating numerous SFRs, the

success of new advanced design heavily depends on the availability of sophisticated

computational tools, which can accurately predict the behavior of nuclear reactors

under operational and accident conditions. These codes have to have the ability to

model all important physical phenomena that could affect the reactor core behavior,

like temperature and density variations, or even dimensional changes through thermal

expansion.

1.2 Computational analyses of SFR systems

A multitude of simulation tools are currently in use for safety analyses of SFR sys-

tems. There are specialized single codes for reactor physics, thermal-hydraulics (TH),

fuel behavior or structural mechanics modeling; and there are code systems that

incorporate some of the specialized codes for a more comprehensive analysis.

For a deterministic safety analysis, several codes or a code system have to be selected

to cover physical phenomena that could impact the reactor behavior in operational

states or in accident conditions. Each nuclear reactor research institution has its

own preferences and code selections to perform such SFR analyses, and to avoid a

boundless listing of codes here, only three big research organizations are highlighted
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with well-defined state-of-the-art code systems:

• ANL – Argonne National Laboratory (USA)

The steady-state neutron transport calculations are done with the DIF3D code,

that incoporates the finite difference diffusion (FDD) solver of the original

version DIF3D (Derstine, 1984) as well as the variational nodal transport method

VARIANT (Palmiotti et al., 1996). The multi-group cross sections needed for

DIF3D calculations are calculated with the MC2-3 code (Lee and Yang, 2017)

dedicated to fast reactor analysis, as it was also done in the EBR-II shutdown heat

removal benchmark (IAEA, 2017a). The perturbation and sensitivity analyses

are performed with VARI3D and PERSENT (Smith et al., 2013) that are based on

the neutron flux solution of FDD and VARIANT solvers respectively.

At ANL, the reference transient simulation tool is the SAS4A/SASSYS-1 code

system (Fanning et al., 2017) capable of deterministic system analysis of antici-

pated operational occurences, design basis accidents and beyond-design basis

accidents in liquid-metal-cooled fast reactors (LMFR). Beside the availabiltiy

of the built-in point kinetics model, SAS4A/SASSYS-1 is also coupled with spa-

tial neutron kinetics versions of the DIF3D solvers: DIF3D-K and VARIANT-K

(Cahalan et al., 2000).

SAS4A/SASSYS-1 is an internationally accepted tool, which is as well used by

the China Institute of Atomic Energy (CIAE) and Terrapower as was seen in

the EBR-II benchmark (IAEA, 2017a). Moreover, by using the 1986’s version of

SAS4A, the SAS-SFR (Imke et al., 1994) was co-developed and currently used

by Commissariat à l’Energie Atomique (CEA), French Radioprotection and Nu-

clear Safety Institute (IRSN), Japan Atomic Energy Agency (JAEA) and Karlsruhe

Institute of Technology (KIT).

• CEA – Commissariat à l’Energie Atomique (France)

At CEA the reference neutronic tool for fast reactor analyses is the ERANOS

code system (Rimpault et al., 2002). ERANOS consist of nuclear data libraries,

solvers and procedures needed to perform reference and design calculations

as well as fuel cycle calculations. The main cornerstone of the ERANOS is the

ECCO cell and lattice code (Rimpault et al., 1989), which is used to generate

effective cross sections and matrices for ERANOS full core calculations. Two

solvers are implemented for steady-state full core calculations: the BISTRO

code (Palmiotti et al., 1987) based on the SN method and the OECD version of
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the variational nodal method, the TGV/VARIANT. The kinetics calculations are

done with the TGV/VARIANT based KIN3D module (Rineiski and Doriath, 1997)

that is capable of point- and spatial kinetics modeling as well as preparing core

kinetics parameters for system analyses.

The ERANOS is also used outside of France in the European community, e.g.,

KIT and Paul Scherrer Institut (PSI), or even in India at Indira Gandhi Centre for

Atomic Research (IGCAR) (Devan et al., 2012) and in Japan at the University of

Fukui (IAEA, 2017a).

The reference system analysis tool is CATHARE (Geffraye et al., 2011), which

was initially developed for Pressurized Water Reactor (PWR) safety analyses, but

later it was also extended and thoroughly validated for SFRs (Tenchine et al.,

2012). CATHARE is a joint development of AREVA, CEA, EDF and IRSN.

• PSI – Paul Scherrer Institut (Switzerland)

The reference tool in PSI is the FAST code system (Mikityuk et al., 2005) for static

and transient analysis of SFR, GFR and LFR. The code system consists of ERA-

NOS for static neutronic calculations, PARCS for dynamic reactor calculations,

TRACE for system thermal-hydraulic modeling, and FRED for fuel behavior

analysis.

PARCS (Downar et al., 2010) developed in the USA is a spatial reactor kinetics

code based on nodal methods that includes multi-group diffusion and SP3

transport solvers. PARCS receives the state-dependent homogenized multi-

group cross sections from ECCO module of the ERANOS code. As substitute for

deterministic code ERANOS is the Monte Carlo code Serpent (Leppänen et al.,

2015), which can also perfrom static neutronic reactor analysis, and provide

kinetic parameters and homogenized cross sections for transient calculations

(Ghasabyan, 2013).

TRACE is a best-estimate system code developed by U.S. Nuclear Regulatory

Commission (NRC) for static and transient thermal-hydraulic analyses of LWR

systems as well as for reactor systems with helium, lead-bismuth eutectic or

sodium coolant. At PSI the TRACE code was extended for advanced fast reactors

(Mikityuk et al., 2005) and was coupled with PARCS and fuel rod behavior code

FRED (Mikityuk and Shestopalov, 2011).

By using such codes systems in deterministic safety analyses of SFR systems, it is

possible to predict the outcome of anticipated operational occurrences, design basis
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1.2. Computational analyses of SFR systems

accidents and beyond design basis accidents that not lead to significant core degrada-

tion. Nevertheless, it has to be noted that any proper safety analysis should include the

simulation of severe accidents with the outcome of core degradation. However, this

topic goes far beyond of this study, and therefore, the computational codes capable of

modeling such events were not mentioned here.

Table 1.5: Spatial fidelity of neutronic solvers in codes or codes sys-
tems applied in SFR system analyses.

Neutronic solver Code or codes system

Point kinetics

SAS4A/SASSYS-1

SAS-SFR

CATHARE

TRACE

3D kinetics

SAS4A/SASSYS-1 with DIF3D-K or VARIANT-K

TRACE/PARCS (FAST system)

SAS-SFR/PARCS

Traditionally, in deterministic safety analysis of SFR systems, a thermal-hydraulic

system code is used together with point-kinetics (PK) as neutron kinetic model (IAEA,

2013; Lázaro et al., 2014a,b). All aforementioned system codes, as summarized in

Table 1.5, include an intrinsic PK solver and can be applied in stand-alone calculations.

Within these codes, the thermal feedbacks on neutronic behavior of the reactor core

are modeled with the help of reactivity coefficients. These coefficient are usually

average over the whole core, and as pointed out by (Lázaro et al., 2014a), the point

neutron kinetic modeling limits the analyses to radially core-symmetric transient

scenarios.

In order to catch local effects or asymmetric core behaviors, the utilization of 3D

neutron kinetics (spatial NK) codes is necessary. Such codes typically used in safety

analyses of SFRs are divided between dedicated fast reactor codes (e.g., DIF3D-K or

VARIANT) and adopted LWR codes such as PARCS. The utilization of an available

well trusted LWR-oriented code is considered a more feasible approach than the

development of completely new computer code requiring extensive expenditure of

resources. Naturally, such a code has to be upgraded for SFR calculations: the physical

models with LWR specific approximations have to be reconsidered, and the missing

SFR system specific models have to be implemented.
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The nodal diffusion codes (e.g. DIF3D-K or PARCS) can be considered attractive

for coupling with thermal-hydraulic system codes because of their relatively short

calculation time, not only in steady-state problems, but especially when modeling

transients. Several coupling examples exist from the aforementioned codes, as listed

in Table 1.5. While at ANL the dedicated fast reactor code DIF3D-K was coupled with

SAS4A/SASSYS-1 (Cahalan et al., 2000), the adopted LWR code PARCS was coupled

with TRACE at PSI (Chenu et al., 2010) and with SAS-SFR at KIT (Ponomarev, 2017).

At the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), this kind of code-extension

is an ongoing project for the in-house developed LWR code DYN3D, a reference

nodal code of Germany (Kliem et al., 2017) in the European reference simulation

platform NURESIM (Chauliac et al., 2011) developed currently in the framework of

the NURESAFE European project (Chanaron et al., 2015; Chanaron, 2017).

1.3 The DYN3D code for SFR analyses

The reactor dynamics code DYN3D (Rohde et al., 2016) is a state-of-the-art three-

dimensional reactor core simulator developed at HZDR in the last two decades. The

code was initially developed for transient analysis of Russian VVER-type reactors,

but was undergoing continuous improvement in order to become an advanced best-

estimate tool for simulating LWR steady-states and transients. DYN3D is being con-

tinuously extended to innovative reactor designs, particularly to SFRs as the main

development line.

In DYN3D, the neutron kinetics models solving the multigroup diffusion equation are

based on nodal expansion methods capable of treating three-dimensional Cartesian

and hexagonal-z geometries. In time-dependent calculations, the integration of the

transient diffusion equation over a neutronic time step is done with the help of an

implicit difference scheme and exponential transformation (Grundmann et al., 2005,

p. 5). The exponent is calculated based on the flux change of previous time step.

The equations of the precursor densities are integrated over time steps by assuming

exponential behavior of the neutron flux and fission source (Rohde et al., 2016).

The code also contains an internal thermal hydraulic model with one- and two-phase

modeling capability and a one-dimensional fuel rod model. The internal 1D fuel

rod model (Rohde, 2001) can estimate realistic fuel and cladding temperature distri-

butions and simulate the gas gap behavior. Beyond the standalone application, the
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DYN3D code can be also used in coupled calculations together with thermal hydraulic

system codes (Kozmenkov et al., 2001, 2015; Kliem et al., 2006), CFD and sub-channel

codes (Kliem et al., 2011; Gomez-Torres et al., 2012), as well as fuel behavior code

TRANSURANUS (Holt et al., 2014, 2015, 2016).

1.3.1 Extension of DYN3D to SFR applications

The availability of the hexagonal diffusion solver in DYN3D is essential for SFR cal-

culations, since all the SFR designs utilize hexagonal lattice for the core geometry.

However, a number of methodological developments are still required in order to use

DYN3D for SFR analyses:

• DYN3D requires pre-generated homogenized few-group cross sections (XS) to

perform any calculations.

• Through the establishment of the XS generation methodology the applicability

of the nodal diffusion solver shall be demonstrated for SFR calculations.

• The thermodynamic properties of sodium coolant have to be implemented in

the internal thermal-hydraulics solver. Additionally, a coupling with a system

code using sodium coolant is preferable to model the reactor primary circuit.

• The DYN3D code has to be extended with a new thermal-mechanical model to

account for the thermal expansion effects, which are significant feedbacks in

SFR systems.

• The newly developed and verified models have to be implemented into the code,

and the extended DYN3D has to be validated with real SFR measurements.

This study is a contribution to the methodological extensions of DYN3D to SFR appli-

cations as described later in Section 1.4.

1.3.2 Preceding DYN3D developments and its application limits

In contrast to usually applying fast deterministic cross section generators (e.g. ECCO

from ERANOS), HZDR made efforts to utilize continuous-energy Monte Carlo methods

for obtaining SFR XS. A number of studies (Fridman and Shwageraus, 2013; Rachamin
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et al., 2013) presented a feasible XS generation methodology on simplified SFR cases

by using the Monte Carlo code Serpent (Leppänen et al., 2015). Nevertheless, the

application of this method has to be investigated on realistic SFR cores in order to

demonstrate the feasibility of Serpent as a general XS generator for nodal diffusion

SFR analysis.

Before this work, the thermal hydraulic solver of DYN3D was updated to include ther-

mal-physical properties of sodium such as thermal conductivity, density, heat capacity

and viscosity (Rohde et al., 2016). This allows the simulation of one-dimensional so-

dium flow in assembly channels. The calculations are still limited to single phase mod-

eling and the applicability of DYN3D is restricted to cases where the sodium remains

liquid during the transient. However, the liquid sodium has high transfer properties,

high thermal inertia and an extensive margin till boiling conditions (>300 K), so the

system safeguards (active and passive) have more time to react, avoid sodium boiling,

and maintain reactor cooling even after shut-down. In order to perform two-phase

flow modeling, including simulations of thermodynamic non-equilibriums or differ-

ent velocities between liquid and vapor phases, additional thermal-hydraulic models

are needed. These developments are out of scope of this doctoral research, and they

planned for a rather later stage of DYN3D extension process.

It has to be noted, that the 1D thermal-hydraulic model of DYN3D is developed for

structured parallel coolant channels. The modeling is limited to scenarios where the

fuel rod cladding and the structure of the fuel bundles remain intact. Even when

the modeling after fuel failure is not possible, the detection of such events was im-

plemented for zircaloy-bounded fuels (Rohde, 2001). Nevertheless, to be this option

available for SFR calculations, an extension is needed to stainless steel or oxide dis-

persed steel claddings. Furthermore, the modeling of core disruptive accidents is not

possible with DYN3D, and the extension to this simulation domain is not foreseen in

the future.

In contrast to LWRs, SFRs are especially sensitive to thermal expansion due to the

combined effect of larger temperature variations and harder neutron spectrum. In

fact, thermal expansions of the core and reactor components such as fuel, cladding,

diagrid, control rod (CR) drivelines, vessel, etc. provide essential reactivity feedbacks

under normal and transient conditions. However, since DYN3D was originally ori-

ented to the LWRs analyses, the modeling of thermal expansion mechanisms was not

considered in the code. Therefore, the development of a new thermal-mechanical
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module accounting for thermal expansions has to be initiated as a part of the SFR re-

lated activities. At first step, the DYN3D code needs to be extended with the capability

of treating two important thermal expansion effects occurring within the core, namely

axial expansion of fuel rods and radial expansion of diagrid. Until then DYN3D is

limited to steady-state calculations with uniform core expansion.

1.4 Objectives of the study

The objectives of this doctoral research can be summarized in the following:

1. Extension and verification of a few-group XS generation methodology that is

applicable for nodal diffusion calculation of realistic SFR cores.

2. Development of thermal expansion models for DYN3D, which can account for

the reactivity effects of the fuel rod and diagrid expansions.

3. Implementation of the new models into the DYN3D code and assessment of the

code for SFR analyses by verification and validation (V&V).

The first part of the contribution is the development of the XS generation methodology

for realistic SFR core designs. Two reference cores are selected for this purpose: the

large 3600 MWth mixed oxide (MOX) core adopted from the OECD/NEA benchmark

(NEA, 2016a) and a smaller 350 MWth MOX core of the Phenix reactor adopted from

the Phenix EOL experiments (IAEA, 2013, 2014). The development of the methodology

is based on the previously mentioned studies (Fridman and Shwageraus, 2013; Racha-

min et al., 2013), and therefore, the continuous-energy Monte Carlo code Serpent is

selected as the XS generator tool. Serpent is also used in this study as the main verifi-

cation tool by providing reference full core Monte Carlo solutions for the code-to-code

comparison.

In the second step of this study, the new thermal mechanical models are developed to

account for thermal expansion effects. In standalone mode, DYN3D is only capable

of core level simulation. Therefore, the thermal mechanic models will only cover

the core-specific effects, i.e. the axial and radial thermal expansion of the core. The

verification of the new models is done by using the two reference cores.

The implementation of the new models into the DYN3D source code is a significant

part of the PhD work. Another important task is the overall V&V of the extended
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DYN3D on reactor core level. The IAEA benchmarks on the Phenix EOL experiments,

including control rod withdrawal tests (IAEA, 2014) and an initial stage of the natural

circulation test (IAEA, 2013), are selected for the more detailed assessment of the

extended version of DYN3D.

1.5 Thesis outline

Chapter 2 presents the methodology to generate homogenized few group cross sec-

tions for nodal diffusion analyses by using Monte Carlo code Serpent. Furthermore,

the description of how to use the Super-homogenization method to improve the nodal

diffusion solution in SFR cores is also described here. Nevertheless, the chapter begins

with a short overview of Serpent code and is followed by the reactor core descriptions

that are used for V&V purposes. The verification of the XS generation methodology is

presented at the end of the chapter.

Chapter 3 provides a detailed description of the newly implemented thermal-mecha-

nical models and presents the results of the initial verification study performed on a

full core level using the two reference cores.

Chapter 4 demonstrates the overall verification and validation study of DYN3D. The

extended code is validated against a selected experiments that were conducted in the

Phenix reactor and were reported in the IAEA benchmarks (IAEA, 2013, 2014). The

first part of the chapter (Section 4.1) presents the code assessment for steady-state

analyses, whereas the second part (Section 4.2) is dedicated for the validation against

a transient scenario.

The final Chapter summarizes the achieved results of the PhD study, and points out

possible directions for future developments based on this study.
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2 Generation of homogenized few-

group cross sections

This chapter presents the general methodology on how to generate homogenized few-

group cross sections (XS) for nodal diffusion analyses of SFR cores. The chapter begins

with the introduction of Monte Carlo code Serpent, followed by the description of two

reference SFR cores in Section 2.2. The general approach to generate XS for nodal

calculation of SFRs is presented in Section 2.3. Afterwards a way to improve the nodal

diffusion solution of SFR cores is introduced by using the Super-homogenization

(SPH) method (Section 2.4). The presented methods are tested on the reference cores

and verified against the full core Monte Carlo solution, as presented in Section 2.5.

2.1 The Serpent code for XS generation

The application of the continuous-energy Monte Carlo method for homogenized XS

generation is a practice that is becoming more and more widespread, despite the

usually high computational costs of such method. The main attractive attribute of

the Monte Carlo method is that the interaction physics, can be simulated without

major approximations typical to the traditional deterministic lattice codes. The other

advantage is that Serpent applies the universe-based constructive solid geometry

(CSG) builder, which makes it possible to apply the Monte Carlo method to produce

XS for practically any kind of reactor design at any level of detail (Leppänen et al.,

2016).

A number of attempts to adapt general purpose Monte Carlo codes for XS generation

were done in the past (Redmond, 1997; Ilas and Rahnema, 2003; Pounders et al.,

2005; Van der Marck et al., 2006). Nevertheless, Serpent (Leppänen et al., 2016) is a
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first continuous-energy Monte Carlo code particularly developed for reactor physics

analysis with the high priority assigned to the development and implementation of

the XS generation capabilities.

The latest versions of the Serpent code can produce a full set of homogenized parame-

ters required by 3D full core simulators including few-group reaction cross sections,

scattering matrices, diffusion coefficients and delayed neutron parameters. It is also

possible to generate discontinuity factors, pin-power form factors and albedos (Lep-

pänen et al., 2016).

Beside the XS generation, Serpent basically covers the traditional reactor analyses

such as the criticality calculations, full core modeling, and fuel cycle analyses. Since

the same code can be used to generate the XS for deterministic reactor simulators and

to obtain the reference Monte Carlo solution, Serpent is the ideal verification tool of

deterministic transport tools, because all additional discrepancies resulting from eval-

uated nuclear data libraries can be excluded (Leppänen et al., 2016). The elimination

of such uncertainties makes it possible to better assess the physical methods of XS

generation (e.g., homogenization procedure or energy group condensation), and the

transport methods used in the deterministic core simulators.

