
PaRiS: Causally Consistent Transactions with
Non-blocking Reads and Partial Replication

Kristina Spirovska1, Diego Didona1, Willy Zwaenepoel1,2
1 EPFL, 2 University of Sydney

Abstract—Geo-replicated data platforms are at the backbone
of several large-scale online services. Transactional Causal Con-
sistency (TCC) is an attractive consistency level for building such
platforms. TCC avoids many anomalies of eventual consistency,
eschews the synchronization costs of strong consistency, and
supports interactive read-write transactions. Partial replication
is another attractive design choice for building geo-replicated
platforms, as it increases the storage capacity and reduces update
propagation costs.

This paper presents PaRiS, the first TCC system that supports
partial replication and implements non-blocking parallel read
operations, whose latency is paramount for the performance
of read-intensive applications. PaRiS relies on a novel protocol
to track dependencies, called Universal Stable Time (UST). By
means of a lightweight background gossip process, UST identifies
a snapshot of the data that has been installed by every DC
in the system. Hence, transactions can consistently read from
such a snapshot on any server in any replication site without
having to block. Moreover, PaRiS requires only one timestamp
to track dependencies and define transactional snapshots, thereby
achieving resource efficiency and scalability.

We evaluate PaRiS on a large-scale AWS deployment composed
of up to 10 replication sites. We show that PaRiS scales well with
the number of DCs and partitions, while being able to handle
larger data-sets than existing solutions that assume full replica-
tion. We also demonstrate a performance gain of non-blocking
reads vs. a blocking alternative (up to 1.47x higher throughput
with 5.91x lower latency for read-dominated workloads and up
to 1.46x higher throughput with 20.56x lower latency for write-
heavy workloads).

I. INTRODUCTION

Modern large-scale data platforms rely on geo-replication
and sharding to store and manipulate large volumes of data
efficiently. Geo-replication allows keeping a copy of the data
in a data center (DC) closer to the users, thus reducing access
latencies. Sharding enables horizontal scalability, by slicing
the dataset in disjoint partitions, each of which can be assigned
to a different server.

In geo-replicated environments, partial replication is an
effective technique to improve storage capacity and reduce
replication costs. In partial replication, each DC stores only
a subset of the partitions. Hence, the system can scale to a
higher number of partitions with respect to a full replication
approach, and updates performed in one DC are propagated
to fewer replicas.

Causal Consistency (CC) has emerged recently as an attrac-
tive consistency model for geo-replicated data platforms [1]–
[11]. CC provides intuitive semantics and avoids many anoma-
lies allowed by weaker models, such as eventual consis-

tency [12]. Moreover, CC eschews the high synchronization
costs of stronger consistency levels, such as linearizabil-
ity [13]. Transactional CC (TCC) [3], [4] extends CC by
providing transactions that observe a causally consistent view
of the data, and can perform atomic multi-object writes.

PaRiS. This paper presents PaRiS, the first system that imple-
ments TCC in a partially replicated data platform, and that
supports non-blocking parallel read operations (and hence,
non-blocking one-round read-only transactions). Parallel non-
blocking reads are an important requirement to guarantee good
performance [14]–[16], especially for the important and wide
class of read-intensive applications [17]–[19].

Achieving non-blocking parallel transactional reads with
partial replication is challenging. This is mainly because
different reads within the same transaction may be served in
parallel by servers in different DCs. In existing approaches,
a DC is not aware of the set of transactions performed by
other DCs. Ultimately, this can lead to consistency violations
because a server in a DC is unaware of which data is returned
by other servers in other DCs to the same transaction.

PaRiS addresses this issue by means of a new causal
dependency tracking protocol, that we call Universal Stable
Time (UST). In short, UST identifies a snapshot of the dataset
that has been installed in all DCs. Hence, a transaction can
read from such snapshot in any DC without blocking. In
addition to the snapshot defined by UST, PaRiS equips clients
with a private cache, in which clients store their own updates
that are not reflected yet in the snapshot identified by the
UST. This allows PaRiS to achieve TCC even if exposing to
clients a snapshot of the data store that is slightly in the past.
PaRiS implements UST efficiently as a periodic, lightweight
intra- and inter-DC gossiping protocol. In addition, PaRiS
uses only one timestamp to track dependencies and to define
transactional snapshots, thus enabling scalability both in terms
of number of DCs and of partitions per DC.

The trade-off –which is provably unavoidable [15]– made
by PaRiS is to expose to transactions a view of the data that is
slightly in the past. We argue that a moderate increase in the
data staleness is a reasonable price to pay for the performance
benefits brought by PaRiS.

Overall, PaRiS achieves a triad of low latency, high storage
capacity and rich transactional semantics. This represents a
significant improvement over existing systems that either do
not support partial replication, or generic read-write transac-

1

tions, or block read operations to preserve consistency.
We evaluate PaRiS on a large scale AWS deployment com-

prising of up to 10 DCs, and with heterogeneous workloads
with different degrees of locality in the data accesses. We
compare PaRiS with a variant of PaRiS that supports partial
replication by blocking read operations. We show that PaRiS
scales well with the number of DCs and partitions, while
being able to handle larger datasets than existing solutions
that assume full replication.

Roadmap. The remainder of the paper is organized as follows.
Section II presents the system model. Section III describes
the design of PaRiS. Section IV describes the protocols
and correctness of PaRiS. Section V reports the results of
the evaluation of PaRiS. Section VI discusses related work.
Section VII concludes the paper.

II. DEFINITIONS AND SYSTEM MODEL

A. Causal Consistency

A system is causally consistent if its servers return values
that are consistent with the order defined by the causality rela-
tionship. Causality is defined as a happens-before relationship
between two events [20], [21]. For two operations a, b, we
say that b causally depends on a, and write a b, if and only
if at least one of the following conditions holds: i) a and b
are operations in a single thread of execution, and a happens
before b; ii) a is a write operation, b is a read operation,
and b reads the version written by a; iii) there is some other
operation c such that a c and c b. Intuitively, CC ensures
that if a client has seen the effects of operation b and a b,
then the client also sees the effects of operation a.

We use lower case letters, e.g., x, to refer to a key and the
corresponding capital letter, e.g., X to refer to a version of the
key. We say that X depends on Y if the write of X causally
depends on the write of Y .

B. Transactional Causal Consistency

Semantics. TCC extends CC by means of interactive read-
write transactions in which clients can read and write multiple
items. TCC enforces two properties.

1. Read from a causal snapshot. A causally consistent snapshot
is a set of item versions such that all causal dependencies
of those versions are also included in the snapshot. All
transactions read from a causally consistent snapshot. For any
two items, x and y, if X Y and both X and Y belong to
the same causally consistent snapshot, then there is no other
X ′, such that X ′ is created after X and X X ′ Y .

Transactional reads from a causal snapshot prevent undesir-
able anomalies which can arise by simply issuing multiple
consecutive single read operations [1].

The majority of existing CC systems implement transac-
tional reads by means of one-shot read-only transactions [1],
[2], [6], [14].

2. Atomic updates. Either all the items written by a transaction
are visible to other transactions, or none is. If a transaction

writes X and Y , then any snapshot visible to other transactions
either includes both X and Y , or none of them.

Conflict resolution. Two writes are conflicting if they are
not related by causality and update the same key. Conflicting
writes are resolved by means of a commutative and associative
function, that decides the value corresponding to a key given
its current value and the set of updates on the key [1].

For simplicity, PaRiS resolves write conflicts using the last-
writer-wins rule [22] based on the timestamp of the updates.
Possible ties are settled by looking at the id of the DC
combined with the identifier of the transaction that created
the update. PaRiS can be extended to support other conflict
resolution mechanisms [1], [2], [4], [23].

C. System model

We assume a distributed key-value store whose dataset is
split into N partitions. Each key is deterministically assigned
to one partition by a hash function. We assume that each
server is assigned a single partition and we note px the server
responsible for key x. Each partition pi is replicated at R
different DCs, where R is the replication factor of data. There
are M DCs in total, hence, there is only a fragment of the full
dataset present in each DC.

