Journal of Scientific Computing (2019) 78:565-581
https://doi.org/10.1007/510915-018-0778-7

@ CrossMark

A Minimally Intrusive Low-Memory Approach to Resilience
for Existing Transient Solvers

Chris D. Cantwell'® - Allan S. Nielsen?2

Received: 18 November 2017 / Revised: 24 May 2018 / Accepted: 25 June 2018 / Published online: 12 July 2018
© The Author(s) 2018

Abstract

We propose a novel, minimally intrusive approach to adding fault tolerance to existing
complex scientific simulation codes, used for addressing a broad range of time-dependent
problems on the next generation of supercomputers. Exascale systems have the potential
to allow much larger, more accurate and scale-resolving simulations of transient processes
than can be performed on current petascale systems. However, with a much larger number
of components, exascale computers are expected to suffer a node failure every few min-
utes. Many existing parallel simulation codes are not tolerant of these failures and existing
resilience methodologies would necessitate major modifications or redesign of the appli-
cation. Our approach combines the proposed user-level failure mitigation extensions to the
Message-Passing Interface (MPI), with the concepts of message-logging and remote in-
memory checkpointing, to demonstrate how to add scalable resilience to transient solvers.
Logging MPI communication reduces the storage requirement of static data, such as finite
element operators, and allows a spare MPI process to rebuild these data structures inde-
pendently of other ranks. Remote in-memory checkpointing avoids disk I/O contention on
large parallel filesystems. A prototype implementation is applied to Nektar++, a scalable,
production-ready transient simulation framework. Forward-path and recovery-path perfor-
mance of the resilience algorithm is analysed through experiments using the solver for the
incompressible Navier—Stokes equations, and strong scaling of the approach is observed.

Keywords Exascale - Fault tolerance - Message-logging - MPI - Transient solvers - Parallel
computing

ExaFLOW Project: EU Horizon 2020 Grant Agreement Number 671571..

B Chris D. Cantwell
c.cantwell @imperial.ac.uk

Allan S. Nielsen
allan.nielsen@epfl.ch

Imperial College London, London, UK

Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-018-0778-7&domain=pdf
http://orcid.org/0000-0002-2448-3540

566 Journal of Scientific Computing (2019) 78:565-581

1 Introduction

One of the drivers for exascale computing is the requirement to solve tightly-coupled com-
putational problems of unprecedented scale in order to gain new and improved insight into
complex physical phenomena. This need spans scientific domains such as industrial fluid
dynamics, climate modelling, energy and personalised medicine. Models in these applica-
tion areas are often mathematically formulated in terms of time-dependent partial differential
equations, and their computational implementations utilise domain decomposition techniques
and message passing paradigms for communication in order to run on massively parallel
distributed computing systems. A large number of, often highly-complex, production codes
already exist to numerically solve these problems. Such simulations, by their transient nature,
are frequently long-running, executing for several days or weeks. Exascale systems, when
they arrive, have the potential to allow much larger, more accurate and scale-resolving sim-
ulations to be performed, the results of which will have significant scientific and societal
impact. However, there are several major hurdles associated with practically using an exas-
cale supercomputer, which need to be overcome if codes are to scale efficiently on very large
numbers of processing cores so that such simulations remain cost-effective.

Algorithm and software resilience is now one of the greatest concerns in striving towards
exascale and interruption, due to component failure, is now considered a major barrier to
effectively using an exascale system with current numerical codes [9,28]. Both hardware
and software errors, such as component failures or operating system crashes, may interrupt
simulations or lead to non-deterministic results [27]. This is further exacerbated by the
trend towards heterogeneous computing where nodes are composed of multiple processing
components and additional system-level software layers. Failures typically necessitate a
restart of the computation and results in wasted time, energy and resources. Even with the
use of high-quality hardware, the number of components necessary to reach this level of
throughput leads to an overall system failure rate of once every few hours.

The need for resilience is already evident in the current generation of petascale super-
computers with some recent systems having a mean-time-between-interrupts (MTBI) of just
a few hours. For example, the CPU-only portion of the Cray hybrid Blue Waters system
(22,640 nodes, 5.66 petaflops) is reported to have a MTBI of 8.6h [13], while the MTBI
of 8192 nodes of the Tianhe-2 supercomputer (equivalent to 17.33 PF) is just 2h [10]. In
contrast, the Cray XK6/XK?7 (Titan) at Oak Ridge National Laboratory (10-20/27 petaflops)
achieves a MTBI of 132/173h [2]. The anticipated failure rate of an exascale machine is
likely to be higher than present systems [8,9,23,28] and therefore application resilience is
critical in maintaining the usefulness of any future exascale system.

Minimising data movement at all levels within a system is an increasingly important
consideration. Exascale machines are likely to be characterised by high flop-rates, high-
parallelism and high costs to moving data within or between nodes (in terms of performance
and energy). Memory will also be increasingly hierarchical, incorporating newer technologies
such as NVRAM, but with limited memory close to the CPU. This consequently constrains
the nature of resilience mechanisms which can be employed.

A number of techniques already exist to improve the resilience of application codes in
the event of system degradation or failure, including checkpoint/restart, redundant com-
puting and application-based resilience. These methods can be classified as either forward
recovery or backward recovery. In the former, the algorithm continues and corrects errors
introduced by failures. Examples of this include redundant computing or some algorithm-
specific approaches. Forward-correcting algorithms exist for some sub-components of the

@ Springer

Journal of Scientific Computing (2019) 78:565-581 567

transient solvers considered, such as conjugate gradient solvers [1], but these approaches do
not typically provide a comprehensive solution in the case of an error occurring outside of
these components. Furthermore, they require a significant intrusion into the application code.
In contrast, backward-recovery rolls back to the last previously recorded globally consistent
state and repeats calculations. A check-point is a snapshot of the application state at a point
during an application’s execution. Coordinated checkpointing to stable storage is the most
common backward-recovery technique employed in current production transient simulation
codes. A globally consistent system state is written to disk periodically, allowing the appli-
cation to be restarted and continue from the saved state in the event of a failure. This can be
achieved at an application level through writing sufficient state data to disk to allow restart,
or more transparently at an operating system level by directly dumping memory pages. The
second approach, while simple, is typically more costly and many finite element codes, for
example, write only the solution state to disk on the basis that the remaining state can be
reconstructed easily when the simulation is restarted. Even in this case, the volume of data
and resulting I/O contention means that highly parallel codes on current petascale systems
might spend more than 25% of their execution time performing check-pointing [27]. Dedi-
cated nodes have been employed for non-blocking check-pointing to minimise the effect of
this bottleneck and allow the computation to continue [26].

