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Abstract

A methodology for coupling a fully atomistic domain to a surrounding domain described by discrete dis-
location plasticity, including the treatment of hybrid dislocation lines that span between the two domains,
was presented in the first paper of this series [2]. Here, key features of the methodology are assessed quanti-
tatively within a quasi-static framework at 0 K. To avoid solving an expensive but standard complementary
problem for the atomistic/continuum coupling of mechanical fields, which is not essential to the key features
of the method, a simplified model for obtaining accurate stress and displacement fields is introduced and
validated. The test problem consists of the bow-out of a single dislocation in a semi-periodic box under
an applied shear stress, and excellent results are obtained in comparison to fully-atomistic solutions of the
same problem.
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1. Introduction

Predictive mathematical tools for modeling plasticity at different length scales began to develop in the
beginning of the last century. The current theoretical frameworks can be broadly grouped into atomic, meso-
, micro- and macroscale models, describing phenomena across scales from individual dislocation motion in
nanometer specimens to accumulated plastic flow in large structures. Since plasticity is now established to
be size-dependent, and since important controlling dislocation phenomena occur at the atomic scale, the
understanding of macroscopic behavior can often require handling plasticity phenomena across several scales
simultaneously.

The discrete dislocation dynamics (DDD) method has been developed to study metal plasticity at the micron
scale by following the collective motion of complex dislocation arrays. The DDD method must be informed
by rules/laws regarding dislocation mobility, dislocation reactions, and interactions of dislocations with
metallurgical defects. These latter phenomena are atomistic in nature, and atomistic simulations can be
used to provide the necessary input in many simple cases. However, dislocation nucleation and interactions
with defects (surfaces, crack tips, voids, solutes, grain boundaries) involves inherently atomistic response that
can be difficult to characterize at the level of discrete dislocation line defects. It is not possible, however,
to treat mesoscale plasticity problems using purely atomistic methods, due to the computational cost.
Thus, it is beneficial to have a methodology that directly couples evolving atomistic and discrete dislocation
domains, such that atomistic behavior beyond the capabilities of the DDD method can be modeled explicitly
in local regions, outside of which the plasticity evolves via the DDD rules. Atomistic/continuum coupling
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of mechanical fields wherein all inelastic phenomena are contained only in the atomistic domain has been
achieved in many methods, starting with the Quasicontinuum method [27] and continue to evolve today
[14, 29, 23, 15, 1]. Extending the methods to handle dislocation plasticity in the continuum domain, and
with nearly seamless passing of dislocations back and forth between atomistic and continuum domains,
was achieved in the 2d plane strain limit by the Coupled Atomistic and Discrete Dislocations (CADD)
method [21, 22, 16]. In 2d, where the dislocation line direction is perpendicular to the plane of analysis,
the individual dislocations are wholly contained within the atomistic domain or the DDD domain. While
3d methods can also handle dislocations solely in both domains, there has been no method for dealing with
the full problem wherein individual dislocation lines exist in both domains simultaneously, so-called hybrid
dislocations. Since many dislocation phenomena occur in 3d, the development of a full 3d CADD method
provides powerful new capability for realistic multiscale simulation of dislocation plasticity.

In a companion paper [2], we have proposed such a 3d CADD method, denoted as CADD-3d. The transition
region of a hybrid dislocation between atomistic and continuum-line representations is accomplished through
a template imposed at the atomistic/continuum interface that enriches the continuum-line description with
an atomistic description of the dislocation core structure. This template thus approximates the atomistic
environment that the atomistic system would have if embedded in a fully atomistic domain, and thus
minimizes coupling errors at the crucial core region of the dislocation as the line passes from one description
to the other. An algorithm for the coupled evolution of such hybrid dislocations was also presented in detail.
This enables the atomic region to experience accurate forces from the dislocation(s) spanning both domains.

In the present work, we aim to quantitatively assess this key concept of CADD-3d. More precisely, we are
interested in the error in the evolution of the hybrid dislocation line, induced by the boundary condition
on the atomistic problem which is enriched with the dislocation core template. Therefore we have selected
a relatively simple quasi-static test problem which focuses on the main aspects by neglecting non-essential
parts such as dynamics and external boundary conditions. One feature of fully 3d problems is the neces-
sity of solving for the stress fields throughout the entire domain. This is normally accomplished using a
computationally expensive finite-element solution to solve the complementary problem for the e fields, as
stated in Paper I. To avoid this part of the method for the time being, since this aspect of the problem is
well-established conceptually, we introduce a simplified methodology that is valid in infinite domains and
when the atomistic domain only contains dislocations (no other defects). In this limit, we compute the
entire problem as if it is purely a DDD problem for all dislocation segments, including those in the atomistic
domain, and compute the necessary stress fields on the true DDD segments and displacement fields on the
atomistic boundary analytically via the e fields plus the superimposed stress field at infinity. We validate
this simplified methodology independently of our CADD-3d test problem. We then apply the CADD-3d
method to study the periodic bow-out of a single dislocation, for which reference solutions in essentially
infinite domains can be obtained for both fully atomistic and fully DDD problems. This test problem allows
us to isolate the modeling of the evolution of a hybrid dislocation and demonstrate minimal errors relative
to the reference fully atomistic solution.

The remainder of this paper is organized as follows. In Section 2 we first state the governing equations of
CADD-3d in a general quasi-static setting at 0 K. Subsequently the approximate problem is derived from
the general formulation. We present a practical yet efficient alternating Schwarz-type solution procedure
and highlight the advantages of the approximate formulation but also show its limitations by quantifying
spurious effects on dislocations in the atomistic domain depending on the complexity of the linear elastic
solution used to compute the dislocation fields of the atomic dislocation. In Section 3 we present the
numerical validation of the method and discuss key features.

2. Coupled atomistic/discrete dislocations in 3D

2.1. General formulation

In paper I [2], we have presented the general algorithm for the coupling of an atomistic domain {24 to a con-
tinuum domain {2 described by discrete dislocation dynamics, for systems containing dislocations spanning
both domains (hybrid dislocations formed by the intersection of the two lines 7, and 7. as shown in Figure
1). The (artificial) interface between both subdomains is denoted as 92;. At any instant or increment of



loading, the atomistic problem involves the interactions of atoms via interatomic potentials subjected to
boundary conditions on a surrounding atomistic pad region 2p C {2c whose atomic positions are dictated
by the solution of the continuum dislocations problem. The associated continuum problem involves a small-
strain elasticity solution of a discrete dislocation dynamics problem subjected to the displacement boundary
conditions associated with atomic positions at the atomistic/continuum interface plus any boundary condi-
tions applied on the external boundaries. For hybrid dislocations, the continuum displacement field in the
pad region is enriched by the addition of a corrective displacement field Atteorr(x; b, ¥p,) that approximates
the true atomistic core structure of the hybrid dislocation at the interface with character angle ¥, and
Burgers vector b. An algorithm for the simultaneous evolution of both atomistic and continuum domains
was then presented for the case of full quasi-dynamic coupling (quasi-static evolution of the dislocation
dynamics problem).

In that work, and here, we do not address the creation of hybrid dislocations by the impingement of
dislocations onto the interface region, whether originating from the atomistic or continuum domains. We
focus on the evolution of hybrid dislocations to demonstrate that this crucial feature of CADD-3d leads to
a very accurate representation of the true system evolution.