We assume a multi-master system, i.e., all replicas can
update keys they are responsible for. Updates are replicated
asynchronously to remote DCs.

We assume a multi-version data store. An update operation
creates a new version of a key. Each version stores the value
corresponding to the key and some meta-data to track causal-
ity. The system periodically garbage-collects old versions of
keys. Partitions communicate through point-to-point lossless
FIFO channels (e.g., a TCP socket).

At the beginning of a session, a client c connects to a
partition p in one DC according to some load balancing
scheme. This DC is referred to as the local DC. The partition
p serves all c’s operations. If p does not store a key k targeted
by an operation, p transparently forwards the operation to a
replica of k. c does not issue the next operation until it receives
the reply to the current one.
Availability. We use the term availability to indicate the ability
of a system to never block a client operation in a presence of
a network partition among DCs [24].

D. APIs

PaRiS’s programming interface offers the following opera-
tions for interactive read-write transactions:

• < TID, S >← START − TX() : starts an interactive
transaction T and returns T’s transaction identifier TID and
the causal snapshot S visible to T.

•〈vals〉 ← READ(TID, k1, ..., kn) : reads in parallel
the set of items corresponding to the input set of keys for a
transaction identified by TID.

•WRITE(TID, 〈k1, v1〉, ..., 〈kn, vn〉) : updates a set of
keys, given as input, to the corresponding values for a trans-
action with TID.

2

•COMMIT−TX(TID) : finalizes a transaction with TID
to atomically update items that have been modified by means
of a WRITE operation in the scope of the transaction, if any.

Upon a start of a transaction T , clients can issue multiple read
and write operations that can operate on multiple keys, before
committing T .

Since, under the TCC programming model, conflicting updates
are resolved rather than forbidden, in PaRiS transactions never
abort due to conflicts. Although transactions can abort by
means of system-related issues, e.g., not enough space on a
server to perform an update, we do not consider aborts in this
paper for simplicity reasons.

III. DESIGN OF PARIS

The main goal of PaRiS is to implement TCC in a partially
replicated sharded system, while providing non-blocking par-
allel read operations and achieving scalability. We show the
challenges to achieving these goals in Section III-A. Next,
in Section III-B we present how PaRiS overcomes these
challenges by a novel dependency tracking protocol and the
use of a small client-side cache. Finally, in Section III-C we
discuss fault tolerance and availability in PaRiS.

A. Challenges of partial replication

Since TCC must simultaneously guarantee the preserva-
tion of causal consistency and the atomicity of multi-item
writes, achieving non-blocking reads while maintaining TCC
is challenging. In a fully replicated environment, the task
of enforcing this behavior, is eased by two invariants: i) all
remote updates are received by all DCs, and hence every DC
receives the dependencies of each update, and ii) all updates
of a transaction are performed within the same DC, and hence
all the updates of the same transaction can be found in each
DC. As example, assume that X Y , and that X and Y
are the latest versions of their keys, x and y, respectively.
Causal consistency dictates that if a client reads x and y in a
transaction, then if Y is returned, X has to be returned as well.
Furthermore, assume that Z, the last version of key z, has been
written by the same transaction as Y . TCC further implies that
either both Y and Z are visible to the transaction, or none of
them is. Hence, some sort of communication among partitions
in the same DC is enough to ensure that Y is visible in the
DC only after X , and that Y and Z are atomically visible.

Partial replication, instead, violates the two invariants de-
scribed above. This leads to a new set of challenges of en-
forcing consistency and atomicity. First, tracking consistency
is harder. In the previous example with keys x and y, X may
be replicated from DC0 to DC1, and Y from DC0 to DC2.
Then, assume that a transaction from DC3 reads x in DC1
and y in DC2. The transaction has to ensure that Y is read in
DC2 only if also X is read, concurrently, in DC1. Similarly,
enforcing atomicity is harder. Assume that Z is replicated from
DC0 to DC1, and Y from DC0 to DC2, and that a transaction
from DC3 reads y and z. Then, the transaction in DC3 has to

ensure that either both Y and Z or none of them are read in
an atomic fashion.

Addressing these two challenges is made more difficult by
the fact that a read operation can target any replica of the target
key. Hence, consistency and atomicity have to be preserved
despite the fact that different transactions targeting the same
keys can hit different replicas of those keys. The complexity
of the problem is further exacerbated by the fact that different
replicas of a version X may be in different DCs that store
different sub-sets of the dependencies of X .

One possible solution to these challenges could be allow-
ing more than one round of client-server communication to
perform a single parallel read operation. Servers can return
possibly inconsistent versions in the first round(s), and the
client can detect and fix these violations by issuing additional
read requests [1], [2], [5].

Another possible solution could be blocking a read on
a partition until the partition knows that all other involved
partitions are serving the read operations from the same
causal snapshot of the data store [4], [6], [8]. Clearly, these
solutions increase the latency experienced by the transactions,
and reduce the achievable throughput, because they introduce
waiting times or require extra communication.

B. Non-blocking reads in partial replication by PaRiS
PaRiS addresses these challenges by a combination of a

novel dependency tracking protocol, called UST, and a client-
side cache. UST identifies snapshots of the data store that can
be read by transactions without blocking. These snapshots are
such that they have been already installed by every DC, so
they are slightly in the past. The client-side cache stores the
versions written by the client that are not yet reflected in the
snapshot determined by UST. This allows clients to observe
monotonically increasing snapshots even if UST identifies
slightly stale snapshots. We now explain how PaRiS leverages
UST and the client-side cache in its transactional protocol.
Transactions in PaRiS. PaRiS identifies key versions and
snapshots by means of a scalar timestamp. Upon starting, a
transaction is assigned a snapshot timestamp st that, together
with the content of the client-side cache, determines the
snapshot visible to the transaction. Upon completing, each
transaction that writes at least one key is assigned a commit
timestamp that reflects causality, determined by means of a
two-phase commit (2PC) protocol.
Non-blocking reads in PaRiS. The key idea in PaRiS is to
identify a snapshot that has been installed by each DC. We
define such snapshot stable. A stable snapshot with timestamp
ts contains versions with a timestamp ≤ ts, and indicates that
every transaction T with a commit timestamp ≤ ts has been
applied in every data center that stores a replica of the key
written by T .

Hence, a transaction can read from a stable snapshot without
blocking or running multiple client-server rounds, regardless
of the DC in which the individual reads of the transaction are
performed.

A coordinator partition is responsible to assign a stable
snapshot to a transaction that starts. Any node can act as the

3

coordinator of any transaction. The coordinator enforces that
the snapshots assigned to transactions issued by the same client
advance monotonically. To this end, the client piggybacks
its last observed snapshot timestamp on the transaction start
message.

UST. UST is the new protocol implemented by PaRiS to
identify, in a scalable fashion, stable snapshots. Each partition
maintains a version vector that indicates the timestamps of
the latest applied transactions, both the ones executed by the
partition itself and the ones received from remote replicas.
Periodically, partitions within the same DC and across DCs,
by means of a gossiping protocol, exchange the minimum
of the timestamps in their version vectors. The aggregate
minimum of the exchanged values identifies a timestamp such
that all transactions with lower timestamps have been applied
by the corresponding partitions in every DC. Namely, such
aggregate minimum timestamp identifies the stable snapshot
that transactions are assigned upon starting.

UST identifies stable causally consistent snapshots with a
single timestamp, regardless of the scale of the system. This
enables high scalability and efficiency, by reducing partition-
to-partition and client-to-partition communication overhead.

Cache. UST alone cannot enforce causality. In fact, the
commit timestamp assigned to a transaction T issued by client
c is higher than the stable snapshot assigned to T . On the
one hand, this allows commit timestamps to reflect causality.
On the other hand, it means that the commit timestamp of
T may be higher than the snapshot assigned by the next
transaction issued by c. In that case, such snapshot would not
include the modifications performed by c in T , which may
lead to violation of the read-your-own-write property required
by causal consistency.