In-memory checkpoint-restart records a snapshot of the application memory and allows
recovery of the simulation in the event of an application fault or detected but unrecoverable
error [25,29]. It alleviates the disk I/O contention during normal execution by storing check-
points in volatile memory, potentially only writing out to stable storage in the event an
error occurs. Remote in-memory checkpoint-restart further allows recovery in the event
of a complete node failure. For example, such an approach has been demonstrated with a
molecular dynamics code on a large-scale supercomputer in which checkpoints were stored
both locally and on a remote node, and showed over two orders of magnitude decrease in
checkpoint time and significant reduction in recovery time [31]. Cross-node resilience can
also be provided through algorithm-specific erasure codes and check-sums, to reduce the
storage overhead and these have recently been applied in the case of linear solvers [20,
32]. Finally, multi-level check-pointing attempts to balance the performance and resilience
capabilities of the above techniques [12,14]

Application-based resilience avoids the cost of restarting a simulation by detecting fail-
ures and recovering failed processes. For message-passing interface (MPI) programs, this
may involve shrinking existing MPI communicators, or invoking a spare process to take
over the failed process. The latter is preferred in the context of domain decomposition
methods to avoid the expensive redistribution of work necessary to maintain load balanc-
ing. A number of proposals and prototype implementations have already been reported.
User-Level Failure Mitigation (ULFM) [3,4] is a proposed extension to the MPI 4.0 stan-
dard which adds fault tolerance semantics. ULFM provides three key additions to the MPI
API. The MPIX_Comm_revoke method invalidates a communicator and allows a pro-
cess to notify other processes that a failure has occurred, for example to initiate recovery.
The MPIX_Comm_shrink method then reconstructs a revoked communicator contain-
ing failed processes into a working communicator with those failed processes omitted.
Finally, MPIX_Comm_agree implements an agreement algorithm, performing a logical
AND operation on the boolean parameter across processes; this succeeds even if there are
failed processes.

Other fault tolerance efforts include Reinit, which aims to improve on ULFM for the case
of bulk-synchronous codes to allow global backward non-shrinking recovery [22]. How-
ever, most of this capability has since been incorporated into the latest ULFM specification.

@ Springer

568 Journal of Scientific Computing (2019) 78:565-581

FENIX [17,18] is a library which provides fault tolerance without application shutdown and
is built upon the ULFM capabilities. ACR implements Automatic Checkpoint/Restart using
replication of processes in order to handle both soft and hard errors. FA-MPI proposes non-
blocking transactional operations as an extension to the MPI standard to provide scalable
failure detection, mitigation and recovery [19]. Finally, FT-MPI was an earlier precursor to
ULFM for adding fault tolerance to the MPI standard [16].

Existing approaches to incorporating resilience in scientific codes involve substantial mod-
ifications to the application code in order to add protection mechanisms to all the necessary
data structures and, in some cases, may require a complete redesign. Many of the demon-
strators of these approaches are stencil applications, written specifically for illustrating the
resilience algorithm and are not necessarily representative of production codes. In this paper,
we instead outline a novel low-intrusion application-based resilience approach, building on
ULFM, specifically for tightly-coupled transient solvers. We illustrate our strategy through
a prototype implementation in Nektar++, a production-ready high-order spectral/hp element
framework for the solution of a wide range of partial differential equations [5]. Our approach
meets the following objectives:

— Necessitate minimal application code intervention or code redesign to allow resilience
to be easily added to existing codes;

Allow the simulation to continue in the event of one or more concurrent hard failures
with limited interruption to surviving processes;

— Incur minimal forward-path overhead on execution performance to effect resilience;

— Ensure strong scalability of the resilience algorithm on massively parallel systems.

2 Algorithm and Implementation

We are particularly interested in exploiting the properties of algorithms used for the solution
of time-dependent initial value problems. Such problems involve the evolution of one or
more solution variables under the action of a (time-dependent) partial differential equation
beginning from some initial state. Without the addition of resilience, the failure of a single
MPI process would typically lead to the termination of the entire simulation, requiring a
complete restart and backward-recovery from the last checkpoint.

The resilience approach we describe here is independent of the particular numerical dis-
cretisation used (finite difference, element, volume, etc), time-integration scheme and the
specific time-dependent PDE to be solved. In general, the implementation of PDE solvers
can be broken down into two distinct phases. The first is a set-up phase in which the neces-
sary discrete operators or stencils are constructed. These are typically in the form of matrices
which remain fixed throughout the simulation. The cumulative storage of such operators is
often large, compared to solution vectors, and their construction requires global communi-
cation in order to associate neighbouring degrees of freedom across partitions. The second
phase is the time-advancement of the initial conditions to the final state. The value of the solu-
tion variables change during time integration but the discrete operators do not. An exception
might be if adaptivity of the computational discretisation is employed, which is discussed
later. The data generated during the first phase will be referred to as static data, while the
time-evolving data in the second phase will be referred to as dynamic data.

In the event of a process failure (e.g. due to a hardware fault) we would like to avoid the
complete restart of the simulation on all processes, avoid checkpointing to disk and instead

@ Springer

Journal of Scientific Computing (2019) 78:565-581 569

substitute the failed process with a spare process which recovers from data provided by a
surviving process in order to continue the calculation.

