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I am no poet, but if you think for yourselves,

as [ proceed, the facts will form a poem in your minds.
—NMichael Faraday

We may find illustrations of the highest doctrines of science
in games and gymnastics,

in travelling by land and by water,
in storms of the air and of the sea,

and wherever there is matter in motion.
—James C. Maxwell






Abstract

Eigenmodes are central to the study of resonant phenomena in all areas of physics.
However, their use in nano-optics seems to have been hindered and delayed for various
reasons. First, due to their small size, the response of nanostructures to a far-field
optical excitation is mainly dipolar. Thus, preliminary studies of nanosystems through
optical methods meant that only very few eigenmodes of the system were probed, and a
complete eigenmode theory was not required. Second, rigorously defining eigenmodes
of an open and lossy cavity is far from trivial. Finally, only few geometries allow for
an analytical solution of Maxwell’s equations that can be expressed in terms of modes,
rendering the use of numerical methods mandatory to study non-trivial shapes. On the
other hand, modern spectroscopy techniques based on fast electron excitation, instead of
optical excitation, allow going beyond the above-mentioned dipolar regime and enable
the observation of high order modes. In addition, the generation of second harmonic
light (SHG) by nanoparticles permits revealing higher order modes that weakly couple
to planewave far-field probing. Thus, to be able to analyze the data collected with such
experimental methods and comprehend them in order to make appropriate nanostructure
designs, one needs to develop suitable numerical tools for the computation of eigenmodes.
This is the focus of this thesis, where eigenmodes are used throughout to analyze and
understand experimental and numerical results.

First, different approaches used to define and compute eigenmodes are presented in
details together with the surface integral equation method used in this manuscript.

The second chapter presents the use of eigenmodes to study the SHG in plasmonic
nanostructures. A single mode is used as an SHG source to disentangle the modal
contributions from different SHG channels. For three different nanostructures, the
dipolar mode gives a pure quadrupolar second harmonic (SH) response. Then, the
interplay of dipolar and quadrupolar SH radiations in nanorods of different sizes is
revealed through a multipolar analysis, explaining the experimental observation of the
flip between forward and backward maximum SH emissions. Finally, the dynamics of
the SHG from a silver nanorod generated by short pulses is investigated. By tuning the
spectral position and width of the pulses, the dynamics of a single mode is observed,
both in the linear and SH responses, and fits extremely well with a harmonic oscillator
model.

The last chapter presents the utilization of the eigenmodes to interpret electron energy
loss spectroscopy (EELS) measurements. An alternative approach to compute EELS



signal is presented, revealing the different paths through which the energy of the electron
is dissipated. Instead of computing the work done by the electron against the scattered
electric field, the Ohmic and the radiation losses are evaluated. Then, heterodimers
with several shapes and compositions are studied. A rich variety of modes is found,
due to the additional degree of freedom associated with the different metals. Dolmen
shaped nanostructures are also investigated in great details. A rigorous analysis of the
eigenmode evolution when the central horizontal nanorod is moved is performed. Finally,
we study the EELS for three iterations of a Koch snowflake nanoantenna. The evolution
of the modes with the iteration of the fractal is analysed and the modes are linked to the
experimental EELS map.

Keywords: plasmonics, second harmonic generation, nonlinear optics, eigenmode,
eigenfrequency, simulations, surface integral equation, electron energy loss spectroscopy.
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Résumé

Dans tous les domaines de la physique, les modes propres constituent un outil impor-
tant. Cependant, leur utilisation en nano-optique a été entravée pour diverses raisons.
Premierement, de par leurs petites tailles, la réponse des nanostructures a une excita-
tion optique en onde plane est avant tout dipolaire. De ce fait, les premieres études
optiques de nanosystémes ne sondaient qu’une petite partie des modes du systeéme et
une théorie compléte des modes n’était pas requise. Ensuite, définir rigoureusement
les modes d’une cavité ouverte et avec pertes s’est révélé tres complexe. Enfin, peu de
géométries permettent des solutions analytiques pour les modes, rendant 1'utilisation
de méthodes numériques obligatoire pour I’étude de formes non-triviales. En revanche,
les techniques de spectroscopies a I’aide d’excitation par électron rapide, au lieu d’une
excitation optique, permettent de surpasser la limite dipolaire et autorise ’observation
de modes de haut ordre. De plus, la génération de seconde harmonique (GSH) par les
nanoparticules permet d’observer des modes faiblement couplés aux excitations en champ
lointain. Pour ces raisons, et afin d’étre capable d’analyser les données venant de telles
expériences ainsi que de les comprendre pour concevoir des nanostructures adaptées, il
faut développer des méthodes numériques adéquates de calculs de mode. C’est le point
central de cette theése, ou les modes sont utilisés pour ’analyse et la compréhension de

données expérimentale et numérique.

Les approches utilisées pour définir et calculer les modes est d’abord présentée, ainsi que
la méthode numérique d’équations intégrales de surfaces utilisée tout dans ce manuscrit.

Le deuxieme chapitre présente 'utilisation des modes pour I’étude de la GSH de nanostruc-
ture plasmonique. Un unique mode est utilisé comme source de GSH afin de désentrelacer
la contribution modale de différents canaux de GSH. Différentes nanostructures sont
étudiées, et dans chaque cas un mode dipolaire méne a une réponse quadrupolaire de
seconde harmonique (SH). Ensuite, 'interaction des radiations dipolaire et quadrupolaire
en SH de nano-batonnets de différentes tailles est révélée par une analyse multipolaire,
expliquant ainsi le changement de direction d’émission maximale de SH. Finalement, la
dynamique de la GSH d’un nano-batonnets d’argent générée par des pulses courts est
étudiée. En réglant les parametres du pulse, la dynamique d’un seul mode est observée,
dans les réponses linéaire et SH, et est en accord avec un modele d’oscillateur harmonique.

Le dernier chapitre présente l'utilisation des modes pour l’analyse de mesures par
spectroscopie de perte d’énergie des électrons (EELS). Un procédé alternatif pour le
calcul du EELS est proposé, révélant les différents chemins par lesquels 1’électron perd
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de D’énergie. Au lieu du travail fait par I’électron contre le champ diffusé, les pertes
Ohmique et radiative sont additionnées. Ensuite, des hétéro-dimeres de diverse formes et
compositions sont étudié. Une grande variété de modes apparait, due au degré de liberté
additionnel venant des différents métaux. Des nanostructures en forme de dolmens sont
aussi étudiée en détails. Une analyse de I’évolution des modes lorsque la partie centrale de
la structure est déplacée est effectuée. Finalement, le EELS des trois premieres itérations
d’une nano-antenne flocon de Koch est étudiée. Les modes des différentes itérations sont
analysé, et mis en correspondance avec les cartes EELS expérimentale.