PaRiS overcomes this issue by storing on the client the
versions written by the client. Upon receiving a snapshot
timestamp st, a client c removes from the cache all versions
with timestamp ≤ st. These versions are, in fact, included
in the snapshots visible to any future transaction issued by c.
Upon reading key x, c first checks its cache. If a version exists
in the cache, that version has to be read by c to enforce the
read-your-own-write property. Else, c issues a read request to
a replica. In both cases, the read completes without blocking.

Generating timestamps. As in recent proposals [5], [11],
[25], [26], PaRiS uses Hybrid Logical Physical Clocks
(HLC) [27] to generate timestamps. An HLC is a logical
clock whose value on a partition is the maximum between
the local physical clock and the highest timestamp seen by
the partition plus one. Like logical clocks, HLCs can be
moved forward to match the timestamp of an incoming event,
without blocking to wait that the local physical clock catches
up with the timestamp of the event. Like physical clocks,
HLCs advance in the absence of events and at approximately
the same pace. Hence, HLCs improve the freshness of the
snapshot determined by UST over a solution that uses logical
clocks, which can advance at very different rates on different
partitions.

C. Fault tolerance

Failures (within a DC). PaRiS can tolerate failures of a server
by integrating existing solutions for 2PC-based systems, e.g.,
based on Paxos [28]. Reads are non-blocking also with such
mechanisms enabled, because they access a snapshot corre-
sponding to transactions that have been already committed.

As in previous systems based on dependency aggregation
protocols, the failure of a server blocks the progress of UST,
but only as long as a backup has not taken over.

Client failures are transparent to the system. The clients
only keep local meta-data, and cache data that have already
been committed to the data-store. The contexts corresponding
to transactions of failed clients are cleaned in the background
after a timeout.
Availability (among DCs). PaRiS achieves availability in a
DC as long as one replica per partition is reachable by a DC. In
fact, remote operations can be performed by any DC, because
the snapshot visible to a transaction is the same, regardless of
the partition contacted to serve an operation. In addition, local
operations never block.

If all replicas of one partition cannot be reached by a DC,
then PaRiS cannot complete remote operations that target that
partition, thus leading to unavailability.

If a DC partitions from the rest of the system, then the
UST freezes at all DCs, because it is computed as a system-
wide minimum. As a result, transactions see increasingly stale
snapshots of the data, and the client cache cannot be pruned.

IV. PROTOCOLS OF PARIS
We now describe the meta-data stored and the protocols

implemented by the clients and servers in PaRiS.

A. Meta-data

Items. An item d is represented as the tuple 〈k, v, ut, idT , sr〉.
k and v are the key and value of d, respectively. ut is the
timestamp of d which is assigned upon creation of d and
determines the snapshot to which d belongs. idT is the id
of the transaction that created the item version. sr is the id of
the DC where the item is created.

Clients. In a client session, a client c maintains the highest
stable snapshot timestamp known by c, noted ustc, and the
commit time of its last update transaction, noted hwtc. The
client also maintains a private cache WCc, which stores items
written by c that are not included in the stable snapshot yet.
Finally, the client maintains the meta-data and data of the
transaction that is currently running: idc, which is the unique
identifier of the transaction, and WSc and RSc, which corre-
spond to the transaction’s write set and read set, respectively.

Server. A server pmn is identified by the partition id (n), and the
DC id (m), which is the local DC of the server. Additionally,
pmn also stores the replica id (r), where r ≤ R, the replication
factor of partition pmn .

Each server has access to a monotonically increasing physi-
cal clock, Clockmn . The local clock value on pmn is represented
by the hybrid logical clock HLCmn . pmn also maintains two
vector clocks V V m

n and GSV m
n , that represent vectors of

4

Algorithm 1 Client c (open session towards pmn).
1: function START
2: send 〈StartTxReq ustc〉 to pmn
3: receive 〈StartTxResp id, ust〉 from pmn
4: idc ← id; ustc ← ust;
5: RSc ← ∅;WSc ← ∅
6: Remove from WCc all items with commit timestamp up to ustc
7: end function

8: function READ(χ)
9: D ← ∅; χ′ ← ∅

10: for each k ∈ χ do
11: d← check WSc, RSc, WCc (in this order)
12: if (d 6= NULL) then D ← d
13: end for
14: χ′ ← χ \D
15: send 〈ReadReq idc, χ

′〉 to pmn
16: receive 〈ReadResp D′〉 from pmn
17: D ← D ∪D′

18: RSc ← RSc ∪D
19: return D
20: end function

21: function WRITE(χ)
22: for each 〈k, v〉 ∈ χ do . Update WSc or write new entry
23: if (∃d ∈ WS : d == k)then d.v ← v else WSc ← WSc ∪ 〈k, v〉
24: end for
25: end function

26: function COMMIT . Only invoked if WS 6= ∅
27: send 〈CommitReq idc, hwtc,WSc〉 to pmn
28: receive 〈CommitResp ct〉 from pmn
29: hwtc ← ct . Update client’s highest write time
30: Tag WSc entries with hwtc
31: Move WSc entries to WCc . Overwrite (older) duplicate entries
32: end function

HLCs. V V m
n , has R entries, one for each replica of partition

n. V V m
n [i], i 6= r, indicates the timestamp of the latest update

received by pmn that comes from the i-th replica of partition n.
V V m

n [r] is the version clock of the server and represents the
local snapshot installed by pmn . GSV m

n , or Global Stabilization
Vector, has M entries. GSV m

n [i] = t means that pmn is aware
that all the nodes in the m−th data center have installed all
events generated in the i−th data center with timestamp up to
t. The server also stores the UST of pmn , noted ustmn . ustmn = t
indicates that pmn is aware that every partition in every DC has
installed a snapshot with timestamp at least t.

Finally, as a standard practice for systems that perform
a 2PC protocol, pmn keeps two queues with prepared and
committed transactions. The former, noted Preparedmn , stores
transactions for which pmn has proposed a commit timestamp
and for which pmn is waiting the commit message. The
latter, noted Committedmn stores transactions that have been
assigned a commit timestamp and whose modifications are
going to be applied to pmn .

B. Operations
Algorithm 1 reports the client protocol. Algorithm 2 and

Algorithm 3 report the protocols executed by a server to run
a transaction, for the cases in which the server is or is not the
transaction coordinator, respectively. Algorithm 4 describes the
replication and the UST protocols.
Start. Client c starts a transaction T by picking at random a
coordinator partition (denoted pmn) in the local DC and sending
it a start request with ustc. pmn uses ustc to update ustmn , so
that pmn can assign to the new transaction a snapshot that is at
least as fresh as the one accessed by c in previous transactions.

Algorithm 2 Server pmn - transaction coordinator.
1: upon receive 〈StartTxReq ustc〉 from c do
2: ustmn ← max{ustmn , ustc} . Update universal stable time
3: idT ← generateUniqueId()
4: TX[idT]← ustmn . Save TX context
5: send 〈StartTxResp idT , TX[idT]〉 . Assign transaction snapshot

6: upon receive 〈ReadReq idT , χ〉 from c do
7: ust← TX[idT]
8: D ← ∅
9: χi ← {k ∈ χ : partition(k) == i} . Partitions with ≥ 1 key to read

10: for (i : χi 6= ∅) do . Done in parallel
11: j = getTargetDCForPartition(i) . Returns an id of a DC that

replicates partition i
12: send 〈ReadSliceReq χi, ust〉 to pji
13: receive 〈ReadSliceResp Di〉 from pji
14: D ← D ∪Di

15: end for
16: send 〈ReadResp D〉 to c

17: upon receive 〈CommitReq idT , hwt,WS〉 from c do
18: 〈ust〉 ← TX[idT]
19: ht← max{ust, hwt} . Max timestamp seen by the client
20: Di ← {〈k, v〉 ∈ WS : partition(k) == i}
21: for (i : Di 6= ∅) do . Done in parallel
22: j = getTargetDCForPartition(i) . Returns an id of a DC that

replicates partition i
23: send 〈PrepareReq idT , ust, ht,Di〉 to pji
24: receive 〈PrepareResp idT , pti〉 from pji
25: end for
26: ct ← maxi:Di 6=∅{pti} . Max proposed timestamp
27: for (i : Di 6= ∅) do send 〈CommitReq idT , ct〉 to pmn end for
28: delete TX[idT] . Clear transactional context of c
29: send 〈CommitResp ct〉 to c