2.1 Initialisation of Spare Processes

To leverage the capabilities of ULFM, we provide a custom error handler on all communica-
tors, rather than allowing MPI to automatically defer to calling MPI_Abort when a failure
occurs. Execution of the application proceeds as normal but with a number of additional
ranks allocated. The set of all processes are partitioned into worker and spare ranks immedi-
ately after MPI is initialised using MPI_Comm_split. This creates a sub-communicator in
which the worker processes participate. Spare processes are assigned to a null communicator
and wait until needed. They should proceed only on two events: a failure occurring, or; the
application terminating normally in which case MPT_Finalise must be called. To achieve
this on spare processes we call MPT_Comm_agree with a value of true immediately after
MPI_TInit.On workerthreads, the same call is made immediately priortoMPI_Finalise
with a value of frue or, in the event of an error being detected, from the error handler with a
value of false. Therefore, if the resulting conjugation evaluates to true, the application code
must have completed successfully. If it evaluates to false, this implies a process has failed,
identifying that recovery is required.

2.2 State Protection

In order to enable recovery on a replacement MPI process, the data structures within the
code must be protected in a way which allows their reconstruction on a spare process. This is
traditionally achieved in transient codes by check-pointing the dynamic data to disk. Static
data is not stored as this is regenerated when the simulation is restarted. Checkpoints must be
written out periodically and a balance sought between anticipated failure rate and checkpoint
frequency [11]. However, disk checkpointing is not scalable and will be infeasible for the
purpose of resilience at exascale.

State protection is depicted diagrammatically in Fig. 1. In our approach, rather than writing
to disk, we opt for remote in-memory check-pointing. Data on each process is backed up
to a partner process which requires only pairwise communication and is denoted by green
blocks in Fig. 1. This "buddy’ process is chosen to balance resilience and performance and
is typically on an adjacent node. Depending on network topology and cluster configuration,
a more distant node may improve resilience to some less common failures, such as power
distribution faults [14]. However, such optimisations are beyond the scope of this study.

To perform on-the-fly independent recovery on a spare node, we will need both the static
and dynamic components of the data. However, depending on the simulation code design
and particularly for object-oriented codes, the static data may be scattered throughout the
code requiring extensive code modification or redesign to enable backup and restoration of
these data structures. We are initially faced with two challenges: how do we backup the static
data efficiently; and, how do we do so with minimal code intervention? We can address both
concerns using the concept of message-logging during the initialisation phase of the solver.
We do not store the initialised static data structures themselves, but rather the outcome of
any MPI communications performed by the application during the static phase, indicated
by Record Comm in Fig. 1. This can be achieved by intercepting calls to the MPI API and
logging the result, if applicable. This provides two key advantages: the volume of data is
anticipated to be smaller than the fully initialised data structures whose generation invoked

@ Springer

570 Journal of Scientific Computing (2019) 78:565-581

fo f oo teo
Proc A Application |Static init ‘ Step ! |Step
Resilience |@ Record Comm
rank i MP! | | . N
Static | Dynamic]|:
backup| : : ; backup [:
Proc B application Tstatic init | Step | .| Step
Resilience |@ Record Comm v "l
rank j MP! i | i: BB

Spare Application
Resilience
rank N —1 MPI || Wait

Fig. 1 Diagrammatic representation of the protection algorithm. Initialisation of solver, showing three
processes—two active and one spare—with ranks 7, j, and N — 1, respectively. Rank i communicates static
recovery data to rank j. After a number of steps, at time 7¢, a remote in-memory checkpoint occurs. The
spare rank, N remains idle throughout. Red MPI regions denote collective communication, while green regions
denote pairwise communication (Color figure online)

the communication, since exchanges occur along partition boundaries rather than within the
partition volume, and; very little modification is required to the existing application code.
To complete this aspect, we must annotate the code (through function calls) to mark the
beginning and end of the initialisation phase.

Dynamic data checkpointing is performed at regular intervals after the end of the initiali-
sation phase. These data typically consist of the solution vectors at the time of checkpointing
only and are relatively small in size compared to static data. These are protected through
duplication to the memory of a partner node. Further optimisation or compression of this
data is not considered within the scope of this study.

2.3 MPI Communicator Recovery

ULFM allows for several recovery models, namely, shrink, spare and respawn. Shrinking
involves reducing the number of processes participating in a simulation, thereby necessitating
a redistribution of the work from failed processes. While this can be efficient for some types
of problems (e.g. molecular dynamics codes), it is less efficient, for example, in finite element
codes utilising domain decomposition due to the reconstruction of operators and mappings.
Respawning does not align with the current use of queuing systems with fixed resource
allocations, used on most HPC clusters. We therefore pursue the spare invocation approach.

The first task is to modify the behaviour of the MPI routines in the event of a failure. We
specify our own error handler function to be called by MPI in the event that any process
detects another process has failed through any communicator. The primary roles of this
handler are: to revoke the communicator, thereby ensuring all other processes become aware
of the failure, and; to throw an exception which propagates up the call tree to a suitable point

@ Springer

Journal of Scientific Computing (2019) 78:565-581 571

in the application code in which backward-recovery can be managed. For transient simulation
codes, this is typically the outer time-integration loop.

The second task is to enrol spare processes to replace those which have failed and to rebuild
all communicators used in the application code. A call to MPTI_Comm_agree unlocks the
spare processes (see above) so they can participate in the enrolling process. The set of all
processes is then shrunk to omit those which have failed, MPI group operations are used
to determine the failed ranks, and spare processes are reassigned the ranks of the failed
processes using MPI_Group_translate_ranks. A complete set of worker processes
is then selected using MPI_Comm_split and any other sub-communicators are similarly
reconstructed.

2.4 State Recovery

The application must now achieve a globally consistent state on all processes. Surviving pro-
cesses simply rollback their dynamic data to the last in-memory checkpoint. Spare processes
must recover both the static and dynamic data. This aspect of the algorithm is shown in Fig. 2.