The method requires the identification of atomistic portions of the hybrid dislocations near the atom /continuum
interface. An atomistic dislocation is a discrete atomic configuration, not a continuous line. Thus, to identify
a continuous line representation of an atomistic dislocation, we use a simplified variant of the Dislocation
Eztraction Algorithm (DXA) by Stukowski et al. [24] as described in Paper I [2, Appendix C, Algorithm 2.

With the above schematic background of the method, we can more carefully define the solution of the
quasistatic coupled problem as the fields w,, u. and . that solve

Atomistic problem P?:
f.=0 in 24,
Uy = Ue + AUcorr in 2p,
peadd DDD problem pe/dd, (1)
div(e) =0 in 2,
Ue = Uy — Alcorr on 02,
fpk + fcore =0 on e,
Yo = TVa on 92,

in the absence of body forces. Note that we have omitted the natural boundary conditions (displace-
ments/tractions) on the outer boundary 0£2¢ \ 921 for compactness.

In order to solve problem P49 numerically, we adapt Algorithm 1 from [2] into an implicit scheme which
iterates between both subproblems. This approach, designated as Algorithm 1, yields a classical multiplica-

hybrid dislocations

rya ”yhyb = Ya ) Ve

Figure 1: Schematic illustration of the boundary value problem for CADD-3d



Algorithm 1: Multiplicative alternating Schwarz-type algorithm for CADD-3d

Phase Molecular Statics Dislocation Dynamics + Linear Elasticity
@D Solve atomistic problem P?
77777777777777777 ke ok ok
Jewt M SRV
Output: rEtl e QL wktl on 00
@) Detect atomistic dislocations
Input: ré“ € Qf;]gl
777777 S
Output: YAD
® Solve DDD problem P¢/dd
Input ultl on 00, AETL, AF
Output ultl = @b+t L @bl in Op, fyﬁ;,ﬁ)l
@ Impose artificial boundary conditions on P?
Cloput ey
Output: PRl = 0 bt 4 Aaktl € okt
®) Check convergence — If not converged go back to (1)

tive alternating Schwarz scheme with sharp interface coupling. In this approach, we essentially iterate
between two subproblems. Thus, we replace the 4 phases from [2] with two phases (1) and (2) which
correspond to the subproblems defined in (1). Consequently, the time step is replaced by a global iteration.
Quantities at a global iteration k are denoted as oF. In phase (1) we fully solve the atomistic problem
up to a prescribed tolerance using the initial configuration of the previous iteration as input. For the case
k = 1 we impose an initial guess, e.g. based on the linear elastic solution for a given configuration of the
dislocation network plus the core correction in the vicinity of the dislocation line. Next, we re-detect the
dislocation near the artificial interface in the coupling phase @ (this region was termed {25p in paper I).
The detected part %1?151 is then connected to the remaining parts in 24 \ 24p and {2¢ as shown in paper
I such that v**1 U~¥ forms a closed loop. Subsequently the problem Pe/dd i fully solved in phase () for
the continuum displacements u. and the dislocation line ~.. Using the elastic solution in the pad uf*! and

C
the location of the hybrid dislocation ’yff;%l := vl U~k+1 we update the pad atoms and the core correction

where 'y}]fyt)l intersects the artificial interface according to @ . The algorithm terminates for some suitably

chosen convergence criterion in (b) , e.g. incremental differences between two iterates of the solution.

However, we still lack a numerical solver coupled with the DDD problem in order to solve for the elastic
correction problem (the @ fields). Therefore we will develop an approximate algorithm in the following section
that suffices to test the crucial feature of CADD-3d, namely the boundary condition u, = ue+ Atteorr in 2p,
and does not require an external FE solver.

2.2. Approzimate formulation for quasi-static CADD-3d

In Paper I, we discuss the full coupled boundary value problem, which is solved by a domain decomposition
method (c.f. Figure 2 (a)). The DDD problem is then solved by the well-established superposition method
wherein all fields are decomposed into a sum of the @ fields (@, &) of the dislocation network embedded
in an infinite homogeneous elastic continuum under zero load plus the o fields (@, &) arising from an
associated smooth corrective problem so that the sum satisfies equilibrium and all boundary conditions in
the continuum domain. The choice of 7, which is used to close the dislocation loop in {24, is then arbitrary
to some degree (c.f. [2]). The solution for the @ fields is numerical, and normally accomplished using
the finite element method (FEM), which in full 3d is computational very expensive. Solving the 3d FEM
problem is conceptually straightforward and has been implemented by Weygand et al. [28]. Crone et al. [8]



have also accounted for finite tractions, neglecting @ on the boundary. Neither implementation is available
as an open-source code, however.
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Figure 2: (a) Schematic of the general CADD-3d problem from [2]. (b) Approximate solution of perdd (2) by decomposition

into an infinite space DDD problem using the detected atomistic dislocation positions and an atomistic problem with boundary
conditions supplied by the displacement fields computed from the infinite space DDD problem.

In the present paper, our aim is to test crucial features of the CADD-3d coupling of hybrid dislocations. This
can be done using the problems involving only dislocations and atoms embedded in an infinite homogeneous
elastic domain and subjected to a far-field applied stress state. Such problems still involve the crucial
mechanical coupling at the atomistic/continuum interface. To eliminate the need to compute the corrective
¢ fields due to the atomistic/continuum coupling, we proceed as shown schematically in Figure 2 (b). We
first restrict attention to problems wherein the atomistic domain only contains dislocations (no other defects)
and we detect the atomistic dislocation lines (7,) throughout the entire atomistic domain. This is not an
approximation, merely a characterization of the entire problem in terms of the existing dislocation network.
We then use the entire dislocation network vpy1, := 7. U7, to define a fully-continuum DDD problem within
the infinite continuum elastic domain 2. U 2, = R3; that is, we set 7, = 7, (Figure 2 (b)). The solution
of this DDD problem is thus the analytic e fields plus the analytic e fields due to the constant remote
applied stress. There are no other corrective e fields. From the DDD displacement field & + @, we then
compute the displacement fields of the pad atoms in (2, and include the template correction field for the
hybrid dislocations. These displacements then serve, as in the full problem, as the boundary conditions for
the atomistic problem. In other words, the boundary conditions for the atomistic problem are obtained
from the elastic solution of the entire dislocation network including the dislocation lines inside the atomistic
domain. The incremental evolution of the coupled problem (motion of the DDD nodes in (2. and motion
of the atoms in (2,) is then as described in Paper I and, for quasistatic equilibrium problems, as described
below.

In the following, physical quantities # and e such as the displacement of the body will refer to the initial
and deformed states, respectively; we will omit the superscript for the initial state if not explicitly required.



Otherwise, we adopt the notation of [2]. The reduced problem can be stated as

Atomistic problem P?:
fa=0 in 24,
Uy = Ue + Alcorr in {2p,
ped DDD problem P¢/dd; (2)
div (o) =0 in R3,
P+ e =0 on v,
Y = Ya n (24.

To solve (2) numerically for quasistatic equilibrium problems, Algorithm 1 can be simplified considerably.
Following Algorithm 2 we replace the dislocation detection in 2ap (Algorithm 1, phase @ ) with a detection
in the entire atomistic domain in @ followed by an equilibration of the discrete dislocation segments only
(phase (2)). Otherwise Algorithm 1 remains unchanged.?

