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ABSTRACT
Flexure pivot based oscillators can advantageously replace

the hairspring and balance wheel, the time base used in mechan-
ical watches, by drastically reducing friction. However, flexure
pivots have drawbacks including gravity sensitivity and restor-
ing torque nonlinearity. In previous work, we introduced a novel
gravity insensitive flexure pivot (GIFP) to solve the problem of
gravity sensitivty, but no analytical formulation for the restoring
torque nonlinearity was found. In this paper, we use numerical
simulation to find an empirical expression for restoring torque
nonlinearity. We use this expression to find an analytical for-
mula for the rotational stiffness of GIFP. This formula gives an
explicit relationship between restoring torque nonlinearity and
the isochronism of the corresponding harmonic oscillator. The
results also apply to the widely used generalized cross-spring
pivot.

INTRODUCTION
Mechanical watch oscillators

Classical mechanical watches use a harmonic oscillator con-
sisting of a spiral spring attached to a balance wheel as time base.
The balance wheel pivots on jeweled bearings producing signifi-
cant friction. In order to reduce this friction, flexure pivots [1] [2]
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have been introduced into watch movements [3], thereby sup-
pressing the need for lubrication, increasing watch autonomy and
oscillator quality factor. This last quantity is believed to be the
most significant indicator of chronometric performance [4]. In
addition to their rotational bearing function, flexure pivots pro-
vide an elastic restoring torque which can be used as spring for
a harmonic oscillator. In this way, a single monolithically fabri-
cated component can replace the classical balance wheel, spring
and bearing.

However, some issues intrinsic to flexure mechanisms limit
their application to time bases.

Limitation 1. Gravity sensitivity: spring stiffness can be af-
fected by the orientation of gravity load.

Limitation 2. Restoring torque nonlinearity: spring restoring
torque can be a nonlinear function of rotation angle leading to an
isochronism defect.

Limitation 3. Limited stroke: stroke of flexure bearings is
limited by the yield stress of the material. Limited stroke makes
it difficult to maintain and count oscillation using classical watch
escapements.

Limitation 4. Parasitic shift: by construction, the kinematics
of flexure pivots closely approximate rotational motion around
a fixed axis but small translation can occur as angular rotation
increases.
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Flexure pivot examples
We consider two flexure pivots: the well-known General-

ized Cross-Spring Pivot (GCSP, see Fig.1) and the new Gravity-
Insensitive Flexure Pivot (GIFP, see Fig. 2) introduced by the
authors in Ref. [5]. The behavior of these flexure pivots can be
characterized by a geometric parameter δ , the ratio at which the
leaf springs cross [5] [6].

In the case of GCSP, δ = dc/Lc, where Lc is the length of
the leaf springs and dc is the distance between the mobile end
of the springs and the point of intersection of the undeflected
springs, see Fig. 1. To a first approximation, the pivot only al-
lows rotation about an axis through this point of intersection [7].
When δ ≤ 0, the rotation axis passes through the leaf springs, see
Fig. 1(a), this pivot first described by Wittrick [6] is sometimes
called Cross-Spring Pivot in the literature [7] [8] [9] [10]. When
δ > 0, the rotation axis lies outside of the physical spring struc-
ture, see Fig. 1(b), this pivot is sometimes called Remote Center
Compliance Pivot (RCC) [9] or Leaf-type Isosceles-Trapezoidal
Flexural Pivot (LITF) [11] in the literature. The only configura-
tion considered here is when the flexure beams cross at an angle
of 90 degrees.

Figure 2 depicts the GIFP. It consists of a rigid-body (1) at-
tached to the ground (0) by five flexible beams: four bending
beams (2), (3), (4) and (5), and a single torsional beam (6). The
single degree of freedom is rotation around the torsional beam
axis [5]. The geometric parameter is δ = dg/Lg, where Lg is the
length of the bending beams and dg is the distance between the
rotation axis and the mobile end of these beams. Similarly to
GCSP, when δ ≤ 0, the bending beams cross the rotation axis,
see Fig. 2(a), and when δ > 0 the beams do not intersect it, see
Fig. 2(b).

