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ABSTRACT

We present and discuss Talbot mask-aligner lithography, relying on a continuous wave laser emitting at 193 nm
for the illumination. In this source, a diode laser at 772 nm is amplified by a tapered amplifier in master-oscillator
power-amplifier configuration and frequency-quadrupled in two subsequent enhancement cavities using lithium
triborate and potassium fluoro-beryllo-borate nonlinear crystals to generate the emission at 193 nm. The high
coherence and brilliance of such an illumination source is predestined for plane wave mask-aligner illumination,
crucial in particular for high-resolution lithographic techniques such as Talbot lithography and phase-shift masks.
Talbot lithography takes advantage of the diffraction effect to image periodic mask features via self-replication in
multiples of the Talbot distance behind the photomask when exposed by a plane wave. By placing a photoresist-
coated wafer in one of the Talbot planes, the mask pattern is replicated in the resist. Periodic patterns with
diverse shapes are required for wire grid polarizers, diffraction gratings, and hole arrays in photonic applications
as well as for filters and membranes. Using an amplitude mask with periodic structures, we demonstrate here
with such a technique sub-micron feature sizes for various designs at a proximity gap of 20 µm.

Keywords: Diode lasers, laser beam shaping, UV lasers, lithography, nanostructure fabrication, Talbot lithog-
raphy

1. INTRODUCTION

Up to now, for more than 50 years mask-aligner lithography has been relying mostly on high-pressure mercury
lamps as illumination source, since the implementation of Excimer lasers (KrF at 248 nm or ArF at 193 nm) is
complex, bulky, expensive, and requires regular maintenance as well as the use of toxic gases.1 Of course, all
these aspects are rather detrimental. In contrast, diode lasers are more and more considered as illumination
source for mask-aligner lithography, as they have much better characteristics in terms of durability, efficiency,
and ease of implementation.2 This trend emerges in combination with the search of novel illumination sources
emitting at lower wavelengths to increase the resolution in proximity lithography. The resolution in mask-aligner
lithography is directly related to the illumination wavelength λ and can be estimated by the relation

Resolution ∼
√
λ · g (1)

with the proximity gap g between photomask and photoresist-coated wafer. The best resolution is obtained
in contact lithography, i.e., with a vanishing gap. However, in production environments, mask contamination
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reduces the reproducibility and requires frequent mask cleaning, which is highly undesirable. Therefore, the gap
distance should not surpass a lower bound. Improving resolution, therefore, prompts for light sources that emit
at lower wavelengths.

With the advent of the nonlinear potassium fluoro-beryllo-borate (KBBF) crystal, diode light sources achiev-
ing wavelengths below 200 nm have been demonstrated, relying on second-harmonic generation (SHG).3,4 First
experimental results for contact and proximity lithography using such an illumination source have recently been
published.5 Here, we demonstrate the suitability of this mask-aligner setup for Talbot lithography. Sub-micron
structures relying on an amplitude mask and a proximity gap of 20 µm are reported. In Talbot lithography, the
diffraction of periodic mask features under plane wave illumination in the Fresnel regime is used to obtain a
perfect self-image of the mask at certain distances.6,7 This Talbot distance zT is a function of the illumination
wavelength and the period of the mask pattern. With a photoresist-coated substrate located in such a Talbot
plane, the image of the mask is replicated. However, highly collimated light is required to avoid lateral blurring
of the aerial image.8 This is a complex task when using Excimer lasers as illumination source, as they suffer
from being composed of many modes.9

Various aspects of Talbot lithography have been addressed in the past,10,11,12,13,14 including displacement
Talbot lithography,15 self-assembled nanosphere masks,16 extreme ultraviolet Talbot lithography,17 and fractal
and fractional18 as well as quantum Talbot effects.19,20 Most of the experimental examples rely on i-line mask-
aligner illumination at a wavelength of 365 nm. However, a reduction in wavelength λ is highly desired: Compared
to traditional high-pressure mercury lamp illumination, lower wavelengths result in improved resolution ∆x,
increased Talbot distance7 zT = 2Λ2/λ, and enlarged depth of focus21 DOF ∼ 4∆x2/λ for a given mask
structure period Λ.

The key to success for diode laser mask-aligner lithography is beam shaping, especially since plane wave
illumination is required for Talbot lithography. In addition, emerging speckle patterns which arise from the high
coherence of the source have to be effectively mitigated by introducing rotating shaped random diffusers in the
beam path.5,22 Interference patterns emerging in the wafer plane are averaged over different speckle patterns
over time. To emphasize these most crucial points, our approach to laser beam shaping in the deep ultraviolet
(DUV) is discussed in the following.