Mots clés : plasmonique, generation de second harmonique, optique non-linéaire, mode
propre, fréquence propre, simulations, equation integrale de surface, spectroscopie de
perte d’énergie des électrons.
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Introduction and Thesis Objec-
tives

Thesis objectives and organization

Plasmonics is one of the major topics in the current nano-optics research and holds many
promises regarding applications in sensing and spectroscopy [1,2], nonlinear and ultrafast
optics [3,4], enhancement of emission processes [5], light control at the nanoscale [6,7]
and metasurfaces [8,9]. This diversity of applications stems principally from two tightly
related properties of surface plasmons, namely the electromagnetic field confinement at the
nanometer scale and the resulting strong field enhancement. The former effect enables the
control of light well below the conventional half-wavelength diffraction limit [10], allowing
for example the creation of metasurfaces, where elements need to be appreciably smaller
that the wavelength of the light that is to be controlled [11]. The latter effect enables all
sorts of enhanced optical molecular interactions [12,13]. Furthermore, nonlinear effects
that depend on higher powers of the light intensity take direct advantage of the field
enhancement [3,14]. Additionally, the resonance frequencies of plasmonic systems are
particularly sensitive to the electrical properties of the local environment, making them
well suited for localized and extremely sensitive probes [2]. Finally, the small mode
volume associated with the plasmonic resonances offers a perfect tool for decay-rate
enhancement of single emitters [5].

In all these applications, the resonances supported by plasmonic systems (localized entities
or extended surfaces) play a fundamental role. Although the study of such resonances was
initially often limited to dipolar contributions, resonances due to higher order modes are
now routinely used and engineered to increase the efficiency and versatility of plasmonic
nanostructures. Consequently, there is a need for powerful numerical methods that guide
scientists in the design of plasmonic systems and in the subsequent analysis of diverse
spectroscopy measurements.

This thesis objective is to develop numerical methods for the computation of eigenmodes
in plasmonic systems and to use them for the analysis and interpretation of experimental
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results. The first chapter presents elements of the theory pertaining to the eigenmodes,
followed by the description of the numerical methods I have implemented for their search.
The next two chapters are composed by seven articles I have published in peer-reviewed
journals. Throughout those two chapters, numerical computations based on a surface
integral equation (SIE) method are used to analyse experimental results.

The second chapter deals with the use of eigenmodes in the scope of second harmonic
generation (SHG) in plasmonic nanostructure. The first article, Sec. 2.1, presents the
method initially implemented to compute the eigenmodes (see Sec. 1.2 for more details)
and its application to the study of SHG when the fundamental sources are given by a
mode as opposed to the linear response to an excitation. In Sec. 2.2 the SHG of nanorods
with different sizes is analysed through a multipolar decomposition with a link to the
eigenmodes. Finally, in Sec. 2.3, the dynamical SHG response of a silver nanorod excited
by femtosecond Gaussian pulses is numerically studied and the role of the eigenmodes is
investigated in details.

The third chapter is concerned with the analysis of electron energy loss spectroscopy
(EELS) data. First, in Sec. 3.1, I describe the implementation of EELS simulations in
the SIE framework as well as a novel way to compute EELS that reveals the different loss
channels contributing to the signal. Then, in the following three articles, experimental
EELS spectra and maps are systematically compared to numerical simulations and
to the eigenmodes of the different systems. Section 3.2 presents the study of dimers
of compositionally asymmetric particles with different shapes and materials, Sec. 3.3
deals with dolmen shaped nanostructures and investigates the eigenmodes for different
geometries and, finally, Sec. 3.4 presents the plasmonic eigenmodes of the first three
iterations of a Koch snowflake fractal nano-antenna.

The remainder of this introduction briefly presents the five principal topics of this thesis,
namely plasmonics, SHG, EELS, eigenmodes, and the SIE method.

Plasmonics

Plasmonics is the study of the interaction of light with metals [15]. In everyday life,
this interaction is normally limited to an almost total reflection of light by metallic
objects, mirrors being often made of aluminium or silver smooth surfaces. However, in
certain cases, some peculiar phenomena can be observed. A first example is the colour
of colloidal metals, i.e. metallic micro/ nano-particles in solution. They were already,
although without much control, used to stain glass in the 4th century with the famous
example of the Lycurgus cup [16], but it was not until the 19th century that colloidal
metals were scientifically investigated. Faraday, in 1847, was the first to suggest that the
vivid colour of gold colloids, strikingly different from bulk gold, is due to the small (nano)
sizes of the particles, and that different sizes result in different colours [17]. Later on,
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Figure 1 — Sketch of a SPP. (a) Negative charges are oscillating near the surface in
the direction parallel to the interface. Note that due to the momentum mismatch with
free-space light, this configuration of charges does not radiate. (b) Amplitude of the
normal (L) and parallel (||) components of the electric field. Notice the change of sign of
the normal component at the interface due to the negative permittivity of the metal.

the full theory of electromagnetic wave scattering by a sphere proposed by Mie in 1908
gave the mathematical tools to explain and confirm the observations and suppositions
of Faraday [18]. Another example is the anomalous reflection of light on structured
metal films, first observed by Wood in 1902 [19]. This observation can be explained
by the excitation of a surface wave by the impinging light as was proposed by Fano in
1941 [20], using the theory of surface waves previously developed by Sommerfeld [21] and
Zenneck [22], respectively in 1899 and 1907. These two experimental observations and the
corresponding theoretical analysis can be considered as the first scientific investigations
in plasmonics and nano-optics.

A surface plasmon polaritons (SPP), the surface wave proposed by Sommerfeld, is now
understood to be a coupled state (polariton) between light and electrons oscillations
(surface plasmon) at the surface of a metal. From Maxwell’s equations, it naturally arises
as propagating solutions at the interface between a dielectric (with a positive permittivity,
e > 0) and a metal (¢ < 0). It is strongly confined to the surface owing to the exponential
(evanescent) decay of its field in the two directions normal to the surface, as well as to
be excitable only by TM waves, i.e. waves having an electric field along the propagation
direction. Figure 1 pictures a sketch of a SPP, showing a snapshot of the free charges
oscillations and associated fields. One can see that, to be able to move the charges
back and forth, there must indeed be an electric field in that direction. Furthermore, it
appears that the SPP dispersion relation, the relation between momentum and frequency,
makes them impossible to excite by simply shining light onto the surface. Indeed, for a
given frequency, SPPs have a momentum larger than that of a planewave propagating in
vacuum, and one thus needs to give an additional momentum to light in order for it to
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Figure 2 — Sketch of a LSPR on a spherical nanoparticle and an analogous damped
spring mass system. (a) Metallic nano-particle at rest. (b) An external electric field Ez¢
displaces the free electrons cloud, creating a negative charge surplus on one side and
leaving a net positive charge on the other side.

couple to SPPs. This can be achieved with a grating, as in Wood’s experiment, or by
using the evanescent wave created by total internal reflection inside a dielectric as first
done by Kretschmann and Raether in 1968 [23].