A basic feasibility of using Serpent for the homogenization was demonstrated for a

number of existing and innovative reactor systems. The Serpent applicability as a XS

generator for Pressurized Water Reactor analysis was investigated using theoretical

(Fridman and Leppänen, 2011; Fridman et al., 2013b; Hursin et al., 2013) and real-life

core configurations such as one in the MIT BEAVRS benchmark (Leppänen et al., 2014;

Leppänen and Mattila, 2016), the SPERT-III (Knebel et al., 2016) or the CROCUS reactor

(Siefman et al., 2015; Rais et al., 2017) at EPFL. In (Herman and Shwageraus, 2011;

Fridman et al., 2013a; Hall et al., 2013) the Serpent code was employed to produce

XS for Resource-Renewable Boiling Water Reactor (RBWR) fuel assemblies having a

strong axial heterogeneity. In (Baier et al., 2014) XS for the 3D deterministic analysis

of a block-type High Temperature Reactor were computed by Serpent.

A methodology for producing XS for SFRs was also proposed by (Fridman and Shwa-

geraus, 2013; Rachamin et al., 2013). Although the methodology was successfully

tested, the verification analysis was carried out based on rather simplified SFR core

models. In (Fridman and Shwageraus, 2013) a uranium startup SFR core loaded with

carbide fuel of identical enrichment was considered as a reference core (Fei et al.,

2011). It is worth noting that control rods were not considered in the analysis, which
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is more challenging to model with diffusion codes due to the strong flux gradients

around absorbers. In (Rachamin et al., 2013) only a 2D model of European SFR (ESFR)

core (Fiorini and Vasile, 2011) was used to assess the Serpent performance. Such

method of XS generation, developed on 2D core models, is not necessarily applicable

for 3D nodal calculations, because it neglects the axial spectral effects coming from

axial reflectors and possible fertile blankets. Therefore, the first objective of PhD study

is to further verify the SFR XS generation methodology by applying it to a considerably

more realistic and detailed SFR core configurations presented in the following section.

2.2 Reference core descriptions

In this section, two reference SFR cores are described that were used to asses all new

methods and models presented in this thesis.

2.2.1 Large oxide core from the OECD/NEA benchmark

The large 3600 MWth SFR mixed oxide (MOX) core was one of the selected core designs

by the SFR Expert Group Task Force of OECD/NEA Working Party on Reactor Systems

for code benchmarking (NEA, 2016a). The core is loaded with 225 inner and 228

outer MOX fuel assemblies with variable Pu content and surrounded by 270 radial

reflector assemblies (Fig. 2.1, left). The fuel assemblies include 271 helium bonded

fuel pins with Oxide Dispersion Strengthened (ODS) steel cladding and surrounded

by a hexagonal EM10 steel duct (see Fig. 2.3a). The fuel rods (bundle of pins) consist

of five axial zones, namely lower gas plenum, lower reflector, fuel, upper gas plenum,

and upper reflector. The lower and upper reflectors consist of the EM10 steel pellets

under the fuel rod cladding. At nominal conditions, the active core height is 100.6 cm

and the assembly pitch size is 21.2 cm. Fig. 2.2, left presents the axial and radial fuel

rod description including the distribution of the relative Pu content.

The core is controlled by two independent reactivity control systems. The primary

system contains 24 control and shutdown devises (CSD), each of which has 37 sodium

bonded natural B4C pins (Fig. 2.3b). The secondary reactivity control system com-

prises of the nine Diverse Shutdown Devises (DSD) with 55 sodium bonded enriched

B4C (90.0wt% of 10B) pins (Fig. 2.3c).

In order to simplify the modeling, two uniform temperatures are considered namely
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Inner core

Primary control

Reflector

Outer core

Secondary control

Blanket

OECD/NEA large oxide core Phenix EOL core

Figure 2.1: References cores: radial core layout (to scale).

1500 K for the fuel and 743 K for all structural materials, coolant, and CRs. A detailed

description of the material compositions can be found in the benchmark specifica-

tions (NEA, 2016a). The fuel material compositions taken correspond to the beginning

of equilibrium cycle (BOEC) state.

2.2.2 Phenix End-of-Life core

The selected Phenix EOL core is a 350 MWth SFR core using MOX fuel, and had

undergone several experimental tests in 2009 before definitive reactor shutdown.

From these EOL experiments two test were selected by the IAEA Working Group on

Fast Reactors for code benchmarking: the natural convection test (IAEA, 2013) and

the control rod withdrawal test (IAEA, 2014).

The Phenix EOL core consists of 54 inner and 56 outer MOX fuel assemblies, and firstly

surrounded by 86 blanket assemblies and secondly by 252 reflector assemblies on the

periphery (see Fig. 2.1, right). Furthermore, the core comprises six primary CRs, one

secondary CR in the center, and 14 reflector-type (mixture of sodium and stainless

steel) assemblies inside the core and blanket region as depicted in Fig. 2.1, right. The
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OECD/NEA large oxide core Phenix EOL core

Figure 2.2: Reference cores: Axial fuel rod layout (to scale).

fuel assemblies contain 217 U-Pu MOX fuel pins with SS316 cladding in a helium

bond (Fig. 2.4b). The fuel rods are subdivided into six zones including lower reflector,

lower blanket, fuel, sodium plenum, upper blanket and upper reflector. Fig. 2.2, right

presents the axial fuel rod description of the Phenix core including the distribution of

the relative Pu content (wt%). At room temperature (293 K) the active core height is

85 cm and the assembly pitch size is 12.72 cm.

The core comprises three blanket regions containing fertile fuel pins with more than

98wt% of 238U: lower blanket (Fig. 2.4a) and upper blanket (Fig. 2.4c) in the fuel assem-

blies, and the radial blanket assemblies (Fig. 2.4d). The primary control assemblies

contain seven enriched B4C pins (48wt% of 10B) as depicted in Fig. 2.4e. For the

nominal case, the CSD and DSD assemblies remain at the parking position that is the

bottom of the CR pins is located at the top of the active core.

In the benchmark specifications, the EOL isotopic densities for the six average core

zones were provided. However, atomic densities of the fission products (FPs) were

not explicitly given but rather represented by six lumped FPs (also known as pseudo

FPs) for the main actinides (i.e. 235U, 238U, 239Pu, 240Pu, 241Pu and 242Pu). In order

to approximate the explicit FP content, single-assembly burnup calculations were

performed using the Serpent code. The assembly included six “test” fuel pins each

containing one of the six main actinides mentioned previously. These test fuel pins

were introduced to obtain the burnup-dependent FP vector for each of the six main

actinides. The final FP compositions used in the Serpent calculations were estimated

by scaling the obtained FP vectors with the corresponding atomic densities of the
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(a) Fuel assembly (b) CSD assembly (c) DSD assembly

Blue – sodium, green – fuel, purple – EM10 steel, yellow – natural B4C, red – enriched B4C

Figure 2.3: Radial assembly layouts of the OECD/NEA core.

(a) Fuel assembly – Lower
blanket

(b) Fuel assembly – Fissile fuel (c) Fuel assembly – Upper
blanket

(d) Radial blanket assembly (e) Primary control assembly

Blue – sodium, green – fissile fuel, purple – SS316 steel, yellow – fertile blanket, red – B4C

Figure 2.4: Radial assembly layouts of the Phenix EOL core.
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pseudo FP provided in the benchmark.

In the benchmark specification, the Phenix core description is simplified in several

ways for the benchmark analyses. The fuel and blanket material compositions are

averaged axially and region wise. The reflector-type assemblies, sodium plenum, axial

shielding and the secondary CR are modeled as homogeneous media. Three average

temperatures are used to take into account the Doppler effect on microscopic cross

sections namely 1500 K for the fuel, 900 K for the blanket and 721 K for structural

materials, sodium coolant, and absorbers. A detailed description of the material com-

positions and core geometry for the Phenix EOL core can be found in the benchmark

report (IAEA, 2014).

2.3 General approach to XS generation for SFRs

In this research, a study was performed to find an optimal set of lattice level models

for generating XS for assembly-wise nodal calculations. The goal was to restrict the

model size and heterogeneity to avoid long computational times, and actually solving

the full core problem with Monte Carlo, while to get an acceptable performance of XS

in nodal calculations. Starting from the simplest model of the 2D infinite assembly

model, the complexity of the model was increased by including more and more of the

real environment, like the neighboring assemblies or non-multiplying axial regions.

The performance of models was assessed by obtaining the keff and radial power

distribution from the full core nodal calculation and comparing with the Monte Carlo

reference. When a more complex model was applied, the new model was accepted if

keff was improved by more than ∼10 pcm, or the maximal power deviation by more

then ∼0.1%. Otherwise, the application of the new model was rejected.

With this study the following combination of models was obtained for XS generation:

• The few-group XS for the fuel assemblies not facing radial reflector were calcu-

lated using a 3D single assemblies model with reflective radial and black (zero

incoming neutron current) axial boundary conditions (BC). This model allows

for a simultaneous generation of XS for several axial fuel zones. The XS were

generated for the fuel region only. Furthermore, the 3D model that includes

all axial regions (e.g., plenums, axial blankets and shielding) accounts for the

axial self-shielding and spectral effects in the fuel XS. By accounting for the

axial environment, these fuel XS perform significantly better in full core nodal
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diffusion calculations, than just using a simple 2D infinite fuel model.

• As demonstrated by (Aliberti et al., 2004; Rachamin et al., 2013), the reflector

assemblies soften the neutron spectrum in the outermost fuel assemblies. These

spectral effects can be accounted for in the outermost fuel assemblies and the

power can be improved by using the 3D fuel-reflector model depicted in Fig. 2.5.

The cross sections are homogenized over the peripheral fuel assemblies facing

the radial reflector only. This model was upgraded from the 2D model originally

proposed by (Fridman et al., 2013c). The 3D version allows a simultaneous

XS generation for all axial layers while accounting for the spectral and spatial

self-shielding effects from the immediate surroundings.

• The XS for blanket assemblies and all non-multiplying regions (i.e. reflectors,

sodium plenum, control rods and their empty channels) are prepared using

2D super-cell models depicted in Fig. 2.6. All super-cells are constructed as

central hexagonal region of interest surrounded by the fuel assemblies. The XS

are homogenized over the central hexagonal region only.

Gray – radial reflector, black – vacuum

Figure 2.5: 3D super-cell model for peripheral fuel assemblies.

The few-group energy structure used for the generation of the XS is a 24-group subset

of the ERANOS 33-group energy structure (Ruggieri et al., 2006) obtained by collapsing

last 10 energy groups (from 24 to 33) into a single thermal group (Table 2.1). This

modification was proposed by (Fridman and Shwageraus, 2013; Rachamin et al., 2013),

because Serpent calculations present large statistical uncertainties in the neutron flux

in thermal groups. For OECD/NEA large oxide core and the Phenix EOL core, the XS

were generated from ENDF/B-VII and JEFF-3.1 nuclear libraries, respectively.

In order to remain consistent in the MC calculations, all Serpent results were obtained

with not higher than 3 pcm uncertainty in the k-eigenvalue. Each set of XS was

generated by using 640 million neutron histories, i.e. 1000 active and 100 skipped

cycles with 640,000 neutrons per cycle. The skipped cycles are to ensure that the

initial transport simulations are excluded from the results, before the fission source

distribution is converged (Brown, 2006; Leppänen, 2007). The computation took
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(a) Gas plenum surrounded
by fuel assemblies

(b) Axial reflector surrounded
by fuel assemblies

(c) CSD surrounded by
fuel assemblies

(d) DSD surrounded by
fuel assemblies

(e) Empty control rod channel
surrounded by fuel assemblies

(f) Radial reflector surrounded
by fuel assemblies

Figure 2.6: 2D super-cell models for non-multiplying regions of the OECD/NEA core.
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Table 2.1: Adopted 24-group energy structure.

Group # Upper energy limit (MeV) Group # Upper energy limit (MeV)

1 2.0000E+01 13 4.0867E−02

2 1.0000E+01 14 2.4787E−02

3 6.0653E+00 15 1.5034E−02

4 3.6788E+00 16 9.1187E−03

5 2.2313E+00 17 5.5308E−03

6 1.3533E+00 18 3.3546E−03

7 8.2085E−01 19 2.0346E−03

8 4.9787E−01 20 1.2341E−03

9 3.0197E−01 21 7.4850E−04

10 1.8315E−01 22 4.5399E−04

11 1.1109E−01 23 2.7536E−04

12 6.7379E−02 24 1.6701E−04

in average from 2 to 4 hours depending on the type of computational architecture

used. Currently at HZDR cluster, two main types of computational architectures are

available for reactor physics application, either the 4×16-core AMD Opterons or the

2×16-core Intel Xeons (Schulz, 2017), where the later has the better performance. The

most optimized computation was achieved by using the hybrid parallelization model,

where 4 MPI processes were used together with 8 or 16 OpenMP threads for Intel or

AMD nodes, respectively.

2.4 Super-homogenization method for SFR analysis

The drawback of the lattice level XS generations is that, it does not consider the full core

configuration. The spatial homogenization is done on assembly level in symmetric

and infinite configurations, where the leakage effect of the real environment is not

completely modeled.

A traditional leakage correction is to use critical spectrum for collapsing the homog-

enized cross sections. The critical spectrum can be obtain by solving, e.g., B1, P1 or

fundamental mode equations (Stammler and Abbate, 1983; Choi et al., 2017). The B1

method is available in Serpent (Leppänen et al., 2016), and by default, the B1-leakage

corrected XS are generated beside the XS that are condensed with the infinite spectra.
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2.4. Super-homogenization method for SFR analysis

The B1 method is typically used to account for the leakage effects in infinite fuel lat-

tice calculations. However, the B1 method relies on certain approximations, in cases

such as fuel surrounded by non-fuel regions, the correction can lead to non-physical

results, as also warned by (Smith, 2016; Leppänen et al., 2016). In addition, B1 is not

applicable for non-multiplying regions by definition.

In this research, the energy condensation with infinite spectra was rather selected in

Serpent, and for more problematic regions, a post-correction of the XS was done de-

pending on its environment. A correction is usually desired when the neutron balance

is not preserved between the heterogeneous transport and the homogenized diffusion

solutions, e.g., between control rod and fuel assemblies. In order to preserve the

multiplications factor and different reaction rates with the homogeneous calculation,

the equivalence theory was introduced by (Koebke, 1978). Two broadly used methods

were developed based on the equivalence theory: the General Equivalence Theory

(GET) by (Smith, 1980) and the Superhomogenization (SPH) method by (Kavenoky,

1978).

In the GET method, the so-called discontinuity factors are calculated for the nodal

surfaces as the ratio of the homogeneous and heterogeneous surface flux. When

applying these factors in nodal diffusion calculations, the homogeneous flux becomes

discontinuous at the nodal interface, but in the mean time the homogeneous flux

distribution of the node becomes the same as the heterogeneous one. This leads to

the simultaneous preservation of reaction rates and the net surface currents (Smith,

1986).

In practice, the GET is mostly applied for two general cases: the infinite single-node

and the super-cell homogenization problems. The procedures for both of these cases

are incorporated in Serpent. In the infinite single-node problem, the whole lattice

model is homogenized for XS with reflective boundary conditions. In this case, the

net boundary currents are reduced to zero and the homogenized flux distribution

becomes uniform. This means that the homogeneous surface flux equals to the node-

average flux that can be used to obtain the discontinuity factor. In order to calculate

the discontinuity factors for infinite single-node problem, the homogeneous and

heterogeneous surface fluxes are calculated by Serpent using surface and cell flux

tallies, respectively (Leppänen et al., 2016). However, infinite single-node models were

not proposed in the XS generation methodology of this research (Section 2.3).

In the super-cell problem, the region intended for homogenization is modeled to-
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gether with its immediate surroundings. The net surface currents at homogenization

boundaries can not be assumed zero as well as the homogeneous diffusion flux can

not be assumed uniform within homogenization boundaries. In order to obtain the

homogeneous surface flux, the diffusion equation has to be solved for the homoge-

neous media by applying the net surface currents of lattice calculation as boundary

conditions. In Serpent, the net currents for the surface boundaries are calculated

with standard surface current tallies, and a two-dimensional diffusion flux solver

is implemented to calculate the homogeneous surface flux. However, the Serpent

method has limitations and can produce non-physical results when the net surface

currents are close to zero. In such cases, the statistics of this estimate are very poor,

and to reach convergence may not be feasible, especially for higher number of energy

groups applied in the diffusion calculation (Leppänen et al., 2016).

The SPH method, initially proposed by (Kavenoky, 1978) and extended by (Hebert and

Benoist, 1991; Hebert and Mathonniere, 1993), is typically used to produce few-group

XS for pin-by-pin transport and diffusion calculations of LWR cores (Courau et al.,

2008; Grundmann and Mittag, 2011; Lemarchand et al., 2012). The aim of the method,

is to preserve the reaction rates of reference heterogeneous transport solution in

homogeneous diffusion calculation. In this method, the ratio of the heterogeneous

and homogeneous node-average fluxes is used to correct XS. As compared to GET, the

calculation of boundary net currents is not needed, but only the estimation of node-

average multi-group fluxes. Obtaining such estimates with Serpent is statistically

more simple task, especially for lattice models. On the other hand, the SPH method

needs an iterative procedure to obtain the correction factors, while GET does not.

Several other techniques have been applied in order to improve the accuracy of

the control rod few-group cross sections. For example, in the ERANOS code, the

transport–transport reactivity equivalence method is routinely used for the treatment

of regions containing control rods (Rimpault et al., 2002). More recently, the nodal

equivalence theory was applied to produce discontinuity factors for the interfaces

between a control assembly and surrounding fuel assemblies (Heo and Kim, 2014).

The method, however, requires the conversion of heterogeneous X–Y control rod

geometry into a simplified multi-ring R–Z model.

Although, several methods exist to further improve the accuracy of the nodal diffusion

solutions, the goal in this research was to assess the potential of the SPH method for

SFR cores. A very similar technique was used by (Takeda et al., 2005; Takeda, 2011),
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2.4. Super-homogenization method for SFR analysis

but the improvement in nodal results (e.g., reactivity, radial power distribution and

CR worth) due to the use of this equivalence method was not assessed.

(a) Heterogeneous Serpent
model

=⇒

(b) Homogeneous regions

⇐⇒

(c) Equivalent DYN3D
model

Figure 2.7: Serpent and equivalent DYN3D super-cell models for the evaluation of
SPH factors.

The application of the SPH method in this study was inspired by the experience gained

in the pin-by-pin calculations of LWRs with DYN3D at HZDR (Grundmann and Mittag,

2011; Baldova et al., 2014). The SPH factors were calculated using the Serpent and

DYN3D codes in the following manner:

1. Previously specified heterogeneous super-cell Serpent models of non-multiply-

ing regions (Fig. 2.6) were used to produce reference transport solution. The

few-group XS and fluxes were calculated for the two homogeneous regions, e.g.,

fuel and control rod as shown in Fig. 2.7b.