Algorithm 2: Approximate multiplicative alternating Schwarz-type algorithm for CADD-3d

Phase Molecular Statics Dislocation Dynamics + Linear Elasticity
@ Solve atomistic problem P?
CTput:  rheokuk
Output: rtLe gt
® Check convergence criterion (4) — If not converged continue with )
€D Detect atomistic dislocations
Tnput: phtLe gt
Output: AL
@ Solve DDD problem P¢/dd
CToput: phEL AR
Output: wbtl = @bt p @Ml in 0p, i
@) Impose artificial boundary conditions on P?*
CIput: WflmeafR
Output: PRl = 0 bt Agktl € okt

To make the entire solution procedure precise we first select an initial configuration for the entire system.
A schematic illustration is shown in Figure 3 (a) for a dislocation segment in the vicinity of the interface
spanning both domains. This initial configuration is specified by the displacements of both real atoms in
2% and pad atoms in 23 as well as the nodal positions of the discrete hybrid dislocation(s). We then solve
the defined atomistic problem P* in phase (1) such that the dislocation in the atomistic domain evolves
as shown in Figure 3 (b). Using the new atomistic positions, a new dislocation may be detected based
on some convergence condition in (b) which will be specified in the following paragraph. Assume for now
that a new dislocation line is detected in the atomistic domain and the hybrid dislocation line is updated
in @ . Subsequently the discrete dislocation problem P44 is solved in @) to evolve the dislocation
nodes residing in the continuum domain, as shown in Figure 3 (c). With the new continuum dislocation

2In order to highlight the modified parts we have grayed out the corresponding phase indicators



line, the pad atoms are then updated using the new displacement field of the entire dislocation network in
@ . The core template solution is imposed for hybrid dislocations using the character angle defined by the
straight segment crossing the pad region (c.f. Figure 3 (¢)). The above steps are performed iteratively until
convergence is obtained.

(a) ul (b)

b
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Ya k Ve k+1
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4 1
k=k+1 iterate

Figure 3: Schematic illustration of the multiplicative Schwarz-type algorithm for CADD-3d

Recall that the atomistic discrete dislocation, generated by the dislocation detection algorithm, is not
continuous in the displacements u, (cf. [2, Appendix C]). Therefore the algorithm may oscillate around the
equilibrium state, more precisely between two subsequent states (ua, Yhyb)* ! and (wa, yuyb)*. Hence, we
have specified a weaker convergence criterion with respect to the subsequence

Vodd k> 2 (ulgl)lEN = (u;,ug, ...,ul;_Q,u’;) . (3)

That is, we only compare the current state with the state two iterations previous. Convergence is then
attained when
||ul - ué_1||lz(gg) < TOLdetn, (4)

a

where TOL" is some pre-defined tolerance. If the criterion (4) is fulfilled it is easy to see that the
algorithm is converged since the hybrid dislocation line does not get updated and therefore the pad atoms
remain the same as in the previous step. The criterion (4) appeared to be considerably robust in our
numerical experiments. The proposed algorithm may suggest a rather slow convergence due to the iterative
procedure and the sharp interface coupling. However, note that we effectively solve the physical problem
PP in the entire domain. Therefore the discrete dislocation in the continuum can advance much further
than if it would "see" a fixed boundary. The algorithm has therefore analogies with respect to overlapping
domain decomposition methods. In our numerical tests we have found that our solution procedure remains
reasonably fast. We will briefly comment on computational savings in Section 3.3.

There is some freedom in choosing the transmission node Sirans that merges ~, and 7., corresponding to
the uncertainty in the definition of 7, due to the non-unique continuum representation of {25. The choice
of stans affects the evolution — the dislocation line may advance rather slowly in the neighborhood of the
interface OS2y if Sirans is too close to the artificial interface. Loosely speaking, the atomistic dislocation in
Figure 3 (b) can not introduce a "discontinuity" with respect to the discrete dislocation in the continuum
region. Hence, the dislocation segment in the pad may not advance by more than ~ b. This reveals a
possible source for pre-mature convergence, in particular when the system is close to equilibrium. In the
Section 3.3 we will show how different choices of Sirans can influence the equilibrium shape of the hybrid
dislocation.

The implementation of Algorithm 2 is accomplished in our in-house code libMultiscale (1sms.epfl.ch/
libmultiscale) which combines the solvers for the individual subproblems (LAMMPS and ParaDis [19, 3]).

2.8. Validation of the approximate elasticity method

The approximate elasticity method involves two approximations. First, it assumes that the forces on the
continuum DDD nodes due to the atomistic dislocations can be accurately computed by representing the
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atomistic dislocations via the DDD method. Second, it assumes that the displacement fields on the pad
atoms due to the atomistic dislocations can accurately be represented by elastic DDD fields. Use of the DDD
method for both aspects implies that linear elasticity (and, usually, isotropic linear elasticity) is sufficiently
accurate for these fields. Errors can thus arise, relative to a fully coupled solution, due to the inadequacy
of linear, isotropic elasticity.

The DDD method also usually treats dislocations as having compact cores, whereas dislocations in fcc and
hcp metals dissociate into partial dislocations separated by stacking faults. The DDD method can handle
partial dislocations and stacking faults (see e.g. [20]) but this adds to the computational load since it
doubles the number of segments and nodes, and greatly reduces the time increments, and hence is not
usually considered in full DDD problems. In CADD-3d, the atomistic dislocation may be dissociated. The
use of the core template mitigates the serious difference between the continuum line solution and atomistic
solution in the core of the hybrid dislocations but the far-field interactions between dissociated atomistic
dislocations and continuum line dislocations remains approximate.

The above approximate aspects are expected to create only small errors for dislocation segments that are
sufficiently far from the atomistic/continuum interface. Here, we assess these errors quantitatively in terms of
the spurious Peach-Koehler forces that develop as a function of the distance of an atomistic dislocation from
the a/c interface. To do so, we follow Dewald and Curtin [9] and [18] and consider a straight edge dislocation
residing in a semi-periodic fcc atomistic domain and approaching the atomistic/continuum interface; there
are no hybrid dislocations in this problem. The problem is initialized by placing one dislocation at the
center of a large box by displacing all atoms according to the continuum Volterra field as shown in Figure 4
(a) and (b). A sufficient in-plane size (240A x 240A) is validated ex post facto by observing that the initial
dislocation motion starts at precisely the Peierls stress measured independently in a much larger atomistic
cell. The box is periodic in the line direction of the dislocation, enabling use of a minimum periodic distance
defined by the atomic unit cell. The initial box also includes a step consisting of two extra planes of atoms on
the upper half of the box. The @ field of the dislocation is then imposed, with the jump in the displacement
across the glide plane eliminating the step to leave a smooth boundary. With the pad atoms held fixed, the
atomistic system is then fully relaxed, during which the dislocation dissociates naturally into two partial
dislocations separated by a stacking fault. For the large box size used here, this relaxation is independent
of the @ field. A uniform shear stress is then applied to the entire system. The dislocation commences
glide at the Peierls stress 7p. In an infinite atomistic system, the dislocation would glide continuously at
the Peierls stress. In the coupled method, errors in the coupling method give rise to spurious forces 7gp on
the dislocation; these are found to repel the dislocation from the boundary. Thus, under an applied stress
Tpk above the Peierls stress, the dislocation will glide until it reaches an equilibrium position (position
of the center of mass of the dislocation) at distance d from the interface at which the total driving force
TpK — 7p — Tsp = 0 (see Figure 4). The spurious force at d is then measured directly as 7sp(d) = Tpx — 7p.