In this manuscript, we first introduce our continuous wave (CW) illumination source. Our beam shaping
concept is discussed, relying on refractive microlens arrays, and plane wave illumination with uniform light dis-
tribution over the complete print field is demonstrated. Subsequently, we show simulations of the self-replication
behind amplitude structures and print results. Finally, we draw a comparison to Talbot lithography relying on
mercury lamp i-line illumination for the same amplitude mask structures.

2. CW LIGHT SOURCE AT 193NM FOR MASK-ALIGNER LITHOGRAPHY

The setup of our CW diode laser source follows the master-oscillator power-amplifier (MOPA) scheme. A seed
diode laser emits light at a wavelength of 772 nm, which is magnified in a tapered amplifier (TA) to an optical
power of 3 W. Faraday isolators (FIs) are introduced to avoid parasitic back reflections. A first SHG stage
contains a lithium triborate (LBO) nonlinear crystal inside a bow-tie cavity, stabilized using the Pound-Drever-
Hall23 scheme by piezoelectric elements.

The output at a wavelength of 386 nm is further upconverted in a second SHG stage to the target of 193 nm
in the DUV, using a potassium fluoro-beryllo-borate (KBBF) crystal. To attain the necessary crystal axis for
phase matching inside the crystal, CaF2 prisms are optically bonded on both sides. In this configuration, the
spectral linewidth of the output is around 100 kHz,4 orders of magnitude lower than for i-line illumination of
standard high-pressure mercury arc lamps. The industrial grade laser source uses a crystal shifter for the KBBF
and motorized mirrors to reach lifetimes up to 10 000 h.

In the described configuration, a maximum output power of up to 20 mW at 193 nm is possible, depending
on the spot position on the KBBF crystal. For the exposures presented here, the laser output is stabilized at a
level of 5 mW.
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3. BEAM SHAPING AND ILLUMINATION CONTROL

For a uniform mask illumination, the elliptic beam profile of the laser has to be transformed to a flat-top profile.
In addition, only small illumination angles can be used for Talbot lithography in order to obtain approximately
plane wave illumination. Otherwise the image is blurred.8 Furthermore, the coherent nature of the light source
has to be addressed, in order to prevent the formation of interference effects in the mask plane. Simultaneously,
the power used for lithography has to be maximized.

We solve the task of laser beam shaping for Talbot lithography in an integral way, combining a rotating
shaped random diffuser with an imaging microlens array (MLA) homogenizer, as depicted in Fig. 1. The high
spatial and temporal coherence of the illumination source leads to speckle formation, which is highly undesirable.
The rotating diffuser causes many statistically independent speckle patterns that are superimposed in the resist,
effectively integrating over many inhomogeneous fields. This averaging smooths the illumination, effectively
omitting the visibility of adverse coherence effects.5,22,24 For further discussion, please refer to Refs. 5 and 25.

The diverging beam behind the rotating diffuser is collimated on the subsequent Köhler integrator using a
collector lens. The integrator consists of MLAs and a Fourier lens. Each MLA consists of cylindrical microlenses
on both sides of a fused silica substrate, separated by one focal length. Two uncoated MLAs (SUSS MicroOptics)
are used in crossed assembly to obtain a square flat-top in the mask plane. The Fourier lens behind the MLA
leads to a superposition of all illuminated microlens channels in the mask plane. A front lens ensures telecentric
illumination.

An iris aperture enables control over the illuminated area on the MLA and hence to choose the number
microlenses contributing to the field distribution. Since the Fourier lens performs a Fourier transform in the
mask plane, the illuminated area on the MLA corresponds to the illumination angles in the print field. By
selectively blocking light, the angular spectrum can be shaped at will. This is often referred to as an illumination
filter plate (IFP), and typically an integral part of tandem Köhler integrators (MO Exposure Optics R©).26,27

In this configuration, the first integrator ensures a uniform illumination of the second integrator, resulting in a
uniform angular spectrum. Since we are interested in small illumination angles, we use only a single integrator.
This reduces optical losses and increases the overall light efficiency of the system. By closing the iris aperture,
a reduced number of channels is selected, corresponding to small illumination angles.

Rotating
diffuser

Collector
lens

Iris aperture
IFP

Microlens array

Fourier 
lens

Front
lens

Photomask

Wafer

Irradiance

Figure 1: Optical beam shaping setup. The laser output passes a rotating shaped random diffuser, is collected
in a collector lens, and homogenized via a Köhler integrator formed by two microlens arrays (MLAs). The
maximum illumination angle is set by an iris aperture working as an illumination filter plate (IFP). Using this
optical setup, a flat-top irradiance distribution is obtained in the mask plane.
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Figure 2: (a) Irradiance uniformity in the mask plane. The irradiance profile along the dashed line is depicted
in white. A uniform irradiance uniformity is obtained on a square area. (b) Angular distribution of illumination
angles in the mask plane. The white circle depicts an illumination angle of 1◦. Individual microlens channels
are visible.