2. The homogeneous super-cell DYN3D model equivalent to the heterogeneous

super-cell model was constructed as shown in Fig. 2.7c. Since it is impossible to

build the homogeneous super-cell model using hexagonal elements, the fuel

and non-multiplying regions were sub-divided into triangular nodes (Fig. 2.7c).

For this purpose, the trigonal diffusion version of the DYN3D code was used

(Duerigen et al., 2013).

3. The SPH factors were obtained with the following standard iterative procedure

to which the description was adopted from (Baldova et al., 2014):

(a) The diffusion solution is calculated with DYN3D for the super-cell model

(Fig. 2.7c) employing few-group XS generated by Serpent. Then the neutron

fluxes are averaged over the fuel and non-multiplying regions (green and

yellow colors in Figs. 2.7b and 2.7c).
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(b) The SPH factors µ for every region r (r = 1,2) and energy group g (g =
1, . . . ,24) are calculated as:

µr , g =
φ

Het
r , g

φHom
r , g

Ng , (2.1)

where φ
Het
r , g and φHom

r , g are the average heterogeneous and homogeneous

neutron fluxes in region r and group g obtained from heterogeneous

Serpent transport solution and homogeneous DYN3D diffusion solution

respectively. Ng is a normalization factor calculated as:

Ng =
∑

r Vrφ
Hom
r , g∑

r Vrφ
Het
r , g

. (2.2)

(c) Modified cross sections, ΣMod
r , g are calculated for every region and energy

group using the SPH factors generated according to Eq. (2.1):

ΣMod
r , g =µr , gΣr , g . (2.3)

(d) The two-region super-cell diffusion problem is solved again by the code

DYN3D using the modified cross sections. The obtained homogeneous

neutron fluxes are used for the calculation of a new set of the SPH factors.

This iterative process is terminated after n iteration when the convergence

criterion is satisfied for every r and g :

max

∣∣∣µn
r , g −µn−1

r , g

∣∣∣
µn−1

r , g
< 10−6 . (2.4)

The SPH method was applied to correct the flux-volume weighted few-group XS of

non-multiplying and blanket regions. The iteration of SPH factors was performed

simultaneously for both regions: the region of interest (e.g., CR) and the surrounding

fuel. This implies that, instead using XS obtained from the 3D single assembly model,

the SPH-corrected fuel XS has to be used for neighboring fuel assemblies of the

problematic region in the full core nodal calculation. Applying the SPH-corrected fuel

XS improves the full core nodal diffusion solution (keff and radial power distribution)

in respect to the case when the uncorrected fuel XS were obtained with 2D infinite

assembly model.
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However, the fuel XS generated in a 2D model does not account for the spectral and

spatial self-shielding effects of the axial environment. It was found in this study that

by keeping the correction on the non-multiplying XS, but omitting the corrected

fuel XS from the 2D super-cell model, provides consistently and significantly better

results (improvement in ∆ρ is more than ∼100 pcm) in all full core nodal diffusion

calculations presented in this thesis. The XS obtained from the 3D single assembly

model are applied to all fuel assemblies, including fuel assemblies neighboring to the

problematic regions (e.g., CRs).

2.5 Verification by means of code-to-code comparison

By using the methods described previously (Sections 2.3 and 2.4), the homogenized

few-group cross sections were generated with Serpent for both reference cores on the

24 energy group structure. The 3D full core nodal diffusion solution of the reference

cores was calculated with DYN3D by using the Serpent XS.

The DYN3D results, such as core integral parameters and radial power distributions,

were compared against the full core Monte Carlo solutions of Serpent, as presented

in this section. The reference full core solutions were obtained by the averaging the

results of the 20 independent Serpent calculations each of which was executed with

an overall 960 million neutron generations (i.e. 1500 active and 200 skipped cycles

with 640 thousand neutrons per generation). This is in order to obtain a more realistic

estimate of the real variance of the radial power values.

In order to demonstrate the effect of the SPH correction on the accuracy of the results

the DYN3D calculations were repeated twice: (1) without using the SPH correction

and (2) using SPH-corrected few-group cross sections on some selected regions. In

case of the OECD/NEA core the generated cross sections were also cross-checked with

another nodal diffusion code PARCS (subsection 2.5.2) with the help of Konstantin

Mikityuk from the Paul Scherrer Institute (PSI).

2.5.1 Results of the OECD/NEA large oxide core calculations

In the comparison of the OECD/NEA core solutions the following parameters were

evaluated: core multiplication factor (keff ), effective delayed neutron fraction (βeff ),

Doppler constant (KD ), sodium void worth (∆ρN a), total CR worth (∆ρC R ), and radial
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power distribution.

The ∆ρN a was estimated as the reactivity change between the sodium voided and

nominal states: ∆ρN a = ρvoid −ρnominal. In the benchmark, the sodium voided state is

defined by voiding sodium in the active core only. Doppler constant was calculated

as:

KD =
(
ρ2 −ρ1

)
ln T2

T1

, (2.5)

where T1 and T2 are the nominal and perturbed fuel temperatures and ρ1 and ρ2

are corresponding reactivity values. According to the benchmark specifications, the

perturbed fuel temperatures is a factor of two of that of the nominal average fuel

temperature and is equal to 3000 K. The ∆ρC R was calculated as the reactivity change

between the rodded and nominal states: ∆ρC R = ρrodded −ρunrodded, while for the

rodded case all the CSD and DSD assemblies were fully inserted to the bottom of the

active core. In the calculations utilizing the SPH method, the SPH-corrected cross

sections were generated only for the control assemblies (CSD and DSD) and the CR

followers. The SPH factors are summarized in Table 2.2.

The integral core parameters evaluated by Serpent and DYN3D are presented and

compared in Table 2.3. As compared to Serpent, DYN3D without the SPH correction

underestimate keff by 128 pcm in the unrodded state. However, the difference is

reduced to 64 pcm when SPH-corrected XS are used by the code. In the rodded state,

without the SPH correction, DYN3D keff values deviate from the reference by 255 pcm.

This difference is noticeably higher than for the unrodded state. The use of the SPH

correction significantly reduces the discrepancy to 107 pcm. The application of the

SPH correction noticeably improves the prediction of the total CR worth, while the

deviation from the reference value reduces from 127 to 43 pcm for DYN3D.

Table 2.4 shows a more detailed decomposition of the reactivity effects induced by

treating DSDs and CSDs with and without SPH corrections. For the both unrodded

and rodded states, the largest improvement in the reactivity prediction of ∼70% can

be attributed to the SPH correction applied to CSDs.

Effective delayed neutron fraction and Doppler constant calculated by DYN3D agree

within few pcm with those of Serpent. DYN3D overestimates the sodium void effect

by about 90 pcm. The prediction accuracy for KD and ∆ρN a is not improved with the
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Table 2.2: Group-wise SPH factors for CSD, DSD and CR follower.

Group # CSD DSD Follower Group # CSD DSD Follower

1 0.7587 0.8180 0.8353 13 1.0043 0.9243 1.0278

2 0.7931 0.8130 0.8303 14 0.9969 0.9596 1.0082

3 0.8410 0.8538 0.8636 15 0.9911 0.9211 1.0067

4 0.8755 0.8817 0.8963 16 0.9855 0.8794 1.0161

5 0.9487 0.9531 0.9681 17 0.9807 0.9037 0.9685

6 0.9860 0.9806 0.9741 18 0.9301 0.7795 0.8405

7 0.9525 0.9373 0.9668 19 0.8854 0.9249 1.0817

8 1.0046 0.9971 1.0262 20 0.8912 0.9166 1.0808

9 0.9771 0.9516 0.9828 21 0.8916 0.9096 1.0488

10 0.9941 0.9676 1.0121 22 0.8686 0.8914 1.0578

11 1.0013 0.9639 1.0045 23 0.9077 0.9643 1.0737

12 0.9960 0.9398 0.9824 24 0.8977 1.0445 1.0659

Energy group numbering according to Table 2.1.

Table 2.3: Comparison of the core integral parameters of the OECD/NEA core.

Serpent* Difference (pcm)

vs. DYN3D + SPH vs. PARCS + SPH

keff
Unrodded 1.01070 −128 −64 −84 −21

Rodded 0.95249 −255 −107 −264 −121

Feedbacks ∆ρCR −6046 −127 −43 −180 −100

(pcm) KD −852 −15 −15 −15 na.

∆ρNa 1864 87 90 81 na.

βeff (pcm) 358 −2 −2 −2 −2

* Standard deviation of keff = 2 pcm.
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use of SPH correction on the control assemblies.

Table 2.4: Application of SPH correction in OECD/NEA core: decomposition of the
reactivity effects.

State SPH application
DYN3D vs Serpent Improvement Contribution

(pcm) (pcm) (%)

Unrodded

No SPH −128 ref

All CRs −64 64 100.0

Only CSD −86 42 65.6

Only DSD −106 22 34.4

Rodded

No SPH −255 ref

All CRs −107 148 100.0

Only CSD −152 103 69.6

Only DSD −210 45 30.4

The full core normalized radial power distribution calculated with Serpent for unrod-

ded and rodded states are depicted in Fig. 2.8. The relative difference in radial power

distribution between Serpent and nodal diffusion codes is shown in Figs. 2.9 and 2.10

for unrodded and rodded states respectively. Subfigures a and b show the DYN3D

results obtained without and with SPH factors, respectively.

(a) Unrodded state (b) Rodded state

Figure 2.8: Normalized radial power map of the OECD/NEA core, Serpent full core
Monte Carlo.

The radial power distribution predicted by DYN3D without the SPH correction for
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unrodded state is already in a very good agreement with the reference Monte Carlo

solution while the average/maximum differences are about 0.25/0.66%. The use of

the SPH correction only slightly improves the prediction accuracy (Fig. 2.9b), while

the deviations are reduced to 0.21/0.59%. However, for the rodded state, the use

of the SPH correction significantly reduces the deviation from the reference Monte

Carlo solution (Fig. 2.10b). In this case the average/maximum difference drops from

1.74/4.67% to 0.32/1.41%.

2.5.2 Cross-checking with PARCS code

The same calculations done on the OECD/NEA oxide core were also performed with

PARCS code (Downar et al., 2010) by using the same homogenized few-group cross

sections as in the DYN3D calculations. This was done in order to demonstrate that this

XS generation methodology is not limited to DYN3D, but can be applied for practically

any nodal diffusion code. The PARCS calculations were carried out by Kontstantin

Mikityuk at PSI, while the XS and the SPH factors were provided by the author.

The PARCS results on the OECD/NEA core are presented side-by-side with DYN3D

results in the preceding subsection. The integral core parameters are presented and

compared with Serpent and DYN3D in Table 2.4 in the previous subsection. The

presented results show generally the same good agreement between PARCS and

Monte Carlo solution, as for DYN3D. As compared to Serpent, PARCS without the SPH

correction underestimates k-eff by 84 pcm. However, the difference drops to 21 pcm

when SPH-corrected XS are used. Without the SPH correction, PARCS keff value

deviates from the reference by 264 pcm. The use of the SPH correction significantly

reduces the discrepancy to 121 pcm. Similarly to the DYN3D results, the SPH factors

noticeably improve the prediction of the total CR worth of PARCS, while the deviation

from the reference value is reduced by ∼80 pcm to 100 pcm. The Doppler constant

and the sodium void worth calculated with PARCS are in complete agreement with

the ones of DYN3D.

The power prediction of PARCS is also in the same good agreement with the Monte

Carlo reference as DYN3D. As seen in Figs. 2.9 and 2.10 the differences compared

to the Serpent solution are consistent with DYN3D differences. Furthermore, the

application of the SPH method provides a similar improvement in the nodal diffusion

solution of PARCS, as for DYN3D. In the unrodded case, without the SPH correction,

the average/maximum differences are about 0.35/1.07% for PARCS. The use of the SPH
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ave./max. diff. =±0.25/0.66%
(a) DYN3D vs. Serpent, w/o SPH

ave./max. diff. =±0.21/0.59%
(b) DYN3D vs. Serpent, w/ SPH

ave./max. diff. =±0.35/1.07%
(c) PARCS vs. Serpent, w/o SPH

ave./max. diff. =±0.23/0.67%
(d) PARCS vs. Serpent, w/ SPH

Figure 2.9: Relative difference in radial power distribution of the OECD/NEA core,
unrodded state.
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ave./max. diff. =±1.74/4.67%
(a) DYN3D vs. Serpent, w/o SPH

ave./max. diff. =±0.32/1.41%
(b) DYN3D vs. Serpent, w/ SPH

ave./max. diff. =±2.37/6.00%
(c) PARCS vs. Serpent, w/o SPH

ave./max. diff. =±0.88/3.05%
(d) PARCS vs. Serpent, w/ SPH

Figure 2.10: Relative difference in radial power distribution of the OECD/NEA core,
rodded state.
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correction slightly reduces the deviation from the reference solution to 0.23/0.67%.

The significant improvement due to the use of SPH factors in the rodded state is

also present in the PARCS results, while the originally predicted average/maximum

difference drops from 2.37/6.00% to 0.88/3.05%.

2.5.3 Results of Phenix EOL core calculations

The Phenix EOL core was also calculated with the Serpent-DYN3D codes sequence for

further verification of the XS generation method. For this calculation the reference

state of the control rod withdrawal benchmark was selected (IAEA, 2014), where the

primary control rods are partially inserted in the core (∼558 mm) while the secondary

rod is in withdrawn position.

In this subsection, deterministic DYN3D and Monte Carlo Serpent solutions, the core

eigenvalue (the ∆ρ in Table 2.5) and the radial power distributions are compared. The

normalized radial power distribution of the Phenix core calculated with Serpent is

presented in Fig. 2.11.

As it is also seen in the radial power distribution (Fig. 2.11), the Phenix core is much

smaller than the OECD/NEA core, moreover, it has a significantly stronger radial

power gradients in the core, and at the beginning of the low power region of blanket

assemblies the radial peaking factor drops from around 1.0 to 0.3. At such regions as

around the blankets, where the flux and power gradients are large, the modeling with

nodal diffusion methods is inherently more challenging due to diffusion approxima-

tion of the transport equation. This strongly reflects on the DYN3D solution when

the Super-homogenization method is not yet applied, as shown in Table 2.5, where

the difference in the multiplication factor in respect to the Serpent reference is as

high as 569 pcm. While the deviation in normalized radial power from the reference

solution is in good agreement in the fissile core with average/maximum difference of

0.52/1.10%, but the discrepancies in the fertile blanket region are significantly higher

with values of 2.16/5.80% (Fig. 2.12).

The use of the SPH method on different regions of the core, consequently improves

the nodal solution of the Phenix core. Table 2.5 presents the overall reactivity im-

provement and the decomposed contribution by regions. As it shows, the application

of SPH factors on all blanket and non-multiplying regions reduces the difference in

reactivity from 569 to 162 pcm. The main contributors to the improvement are the
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SPH factors applied on the control assemblies with ∼40% of the total effect. In some

regions, like in the upper blanket and the radial reflector assemblies, the use of SPH

method does not affect the core reactivity. Significant improvement is only seen when

the first-neighbor regions to the fissile fuels are corrected with the SPH factors.

While the average difference in radial power between DYN3D and Serpent solutions

did not change much with application of the SPH method (Fig. 2.12b), but notewor-

thy improvement is seen in the maximal deviation. In the fissile core the maximal

difference in radial power is dropped from 1.10 to 0.68%, whereas in the radial blanket

assemblies it reduced from 5.80 to 4.54%, as presented in Fig. 2.12.

Table 2.5: Application of SPH correction in Phenix EOL core: decomposition of the
reactivity effects.

SPH application
DYN3D vs Serpent Improvement Contribution

(pcm) (pcm) (%)

No SPH −569 ref -

All SPH −162 407 100.0

Control assemblies −408 161 39.6

Radial blanket −473 96 23.7

Inside core reflectors −509 60 14.8

Lower axial blanket −514 55 13.5

Sodium plenum −534 35 8.6

Upper axial blanket and

outside core reflectors
−569 0 0.0
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Figure 2.11: Radial power map of the Phenix EOL core, Serpent full core Monte Carlo.

ave./max. diff.
core: ±0.52/1.10%

blanket: ±2.16/5.80%
(a) DYN3D vs. Serpent, w/o SPH

ave./max. diff.
core: ±0.44/0.68%

blanket: ±2.19/4.54%
(b) DYN3D vs. Serpent, w/ SPH

Figure 2.12: Relative difference in radial power distribution of the Phenix EOL core.
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2.6 Few-group cross section generation – Summary of

the results

The two-step methodology, previously applied to the analysis of simplified SFR cores,

was successfully utilized by the author for more realistic and detailed SFR core config-

uration: the large 3600 MWth oxide core from the OECD/NEA benchmark, and the

smaller 350 MWth oxide core from the Phenix EOL experiments. Firstly, the homoge-

nized few-group cross sections were generated on lattice level with Monte Carlo code

Serpent, and secondly, these were used in the nodal diffusion code DYN3D in the full

core modeling.

The prediction accuracy of the deterministic core simulator was assessed by com-

paring the results against the full core Serpent solution as reference. The results of

DYN3D models were in a very good agreement with the reference solution. This is

implies that such computational sequence can be applied for the static neutronic

analysis of detailed SFR cores.

Then in this chapter, the Super-homogenization method was tested in order to im-

prove further the accuracy of the nodal diffusion solution. The SPH method together

with the Serpent-DYN3D codes sequence was verified against the full core Serpent

solution. The presented results show that application of the SPH correction leads to

a better agreement between the nodal diffusion and the Monte Carlo solutions. It is

worth noting that the improvement in k-eff and radial power distribution is signif-

icantly more pronounced in the case of the rodded core. The SPH factors applied

on blankets and non-multiplying regions, that are first-neighbors to the fissile fu-

els assemblies, were the main contributors to the improvement of the solution. In

summary, the generation of the SPH factors, while poses relatively minor additional

computational burden, can noticeably improve the accuracy of the nodal diffusion

codes applied to the analyses of SFR core.

In order to cross-check the few-group cross section generation methodology and the

SPH method, the OECD/NEA large oxide core calculations were repeated with the

PARCS nodal diffusion code by applying the same XS library. The PARCS solutions

were in very good agreement Serpent, and basically the results were aligned with

DYN3D solution. It was demonstrated that practically any other nodal diffusion code

can be also used for realistic SFR core calculations by applying the XS generation and

the SPH methodology presented in this chapter.
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3 Modeling of thermal expansions

This chapter starts with an overview on the significance of modeling thermal expan-

sions in SFR calculations. Section 3.2 provides a detailed description of the thermal

expansion models that were implemented in DYN3D by the author. The test cases used

for the preliminary verification of the models are described in Section 3.3. The numer-

ical results are summarized in Section 3.4 demonstrating an adequate performance

of the newly implemented models. Section 3.5 introduces a spatial decomposition

method for the thermal expansion reactivity effects based on the nodal diffusion

solution.

3.1 Thermal expansion effects

3.1.1 Reactivity effect of thermally expanding materials

The reactivity effect arising from thermally expanding materials in SFR cores can be

decomposed into the temperature effect on the microscopic cross sections and the

effect of dimensional/density changes of the materials in respect to the surroundings.