As is the case for many wave phenomena, when boundary conditions are imposed,
standing waves corresponding to discrete states appear in the system. Thus, one can see
a metal nanoparticle as a planar surface wrapped up on itself resulting in a closed cavity,
and the localized surface plasmon resonance (LSPR) that it supports as the standing
SPP wave due to the boundaries of the particle. Another way to understand LSPRs; is
to think about the free electrons of the metallic nanoparticle as a cloud of free charges.
If one displaces homogeneously all the free electrons from their equilibrium position, they
will feel a restoring force from the positively charged nuclei. When the cloud is let free,
it oscillates back and forth, like a classical mechanical oscillator, see Fig. 2. Due to the
finite conductivity of metals, the moving electrons loose energy trough collisions and the
oscillation is damped. Additionally, accelerating charges radiate electromagnetic waves so
that the electron cloud also loses energy by radiating light. Now, if this oscillating cloud
emits an electromagnetic wave, it also means that an electromagnetic wave can make this
cloud oscillate. This is indeed the case, and that is precisely what Faraday observed in
his experiments: light excites LSPRs in metallic nanoparticles and is thus absorbed and
scattered at particular frequencies, giving rise to specific colours [24]. Without invoking a
rigorous theory, it is perfectly reasonable to assume that the oscillating cloud of electrons
acts like a damped harmonic oscillator and that its resonance frequency and damping
rate depends on the size and shape of the nanoparticle, as well as the permittivity of
the metal. Interestingly, the range of sizes for which nanoparticles possess plasmonic
resonances (i.e. resonances of the free electron cloud) in the near infrared and visible
part of the spectrum is from ten to hundreds of nanometers [25]. This means that in
many cases, the nanoparticles into consideration are much smaller that the wavelength
of the light at which they resonate. Consequently, in this approximation, the size of the
nanoparticle does not influence the resonance frequency and width, whereas its shape
does [26]. Indeed, since the nanoparticle is considered much smaller than the wavelength,

4
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Figure 3 — Extinction efficiency of small spheres: the absolute size of the sphere, indicated
on the right end of each curve, does not affect significantly the resonance frequency for
a large range of diameters. The energy shift of the peak from 10 to 60 nm diameters
is only 2.5%. The sphere is made of gold and the background medium is water. The
permittivity of gold is taken from the experimental data of Johnson and Christy [28].

any changes in the size (but not in the shape) that keeps the approximation valid cannot
influence the resonant properties of the nanoparticle. Mathematically, it allows solving
Maxwell’s equations in the static regime, and then multiply the solution with a harmonic
time dependence. This procedure is referred to as the quasistatic approximation and
is largely used in the study of plasmonic nano-systems [15,24,27]. To illustrate this
phenomenon, Fig. 3 shows the extinction spectra of gold nanospheres with different sizes
computed with Mie’s theory. One can observe that for a wide range of diameters the
resonant frequency hardly changes at all. On the other hand, if the size does not matter,
the shape is the key parameter to change the resonances properties of nanoparticles. As
a simple example, Fig. 4, shows how the resonance frequencies of gold nano-spheroids
evolve with their aspect ratio; those results are computed according to the analytical
formula given in Ref. [24]. A rich variety of resonances and spectral features can thus
be obtained by a careful design of the nanoparticle shapes, and this point constitutes
one of the main topics of today’s research in plasmonics. Together with the resonant
excitation of the free electrons cloud, there is a large field enhancement around the
metallic nanoparticle. The electric field near the surface can typically be hundreds of
times larger than the one of the impinging planewave. Such large fields and intensities
offer a platform of choice to study phenomena such as Raman spectroscopy [29], dipole
emitter decay rate enhancement [5] and nonlinear effects [3].
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Figure 4 — Resonance frequency of gold nano-spheroids in water, with sizes small compared
to the wavelength. As the aspect ratio of the two kind of spheroids evolves, the shift
in resonance frequencies covers almost all the visible spectrum. The frequency for the
dipolar resonances along the long(s) and short(s) axis are denoted w; and wy respectively.

Second Harmonic Generation

Linearity is a fundamental concept in physics; it allows the use of the superposition
principle, upon which are based much of the mathematical methods used by scientists.
One of the most important example is the ubiquitous use of Fourier analysis in the study
of wave related phenomena (see Chap. 2). However, in most (if not all) real physical
systems where oscillations are observed, a large enough departure from the equilibrium
state leads to a nonlinear response. Indeed, a linear restoring force implies a harmonic
(quadratic) potential, which is the first non-vanishing term in a Taylor expansion around
a local minimum of potential energy (ignoring the constant term that can be set to zero
without changing the physics). Thus, the linear response is often the first approximation
for "small" displacement. D’Alembert’s wave equation derivation in mechanics assumes
small displacements or deformations (Hooke’s law [30]), while in electromagnetism the
Lorentz model for the refractive index assumes small displacements of the electron’s
position around the nucleus [24]; virtually, all derivations of d’Alembert’s equation in
a given domain of physics assume a linear response. One of the most striking features
of nonlinear behaviours is the generation of harmonics. Everyday examples are scarce,
but let us mention green laser pointers where the electromagnetic wave of an IR laser at
1064 nm is (partially) transformed into a 532 nm green beam by a crystal with a strong
second order susceptibility.

Depending on the strength of the nonlinearity, one can distinguish between the weak

6
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Figure 5 — Nonlinearity of the polarization P versus the driving electric field F and
its decomposition in a Taylor series. (a) Near the surface, the centrosymmetry of the
crystal is broken, allowing for even and odd order terms. (b) Inside the bulk, the crystal
is centrosymmetric, thus allowing only odd order terms. Notice that for small electric
fields the contribution of the second and third order is negligible compared to the linear
response.

and strong regimes. The nonlinearity is considered to be weak when the energy transfer
from the fundamental pump signal to the nonlinear one is small enough so that one can
consider no decrease in the amplitude of the pump wave. This so-called undepleted pump
approximation allows great simplifications of the coupled nonlinear differential equations
and is accurate enough for many situations [14]. Additionally, due to the relative weakness
of the nonlinear signal, one can also neglect any back transfer of energy to the pump
signal. Thus, the nonlinear response can be decoupled into two separate problems: one
can first compute the linear response of the system and then the nonlinearities, ignoring
the complex interplay between the two. When the nonlinearity is too strong, the full
interaction and energy exchange between the fundamental and nonlinear part cannot be
ignored, leading to a more complex behaviour.