(a) Reference configuration  (b) Initial configuration (c) Final configuration

O2p

Figure 4: Schematic illustration of the numerical test to determine the spurious stress exerted on an edge dislocation near
artificial interfaces. The reference configuration is given in (a). Subsequently a predictor for an edge dislocation is applied to
the reference configuration in (b). An applied shear stress 7pk will eventually move the dislocation to the stable position in (c)

We analyze the spurious stresses corresponding to the three relevant approximate solutions for @ that could
be used in CADD-3d:



(i) Isotropic undissociated [17]
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We have computed the real quantities ¢;, d;, p; and ¢; for b = (0 b 0) using the procedure described
in [12, page 444-445].

(iii) Anisotropic partial dislocations
ﬁ(ﬁ[ﬁ) — aaiSO(x17x2 + Asplit’ T3; ble) + aaiso(x1’ To — Asplit7m3; btr)7 (7)

where 2A%P i the atomistic spacing between the leading and trailing partial dislocations having
Burgers vectors bje, by, respectively,

b= to( 10T b= le(on 1 o) (8)

To be clear, we use Algorithm 2 for each of the above approximate displacement fields. There is no discrete
dislocation in the continuum domain and so only the atomistic problem is solved. At each applied stress, we
relax the atomistic system, detect the new position of the dislocation (averaged of the centers of mass of the
detected tetrahedra representing the full dislocation), and update the pad atom displacements according to
the new positions according to the approximate displacement field ((5), (6) or (7)). We iterate until the
convergence criterion (4) is satisfied with TOL™ = 106 p.

We use Aluminum as described by the EAM potential of Ercolessi and Adams [11] which is slightly
anisotropic (2C44/(C11 — C12) = 1.315). The partial spacing of the dissociated edge dislocation is 2 Asplit —
15 A and the Peierls stress is 7p = 3 MPa. This problem was studied for this same material using the full
CADD atomistic/continuum coupling wherein the linearly elastic continuum domain is coupled to the fully
non-linear atomistic domain [9, 18]. We compare our results to these full results as a measure of the error
of using the linear elasticity solution.

Figure 5 shows the spurious stress vs. distance d to the interface for the successively better approximations
to @. In all cases, including the fully non-linear solution, the spurious stresses scale as ~ d~2. This scaling
is similar to recent error estimates for isolated dislocations in a finite computational domain embedded in
an effectively infinite medium for various artificial boundary conditions [10]. The magnitude of the error
decreases with increasing accuracy of the approximation for . The isotropic compact core solution is least
accurate while the anisotropic dissociated core is the most accurate when using elasticity, and the full coupled
solution is overall most accurate. The magnitude of the spurious stresses shown here remain small, on the
order of 10 MPa, with an error of 12 MPa reached at distances of 40, 30, 18, and 7A respectively, with
increasing fidelity of the numerical method. To further support these results, we have also placed the initial
dislocation at 10 A from the interface and applied Algorithm 2. The final positions of the relaxed dislocation
are in agreement with the results from Figure 5 up to & b due to the direction-dependent Peierls stress (which
acts opposite to the direction of motion) and to the non-uniqueness of the dislocation detection. Overall,
these results show that the typical distances over which moderate spurious coupling errors (>5 MPa) is on
the order of 30-60 A when using the various linear elasticity approximations to 4. Testing of local details
of the hybrid dislocation coupling in CADD-3d must therefore, when using these approximations, ensure
that the dislocations remain at these distances or further (see below). For the full CADD-3d methodology



described in Paper I with full coupling, the spurious forces are those corresponding to the reference solution
[9, 18], which are negligible at distances beyond 10 A.
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Figure 5: Spurious stress 7sp on a stable edge dislocation as a function of its distance to the artificial interface d

Finally, these tests serve as guidance for the determination of a necessary “passing” distance, or size of
any overlap zone between atomistic and continuum regions, that must be developed for full operation of
CADD-3d to treat dislocations moving in and out of the atomistic and continuum domains. The current
approximate elasticity method (with spurious forces as shown in Figure 5) enables the use of a passing
methodology. However, if the stress on the dislocations in the vicinity of the interface is rather low, the
passing distance may become impracticably large as shown in Figure 5. Fortunately, this may not be an
issue for many problems where dislocations mainly glide off into the bulk material (e.g. cracks under tensile
loading). Another practical example is presented in the third paper of this series [7] for a Frank-Read source,
subject to a constant applied shear stress. The stresses on the dislocations approaching the interface are
high enough such that the passing distance can be kept to practical limits, i.e. a few Angstroms of the
leading partial dislocation from the interface. For the fully coupled problem (c.f. Algorithm 1) we expect a
universal passing distance in the range 5-10 A as demonstrated by Pavia and Curtin [18] and in many other
works on CADD-2d.

3. Validation of CADD-3d for hybrid dislocations

3.1. Reference problem

As a test problem to assess the accuracy of the CADD-3d treatment of hybrid dislocations, we study the
quasistatic bow-out of an initially straight planar periodic array of edge dislocations in an infinite box under
an applied resolved shear stress 7pk. A schematic of the problem is shown in Figure 6 (a). This problem
can be studied accurately in a full atomistic simulation in a suitable large but finite size box and in a full
discrete dislocation dynamics simulation (see below), which enables (i) careful comparison of the predictions
of the CADD-3d method to the fully atomistic results and (ii) calibration of DDD to atomistics (see Figure
6 (b) and (c)).

We choose a single periodic spacing of the pinning points of I; ~ 200 A3 which is then the periodic length of
the simulation cell along 1. We then use a finite box size, I3 along the glide direction and I3 normal to the
slip plane, with periodicity in x2 and traction boundary conditions on the x3 surfaces. This size is sufficient
to ensure that image effects, due to the traction-free x3 surfaces, of the non-straight bowed-out dislocations
are minimal and can be neglected relative to the applied loads. Following [25] for exactly this problem, we
use Iy = I3 ~ 400 A. Pinning of the dislocation follows [25, 26] and is described in more detail below.

3Note that the real box dimensions can vary slightly from the given values according to the periodic interatomic spacing
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Hybrid dislocation

Figure 6: Schematic illustration of the bow-out of a nominal straight dislocation for (a) the coupled CADD-3d problem, (b) the
fully atomistic model (only the atoms in the core region are visualized), and (¢) the continuum DDD model

In accordance with our validation study in the last section, we use Aluminum modeled by an Embedded
Atom Model (EAM) Ercolessi and Adams [11]. Material parameters needed for the isotropic continuum
DDD simulation are the lattice constant ay = 4.032 A, Burgers vector b = 2.851 A, approximate isotropic
Poisson ratio v = 0.35 and shear modulus u = 30.8 GPa. For this quasistatic problem, results are
independent of the dislocation mobility, although a value for the mobility is used for incrementing the
DDD solution toward equilibrium. Also required is a calibrated dislocation core energy to supplement the
non-singular dislocation field solution in the DDD code ParaDis; this is discussed below.

Before describing the full test problem in more detail, it is convenient to present the two corresponding
reference problems, the fully atomistic and fully DDD models of the same test problem geometry. The fully
atomistic solution provides the base for assessment of the CADD-3d algorithms. The fully DDD solution is
used to calibrate the DDD core energy parameter to the fully atomistic solution.