In SFRs utilizing oxide fuels, both fuel- and coolant temperature effects is mainly

attributed to the elastic scattering of neutrons on 16O and 23Na (Fig. 3.1). In nominal

operation the elastic scattering, especially the large 23Na resonance at ∼3 keV, sup-

presses the neutron flux to the lower energies where the 238U capture cross section

are higher (Sun et al., 2011). The increase in fuel temperature broadens the capture

resonances of 238U and 240Pu (Doppler effect), therefore increasing the parasitic cap-

ture and providing a negative feedback to the system. The density reduction of the
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Figure 3.1: Microscopic elastic scattering cross section of 16O and 23Na.
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Figure 3.2: Top: Neutron flux distribution in PWR and SFR fuels; Bottom: the energy-
dependent reproduction factor of 235U and 239Pu.
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3.1. Thermal expansion effects

fuel material increases the mean free path of neutrons, i.e. it increases the chance

of escaping the fuel matrix. These neutrons are more likely to slow down and being

captured in the surroundings (e.g., cladding, coolant, etc.), or completely leaking from

the system. Therefore, the density effect is additionally strengthening the negative

temperature feedback of the fuel.

The thermally expanding coolant reduces its own density, which decreases the scat-

tering and capture events on 23Na and hardens the neutron spectrum. The spectrum

hardening is always a positive feedback in SFRs, not only because of the lessening neu-

tron capture events at lower energies, but mainly because of the increase of neutron

population due to the threshold fission in 238U at high energies and the increasing

reproduction factor (η – number of neutrons produced per neutron absorbed) of 235U

and 239Pu above 0.1 MeV, as shown in Fig. 3.2.

Table 3.1: Reactivity coefficients of typical PWR and SFR assemblies.

(pcm/K)
Doppler Coolant Axial exp. Axial exp. Radial exp.

coeff. temp. coeff. of the fuel of cladding of the core

PWRa -2.114 -56.903 -0.001 -0.062 +0.647

SFRb -0.500 +0.675 -0.032 +0.073 -0.332
a MOX 4.0% fuel assembly from (Kozlowski and Downar, 2007, p. 43).
b MOX fuel assembly from the large oxide core (Blanchet et al., 2011, p. 7).

In contrast to LWRs, the reactivity effects of expanding structures in SFRs play a major

role in reactor behavior and thus have to be considered in safety calculations. This

can be attributed to the following reasons. Firstly, the coolant density effect and

the Doppler effect are less dominant in SFRs. Secondly, the coolant temperature

excess from nominal to boiling onset conditions is an order of magnitude higher

(around 30 K in LWRs and more than ∼300 K in SFRs, relatively to the typical core

outlet temperature), and the thermal expansion effects become relevant before the

overwhelming voiding effect takes over.

The former reason was investigated by comparing the reactivity effects of two typical

MOX fuel assemblies (see in Table 3.1). The calculations were done with the Serpent

code in 2D assembly model. Reflective boundary conditions were used and thus the

leakage effect was ignored. The outcome of the comparison is summarized in Table 3.1.

In case of the SFR, the Doppler effect is smaller by a factor of four, while the coolant

temperature effect by two orders of magnitude. The amplitude of thermal expansion
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effects in the SFR are more comparable to the Doppler and coolant feedbacks, while

in the typical PWR remain minor. Therefore, the thermal expansion effects have high

potential in SFRs to influence the neutronic behavior, whereas they remain unnoticed

in PWRs beside the coolant and Doppler effect.

It has to be emphasized, that the values presented in Table 3.1 consider only the

spectral component of the feedback. In order to account for the additional leakage

component, a full core calculations would be necessary. However, it is known that the

smaller core size and higher neutron mean free path makes the SFRs more leaky to

the neutrons. Due to the same reasons, the leakage is more sensitive to the increase in

active core dimensions and decrease in fuel material densities. Therefore, the axial

and radial fuel expansion effects become even more negative and more pronounced

in the SFR cores.

Furthermore, the SFRs encounter significantly larger temperature variations during

the operation. The typical temperatures of the Generation IV SFR designs range

between 640-670 K and 780-820 K for inlet and outlet temperatures, respectively

(Waltar et al., 2012). Moreover, the temperatures and temperature gradients can

drastically increase further in transient conditions, e.g. in the accident scenario of the

Unprotected Loss Of Flow (ULOF) transient, the peak coolant temperature can rise

several hundred of degrees in just a few tens of seconds (Cahalan et al., 1990).

Nevertheless, the wide temperature range from normal operation till the condition of

boiling onset provides an extensive margin (around 300-500 K), where the reactivity

feedbacks could act as system safeguards, and the reactor could be passively shut

down before the strong coolant voiding effects become predominant. For instance,

the self-protective mechanisms of thermal expansions were demonstrated in the

start-up tests of the MOX fueled Superphenix (Bergeonneau et al., 1990) or the heat

removal tests of metallic core of EBR-II (Planchon et al., 1986).

It is worth mentioning that in ULOF accidents, because of the positive reactivity

contribution of the Doppler effect, the thermal expansion feedback may not reduce

the power fast enough to avoid loss of coolant and fuel rod failure. The metallic fuels

have higher thermal conductivity, and so the temperature difference in respect to

coolant (∼ 100-200 K) is significantly smaller than in oxide cores (∼ 700-800 K). This

means that the total effect of Doppler is more modest in metallic cores, when the fuel

temperature is reduced close to the coolant temperature during power decrease. This

allows the power to reduce fast enough to avoid sodium boiling, which cannot be said
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in the case of oxide cores as the sodium boiling conditions (∼1150 K) can be reached

within a minute (Cahalan et al., 1990; Lázaro et al., 2014b). Additional safety measures

were proposed in the past to avoid boiling in oxide fueled SFRs during ULOF, like

increasing the inertia of pumps to prolong the coastdown or implementing passive

shut down devices such the gas expansion module (GEM) successfully applied in FFTF

(Burke, 1998).

3.1.2 Thermal expansion feedbacks in SFR systems

The net thermal expansion feedback is a combination of the effects coming from the

expansion of different system components. The most important contributors can be

distinguished by the driving temperatures (Hummel and Okrent, 1970; Rouault et al.,

2010; Waltar et al., 2012):

1. Fuel expansion

The temperature increase of the fuel material expands the dimensions of the

fuel matrix, while the fuel material density proportionally decreases in order to

preserve the mass. Because of to the elongation of the fuel pins, the surrounding

mass of sodium is increased, therefore spectrum softening effect due to scatter-

ing will be also increased, and so the reactivity will be reduced. Moreover, the

axial elongation of the fuel will increase the radial neutron leakage, and lower

the reactivity further. The radial fuel expansion without coolant displacement is

normally negligible, since it does not change the effective core radius.

2. Cladding expansion

The increase in cladding temperature reduces the material density, therefore re-

ducing the scattering and parasitic capture of neutrons. The radially expanding

cladding forces out some of the surrounding sodium, i.e. reducing the neutron

scattering macroscopic cross section of sodium in the assembly. Both effects

will harden the spectrum and therefore increase the core reactivity.

3. Wrapper expansion

The hexagonal sheet covering the fuel assemblies, i.e. the wrapper behaves in

the same way as the cladding when it expands.

4. Diagrid expansion

The diagrid structure is located below the core holding each fuel assembly end-
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fitting (Gallet and Venot, 1977). The radial expansion of the diagrid increases

the distance between fuel assemblies, thus increasing sodium fraction in the

core, which finally introduces negative reactivity. The diagrid temperature is

driven by the averaged inlet sodium temperature.

5. Differential expansion between core, vessel and control rod drivelines

In pool-type SFRs, the core is sitting on the bottom of the vessel, and it can

expand upwards depending on its temperature. The vessel and the control rod

drivelines are fixed above the core and hanging down, therefore they can only

expand downwards depending on the inlet and outlet sodium temperature,

respectively. The relative expansion between the three components basically

determines the control rod position change in respect to the core, i.e., the

magnitude and the direction of the reactivity effect.

All these expansion phenomena significantly affect the core reactivity, and therefore,

the modeling of thermal expansion effects cannot be neglected. Nevertheless, the

standalone DYN3D is not capable of modeling the whole primary system, and calcu-

late the thermal expansion of all system components. Therefore, only the axial and

radial thermal expansion of the core will be accounted for in this thesis by modeling

the first four of the aforelisted contributors in DYN3D calculations.

3.1.3 Current trends for modeling thermal expansions

In traditional transient analyses of SFRs, TH system codes are used along with point

kinetics solvers (Lázaro et al., 2014a,b), where the thermal expansion effects are simply

represented by the reactivity coefficients provided as input parameters. In case of

spatial NK, while the density changes can be easily taken into account during the few-

group XS generation procedure, supplementary models capable of handling changes

in physical dimensions are required. Two main approaches are currently observed

in the literature to model core deformations in spatial neutron kinetics, be it either

thermal expansion or local displacement (e.g., assembly bowing):

1. Development of neutron kinetic solvers that are capable of solving the spatial

neutronics on deforming meshes, e.g., the GeN-Foam from PSI/EPFL (Fiorina

et al., 2015) and the CAST3M from CEA (Patricot et al., 2016).

2. Using an available neutron kinetics solver with fixed regular meshes, but manip-
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ulating the homogenized few-group cross sections in the mesh cells in such a

way, that the thermal expansion effects will be taken into account in the neutron

kinetic solution.

For instance, in case of the axial expansion of fuel rods (i.e. bundle of fuel pins

in assembly), the difficulty in the modeling with existing spatial NK codes can be

attributed to the inflexibility of the regular mesh. Since all cells in a same axial layer

have to be of an identical height, the direct use of the fixed-mesh codes restricts the

modeling to a simplified case of the radially uniform axial expansion.

To overcome this limitation, several approaches based on the manipulation of homog-

enized few-group XS have been proposed and implemented in fixed-mesh spatial NK

solvers so far (second approach). Some techniques have been developed (Reed et al.,

2014; Andriolo et al., 2015; Gentili et al., 2015) based on the similarity theory proposed

by (Shikhov, 1960) to calculate local deformation or expansion reactivity coefficients

by using first order perturbation theory.

In an other technique, developed by (Ponomarev, 2017) in the SAS-SFR/PARCS codes

system, the σ0-model (Pelloni and Mikityuk, 2011) is utilized to calculate XS on the

fly from temperature-dependent self-shielded microscopic cross section libraries.

These microscopic multi-group cross sections are generated beforehand with the

deterministic cell-code ECCO. The isotopic densities necessary to obtain the XS are

computed in this technique by considering the temperature and density effects as

well as the axial material relocations due to thermal expansions.

Aside from the axial expansion modeling, the pixelation (Patricot et al., 2014) tech-

nique was developed with the second approach to calculate assembly bowing and

flowering effects by considering the anisotropic inter-wrapper gap change between

the assemblies.

The PARCS code, a nodal diffusion code similar to DYN3D, was extended with capabil-

ities to model core thermal expansions as already mentioned before. In the FAST code

system, PARCS can model axial and radial core expansion by physically expanding the

nodal mesh, but it is limited to uniform core expansions. While the non-uniform ex-

pansion of fuel rods is possible to model in the coupled SAS-SFR/PARCS codes system,

the radial core expansion is not yet available. For both code systems the main XS gen-

eration tool for SFR analyses is the deterministic code ERANOS. In case of modeling

uniform core expansions, this can be replaced with MC code Serpent as it was done at
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PSI (Ghasabyan, 2013). Although, Serpent is not applicable for the non-uniform axial

expansion modeling in SAS-SFR/PARCS, which relies on the ECCO-based σ0-model.

3.2 Thermal expansion models in DYN3D

As compared to the developments done for PARCS, a different approach was selected

for DYN3D to tackle thermal expansion modeling. First of all, instead of the deter-

ministic code ERANOS, the XS generation procedure is based on using the MC code

Serpent (see Chapter 2). Furthermore, any XS manipulation to account for material

relocations is done with the homogenized macroscopic XS obtained from Serpent.

This is also different to the method used in SAS-SFR/PARCS, where the “smeared

geometry” approach (Ponomarev and Sanchez, 2014) uses microscopic cross section

libraries to obtain homogenized XS on the fly during simulation. Secondly, the axial

fuel rod expansion model in the FAST system (PARCS) is restricted to uniform cases.

In DYN3D, the option to model non-uniform axial expansion cases is desired in order

to catch asymmetric and local effects in the calculations.

In the process of XS generation for the DYN3D calculations, the thermal expansion

of the structure is modeled explicitly. That is, the temperature and density effects

as well as the change of dimensions are accounted for in the produced XS. Those

components of expansion that do not change the nodal boundaries can be modeled

in DYN3D without modifying the code. For instance, after radial expansion of the

fuel pins, the expanded geometry does not exceed the initial nodal boundary, so the

node remains same size. Such kind of expansion can be simulated with the proper XS

directly in DYN3D.

On the other hand, the nodal boundaries are affected when the fuel pins expand axially

or the diagrid increases the inter-assembly pitch size. In these cases, the utilization of

proper XS is not sufficient, and additional thermal-mechanical models are needed to

treat the deformation of the nodal mesh. Therefore, two new models were developed

for DYN3D: the axial fuel rod expansion model (subsection 3.2.1) and the radial diagrid

expansion model (subsection 3.2.2).

Beside these two new models, a new parametrization of XS was introduced that

covers all core level thermal expansions. This also includes the radial expansion

of fuel pins, and the volumetric expansion of the assembly wrapper and sodium

coolant. The parametrization and dynamic reactivity decomposition is described in
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subsection 3.2.3.

3.2.1 Thermal expansion model for fuel rods

The new axial expansion model of DYN3D is designed to be flexible to resolve the con-

straints of the nodal mesh. The idea of the model was to preserve the axial size of the

nodes and to account for the axial expansion effects by manipulation of homogenized

cross sections.

The axial movement of materials due to thermal expansion through fixed mesh is a

similar problem to the control rod movement. In most cases, when the control assem-

bly is introduced, the absorber material is only partially inserted in some nodes. For

such cases, DYN3D computes the node-average XS by geometrical or flux weighting

(Grundmann et al., 2005, p. 53).

The approach used to mix XS for the axial expansion modeling is based on the geo-

metrical weighting model. As compared to the available approach, a completely new

procedure had to be implemented into DYN3D that accounts for axial temperature

profiles and for shifting of upper materials due to the expansion of lower ones. In

DYN3D code the modeling of axial thermal expansion can be summarized as follows:

1. Initial axial discretization is specified to account for the material boundaries at

some reference temperature (e.g. room temperature) as shown in Fig. 3.3, left.

2. The obtained axial nodes are further subdivided into a smaller node with a

height of the anticipated maximal possible axial expansion of the lower node

and into a bigger one as shown in Fig. 3.3, right.

3. For each assembly, local nodal temperatures are used for the estimation of the

axial expansion and new material interface levels. It should be noted that all

new material levels are located within the stripped regions as depicted in Fig. 3.3,

right.

4. When a new material interface within the stripped regions is detected, the

mixing of the XS is performed using volumetric weighting:

Σmixed = h1Σ1 +h2Σ2

h1 +h2
, (3.1)
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where the indices 1 and 2 represent the lower and upper materials, h is the height

of the material inside the mixing sub-node, Σ are the original XS, and Σmixed is

the final XS for the mixing sub-node. The Σ includes all macroscopic reaction

cross sections, group-to-group scattering matrices, and diffusion coefficients.

5. The nodal XS are generated before the calculation by taking into account the

local thermal expansion effects (e.g. reduced material density) at given node

temperatures. This is also done in case of the mixing sub-nodes. That is the

Σ1 and Σ2 are computed according to the local node temperatures before the

volumetric weighting is done.

Figure 3.3: Overview of the mixing model for the treatment of axial expansions.

It has to be noted that adding extra nodes for mixing is completely up to the DYN3D

user. After calculation of the new material interfaces, the program performs mixing in

each node having more than one material. This is done regardless of the node size,

and even when the material shrinks below the initial boundary.

In principle, the XS mixing can be performed without specifying additional mixing

sub-nodes. However, axial expansion is relatively small compared to the height of the

node. The XS mixing over entire initial nodes can lead to a so-called cusping effect

(Lee et al., 1998; Dall’Osso, 2002) typical for the modeling of partially inserted control

rods. This is especially problematic for the nodes with significantly different neutronic

properties (e.g. adjacent fuel and sodium plenum nodes). The introduction of smaller

mixing nodes is suggested to reduce this dilution and smearing effect.
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The size of the mixing node can be limited to the anticipated maximal expansion.

This value depends on the selection of the coldest and hottest state in the simulation.

A reasonable choice is to use the isothermal state (e.g., 250◦C) as the coldest and the

melting temperature as the hottest state. In this thesis, the hottest state was always

selected around the cladding melting temperature. Such size proved to be sufficiently

small to avoid significant smearing effect, as presented later in Section 3.4.

Alternatively, when the modeling accuracy becomes insufficient, other weighting

approaches for XS mixing can be applied in the later stage of code extension. Naturally,

the first option would be to use the flux weighting approach of DYN3D control rod

model (Grundmann et al., 2005, p. 53), which was also proposed in (Gehin, 1992). In

this model, two additional calculations are needed per node to obtain nodal fluxes

for weighting. In case of CR modeling, one calculation is done with totally roded

and one with rod-free node. Then, these two different node-average fluxes are used

for weighting. Such approach is less realistic for thermal expansions without using

additional mixing nodes, since the fuel material does not intrude into the upper node

more than ∼5% of typically used node size.

Several other approaches were proposed in the past to reduce cusping effects in nodal

diffusion calculations. The most relevant ones are summarized in (Lee et al., 1998;

Dall’Osso, 2002). It has to be noted that most of these require additional computations

to obtain the weighting factors by using, e.g., fine mesh fluxes, adjoint fluxes or

axial discontinuity factors. Furthermore, by utilizing a nodal solver that can treat

heterogeneous nodes would allow an implicit treatment of the mixing. For instance,

the heterogeneous node technique was implemented in the 3D VARIANT code by

(Marchetti, 2017, p. 87). However, an implementation of a different nodal solver into

DYN3D is far beyond of this research, and currently, not aligned with the development

strategy at HZDR.

The estimation of the axial expansion is done assuming a predefined gas gap condition

(i.e. closed or open gap between fuel and cladding). In case of a closed gap, the

expanding cladding is dragging the fuel pellets upwards, i.e., the fuel and cladding

expand simultaneously driven by the cladding temperature. If the gap exists, then

one can assume that the axial expansion of the fuel and the cladding is taking place

separately driven by their own temperatures. In such case, the new material interface

(h1 in Fig. 3.3) is determined by the fuel pellet expansions only. In any case, the density

reduction of the cladding is taken into account in XS generation step according to the
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given nodal cladding temperature.

For a more accurate modeling of fuel rod deformation, a coupling with structural-

mechanical model and fuel performance code is needed. Then it would be possible

to simulate additionally: e.g., fuel-cladding interaction to determine local gas gap

conditions, ballooning of the cladding at prompt power rise, pin-to-pin or pin-to-

wrapper interactions through the pin wires, etc. However, such development is only

envisaged for the later stage of code extension.

