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Abstract—The interest in multi-drone systems flourished in the
last decade and their application is promising in many fields. We
believe that in order to make drone swarms flying smoothly and
reliably in real-world scenarios we need a first intermediate step
which consists in the analysis of the effects of limited sensing
on the behavior of the swarm. In nature, the central sensor
modality often used for achieving flocking is vision. In this work,
we study how the reduction in the field of view and the orientation
of the visual sensors affect the performance of the Reynolds
flocking algorithm used to control the swarm. To quantify the
impact of limited visual sensing, we introduce different metrics
such as (i) order, (ii) safety, (iii) union and (iv) connectivity.
As Nature suggests, our results confirm that lateral vision is
essential for coordinating the movements of the individuals.
Moreover, the analysis we provide will simplify the tuning of
the Reynolds flocking algorithm which is crucial for real-world
deployment and, especially for aerial swarms, it depends on the
envisioned application. We achieve the results presented in this
paper through extensive Monte-Carlo simulations and integrate
them with the use of genetic algorithm optimization.

I. INTRODUCTION

Recent advances in the field of aerial robotics and sen-
sor technologies have greatly enhanced the capabilities of
unmanned aerial vehicles (UAVs). One consequence of this
outcome has been the growing interest in multi-aerial vehicle
applications [1], [2], [3]. Clear benefits of multi-drone systems
are envisioned for a wide range of missions including search
and rescue [4], long-term monitoring [5], sensor data collec-
tion [6], indoor navigation [7], environment exploration [§]
and cooperative grasping and transportation [9]. There are
numerous advantages in using multiple drones instead of a
single one, such as the coverage of larger areas, the possibility
of reducing the total time of the mission and the ability to
perform tasks which would be unfeasible for a single drone.
These are merely a few of the key positive aspects associated
with the use of multi-drone systems. However, an increase in
the size of the system is also accompanied by an increase
in its complexity. Today, the high complexity of multi-drone
systems is commonly addressed by relying on a centralized
approach [9], [10], [11]. These robotic systems mostly use an
external computing unit that depends on centralized systems
(e.g., motion capture system or GNSS) and other sensory
information gathered by the agents of the swarm. Based
on this information, the central unit generates and commu-
nicates the control commands to the whole group. Several
studies [12], [13], [14], [15], [16], [17], [18] highlighted
that often biological collectives do not work in this manner.
Indeed, the approach used by animals such as ants, bees,

and birds is generally decentralized and distributed among the
individuals of the group. In particular, one behavior exhibited
by animals that drives significant research efforts these days
is flocking [19], [20], the coordinated collective motion that
several flying species manifest. Flocking is considered as an
emergent phenomenon since it arises from the ensemble of
each individual’s decisions and is based only on local infor-
mation. Swarm robotics can significantly benefit from taking
inspiration from the behavior of these biological systems.
For example, a decentralized and distributed approach can
make the system easily scalable and robust to failures. For
this reason, the implementation of swarms based on these
principles has received a lot of attention in recent years [21],
[22].

The well-known Reynolds algorithm [19] offers a way of
describing the global motion of a flock through three rules
acting on each agent simultaneously. In this work, we will
refer to them as (a) alignment, the tendency to steer the agents
towards the average heading of their neighbors, (b) cohesion,
the tendency to steer the agents towards the swarm center, and
(c) separation, the tendency to drive away the agents from their
neighbors to avoid collisions.

However, when implementing flocking algorithms it be-
comes clear that their tuning is highly dependent on the
application. Indeed, in [23] the authors use evolutionary al-
gorithms to find the optimal configuration of parameters for
the navigation task of their flock. In some applications, the
central interest can be to remain connected [24], [25], while
in others, it may be more crucial to control the number of
subgroups that originate during the operation. An example of
the second case is patrolling [26], where the flock is allowed
to split, but a minimum number of agents per cluster is needed
to enable stereo vision.