Recall that spare processes wait at the beginning of execution, shortly after the initialisation
of MPL, until a failure occurs or the application terminates normally. Recovery of the static
data on an initialising spare process then proceeds as follows. The MPI message log is first
retrieved from the state backup, located on the surviving “buddy” process. The application
code then proceeds with the initialisation phase as normal. When communication operations
are performed, they are instead intercepted and the result of the call is returned directly
from the message log, rather than invoking calls to the MPI library itself. Surviving worker
processes are at a different point in the code execution and deadlock would occur if collective
communication was attempted. This strategy allows the recovering process to initialise the

Failure

tnfl : f Roll-forward tqk te,+1

Proc A Application .. Ste Static init \ | Step I
Resilience P> Reply Comm |
Restore

Proc B Application | Step lStep ‘ \ RoIIback| I Step i
Resilience | Enrol\

rank j mpl | u\| | (wait | B

Failure Detected

Spare Application v
Resilience | Enrol

rank N — 1 MPI | Wait U

Fig.2 Diagrammatic representation of the recovery algorithm. Process A with rank 7 fails and, after enrolment
and rank translation during recovery, the spare process is assigned rank i and receives recovery data from rank
Jj- Static and dynamic data is subsequently recovered to the last checkpoint at time 7¢, without requiring
any further communication with surviving ranks. The simulation then continues. Red MPI regions denote
collective communication, while green regions denote pairwise communication (Color figure online)

@ Springer

572 Journal of Scientific Computing (2019) 78:565-581

static data structures completely independently of all other surviving processes with very
minimal code changes.

Upon commencing time-integration, the dynamic data is rolled forward from the dynamic
data checkpoint, resulting in a working replacement and an application which is in a globally
consistent state, whereby execution can continue.

2.5 Implementation

A prototype implementation of the algorithm has been developed in Nektar++. This package
comprises of a set of libraries, written in C++, which implement the spectral/hp element
method in an efficient manner which aligns with their mathematical formulation and current
computer architectures [6,7,24,30], along with a collection of physics solvers which build
upon these libraries. These transient solvers can tackle a wide range of problems involving
incompressible and compressible fluid dynamics, combustion, oceanic models using shallow
water equations and biomedical problems in arterial flow and cardiac electrophysiology.
Many of these applications require high-resolution scale-resolving simulations which are
ideally targeted towards massively parallel distributed clusters.

Nektar++ is heavily object-oriented and much of the static data is encapsulated within
classes and other rich data structures. The static data generated by Nektar++ includes ele-
mental high-order basis functions, integration weights, geometric information, per-element
matrices representing the necessary finite element operators and the global data structures
required for applying the conjugate gradient algorithm to the complete problem. In particular,
these global structures include an assembly operator for each solution field, represented as a
surjective map, which associates each local degree of freedom to a corresponding degree of
freedom in the global system. The construction of each of these maps requires global collec-
tive communication in the form of a gather—scatter operation, implemented by an external
library. Other collective communication includes mesh partitioning, construction of finite
element operators and preconditioners and ensuring consistent enforcement of boundary
conditions in parallel, as well as auxiliary functions such as collecting time-series data from
specific coordinates in the domain.

One advantage of the design of Nektar++ is that all direct MPI operations are managed
through a single C++ class, which allowed rapid prototyping of the resilience algorithms.
Code was added to perform the message logging, message replay and exchange of static- and
dynamic-data remote in-memory checkpoints to effect the resilience capabilities described
above. Command-line parameters enable the user to specify the number of spare processes, S
to be reserved dynamically at run-time from the total of N ranks requested and the rank offset
k to be used for storing state preservation data. The last S ranks are, by default, assigned to be
spares while the first W = N — S ranks are allocated as workers. Each worker rank r sends
state preservation data to rank (r +k) mod W, where 0 < k < W. The value of k can be set
to the number of ranks on a node or chassis, to improve the resilience based on the specific
cluster configuration. Rank r also receives state preservation data from rank (r + W — k)
mod W.

Performance is analysed using the solver for the incompressible Navier—Stokes equations,
given by

Ju

1
u-Vyu=-V —V2u,
or TV P e

V-u=0.

@ Springer

Journal of Scientific Computing (2019) 78:565-581 573

In summary, these equations are solved using a velocity-correction high-order splitting
scheme in which the pressure is first solved as a Poisson problem and the velocity then
adjusted to enforce the incompressibility constraint through a series of Helmholtz problems
[21]. The solutions to the pressure and velocity systems are obtained using the preconditioned
conjugate gradient method. Full details of the implementation are described elsewhere [5].

3 Performance Analysis

To demonstrate the efficacy of our approach we measure performance characteristics of the
resilience algorithm on a UK Tier-2 High-Performance Computing system. We first outline
our test problem and environment and then discuss the memory usage and performance
considerations of our implementation.

3.1 Test Problem and Environment

The specific test problem we consider is laminar flow in a rectangular duct of height D,
streamwise length 20D and of width 10D. This is an intentionally trivial problem designed
to demonstrate the effectiveness and scalability of the resilience algorithm under a relatively
non-intensive computational load. A plug inlet velocity profile is prescribed with a Reynolds
number of 10, based on the duct height and inlet velocity. The domain is discretised into regu-
lar hexahedral spectral/hp elements of size 0.4 D x 0.4 D x 0.04 D in the streamwise, spanwise
and cross-stream directions, respectively. The computational mesh consists of 31,249 hexa-
hedral elements, each using a polynomial order of 3 in each coordinate direction, giving 64
local modes per element. Accounting for three velocity components and a pressure field, this
gives a total of 3.37M degrees of freedom. A low-energy block preconditioner is applied
to the velocity and pressure systems to accelerate the convergence of the conjugate gradient
solver. Disk checkpointing in Nektar++ is achieved by writing a compressed binary file per
process to the parallel filesystem.