We measure the uniformity of power in the field and in the angular spectrum using a customized beam profiler.
It consists of a UV-sensitive photodiode (S1226-18BQ Si photodiode, Hamamatsu; photosensitivity 0.13 A W−1

at 193 nm) mounted on a xy precision stage. A laser-cut opening (300 µm×300 µm) is used as an aperture to
select the area and to control the power incident on the photodiode. By scanning the mask plane, the irradiance
is measured, as depicted in Fig. 2a. A highly uniform irradiance distribution is obtained, with a field size of
approximately 15 mm×15 mm.

The angular spectrum is obtained by inserting a plano-convex lens (f = 140 mm) into the mask plane and
measuring the irradiance at one focal distance, as depicted in Fig. 2b. The individual channels of the MLA
are clearly visible. All channels used for the prints correspond to illumination under angles of less than 1◦, as
indicated by the white circle.

4. SIMULATION OF TALBOT LITHOGRAPHY AT 193 NM

For experimental prints, a chromium amplitude mask has been designed and fabricated. It includes several
periodic structures, mainly of quadratic and circular shape. The Talbot planes behind the mask are located at
integer multiples n of the Talbot distance zT, given by7,13

zT = n · λ

1−
√

1− λ2

Λ2

(2)

with the period Λ of the mask features, the illumination wavelength λ, and an integer multiple n. In mask-aligner
lithography, the period is typically larger than the wavelength, and Eq. 2 can be simplified to

zT ' n ·
2Λ2

λ
(3)

in paraxial approximation. To maintain a high degree of accuracy, we use Eq. 2 for all calculations. By
inverting Eq. 2, we obtain Λ = 1.39 µm for a Talbot distance of zT = 20 µm at λ = 193 nm. This value is
chosen since it allows sub-micron feature sizes, while the proximity gap between mask and wafer can still be set
with ease. Small surface irregularities on the wafer do not result in contact between wafer and mask. Choosing
different periods is possible by either changing the proximity gap or using higher Talbot planes.
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We simulate arrays of circles and squares using GenISys LAB, which solves the Rayleigh-Sommerfeld diffrac-
tion integral. The results are depicted in Fig. 3. The irradiance distribution for an array of circles with a period
of Λ = 1.39 µm is shown in Fig. 3a, together with the irradiance profile at a propagation distance of 20µm. Figure
3b shows the field distribution for an array of squares, here with a period of Λ = 0.99 µm, corresponding to a
Talbot distance of zT = 10µm. Accordingly, the second Talbot plane n = 2 at 20µm can be used for printing.
The irradiance distributions in the first and second Talbot plane for the square mask features are depicted in
Figs. 3c and 3d.
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Figure 3: Simulated aerial image of periodic Talbot structures under plane wave illumination. (a) Array of circles
with a period of Λ = 1.39 µm. (b) Array of squares with a period of Λ = 0.99 µm. (c) Irradiance distribution of
the square array in the first Talbot plane. (d) Irradiance distribution of the square array in the second Talbot
plane. The square irradiance profile is replicated in the Talbot planes with high contrast.
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As is clearly visible from the simulation, the irradiance distribution offers a high contrast, also for the second
Talbot plane. This contrast decreases if more channels contribute to the illumination, i.e. additional plane waves
under non-normal incidence contribute to the aerial irradiance formation. Consequently, for non-collimated
illumination, there is a fundamental trade-off between light power in the mask plane and the maximum angle in
the spectrum of plane waves, which defines the amount of blur in the Talbot planes.

5. EXPERIMENTAL RESULTS

With the optical setup implemented as described above, we perform lithographic prints for a field size of
15 mm×15 mm on Silicon substrates. We rely on the chemically amplified photoresist TOK TARF-P6239 ME,
with the resist chemistry adapted from ArF Excimer lithographic systems. A prebake (110 ◦C, 1 min) is per-
formed on a hotplate prior to the exposure, leading to a resist thickness of ∼ 120 nm. Typical exposure doses
of 65 mJ cm−2 are used. This value is optimized for each pattern individually, depending on the fill factor and
therefore the transmittance of the mask. A post exposure bake (110 ◦C, 1 min) is performed after the exposure,
followed by puddle development in AZ R© MIF 327 developer (1 min).

Our mask-aligner in use has an Etel Sarigan∗ movement stage, for high-precision positioning of the
photoresist-coated wafer relative to the photomask. The proximity gap of 20 µm, i.e. the distance between
mask and wafer, is controlled using an Avantes† spectroscopic reflectrometry setup at three locations.