The departure from linearity for a strong enough driving field can be mathematically
expressed as a Taylor expansion around the equilibrium position. In the case of interest
in this thesis, namely electromagnetism, we consider the response of a material, the
polarisation P(t), to an external electric field E(t) [14]:

P(t) = o (xVE(t) + XD E(t) + xP B3(t) + ...
= PWO@t)+ PO+ PO(t) + ..., (1)
where (") is the (non)linear susceptibility tensor of order n and €y the vacuum permittiv-
ity. This expansion is depicted graphically in Fig. 5(a). In the particular case of harmonic

excitation at a frequency w, Eq. (1) directly shows that each order of nonlinearity leads
to the generation of a harmonic of the same order. This is one of the main applications of

7
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nonlinear optics as it allows the generation of coherent light at wavelengths non attainable
otherwise. Of particular interest in this thesis is the SHG from metallic nanoparticles.

If one looks at the second order response P (t) = eoxP E2(1), it actually dictates
that for positive and negative values of the fundamental electric field E(t), the induced
polarisation is positive. This is indeed impossible if the unit cell of the crystal under
consideration is centro-symmetric, Fig. 5(b), which is often the case in plasmonics, since
gold, silver, and aluminium (the most used metals in plasmonics) are centro-symmetric.
Nonetheless, this consideration takes the symmetry of the crystal into account, but not
the symmetry of the exciting field. This is the so-called dipolar approximation, where
the wavelength of the light is considered far larger than the atoms and the crystal’s unit
cell [31,32]. Thus, one way to locally break the symmetry is through retardation effects,
i.e. the field’s phase variation across the unit cell. Indeed, if the field of the fundamental
wave varies spatially fast enough, it can induce a local asymmetry and enable even
order nonlinearities in centro-symmetric media. However, in the case of nanoparticles,
since they are often small compared to the wavelength, the above mentioned retardation
effects can hardly account for the SHG observed from small plasmonic nanoparticles [33].
There is yet another way to break the symmetry of the crystal: at the boundary between
the metal and the environment, the symmetry of the lattice is broken [32]. In a more
visual way, an electron oscillating at the surface does not feel a symmetric potential
as does an electron in the middle of the particle, see Fig. 5(b), so that its response to
a driving electric field is asymmetric and contains even order terms. In the numerical
method used to compute SHG in this thesis, only the contribution of the surface to the
SHG is considered as it was shown that it is appreciably larger than the bulk one [34].
Furthermore, among all the possible tensor elements of Xgiif? we consider the component

Xgilﬂ | || tobe the dominant one [35]. Although this last statement is often used to justify

the use of Xéiif | . only, one should be careful about one detail: the tensor components
can be defined in two ways, with the internal or external fields, thus potentially changing
2
u

the relative values of the different components of xg ;-

Consequently, the pertinent
figure of merit should be the component that leads to the largest contribution to SHG,

as opposed to the largest component itself [35].

Electron Energy Loss Spectroscopy

During the last decade, EELS has become a popular tool in the nano-optics community
[36]. Indeed, progress in the quality of electron beam sources as well as in detectors
efficiency now allows probing resonances in nanostructures with LSPR below 1 eV
with nanometer spatial resolution and <0.1 eV energy resolution [36]. Conducted in a
scanning transmission electron microscope, EELS consists in analysing the energy lost
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Figure 6 — Schematic representation of the EELS. (a) A swift electron passes near a
metallic nanoparticle. Its electric field interacts with the free electrons of the nanoparticle
and gives an energy hv to the LSPR. (b) The electron has lost an energy hv and the
LSPR is excited. The energy of the electron is recorded to build the spectrum. (c)
The LSPR can decay radiatively by emitting a photon of energy hv (i), or be absorbed
internally (ii).

by swift electrons® that interacted with the nanostructure of interest. By building a
histogram of the number of electrons having lost a given amount of energy, one obtains a
spectrum that shows peaks at positions corresponding to the LSPRs of the investigated
nanostructure [36,37]. A schematic of the principle of EELS is shown in Fig. 6. A
fast electron interacting with a localized scatterer can be viewed as an extremely short
impulse-like excitation that thus acts as a spectrally broad source. Additionally, the
inherent cylindrical symmetry of the excitation beam allows exciting modes that couple
weakly to far-field planewave excitations. The different ways the fast electron and
a planewave couple to the two first two modes of a nanosphere dimer is depicted in
Fig. 7. EELS is then able to probe LSPRs inaccessible to optical spectroscopy, with an
unprecedented spatial resolution. Consequently, there is a need for adequate numerical
methods that allow obtaining the eigenmodes in order to identify them to the spectral
and spatial features of EELS measurement.

The implementation of EELS computation in the SIE framework is detailed in Sec. 3.1.
Briefly, one can derive the frequency-dependent electric and magnetic fields generated
by an electron moving along a straight path. Those fields are then used as a source
in the same way that a planewave or a dipole excitation is used to compute scattering
spectra. Once the scattered field is computed, the work done by the electron through
the Lorentz force against the scattered electric field is evaluated to give the EEL signal
at one frequency. An alternative method relying on energy conservation consideration is

!The energy of the electron is typically between 50 keV and 300 keV, corresponding to speeds between
41% and 78% of the speed of light in vacuum.
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Figure 7 — Comparison between planewave (a) and swift electron (b) excitation of
a nanosphere dimer. The arrows inside the spheres represent their dipolar moment.
Although it is possible to probe the anti-bonding dark (—<—) mode with a planewave
at oblique incidence, its response is usually weak. On the other hand, by placing the
electron beam in the middle of the dimer, symmetry forbids the excitation of the bright
bonding (——) mode whereas placing it on the side of the dimer allows the excitation of
both modes with appreciable amplitude.
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also presented in Sec. 3.1.