The test system used is an SGI ICE XA system with 10,080 cores. Each of the 280 nodes is
equipped with dual 2.1 Ghz, 18-core Intel Xeon processors with hyper-threading enabled and
256 GB RAM. All nodes are connected using a single Infiniband fabric and share a common
Lustre parallel filesystem. Tests are performed across a range of working process counts,
spanning two nodes, up to sixty-four nodes, or N Ppax = 2304 processes. One process was
assigned per hardware core (up to 36 per node) and MPI bind-to-core was used to reduce the
effects of inter-socket memory bandwidth contention and lower-level cache thrashing. For
all fault tolerance tests, an additional node was allocated to ensure the number of working
processes remained the same and the offset value was setat k = 36 to ensure state preservation
data was stored on a different node.

In the results presented below timings are given as mean = standard deviations, measured
across all processes for five independent simulations. State protection size measurements are
given as mean =+ standard deviation across all processes for one simulation, since memory
usage is identical for repeated simulations.

3.2 Memory Overhead

Figure 3a shows a breakdown of per-process memory usage for the major components of the
fault-tolerant simulation code. Static data refers primarily to the matrix operators and element

@ Springer

574 Journal of Scientific Computing (2019) 78:565-581

10% —— ———g
Dynamic backup —e—]
Static backup - -e -
o 403 I Static data ----e---
s 10°¢ Other data —o—- 7
< F LARREEI]
N e . _ B N
% 2| Tl i ° S8
o 107 F Tt e o— E
> g o—-—-—0—" —e—”""‘o\
= 10" T E
=
S 0
g 10 £ E
)
>
<
10" E]
10—2 I N . . N |
100 1000
60
50 1
>
8 a0t i
%]
©
2 30 F -
a
2
3 20 1
m
10 1
0 P | L L L L P |
100 1000

Number of Processes

Fig. 3 a Per-process memory usage as a function of number of processes. b Percentage size of static data
backup versus full backup

mappings which are constructed during initialisation of the solver and remain unchanged
throughout the time-integration phase. This is the most significant component of the solver
memory usage, particularly for lower core counts. At higher core counts, this quantity begins
to saturate due to the emerging dominance of data structures whose size is independent of
the sub-problem size being tackled by that process.

The static backup component is the memory occupied (and subsequently transferred over
the network) in providing resilience for the static data on a partner process. Specifically, this
comprises the message logs from all MPI communications which were undertaken during
the initialisation phase of the originating process. This decreases steadily with process count
up to the limit of the number of available cores. In particular, for higher core counts, this
quantity continues decreasing. The relative magnitude of the static backup size to the original

@ Springer

Journal of Scientific Computing (2019) 78:565-581 575

10?2 ——— ‘ —— T ‘ —
F Backup —e—
r Disk Checkpoint - - -
10" b AA Time per time-step ---4---
d 7 A .
10° | 4
i 3]
qé10'1§ - __ /,,70"/—/_0 E
= F g5 ----8C 3
10-2 7 Q\e\e\s\e‘w 7
10° £
10-4 I N Ll
100 1000

Number of Processes

Fig. 4 Remote in-memory dynamic data checkpointing time for test problem (solid line), compared with
disk checkpointing (dashed line). For comparison the execution time per time-step, without any form of
checkpointing, is shown (dotted line)

static data size is presented in Fig. 3b as a percentage. The difference in storage requirements
drops considerably at higher core-counts and is &~ 6% at N P pax.

The dynamic backup component represents the memory occupied by the copy of the
solution vectors which are being advanced in time; therefore this data changes at each time-
step. Since this is only vector data, the size is over two orders of magnitude smaller than
the size of the static backup. The cost of storing the process’s dynamic data and the backup
of a partner process’s dynamic data backup is approximately equal since, in the current
implementation, no compression or erasure codes are applied to the checkpointing process
and the work is equally distributed.

Finally, the other data component relates to the memory occupied by code and MPI ini-
tialisation. The latter increases with increasing core counts and becomes one of the dominant
memory costs for the largest core counts.

3.3 Checkpointing Performance

Remote in-memory checkpoint time for the dynamic data was measured on all processes. Fig-
ure 4 (solid line) shows strong scaling results of measured in-memory checkpoint time, as a
function of the number of processes. Checkpoint time monotonically decreases with increas-
ing parallelism, due to reduced data volume per process, with little sign of saturation up to the
limit of the available cores. In contrast, disk checkpointing (dashed line in Fig. 4) saturates
around 288 cores and increases for larger core counts. Above 2k cores, disk-checkpoint time
is approximately two orders of magnitude greater than remote in-memory check-pointing.
As a point of comparison, we also show the execution time per time-step, measured as the
wall-time of advancing the PDE by one time-step without any form of checkpointing.

@ Springer

576 Journal of Scientific Computing (2019) 78:565-581

102 —
10 |
O
[0)
£
'_
100 | |
Reconstruction ——
External Library - -e -
Startup (FT) -------
Startup (non-FT) ----v---
107 S LA ‘

100 1000
Number of Processes

Fig.5 Recovery time as a function of number of processes, broken down into the time to repair communication
and regenerate static data and, separately, the time taken to reinitialise the external gather—scatter library. Time
for initial simulation start-up is shown for comparison, both for the original and fault-tolerant versions of the
code

3.4 Recovery Performance

Recovery time describes the time from the detection of a process failure to the operational
recovery of the system, at the point where the simulation can continue. This duration is
typically a function of a number of variables, including problem size per process, number
of cores and frequency of check-pointing. To simplify analysis of the resilience mechanism,
the latter has been eliminated.

Figure 5 shows the time taken to recover following a process failure, as a function of the
number of cores. Reconstruction (solid line) includes the communication of the state preser-
vation data, reinitialisation of MPI communicators and execution of the initialisation phase
of the application code to regenerate the static data. During initialisation, MPI operations
utilise the result from the message log rather than performing actual communication and
therefore the process recovers completely independently. This part of the algorithm scales
well and takes less than half a second at N Ppyx. Since MPI communication during the ini-
tialisation of the gather—scatter external library objects could not be logged by the prototype
implementation in Nektar++, these are reinitialised exactly as for the normal start-up and
shown separately (dashed line) in Fig. 5. Until such communication can be included in the
message log, this is the dominant cost of recovery at larger core counts.