3.2. Atomistic and discrete dislocation dynamics reference problems

Schematic illustrations of the two reference problems are shown in Figure 6 (b) and (c). The fully atomistic
box dimensions 1, lo and I3 are those given above, with &~ 2 million atoms and therefore ~ 6 million degrees
of freedom. The introduction of the periodic array of straight dislocations in the initial structure is accom-
plished using the known elastic displacement fields of the so-called periodic array of dislocations (PAD, see
Appendix A) given by

AP (x) = 0,

- B b Czgsin (2C2) b
17 (@) = ~4r(1 —v) (cos (2Cy) — cosh (2Cx3)) 27 arctan (coth (Czs) tan (Cz)), (9)

apAD(m) _ b Cz3sinh (2Cz3) B b(1 —2v)
3 47(1 — v) (cos (2Czy) — cosh (2Cz3)) 87 (1 —v)

In (] cos (2Cz2) — cosh (2Cx3)]),

where C' = 7/ls. Note that (9) is not truly periodic since it contains the slip step but, as in the previous sec-
tion, we choose a reference configuration that includes the same slip step so that the deformed configuration
has the required in-plane periodicity.

The atom positions are then relaxed to equilibrium subject to the periodic boundary conditions in z1- and
xo-directions and free surfaces on the top and bottom x3 boundaries. The Hessian-free Newton-Raphson
algorithm in LAMMPS is used, with the convergence criterion || f, [l;2(0,) < 107 eV/A.
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After the initial relaxation, we establish the "pinning points" for subsequent bow-out (see Figure 6 (b)) as
follows. Atoms in a small rectangle (dimensions: lpi, = 24 A, Wpin = 12 A, hpin = GA) centered on the core
of the dislocation and at one end of the periodic box along x; are identified. These atoms are then held fixed
(zero subsequent displacement) during subsequent loading of the simulation cell. Forces are then applied
to the atoms on the top along x5 corresponding to a desired applied shear stress mpg as f& = %TPKEQ
where A = [yly is the area of the top surface and N the number of atoms in the surface layer, with forces
of opposite sign applied on the bottom surface atoms. The entire system is then again allowed to relax to
equilibrium, during which the dislocation core bows out between the periodic pinning points to reach an

equilibrium configuration characterized by the bow-out height A at the center of the box.

In the corresponding full DDD continuum problem, the pinning points are defined by fixed segments or
length wpin/2 on each end of the dislocation line along x;. The initial dislocation line is discretized into 16
piecewise linear segments of lengths between 50 — 8b. The DDD methodology in ParaDis is employed, which
uses a nonsingular theory [6] with parameter a to regularize the singular core. An additional core energy
per unit length is introduced with a dependence on the character angle according to linear elastic theory as

-2
Wcore(ﬂ) — [eore (Sllnf + COS2 79) bZ’ (10)
where E°T® = F°(q) is an additional scalar parameter. Since the non-singular theory includes some core
energy through the regularization parameter a, the parameter £°™(a) has an implicit dependence on « if the
total DDD core energy is intended to agree with the true atomistic core energy. Usually F°°™ is calibrated
with respect to a representative atomistic configuration, e.g. straight dislocations in infinite domains. For
the bow-out problem, Szajewski et al. [26] were calibrating £ for a given amount of bowout and showed
good agreement between fully atomistic and fully DDD solutions in ParaDis by varying the periodic length
1 between the pinning points. Here, we adopt their choice of parameters, i.e.

a="T714A,  E“*(a) =5GPa. (11)

throughout this paper.

Solution of the DDD bow-out problem within ParaDis is achieved by computing the velocities for nodes
s € 7. using the overdamped mobility law

v = M(f + fore), (12)

where M is the mobility tensor. Here, we restrict motion to gliding on the defined glide plane and seek
quasistatic solutions. The numerical solution of (12) is reduced, using a forward-Euler integration scheme
with time step At, to a steepest descent method

Sk+1 _ Sk
’Uk ~ T = Sk+1 — Sk + AtM(fpk’k + fcore,k)’ (13)
where AtM acts as a constrained line search. The steepest descent method is known to converge rather
slowly but here the number of nodes is small and the computational cost of solving the DDD problem is
negligible as compared to the cost of solving the atomistic problem. Convergence is achieved when the total
force on the dislocation line is
175 4 £ 2oy < 107N, (14)

Figure 7 shows the fully-atomistic and fully DDD configurations obtained at applied shear stresses of 50,
100 and 150 MPa. The good agreement confirms that the choice of the core energy parameter in ParaDis
is sufficiently accurate. At 150 MPa, there is a slight deviation in the maximum bow-out between the two
models (=~ 34 A for DDD vs. ~ 30A for atomistics), which most likely arises because the core parameters
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(11) were calibrated using different box sizes than those used here* but given the simplicity of the approach
which only requires the calibration of one single parameter, the results seem remarkable. As a matter of fact,
a perfect match between both models — which one could obtain by calibrating E°" to the configurations
shown in Figure 7 — is not essential to validate crucial features of the coupled problem as done in the
following section. In practice we always expect small deviations between atomistic and DDD models.

~ 50MPa, h ~10[A] 100 MPa, h ~ 20 [A] 150 MPa, h =~ 30[A]

z2 [A] 2 [A] s [A]

40 40 40

20 20 M 20 /‘.\

0 M 0 M 0
-20 -20 -20
-40 -40 -40

100 =50 0 50 100 -100  -50 0 50 100 -100  -50 0 50 100

21 [A] w1 [A] w1 [A]

Figure 7: Comparison between fully atomistic calculations and the continuum model (solid line) for different applied shear
stresses

3.8. CADD-3d problem

For the CADD-3d study of the bow-out problem, we divide the entire domain into atomistic and continuum
regions along the xi-direction (see Figure 6 (a)). We denote w, as the width of the atomistic domain.
A schematic top view of the coupled problem is shown in Figure 8 (a). The width of the pad domain is
conveniently set to the width of the pinning points wpi, which is slightly greater than two times the cut of
radius 7. = 5.56 A of the interatomic potential. The initial displacements of the atomistic domain are taken
as the relaxed configuration of the periodic array of straight dislocations from the previous subsection. The
initial hybrid dislocation is a straight line along the origin.

We apply a homogeneous shear stress at infinity, which generates displacements of the pad atoms given by

alry) = 2 sey  Vra € Op. (15)
2u 7
As the dislocation bows out, the additional displacements of the pad atoms are computed as the sum of
the elastic displacements for the periodic array of straight edge dislocations @FAP (9) plus a correction
Aal9) due to curved segments for the primary and periodic images (i,7). The correction is computed
using the Barnett formalism [4, 5] as described in Appendix B. Including the core template correction, the
displacements of the pad atoms are thus given by

Ny N1
ua(ra) = ’lNI/PAD('ra) + Z Z Aa(l’])(ra) + Aﬁcorr(ra) + ﬁl("’a) Vr, € (2p, (16>
j=—Na i=—N;

where N1, Ny are the number of periodic images considered in the x1- and xo-direction, respectively. For the
application of the core template [2], we use a core region 2o, with R™ = 16 A which covers the stacking
fault of the chosen interatomic potential. The core region comprises a blending region of width ~ 4A to
guarantee a smooth transition of Adcorr to zero at 0f2core. We have run tests with larger core templates
with no qualitative change in the results. Throughout the simulations, the displacements of atoms in the
pinning regions are held fixed.