Algorithm 3 Server pmn - transaction cohort.
1: upon receive 〈ReadSliceReq χ,ust〉 from pji do
2: ustmn ← max{ustmn , ust} . Update universal stable time
3: D ← ∅
4: for (k ∈ χ) do
5: Dsv ← {d : d.k == k ∧ d.ut ≤ ust} . Universally visible
6: D ← D ∪ {argmaxd.ut{d ∈ Dkv}} . Freshest visible vers. of k
7: end for
8: send 〈SliceResp D〉 to pji

9: upon receive 〈PrepareReq idT , ust, ht,Di〉 do from pji
10: HLCm

n ← max(Clockmn , ht+ 1, HLCm
n + 1) . Update HLC

11: ustmn ← max{ustmn , ust} . Update universal stable time
12: pt ← max{HLCm

n , ust
m
n } . Proposed commit time

13: Preparedmn ← Preparedmn ∪ {idT , pt,Di} . Append to pending list
14: send 〈PrepareResp idT , pt〉 to pji

15: upon receive 〈CommitReq idT , ct〉 do from pji
16: HLCm

n ← max(HLCm
n , ct, Clock

m
n) . Update HLC

17: 〈idT , pt,D〉 ← {〈i, r, φ〉 ∈ Preparedmn : i == idT }
18: Preparedmn ← Preparedmn \ {〈idT , pt,D〉} . Remove from pending
19: Committedmn ← Committedmn ∪ {〈idT , ct,D} . Mark to commit

pmn uses its updated value of ustmn as snapshot for T . pmn also
generates a unique identifier for T , denoted idT , and inserts
T in a private data structure. pmn replies to c with idT and the
snapshot timestamp ustmn .

Upon receiving the reply, c updates ustc and evicts from
the cache any version with timestamp lower than or equal to
ustc. c can prune such versions because the UST protocol
ensures that they are included in the snapshot installed by any
partition in the system. This means that if, after pruning, there
is a version X in the private cache of c, then X.ct > ust and
hence the freshest version of x visible to c is X .

Read. For each key k to read, c searches the write-set,
the read-set and the client cache, in this order. If an item
corresponding to k is found, it is added to the set of items

5

Algorithm 4 Server pmn - Auxiliary functions.
1: function UPDATE(k, v, ut, idT)
2: create d : 〈d.k, d.v, d.ut, idT , d.sr〉 ← 〈k, v, ut, idT ,m〉
3: insert new item d in the version chain of key k
4: end function

5: upon Every ∆R do
6: if (Preparedmn 6= ∅) then ub← min{p.pt}{p ∈ Preparedmn } − 1
7: else ub← max{Clockmn , HLC

m
n } end if

8: ρn ← Replicas(n)
9: if (Committedmn 6= ∅) then . Commit tx by increasing order of ct

10: C ← {〈id, ct,D〉} ∈ Committedmn : ct < ub
11: for (T ← {〈id,D〉} ∈ (group C by ct)) do
12: for (〈id,D〉 ∈ T) do
13: for (〈k, v〉 ∈ D) do update (k, v, ct, id) end for
14: end for
15: for (j ∈ ρn ∧ j 6= r) do send 〈Replicate T, ct〉 to pjn end for
16: Committedmn ← Committedmn \ T
17: end for
18: V Vm

n [m]← ub . Set version clock
19: else
20: V Vm

n [m]← ub . Set version clock
21: for (j ∈ ρn ∧ j 6= r) do send 〈Heartbeat V Vm

n [m]〉 to pjn end for
. Send heartbeat to replicas

22: end if

23: upon receive 〈Replicate T, ct〉 from pjn do
24: for (〈id,D〉 ∈ T) do
25: for (〈k, v〉 ∈ D) do
26: update (k, v, ct, id)
27: end for
28: end for
29: i← GetReplicaIdForDC(j)
30: V Vm

n [i]← ct . Update version clock of i-th replica of n-th partition

31: upon receive 〈Heartbeat t〉 from pjn do
32: i← GetReplicaIdForDC(j)
33: V Vm

n [i]← t . Update version clock of i-th replica in n-th partition

34: upon every ∆G time do . Gather global stable times from other DCs
35: GSVm

n [j]← min{V Vm
i [j]}, ∀j = 0 . . .M − 1, ∀i = 0 . . . N − 1

36: upon every ∆U time do . Compute universal stable time
37: minGST ← min{GSVm

i [j]}, ∀j = 0 . . .M − 1, ∀i = 0 . . . N − 1
38: ustmn ← max{minGST, ustmn } . Enforce monotonicity of ustmn

to return, ensuring read-your-own-writes and repeatable-reads
semantics. Reads for keys that cannot be served locally are sent
to the transaction coordinator pmn together with the transaction
id. pmn retrieves the snapshot corresponding to the transaction,
and sends to each involved partition the set of keys to be
read, in parallel. Because each DC only stores a subset of
the full data set, some of the contacted partitions may belong
to a remote DC that replicates the partitions where the keys
belong. Remote DCs can be chosen depending on geographical
proximity or on some load balancing scheme.

Upon receiving a read request, regardless of whether it
originates from the local DC or from a remote one, pmn first
updates its ustmn , if it is smaller than the transaction’s snapshot
(Alg. 3 Line 2). Next, the server returns, for each key, the
version within the snapshot with the highest timestamp (Alg.
3 Lines 4–7). As we shall see shortly, the commit protocol
of PaRiS allows concurrent updates on the same key, both
within a DC and in different DCs. This is typically the case
in TCC systems to avoid costly validation protocols for update
transactions [4], [25]. In case multiple versions of a key are
assigned the same timestamp, PaRiS totally orders versions by
a concatenation of timestamp, transaction id and source data
center id, in this order. Once pmn has received the reply from
all the partitions contacted, pmn sends the items to the client,

which inserts them in its read-set.

Write. Client c locally buffers the writes in its write-set WSc.
If a key being written is already present in WSc, then it is
updated; otherwise, it is inserted in WSc.

Commit. To finalize the transaction, the client sends a commit
request to the coordinator with the content of WSc, the
id of the transaction and the commit timestamp of its last
update transaction hwtc, if any. The commit protocol of
PaRiS is based on the two-phase commit (2PC) protocol. The
coordinator contacts the partitions that store the keys that need
to be updated and sends them the corresponding updates and
hwtc. Note that some of the contacted partitions can belong to
a remote DC. Each partition involved, first updates its clock to
be at least as high as the maximum between the transaction’s
snapshot timestamp and hwtc. Then, each partition increases
its clock and sends the updated clock value to the coordinator
as a commit timestamp. The proposed timestamp reflects
causality because it is higher than both the snapshot timestamp
and hwtc. Each partition also inserts the transaction id, the
set of keys to be modified on the partition and the proposed
timestamp in the queue of pending transactions.

The coordinator picks the maximum among the proposed
timestamps, sends it to the partitions involved in the transac-
tion, clears the local context of the transaction and sends the
commit timestamp to the client. Upon receiving the commit
message, a partition increases its clock to match the commit
time, if needed, and moves the transaction from the pending
queue to the commit one, with the new commit timestamp.

Applying and replicating transactions. Periodically, the
effects of transactions committed by pmn are applied on the pmn ,
in increasing commit timestamp order (Alg. 4 Lines 6-21). pmn
applies the modifications of transactions that have a commit
timestamp strictly lower than the lowest timestamp present in
the pending list. This timestamp represents the lower bound
on the commit timestamps of future transactions on pmn . After
applying the transactions, pmn updates its local version clock
and replicates the update operations in the applied transactions
to its remote replicas.