Previous results
We addressed limitations 1 and 3 for GCSP and GIFP in

Ref. [5], where we derived analytical formulas for gravity sensi-
tivity and stroke then validated them using finite element analy-
sis (FEA). We found special values of the geometric parameter
δ which overcome limitations 1 and 3 then showed that for any
value of δ , GIFP stiffness variation due to gravity load affects
time base precision of order 1 second per day, so acceptable in
watchmaking. Limitation 4, parasitic shift of flexure pivot center
of rotation, is a well-studied subject, see Refs. [8] and [10], and
is already addressed by minimizing gravity sensitivity. Indeed,
since gravity sensitivity is caused by the work of gravity load
acting along the parasitic shift of the center of gravity, minimiz-
ing gravity sensitivity also minimizes parasitic shift.

New results
Limitation 2 has not been well described yet and is the fo-

cus of this paper. The analytical formula for restoring torque
nonlinearity derived in Ref. [5] is unsatisfactory since it was not

dc

Lc

Rotation
axis

(a) δ ≤ 0 (Cross-spring pivot)

dcLc

Rotation axis

(b) δ > 0 (Remote center compliance pivot)

FIGURE 1: Two configurations of the generalized cross-spring
pivot.

validated by FEA simulation. Since this expression is crucial for
the design of mechanical time bases, we now use FEA to derive
an empirical expression for the nonlinearity of cross beam pivots.
Additionally, we extend the analysis to pivots whose springs do
not intersect the rotation axis (δ > 0). This is useful for designing
systems having rotation axes outside of their physical structure.

Effect of restoring torque nonlinearity on isochronism
The key to chronometric performance is the isochronism

of its time base stating that oscillation period is independent
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FIGURE 2: Two configurations of the gravity-insensitive flexure
pivot.

of oscillation amplitude, since this frees the measure of time
from variations of maintaining energy [12]. This property was
first formulated by Galileo, who incorrectly stated that it ap-
plies to pendulum, and first applied by Huygens who designed
an isochronous pendulum in 1656. Huygens followed this up
with the invention of the spiral spring and balance wheel in 1675,
which is theoretically isochronous.

The key to isochronism is Hooke’s Law stating that restoring
force is a linear function of displacement, since the frequency of
an oscillator with mass m and spring stiffness k is then given by√

k/m, where the amplitude does not appear (in the case of rota-
tional oscillators, this is

√
k/J, where J is moment of inertia). It

follows that spring nonlinearity leads to an isochronism defect.
The first flexure pivot used as a mechanical watch time base,

a cross-spring pivot oscillator introduced in 2014 [3], uses a spe-
cial geometry which minimizes the effect of gravity on stiff-
ness [13] and a separate mechanism called isochronism corrector
to compensate for its nonlinearity. On the other hand, the GIFP
oscillator can be made essentially isochronous by choosing the
correct value of the design parameter δ where the second order
term of the rotational stiffness is cancelled (k2 = 0 in Eq. (1)) and
gravity sensitivity is of order 10 ppm, see Ref. [5].

For a pivot whose rotational stiffness varies with respect to
angular amplitude, we define relative nonlinearity to be the rel-
ative deviation of the rotational stiffness from the nominal value
defined as the limiting value as rotation angle approaches zero
[5]. To make this explicit, we consider sufficiently small ampli-
tudes of the pivot when stiffness can be expressed as a power
series with even coefficients (due to symmetry) k = k0 + k2θ 2 +
O
(
θ 4
)
. In watchmaking applications, this approximation is ac-

ceptable for amplitudes where the resulting error on frequency
is less than 1 s/day, that is approximately 5 degrees for the most
nonlinear RCC pivot considered (δ = 1) and 10 degrees for the
most nonlinear cross-spring pivot (δ = −0.5). We then define
relative nonlinearity to be

µ =
k2

k0
. (1)

We now derive a formula expressing the effect of restor-
ing torque nonlinearity on oscillator accuracy. In mechanical
horology, this accuracy is usually expressed as daily rate, that
is, the gain or loss of the timekeeper expressed in seconds per
day. More precisely, given an oscillator with nominal amplitude
α0 and nominal angular frequency ω0, the daily rate at amplitude
α with corresponding frequency ω is defined to be