After each relaxation of the atomistic system, we re-detect the discrete dislocation v,. Following our ap-
proximate approach (see Section 2.2), the full DDD line 7, + 7. is used to compute the forces on v, and
the pad displacements. The DDD line . is then evolved according to the PK forces on the nodes within

“This is expected and was also observed in the work by Szajewski et al. [26] (c.f. Figure 6 (a) and (b) in[26])
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Figure 8: Schematic top view of the domain decomposition for the PAD geometry (a). A side view along the dislocation line
direction is shown in (b) to illustrate where the detection algorithm generates nodal positions of v, (the interface node is located
in region 1, its neighboring node in region 2 etc.)

ParaDis. The new DDD line is then used to update the pad displacement field, and the atomistic system is
then relaxed again.

As indicated in Section 2.2 the choice of the transmission node Strans iS not unique and may influence
the final converged solution. The algorithm in Paper 1 states that sians should reside in the atomistic
domain, and here we demonstrate explicitly the effect of Strans on the final solution. For the selection of
the transmission node we employ a simple scheme which does not require additional efforts with regard to
the implementation. Recall that the dislocation detection algorithm identifies successive tetrahedral units
in the atomistic domain, schematically depicted by the filled triangles in Figure 8 (b). These units are then
used to discretize the dislocation into nodes and segments. The transmission node is then the first node
in the atomistic domain, which could be in the first tetrahedron, the second, the third, etc. Assume for a
moment that Sirans is in the first tetrahedron (i.e. region 1 in Figure 8 (b)). As a consequence 7, would only
advance in very small increments in the vicinity of the interface. As a result, the algorithm may suffer from
premature convergence leaving artificial kinks at the interface. Therefore it might be favorable to ignore the
interface node and set Sirans to be equal to the detected node in region 2, 3 or even farther in the atomistic
domain.

We apply the coupled problem to study the bow-out process at an applied shear stress of 150 MPa. At this
stress level, the reference atomistic and DDD dislocation lines do not match perfectly but are sufficiently close
to enable assessment of the coupled problem. Convergence is attained when the criterion (4) is satisfied with
TOLY™ = 10=2b. For all numerical simulations here, convergence is reached after 15-25 global iterations.

In order to judge the accuracy of the coupled problem, we compare the bow-out of the hybrid dislocation
with the atomistic reference calculation. More precisely, we measure the difference in the displacements
Aspyp,2 and Asgfg along the glide direction (zo-direction). In practice we are only interested in the error

in £25. Defining A(w) = (—=11/2 + Wpin, —11/2 + wpin + w) as an interval along the z;-direction which
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encompasses a length w < w,, we then define the relative error with respect to w as

| Aspyb,2 — AsED | r2(Aw)
[ ASE | L2 aquw))

erel(W) = (17)

We have analyzed the coupled problem for two different domain decompositions, w, = [1/4 and w, ~ [1/2,
and various choices of the transmission node position. The relative errors are presented in Table 1.

(a) (b)

T3 [A] L2 [A]
0 ez pad atoms 10 &
20 & 20 & N
o S Strans (region 1) o S Strans (region 2)
—20, | A —20 :
v R
10 =00, 2 > —40 N 2 ,
~100 ~50 0 i 50 100 —100 ~50 0 50 100
1 [A] 21 [A]
© | @
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40 fﬁ’?’f : 7.82
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Figure 9: Solution of the coupled problem for w, = l1/4 for different choices of the transmission node Sgrans (a)-(c). Real and
pad atoms are highlighted with respect to the centrosymmetry parameter [13, CSP] according to (d)

We first choose the width of the atomistic domain to be w, ~ [;/4 of the width of the domain. This
problem represents a crucial test case for the core template approximation since the character angle must
evolve and eventually reach the equilibrium value 0° < ¥, < 90° near the atom/continuum interface. We
discretized ~. into eleven segments (including the one crossing the pad region) such that the segment length is
approximately the same as for the reference DDD problem. We have also chosen a coarsening of the discrete
atomistic dislocation to match this segment length approximately such that the total number of segments
remains between 14-16 during one simulation. Tests were then performed using different locations of the
transmission node Sgrans- The final equilibrium configurations are shown in Figure 9 (a)-(c). The choice of
the transmission node has a clear influence on the convergence. As stated in Paper I, when the transmission
node is at or near the atom/continuum interface, namely in region 1 or 2 (c.f. Figure 8 (b)), the algorithm
converges pre-maturely to leave a small kink at the a/c interface. When the transmission node is further
from the a/c interface (region 3), the converged solution is in excellent agreement with the fully-atomistic
solution. Specifically, the hybrid dislocation line coincides nearly perfectly with the atomistic/continuum
descriptions in 2o and with the DDD description in {2¢, as shown quantitatively in Table 1 by the small
error, which is on the order of the difference between fully atomistic and fully DDD problems. When the
transmission node lies deeper into the atomistic domain (region 4), the results do not change notably. We
conclude, as stated in Paper I, that it is necessary to choose the transmission node to lie a few atomic layers
inside the atom/continuum interface to obtain accurate results.
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width w, of 24 ‘ region of Sirans ‘ w ‘ erel(w) [%]

I1/4 1 I1/4 26.9
I1/4 2 11/4 21.4
I1/4 3 I1/4 5.2
11/2 3 11/2 5.8
11/2 3 I1/4 4.1
full DDD / 11/4 5.7
full DDD J/ 11/2 9.9

Table 1: Error in the bow-out between the hybrid dislocation and the detected atomistic dislocation from the reference calcu-
lation. The third column specifies the width w of the domain over which the error is measured

More broadly, the result in Figure 9 (¢) demonstrates the high fidelity of the proposed CADD-3d treatment of
hybrid dislocations. A close inspection of the atomic displacements near the atom/continuum interface shows
a very slight shift in the visualized atomic core structure, but the overall level of agreement is excellent. The
atomistic dislocation away from the interface is experiencing no spurious stresses that cause a measurable
disturbance, so the atomistic system does not know that the dislocation is represented by DDD in another
large portion of the domain. Such atomistic fidelity is precisely the goal of CADD-3d.

To further validate CADD-3d, we examine the same problem but with an atomistic domain that is ap-
proximately the same size as the continuum domain. This captures the region of the bow-out where the
atomistic and DDD reference problems show the largest differences in equilibrium positions. Seven segments
are used to discretize the continuum dislocation line in {2 and we choose the transmission node to be in
region 3. Otherwise the problem remains the same as above. The final configuration at 150 MPa is shown
in Figure 10. The hybrid dislocation line now resides between the solution for the individual problems, with
an error (c.f. Table 1) of approximately half of the error of the full DDD reference problem in half of the
total domain. Moreover, our analysis shows that, considering only the error in A(l;/4), improved results
are obtained in comparison with the coupled problem where the width of the atomistic domain was l; /4.

