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Origins of the project
Need for surveying the territory.
Aerial images taken from satellites or drones.
Can be combined to get a 3D representation and thus better
recognize objects.
But manually labeled so far.
Collaboration with startup Picterra to automatize the task.

Aerial images from a drone.
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The problem of semantic segmentation

Deep learning can be used for different tasks:
Images classification: very coarse level
Objects detection: coarse level
Semantic segmentation: fine level

(a) Illustration of detection (b) Illustration of semantic segmentation

Illustrations of two problems which can be tackled with deep learning methods.

Semantic segmentation : perform a dense labelling.
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Prior art on images

Patch based parallelized: from CNN[1] to FCN [2]

CNN architecture.

FCN architecture.
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Prior art on images

Learn the upsampling:

(a) DeconvNet [3] (b) Segnet [4]

Learn at different scales:

(c) U-net [5] (d) PSPNet [6]
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From images to graphs

Our goal: semantic segmentation of 3D point clouds
Some architectures directly extend what exist on images: 3D-CNN[7]
But not well suited nor efficient (sparse data)
→ Graphs can efficiently represent these data
+ Efficient computations
+ Capture local neighborhood
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Build a graph from a cloud

Mesh generation on a car.

wi,j = exp
(
−

d2
i,j

2σ2

)

Adjacency matrix of the car.
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Graph convolutions: from spectral to spatial domain
{

L = D −W
L = UΛUT{
x̂ = FG{x} = UT x
x̃ = FG−1{x̂} = Ux̂ = x

For s ∈ Rn and x ∈ Rn:
s ∗G x = FG−1{FG{x} � FG{s}}

s ∗G x = U(UT x � UT s) = U(diag(x̂)UT s)

s ∗G x = U


x̂(λ1) 0

. . .

0 x̂(λn)

UT s [8]

11/29



Introduction
Model
Results

Conclusion

Build a graph
Graph convolutions
Coarsening and pooling
Model architecture

Graph convolutions: from spectral to spatial domain

∀i , x̂(λi ) =
K−1∑
j=0

θjTj(λi ) [9]

s ∗G x = U(
K−1∑
j=0

θjTj(Λ))UT s =
K−1∑
j=0

θjTj(L)s

Ls =


∑

j∈N (1)
l1jsj

...∑
j∈N (n)

lnjsj

, L2s =


∑

k∈N (1)
l1k

∑
j∈N (k)

lkjsj

...∑
k∈N (n)

lnk
∑

j∈N (k)
lkjsj



∀p ∈ [[1; n]],∀k ∈ [[1; Nout ]],Sout(p, k) =
Nin∑
i=1

K−1∑
j=0

θk
i,j(Tj(L)si )(p)
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Form a binary tree to ease the pooling operation

0 1 2 1 0 3

0 1 0 2

0 1 2

(a) Match nodes with
respect to their edges
weights for the different
levels of coarsening

0 1 2

0 0 1 F 2 F

0 0 1 F 2 2 F F 4 F F F

(b) Reorder the nodes so that the
union of two matched neighbors
from layer to layer forms a binary
tree (add fake nodes F if needed)

Form a binary tree to ease the pooling operation.
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Our architecture

64RGBZ

128 256
512

256
64

BN + graph conv K=5 + BN + Relu

Graph conv K=1 + softmax

Max Pooling size=4 + graph conv K=5 + BN + Relu

Unpooling with repetitions + graph conv K=5 + BN

Graph conv K=5 + BN

128

N
A node with N features

512

Model architecture. Spectral distances between colors are related to spatial
distances between intra- and inter-layers real nodes.
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Available data

(a) Dataset (RGBZ) (b) Dataset (labelled)
Cadastre: dataset provided by Pix4D.

From 2D to 3D thanks to photogrammetry.
0 20 40 60

Proportion (in %)

Ground

High     
vegetation

Building

Road

Car

Man-made
objects

50.64%

12.81%

13.25%

20.9%

0.43%

1.98%

Highly imbalanced class distribution.
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Data preprocessing
Tiling of the dataset in tiles of 36m×36m (48m×48m with the context):

Illustration of the tiles split: the dark green tiles correspond to the training set
(50%), the dark blue ones to the validation (16%) set and the dark red ones to
the test set (34%). The other colors correspond to the area where the tiles
overlap.
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Baselines and extra features
Random forest: 100 trees, max depth: 30, class weighted
XGBoost: 100 trees, max depth: 5, learning rate: 0.2, weighted
samples
Extra features selected with random frorest: 3D aspect at scales
0.3m, 1.5m, 3m and 10m + angle between normals and xy plane.
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Features selection with respect to their importances for the random forest.
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Performances on the cadastre with RGBZ
Performances Overall accuracy (in %) Mean accuracy (in %)
Random Forest 74.93 52.92

XGBoost 64.68 59.44
Our model 85.85 68.09

Majority class 47.65 16.67

Performances on the test set of the cadastre with RGBZ.
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(a) Random Forest
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(b) XGBoost
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(c) Our model

Confusion matrices computed on the test set of the cadastre with RGBZ.
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Performances on the cadastre with extra features
Performances Overall accuracy (in %) Mean accuracy (in %)
Random Forest 87.61 63.53

XGBoost 83.78 73.83
Our model 86.63 71.83

Majority class 47.65 16.67

Performances on the test set of the cadastre with extra features.
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(c) Our model

Confusion matrices computed on the test set (cadastre) with extra features.
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Qualitative results on the cadastre with RGBZ

(a) Test set (b) Ground truth (c) Predictions

Qualitative results of our model on the test set.
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Performances on another dataset
Performances Overall accuracy (in %) Mean accuracy (in %)
Random Forest 82.01 63.38

XGBoost 78.30 66.20
Our model 87.47 87.57

Majority class 51.22 25.00

Performances on the test set from Picterra’s dataset with RGBZ.
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(c) Our model

Confusion matrices computed on the test set from Picterra with RGBZ.
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Qualitative results on test set from Picterra with RGBZ

(a) Test set (b) Ground truth (c) Predictions

Qualitative results of our model on the test set from Picterra.
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Performances inter-dataset
Performances Overall accuracy (in %) Mean accuracy (in %)
Random Forest 71.32 43.57

XGBoost 75.34 52.86
Our model 95.15 84.07

Majority class 54.66 25.00

Performances on a dataset from Picterra with RGB.
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(c) Our model

Confusion matrices computed on a dataset from Picterra with RGB.
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Qualitative results on a dataset from Picterra with RGB

(a) Test set (b) Ground truth (c) Predictions

Qualitative results of our model on a dataset from Picterra.
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Conclusion

Summing up:
Model for semantic segmentation of aerial photogrammetry points
clouds.
Better results than random forest or XGBoost with a reduced
number of features.

Future work:
Dilated convolutions and skip connections.
Learning on other graphs.
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