Eigenmodes

Resonant and wave phenomena pervade all domains of physics. From the standing wave
on a string studied by Pythagoras [38], passing through the discovery of electromagnetic
waves by Maxwell and Hertz [39,40], to the standing wave pattern of the electron wave-
function around the nucleus [41] and the very recent discovery of gravitational waves [42],
this subject has always occupied the forefront of research in physics. Owing to their
intrinsic characteristics and the basis they offer to study the system response to arbitrary
excitation, eigenmodes often offer a deep physical insight into the system properties.

Even though the study of resonant phenomena is arguably as old as physics itself,
the case of resonances in open and lossy cavities, often referred to as non-Hermitian
systems, is still an active field of research in modern physics, especially in nano/quantum
optics and in general relativity [43]. The reasons for this relatively late development is
that resonant cavities are often designed to minimize energy dissipation, making a full
theory of resonances in lossy cavity unnecessary in many areas of physics. Additionally,
perturbation theory is often sufficient to account for small dissipations in cavities with
large quality factors. However, plasmonic and dielectric nano-optical resonators exhibit
resonances with high damping rate due to radiation losses for the latter, and additional
Ohmic losses for the former: the perturbation approach is not adequate anymore and
one needs to fully consider losses in the derivation of the eigenmodes [44].
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Unfortunately, the afore-mentioned non-Hermiticity leads to several problems concerning
normalization and completeness of the mode basis that have only been (partially) solved
in the last two decades [44]. One of the most striking effect is due to the complex value
of the eigenfrequency: a decaying amplitude of the eigen-fields with time inherently
leads to a diverging amplitude of the fields far from the nanoparticle(s) [44,45]. In such
systems, the modes are no longer orthogonal (as e.g. the vibration modes on a string)
and can thus couple to each-other; for this reason, they are often called quasinormal
modes (QNM).?

In this thesis, we do not burden ourself with such complex considerations and treat
the eigenmodes/ QNMs normally, for various reasons. First, the diverging amplitude
of the field associated with a QNM is not directly problematic in the SIE method used
throughout this manuscript as it is for finite-difference time-domain (FDTD) solvers:
indeed, with the SIE the whole problem is formulated on the surface of the scatterer so
that there is no special care to be taken regarding the field far from the structure. Second,
the eigenmodes are not rigorously used as a basis, and are only used to qualitatively
understand scattering spectra, EELS measurements and SHG. In many cases, symmetry
considerations as well as their resonance frequencies allow to unambiguously attribute
spectral features to given eigenmodes without the use of a rigorous projection on the
eigenmode basis.

Finally, let us mention that alternative approaches exist to define modes in nano-optics. To
begin with, one can define eigenmodes at real frequencies, thus avoiding the problematic
field divergence at infinity. The cost of this well-behaved spatial decay is that a new and
different set of eigenmodes must be generated at each real frequency (each eigenmode
can nevertheless be qualitatively similar to one QNM) [47]. Another method using modes
at real frequencies is presented by Chen et al. [48] where the permittivity, instead of the
frequency, is considered as the eigenvalue; this results in a linear eigenvalue problem,
instead of a nonlinear one like in the case of the QNMs [44]. Another approach, which is
tightly linked to the previous one, is the so called material independent modes presented
by Forestiere and Miano [49], also considering the permittivity as the quantity of interest.
The resonances/modes are defined at specific complex values of the permittivity, without
specification about the frequency, and offer direct information about the multipolar
character of those modes. Those last two approaches, although apparently lacking the
direct physical interpretation of the QNMs?, allow gaining insights into the separate
influences of the material and the geometry onto the eigenmodes. Detailed discussion
about the QNMs can be found in [44], and interesting discussions and comparisons
between the QNMs and the real frequency modes of Chen et al. are found in [48]. Lastly,
as stated in the previous section on plasmonics, since the quasistatic approximation is
often valid in nano-optics, one can also study eigenmodes in this special case. In this

2They are also sometimes called leaky modes, resonant states or decaying states [46].
3In the sense that the QNMs are the most natural way to extend the normal modes of closed cavities,
with which most people are familiar.
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approximation, it is possible to extract the real part of the eigenfrequency associated with
an eigenmode described by a real surface charge distribution [50,51]. The problematic
field divergence of the QNM:s is also absent in this special case, since there is no radiation.

One can also approach the problem from an antenna perspective by looking at the
impedance of the system and use the so-called characteristic modes, first introduced
by Garbacz and Turpin [52, 53] and then further developed by Harrington and co-
workers [54,55]; a more recent account on the subject can be found in Ref. [56]. Although
first introduced for perfect electric conductor materials (PEC), this formalism has recently
been extended to non-PEC materials, i.e. plasmonic scatterers [57]. A comprehensive
analysis of the link between all those definitions is yet to be done, but discussions
between characteristic modes and complex natural/external resonances (the equivalent
of the QNM in antenna theory) can be found in Refs. [58] and [59] respectively for a
dielectric and a PEC infinite cylinder, and for other PEC structures in [60]. A general
and comprehensive discussion about the characteristic modes and external resonances is
found in [56].

Since the QNMs bear a strong physical meaning as a natural extension of the modes of
closed cavities, one can wonder what is the use of the previously mentioned alternative
definitions. However, in addition to the (potential) insights that modes give to the
response of a system, their use as a basis for fast computations is of great practical
importance , unfortunately this is precisely where the QNMs are problematic [44]. In
any case, those alternative definitions remain a way to reach a mathematically better
suited, but often more complex definition, at the cost of a direct physical insight.*

Surface Integral Equation

There are few problems that allow for a full analytical solution of Maxwell’s equations,
such problems being limited to geometries exhibiting high degrees of symmetry [61,62].
Consequently, a variety of numerical approaches have flourished in order to study
more complicated and realistic systems [63]. Initially developed for simulations in the
microwave/radio frequency regimes, the SIE method relies on a Green’s function approach
to solve the electromagnetic wave equation [64-67]. It thus differs from the more common
FDTD and finite element methods (FEM) that rely on a differential equation formulation
approach. Here we shortly describe the main steps in the derivation of the surface integral
equation, a rigorous mathematical development can be found in Ref. [68]. Using the
vectorial wave equation and its Green’s function, one can derive a volume integral relation
between the field imposed by a source and the resulting field inside a bounded domain [69].
The central point is the use of Gauss’s theorem to transform the volume integral to