As a point of reference, we also show in Fig. 5 the start-up time for the simulation using
both the fault-tolerant implementation and the original unmodified version. The overhead
of message-logging and the exchange of state preservation data can be seen to have limited
impact on the start-up performance.

3.5 Concurrent Failures

It is often standard practice, particularly for those codes which do not support hybrid par-
allelism of the form MPI+X, to execute multiple MPI ranks on a single node. This leads

@ Springer

Journal of Scientific Computing (2019) 78:565-581 577

12

1+

Time (s)

Communication —e—
Recoqstruction Se-

4 L !
0 5 10 15 20
Number of Concurrent Failures

Fig. 6 Restore time as a function of number of processes, broken down into communication and static data
regeneration for multiple concurrent failures

to a situation in which a fault of the node would cause multiple ranks to fail concurrently.
This scenario is supported by the ULFM paradigm and multiple spares will be enrolled to
replace failed ranks. Figure 6 shows experiments performed to examine the performance of
recovery in the event of multiple concurrent failures. All failed ranks are co-located on the
same node. Communication costs increase slightly with the number of failed ranks due to the
increasing volume of recovery data being exchanged. Variability due to network contention
is more evident with the linear scale. While the performance of static data reconstruction is
mostly independent of the number of failures, there is a slight increase in the time taken to
complete restoration with increasing numbers of failures due to contention within the node.

4 Discussion

This study outlines a minimally intrusive, efficient and scalable approach to adding resilience
to existing time-dependent solvers, in which process data can be partitioned into static and
dynamic components. Our approach is demonstrated within the Nektar++ spectral/hp ele-
ment framework. In contrast to the more general design of existing approaches, we tailor our
approach specifically to target time-dependent solvers, thereby checkpointing only dynam-
ically evolving data and using message-logging [15] to allow the static data to be locally
reconstructed. This moves significantly less data than a direct recovery of finite element oper-
ators, and with minimal disruption to surviving processes. We have demonstrated promising
performance characteristics of this strategy for use with massively parallel simulations, where
fault tolerance will become an essential ingredient of numerical algorithms and software.
There are several key advantages to the approach described, which are discussed below.
Static data are protected through retention of the outcome of MPI communication
exchanges during the initialisation phase. This brings two benefits. The first is that the volume
of recovery data is typically less than that of the original data, reducing storage requirements
and consequently improving intra-node and inter-node performance by reducing data move-
ment costs. The reason for this in part stems from the fact that communication typically occurs
on the boundary of partitions for which the data is of one dimension lower than the volumetric

@ Springer

578 Journal of Scientific Computing (2019) 78:565-581

data. Consequently, for three-dimensional problems, the static data grows as O(n>) while
the boundary data only grows as O(n?). This trend can be clearly observed in Fig. 3a.

The second advantage is that existing codes require very little modification in order to
augment them with this resilience capability. Since MPI communication occurs through the
MPI API, these calls can be intercepted to inject the resilience layer—logging outputs during
the initial execution, and replying those outputs during any subsequent recovery. This is a
significant advantage for large object-oriented codes, such as Nektar++, in which raw data
are often encapsulated within layers of class hierarchies and other language semantics, and
are not easily accessible from a single central location without substantial rewriting of the
application.

Performance and efficiency of the algorithm is critical to minimise the impact of the
resilience layer on the normal execution of the code. All state preservation operations which
occur during the normal error-free state are pairwise and do not involve the use of any collec-
tive communications. This allows the algorithm to scale with the volume of data per process,
independent of the number of processes. Coordinated communication is only required during
the restoration process in order for communicators to be repaired consistently and is inde-
pendent of the volume of data per process. Following restoration of the communicators, the
spare process receives all the preserved state data in a single pairwise communication and
recovers independently of all other processes. These aspects of the algorithm therefore scale
with the number of processes and data per process respectively, but independent of the total
number of degrees of freedom.

The implementation was assessed through a medium-sized test problem of viscous flow in
a square duct. For the largest runs considered up to N Ppax, this corresponded to an average
of just 13 elements per process, or 1430 degrees of freedom. At this level of granularity, the
parallel efficiency of the simulation itself drops considerably. Dynamic check-pointing is the
most critical performance consideration as it occurs frequently throughout the simulation. It
was shown to strong-scale up to N Ppax and, as expected, compares favourably against tradi-
tional parallel file-system check-pointing (Fig. 4). In contrast, the static data backup occurs
only once, and static data restoration occurs only in the event of a failure. Reconstruction of
the static data was also shown to scale well up to N Ppax (Fig. 5).

4.1 Topology-Aware Algorithms

The prototype implementation described here places the partner process at a rank-offset
specified at runtime. Assuming ranks are allocated sequentially by core and then by node,
this allows the user to ensure data is backed up to a node which is different to the one on
which the original process resides. This also allows for increasing resilience when there are
higher-level clusterings of processes, allowing backups to span multiple chassis or racks.
However, for complex multi-layered network topologies, where communication between all
nodes is non-uniform, a balance between performance and resilience may need to be sought.
In such cases, a grouping of ranks based on topology may be more appropriate.

This consideration also applies to the placement of spare ranks. The current implementa-
tion assumes uniform communication performance between nodes and the highest S ranks
are reserved as spares. For non-uniform topologies, distributing spares throughout the range
of ranks may be a more performant strategy and allow for the selection of a topologically
nearest spare to be chosen in the event of failure.