If pmn does not commit a transaction for a given amount
of time, pmn updates its local clock, and sends it to its peer
replicas by means of a heartbeat message. This ensures the
progress of the UST also in absence of updates.

Stabilization protocol. Every ∆G time units, partitions within
a data center exchange the minimum of their version vectors
to compute the global stable time (GST) of the local data
center. Similarly to previous work [4], [6], PaRiS organizes
nodes within a DC as a tree to reduce message exchange. The
GST is progressively aggregated from the leaves to the root,
and then propagated from the root to all the nodes in the DC.
Next, all the roots from each DC exchange their GST values.

Every ∆U time units, the roots compute the ustmn as the
aggregate minimum of the received GST s and propagate it to
all the other nodes in the DC.

Garbage collection. Periodically the partitions in the system
exchange the oldest snapshot corresponding to an active trans-

6

action (pmn sends its current stable snapshot timestamp if it has
no running transactions). The aggregate minimum determines
the oldest snapshot Sold that is visible to a running transaction.
The partitions scan the version chain of each key backwards
and keep the all the versions up to (and including) the oldest
one within Sold. Previous versions are removed. The same
protocol that computes the UST also computes Sold.

C. Correctness

We now provide an informal proof sketch that PaRiS
provides causal consistency by showing that i) reads observe
a causally consistent snapshot and ii) writes are atomic.

Lemma 1. The snapshot time snT of a transaction T is always
lower than the commit time of T , snT < T.ct.

Proof: Let t be a transaction with snapshot time snT
and commit time ct. The snapshot time is determined during
the start of the transaction (Alg. 2 Line 4). The commit
time is calculated in the commit phase of the 2PC protocol,
as maximum value of the proposed prepare times of all
partitions participants in the transaction (Alg. 2 Line 26). In
order to reflect causality when proposing a prepare timestamp,
each partition proposes higher timestamp than the snapshot
timestamp (Alg. 3 Line 12). Thus, the commit time of a
transaction, ct, is always greater than the snapshot time, snT .

Proposition 1. If an update u2 causally depends on an update
u1, u1 u2, then u1.ut < u2.ut.

Proof: Let c be the client that wrote u2. There are
three cases upon which u2 can depend on u1, described in
Section II-A: 1) c committed u1 in a previous transaction; 2)
c has read u1, written in a previous transaction and 3) c has
read u3, and there exists a chain of direct dependencies that
lead from u1 to u3, i.e. u1 ... u3 and u3 u2.

Case 1. When a client commits a transaction, it piggybacks
the last update transaction commit time hwtc, if any, to its
commit request for the transaction coordinator (Alg. 1 Line
27) which is, furthermore, piggybacked as ht in its prepare
requests to the involved partitions (Alg. 2 Line 23). To reflect
causality when proposing a commit timestamp, each partition
proposes higher timestamp than both ht and the snapshot
timestamp (Alg. 3 Lines 10–14). The coordinator of the
transaction chooses the maximum value from all proposed
times from the participating partitions (Alg. 2 Line 26) to
serve as commit time, ct, for all the updated items in the
transaction. The new version of the data item is written in the
key-value store with ct as its update time, ut (Alg. 4 Lines 2
and 13). When c commits the transaction that updates u2, it
piggybacks the commit time of the transaction that updated u1.
Hence, from the discussion above it follows that u1.ct < u2.ct.
Because the commit time of a transaction is the update time
of all the data item versions updated in the transaction (Alg.
4 Lines 2 and 13), we have u1.ut < u2.ut.

Case 2: c could have read u1 either from c’s client cache
or from the transaction causal snapshot snT .

If c has read u1 from c’s client cache, then c has written u1

either in a previous transaction in the same thread of execution
or in the current one. If c wrote u1 in the same transaction
where u2 is also written, then it is not possible to have
u1 u2 because all the updates from that transaction will
be given the same commit, i.e. update timestamp, indicating
that u1.ut = u2.ut. Thus, u1 must be written in a previous
transaction and from Case 1 it follows that u1.ut < u2.ut.

Next, we will consider the case when c read u1 from the
causal snapshot snT that contains u1. When a transaction T
is started, the snapshot snT is determined by Alg. 2 Line 2,
snT = max{ustc, ustmn }. From Alg. 3 Line 5 we have that
u1.ut ≤ ust = snT . From Lemma 1 it follows that u1.ut ≤
snt < u2.ct = u2.ut. Therefore, u1.ut < u2.ut.

Case 3: If u2 depends on u1 because of a transitive
dependency out of c′s thread-of-execution, it means that there
exists a chain of direct dependencies that lead from u1 to u2,
i.e., u1 ... u3 and u3 u2. Each pair in the transitive-
chain, belongs to either Case 1 or Case 2. Hence, the proof of
Case 3 comes down to chained application of the correctness
arguments from Case 1 and Case 2, proving that each element
has an update time lower than its successor’s.

Proposition 2. A partition vector clock V V m
n [i] = t implies

that pmn has received all updates from i − th replica with
commit time, ct ≤ t.

Proof: We need to show that this proposition is valid
for both local and remote updates. To prove the former, we
show that there are no pending local updates with commit
timestamp ct ≤ t. When pmn updates the local replica vector
clock entry V V m

n [r], it finds the minimum prepare timestamp
of all transactions that are currently in the prepare phase (Alg
4. Line 6). Because the commit time is calculated as the
maximum of all prepare times (Alg 2. Line 26) and the HLC
clock is monotonic (Alg. 3 Lines 10 and 16), it is guaranteed
that all future transactions will receive a commit time which
is greater than or equal to this minimum prepare timestamp.
So, when the V V m

n [r] is set to the minimum of the prepare
times of all transactions in the prepare queue minus 1 (Alg. 4
Line 6), pmn has already received all updates for the snapshot
V V m

n [i] = t.
To show the latter, we use prove by contradiction. Assume

there is a remote update u from i − th replica such that
u.ct < t, and pmn has not received u. By Alg. 4 Line 30, the
partition would have received an update u′ such that u′.ct = t.
The updates are sent in the order of their commit timestamps
(Alg. 4 Lines 9–16). Hence, if u′.ct > u.ct the pmn could not
have received another update u′ before u. Therefore, u.ct > t,
implying that u.ct ≮ t, leading to the contradiction.

Proposition 3. Snapshots in PaRiS are causal.

Proof: To start a transaction, a client c piggybacks the
freshest snapshot it has seen, ensuring the monotonicity of the
snapshot seen by c (Alg. 2 Line 2). Commit timestamps reflect
causality (Alg. 2 Line 26), and UST tracks a lower bound on
the snapshot installed by every partition in all DCs (Alg. 4

7

Lines 36-38). If X is within the snapshot of a transaction, so
are its dependencies (Proposition 1). On top of the snapshot
provided by the coordinator, c also can read the writes, that
are not yet included in the snapshot, from the cache. These
writes cannot depend on items created by other clients that are
outside the snapshot visible to c.

Proposition 4. Writes are atomic.

Proof: Although updates are made visible independently
on each partition pmn involved in the commit phase, either
all updates are made visible or none of them are, i.e. the
atomicity is not violated. All updates from a transaction belong
to the same snapshot because they all receive the same commit
timestamps (Alg. 2 Line 27). The updates are being installed
in the order of their commit timestamps (Alg. 4 Lines 9–
16). The visibility of the item versions is determined by the
transaction snapshot (Alg. 3 Line 5), which is based on the
value of pmn ’s universal stable time ustmn . ustmn is computed
by the UST protocol as the aggregate minimum of the version
vectors entries of all partitions of all data centers (Alg. 4 Lines
34–38).

PaRiS implements TCC, as every transaction reads from a
causally consistent snapshot (Proposition 3) that includes all
effects (Proposition 4) of its causally dependent transactions.