3.2.2 Radial thermal expansion model for the diagrid

The diagrid located below the core acts as a sodium flow distributer and a support

structure for core assemblies. The radial expansion of diagrid driven by an increase of

inlet sodium temperature extends the distance between fuel assemblies (assembly

pitch) whereas the size of the assemblies (flat-to-flat distance) remains unchanged,

as presented in Fig. 3.4. Consequently, the effective core radius is increased (while

obviously keeping the total fissile amount) as well as the total sodium amount in

the core. The larger effective core radius increases the axial neutron leakage, and

the higher sodium fraction in fuel assemblies induces a higher 238U capture rate

through the down-scattering effect of 23Na. Both effects introduce a negative reactivity

feedback.

Tinlet < T'inlet

dpitch < d'pitch

dass. = d'ass.

Tinlet T'inlet

dass. d'ass.

dpitch

d'pitch

Figure 3.4: Schematic overview of the diagrid (assembly pitch) expansion.

The new radial thermal expansion model (hereinafter diagrid model) assumes a uni-
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form radial expansion driven by the average inlet sodium temperature. During cal-

culations, DYN3D updates the radial hexagonal assembly pitch based on the current

diagrid temperature and the corresponding linear expansion coefficient. The XS data

library format utilized by DYN3D was modified to introduce the assembly pitch as a

new independent state parameter, which can be accounted for in the few-group XS

generation process. The new diagrid model, DYN3D can simulate the time-dependent

diagrid heat-up or cool-down, and is able to apply, respectively, the expanded or

contracted assembly pitch size in the steady-state and transient core calculations.

The diagrid expansion model assumes that only the gap between the assemblies is

increased. In the mean while the material densities, fuel rods dimensions, pin-to-pin

pitch size, and the dimensions of hexagonal wrapper remain unchanged. This means

that the amount of sodium inside the assembly wrapper is unchanged and only the

amount of inter-wrapper sodium is increased (Fig. 3.4). It should be kept in mind that

at the stage of XS generation the volume used for homogenization has to be extended

accordingly in order to be applied in the radially expanded nodal mesh. The radial

expansion of the fuel rods and assembly wrapper is treated separately, and these are

driven by other state parameter, as described in subsection 3.2.3.

When the coolant temperature at pump inlet is known instead of the core inlet, a heat

structure model can be applied to calculate the diagrid temperature by accounting

for it’s thermal inertia. The time-dependent diagrid temperature can be estimated

with the one-dimensional cylindrical heat structure model additionally implemented

into DYN3D. The model solves the Fourier heat conduction equation with constant

properties (k thermal conductivity, ρ density and c specific heat):

∂T

∂t
= k

ρc

1

r

∂

∂r
r
∂T

∂r
, (3.2)

by using
(
∂T
∂t = 0

)
and surface convection boundary conditions at the cylinder center

and surface, respectively. The Crank-Nicolson method (Crank and Nicolson, 1996)

is used for discretization that provides a numerically stable implicit second order

method to solve Eq. (3.2). The system of linear equations is computed with the

tridiagonal matrix algorithm.

The numerical implementation of the heat structure model was verified with the

approximate analytical solution of the transient heat-up of an infinitely long cylinder

(Baehr and Stephan, 2006, p. 167). By default, the cylindrical model is divided into ten
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rings and the stainless steel type 316 was selected for diagrid material. The thermal-

physical properties were implemented from (Chawla et al., 1981).

The simplified heat structure model has to be used with caution, because the sodium

flow regime is much more complicated in reality than it is typically modeled in system

codes. The liquid sodium, after entering the diagrid structure, flows between very

densely positioned assembly end-fitting columns. Then, it enters the columns through

elongated slots and streams upwards in the assembly end-fittings. Only after that,

the sodium reaches the core, as described in (Gallet and Venot, 1977). This kind of

geometry provides a large contact area and turbulent flow regimes. Usually, a detailed

specification of the diagrid structure is not available, and the decision on the heat

transfer area is often based on simplified models and engineering judgment.

In system analyses, the coolant behavior in the diagrid is often modeled with 0D

models. As reported in (IAEA, 2013), such modeling overestimates the thermal inertia

of the diagrid, and calculates a much lower temperature. In the case of Phenix core, it

was demonstrated in (Chenu et al., 2012) that the assumption of a very low thermal

inertia in the diagrid provides a good agreement between the simulation and exper-

iment. It also presented an almost synchronous evolution of the diagrid expansion

reactivity contribution and the core inlet temperature. This suggests that applying the

core inlet temperature for direct expansion of the diagrid is a good approximation,

when this temperature is known and the diagrid specification is insufficient.

3.2.3 Expansion-dependent XS treatment by DYN3D

Before using DYN3D, state-dependent XS for each material type have to be gener-

ated to encompass all relevant reactor operation conditions. DYN3D uses multi-

dimensional tables that cover the full parametric space of the XS. To acquire the nodal

data of a current state, a multi-dimensional interpolation is performed between the

available states. Since these tables contain XS for all possible combinations of param-

eter variations, the correlations between state variables are implicitly considered.

Parametrization of XS for SFR calculations

A new set of state parameters is proposed for SFR calculations that also cover the core

level thermal expansion effects, as described in the following:
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3.2. Thermal expansion models in DYN3D

• Fuel temperature

The change in fuel temperature is considered to account for the Doppler effect.

The node-average fuel temperature is obtained by DYN3D with the 1D fuel rod

model.

• Sodium coolant temperature

Depending on the coolant temperature, the change of sodium temperature

and density is considered, i.e. the thermal expansion of sodium is modeled.

The thermal expansion of the assembly wrapper is assumed to be driven by

the sodium temperature, and so the change in wrapper dimensions, temper-

ature and density is also accounted for (Fig. 3.5). In DYN3D, the coolant flow

inside and outside of the wrapper is modeled together as one thermal-hydraulic

channel. Therefore, all sodium and the wrapper temperatures are modeled as

equal. The node-average coolant temperature is obtained by DYN3D with the

thermal-hydraulic model.

Figure 3.5: Schematic overview of the sodium and wrapper expansion.

• Diagrid expansion

When the diagrid-expansion-dependent XS are generated, the difference in

models between different diagrid expansion states is only the inter-assembly

sodium gap width (Fig. 3.4). This means that the geometry within the assembly

(fuel pins, pin pitch size, wrapper, etc.) is unchanged between two diagrid

expansion states. Therefore, only the surrounding sodium amount is increased

with expansion, i.e. the sub-assembly pitch size.

• Fuel rod expansion

When the fuel rods are expanded, not only the axial but also the radial expansion
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of the fuel and cladding is considered in the XS model. In other words, the mate-

rial density is changed inversely proportional not to the linear change in axial

direction but to the volumetric change. Furthermore, the explicit expansion

of the pin dimensions in the radial direction will automatically consider the

reduction in the liquid sodium amount between the fuel pins (Fig. 3.6).

Tclad < T'clad

dpitch = d'pitch

dclad < d'clad

mNa > m'Na

ρclad > ρ'clad

ρfuel > ρ'fuel

dpitch

dfuel

dclad

dfuel < d'fuel

Figure 3.6: Schematic overview of the fuel rod expansion.

The calculation of the expansion coefficients and the expansion dependent XS is done

with DYN3D in the following manner:

1. The temperature driving the thermal expansion is obtained from the TH module

of DYN3D. In case of fuel rod expansion, this can be either the node-average

temperature of the cladding or the fuel. In case of the radial core expansion, the

temperature is taken from the diagrid model.

2. The expansion coefficient is calculated as:

ε(T ) = L(T )

L(T0)
= 1+α(T ) · (T −T0) , (3.3)

where L is the linear dimension and α is the linear expansion coefficient corre-

sponding to the temperature T , and T0 is the reference temperature of the used

linear expansion correlation. The correlation can be arbitrary selected by the

user prior to the calculation.

3. The expansion-dependent cross section Σ are calculated from the library and

the expansion coefficient ε by using linear interpolation:

Σ=Σi + ε−εi

εi+1 −εi
· (Σi+1 −Σi) , (3.4)

where εi < ε< εi+1 and Σi =Σ (εi) are the pre-generated XS in the library.
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3.3. Description of the test cases

4. In case of fuel rod expansion, the “mixing” model is called after step 3 (see

subsection 3.2.1).

Dynamic reactivity decomposition for SFR calculations

In transient calculations, the main algorithm to calculate the change of core reac-

tivity (i.e. dynamic reactivity) is based on the weighted spatial integration of the

time-dependent diffusion equation (Grundmann et al., 2005; Rohde et al., 2016). By

applying the perturbation theory, DYN3D calculates the dynamic reactivity from

changes of the XS weighted with the adjoint flux of initial state and with the normal

flux of the actual state. First the weighting is done for each node, then integrated over

the whole core to get the dynamic reactivity.

The steady-state adjoint flux is obtained by DYN3D with the same procedure as the

normal flux just before the transient calculation. The solved adjoint equation is

constructed to be the same type as the steady-state diffusion equation by redefining

the cross sections (Grundmann et al., 2005, p. 37).

Since the XS are parametrized, the contribution of each perturbed parameter to the

total XS change, and therefore, to the total reactivity effect can be obtained separately.

In this doctoral research, new computational routines were added to calculate the

SFR specific reactivity components, i.e. the fuel rod and diagrid expansion effects.

The extension was based on the already available model that calculates LWR specific

reactivity effects in DYN3D (Grundmann et al., 2005, p. 41).

SFRs usually have different fissile regions and fertile blankets, like Phenix and Super-

phenix. These regions behave differently in respect to fuel temperature change. This

is especially true for the blanket region, since it has lower average temperature and

almost pure 238U-oxide pins. In order to have a better analyses of the core behavior, a

region-wise reactivity decomposition of the Doppler effect was added to the code.

3.3 Description of the test cases

The OECD/NEA and Phenix EOL cores presented in Section 2.2 were used to test

the new thermal-mechanical models. The references cores were expanded either

axially or radially using different linear expansion coefficients. For every expansion

state, a steady-state DYN3D calculation has been performed while applying the new
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thermal-mechanical models. The nodal diffusion results were compared to the full

core MC solutions of Serpent. In the Serpent calculations the thermal expansion was

modeled explicitly, i.e. the material boundaries were physically increased and the

densities of the expanded materials were reduced accordingly. A superimposed mesh,

equal to the nodal mesh used in DYN3D, was applied in Serpent calculations to obtain

the power distribution.

For the axial expansion modeling, it was assumed that the gas gap between the fuel

pellets and cladding is closed, i.e. the expansion of fuel and cladding is driven by the

cladding temperature. The fuel rods were uniformly expanded along heat-generating

part in axial direction by 0.25%, 0.45%, 0.65%, and 0.85% relatively to the reference

state. When preparing the XS with Serpent, the fuel and cladding densities were

reduced according to the linear expansion in order to preserve the total mass. The

wrapper tube of the assemblies was assumed to have the same temperature as the

sodium coolant (averaged value of the inlet and outlet), so the wrapper dimensions

and density were calculated accordingly that remained unchanged in all states. For

every expansion state, the thermal expansion reactivity worth (∆ρexp) and axial power

distribution were calculated with Serpent and DYN3D. The thermal expansion re-

activity worth was estimated as the change in reactivity between the expanded and

reference states:

∆ρexp = ρexp −ρref . (3.5)

For every expansion state, the corresponding temperature was calculated using tem-

perature dependent linear expansion coefficient and te current value of the relative

thermal expansion. In this test, the linear expansion coefficients of the ODS (Hamilton

et al., 2000) and SS316 (IAEA, 2014) were applied for the OECD/NEA and Phenix EOL

cores respectively.

For the OECD/NEA core, the nominal state with the average core temperature of 743 K

served as a reference state. Only the active core was axially expanded during the test.

For the Phenix EOL core, the isothermal state (523 K) served as a reference state. The

whole fuel rods including the axial blankets and axial reflectors were expanded. In

order to reduce the effect of relative CR insertion due to the upward expansion of

fuel rods, the CR positions were adjusted in each expansion state to maintain the

level difference between the top of the fuel rods and bottom of CRs. In both reference

cores, the CRs were modeled in the complete withdrawn position, as indicated in the
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3.4. Results of the test calculations

corresponding benchmark specification.

For both reference cores, the diagrid was radially expanded by 0.3% and 1.0%. The

corresponding reactivity effects were estimated from Serpent and DYN3D solutions

using Eq. (3.5). A larger assembly pitch size results in a higher volumetric ratio of

sodium, which was also considered in regions containing homogeneous mixtures

(e.g., reflectors).

3.4 Results of the test calculations

In order to test the XS mixing model, the axial expansion reactivity worth and the shift

in axial power profile were calculated by the DYN3D code and compared to the MC

reference. The test cases were computed with the two methods for a better assessment

of the new expansion model:

• Direct mesh expansion method – The nodal boundaries are physically expanded

according to the expansion states (Fig. 3.7a). All material interfaces are aligned

with the nodal mesh. This method is limited to uniform axial expansions.

• New expansion model – The nodal mesh is fixed at the reference state and is

used in all expanded states (Fig. 3.7b). Mixing sub-nodes are added after each

material interface. In case of expansion, DYN3D mixes two different XS in the

sub-nodes as described in subsection 3.2.1.

The total height of the modeled OECD/NEA and the Phenix EOL cores at reference

state are 311.160 cm and 264.853 cm respectively. In DYN3D, the assemblies were

axially divided into the nodes of about 10 cm height. The mixing sub-nodes, used

with the new expansion model (Fig. 3.7b), had the size from about 0.1 cm to about

2 cm starting from bottom along the axial direction. It should be noted that in all

simulations, numerical instabilities were not observed.

The axial expansion reactivity effects predicted by Serpent and DYN3D are presented

in Table 3.2. It can be observed that the magnitude of the axial expansion reactivity

effect in the Phenix EOL core is noticeably higher than in the OECD/NEA core due to

the much smaller size of the former. For both reference core designs and all expansion

states, the axial expansion reactivity worths predicted by DYN3D show a reasonably

good agreement with those calculated by Serpent. The difference between diffusion
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Chapter 3. Modeling of thermal expansions

(a) Direct mesh expansion method (no extra sub-nodes, no XS mixing)

(b) New expansion model with extra sub-nodes but fixed nodal mesh

Figure 3.7: Nodalization around the material interface in DYN3D in direct mesh
expansion method (a) and with new expansion model (b).

and MC solutions typically stays within one standard deviation and does not exceed

few pcm. It should be noted that the actual XS mixing is performed only for the

expansion states of 0.25%, 0.45% and 0.65% because in case of the 0.85% expansion,

the mixing sub-nodes are completely filled with expanding material (Fig. 3.7b, right).

The difference between the two applied methods is limited to 3 pcm in all cases

demonstrating a very satisfactory performance of the mixing model.

The shift in axial power distributions due to axial expansion as calculated by Serpent

is presented in Figs. 3.8 and 3.10. The radially averaged axial power profiles for all

expansion states are shown in upper panels and the shift in axial power profiles are

shown in lower panels. The power deviation curves clearly indicate an upward shift

of the axial power profile resulting from the axial fuel rod expansion. As compared

to the reference state, the sodium plenum (white background in Figs. 3.8 to 3.11)

also gains power due to the introduction of the expanded fuel material into the fixed

sodium plenum node. A power reduction in the lower part of the active core is more

pronounced in the lowest active node of the Phenix EOL core (Fig. 3.10). This can be

explained by the fact, that the lower axial blanket expands into the active core, pushes
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3.4. Results of the test calculations

Table 3.2: Comparison of the reactivity effects (pcm) related to the axial fuel rod
expansion.

OECD/NEA large oxide core

dL/L T*(K)
Serpent

Direct mesh expansion New expansion model

ref. 743 DYN3D vs. Serpent DYN3D vs. Serpent

0.25% 924 −13±3 −10 3 −10 3

0.45% 1056 −27±3 −29 −2 −30 −3

0.65% 1176 −43±3 −44 −1 −46 −3

0.85% 1287 −60±3 −57 3 −57 3

Phenix EOL core

dL/L T*(K)
Serpent

Direct mesh expansion New expansion model

ref. 523 DYN3D vs. Serpent DYN3D vs. Serpent

0.25% 657 −48±3 −51 −3 −48 0

0.45% 759 −90±3 −88 2 −85 5

0.65% 860 −123±3 −129 −6 −126 −3

0.85% 958 −165±3 −165 0 −164 1

* Cladding temperature needed to reach the corresponding expansion (dL/L). The TH feedbacks are
neglected.

out a certain amount of fuel, and, finally, reduced the power even more than in case of

the OECD/NEA core (Fig. 3.8).

As demonstrated in Figs. 3.9 and 3.11, the axial power profiles predicted by DYN3D

with the new expansion model are in a very good agreement with the Serpent solu-

tions. The maximum relative difference between Serpent and DYN3D is smaller than

0.50% and 0.25% for the OECD/NEA core (Fig. 3.9) and Phenix EOL core (Fig. 3.11)

respectively. In general, Figs. 3.9 and 3.11 shows a comparable magnitude of the

relative error for the 0.85% expansion state, where no XS mixing due to expansion is

done, and the rest of the expansion states. Therefore, it can be concluded that the

smearing effect of the mixing model is relatively small. The results of the direct mesh

expansion method were omitted in Figs. 3.9 and 3.11 due to no visible differences, and

that would only overlap the results obtained with the new expansion model.

The calculated diagrid radial expansion reactivity worths are presented in Table 3.3.

As compared to the reference MC, the radial expansion reactivity worth calculated
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Figure 3.8: OECD/NEA core. Top: radially averaged axial power profiles for different
axial expansion states; Bottom: shift in axial power profiles relative to the reference
state. Serpent results.
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Figure 3.9: OECD/NEA core. Relative difference in the axial power profiles for different
axial expansion states, Serpent vs. DYN3D.
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Figure 3.10: Phenix EOL core. Top: radially averaged axial power profiles for different
axial expansion states; Bottom: shift in axial power profiles relative to the reference
state. Serpent results.
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Figure 3.11: Phenix EOL core. Relative difference in the axial power profiles for
different axial expansion states, Serpent vs. DYN3D.
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by DYN3D deviates up to about 20 pcm in both OECD/NEA and Phenix EOL cores.

Nevertheless, the radial expansion coefficients remain in a good agreement, while

roughly covering the temperature range of the liquid sodium between nominal and

boiling states.

Table 3.3: Comparison of the reactivity effects (pcm)
related to the radial expansion of the diagrid.

OECD/NEA large oxide core

dL/L T*(K)
Serpent

Direct mesh expansion

ref. 668 DYN3D vs. Serpent

0.30% 818 −124±4 −136 −11

1.00% 1153 −429±4 −428 1

Phenix EOL core

dL/L T*(K)
Serpent

Direct mesh expansion

ref. 523 DYN3D vs. Serpent

0.30% 683 −159±4 −148 11

1.00% 1032 −529±4 −507 22

* Diagrid temperature needed to reach the corresponding
expansion (dL/L). The TH feedbacks are neglected.