@ Springer

Journal of Scientific Computing (2019) 78:565-581 579

4.2 Limitations

A number of assumptions are inherent in the algorithm developed. The most significant of
these is that a large portion of the memory required during simulation contains static data,
such as finite element operators, which are created at the beginning of the simulation and
subsequently do not change during execution. This inherently creates challenges for applying
this approach to simulations where the domain or computational mesh is modified in time,
such as arbitrary Lagrangian-Eulerian (ALE) methods, r-adaptation (mesh movement) or h-
adaptation (mesh adaptivity). In the first two cases, the geometry-dependent component of the
finite element operators is time-dependent and that portion would need to be included as part
of the dynamic data. For mesh adaptive codes, message-logging could be used and the static
backup could be regenerated with each mesh adaptation. The efficacy of this would depend
on the frequency of mesh adaptation and the likelihood of a failure occurring. However,
neither ALE, r-adaptivity or mesh adaptation are currently supported by Nektar++ so these
cases have not been explored further.

Related to this, non-determinism of simulations is only supported where the non-
determinism forms part of the dynamic data (for example, the initial condition) or is
incorporated into static backup as a consequence of MPI communication. The algorithm
could be extended to allow non-deterministic components to be manually included with the
static backup at the cost of increasing the invasiveness of the approach.

A further limitation arose due to the external nature of the gather—scatter library, GSLib,
used for assembling distributed finite element operators. Since this code is a third-party
library, it directly calls the MPI API without passing through the prototype resilience layer
developed within Nektar++. The recovery of communication within the application code
includes repairing all MPI communicators, but necessarily required reinitialising the gather—
scatter library, which involves collective communication. This was therefore shown separately
in Fig. 5.

4.3 Future Work

The resilience algorithm was prototyped through modification of the communication classes
within Nektar++. While this allowed all implementation to be contained within a single
section of code, it prevented third-party libraries taking advantage of the algorithm. Future
work will focus on extracting the resilience algorithm to an independent library which will
intercept MPI API calls for both application and any third-party library codes. This should
eliminate the performance bottleneck introduced by the gather—scatter library during recovery
(dashed line, Fig. 5) and allow strong scaling of the approach to be retained to many thousands
of processes.

Acknowledgements This work was funded by the EU Horizon 2020 Project ExaFLOW. We are grateful to
the other partners in the ExaFLOW project for their support and helpful suggestions. This work used EPCCs
Cirrus HPC Service (https://www.epcc.ed.ac.uk/cirrus).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.

@ Springer

https://www.epcc.ed.ac.uk/cirrus
http://creativecommons.org/licenses/by/4.0/

580 Journal of Scientific Computing (2019) 78:565-581

References

1. Agullo, E., Giraud, L., Guermouche, A., Roman, J., Zounon, M.: Towards resilient parallel linear krylov
solvers: recover-restart strategies. Technical Report RR-8324, INRIA (2013)

2. Barker, A.D., Bernholdt, D.E., Bland, A.S., Hack, J.J., Hudson, D.L., Rogers, J.H., Straatsma, T.P.,
Thach, K.G., Vazhkudai, S.S., Wells, J.C., White, J.C.: High performance computing facility operational
assessment 2013 oak ridge leadership computing facility. Technical report, OakRidge National Laboratory
(2014)

3. Bland, W., Bosilca, G., Bouteiller, A., Herault, T., Dongarra, J.: A proposal for user-level failure mitigation
in the MPI-3 standard. Technical report (2012)

4. Bland, W., Bouteiller, A., Herault, T., Bosilca, G., Dongarra, J.: Post-failure recovery of MPI communi-
cation capability. Int. J. High Perform. Comput. Appl. 27(3), 244-254 (2013)

5. Cantwell, C.D., Moxey, D., Comerford, A., Bolis, A., Rocco, G., Mengaldo, G., De Grazia, D., Yakovlev,
S., Lombard, J.-E., Ekelschot, D., Jordi, B., Xu, H., Mohamied, Y., Eskilsson, C., Nelson, B., Vos, P.,
Biotto, C., Kirby, R.M., Sherwin, S.J.: Nektar++: an open-source spectral/hp element framework. Comput.
Phys. Commun. 192, 205-219 (2015)

6. Cantwell, C.D., Sherwin, S.J., Kirby, R M., Kelly, P.H.J.: From h to p efficiently: selecting the optimal
spectral/hp discretisation in three dimensions. Math. Model. Nat. Phenom. 6(3), 84-96 (2011)

7. Cantwell, C.D., Sherwin, S.J., Kirby, R.M., Kelly, P.H.J.: From h to p efficiently: strategy selection for
operator evaluation on hexahedral and tetrahedral elements. Comput. Fluids 43(1), 23-28 (2011)

8. Cappello, E.: Fault tolerance in petascale/exascale systems: current knowledge, challenges and research
opportunities. Int. J. High Perform. Comput. Appl. 23(3), 212-226 (2009)

9. Cappello, F.,, Geist, A., Gropp, W., Kale, S., Kramer, B., Snir, M.: Toward exascale resilience: 2014
update. Supercomput. Front. Innova. 1(1), 5-28 (2014)

10. Chen, C., Du, Y., Zuo, K., Fang, J., Yang, C.: Toward fault-tolerant hybrid programming over large-scale
heterogeneous clusters via checkpointing/restart optimization. J. Supercomput. (2017). https://doi.org/
10.1007/s11227-017-2116-5

11. Daly, J.: A model for predicting the optimum checkpoint interval for restart dumps. In: Computational
Science ICCS 2003, volume 2660 of Lecture Notes in Computer Science, pp. 3—12 (2003)

12. Di, S., Bouguerra, M.S., Bautista-Gomez, L., Cappello, F.: Optimization of multi-level checkpoint model
for large scale HPC applications. In: 2014 IEEE 28th International Parallel and Distributed Processing
Symposium, pp. 1181-1190. IEEE (2014)

13. Di Martino, C., Kramer, W., Kalbarczyk, Z., Iyer, R.: Measuring and understanding extreme-scale appli-
cation resilience: A field study of 5,000,000 HPC application runs. In: 2015 45th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, pp. 25-36. IEEE (2015)

14. Di Martino, C., Kramer, W., Kalbarczyk, Z., Iyer, R., Moody, A., Bronevetsky, G., Mohror, K., de Supin-
ski, B.R.: Design, modeling, and evaluation of a scalable multi-level checkpointing system. In: 2010
ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Anal-
ysis, pp. 1-11. IEEE (2010)