Another evidence from nature is that several animals rely
on visual information to achieve navigation, collision avoid-
ance, and remain connected with the other individuals of the
group [27], [28], [29], [30]. Using vision as the main sensor
modality for the coordination of robotic swarms presents
several advantages. First of all, a visual sensor combined with
an Inertial Measurement Unit (IMU) represent the minimum
sensor configuration for achieving autonomous navigation in
complex environments. Moreover, the camera is a passive
sensor and therefore requires less energy than active sensors
(e.g. lidar and sonar). A drawback of relying on vision is that
the detection of far objects can be very challenging. However,
in dense swarms, we can assume that the agents are sufficiently



close to be perceived. Although the visual organs of birds
are limited in range and angular span, these animals can fly
in perfect choreographed synchronization. Sensor limitations
are seldom taken into account in robotics since they can be
hard to model [31]. However, understanding their effects can
be fundamental to bring aerial swarms from lab-conditions to
real-world scenarios.

The visual processes of animals include several aspects. In
particular, a distinction can be made between physical and
perceptual properties. Examples of the former include the
geometric field that the eyes can perceive, their rapidity to
adapt to light and environmental changes and the range of
the detected light wavelengths. The visual perception, instead,
is defined as the ability of animals to assimilate information
from the surroundings and it is an open field of research for
psychologists, neuroscientists, and molecular biologists.

In this paper, we focus on analyzing the impact of the
physical geometric properties of visual sensing, specifically
the width angle of the field of view (FOV) and its orientation,
on the performance of a Reynolds flock. Because the aimed be-
havior of a swarm is often application-dependent, we quantify
the effects of the two aforementioned visual properties with
different metrics that can be relevant to different scenarios.
Since the same limitations exist for the cameras that are
equipped on the majority of off-the-shelf commercial drones,
we believe that this work can represent an essential step for
future robotics developments.

The rest of the paper is organized as follows. Sect. II
reviews the notation, the concepts of limited sensing and the
Reynolds flocking model. Sect. III defines the metrics which
will be applied to evaluate the effects of limited visual sensing.
Finally, Sect. IV presents the results of our work, followed
by Sect. V that concludes the paper and outlines possible
future directions.

II. PRELIMINARIES

In this work we consider a set of N point-mass agents
labeled by ¢ € {1,2,3,...,N}. The position, velocity and
acceleration of the agent i are denoted by x;, &;, &; € R?,
respectively. In order to keep our notation concise we let
d;j = ||lx; — ;|| where ||-|| denotes the Euclidean norm, and
&;; = x;;/d7;. We then let Ty € RV*N represent the identity
matrix of dimension N, Oy € RY a vector of all zeros and
Onxn € RYXN a matrix of all zeros. The operator diag(-)
returns a square diagonal matrix with the elements of the input
vector on the main diagonal and the operator stack(-) returns
a matrix containing a vertical stacking of the arguments.

We model the swarm with a directed sensing graph G =
(V, €), where the vertex set V = {1...N} represents the
agents, and the edge set £ C V x V contains the pairs of
agents (i,j) € & for which agent 7 can sense agent j. We
denote as NV; = {j € V| (¢, j) € E} C V the set of neighbors
of an agent 7 in G and as || its cardinality'. We also define

"Note that both the set of edges £ and the one of neighbors N; of a
specific agent ¢ are time-varying. However, we will omit their time dependency
throughout the paper for brevity.