To demonstrate the benefits of the atomistic core template approximation, we have also performed simula-
tions using solely the Volterra solution in the entire pad region. Results at 150 MPa are shown in Figure
11 for two different positions of the transmission node. For the transmission node in region 3, there is an
artificial pinning of the dislocation leading to a kink that should not exist. The atoms in region 3 experience
the constraint of the incorrect core template and cannot adjust suitably. Away from the kink, however, the
solution is in reasonable agreement with the previous results. The use of the Volterra core retains knowledge
of the Burgers vector and correct slip displacements, and so the differences between the Volterra core and
the full dissociated core are limited to short-range fields, and thus cause short-range disturbances. However,

—20-

—40: § N _ S

L ™% e
| I L

~100 ~50 0 50 100

Figure 10: Solution of the coupled problem for wa, = I1/2. Real and pad atoms are highlighted with respect to the centrosym-
metry parameter [13, CSP] according to Figure 9 (d)
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those disturbances do extend into the atomistic region and thus generate unwanted spurious stress fields
that may drive unphysical atomistic behavior even though the atomic displacement differences are localized.
In the present approximate model that uses DDD fields to inform the pad atoms, the atomic disturbances
caused by the Volterra solution are not fed back into the pad - there is no full coupling - and hence the
disturbances are likely underestimated when using the current approximate model. Interestingly, if the
transmission node is moved slightly further from the interface (region 4), then the final hybrid dislocation
line is largely unaffected by the use of the Volterra core. In region 4, the atoms are able to correct slightly
better for the Volterra field error, and the segment connecting the transmission node to the first DDD node
spans across the Volterra solution, smoothening out the DDD description. While the Volterra solution is
attractive for simplicity, the core template approximation yields a smoother transition between the two de-
scriptions of the dislocation and a far better description of the atomistic displacements inside the atomistic
region near the atom/continuum interface. The smoother transition can be visualized by comparing the
close-up views in Figure 11 (b) and Figure 9 (c); the dislocation core becomes significantly more compact
from = 3b to the interface.

(a) (b)

T2 [A] 25[A]  Sypans (region 4)
40 ~: - pad atoms T
0 Strans (region 3) 0 ‘k
—202 —90: &
—40° N 2c ,—40, .
100 '%7‘:5(‘) - xlo[A] “““ 50 100 —100 50 100

Figure 11: Solution of the coupled problem for w, = l1/4 using the classical Volterra solution in the core region. Real and pad
atoms are highlighted with respect to the centrosymmetry parameter [13, CSP] according to Figure 9 (d)

We do not present a detailed comparison of computation efficiency of the coupled problem at this stage
of the CADD-3d development. The test problems here are very small in size, especially the DDD regions,
and so CADD-3d is not expected to be notably faster than a full atomistic solution. Nonetheless, the
computational time for the results in Figure 10 (w, = l;/2) were comparable to those for the fully atomistic
problem and the computational time for the results in Figure 9 (w, = [1/4) were & 3.5 less than the fully
atomistic problem, thus approaching perfect scaling with the atomistic size. Thus, even these preliminary
tests indicate the high possible efficiency of CADD-3d for problems when the entire domain is much much
larger than the atomistic domain alone.

4. Summary

We have presented a validation of the three-dimensional Coupled Atomistic and Discrete Dislocation (CADD-
3d) method introduced in [2]. We have specifically shown that CADD-3d can handle hybrid dislocations
that span the atomistic and continuum domains with high fidelity, approaching the exact fully atomistic
solution. This has been accomplished in a simple yet non-trivial quasi-static formulation enabling us to
focus on equilibrium configurations. We eliminate the need to execute 3d finite-element solutions for the
corrective discrete dislocation fields through an approximate method that uses a fully-DDD representation
of the dislocation network at any instant to compute the boundary conditions on the atomistic domain. We
have quantitatively assessed the accuracy of this approximation. Even with this approximation, the atomistic
domain still evolves according to atomistic forces, and so the main new features of the continuum/atomistic
coupling are preserved here.

The quasi-static CADD-3d method has been tested by studying the problem of the bow-out of a dislocation
that is pinned periodically along its length. By comparing CADD-3d predictions to a fully atomistic solution
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of the same problem, we demonstrated the accuracy of the method in all important aspects. We have further
shown that two algorithmic details (the use of the core template to accurately represent the true atomistic
core structure of the dislocation and the choice of the transmission node connecting the continuum and
atomistic portions of a hybrid dislocation) are essential for achieving high accuracy. The present study does
not fully show the errors associated with use of the Volterra core instead of the accurate core template
because a full true coupled boundary value problem is not studied; this will be studied when such full
coupling is implemented. With the basic validation accomplished here for a simple quasi-static problem,
Paper III in this series will present many further validations and applications of the current CADD-3d
formulation for dynamic problems.

The present methodology, including the elasticity approximation for obtaining atomistic boundary condi-
tions, can be used to enrich the fidelity of existing DDD studies. That is, during the evolution of a full DDD
simulation, a fully-atomistic domain can be inserted into any region of the DDD simulation in which one
wishes to interrogate the atomistic details specifically. The DDD network is used to define the boundary
conditions of the atomistic domain, and then the CADD-3d algorithm is used to evolve the coupled problem
and resolve atomistic behavior in the selected region. The problem can revert to a full DDD simulation
automatically because the current CADD-3d method is always following the entire 3d network. The current
CADD-3d is therefore the computational nanoscope that enables on-the-fly atomistic study of any domain
of interest as a DDD system evolves in time.

There remain some current operational limits to the coupling of atomistics to discrete dislocation dynamics
with full atomistic fidelity due to the existing open-source DDD methodologies. First, real crystalline
materials are elastically anisotropic, and the computation of both stress fields and, moreover, displacement
fields of dislocations in anisotropic materials remains challenging. Second, real atomistic dislocations have
a character-dependent core energy that may be difficult to represent within continuum DDD models. Here,
we have calibrated the edge dislocation bow-out by adjusting the core energy model in ParaDis [6]. Recent
work [26] suggests this may be insufficient, and so new models may be needed. The numerical solution of
the full coupled boundary value problem remains necessary to solve many problems of interest wherein (i)
the atomistic domain contains other defects (cracks, voids, inclusions, etc.), (ii) the boundary conditions
are essential to the solution of the problem or (iii) stresses on dislocations in the vicinity of the interface
introduce non-negligible spurious forces such that the passing distance becomes impracticably large with our
approximate method. We are currently developing an efficient numerical solution based on Greens function
methods to address this last issue and will report on our progress in the near future.
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Appendix A. Displacement field for periodic arrays of edge dislocations

In what follows we seek to find analytical, closed-form expressions for infinite sums. Under certain assump-
tions infinite sums can be conveniently evaluated via the Residue theorem from complex analysis:

Theorem 1 (Residue theorem). Let A be an open set containing {w1, ...,wp} and let further g be holo-
morphic in A\ {wr,...,w,}. Then

1 p
R dxr = es , , A1l
s 9 = 3 resla) ) (A1)
where for an n-th order pole
1 ) 8n—1 "
res(g(z), wg) = m zlggk Hrn—1 ((30 — wy) 9(@)- (A.2)
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In order to evaluate infinite sums we multiply the function g(z) with a function h(x) = 7 cot 7 and use the
fact that h(z) has simple poles Vz € A = N such that

1

p o)
o )y g(@)h(z)dz =) res(g(z)h(z),wp) + > g(k). (A.3)
1 A b—1

k=—00

We assume that the function g(z) goes to zero as x — 0o. Therefore the left hand side of (A.3) is essentially

zero. Thus we have
o0

> glk) == res(g(x)h(z), wy). (A.4)
k=1

k=—0o0
In order to evaluate infinite sums it therefore suffices to determine the poles of g(x) and compute the residues
of g(x)h(x).