4Tt does not mean however that those alternative modes are completely devoid of physical meaning,
and each approaches leads to a different point of view that can enlighten some particular aspect of the
structure’s response.
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a surface one, taking advantage of the homogeneous properties (the permittivity and
permeability) of the structure. The background medium does not need to be discretized
(as it is the case in FDTD and FEM) as its influence is included in the the integral
formulation through the Green’s function and the boundary conditions are automatically
fulfilled at the edge of the computation window. Although first developed for perfectly
conducting media where the fields do not penetrate the scatterer and where it thus makes
sense to consider only surfaces, the SIE method was successfully extended to optical
regimes where the finite conductivity of metals is finite [68]. The principal limitation of
the SIE method is the restriction to piecewise isotropic and homogeneous media; this
is however not a severe drawback as most nanostructures studied in nanophotonics are
composed of such media. On the other hand, the surface discretization by triangular
elements allows for the creation of realistic and smooth geometries [68], and for the
possibility of localized mesh refinement, something not directly possible in FDTD. The SIE
method at optical frequency was successfully extended to periodic media [70], stratified
media [71] and to the computation of SHG [72]. Mathematical details about the SIE
method as well as the SHG computation can be found in Sec. 2.1.
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I} Eigenmode Analysis

In this chapter, I first introduce the theory pertaining to the search of the eigenmodes
in general systems described by wave equations. Then, I present different numerical
approaches to solve for the eigenmodes of a discretized system. Although mainly aimed
towards the study of plasmonic nanostructures in the framework of the SIE method,
the content of this chapter is introduced in a very general manner and most of the
considerations are valid for any resonant system. The words "mode" and "eigenmode"
are used interchangeably to design the eigen-solutions of the wave equation, and usually
refer to the eigenfunction/eigenvector and the eigenfrequency.

1.1 Theory

From a physical point of view, eigenmodes are states of a system that can exist without
external influences [1]. Equivalently, if the system is in a state corresponding to an
eigenmode, it will remain as such. Another property of eigenmodes, and certainly one
of the most useful, is that any state of the system can be expressed as a either finite,
or generally infinite, sum of the eigenmodes [2]. Such systems are defined by boundary
conditions and characterized by a certain set of differential equations that describe the
physical quantities of interest and the laws of physics that they obey. The boundary
conditions can be seen as defining a cavity and the eigenmodes as the "preferred" state
of that cavity. Examples are numerous: a mass on a spring [3], a microwave oven [4], a
taut string [2], and virtually any (partially) closed geometry.

On a more mathematical ground, eigenmodes are solutions of the differential equation(s)
describing the cavity without sources (i.e. the homogeneous equation). Many, if not all,
resonant systems are described by a wave-like equation that accounts fors their resonant
nature. The most common of the wave equations is d’Alembert’s (aka the wave equation)
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Chapter 1. Eigenmode Analysis

and takes the following form:
1
V2A(r,t) — 5 07A(r,t) = F(r,1), (1.1)
c

with A(r,t) the quantity of interest (electromagnetic field, pressure, mechanical defor-
mation, displacement etc...), F(r,t) the source term, ¢ the speed of the wave, V2 the
Laplacian operator acting on the spatial coordinates r (which exact expression depends
on the coordinate system), and 0? second order partial derivative with respect to the
time t. The specific problem at hand sets boundary conditions on the variable A(r,t),
which in turn dictates the form of the modes. A single set of given boundary conditions
on the spatial dependence of A(r,t) can describe many different physical systems. For
example, the solution describing a taut string where A(r,t) is the height of the string [2],
is the same as the solution for a cavity consisting of two perfectly conducting planes,
with A(r,t) the electric field parallel to the sides of the cavity [5].

Often, boundary conditions on the time variable, called initial and final conditions, are
not given and the time dependence of A(r,t) is straightforwardly obtained. To show this,
the separation of variable technique is often employed. It consists in writing A(r,t) as a
product of a space dependent function and time depended one, A(r,t) = X(r)T(¢). By
doing so, the wave equation (1.1) with F(r,¢) = 0 becomes

T(#)V2X (r) — X(r)éafT(t) 0,
1 iLWT(t)
X(r) 2T(t) " '

1
l XiX(Y)T(t) (1.2)

VX (r) =

Equation (1.2) says that two functions of different variables, r and ¢, are always equal.
This is possible only if they are each constant. Indeed, if one differentiates (1.2) with
respect to t, the left side gives zero because it does not depend on t. Consequentially, the
right side is also vanishing, meaning that it does not depend on ¢ too. This also works
for a space derivative and one can thus see that both sides are indeed constant. We note
this constant —k? and obtain two equations,’

V*X(r) = —k*X(r),

OXT(t) = —k22T(t).
Both are Helmholtz-type equations that can be viewed as an eigenvalue problem. For

example, the solutions X of Eq. (1.3) are the eigenvectors of V2 with eigenvalue —k?.
Given the lack of initial and final conditions, Eq. (1.4) is readily solved. By setting

'In more general contexts, especially in mathematics, this constant is often noted \ as it appears as
an eigenvalue. However, A is already used as the wavelength in wave physics, and, as it will appear, the
quantity of physical importance is here v/, hence the choice of —k?

22



1.1. Theory

w = ck and imposing k£, T € R, an adequate solution is
T(t) = Ag cos(wt + ), (1.5)

with Ay and ¢ arbitrary amplitude and phase, respectively. Thus, whatever the spatial
boundary conditions, the geometry of the problem and the form of the Laplacian, the
time dependence of an eigenmode of the wave equation (1.1) is the one given by Eq. (1.5).
Mathematically this is because the sine and cosine functions (and more generally a sum
of two complex exponentials) are the eigenfunctions of the operator 97, with eigenvalue
—w? [6]. In mechanics, this operator appears through Newton’s second law, explaining
why wave equations appear throughout this domain of physics. In electromagnetism the
0? appears through the combination of Maxwell-Ampére’s and Faraday’s laws and leads
to a wave equation for the electromagnetic field; this point being one of the greatest
scientific discovery of the modern era. This property of the sinusoidal functions thus
justifies the almost omnipresent use of frequency domain methods to solve wave problems
in physics. Indeed, Fourier’s analysis tells us that any temporal signal can be constructed
as the sum of sine and cosine functions. One can then directly assume a time dependence
of the form (1.5) in the wave equation, effectively taking its Fourier transform, and work
only with the Helmholtz equation (1.3); this is what frequency domain numerical solvers
do [7]. Let us show this point explicitly by assuming now that A(r,t) = Re{A(r)e ™"},
with A(r) € C. Tt follows that 07A(r,t) = —w?Re{A(r)e”™*}. The wave equation being
linear in A, one can take the real part of the whole equation and solve for the complex
functions inside, taking the real part of the solution at the end. By further simplifying
the e~ factor, we obtain

V2A(r) + =A(r) =0, (1.6)

which is equivalent to Eq. (1.3) with w = ck.