Fig. 1: Illustration of the width and azimuth angles, a and
6. In particular, this configuration is associated with values
a = 120° and 6 = 90°.
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Fig. 2: Graphical representation of the sensing configurations
of an agent for different values of width a and azimuth 6.
Note that the positive values on the #-axis refer to the ‘right
eye’, while respective values for the ‘left eye’ have a negative
sign for the hypothesis of symmetry that we assume. When
6 = «/2 the two sensed regions overlap on one edge and
merge in a unique circular sector. For every other azimuth
value, the agent perceives two non-intersecting sectors and
for 6 = 90° (first row) the eyes face opposite directions.

di;, a function of two agents ¢ and j, which takes value 0
if j ¢ N; and 1 if 5 € N;. Another concept borrowed
from algebraic graph theory is algebraic connectivity [32],
also known as connectivity eigenvalue. This is the second
smallest eigenvalue of the Laplacian matrix [32] associated
with the undirected graph G’ obtained from G and it is usually
denoted by \s. The algebraic connectivity has been extensively
used in swarm robotics [24], [25] because the magnitude of
this value reflects crucial qualities of the graph. However, its
mathematical details are beyond the scope of this paper.

A. Limited field of view

In this paper we study the influence of the geometric visual
constraints on the ability of flocking. For the sake of an easier



Fig. 3: Schema of a Reynolds flock where the FOV of one
agent ¢ is highlighted. The agent has a visual sector of width
a = 120° and azimuth 6§ = 90°. The flock members in blue
are the ones perceived by i (the neighbors A;), while the
unperceived members are in red.

visualization and interpretability of the results, we choose to
implement our model in two dimensions. We endow every
agent with two eyes, each having sight over a portion of the
surroundings, i.e. a circular sector centered on the agent’s
position. The eyes are symmetrically placed about the direction
of the agent’s velocity. Since we are interested in dense
swarms, we assume that the radius of perception is bigger
than the size of the flock, therefore we do not add a constraint
on the visual range. To model the described configuration, we
define two distinct parameters:

o the FOV width (o) is the angular span that an eye can
detect and it ranges from 0° to 180°. On a UAV this
would correspond to the FOV of an on-board camera;

o the FOV azimuth (0) describes the visual direction of the
eye and it varies from a/2 to 90°. The choice to limit 0
to 90° is justified by the analogy with the orientation of
the birds eyes [33]. On a UAV this would correspond to
the angle at which the camera centre is placed w.r.t. the
z-axis of the body-frame of the robot.

Fig. 1 provides an illustration for the two parameters, while
Fig. 2 shows different configurations of the FOV for varying
values of width o and azimuth 6.

Because of its limited FOV, an agent 7 can only sense a
portion of the surrounding space. This defines the set of flock
members that ¢ can perceive at time ¢, namely its neighborhood
N;. Fig. 3 illustrates an example of the neighborhood of 4,
for a sensor configuration of & = 120° and 6 = 90°.

B. Reynolds flocking model

According to the Reynolds model [19], the motion of every
agent in the flock is defined by the three rules of alignment,
cohesion and separation, weighted by the constant coefficients
Ca» Cc, and cg, respectively. In the following, we will also refer
to them as Reynolds gains.

The acceleration of agent ¢ is determined by its neighbors
N as follows:

Cec
T; = E T; —g T; —x;+
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The choice of the gain values in the Reynolds flocking is not
unique and in many situations it is application-dependent. For
instance, in operations of maximal area coverage, increasing
the separation gain could help to amplify the spreading of the
drones. Instead, in operations that require the flock to squeeze
through narrow canyons, the cohesion could be increased to
make the group fit into a reduced space.

We restrict the gain values to the range [1,10]. Notice that
a separation gain equal to 1, cs = 1, means that whenever two
agent are situated at 1 m of distance from each other, they are
repulsed from each other with an acceleration of magnitude

1 m/s2. Similar considerations can be done for the other gains.
Let us denote = = stack(xy, @2, - xN), T =
stack (&1, @9, - &N), & = stack (&1, &o, - &y) € RN

respectively containing the positions, velocities, and acceler-
ations of the agents of the swarm. The second-order system
defining the motion of the flock can be written as:

T =c,Ax + ccAx — csH 2)

where A € R2V*2N jg a matrix composed by blocks A;; =
(5L]/|M|)Iz € R?*2 if ¢ 75 7 and Aij = -1 € R2%2 if
i = j, and H € R*N*2N j5 composed by blocks H;; =
(1/|M|)dlag(aﬁ”) € R2%2 if ¢ #] and Hij = 0949 if 7 = 7.