We consider a periodic array of infinite straight edge dislocations. The separation between the dislocations
is Axo = [,. The position of the dislocations is thus

0 0
VieN @ =|idx | =|Ax]|. (A.5)
0 0

The isotropic displacement field induced by each dislocation is then given by

i (x) =0,
i b (w9 — Azd)x3 T9 — A
B(@) = o l2(1 (s = Ad2 a7y e T ’ (A.6)
L b (v9 — Axb)? — 23 1—2v 9 o
() = —— : 1 — Az} :
@) =g [4(1 ) (22— Agh)2+a2)  AL—v) (w2 = Aah)? + af)
Henceforth we use the compact notation
ih(x) = aifi;(x) + by fis(x),
1:2( ) a1f11( ) 1]}2( ) (A7)
g(x) = az f (z) + b2 fas(x),
where
a—# a——la b—i by =(1—-2v)a (A.8)
1—477(1_11), 2= —5m 1= 50 2 = 2 .
and ' '
i (xg — Azh)xs i x9 — Axh
x) = . , x)=arctan | ——= |,
fale) = fia(@) - -

i o — Axb)? — 2 i i
falw) = (EERRETT ) = I (e - Ay ).

The total displacement field follows by summing the contributions from the individual dislocations, that is

+00 too
AP (x) = ay Z fhi () + by Z fia(),

ij;j’ ij;f (A.10)
a5 P (@) = as Z fo1(z) + by Z foo(),

It is easy to see that the displacement i3 diverges in the second term fi, as Axy — oco. Fortunately, the
divergent term is effectively associated with a rigid body shift — since the elastic Green function lacks the
definition of boundary conditions. Therefore we can generate a convergent sum using the partial derivatives

19



of fi(x) given by .
anQ(d:) _ 2(1‘2 + Al’é) (9f22($) _ 2x3 (A 11)
Oxa (o + Axb) + 23’ Ox3 (w2 + Axd) + 2% '

as sums » ;o 1/r converge whereas > 2, 1/r does not. Therefore the infinite sums of the partial

derivatives converge.

In the following we generate exemplarily the closed-form solution for the infinite sum "1 9, fao(x).
First note that the function 0, fo2(x) has two poles

—x9 +ix3 —x9 — ix3

wy = ——=, wo = (A.12)
l2 l2
Applying the residue theorem we get
+o0 2
> 2@ S (o, (k) )
e 072 k=1
= CRe (cot [C(xzy — iz3)] + cot [C(zg — ix3)]) (A.13)

2C' sin (2C'x3)
(cos (2Cx2) — cosh (2Cx3))

with C' = 7 /ls, since we are only interested in the real part. The infinite sum may then be written as

+o0 +o00
Z fa2(z) E/ ( Z 8{;;(293)) dzg + I(x3) < 00 (A.14)

but I(z3) = 0 since

Of(x) . [ Ofan(x)
/ 81’2 d.TUQ —/ 8.%'3 diL'3 (A'15)
Therefore we have
= B 2C sin (2Cx5) B
S faola) = / ( e ng))> das = In (| cos (2C2) — cosh (2Cxs)|)  (A.16)

1=—00

To compute the remaining infinite sums we proceed in a similar way. Note that we can apply the residue

theorem to >1°°__ f11(x) directly since the series is convergent and consist of rational terms. On the other

hand, the sum ZLOSOO f12(x) which accounts for the plastic slip is obviously divergent. Therefore we use its

partial derivatives as for the logarithmic term in order to omit the rigid body shift. Thus we have

Czgsin (2C2)

+o0
Z.:z_:oo (@) = = 3C0) = cosh (2Cw3))" (A.17)
400
Z fi2(x) = —arctan (coth (Cz3) tan (Cx3)), (A.18)
= 2Cz3sinh (2Cx3)
= . Al
l.:z_:oo fa(x) (cos (2Cz3) — cosh (2Cx3)) (4.19)
The closed-form expression of (A.10) therefore reads
. Cz3sin (2Cx2)
PAD _ 3 2 _
(@) = —a (cos (2Cw3) — cosh (2Cx3)) brarctan (coth. (Ca) tan (Ca2)), (A.20)
AP (x) = 20z sinh (2Cz3) + by In (| cos (2Cxg) — cosh (2Cx3)|).

- (cos (2Cz2) — cosh (2Cx3))
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Appendix B. Periodic array of curved dislocations

The previous result can be efficiently used to facilitate the computation of the elastic displacement field of
periodic arrays of curved dislocations. Due to the linearity of the problem we can use the analytic, closed-
form expression (A.20) in order to compute the displacement field of infinite edge dislocations. Subsequently
we superimpose the displacement field of the closed loops A@(™7) for a periodic image (i,7) according to
[2, Appendix A 3.4] which account for the bowed components of the dislocations as shown in Figure B.12.
Note that we only need to compute the contributions from the surface segments and the solid angle as the
inner segments cancel each other out.

Elastic solution:
WS T au

AatY

line direction

Figure B.12: Schematic illustration of the summation scheme for the computation of the elastic displacement field of periodic
arrays of curved dislocations

We further note that the displacement field converges approximately linear in the number of periodic images.
Fortunately this is not an issue since we already capture a great portion of the full solution analytically via
aPAP . Furthermore our test problem contains only one dislocation. If this scheme should be adopted to
larger problems, e.g. to visualize the displacement field in PAD domains containing numerous dislocations,
more efficient summation schemes would have to be developed. However, we mainly aim to use this scheme
to compute the boundary conditions on the atomistic problem for our specific test case in Section 3.
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CADD-3d glossary

2o
2c
2p
core
a2
Strans
P

pa
pe
fpc/dd
pe/p
Pcadd

~ cadd
P

Continuous body

Continuum domain associated with an atomistic domain
Continuum domain

Pad domain

Dislocation core domain

Artificial sharp interface between the atomistic and the continuum domain
Transmission node

Shorthand notation of a problem definition

Atomistic problem

Continuum problem

Material subproblem of P¢

Physical subproblem of P¢

CADD problem

Approximate CADD problem

Atomistic glossary

r, Position of an atom

u, Displacement of {25

f. Force on an atom in {25

ag Lattice constant

re  Cut-off radius of the interatomic potential

Dislocation dynamics glossary

v
Ve

Discrete dislocation line

Discrete dislocation line in a continuum

Detected discrete dislocation line in an atomistic domain

Hybrid discrete dislocation line

Virtual discrete dislocation line

Material point on a discrete dislocation .

Displacement field due to an arbitrarily-shaped closed dislocation in R3
Template displacement field due to an infinite straight dislocation in R?
Displacement field of the corrective boundary value problem

Total core energy

Core energy term which depends only on local properties of the dislocation line
Peach-Koehler force

Force on a dislocation line due to U™

Stress field due to an arbitrarily-shaped closed dislocation in R3

Stress field of the corrective boundary value problem

Burgers vector

Absolute value of the Burgers vector

Character angle of the dislocation line

Isotropic core spreading width

Core energy parameter

Second-order dislocation mobility tensor

Dislocation velocity vector
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Continuum elasticity

x Material point in a continuum
u Displacement
u.  Displacement of £2¢
U Total energy of a mechanical system
o Cauchy stress tensor
T Scalar shear stress
Tpk  Scalar applied shear stress
I Shear modulus
v Poisson’s ratio
General
R Set of real numbers
N  Set of natural numbers
R3  Three-dimensional Euclidean space
f  Force vector
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