3.5 Spatial decomposition of thermal expansion effects

The reactivity coefficients, calculated in Section 3.4, represent only the global neu-

tronic behavior of the SFR system when the reactor core thermally expands. One may

wonder, why is the magnitude of the axial expansion effect different in the two refer-

ence cores (Table 3.2). In order to have a better understanding of the consequences

of the core thermal expansion, the total change in reactivity has to be spatially de-

composed. In this way, it can be identified which regions of the core are more or

less neutronically influenced by thermal expansions. Additionally, a reaction-wise

decomposition would quantify the contribution of each reaction type, namely the

neutron absorption, leakage and production.

The spatial decomposition of the thermal expansion reactivity effect is possible to

do in simple manner by looking into the neutron balance of the system at thermally

expanded state and comparing it with the reference state. Since the procedure is
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3.5. Spatial decomposition of thermal expansion effects

done with the nodal diffusion solution of DYN3D, the description of the method is

introduced with the steady-state one-group diffusion equation:

D∇2Φ−ΣaΦ+νΣ f Φ= 0, (3.6)

where the one-group formulation is used to simplify the notation. Nevertheless,

Eq. (3.6) represents the balance between the number of produced neutrons and the

lost ones due to leakage and absorption, in any given unit volume of a critical system

(Okumura et al., 2014).

For the sake of reactivity calculation, the neutron balance is expressed as an eigenvalue

(keff ) problem:

keff =
νΣ f Φ(−D∇2Φ

)+ΣaΦ
= νΣ f Φ

∇−→J +ΣaΦ
= P

L+ A
, (3.7)

where P , L and A denote neutron production, leakage and absorption rates, respec-

tively. The leakage term is replaced “back”, according to Fick’s law, to the expression

using the net neutron current (
−→
J ). This is done due to the practical reason of applying

the net surface currents provided by DYN3D to calculate the nodal leakages directly.

The multiplication factor can be substituted for reactivity of the system:

ρsys = 1−− 1

keff
= 1− Lsys + Asys

Psys
= Psys

Psys
− Lsys + Asys

Psys
= Psys −Lsys − Asys

Psys
, (3.8)

where the last expression will allow us to quantify the local change in production rates.

The reactivity change between the reference and thermally expanded state can be

expressed with the help of Eq. (3.8), so that the reaction rates are integrated over

energy and space:

∆ρsys = ρexp
sys −ρref

sys =
P exp

sys −Lexp
sys − Aexp

sys

P exp
sys

−
P ref

sys −Lref
sys − Aref

sys

P ref
sys

. (3.9)

The neutron leakage, absorption and production terms can be calculated with the

few-group node average fluxes Φi g and net neutron currents Ji g of the nodal surfaces
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obtained from the DYN3D solution:

Lsys =
N∑

i=1
Li =

N∑
i=1

∫
Vi

∇−→Ji =
N∑

i=1

∮
Si

−→
Ji =

N∑
i=1

Si

G∑
g=1

J out
i g ,

As y s =
N∑

i=1
Ai =

N∑
i=1

∫
Vi

Σa,iΦi =
N∑

i=1
Vi

G∑
g=1

Σa,i gΦi g ,

Ps y s =
N∑

i=1
Pi =

N∑
i=1

∫
Vi

νΣ f ,iΦi =
N∑

i=1
Vi

G∑
g=1

νΣ f ,i gΦi g .

(3.10)

In Eq. (3.10) Vi and Si denote the volume and surface of node i in the N node sys-

tem. The J out
i g indicates net currents for the outer direction at the node surface. The

absorption (Σa,i g ) and neutron production (νΣ f ,i g ) homogenized cross sections are

taken from the XS library generated with Serpent and used in the DYN3D modeling.

As noted on the right-hand side of Eq. (3.10), the one-group node-wise reaction rates

are condensed from the G-group energy domain.

The reactivity effect of Eq. (3.9) can be decomposed node-wise by substituting the

total absorption and leakage rates with the second terms of Eq. (3.10):

∆ρsys =
N∑

i=1

(
P exp

i −Lexp
i − Aexp

i

P exp
sys

− P ref
i −Lref

i − Aref
i

P ref
sys

)
=

N∑
i=1
∆ρi . (3.11)

Moreover, the contribution of each node can be further decomposed by reaction types.

This can be achieved by simply reorganizing the numerators of Eq. (3.11):

∆ρi =
(

P exp
i

P exp
sys

− P ref
i

P ref
sys

)
︸ ︷︷ ︸

production

+
(

Lref
i

P ref
sys

− Lexp
i

P exp
sys

)
︸ ︷︷ ︸

leakage

+
(

Aref
i

P ref
sys

− Aexp
i

P exp
sys

)
︸ ︷︷ ︸

absorption

=∆ρP
i +∆ρL

i +∆ρA
i . (3.12)

These three terms characterize the thermal expansion reactivity effect in respect to the

change in neutron production, leakage and absorption rate of the node i . It should be

noted that summing up the production term over all nodes produces zero due to the

normalization to total production rate.

During axial- and radial expansion of the core, a significant increase is expected in

the radial- and axial leakage, respectively. To investigate this statement, the nodal

leakage reactivity contribution of Eq. (3.12) is resolved further into the axial and radial

component. In case of hexagonal prism node, the leakage from Eq. (3.10) is simply
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3.5. Spatial decomposition of thermal expansion effects

decomposed as:

Li = Saxi
i

(
Ji,top + Ji,bot

)+Srad
i

6∑
s=1

Ji ,s = Laxi
i +Lrad

i . (3.13)

The first term contains the axial leakage through the top and bottom faces of the

node, while the second term sums over the six side faces to obtain the radial leakage.

The directional component of the leakage effect can be expressed, when Eq. (3.13) is

applied in Eq. (3.11):

∆ρi =∆ρP
i +∆ρLaxi

i +∆ρLrad
i +∆ρA

i . (3.14)

When the directional leakage component of reactivity is calculated for all nodes of

the reactor, the direction of leakage change from node to neighboring nodes can be

mapped. Whereas, the total sum of this components will provide the global reactivity

effect due to the increased core leakage. For demonstration purposes, this procedure

is applied on the two reference cores in the following subsections.

It has to be mentioned that beside the neutron balance method, the calculation of

sensitivity coefficients with perturbation theory is an alternative method for reactivity

effect decomposition. However, this method requires an additional adjoint flux calcu-

lation for the reference state. In this doctoral research, the direct fluxes and currents

were already available for both reference and perturbed states form the verification

study (Section 3.4), and it was more practical to apply instantly the neutron balance

method.

The perturbation theory method and the neutron balance method was previously

compared in (Sun et al., 2011) by decomposing the coolant voiding reactivity effect

reaction-, isotope and energy-group-wise. The research presented that both methods

are quite consistent with each other. The principal difference between these two meth-

ods was well-formulated by (Sun et al., 2011): while the former provides a measure of

the causes for a given reaction, the latter provides better understanding of the conse-

quences of that reaction. In this thesis, the main motivation for the decomposition

was to understand the consequences of the same thermal expansion on the reactivity

for different core designs. Therefore the balancing method was well suited for spatial

reactivity decomposition.
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3.5.1 Axial expansion reactivity decomposition

The neutronic behavior of both reference cores during axial fuel rod expansion was

assessed with the reactivity decomposition method. The intentions of this test was to

acquire a better understanding of the axial expansion feedbacks in general, and to see

what are the effect driving mechanisms in different core designs. From the DYN3D

solutions presented in Section 3.4, the cores expanded by 0.85% were selected for

comparison. In the both OECD/NEA and Phenix EOL cores the reactivity effects were

region- and reaction-wise decomposed, as summarized in Table 3.4.

Table 3.4: Reaction- and region-wise decomposed axial expansion effect (pcm) at
0.85% axial core expansion.

OECD/NEA large oxide core

Effect Inner fuel Outer fuel Rest of ass. Full core

Total -31 -25 0 -57

– Production +127 -127 0 0

– Absorption -155 +85 +19 -51

– Leakage -3 +16 -19 -6

Phenix EOL core

Reaction Inner fuel Outer fuel Blanket Rest of ass. Full core

Total -89 -69 -7 0 -165

– Production -30 0 +30 0 0

– Absorption +13 -13 -87 -65 -152

– Leakage -72 -56 +50 +65 -13

Table 3.4 presents that, in both cores, around 90% of the total full core effect is due

to the significant increase in absorption rates and only ∼10% due to the increased

neutron leakage from the system. While the absorption rate increase is localized in

the inner fuel region of the OECD/NEA core, the effect is rather dominant in the radial

blanket and reflector zones of the Phenix EOL core. The reason for this difference

should be sought in the leakage component of the effect, as shown in Table 3.4.

In the OECD/NEA core, the leakage component is negligible on full core level as well as

locally in each region. The assembly- and reaction-wise decomposed reactivity effects

are presented in Fig. 3.12a. It also demonstrates that the total contribution of each
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3.5. Spatial decomposition of thermal expansion effects

assembly is clearly driven by the change in neutron absorption rates while the leakage

effect remains minor. In the fissile regions, the positive assembly-wise contribution of

the absorption terms is always overcompensated with stronger production term.

Furthermore, the axial expansion effect in the OECD/NEA core was decomposed

axially and presented in Fig. 3.13. Since each region had a distinctive contribution to

the full core effect, the decomposition was done on the radially averaged assemblies

of each region. In the averaged inner- and outer fuel an up-ward shift of absorption

rates is observed. In the lower main part of the active core, the absorption rate in the

fuel is decreased due to density reduction induced by the fuel rod expansion. This

contributes a positive absorption term, as seen in Fig. 3.13. In the upper plenum,

to where the fuel material intrudes by thermal expansion, the production rate is

increased while contributing a local positive feedback. As seen in the non-fuel assem-

blies (Fig. 3.13, bottom), the absorption and leakage effects are negligible to that of

the fuel assemblies.

While in the Phenix core the full core leakage effect is also small, the region-wise

components are significant, even if on full core level these cancel each other out.

Table 3.4 shows a strong negative effect in the fissile zones and a compensating

positive effect in the radial blankets and reflectors. The neutron leakage has increased

inside, while reducing the production rate, and it has reduced on the outside of the

core, i.e. the neutrons tend to migrate from the core to the periphery as compared to

the non-expanded state. The large absorption terms on the core periphery indicate

that the neutrons leaked from core are almost all absorbed here, and only a small

portion escapes the whole system. This fact is also confirmed by the small ratio of full

core leakage- and total reactivity effect, that is 13 over 165 pcm.

The smaller size of the Phenix core and the high flux gradient along radial direction

is the cause for the significant change of the leakage rates inside the core (Fig. 3.12b,

bottom). In the OECD/NEA core the flux profile is flat (zero gradient) until the outer

core periphery, and so the neutron leakage rates are less likely to change at small

density perturbations. Whereas, the non-flat profile of the Phenix core makes it more

radially leaky during axial fuel rod expansion. By looking at the radial decomposition

(Fig. 3.12b), it can be seen that the negative axial expansion effect is driven by the radial

leakage, but the increased absorption in the whole core determines the magnitude of

the effect (Table 3.4).

The axial reactivity decomposition in Phenix EOL core (Fig. 3.14) presents a similar
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Figure 3.12: Radially decomposed axial expansion effect at 0.85% axial core expansion
(top) and normalized radial flux (bottom).
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Figure 3.13: Axially decomposed axial expansion effect of the region-wise averaged
assemblies in OECD/NEA core.
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Figure 3.14: Axially decomposed axial expansion effect of the region-wise averaged
assemblies in Phenix EOL core.
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behavior as in the OECD/NEA core, i.e. the absorption rate profile is shifted upwards

in the fissile cores. Besides, a positive peak is also present in the top fissile node,

because the fissile material expands into the plenum. The production is increased in

this node and provided a positive feedback.

3.5.2 Radial expansion reactivity decomposition

The radial diagrid expansion reactivity decomposition was performed identically to

that of the axial expansion effect presented in the previous subsection. The DYN3D

solutions of Section 3.4, where the cores were radially expanded by 1.00%, were

selected for comparison. In these cases, the reactivity of the OECD/NEA and Phenix

EOL cores was reduced by 428 and 507 pcm, respectively. The region- and reaction-

wise decomposed reactivity effects are summarized in Table 3.5.

Table 3.5: Reaction- and region-wise decomposed radial expansion effect (pcm) at
1.00% radial core expansion.

OECD/NEA large oxide core

Effect Inner fuel Outer fuel Rest of ass. Full core

Total -158 +101 0 -428

– Production +127 -127 0 0

– Absorption -155 +85 +19 -403

– Leakage -3 +16 -19 -25

Phenix EOL core

Reaction Inner fuel Outer fuel Blanket Rest of ass. Full core

Total -483 -24 0 0 -507

– Production -35 +35 0 0 0

– Absorption -244 -125 -72 -62 -503

– Leakage -204 +66 +72 +62 -4

Similarly to the axial expansion effect, in case of the radial expansion, the increased

absorption rate on full core level is the dominant contributor to the negative feedback.

In the OECD/NEA core, the local radial leakage effects are likewise negligible, while in

the more “leaky” Phenix core the radial leakage plays an important role.

Fig. 3.15 presents the radial decomposition of radial expansion effect for both refer-
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Figure 3.15: Radially decomposed radial expansion effect at 1.00% radial core expan-
sion.
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ence cores. It is seen that the absorption rates of inside assemblies are increased, and

contributing strong negative reactivity values. For the OECD/NEA core the slightly

positive absorption term is compensated with stronger reduction in production rate.

While the leakage effects in the OECD/NEA core remains small (Fig. 3.15a), in the

Phenix EOL core a strong radial leakage is observed from the fissile into the blanket

and reflector area (Fig. 3.15b). The latter strongly increases the absorption rates in the

outer regions.

The radial diagrid expansion widens the inter-assembly gap, therefore, strengthening

the axial neutron streaming. Figs. 3.16 and 3.17 present an increased axial leakage

from the active core region towards the lower and upper part of the core. In the mean

time the absorption and production rates are reduced. In the plena, axial reflectors

and blankets, the leakage effect is positive demonstrating an increased neutron inflow.

This is compensated by the enhanced absorption, as shown in Figs. 3.16 and 3.17.

The wider inter-assembly gap means a larger coolant to fuel ratio resulting a softer

neutron spectrum, i.e. higher absorption rates in the 238U (Sun et al., 2011). This effect

is notable at the top and bottom nodes of the active core (Fig. 3.16), and in case of the

Phenix core also in the blankets (Fig. 3.17).

The radial “leakiness” of the Phenix core is also seen in the axial decomposition of

the averaged non-fuel assemblies (Fig. 3.17, bottom), especially, when it is compared

to one of the OECD/NEA core (Fig. 3.16, bottom). The presence of strong positive

radial leakage component indicates a significantly increased neutron inflow rate in

the Phenix core periphery, whereas this effect is negligible in the OECD/NEA core. At

the end, the extra influx of neutrons is counterbalanced with increased absorption.

3.6 Modeling of thermal expansions – Summary of the

results

In SFR system analyses, the thermal expansion effects play a major role in the evolu-

tion of the transients. In order to model local expansion effects and asymmetric core

behavior, 3D spatial kinetics codes with thermal expansion treatment are needed. The

nodal diffusion code DYN3D was extended by the author with new thermal expansion

models to account for axial and radial core expansions. The axial expansion model

is based on the XS “mixing” approach and capable of modeling non-uniform core
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Figure 3.16: Axially decomposed radial expansion effect of the region-wise averaged
assemblies in OECD/NEA core.
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Figure 3.17: Axially decomposed radial expansion effect of the region-wise averaged
assemblies in Phenix EOL core.
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expansions by using the spatial temperature distribution of the fuel rods. The radial

diagrid expansion model can account for a uniform radial expansion driven by the

average inlet sodium temperature.

The axial expansion model was verified for radially uniform axial expansions using

the large 3600 MWth oxide core from the OECD/NEA benchmark and the smaller

350 MWth oxide core from the Phenix EOL experiments. The results were in a very

good agreement with the reference MC Serpent solution showing a sufficiently good

prediction of the axial expansion reactivity effect. This confirms that the XS “mixing”

based model is a simple and flexible way of handling the axial fuel rod expansion,

which allows for an independent treatment of each fuel assembly based on local TH

conditions. The concept of using uniformly expanding radial mesh in the diagrid

model for the core radial expansion was also verified based on steady-state analyses

of the reference cores.

A spatial reactivity decomposition procedure was introduced for the DYN3D solution

based on the neutron balance method. Beside the node-wise decomposition of the

reactivity feedback, the reaction-wise share of the effect can be calculated in each

node. Currently, the reactivity feedback due to the local change in absorption rates

and directional leakage components can be obtained. This method provides the

means to gain a better understanding of thermal expansion effects on the neutronic

core behavior. Both reference cores were assessed with the reactivity decomposition

method in this chapter.

The expansion models are further assessed and validated, as presented in Chapter 4,

with the help of the selected IAEA benchmarks on the Phenix EOL experiments: steady-

state analysis of the CR shift test and transient calculations of the unprotected stage

of the natural circulation test. It should be noted that the latter test is of particular

importance, because in this case, the both models are applied to simulate dynamically

changing axial and radial core dimensions.
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4 Overall verification and validation of

the extended DYN3D code

Before permanent shutdown of the Phenix reactor, several tests were performed in

order to gain additional knowledge on SFR behavior. From these experiments, two

tests were selected for international code benchmarking by the IAEA: (1) the control

rod withdrawal tests (IAEA, 2014) and (2) the natural circulation test (IAEA, 2013).

In this chapter, several parts of these benchmarks were selected for V&V in order to

demonstrate the feasibility of using DYN3D for SFR analyses.

Section 4.1 focuses on the calculations of the CR withdrawal tests, while Section 4.2

is dedicated to the simulation of the unprotected stage of the natural circulation

test. The selected tests are described in the beginning of each section. The specifics

on computational modeling with DYN3D are presented for each selected test in

subsections 4.1.2 and 4.2.2. The numerical results obtained with DYN3D are presented

in subsections 4.1.3 and 4.2.3, respectively. Finally, each section concludes with a

short summary of the results.

4.1 Phenix EOL control rod withdrawal tests

This section focuses on the verification and validation of the extended version of

DYN3D against the IAEA benchmark on the control rod (CR) withdrawal tests from

the end-of-life experiments conducted at the Phenix reactor (IAEA, 2014). The se-

lected benchmark was designed to assess the capability of neutronic codes, used for

SFR analyses, to model deformations in radial power distribution due to the various

asymmetric arrangements of CRs. In order to take a full advantage of the available

experimental data, the benchmark tasks were solved by DYN3D in two different ways:

79



Chapter 4. Overall verification and validation of the extended DYN3D code

(1) neutronic solution without feedbacks, and (2) coupled solution with thermal-

hydraulic and thermal-mechanical feedbacks. The first one was obtained using the

fixed core geometry while the dimensions of the fuel assemblies and other core com-

ponents were explicitly expanded based on the average temperatures provided in

the benchmark specifications. In contrast to the previous case, the second solution

was obtained by invoking the thermal expansion models to obtain the actual core

dimensions based on the temperatures provided by the thermal-hydraulic module. In

this study, the first solution was used to validate the few-group XS generation method-

ology and neutronic performance of DYN3D in general, while the second one served

to demonstrate and assess the overall capabilities of the extended DYN3D version.