ρ = 86400
ω−ω0

ω0
, (2)

where 86400 is the number of seconds in one day [14].
Using standard techniques of classical mechanics [15,

Eq. 2.3.34] we derive the frequency ω of a non-linear oscillator
at amplitude α with relative nonlinearity µ

ω(α) = ω0(1+
3µ

8
α

2), (3)
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where ω0 =
√

k0/J.
The classical horological definition of isochronism consid-

ers oscillator rate with respect to oscillator amplitude [12]. We
instead use the approach described in Ref. [16], which considers
that oscillator rate varies with respect to oscillator energy E. This
method has the advantage of holding for 2 degree-of-freedom
oscillators whose amplitude is not easy to measure. Using oscil-
lator energy is equivalent to the classical horological definition
since, in that case, energy is proportional to the square of oscil-
lator amplitude. Note that the isochronism defect with respect to
energy is double that of the equivalent isochronism defect with
respect to amplitude since (1+ ε)2 ≈ 1+2ε for small ε .

Using this method, the relative energy variation with respect
to oscillator energy at nominal amplitude E0 expressed in per-
centage is defined by

E% =
100(E−E0)

E0
=

100
(
α2−α2

0
)

α2
0

. (4)

Finally, we define the isochronism defect σ by dividing the daily
rate ρ by the relative energy variation E%. Inserting Eq. (3) into
Eq. (2) we obtain

σ =
ρ

E%
= 864

3
8 µα2

0

1+ 3
8 µα2

0
. (5)

We arrive at a simpler expression using Taylor series expansion
around α2

0 = 0

σ = 324µα
2
0 +O

(
α

4
0
)
. (6)

Isochronism is measured experimentally by computing the slope
of daily rate σ vs relative energy variation expressed in percent-
age E%, as illustrated in Fig. 5.

Finite element analysis
We used nonlinear FEA to find the nonlinear torque-angle

relationship of flexure pivots having different δ values. For each
geometry, 100 incremental displacement values were applied to
the mobile part of the pivot and the reaction torque on the fixed
frame was measured. When neglecting the effect of the torsional
beam of GIFP, the formulas for restoring torque of GIFP and
GCSP are identical (see details below), so we only carried out
the simulations on a numerical model of GCSP. The simulations
were performed using ANSYS R©Workbench, Release 19, with
shell elements for the flexible blades. The mesh used for the
blades consisted of 6 by 100 identical rectangular linear shell el-
ements (shell181). The convergence of this mesh was such that

doubling the number of elements led to variations of the restor-
ing torque of less than 0.025% for the greatest displacement sim-
ulated, so we consider our results to be robust.

The simulations were carried out for values of δ ranging
from −0.5 to 1. Due to symmetry, analysis of pivots with
δ <−0.5 reduces to the results presented here with δ ′ =−δ−1.
The behavior of the pivots for values of δ > 1 is not investi-
gated due to high stiffness, high nonlinearity and short stroke
of these pivots limiting their application. The results obtained
should however also be valid in this range.

We validated the finite element model using an analytical
model for pivot stiffness. As shown in Ref. [5], the nominal stiff-
ness in the absence of gravity of GIFP pivots is

k0 = ka +
16EIg

Lg

(
3δ

2 +3δ +1
)
, (7)

where E and Ig are Young’s modulus and the area moment of
inertia of the bending beams and ka is the torsional stiffness of
the torsional beam. We previously found that the stiffness of the
torsional beam does not play a major role in the restoring torque
nonlinearity of the pivot [5], so we neglected this beam in our
analysis. The resulting normalized nominal stiffness was found
to be

k̄0 = 3δ
2 +3δ +1, (8)

which is is identical to the normalized nominal stiffness of GCSP,
as it corresponds to the normalized nominal stiffness of the cross-
spring pivot in Ref. [5, Eq. 9] when δ ≤ 0 , and to the normalized
stiffness of the RCC pivot in Ref. [9, Eq. 5.6] when δ > 0. Fig-
ure 3 shows a good match between FEA results and analytical
nominal stiffness, validating the finite element model.