C. Agents dynamics

In our simulations, the dynamics of the agents is reproduced
in discrete time according to a double integrator model [34].
For every time step ¢, = k-dt, k € {1,2,3..., K} and every
agent ¢, it holds

k

kE _
? K3
af = &bt 4 gk at 3)
M—aht gk ar
where dt represents the step used for the temporal dis-
cretization of the system, and =¥, & #¥ € IR? are the
position, velocity and acceleration of the i-th agent at time
ti, respectively. The agents update their motion following the
Reynolds rules described in Sect. II-B. In this respect, the
Reynolds accelerations are the control inputs u? € R2.

To narrow the gap between simulation and reality we
consider physical constraints on the magnitudes of velocities
and accelerations, expressed by ||&¥|| < v and ||2¥|| < @.
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Fig. 4: This figure illustrates different flock configurations for varying values of the order (®oraer), safety (Psagery), union (Pypion)
and connectivity (@connwivity) metrics. In general, 1 corresponds to a high score, while 0 refers to a poor score. Significant
levels are chosen for every metric. In particular, for the safety metric, important changes in the flock configuration already

happen in the highest half-range.

IIT. FLOCKING PERFORMANCE METRICS

When limiting the FOV, the guarantee that the agents form a
single group where all components move at the same speed in
the same direction does not hold anymore. Indeed, two agents
that do not perceive each other act independently. Under this
condition, the flock can split in multiple subgroups that do
not affect each others movements, and collisions can occur.
To evaluate the collective performance, four relevant metrics
are introduced. Several metrics for describing the correlation
of the agents’ movements and the collision risk have been
adopted in the literature for describing both robotic systems
and animal groups [23], [35], [15]. Furthermore, in swarm
robotics, the algebraic connectivity has proven to be useful
in many applications, especially the ones where a flow of
information has to be ensured among all the robots of the
swarm (e.g., exploration and target tracking). By taking into
account a metric directly related to this quantity we aim
to make our analysis relevant also for those users who are
interested in maintaining the connectivity of the graph while
flocking with limited sensors. In this work all metrics are
scaled to be equal to 1 in the best-case scenario. Nominally,
they are:

o the order metric, ®* ;. : it captures the correlation of the
agents’ movements and gives an indication about how
ordered the flock is. At every temporal instant tj, it is
expressed by
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« The safety metric, q)bdfety it measures the risk of collisions
among the members of the flock at a given temporal
instant. We define r, as the radius of a virtual area
that surrounds the agent where the presence of other
agents should be avoided for safety reasons. For real
UAVs, it corresponds to the dimension of the robot,

plus an arbitrary margin which is higher in more con-
servative approaches. The number of violations is ng =
[{(,7) s.t. j #1 Ad;j <rg}|. Therefore, at time t; the
metric can be expressed as

s
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e The union metric, ®* . : it reflects how scattered the
group members are and it counts the number of indepen-
dent subgroups that originates along the simulation. We
define n. as the number of connected components of the
undirected graph that corresponds to the flock topology,

then at time ¢; it holds

& ne — 1
(bunmnzli ]\;_1 (6)
o The connectivity metric, Qconnemvny it is defined from the

algebraic connectivity of the graph corresponding to the
flock configuration. We define the value of the metric at
time t; as

A2
(I)ﬁl:connectlvny ﬁ (7)

where ), is defined in Sect. II. Notice that ‘I)funnecnvny #0

only when ®%. = 1. In this sense, the connectivity
metric is complementary to the union metric.