V. EVALUATION

Competitor system. To assess the advantages of having non-
blocking reads, we compare PaRiS against a blocking protocol,
that we call Blocking Partial Replication, or BPR. In BPR
the snapshot of a transaction T of client c is determined
as the maximum of the highest causal snapshot seen by c
and the clock value of the transaction coordinator. BPR uses
one timestamp to encode transactional snapshots, so we can
compare fairly the resource efficiency of PaRiS versus the one
of BPR. BPR also favors the freshness of the snapshots that are
visible to transactions. BPR, however, implies having blocking
transactional reads, because the server must ensure that the
returned version belongs to a causal snapshot. To this end,
a read operation with snapshot timestamp t is blocked on a
partition until the partition has applied all local and remote
transactions with timestamp up to t.

A. Experimental environment

Platform. We consider a geo-replicated setting deployed
across up to 10 replication sites on Amazon EC2 (North
Virginia, Oregon, Ireland, Mumbai, Sydney, Canada, Seul,
Frankfurt, Singapore and Ohio). When using 3 DCs, we use
Virginia, Oregon and Ireland. When using 5 DCs, we use the
previously mentioned 3 DCs plus Mumbai and Sydney. In each
DC we use up to 18 servers (c5.xlarge instances with 4 VCPUs
and 8 GB of RAM). The replication factor is 2. We choose
this value because it allows us to use 3 as minimum number
of DCs in our experiment and use partial replication.

We spawn one client process per partition in each DC.
Clients are collocated with the server partition they use as a
transaction coordinator. The clients issue requests in a closed
loop. To generate different load conditions, we spawn different
number of threads per client process. Depending on the type of
the workload or the protocol, a different number of threads is
needed to saturate the target system. Each “dot” in the curve
plots we report corresponds to a different number of active
threads per client process.

Implementation. We implement PaRiS and BPR in the same
C++ code-base. Both protocols implement the last-writer-
wins rule for convergence. We use Google Protobufs for
communication, and NTP to synchronize physical clocks. The
stabilization protocols run every 5 milliseconds.

Workloads. We use workloads with 95:5 and 50:50 r:w ratios
that correspond to the update-heavy (A) and read-heavy (B)
YCSB workloads [29]. These are standard workloads also used
to benchmark other TCC systems [3]–[5], [25]. Transactions
generate the three workloads by executing 19 reads and 1 write
(95:5), and 10 reads and 10 writes (50:50). Hence, in each
workload a transaction executes 20 operations per transaction.
A transaction first executes all the reads in parallel, and then
all the writes in parallel.

A transaction can target only partitions in the local DC,
or can touch random partitions in remote DCs. In the first
case, we say that a transaction is “local-DC”; else, we say
it is “multi-DC”. When accessing a remote partition, a client
can choose among two replicas. We assign to every client in
a DC the same preferred remote replica for each partition.
We vary the preferred replica in the DCs using a round-robin
assignment, to balance the load. To evaluate the effect of the

5
15
40

100
250
600

 0 50 100 150 200 250 300 350 400

R
es

p.
 ti

m
e

(m
s)

Throughput (1000 x TX/s)

BPR PaRiS

(a) Throughput vs average TX latency (95:5 r:w ratio).

15
40

100
250
500

1000

 0 50 100 150 200 250

R
es

p.
 ti

m
e

(m
s)

Throughput (1000 x TX/s)

BPR PaRiS

(b) Throughput vs average TX latency (50:50 r:w ratio).

Fig. 1: Performance of PaRiS and BPR (logarithmic scale) with different 95:5 (a) and 50:50 (b) r:w ratios, 4 partitions involved
per transaction (5 DCs, 45 partitions, replication factor is 2, 18 machines per DC). PaRiS outperforms BPR for both read-heavy
and write-heavy workloads.

8

 0

 50
 100

 150
 200

 250
 300

3 5 Th
ro

ug
hp

ut
 (1

00
0

x
Tx

/s
)

Number of datacenters

6 M/DC 12 M/DC 18 M/DC

(a) Throughput when varying the number of machines per DC.

 0
 50

 100
 150
 200
 250
 300
 350

6 12 Th
ro

ug
hp

ut
 (1

00
0

x
Tx

/s
)

Number of machines per DC

3 DCs 5 DCs 10 DCs

(b) Throughput when varying the number of DCs.

Fig. 2: Throughput achieved by PaRiS when increasing the number of machines per DC (a) and DCs (b). PaRiS achieves good
scalability both when increasing the number of machines per DCs and DCs.

partial replication, we use workloads with 100:0, 95:5, 90:10
and 50:50 local-DC:multi-DC ratios.

The default workload we consider uses the 95:5 r:w ratio,
95:5 local-DC:multi-DC ratio and runs transactions that in-
volve 4 partitions on a platform deployed over 90 machines
spread over 5 DCs. The default deployment has 45 partitions
that are replicated with replication factor 2. Hence, each DC
has a total of 18 machines.

We also consider variations of this workload in which we
change the value of one parameter and keep the others at
their default values. Transactions access keys within a partition
according to a zipfian distribution, with parameter 0.99, which
is the default in YCSB and resembles the strong skew that
characterizes many production systems [30]–[32]. We use
small items (8 bytes), which are prevalent in many production
workloads [30], [31].

B. Latency and throughput

Blocking vs. non-blocking. Figure 1a and Figure 1b report
the average transaction latency vs. throughput achieved by
PaRiS and BPR with the 95:5 (the default) and with the
50:50 r:w ratios. In the read-dominated case, PaRiS achieves
up to 5.91x lower response times and up to 1.47x higher
throughput than BPR. PaRiS also achieves up to 20.56x lower
response times and up to 1.46x higher throughput than BPR in
the write-dominated workload. PaRiS achieves lower latencies
because it never has to wait for a snapshot to be installed.
PaRiS achieves higher throughput because it does not incur
any overhead to block/unblock read requests. Because BPR is
a blocking protocol, it needs a higher number of concurrent
client threads to fully utilize the processing power left idle by
blocked reads. This creates more contention on the physical

resources and more synchronization overhead to block and
unblock reads, which ultimately leads to lower throughput.

Blocking time. The average blocking time of the read phase
of a transaction in BPR is 29 ms for the top throughput in the
read-dominated workload (Figure 1a) and 41 ms for the top
throughput in the write-dominated workload (Figure 1b).

C. Scalability

Varying the number of machines per DCs. Figure 2a reports
the throughput achieved by PaRiS when using 6, 12 and 18
machines/DC. We consider two geo-replicated deployments
that use 3 and 5 DCs. In both cases, PaRiS achieves the ideal
improvement of 3x when scaling from 6 to 18 machines/DC.
This result showcases the ability of PaRiS to scale horizontally
regardless of the number of DCs on which it is deployed.

Varying the number DCs. Figure 2b reports the throughput
achieved by PaRiS when deployed on 3, 5 and 10 DCs. We
consider two cases corresponding to 6 and 12 machines/DC.
In both cases PaRiS achieves the ideal improvement of 3.33x,
when scaling from 3 to 10 DCs. This result shows that PaRiS
scales well to higher numbers of DCs for different sizes of the
platform within each DC.

D. Varying data access locality

Figure 3a reports the maximum throughput achieved by
PaRiS when varying the locality ratio (local-DC:multi-DC) of
transactions from 100:0 to 50:50. Figure 3b shows the average
transaction latency corresponding to the throughput values
reported in Figure 3a. Performance deteriorates as the per-
centage of local accesses decreases. The maximum achievable
throughput drops slightly, from 350 to 300 KTx/sec. Latency is

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

100:0 95:5 90:10 50:50Th
ro

ug
hp

ut
 (1

00
0

x
Tx

/s
)

Workloads (local-DC : multi-DC Tx ratios)

PaRiS

(a) Throughput when varying the locality of the transactions.

 0

 50

 100

 150

 200

100:0 95:5 90:10 50:50

R
es

p.
 ti

m
e

(m
s)

Workloads (local-DC : multi-DC Tx ratios)

PaRiS

(b) Latency when varying the locality of the transactions.

Fig. 3: Throughput (a) and latency (b) achieved by PaRiS when varying the locality of the transactions with 100:0, 95:5, 90:10
and 50:50 local-DC:multi-DC ratio.