RESULTS
The restoring torque nonlinearity is obtained by fitting an

odd cubic polynomial to the torque-angle relationship obtained
by numerical simulations for chosen values of δ . The relative
nonlinearity µ = k2/k0 is extracted from the torque-angle rela-
tionship M(θ) = k0θ +k2θ 3 using Eq. (1). The results are shown
in Fig. 4. A quadratic curve fits the data well with a coefficient of
determination R2 = 0.9999. The resulting empirical expression
for stiffness nonlinearity is

µ =−0.08−1.00δ −1.02δ
2. (9)

Remark: The value δ = 0.088 solves the equation µ = 0 and
cancels the nonlinearity.
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FIGURE 3: Normalized nominal stiffness k̄0 of the GCSP versus
geometric parameter δ .
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FIGURE 4: relative restoring torque nonlinearity µ of GCSP ver-
sus geometric parameter δ .

The analytical solution derived by Haringx in Ref. [7,
Eq. 37] for the nonlinear torque-angle relationship of GCSP with
δ = −0.5 is plotted on Fig. 4 and matches the FEA results.
Note that Haringx’s analytical model is limited to the generalized
cross-spring pivot with δ = −0.5 since he solved the nonlinear
equations using the inherent symmetry which holds only for this
configuration.

Since the quadratic curve for the relative nonlinearity fits the
data well, we can use it to give a new formula for the stiffness of

our pivots. Substituting Eq. (9) into Ref. [5, Eq. 11] which has
been validated for describing the effect of normalized external
load N̄ on the stiffness of GIFP, we obtain the following new
formula for the rotational stiffness of GIFP:

kg =
16EIg

Lg

(
3δ

2 +3δ +1
) [

1−
(
0.08+1.00δ +1.02δ

2)
θ

2]
−

EIg

12600Lg

(
9δ

2 +9δ +11
)

N̄2 + ka +O
(
θ

4)
+O

(
θ

2N̄2)+O
(
N̄4) .

(10)
Similarly, using Ref. [5, Eq. 8], we obtain the following new
formula for the rotational stiffness of GCSP:

kc =
8EIc

Lc

(
3δ

2 +3δ +1
) [

1−
(
0.08+1.00δ +1.02δ

2)
θ

2]
+

2EIc

15Lc

(
9δ

2 +9δ +1
)

N̄ (sinϕ + cosϕ)

− EIc

6300Lc

(
9δ

2 +9δ +11
)

N̄2 +O
(
θ

2N̄
)
+O

(
θ

4)+O
(
N̄3)

,

(11)
where E, Ic are Young’s modulus and the area moment of

inertia of the leaf springs and ϕ is the angle between a normalized
external load N̄ and the mid-plane of one of the leaf springs in
undeflected position.

Figure 5 shows isochronism curves for five chosen values
of δ . The isochronism defect is obtained from the slope of the
linear curves of daily rate σ vs relative energy variation E%.
We can see that the special value δ = 0.088, which cancels the
restoring torque nonlinearity in Eq. (9), shows no isochronism
defect. Note that the sign of the nonlinearity defines the sign of
the isochronism defect.

CONCLUSION AND PERSPECTIVES
In this paper, we derived the stiffness nonlinearity of the

generalized cross-spring pivot and the gravity-insensitive flexure
pivot.

Mastering the stiffness nonlinearity of a flexure element is a
powerful tool, which can produce constant stiffness by minimiz-
ing nonlinearity. It can also provide a method for choosing a non-
linearity which can compensate some other unwanted effect. For
example, it is known that mechanical escapements introduces an
isochronism defect. This defect could be compensated by choos-
ing an oscillator with an isochronism defect of same magnitude
but opposite sign, as is the case for pendulum clocks where the
intrinsic isochronism defect of the pendulum can be compen-
sated by the escapement [17]. To this end, we showed that we
could change the sign and magnitude of the isochronism defect
by varying the point at which the springs cross, offering the pos-
sibility of cancelling a wide range of defects.
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