To evaluate the global performance of the flock during the

time 1" of a simulation, the metrics that have been defined

above for a generic time instant ¢; are averaged over the

time window. Then, the order metric of the flock referred to
a simulation of length T is

K
2 order

(I)order = K (8)

and the same holds for the other metrics.
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Fig. 5: Schema of the simulation workflow used for testing a
given sensor configuration («, ) in Reynolds flocking with
gains c¢4,c. and cgs. The outputs of the workflow are the
PerfOl’mance metrics q)order’ (I)safelya (bunion and (bconneclivilys
averaged over the » = 100 repetitions of the Monte-Carlo
method.

IV. SIMULATION RESULTS

In this section, we present the results about the effects of
limited visual sensing (modeled using the two parameters of
width and azimuth introduced in Sect. II-A) on the flocking
performance metrics described in Sect. III. An extensive anal-
ysis of their influence is carried out by running the Reynolds
algorithm at different sensor configurations.

Besides depending on the visual configuration, the perfor-
mance results also vary w.r.t. the Reynolds gains c,, c. and
cs. As we mentioned in Sect. II-A, the choice of the right
combination of those constants can be application-dependent
and, therefore, non-unique. Consequently, we study how the
performance metrics vary according to this choice.

In the first place, we select fixed triplets for the Reynolds
gains and we analyze the metrics when the alignment, the
cohesion or the separation effect are privileged, once at a time.
An additional case is studied for equal values of the gains.

Another approach can be preferred when we are aware of
the metric w.r.t. our flock should be optimized. Therefore,
in a subsequent study we analyze the results for Reynolds
gains that are optimized for each of the metrics considered,
one at a time. Genetic algorithms are applied to find the
optimal flocking parameters. In the following, we present the
simulation setup we used.

All simulations have been run in MATLAB R2017b. The
work-flow we used is summarized in Fig. 5. Specifically, we
consider a swarm of N = 50 agents. The width angle « is
varied with constant steps of 10° in the range [10°,180°],
while 6 is increased with steps of 5° in the range [«/2,90°].
For each sensor configuration («, 6) we apply a Monte-Carlo
method that repeatedly selects random samples of the initial
conditions for the flock, i.e. initial positions and velocities of
the agents (xg,@o). A batch of 100 simulations is run, and
the final score is the average over the batch.

At tg = 0 s the agents are initialized with random positions
and velocities. The former follow a uniform distribution over
a cube of 10 m edge, while the latter obey a multi-normal
law with mean 05 m/s and covariance 3Ion m?/s%. The
discretization time step used in simulation is ¢ = 0.05 s and
the total time is 1" = 50 s.

A. Fixed Reynolds coefficients

In this section we evaluate the flocking properties when the
Reynolds gains are fixed to triplets that privilege one effect
over the others: alignment, cohesion or separation. Finally, a
triplet with equal gains is evaluated. The values applied in our
simulations as summarized in table I.

TABLE I: List of the different Reynolds gain triplets used in
simulation.

As a general consideration, we may reasonably expect that
a decline in the performance of the flock is proportional
to a diminution of the width angle «. Indeed, a decrease
in the visual angle of the agents determines a reduction in
the information that they can capture from the surroundings.
This tendency is generally confirmed by the union and the
connectivity metrics for all the choices of gains, (I — IV, C)
and (I — IV, D) in table III. Instead, this is not the case for
the order and the safety metrics, (I — IV, A) and (I — IV, B),
for which the trends shown are more complex.

If we observe the order metric Porger, (I — IV, A), it is
immediately noticeable that the configurations on the half-
diagonals (from top left to the centre) perform better than the
average (the yellow color in the figures corresponds to high
scores), and this fact is independent of the choice of gains.
Fig. 6 presents a graphical excerpt of the sensor configurations
corresponding to these diagonal regions, from which we can
infer the visual portions that they have in common: two thin
lateral sectors. High values in order metric are also present in
the upper regions of the figures, where the azimuth angle is
0 = 90°. Again, this holds for every choice of the flocking
gains. These upper regions correspond to visual configurations
with diametrically opposed sensors, having sight on the lateral
sides. These results corroborate the hypothesis that lateral
vision is important in biology, especially for those species
exhibiting collective motion. Indeed, the majority of birds in
nature presents a narrow binocular sector that varies on average
between 20° and 30° and a wide FOV that covers well the two
lateral regions [33].