9

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

2 5 25 50 200 400 1 10 100

C
D

F

Visibility latency (ms)

BPR PaRiS

Fig. 4: PaRiS has higher update visibility latency than BPR
(logarithmic scale).

more penalized, increasing from 8 ms to 150 ms. We note that
the number of threads needed to saturate the system increases
as the locality decreases (from 32 to 512 in this case), because
requests spend much of their times traveling across DCs. This
explains why the maximum throughput decreases only by 16%
as opposed to the order-of-magnitude increase in latency.

As any partially replicated system, PaRiS targets workloads
with high locality in the data access pattern. In case of
limited locality, the performance penalty incurred by PaRiS,
and partial replication in general, is the inevitable price to pay
to enable higher storage capacity.

E. Data staleness
We measure the staleness of the data returned by PaRiS

by measuring the visibility latency of updates. The visibility
latency of an update X in DCi is the difference between
the wall-clock time when X becomes visible in DCi and
the wall-clock time when X was committed in its original
DC. Figure 4 shows the CDF of the update visibility latency
achieved by PaRiS and BPR with 5 DCs and the default
workload. The CDFs are computed as follows: we first obtain
the CDF on every partition and then we compute the mean
for each percentile.

BPR achieves lower update visibility latency than PaRiS.
The update visibility time in PaRiS is higher than in BPR
(with an around 200 ms difference in the worst case). That
is to be expected because UST identifies a lower bound of
the update times of transactions applied in the whole cluster.
BPR effectively trades data freshness for performance, because
it exposes more recent snapshots of the data at the cost of
blocking reads, hence achieving much lower performance than
PaRiS.

VI. RELATED WORK

Table I classifies existing CC systems according to the
transactional model they expose, the capability of achieving
non-blocking parallel reads, support for partial replication, and
meta-data requirements. The table focuses on systems that
target the system model described in Section II-C.

The vast majority of the systems assume full replication and
provide none or restricted transactional capabilities. This class
of systems includes COPS [1], Eiger [2], ChainReaction [8],
Orbe [7], GentleRain [6], Bolt-on CC [33], Contrarian [10],
POCC [9], CausalSpartan [11], COPS-SNOW [14] and Eu-
nomiaKV [26]. All these systems implement one-shot read-
only transactions, and only Eiger additionally supports one-
shot write-only transactions.

System Txs Nonbl. reads Partial rep. Meta-data
COPS [1] ROT X 7 O|deps|
Eiger [2] ROT/WOT X 7 O|deps|

ChainReaction [8] ROT 7 7 M
Orbe [7] ROT 7 7 1 ts

Gentlerain [6] ROT 7 7 1 ts
POCC [9] ROT 7 7 M

COPS-SNOW [14] ROT X 7 O|deps|
OCCULT [5] Generic 7 7 O(M)

Cure [4] Generic 7 7 M
Wren [25] Generic X 7 2 ts
AV [15] Generic X 7 M

Xiang, Vaidya [37] 7 7 X 1 ts
Contrarian [10] ROT X 7 M

C3 [35] 7 X X M
Saturn [34] 7 X X 1 ts
Karma [36] ROT X X O|deps|

CausalSpartan [11] 7 X 7 M
Bolt-on CC [33] 7 X 7 M
EunomiaKV [26] 7 X 7 M

PaRiS (this work) Generic X X 1 ts

TABLE I: Taxonomy of the main CC systems. M is the
number of DCs. ts stands for timestamp. For systems that do
not support transactions, the non-blocking read property refers
to single-item reads. PaRiS is the only system that supports
partial replication with generic transactions, non-blocking par-
allel reads, and constant meta-data to track dependencies.

A few systems support partial replication, i.e., Saturn [34],
C3 [35], Karma [36] and the one by Xiang and Vaidya [37].
These systems, however, implement only single-object read
and write operations. Among them, only Karma discusses
extensions to support read-only transactions by using an
approach similar to Eiger’s.

To the best of our knowledge, only four systems implement
TCC. Among these, OCCULT1 [5] and Cure [4] can block
reads on a node waiting for a snapshot to be installed on such
node. Wren [25] and AV [15] avoid blocking by identifying
stable snapshots in a way that is similar to PaRiS. All these
systems, however, target full replication.

Other relevant systems include TARDiS [38], GSP [39],
SwiftCloud [3], Lazy Replication [40], ISIS [41] and
Bayou [42]. These systems do not support sharding, and hence
neither partial replication. Many protocols have also been
proposed to implement causally consistent distributed shared
memories, e.g., [43]–[45]. These protocols do not support
transactions and require more meta-data than PaRiS.

PaRiS is also related to systems that implement stronger
consistency levels and support partial replication, such as
Jessy [46], P-Store [47], STR [48], and Spanner [16]. On
the one hand, these systems allow fewer anomalies than
what is allowed by TCC [4] and provide fresher data to the
clients. On the other hand, they incur higher synchronization
costs to determine the outcome of transactions. PaRiS targets
applications that can tolerate weaker consistency and some
degree of data staleness, e.g., social networks, and offers them
low latency, scalability and high storage capacity.

1OCCULT may retry read operations multiple times, instead of blocking
the read. Retrying has the same effect on latency of blocking the read until the
correct version to read is available on the sever that processes the operation.

10

VII. CONCLUSION

We present PaRiS, the first system that implements TCC in
a partially replicated system and achieves non-blocking read
operations. PaRiS implements a novel dependency tracking
protocol, called UST, which requires only one timestamp to
track dependencies. UST identifies a snapshot of the data that
is available at every DC, thereby enabling non-blocking reads
regardless of the DC in which the read takes place.

We evaluate PaRiS on a data platform replicated on up to
10 DCs. PaRiS scales well and achieves lower latency than the
blocking alternative, while being able to handle larger datasets
than existing solutions that assume full replication.

ACKNOWLEDGMENTS

This research has been supported by The Swiss National
Science Foundation through Grant No. 166306 and by an
EcoCloud postdoctoral research fellowship.

REFERENCES

[1] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen, “Don’t
Settle for Eventual: Scalable Causal Consistency for Wide-area Storage
with COPS,” 2011.

[2] ——, “Stronger Semantics for Low-latency Geo-replicated Storage,” in
Proc. of NSDI, 2013.

[3] M. Zawirski, N. Preguiça, S. Duarte, and et al., “Write Fast, Read in
the Past: Causal Consistency for Client-side Applications,” in Proc. of
Middleware, 2015.

[4] D. D. Akkoorath, A. Tomsic, M. Bravo, and et al., “Cure: Strong
semantics meets high availability and low latency,” in Proc. of ICDCS,
2016.

[5] S. A. Mehdi, C. Littley, N. Crooks, L. Alvisi, N. Bronson, and W. Lloyd,
“I Can’t Believe It’s Not Causal! Scalable Causal Consistency with No
Slowdown Cascades,” in Proc. of NSDI, 2017.

[6] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel, “GentleRain: Cheap
and Scalable Causal Consistency with Physical Clocks,” in Proc. of
SoCC, 2014.

[7] J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel, “Orbe: Scalable Causal
Consistency Using Dependency Matrices and Physical Clocks,” in Proc.
of SoCC, 2013.

[8] S. Almeida, J. a. Leitão, and L. Rodrigues, “ChainReaction: A Causal+
Consistent Datastore Based on Chain Replication,” in Proc. of EuroSys,
2013.

[9] K. Spirovska, D. Didona, and W. Zwaenepoel, “Optimistic Causal
Consistency for Geo-replicated Key-value Stores,” in Proc. of ICDCS,
2017.

[10] D. Didona, R. Guerraoui, J. Wang, and W. Zwaenepoel, “Causal Con-
sistency and Latency Optimality: Friend or Foe?” Proc. VLDB Endow.,
vol. 11, no. 11, Jul. 2018.

[11] M. Roohitavaf, M. Demirbas, and S. Kulkarni, “CausalSpartan: Causal
Consistency for Distributed Data Stores using Hybrid Logical Clocks,”
in SRDS, 2017.