4.1.1 Description of the control rod withdrawal tests

In the control rod withdrawal tests, a series of steady-state measurements were con-

ducted with four different CRs arrangements (hereafter referred to as the CR shift

tests). The main goal of the test was to investigate deformations of the radial power

shape due to the asymmetric axial positioning of the shifted CRs. At the reference

state, all six primary CRs were kept on equivalent level of elevation (so-called “rod

bank” position). In three additional steps, CR #1 and #4 shown in Fig. 4.1 were either

withdrawn or inserted relatively to the “rod bank” according to the sequence presented

in Fig. 4.2. The rod bank position was adjusted to keep the reactor at constant power

of about 335 MWth. The total sodium flow rate remained constant along all steps.

Inner core

Primary control

Reflector

Outer core

Secondary control

Blanket

CR #1 CR #4

Figure 4.1: Phenix EOL core: radial core layout and location of the shifted CRs.

During the CR shift test, the sodium temperature was measured at the core outlet.

Thermocouples were positioned at the head of each assembly located in the first seven

assembly rows of the core starting from the core center (120 thermocouples in total).
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4.1. Phenix EOL control rod withdrawal tests

Using these, the sodium heating (temperature difference between inlet and outlet)

was measured assembly-wise at each step. The heat transfer between assemblies

was assumed to be insignificant. Moreover, the change in the flowrate distribution

due to the change of sodium heating was also assumed negligible. Based on these

assumptions, the radial distribution of the relative power deviations in respect to the

reference state was calculated for each step from the variation of sodium heating

(IAEA, 2014):

δrelPi =
Pi −P ref.

i

P ref.
i

≈ QcP (∆Ti −∆T ref.
i )

QcP∆T ref.
i

= δrel(∆Ti ) , (4.1)

where P is the assembly power, Q is the sodium mass flowrate, cP is the assembly-

average specific heat capacity, and∆T is the sodium heating in the assembly i . The ref.

index denotes the values taken from the reference state. In this study, the deviation in

radial power distribution estimated from the temperature measurements for Steps 1-3

were used for the validation of the DYN3D code.

Reference state Step 1 Step 2 Step 3

-266 mm -229 mm

+278 mm +324 mm

Core

CR #

41 4
1

1 1

4 4
2 3 5 6

2 3 5 6
2 3 5 6

2 3 5 6

Figure 4.2: CR shift sequence.

The reactivity worth of the two involved CRs was measured before the CR shift test.

The balancing method was used to acquire the integral rod worth over the full range of

withdrawal (S-curve) for the CR #1 and #4. The test was initiated at critical low power

state (∼50 kW), where CR #1 and CR #4 was in complete inserted and withdrawn

position, respectively. By using a succession of elementary steps, the CR #4 was moved

from bottom to top, while the CR #1 in the opposite direction.

As presented in Fig. 4.3, the CR #4 was firstly moved downwards by a small increment

(Step I in Fig. 4.3) and secondly the CR #1 was withdrawn to compensate the negative

change of reactivity (Step II in Fig. 4.3). Between each elementary CR displacement,

the differential worth was measured for each CR based on the application of the

inverse kinetics method. When the CR #4 had been totally withdrawn to the top and

CR #1 inserted to the bottom (Step N in Fig. 4.3), the full S-curves were obtained for

both rods.
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Initial state Step N

Core

CR # 4

1

4

1
1

1
4

4

2 3 5 6 2 3 5 6 2 3 5 6 2 3 5 6

Step IIStep I ...

Figure 4.3: Schematic representation of the balancing method.

4.1.2 Computational methodology

The calculations were done in a two-step approach using the Serpent-DYN3D codes

sequence. In the first step, the homogenized few-group XS were generated on lattice

level with Serpent, and in the second step, the full core nodal calculations were

performed with DYN3D.

Generation of parametrized cross section libraries

A parameterized cross section library was generated for DYN3D that covers the full

range of reactor conditions of the CR shift tests and the natural circulation test. In this

way, the same library was utilized in all calculations presented in this chapter.

The XS were calculated with Serpent at different fuel temperatures, coolant temper-

atures, axial expansion and radial diagrid expansion states. Table 4.1 presents the

selected states that span the parameter space of the XS library. In Table 4.1, the tem-

perature-dependent expansion coefficients are defined according to Eq. (3.3). In this

case, the correlation for the temperature-dependent linear expansion coefficients was

provided in the benchmark specification.

Table 4.1: Conditions used for cross section parametrization.

Fuel temperature

(K)

Coolant

temperature (K)

Axial

expansion

Radial

expansion

523
523 ε(523) ε(523)

900

1500
900 ε(1200) ε(900)

1800

The coolant density effect was implicitly considered in the coolant temperature varia-
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4.1. Phenix EOL control rod withdrawal tests

tion. In case of the axial expansion effect, the change of dimensions and densities was

considered for both fuel and cladding. Furthermore, the radial expansion of the pins,

the reduction in the liquid sodium amount between the pins, and the temperature

effect of the cladding were taken into account. The axial expansion relies on a closed

gap hypothesis and is assumed to be driven by the cladding temperature, which is

directly calculated by the internal thermal-hydraulic module of DYN3D.

The JEFF-3.1 based homogenized XS were obtained in the 24-group energy structure

as suggested in (Fridman and Shwageraus, 2013). For further improvement of the

nodal diffusion solution, the SPH method was applied for blanket and non-multiply-

ing regions adjacent to the fuel nodes. The XS of the Phenix core were generated as

described in Section 2.3.

DYN3D model

The Phenix EOL core model was constructed in DYN3D based on the data provided in

the corresponding IAEA benchmark report. By using the homogenized XS generated

with Serpent, the full core nodal diffusion solution was obtained with DYN3D for all

four states of the test. The calculations were repeated in two different ways:

• Case A – Pure neutronic calculations by employing the fixed uniform tempera-

tures specified in the benchmark. This approach was adopted by the majority

of the benchmark participants.

• Case B – Coupled neutronic thermal-hydraulic (N/TH) calculations by employ-

ing the newly implemented axial fuel rod expansion model, where the axial

expansion of the fuel rods was driven by local cladding temperatures.

Since Case A comprises only steady-state neutronic calculations, the nodal mesh was

expanded explicitly without applying the thermal expansion models. The following

uniform temperatures were used in the CR shift test: 1500 K for the fuel, 900 K for

the blanket, and 721 K for structural, coolant, and absorber materials. The latter

temperature was used to uniformly expand the core in the axial direction. In the radial

direction, the core was expanded according to the inlet temperature of 646 K.

In Cases B, the initial core dimensions were set according to the isothermal state of

250◦C. During calculations, the fuel rods were expanded using local cladding tem-

peratures provided by the thermal-hydraulic module of DYN3D. The diagrid radial
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expansion model was applied to automatically obtain the actual assembly pitch cor-

responding to the specified inlet coolant temperature. In order to ensure a more

consistent comparison between the two cases, the gas gap conductance in the fuel

rods was adjusted to reproduce the specified core-average fuel temperature of 1500 K.

For all reactor states of the CR shift test, the total power and the boundary condi-

tions (i.e. the inlet coolant temperature and the mass flow rate distribution) were set

according to the benchmark specification.

The control rod S-curves of CR #1 and #4 were obtained with DYN3D by simulating the

balancing method applied in the experiment (see Fig. 4.3). Since the core temperatures

were not provided for this measurement, but the test was done in the low power

state, it was assumed that the core resides in the isothermal condition (250◦C). The

simulation comprises a succession of steady-state calculations by using the approach

of Case A, where all the temperatures were fixed at 250◦C. The DYN3D calculations

were executed as follows:

1. The CR #1 and #4 were fixed in the totally inserted and withdrawn position,

respectively. The rest of the CRs were moved together until critical state was

achieved with DYN3D.

2. CR #4 was inserted further by one-ninth of full range of withdrawal, which

corresponds to 100 mm at cold state (20◦C). This is equivalent to Step I in

Fig. 4.3.

3. CR #1 was withdrawn further by one-ninth of full range of withdrawal. This

corresponds to Step II in Fig. 4.3.

4. Step 2 and 3 were repeated with DYN3D until the final state was reached (Step N

in Fig. 4.3).

The differential rod worth of each elementary displacement was obtained for both

CRs. The S-curves were obtained by cumulative summation of the differential rod

worths.
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4.1.3 Numerical results

Case A – Neutronic calculations

The DYN3D results were compared with the full core MC solution of Serpent and the

measurements. The calculated core reactivity values are presented in Table 4.2. In

all steps, the codes noticeably overestimate the reactivity by about 430 to 600 pcm.

Nevertheless, the Serpent and DYN3D results are very close and agree within about

160 pcm. Moreover, the reactivity swings between the steps remain below 15 pcm

for both codes. The Serpent and DYN3D results are consistent with the results of

the benchmark participants (IAEA, 2014, p. 175-6) that presented a reactivity bias of

around +730 pcm compared to the critical state. Such discrepancies do not only come

from nuclear data and measurement uncertainties, but from the averaged description

of the reactor core.

Table 4.2: Calculated core reactivity at all states.

(pcm)
Case A Case B

Serpent DYN3D DYN3D vs. Serpent DYN3D

Ref. state 584±2 421 −162 463

Step 1 592±2 436 −157 436

Step 2 596±2 436 −161 455

Step 3 596±2 432 −165 474

The radial power distributions of all states calculated with Serpent are presented in

Fig. 4.4, top, and the comparison with DYN3D in Fig. 4.4, bottom. The Serpent power

distributions were obtained by the averaging the results of the 20 independent Serpent

calculations each of which was executed with an overall 960 million neutron genera-

tions (i.e. 1500 active and 200 skipped cycles with 640,000 neutrons per generation).

As compared to Serpent, the power predicted with DYN3D does not exceed 1.5% for

any state, while the average power deviation remains around 0.5%.

The power deviation profiles obtained with Eq. (4.1) from the DYN3D solutions are

presented in Fig. 4.5a. The maximal positive and negative power deviations of all steps

are compared against the Serpent results and the experimental values in Table 4.3. It

is clearly seen that the maximal distortion of the power shape is achieved when the

CRs #1 and #4 are shifted in opposite directions (i.e. at Step 2). In this step, according
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to the experimental data, the power is increased by 12.1% and reduced by 10.9%

around the extracted and inserted CRs, respectively. At Step 1 and 3, when only one

CR is shifted relatively to the bank, a compensation effect can be observed on the

opposite side of the involved CR which is caused by keeping the core on constant

power (Pascal et al., 2013).
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Figure 4.4: Radial power distribution calculated with Serpent for all states (top), and
the relative difference in power between DYN3D and Serpent (bottom). Standard
deviation of Serpent values is <0.025%.

As compared to the experimental data, the codes consistently overestimate the effect

of the CR shift and predict considerably higher limits in the assembly-wise power

deviation distributions (Table 4.3). Nevertheless, a very good agreement is observed

between the MC and nodal diffusion methods. The discrepancy in power deviations

does not exceed 0.5%, even in the second step, as demonstrated in Fig. 4.5b. The

average difference between the codes is ±0.1/0.2/0.1% for Step 1/2/3 respectively.
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Step 1

Step 2

Step 3

(a) Power deviations calculated with
DYN3D

(b) Difference in power deviations,
DYN3D vs. Serpent

Figure 4.5: Radial distribution of the power deviations (with respect to the reference
state) for all steps (a), and the difference between DYN3D and Serpent results (b).
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Table 4.3: Comparison of maximal power deviations at all steps.

(%) Max. positive deviation Max. negative deviation

Step 1

Experiment na −9.5±1.3

Serpent* 5.8 −11.2

DYN3D 6.0 −11.5

Step 2

Experiment 12.1±1.4 −10.9±1.3

Serpent* 13.0 −12.4

DYN3D 13.3 −12.8

Step 3

Experiment 9.1±1.4 na

Serpent* 9.5 −3.9

DYN3D 9.6 −4.0

* Standard deviation of Serpent values is <0.035%.

The calculated power deviations, extracted from the core diagonal closest to CR #1

and #4, were compared with each other and the measurements in Fig. 4.6. The power

deviation profiles predicted by DYN3D are in a very good agreement with MC solutions

while the maximal differences in the order of the steps are about 0.3%, 0.4% and 0.1%.

While the computational results remain within the experimental uncertainty band

at the center of the core and around the withdrawn CR, higher discrepancies are

observed in the blanket assemblies and around the inserted CR (Fig. 4.6). The highest

deviation between DYN3D and the measurement occurs at Step 2, where the maximal

differences are around 2.6% and 4.7% in the fissile core and blanket, respectively.

Although the discrepancies between DYN3D and the measurement are significant, the

DYN3D solution remains within the range of results provided by all other benchmark

participants (IAEA, 2014, p. 209-11).

In general, all codes applied in the benchmark overestimate the power deviations.

The discrepancies observed between the experiment and the computational results

presented in this paper and the benchmark report are mainly caused by measurements

problems explained by (Pascal et al., 2013). Some of the thermal-hydraulic effects

were disregarded that lead to an overestimation in the peripheral assemblies. The

neglected phenomena were the heat transfer between the fertile and fissile assemblies,

and the turbulent mixing between the sodium streams of these assemblies and the hot

plenum. Still, the systematic overestimation along the whole core is mainly associated

with uncertainties of the provided CR positions. These were obtained during the test
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with the help of empirical models that considered the relative thermal expansions of

the core, vessel and CRs.

Table 4.4: Measured and calculated control rod worths for CR #1 and #4.

(pcm) DYN3D Serpent Experiment
DYN3D vs. DYN3D vs.

Serpent Experiment

CR #1 1332 1266±3 1257 66 75

CR #4 1262 1209±3 1238 53 24

Additionally to the CR shift test, the balancing method was simulated with DYN3D

and Serpent to obtain the S-curves for CR #1 and #4. The Serpent simulation fol-

lowed the same procedure as described for DYN3D in subsection 4.1.2. The statistical

uncertainty of the Serpent reactivities was kept under 2 pcm. The calculated and

measured (IAEA, 2014, p. 18) S-curves of both CRs are compared in Fig. 4.7. The total

rod worths are summarized in Table 4.4. The DYN3D overestimates both the Serpent

rod worths by 66 and 53 pcm and the measured ones by 75 and 24 pcm for CR #1 and

#4, respectively. Nevertheless, the computational results are in a very good agreement

with the experimental data while the S-curves are well aligned with each other.

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 00
2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0
1 4 0 0

CR
 w

or
th 

(pc
m)

C R  # 1  p o s i t i o n  ( m m )

 M e a s u r e d   S e r p e n t   D Y N 3 D

(a) CR #1

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 00
2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0
1 4 0 0

CR
 w

or
th 

(pc
m)

C R  # 4  p o s i t i o n  ( m m )

 M e a s u r e d   S e r p e n t   D Y N 3 D

(b) CR #4

Figure 4.7: Comparison of control rod S-curves. Standard deviation of Serpent values
is 3 pcm.
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Case B – Coupled neutronic thermal-hydraulic calculations

Beside the Case A results, Table 4.2 also contains the reactivity values obtained with

DYN3D in the coupled neutronic thermal-hydraulic calculation mode. For Case B, the

reactivity remains overestimated by ∼430-470 pcm.

The impact of using coupled N/TH analysis instead of the pure neutronic calculation

with uniform temperature profiles was assessed by comparing the obtained radial

power deviation profiles against the measured ones. Fig. 4.8 presents the discrepancies

between DYN3D and the experiment for all steps obtained as:

∆ (δrelP )i = δrelP
C
i −δrelP

E
i , (4.2)

where δrelP is the relative power deviation obtained with Eq. (4.2) for each assembly

i from the experiment (E) and DYN3D calculations (C). The results of the coupled

calculations (Case B) are almost aligned with the pure neutronic solution (Case A), but

a slight reduction of discrepancies is observed in the coupled case (Fig. 4.8).

In Case B, a more realistic expansion of each fuel assembly was modeled with DYN3D

by using the cladding temperature distribution. Fig. 4.9 presents axial expansion

profile of the core calculated for Step 2 with DYN3D. The profile is obtained as the

difference in height between the expanded and reference state (20◦C):

∆L = Lexp −Lref . (4.3)

The expansion profile reveals that, while the central assemblies become larger, the

assemblies on the periphery remain smaller than in case of uniform expansion. Fur-

thermore, Fig. 4.9 shows that the expansion of an assembly is following the axial

sodium heat-up, i.e. the upper nodes expand more than the lower ones. DYN3D uses

these self-calculated node-wise expansion profiles to obtain the correct XS with the

mixing approach as described in details in Section 3.2.

As compared to the experiment in general, the results demonstrated a competent

performance of the coupled code. Although the more realistic expansion profile

obtained from the new thermal-mechanical model did not affect the steady-state

results notably, the application of this new model can be important in transient

and accident analyses where the significantly higher temperature variations can be

expected.
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Figure 4.9: Absolute axial expansion profile of assemblies along the diagonal closest
to CRs #1 and #4 (Step 2). Calculated with DYN3D.

4.1.4 Control rod withdrawal tests – Summary of the results

This section presented the V&V of the extended version of DYN3D against the Phenix

EOL control rod withdrawal benchmark. The benchmark tasks were solved with

DYN3D in two different ways: (1) pure neutronic calculations without feedbacks, and

(2) coupled N/TH calculations with consideration of local thermal expansion effects.

In both cases the homogenized XS were generated with Serpent. The obtained DYN3D

results are summarized as follows:

• By using the first method the CR shift test and the CR S-curve measurements

were modeled with DYN3D. These solutions were used to validate the few-group

XS generation methodology and neutronic performance of DYN3D in general:

– The DYN3D results are in very good agreement with the full core MC

solution of Serpent and they are consistent with the numerical solutions

of the benchmark participants.

– Similarly to the benchmark participants, significant discrepancies were

observed between the DYN3D solutions and the experimental data. These

were explained with the aforementioned benchmark deficiencies (e.g.,

the averaged core descriptions and the uncertainties of the provided CR
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positions).

– The integral CR worths and the S-curves are in good agreement with the

Serpent solution as well as with the experimental data.

• In the second case, only the CR shift test was modeled to demonstrate and

assess the overall capabilities of the extended DYN3D version:

– The coupled N/TH calculations presented an adequate performance of

the code, while predicting realistic thermal expansion profiles of the fuel

assemblies. The results were not significantly different from the solution

where the core-average temperature was used to uniformly expand the

core.

– It is worth noting that in more severe cases, when the local temperature

variations are higher, the selection between uniform and non-uniform

axial thermal expansion modeling can be more influential on the results.

4.2 Phenix EOL natural circulation test

This section focuses on validation of DYN3D against a transient scenario taken from

the IAEA benchmark on the Phenix EOL natural circulation test (IAEA, 2013). Initially,

the benchmark targeted sodium capable thermal-hydraulic system codes utilizing

point kinetics models for validation. However, by combining this benchmark with the

detailed core description of the CR withdrawal benchmark, the point kinetics model

can be exchanged with a spatial neutron kinetics code for a more detailed evaluation

of the test, as it was also done in (Chenu et al., 2012).