The results about the safety metric ®gurey are highly depen-
dent on the Reynolds gains. In fact, in (I — IV, B) we can
observe very different patterns. Moreover, it can be noticed
that this metric takes values in a very limited range. This is
partly due to the normalization factor, that counts the number
of all possible pairs of agents. Therefore, for a large swarm the
addition of one collision would correspond to a very limited
decrease in the safety value. As intuition suggests, our results
confirm that the safety metric deteriorates when the cohesion
gain increases, see (11, B). However, unexpectedly, the lowest
safety values correspond to the biggest FOV widths. This can
be explained by referring to the union metric @0 in (11, C).
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Fig. 6: Configurations of the FOV corresponding to the left
half-diagonal of the («,0)-space (from top left to the cen-
tre). This configurations are associated with high scores in
the order metric. In particular, from left to right, they are:
(o = 10,6 = 90), (30,80), (50,70), (70,60) and (90, 50),
where the width and azimuth angles are expressed in degrees
[°]. The intersection between all of them is highlighted in red.

High values of ®,;,, correspond to the tendency of the agents
to create a unique group, thereby increasing the chance of
collision.

One non-trivial remark about the union metric in (111, C),
is that for very small values of width « the values of the
azimuth 6 performing the best are the extreme ones, either
close to 0° or to 90°. The explanation of this phenomenon
involves more analysis on the system and it will be part of
our future work.

As anticipated, a non-zero value of the connectivity metric
Peonnectivity 18 only possible when @l’fnion takes the maximum
value, 1, at least at some time instants. During a simulation, the
flock may split and rejoin. In such instances, the instantaneous
connectivity metric @fonnecﬁvity passes from positive to null
values and vice versa, and the global value of ®copnectivity 1S
the average over time. Globally, we notice that the larger the
width angle, the higher the score.

B. Optimized Reynolds coefficients

The approach of finding optimal flocking parameters
through genetic algorithms has been applied in previous
work [23] and here it is justified by the non-convexity of the
relationship between the parameters and the performance. A
grid search method could also be applied although testing all
the gain triplets would require a longer simulation time.

In table II we resume the parameters used in the genetic
algorithm.

TABLE II: Parameters of the genetic algorithm used to deter-
mine the optimal values of the Reynolds gains. The algorithm
is part of the built-in functions in MATLAB. The optimization
is performed w.r.t. each of the metric functions and for every
sensor configuration («, 6).

Value

Ca,Cc,Cs

[1,10] x [1,10] x [1,10] € R3

q>order’ <Dsafetya q>uniona
0

Parameter
Variables
Range for the variables
Fitness function
Population size

Number of generations 10
Scaling operator "proportional’

connectivity

Selection operator ’tournament’
Crossover operator ’scattered’
Mutation operator ’gaussian’

Row (V) in table III shows the results of the four met-

rics associated with the flocking simulations with optimized
parameters. One consideration is that the plots display more
discontinuities over the configuration-space («, ) compared to
the previous results. A motivation for this is that genetic algo-
rithms rely on a stochastic approach and they do not guarantee
the convergence to the global optima. In addition, to keep the
total simulation time affordable, our optimization algorithm
involved a reduced number of individuals and generations.
In general, the trends highlighted in Sect. IV-A are con-
firmed in this section. Indeed, similarly to the previous cases,
the order metric ®yqer Shows the best performing values on the
diagonal and in the upper area. To a more accurate analysis,
it seems that in the diagonal region the genetic algorithm led
to some improvements, i.e. the yellow portion in (V, A) is
wider. The safety metric P,y globally presents high values,
with some outliers in the upper region, where poorer results
were already present for fixed Reynolds gains. The union
metric @0, varies in a smaller range, indicating a global
enhancement. Finally, the connectivity metric ®conpectiviey does
not display substantial modifications and presents positive
scores only on the right corner where the width angle is wide.