The geometry of the problem dictates the boundary conditions on X(r) or A(r) and
thus its exact form. More importantly, the boundary conditions impose certain discrete
values of k and thus of w through the dispersion relation w = ck. The simplest example
being the taut string: only sine functions having a wavelength such that their amplitudes
vanish at both end points are valid solutions, leading to the well-known standing wave
pattern and associated harmonics. On the other hand, waves in free-space can exist at
any frequency since they are not spatially bounded.

In all generality, there is no analytical solutions to Eq. (1.6), the exception being simple
symmetric structures where the Laplacian operator V? can be written in a simple manner
in the appropriate coordinate system [8]; other geometries need a numerical approach to
be solved. In Cartesian coordinates the Laplacian separates nicely the three orthogonal
components so that three separate Helmholtz’s equations are obtained, for which linear
combination of sine and cosine functions are solutions. In spherical coordinates (r, ¢, 6)
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Chapter 1. Eigenmode Analysis

the trigonometric functions are solutions for the azimuthal angle ¢, Bessel functions are
solutions for the radial component r and associated Legendre polynomials of cos(f) are
solutions for the polar angle [8]. The separate solutions on the (¢, ) components form
the so called spherical harmonics that constitute the basis for the study of eigenmodes in
2D spherical geometries [8].

Unfortunately, real systems are usually described by the wave equation (1.1) only at first
approximation. This first approximation is the linearity of the system, which is valid
only for "small" values of the quantity of interest (see the Second Harmonic Generation
part in the introduction, p. 6). However, this is very often a good approximation and
nonlinearities are rarely considered in eigenmode analysis.The other approximation is the
omission of losses: every physical systems show some loss mechanisms, either internal
(e.g. Ohmic losses, friction etc...) or external (e.g. radiation losses). The wave equation
thus has to be modified to take into account the energy dissipation. Even if in most
applications of resonant systems, the goal is to reduce as much as possible any losses, lossy
systems are still of interest in many fields, and especially in plasmonics. Indeed, metals
are inherently lossy at optical frequencies, leading to a strong damping of the LSPRs.
In plasmonics, systems are often characterized by quality factors (Q-factor) below 100,
whereas Fabry-Pérot cavity can reach Q-factor of tens of thousands at the same optical
frequencies [5,9]. It is thus worth studying how the wave equation is modified when
losses are taken into account.

Concerning LSPRs, the losses occur through two distinct channels. The first one is
the Ohmic losses, due to electrons collisions with the lattice and other internal loss
mechanisms. The other channel is the radiation losses, due to the charge oscillatory
movement. This last mechanism depends on the geometry of the nanoparticle whereas
the Ohmic losses depend only on the material.? Thus, as an example of how losses
modify the wave equation, we simply consider a wave propagating inside a conductor,
and analyse how the finite conductivity leads to losses. To do that, let us derive the
wave equation for a conducting and neutral medium. Let us first recall the microscopic
Maxwell’s equations:

vV.E=", (1.7)
€0

V- H=0, (1.8)

V% E + updH =0, (1.9)

VxH- E=1J, (1.10)

with EE and H the electric and magnetic fields, p and J the charge and current densities,
and pg and €y respectively the vacuum permeability and permittivity. The conductor is
neutral so p = 0, and obeys Ohm’s law J = ¢E, with ¢ the conductivity. Taking the curl

2However, the actual amount of losses is dependent on the geometry, since it is proportional to the
field inside the nanoparticles that is indeed geometry dependent.
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of Eq. (1.9) and substituting Eq. (1.10) inside (the curl and the partial time derivative
commute) we obtain

V x V x E + 100:(J + €0dE) = 0,
109 (J + €00, E) lJ:"E (1.11)

V XV X E+ puyooE —I—,uoeoﬁfE =0.

We further use the vectorial identity V x V x A = VV - A — V2A with A = E, and use

p:OEq'—m>V-E:OIeadingto

V2E — 1100 0:E — 1106007 E = 0. (1.12)

This is the usual wave equation, with ¢ = 1/,//p€o, provided with an additional first
order term pood:E. To find solutions of this new equation, we assume time-harmonic
solutions, i.e. we take the Fourier transform of Eq. (1.12) for the time variable. This is
done by the following substitution, d; <+ —iw, and we obtain

V2E + iwpiooE + w’poeoE = 0. (1.13)

We can now factor out the E,

V2E + w1060 <1+z’"> E=0. (1.14)
cow

We thus observe that the additional term in J; (that comes from the conductivity) in
the wave equation leads to a new imaginary term in the associated Helmholtz equation.
This new term can be interpreted as a modification of the permittivity, giving an
effective relative permittivity e, = (1 +i0/(eow)) that is now a function of the frequency.
Additionally, if one uses the frequency dependent conductivity o = o¢/(1 + iwT) [10]
with 7 the relaxation time of the free electrons and oy the DC conductivity, the above
mentioned relative permittivity corresponds to the so-called Drude model that is often
used in plasmonics [11,12]. Let us remark here that if we wanted to consider the frequency
dependence of the conductivity in the temporal domain, i.e. in Eq. (1.12), we would have
to write a cumbersome temporal convolution of the electric field with the current density;
a relation that is easily handled in frequency domain thanks to Fourier’s transform
properties [8].

If ones identify Eq. (1.14) with the Helmholtz equation (1.3), it appears that instead
of the simple relation k? = w?/c? we now have k% = w?/c(w)? € C. Thus, since for now
w € R, it appears that the propagation vector is complex,? the imaginary part giving
the spatial decay rate of the wave. Additionally, the speed is now frequency dependent,
leading to dispersion: each harmonic component has a different phase speed given by the

3Keeping a real wavevector together with a real frequency would mean having a complex phase speed,
which, at least here, bears little sense. However, as shown later, choosing a complex frequency can have
a physical meaning.
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dispersion relation. The modified wave equation Eq. (1.11) is a prototypical example of
how the inclusion of losses in the governing equations of the system leads to dispersion,
and is particularly adequate since this thesis deals with the optics of metals.