Figure 4 shows SEM micrographs of square and hexagonal arrays of circles as well as a square array of squares.
The period of the structures is 1.39 µm in Figs. 4a and 4b, and 1.97 µm in Fig. 4c. The latter period equals half the

∗ETEL S.A., CH-2112 Môutier, Switzerland, etel.ch, etel@etel.ch
†Avantes BV, NL-7333 NS Apeldoorn, The Netherlands, avantes.com, info@avantes.com
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Figure 4: Scanning electron microscope (SEM) micrographs of (a) circles, (b) a hexagonal array of circles (period
1.39 µm), and (c) squares (period 1.97 µm). The insets show the mask layout. The periodic structure and the
shape of the patterns are replicated in the resist, while the size of the features can be adapted by the exposure
dose.
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Talbot distance (n = 1
2 ), where the pattern is self-imaged, shifted by half a period. The replication of the mask

features is clearly visible, with uniform size distribution over the entire periodic array (size 800µm×800 µm).
The size of the individual elements can be controlled via the exposure dose. A subsequent transfer of the patterns
to the substrate is possible using a hard etch mask, as demonstrated for example in Ref. 5.

6. COMPARISON OF I-LINE AND DUV TALBOT LITHOGRAPHY

When comparing Talbot lithography with i-line illumination at 365 nm and the DUV laser source at 193 nm pre-
sented here, several aspects can be highlighted. First, to obtain the same pattern period with i-line illumination,
the proximity gap has to be approximately halved, to 10.4 µm instead of 20 µm. At the same time, the depth of
focus (DOF) is about halved,21 rendering an exact setting of the proximity gap more critical.

The high absorption of the resist in the DUV, compared to typical i-line resists, limits the resist thickness
to well below 1µm (120 nm in our case). As a consequence, the high DOF can not be exploited to achieve high
aspect ratios in the resist, but rather to reduce the sensitivity to variations in the proximity gap.

The high brilliance of the light source allows efficient beam shaping, i.e. a high conversion efficiency of the light
into plane wave illumination. In the current optical setup, approximately one tenth of the laser output power
ends up in the plane wave illumination. Further improvement can be reached by using optical elements with
anti-reflective coatings. Mask-aligners a with conventional i-line illumination source as high-pressure mercury
arc lamps typically use MO Exposure Optics R©26,27 to reach plane wave illumination. While excellent spatial and
angular uniformity of the illumination has been demonstrated,27 this requires to block a large share of the power
by an illumination filter plate (IFP), rendering the beam shaping inefficient. Recently, a novel approach for
efficiently shaping the angular spectrum of laser illumination in mask-aligner lithography has been presented,2

relying on a galvanometer scanner to define the angular spectrum.

7. CONCLUSIONS AND OUTLOOK

Using the novel concept of a CW laser emitting at a wavelength of 193 nm, we were able to demonstrate its
applicability to Talbot mask-aligner lithography. The continuous operation, the small volume of the system, and
the avoidance of hazardous gases are the advantages of our laser source over conventional DUV Excimer laser
systems. All these aspects lead to a straightforward implementation into a mask-aligner setup.

Efficient beam shaping has been demonstrated, relying on an imaging homogenizer setup. The main optical
element is a Köhler integrator, consisting of a microlens array (MLA) and a Fourier lens. A single rotating
diffuser is sufficient to avoid the emergence of interference effects, which arise from the high spatial and temporal
coherence of the illuminating laser source. Uniform plane wave illumination over square fields in the mask plane
with sizes of up to 15 mm×15 mm and an angular spectrum of less than 1◦ are shown.

Periodic structures with a period down to 1.4 µm were printed at a proximity gap of 20 µm using a chromium
amplitude mask. Such a large proximity gap relaxes the requirements imposed on the mask-aligner setup in
terms of mechanical stability and accuracy, the demands on the wafer flatness, and increase the process window
due to an enlarged depth of focus (DOF).

While keeping the proximity gap constant, the period of the lithographic pattern can be further reduced by
using a higher Talbot plane (n > 1). In this scenario, the dimensions of the structure have to be chosen such
that a higher Talbot plane coincides with the wafer plane. Crucially, the plane wave illumination has to possess
a sufficient contrast in order to allow a high-quality reproduction of the mask features.

Further improvement in the laser output power promises to extend the field sizes up to full wafer scale, while
keeping the exposure times comparable to i-line illumination. The combination of a frequency-quadrupled CW
diode laser source emitting at a wavelength of 193 nm with the Talbot effect proofs to be a viable way for pattern
transfer in mask-aligner proximity lithography and a serious alternative to Excimer light sources.
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