V. CONCLUSIONS AND FUTURE WORK

In this work, we presented a numerical analysis about the
impact of limitations in visual sensing on flocking systems,
from the perspective of different and complementary perfor-
mance metrics.

We believe that the results presented in this paper can be
a starting point for filling the gap between simulations and
reality when implementing flocking algorithms. Moreover, this
analysis could be used to solve the problem of optimal sensor
placement, when the application of the flocking system is
known a priori and a choice of the sensors and their orientation
has to be made.

The results presented are promising and create new avenues
of research that are worth investigating. More complex models
should be taken into account to observe the effects of different
drone dynamics on the Reynolds flocking, e.g. fixed-wing or
quadrotor drones and how the sensory limitations affect their
flight in swarms. Moreover, noise modeling and delays should
be taken into account to narrow the gap between simulation
and reality.

In addition to the limited FOV, we would like to consider
other limitations of the visual sensors such as limited range
and possible occlusions generated by other agents [31]. Indeed,
in the real-world, visual perception is influenced by the dis-
tance. Higher definition measurements are obtained for near-
by neighbours and worse for far-away ones. Moreover, every
object detected by a camera generates a blind cone behind
it, occluding the view over a part of the surrounding space.
Finally, in order to make our approach more realistic we think
that is important to add obstacles along the navigation path
and analyze how the behavior of the flock adapts.

ACKNOWLEDGMENT

The authors would like to thank Fabian Schilling, Julien
Lecoeur, Vivek Ramachandran and Anthony De Bortoli for



(A) DPorder (B) (bsafety (C) Punion (D) q:'connectivity

1

cqg =10, cc =1, cs =
]
I
|
AEEEEEEEE.
1 |
|

— %0
Il o011
@ 5
Q 70 ha
< e} Ll } ‘
~ — 09
— s0
Il
40
S 085
N 20
i
I 20 08
s 10—
S ]
ol | | 075
0 50 100 150
o 90
— [T1
I 50 8 } I 0999
- & 7 0999
~ - 60 0.998
~ —
~ I 50 6650
& o 0397
IS 30
— 0997
20
| 0996
10
3
S . 0996
o s0 100 150
— %0
0.998
I 80
= 0996
@ 7
—~ Q [ 0994
> - 60
= — 0.992
~ s0
Il 0ss
40 40
S 04 osss
N 30 EN
— 02 0986
20 20
| 02 L] 0.984
10 10
3 01 L 0982
© 0 o
0 s0 100 150 o 50 100 150
%
09 :-:iz :Hj
80 0.998
@ 08 - I ‘
g | 059
N =
< [ 1] 0994
— 1= pe
j— = f s0
g L 0
.5 40
03
20 0.8
02 m
B 0986
01 o 06 N

50 100 150 o 50 100 150 [ 50 100 150 0 50 100 150

TABLE III: Numerical results of the flocking performance when limited FOV is applied. Every row is associated with a triplet
of the Reynolds gains, whose values are specified in the first column. The columns are referred to the different performance
metrics. Namely, from left to right, they are the order (®ouer), safety (Paery), union (Pupion) and connectivity (Peonnectivity)
metrics. The last row (V') shows the results of the flocking performance when the Reynolds gains of every sensor configuration
are optimized w.r.t. a given metric. In the plots, the x axis represents the width angle « [°], varying from 0 ° to 180 °, while the
y axis represents the azimuth angle 6 [°], varying from 0 ° to 90 °. Every bin is computed as the average of 100 simulations
with randomized initial conditions, i.e. positions and velocities of the flock’s agents. Notice that the color-maps are rescaled
according to the ranges of the metrics values.
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