[12] G. DeCandia, D. Hastorun, M. Jampani, and et al., “Dynamo: Amazon’s
Highly Available Key-value Store,” in Proc. of SOSP, 2007.

[13] M. P. Herlihy and J. M. Wing, “Linearizability: A Correctness Condition
for Concurrent Objects,” ACM Trans. Program. Lang. Syst., vol. 12,
no. 3, pp. 463–492, Jul. 1990.

[14] H. Lu, C. Hodsdon, K. Ngo, S. Mu, and W. Lloyd, “The SNOW Theorem
and Latency-optimal Read-only Transactions,” in OSDI, 2016.

[15] A. Z. Tomsic, M. Bravo, and M. Shapiro, “Distributed Transactional
Reads: The Strong, the Quick, the Fresh & the Impossible,” in Proceed-
ings of the 19th International Middleware Conference, ser. Middleware
’18, 2018.

[16] J. C. Corbett, J. Dean, M. Epstein, and et al., “Spanner: Google’s
Globally Distributed Database,” ACM Trans. Comput. Syst., vol. 31,
no. 3, pp. 8:1–8:22, Aug. 2013.

[17] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia Workload
Analysis for Decentralized Hosting,” Comput. Netw., vol. 53, no. 11,
Jul. 2009.

[18] R. Nishtala, H. Fugal, S. Grimm, and et al., “Scaling Memcache at
Facebook,” in Proc. of NSDI, 2013.

[19] S. A. Noghabi, S. Subramanian, P. Narayanan, and et al., “Ambry:
Linkedin’s Scalable Geo-distributed Object Store,” in Proc. of SIGMOD,
2016.

[20] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W. Hutto, “Causal
Memory: Definitions, Implementation, and Programming,” Distributed
Computing, vol. 9, no. 1, pp. 37–49, 1995.

[21] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed
System,” Commun. ACM, vol. 21, no. 7, pp. 558–565, Jul. 1978.

[22] R. H. Thomas, “A Majority Consensus Approach to Concurrency Con-
trol for Multiple Copy Databases,” ACM Trans. Database Syst., vol. 4,
no. 2, pp. 180–209, Jun. 1979.

[23] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-free
Replicated Data Types,” in Proc. of SSS, 2011.

[24] E. A. Brewer, “Towards Robust Distributed Systems (abstract),” in Proc.
of PODC, 2000.

[25] K. Spirovska, D. Didona, and W. Zwaenepoel, “Wren: Nonblocking
Reads in a Partitioned Transactional Causally Consistent Data Store,”
in Proceedings of DSN, 2018.

[26] C. Gunawardhana, M. Bravo, and L. Rodrigues, “Unobtrusive Deferred
Update Stabilization for Efficient Geo-Replication,” in Proceedings of
ATC, 2017.

[27] S. S. Kulkarni, M. Demirbas, D. Madappa, B. Avva, and M. Leone,
“Logical Physical Clocks,” in Proc. of OPODIS, 2014.

[28] L. Lamport, “The Part-time Parliament,” ACM Trans. Comput. Syst.,
vol. 16, no. 2, pp. 133–169, May 1998.

[29] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking Cloud Serving Systems with YCSB,” in Proc. of SoCC,
2010.

[30] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload Analysis of a Large-scale Key-value Store,” in Proc. of
SIGMETRICS, 2012.

[31] F. Nawab, V. Arora, D. Agrawal, and A. El Abbadi, “Minimizing
Commit Latency of Transactions in Geo-replicated Data Stores,” in Proc.
of SIGMOD, 2015.

[32] O. Balmau, D. Didona, R. Guerraoui, and et al., “TRIAD: Creating
Synergies Between Memory, Disk and Log in Log Structured Key-value
Stores,” in Proc. of ATC, 2017.

[33] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica, “Bolt-on Causal
Consistency,” in Proc. of SIGMOD, 2013.

[34] M. Bravo, L. Rodrigues, and P. Van Roy, “Saturn: A Distributed
Metadata Service for Causal Consistency,” in Proc. of EuroSys, 2017.

[35] P. Fouto, J. Leito, and N. Preguia, “Practical and Fast Causal Consistent
Partial Geo-Replication,” in Proceedings of NCA, 2018.

[36] T. Mahmood, S. P. Narayanan, S. Rao, T. N. Vijaykumar, and M. Thot-
tethodi, “Karma: Cost-effective Geo-replicated Cloud Storage with Dy-
namic Enforcement of Causal Consistency,” IEEE Transactions on Cloud
Computing, 2018.

[37] Z. Xiang and N. H. Vaidya, “Global Stabilization for Causally
Consistent Partial Replication,” CoRR, vol. abs/1803.05575, 2018.
[Online]. Available: http://arxiv.org/abs/1803.05575

[38] N. Crooks, Y. Pu, N. Estrada, T. Gupta, L. Alvisi, and A. Clement,
“Tardis: A Branch-and-merge Approach To Weak Consistency,” in Proc.
of SIGMOD, 2016.

[39] S. Burckhardt, D. Leijen, J. Protzenko, and M. Fahndrich, “Global
Sequence Protocol: A Robust Abstraction for Replicated Shared State,”
in Proceedings of ECOOP, 2015.

[40] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat, “Providing High Avail-
ability Using Lazy Replication,” ACM Trans. Comput. Syst., vol. 10,
no. 4, pp. 360–391, Nov. 1992.

[41] K. Birman, A. Schiper, and P. Stephenson, “Lightweight Causal and
Atomic Group Multicast,” ACM Trans. Comput. Syst., vol. 9, no. 3, pp.
272–314, Aug. 1991. [Online]. Available: http://doi.acm.org/10.1145/
128738.128742

[42] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer,
and C. H. Hauser, “Managing Update Conflicts in Bayou, a Weakly
Connected Replicated Storage System,” in Proceedings of the Fifteenth
ACM Symposium on Operating Systems Principles, ser. SOSP ’95.
New York, NY, USA: ACM, 1995, pp. 172–182. [Online]. Available:
http://doi.acm.org/10.1145/224056.224070

[43] R. Baldoni, A. Milani, and S. Tucci Piergiovanni, “Optimal propagation-
based protocols implementing causal memories,” Distributed Comput-
ing, vol. 18, no. 6, pp. 461–474, 2006.

11

http://arxiv.org/abs/1803.05575
http://doi.acm.org/10.1145/128738.128742
http://doi.acm.org/10.1145/128738.128742
http://doi.acm.org/10.1145/224056.224070

[44] Z. Xiang and N. H. Vaidya, “Brief Announcement: Partially Replicated
Causally Consistent Shared Memory,” in Proceedings of PODC, 2018,
pp. 273–275.

[45] T. Hsu and A. D. Kshemkalyani, “Value the Recent Past: Approximate
Causal Consistency for Partially Replicated Systems,” IEEE TPDS,
vol. 29, no. 1, 2018.

[46] M. S. Ardekani, P. Sutra, and M. Shapiro, “Non-monotonic Snapshot
Isolation: Scalable and Strong Consistency for Geo-replicated Transac-
tional Systems,” in Proc. of SRDS, 2013.

[47] N. Schiper, P. Sutra, and F. Pedone, “P-store: Genuine Partial Replication
in Wide Area Networks,” in Proceedings of SRDS, 2014.

[48] Z. Li, P. V. Roy, and P. Romano, “Transparent Speculation in Geo-
replicated Transactional Data Stores,” in Proceedings of HPDC, 2018.

12

	Introduction
	Definitions and system Model
	Causal Consistency
	Transactional Causal Consistency
	System model
	APIs

	Design of PaRiS
	Challenges of partial replication
	Non-blocking reads in partial replication by PaRiS
	Fault tolerance

	Protocols of PaRiS
	Meta-data
	Operations
	Correctness

	Evaluation
	Experimental environment
	Latency and throughput
	Scalability
	Varying data access locality
	Data staleness

	Related work
	Conclusion
	References