Similarly in this work, the unprotected stage of the natural convection test was cal-

culated with DYN3D using the 3D nodal diffusion solver together with the intrinsic

thermal-hydraulic model and the new thermal-mechanical models. This section

provides an assessment of DYN3D for coupled neutron kinetics thermal-hydraulics

(NK/TH) transient analyses of SFR cores in general, and presents the impact of using

uniform axial expansion profiles instead of simulating a more realistic non-uniform

core expansion for this particular test.
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4.2.1 Description of the unprotected stage of the transient

The natural circulation test (IAEA, 2013) was dedicated to investigate the onset and

development of natural circulation in pool-type SFR systems. In the framework of

the benchmark, the experimental data were made available for qualification and vali-

dation of thermal-hydraulic system codes that are aimed at modeling liquid sodium

systems.

The test was initiated by manual dry out of the two steam generators at the reduced

power of 120 MWth. This caused a loss of heat removal from the secondary, and

consequently, from the primary side. After the initial phase, which lasted 458 seconds,

the reactor was manually scramed. Eight seconds later, the primary pumps were

tripped and the characteristics of natural circulation were measured in the primary

system.

In the unprotected stage, while the total mass flow rate remained constant, the core

inlet temperature has increased by ∼40 K. As a result, the total power has dropped

from 120 MWth to 50 MWth, and the inner core outlet temperature by ∼10 K, as shown

in Fig. 4.10. The power reduction driven by the core reactivity was initiated by the

thermal expansion of the core diagrid. The further development of the total reactivity

(Fig. 4.10) was mainly influenced by the thermal expansion of the diagrid and fuel

rods, the Doppler effect, and the relative CR movement caused by the simultaneous

expansion of the core, CR drivelines and vessel. The measured core characteristics,

shown in Fig. 4.10, include time-dependent inlet and outlet coolant temperatures,

reactivity, and total power.

The temperature increase of the core inlet is mainly driven by the loss of heatsink in

the steam generators. The small and slow change of the outlet coolant temperature

has only a minor influence on the core inlet during the unprotected stage. Therefore,

to a certain extent, the core thermal-hydraulic behavior may be considered decoupled

from the primary circuit, and can be modeled with a core simulator by using the inlet

temperature curve as time-dependent boundary condition (Fig. 4.10, top). In this

section, the unprotected stage of the test was calculated in such way with DYN3D,

and the numerical results were compared with the experimental data provided by the

benchmark specification (IAEA, 2013).
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Figure 4.10: Measurements in the unprotected stage of the natural convection test. Top
to bottom: inlet coolant temperature, reactivity, total thermal power, outlet coolant
temperature of the inner core. Data are extracted from the benchmark report.
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4.2.2 Computational methodology

The calculations were done in a two-step approach using the Serpent-DYN3D codes

sequence. In the first step, the homogenized few-group cross sections (XS) were

generated on lattice level with Serpent, and in the second step, the full core nodal

calculations were performed with DYN3D.

Generation of parametrized cross section libraries

Identical XS library was applied in this transient calculation as was used for the

CR withdrawal tests (Section 4.1). For a detailed description of the XS library see

subsection 4.1.2.

DYN3D model

The Phenix EOL core model was constructed in DYN3D based on the data provided

in the benchmark reports of the CR shift test and the natural circulation test. The

fuel rods were modeled as described in the benchmark, but instead of modeling 90%

of the fuel rods in a closed gas gap condition (linked fuel) and 10% in open gas gap

condition (free fuel), all fuel pins were considered as linked in the DYN3D model. This

approximation is based on the fact that the positions of the linked and free fuel pins

are not available in the specification, since the natural circulation benchmark was

aimed at system analyses by not modeling spatial neutronics and mechanics.

At the core inlet, a constant mass flow rate and a time-dependent coolant temperature

boundary condition was defined. The inlet flow resistance coefficients of the assem-

blies were set to reproduce the zone-wise mass flow rate distribution given by the

benchmark specification. Within the zones, the total mass flow rate of the zone was

evenly distributed between the assemblies. The total mass flow rate of the core had to

be adjusted, in order to match the initial coolant temperature measured at the outlet

of the inner core (Fig. 4.10, bottom). In DYN3D, the total mass flow rate was set to

1275 kg/s instead of 1254 kg/s, which is still within the 5% of reported measurement

uncertainty. Furthermore, it is assumed that the diagrid expansion in the Phenix

reactor is directly driven by the average sodium inlet temperature without significant

delay, since the thermal inertia of the diagrid heat-structure is very small (Chenu et al.,

2012).
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The unprotected stage of the test was computed with DYN3D by using the Serpent-

generated parametrized XS library and the newly implemented thermal-mechanical

models of thermal expansion. The calculation was repeated twice with different

treatments of axial fuel rod expansion:

• Case A: The newly implemented axial fuel rod expansion model was employed,

where the axial expansion of the fuel rods was driven by local cladding tempera-

tures. Hereafter referred to as the non-uniform expansion model.

• Case B: The same mixing based model (Section 3.2) as in Case A, but the layer-

average cladding temperature is used to expand the sections of the fuel rods

located in the same layer. Hereafter referred to as the layer-uniform expansion

model.

The solution of Case A is considered as the reference solution of DYN3D. Case B is

a simplified approach of Case A, since the radial averaging of thermal expansions

covers up the local effects. Nevertheless, the layer-uniform expansion model can be a

compromise for other spatial neutronic codes that also utilize a regular axial grid, and

prefer an explicit expansion of the mesh.

4.2.3 Numerical results

Before the transient analyses, the reactivity coefficients obtained by DYN3D were com-

pared with values provided by the benchmark specification. The feedback parameters

are in good agreement as show in Table 4.5.

Table 4.5: Reactivity coefficients of the Phenix EOL core.

Doppler

effect (pcm)

Diagrid

expansion

(pcm/K)

Fuel axial

expansion

(pcm/K)

Coolant

temperature

(pcm/K)

Benchmark spec. −680 −1.21 −0.31 −0.02

DYN3D −661 −1.00 −0.29 −0.05
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Case A – Non-uniform thermal expansion modeling

The calculated total reactivity, power and core outlet temperature evolutions over

time are presented in Fig. 4.11, along with the measured data. The power and core

outlet temperature curves are completely aligned with experimental data, while the

calculated values remain within measurement uncertainties. In the first 300 s the

calculated reactivity remains in a good agreement with measurements, whereafter

the DYN3D underestimates the total reactivity, and reaches 7 pcm discrepancy at the

end of the transient. The underestimation can be explained with the missing model

of vessel expansion. After 300 s, the increasing sodium temperature of the cold pool

warms up enough to induce vessel expansion, which acts as a relative extraction of the

control rods (IAEA, 2013). By modeling the vessel expansion effect, the discrepancy

can be reduced, as it was demonstrated by (Chenu et al., 2012).
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Figure 4.11: DYN3D results on the unprotected stage of the natural circulations test
(compared with the experimental results). Top to bottom: reactivity, total thermal
power, outlet coolant temperature of the inner core.
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Figure 4.12: Total reactivity decompositions with DYN3D.
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Figure 4.13: Averaged fuel rod temperature evolution in fissile core.
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Figure 4.14: Averaged fuel rod temperature evolution in radial blanket.
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Figure 4.15: Doppler effect decompositions with DYN3D.

As it is presented in Fig. 4.12, the two main contributors to the reactivity evolution

are the diagrid expansion and the Doppler effect. The increase of the inlet temper-

ature triggers the diagrid expansion, which initiates the power reduction. The fuel

temperature of the fissile zone is decreasing (Fig. 4.13) due the power reduction, while

the blanket temperature of the fertile zone is increasing (Fig. 4.14) due to the sodium

heat-up. In total, the observed positive Doppler reactivity (Fig. 4.12) is actually the

combination of the dominant positive effect from the fissile core and the slightly

negative effect from the blanket region, as shown in Fig. 4.15. An overall temperature

rise in fuel rod cladding is observed (Figs. 4.13 and 4.14), causing a moderate negative

reactivity contribution by axially expanding the fuel rods, as seen in Fig. 4.12. The

coolant temperature effect remains insignificant during the whole transient.

Case B – Layer-uniform thermal expansion modeling

The transient calculation was repeated once more with the layer-uniform expansion

model. The differences between the results of Case A and B are summarized in Fig. 4.16.

In Case B, the DYN3D predicts at the end a lower power of ∼2 MW, which corresponds

to 1.7% of the initial state. This reduction in power is caused by the larger axial

expansion reactivity effect (Fig. 4.16, bottom) that is somewhat compensated by the

Doppler effect, and yielding a 1 pcm lower reactivity in total (Fig. 4.16, center).

The overestimation of axial expansion effect can be explained by comparing the

evolution of the radial profiles of the assembly expansions, as presented in Fig. 4.17.

With the layer-uniform model, all assemblies expand by additional 0.038% during
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Figure 4.16: Difference in the results by using non-uniform and layer-uniform ex-
pansion models. Top to bottom: total power, total reactivity, and axial expansion
effect.
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the transient, while with the non-uniform model by only 0.023% in average. Since

the transient is driven by a radially uniform heat-up of the coolant, the non-uniform

profiles flattens out in time, and even would become uniform if transient would

continue without external interaction. In this core-symmetric transient scenario, the

discrepancies seen in the results can be originated from the differences of expansion

profiles present at the beginning.
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Figure 4.17: Change of the axial expansion profile between the beginning and the end
of the transient. The profiles are depicted along the diagonal closest to CRs #1 and #4.

4.2.4 Natural circulation test – Summary of the results

This section presented the validation of the extended version of DYN3D against the

unprotected stage of natural circulation test from the Phenix EOL experiments. The

test was simulated with the Serpent-DYN3D codes sequence, i.e. the parametrized

cross section library was generated with Serpent and the coupled NK/TH time-de-

pendent solution was obtained with DYN3D. The numerical results were compared

against the experimental data. The following conclusions can be made from the

validation study:

• In general, the DYN3D solutions were in very good agreement with the ex-

perimental data indicating the feasibility of using DYN3D in coupled NK/TH

transient analyses of SFR cores.
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• The deviations from the measurements were only observed when out-of-core

thermal expansion effects, such as vessel expansion, start to influence the CR

position relatively to the core. In order to account for the correct magnitude and

time delay of such relative CR movements, the change in thermal-mechanical

conditions of the supporting structures has to be modeled. The development

of thermal-mechanical models for the supporting structures is an ongoing

research topic at HZDR that will be based on a coupling of DYN3D with a

thermal-hydraulic system code capable of sodium flow modeling.

• The study demonstrated that by utilizing the newly implemented fuel rod ther-

mal expansion model, the non-uniform thermal expansion effects can be mod-

eled in transient simulations. As compared to the layer-uniform fuel rod ex-

pansion modeling, the discrepancies between the numerical results and the

measurements did not change significantly. This can be attributed to a relatively

small variation in sodium heat-up over the course of transient (about 40 K).

In more severe cases (e.g. accident scenarios with significantly higher or/and

asymmetric sodium heat-up) the selection of one thermal expansion model

over the other can lead to much higher deviations in the results.

• This study also demonstrated that the MC code Serpent can be successfully

applied to generate few-group XS for transient analyses of SFR cores.
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5 Summary and future work

The purpose of the present doctoral research was to extend the capabilities of the Light

Water Reactor core simulator DYN3D to perform three-dimensional reactor simula-

tions of Sodium cooled Fast Reactor cores. The supplementary methods and models

developed in this dissertation make DYN3D feasible to do steady-state and transient

calculations on reactor core level. These extensions were verified and validated on

both numerical and experimental SFR benchmarks.

The SFR-related DYN3D developments are summarized in the following while the

recommendations for further research are provided at the end.

5.1 Thesis summary

By utilizing the Monte Carlo neutron transport code Serpent, a methodology was

developed to create homogenized few-group cross sections for more realistic and

detailed SFR core configurations. This method is capable of providing group constants

to practically any deterministic 3D full core simulator. It is based on lattice-level mod-

els, which is favorable in respect to the computation time and memory usage while

maintaining an adequate MC statistics. Such is particularly important in branching

calculations, when a complete parametrized XS library is prepared for transient simu-

lations. This research demonstrated that the Serpent-DYN3D codes sequence can be

used for static neutronic as well as time-dependent N/TH analyses of SFR cores.

In order to support the cross section generation method, the Super-homogenization

technique was applied for the first-neighbor regions to the fuel assemblies. This

method demonstrated a consistent improvement in the nodal diffusion solution
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of SFR cores, as compared to full core Monte Carlo results. The highest positive

impact was achieved by using the SPH factors on the non-multiplying regions that are

surrounded by the fissile core, such as the control and diluant assemblies. The SPH

method in combination with the lattice approach of XS generation proved to be an

efficient way to improve the nodal diffusion solution of the SFRs.

In order to perform coupled N/TH simulations with DYN3D, the implementation of

new thermal expansion models was necessary. In this research, DYN3D was extended

with new models to account for time-dependent axial and radial core expansions

in the neutronic behavior. The axial expansion model is capable of modeling non-

uniform core expansions by using the spatial temperature distribution of the fuel rods.

This model allows for an independent treatment of each fuel assembly based on local

thermal-hydraulic conditions. The radial diagrid expansion model can account for an

uniform radial expansion of the core driven by the average inlet sodium temperature.

The verification of these models was carried out in this research based on steady-state

analyses of two reference cores, namely the large oxide OECD/NEA benchmark core

and the smaller Phenix EOL core.

In the process of verification, and for a better understanding of the reactor behavior

during core expansions, a spatial- and reaction-wise reactivity decomposition tech-

nique was introduced in this dissertation. The method was especially developed to

obtain decomposed thermal expansion feedbacks from the solutions of any nodal

diffusion code. This procedure allows in a simple manner to quantify the relation

between the change in nodal absorption and leakage rates while locating the regions

of significance when the core expands.

Finally, the capability of the extended version of DYN3D to perform steady-state and

transient analyses of SFR cores was validated using selected tests from the end-of-

life experiments conducted at the Phenix reactor. Firstly, the IAEA benchmark on

the control rod withdrawal tests was used to validate the neutronic performance of

DYN3D. Then the simulation of the initial stage of the natural convection test was

used to validate DYN3D for coupled NK/TH transient calculations. Both tests have

also served for the validation of the few-group XS generation methodology for SFR

analyses.

In general, all DYN3D benchmark solutions were in good agreement with the experi-

mental data indicating the feasibility of using DYN3D in static and time-dependent

analyses of SFR cores. Significant discrepancies between DYN3D and the measure-
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ments were only observed when out-of-core thermal expansion effects started to

influence the control rod position in the core. However, the modeling of such thermal

expansions was beyond the scope of this study.

5.2 Recommendations for further research

The introduced developments make DYN3D capable of calculating steady-states

and transients in SFR cores by applying proper boundary conditions. The core level

simulation is an important step to use DYN3D in full scale safety analyses of SFR

systems. Nevertheless, the standalone application is limited to transients with very

short time duration or very slow progression, where the change of core outlet sodium

has no time to influence the coolant parameters at core inlet or the relative control rod

positions. In order to overcome the currant simulation boundaries, several research

directions are proposed in the following.

Coupling with a thermal-hydraulic system code capable of sodium flow modeling

The DYN3D can be coupled with a thermal-hydraulic system code in order to scale up

the simulation capabilities from core to system level. This will open the possibility

to model the primary sodium loop in a closed system, and so to account for the NK

feedback on the thermal-hydraulic properties at the core inlet. Such development will

overcome the limitations of the standalone DYN3D, and it will serve as a first step for

simulating longer transient scenarios.

From the list of system codes that were coupled with DYN3D, the ATHLET code (Lerchl

et al., 2012) is considered the most promising candidate as to be used in SFR system

analyses. While still under validation, the recent implementations of the sodium

models and correlations (since ATHLET 3.0) are specifically aimed to model SFR

systems.

Thermal expansion models for out-of-core system components

The relative control rod position in respect to the core is strongly influenced by the

differential thermal expansion of the out-of-core system components. In order to

predict the control rod positions during transients, the thermal expansion of three

main system components has to be accounted for. These are the control rod drive
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lines, the core supporting strongback and the reactor vessel.

With the help of a system code, the temperatures of these heat structures can be

obtained in real time, and so the thermal expansion of these components. By imple-

menting the missing thermal expansion models, the actual control rod position can

be calculated and applied in the DYN3D core simulator. With this approach, the time

delays in thermal expansion between different system components will be implicitly

considered. With this kind of codes system, the simulation of the whole Phenix EOL

natural circulation tests becomes possible.

Non-uniform radial core expansion modeling

The current diagrid model is capable of uniformly expanding the core in radial di-

rection while assuming that all assemblies remain vertical. By developing a model

that can expand each axial layer independently while keeping the nodal mesh fixed,

the DYN3D can gain the possibility to model layer-uniform assembly bowing, i.e. the

uniform core flowering effect. In general, the core flowering is an important effect to

consider, since it caused several extremely fast and highly oscillating transients and

consequent reactor shutdowns in the Phenix reactor, as reported by (Fontaine et al.,

2011). Nevertheless, the assembly bowing is considered as one the most challenging

thermal expansion effect to model, especially with nodal diffusion codes that apply

regular computational meshes.

Few-group cross section generation methodology for transient analyses of SFRs

In DYN3D, the state-dependent few-group XS are provided in multi-dimensional table

format that covers the full parametric space of the given problem. To acquire the

XS of a current state, a multi-dimensional interpolation of XS is performed between

the available states. Although this method implicitly accounts for the correlations

between state variables, the XS generation for multiple state points with Serpent

and the on-the-fly interpolations may add significant computational burden. The

reduction of the parametric space of the XS can lead to an overall time reduction of

the simulations. This can be done by reducing the number of points for each state

variable or the energy group structure to an optimal level, i.e. reducing the XS library

without degrading the numerical results.

Furthermore, other approximation methods is advised to be tested with the focus
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to perform transient SFR calculations. Simplifications like considering the state

variable independence, opens up the possibility to calculate the XS at given state by

linear combination of properly selected state derivatives. Such approach is currently

used in PARCS of the FAST codes system (Mikityuk et al., 2005), which can be also

adopted in DYN3D. A comparison of both methods with the same code will assess the

interdependency of selected state variables and the type of dependency (e.g., linear,

logarithmic, etc.) of each state derivative.

Further verification and validation

At last but not least, acquiring further experimental data on SFRs will be beneficial

for additional validation of the extended version of DYN3D. In May of 2017, the

IAEA endorsed a new Coordinated Research Project: the Benchmark Analysis of

FFTF Loss of Flow Without Scram Test (IAEA, 2018a). This benchmark will offer

experimental data acquired during ULOF tests that were conducted between 1980

and 1992. The participation in the CRP is encouraged, since it will provide an unique

opportunity to fully develop the DYN3D/ATHLET codes system and validate it against

real measurements.

Beside the comparison against experiments, further application of the code in nu-

merical benchmarks can also reveal model limitations as well as the course for fur-

ther developments. For instance, the new axial expansion model, together with

the spatial kinetics solver of DYN3D, has the potential to improve the simulation of

core-asymmetric transients such as a peripheral control rod withdrawal in an UTOP

scenario or a single pump failure in an ULOF accident. Even by calculating such

postulated cases, the actual benefit of the model can be assessed in comparison to

simplified modeling such as point kinetics.
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