15. Elnozahy (Mootaz), E.N., Alvisi, L., Wang, Y.-M., Johnson, D.B.: A survey of rollback-recovery protocols
in message-passing systems. ACM Comput. Surv. 34(3), 375-408 (2002)

16. Fagg, G.E., Dongarra, J.J.: FT-MPI: fault tolerant MPI, supporting dynamic applications in a dynamic
world. In: Recent Advances in Parallel Virtual Machine and Message Passing Interface, volume 1908 of
Lecture Notes in Computer Science, pp. 346-353 (2000)

17. Gamell, M., Katz, D.S., Teranishi, K., Heroux, M.A., Van der Wijngaart, R.F., Mattson, T.G., Parashar,
M.: Evaluating online global recovery with fenix using application-aware in-memory checkpointing
techniques. In: 2016 45th International Conference on Parallel Processing Workshops (ICPPW), pp.
346-355 (2016)

18. Gamell, M., Van der Wijngaart, R.F., Teranishi, K., Parashar, M.: Specification of fenix MPI fault tolerance
library version 1.0.1. Technical report (2016)

19. Hassani, A., Skjellum, A., Brightwell, R.: Design and evaluation of FA-MPI, a transactional resilience
scheme for non-blocking MPI. In: 2014 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, pp. 750-755. IEEE (2014)

20. Kang, X., Gleich, D.F,, Sameh, A., Grama, A.: Distributed fault tolerant linear system solvers based
on erasure coding. In: 2017 IEEE 37th International Conference on Distributed Computing Systems
(ICDCS), pp. 2478-2485. 1EEE (2017)

21. Karniadakis, G.E., Israeli, M., Orszag, S.A.: High-order splitting methods for the incompressible Navier—
Stokes equations. J. Comput. Phys. 97(2), 414-443 (1991)

@ Springer

https://doi.org/10.1007/s11227-017-2116-5
https://doi.org/10.1007/s11227-017-2116-5

Journal of Scientific Computing (2019) 78:565-581 581

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Laguna, I., Richards, D.F., Gamblin, T., Schulz, M., de Supinski, B.R., Mohror, K., Pritchard, H.: Eval-
uating and extending user-level fault tolerance in MPI applications. Int. J. High Perform. Comput. Appl.
30(3), 305-319 (2016)

Meneses, E., Ni, X., Zheng, G., Mendes, C.L., Kalé, L.V.: Using migratable objects to enhance fault
tolerance schemes in supercomputers. IEEE Trans. Parallel Distrib. Syst. 26(7), 2061-2074 (2015)
Moxey, D., Cantwell, C.D., Kirby, R.M., Sherwin, S.J.: Optimising the performance of the spectral/hp
element method with collective linear algebra operations. Comput. Methods Appl. Mech. Eng. 310,
628-645 (2016)

Rajachandrasekar, R., Moody, A., Mohror, K., Panda, D.K.: A 1 PB/s file system to checkpoint three
million MPI tasks. In: 22nd International Symposium on High-Performance Parallel and Distributed
Computing, pp. 143-154. ACM, New York (2013)

Sato, K., Maruyama, N., Mohror, K., de Supinski, B.R., Moody, A., Gamblin, T., Matsuoka, S.: Design,
modeling, and evaluation of a non-blocking checkpointing system. In: SC ’12 Proceedings of the Interna-
tional Conference on High Performance Computing, Networking, Storage and Analysis, pp. 1-11. IEEE
(2010)

Schroeder, B., Gibson, G.A.: Understanding failures in petascale computers. J. Phys. Conf. Ser. 78,012022
(2007)

Snir, M., Wisniewski, R.W., Abraham, J.A., Adve, S.V., Bagchi, S., Balaji, P., Belak, J., Bose, P., Cappello,
F., Carlson, B., Chien, A.A., Coteus, P., DeBardeleben, N.A., Diniz, P.C., Engelmann, C., Erez, M., Fazzari,
S., Geist, A., Gupta, R., Johnson, F., Krishnamoorthy, S., Leyffer, S., Liberty, D., Mitra, S., Munson, T.,
Schreiber, R., Stearley, J., Van Hensbergen, E.: Addressing failures in exascalecomputing. Int. J. High
Perform. Comput. Appl. 28(2), 129-173 (2014)

Vogt, D., Giuffrida, C., Bos, H., Tanenbaum, A.S.: Techniques for efficient in-memory checkpointing. In:
Proceedings of the 9th Workshop on Hot Topics in Dependable Systems—HotDep *13, pp. 1-5 (2013)
Vos, PE.J., Sherwin, S.J., Kirby, R.M.: From h to p efficiently: implementing finite and spectral/hp element
methods to achieve optimal performance for low-and high-order discretisations. J. Comput. Phys. 229(13),
5161-5181 (2010)

Zheng, G., Ni, X., Kalé, L.V.: A scalable double in-memory checkpoint and restart scheme towards
exascale. In: IEEE/IFIP International Conference on Dependable Systems and Networks Workshops
(DSN 2012), pp. 1-6. IEEE (2012)

Zhu, Y., Gleich, D.F,, Grama, A.: Erasure coding for fault-oblivious linear system solvers. SIAM J. Sci.
Comput. 39(1), C48-C64 (2017)

@ Springer

	A Minimally Intrusive Low-Memory Approach to Resilience for Existing Transient Solvers
	Abstract
	1 Introduction
	2 Algorithm and Implementation
	2.1 Initialisation of Spare Processes
	2.2 State Protection
	2.3 MPI Communicator Recovery
	2.4 State Recovery
	2.5 Implementation

	3 Performance Analysis
	3.1 Test Problem and Environment
	3.2 Memory Overhead
	3.3 Checkpointing Performance
	3.4 Recovery Performance
	3.5 Concurrent Failures

	4 Discussion
	4.1 Topology-Aware Algorithms
	4.2 Limitations
	4.3 Future Work

	Acknowledgements
	References