The main point to retain from the above derivation is that when working in frequency
domain with losses, the equivalent Helmholtz equation contains complex coefficients of
different powers of w and that, consequently, the eigen-solutions of such an equation
have complex eigenfrequencies or eigen-wavevectors. In the above development , we
assumed harmonic time dependence, i.e. real frequencies. However, things can be less
trivial in certain cases and it appears that the choice between a complex frequency or a
complex wavevector is dictated by the definition of the problem. To show that, let us
first consider a harmonic planewave impinging on a metallic surface. A part of the wave
is reflected, but a part penetrates the metal and obeys the lossy wave equation (1.14).
One has to choose which of a complex frequency or wave-vector makes sense. If one takes
a complex frequency, the amplitude of the wave inside the metal will decay over time.
This does not make sense since the impinging planewave has constant amplitude, as
imposed by the source. On the other hand, a complex wavevector leads to a decay over
the distance, meaning that the wave is attenuated as it penetrates inside the metal and
this indeed corresponds to what one could observe in such a case. As another example,
let us consider a cavity composed of two parallel perfect conductors, separated by a lossy
medium. Searching for the eigenmodes of this cavity, one can deduce that discrete values
of the wave vector are defined by the distance between the two planes and translate the
standing wave pattern inside the cavity. Consequently, a complex valued wavevector
would bear little sense. However, a complex frequency leads to a decay in time, indicating
that the modes are damped, a conclusion in agreement with what one could expect from
a lossy cavity.

In the case of a leaky cavity, radiation losses occur even when the material building up the
cavity is lossless. Thus, the eigenfrequencies of the cavity modes have to be complex in
order to account for their damping. Even without additional terms in the wave equation
like in Eq. (1.12), the losses appear through the boundary conditions defining the problem.
For example, if one studies a Fabry-Pérot resonator and looks for the eigenmodes inside
the cavity, a complex eigenfrequency naturally arises to compensate the transmission of
the wave to the external medium [1].

Having seen how losses can be accounted for into the wave equation, and more specifically
into the associated Helmholtz equation, let us now go back to the problem of finding the
eigenmodes of a cavity. The Helmholtz equation of the lossless problem can generally be
written in the form K¢ = w?Mg, with K, M operators (or matrices in the discretized
case)? describing the system, and ¢ a function or vector representing the quantity of
interest. This case is a conventional linear eigenvalue problem and can generally be solved
numerically without difficulties. On the other hand, the inclusion of losses as presented

10ften, the matrix M is proportional to the unit matrix I, so that it is not explicitly written.
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1.2. Numerical Methods

before leads to a problem of the form K¢ = w?M¢ + iwl'¢, which is a nonlinear, in this
case quadratic, eigenvalue problem [13]. Indeed, there is now two different powers of
w, making the search for a solution less trivial than in the linear case. More complex
systems can lead to even more complex forms of the problem and it is not always possible
to have distinct matrices for each w power. Fortunately, whatever the exact form of the
operator O describing the system, one can always write it O(w)¢ = 0, corresponding
to finding solutions ¢ that can exist without sources, i.e. with a vanishing right-hand
term. Indeed, the problem with a source F would be written O(w)¢ = F, and that is
the general form of the problem that frequency-based numerical approaches try to solve
by inverting O(w).

Below we show a few examples of wave-related problems and the corresponding operators,
in frequency domain. The harmonic oscillator is abbreviated H.O., x is a scalar variable,
Z is a vector of scalars, ¢(r) is a position dependent scalar function and O is a square

matrix:
O =wi—uw? p=xzeR H.O. (1.15)
O = wf —iwy — w? p=x€C Damped H.O. (1.16)
O=M —w? p=reR" n Coupled H.O. (1.17)
O=M —iwl —w? p=2eC" n Coupled Damped H.O. (1.18)
O =V?-uw?/c? ¢ =o(r) €R Helmholtz  (1.19)
O=V?—iwy—w?/c* ¢=0¢()cC Damped Helmholtz (1.20)
O =0(w) p=2eC" n Elements Discretized Problem (1.21)

Those operators can be classified in two categories, those with operators corresponding
to continuous problems, and those with matrices associated to discrete problems. When
discretizing a continuous problem, the operator will transform into a matrix. For example,
if one discretizes the Helmholtz equation (1.19) to solve the 1D wave equation numerically,
one obtains an equation similar to Eq. (1.17). In other words, if one considers infinitely
many harmonic oscillators coupled in a line, i.e. each one is coupled to its two neighbours,
it can be shown that Eq. (1.17) tends to Eq. (1.19) [14]. This is because the matrix M in
Eq. (1.17) contains off-diagonal elements describing differences between the positions of
adjacent oscillators, which is equivalent to the discretization of the second order derivative
operator. This relation also shows the importance of the coupled oscillator model when
studying wave phenomena and resonant systems.

1.2 Numerical Methods

Having presented the nonlinear eigenvalue problem that arises from the wave equation
when losses are present, we can now look at how one can find the complex eigenfrequencies
and the associated eigenmodes. Before exposing the different approaches that can be
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used to compute eigenmodes, there is an important point that needs to be addressed. As
exemplified by the case of a wave in a conducting medium in the previous section, the local
response of the medium constituting the system and its surrounding is characterized by
a complex function; in the present case of electromagnetism for non-magnetic materials,
this response is the permittivity. The frequency dependence of the permittivity translates
the fact that the polarization (i.e. the response of the matter to an electric field) takes
time to establish, and this is intimately linked to the losses as dictated by the Kramers-
Kronig relations [5]. In practice, ellipsometry measurements allow retrieving the full
complex permittivity in a given frequency range. In an experiment however, for obvious
experimental reasons, this frequency range is bounded to the real axis. Thus, in order
to obtain the material response at a complex frequency to find eigenmodes, one needs
to use an analytical model fitted to experimental data. Such a model can be prolonged
in the complex plane allowing finding eigenmodes for structures described by a realistic
permittivity function. In plasmonics, the Drude model is widely used due to its simplicity
and its good match with experimental data, generally in the lower range of the frequency
spectrum [11]. Indeed, the conduction electrons response is often more complicated than
the simple model exposed before, consisting of freely moving point charges occasionally
colliding with the lattice. The main departure from this model is due to the interband
transitions that create an additional loss channel not described by a Drude model. In
gold, the imaginary part of the permittivity starts to depart from the Drude model due
to the interband transitions at around 2.0 eV/ 620 nm, whereas for silver this occurs at
around 3.8 ¢V/ 326 nm [15]. Up to those energies, both gold and silver are relatively
well described by an adequate Drude model. A way to take the interband transitions
into account, i.e. an increase in the imaginary part of the permittivity at high energy, is
to add into the Drude model new resonant terms. These so-called Lorentz terms contain
poles in the complex plane, and it is not yet clear how those poles affect the search for
eigenfrequencies in the complex plane. Since the interband transitions strongly damp
the plasmonic resonances, one often designs metallic nanostructures so that the modes
of interest are at energies below the interband transition threshold. Thus, the Drude
model is often adequate for the eigenmode analysis, but one still has to keep in mind
the possible differences between the real/experimental permittivities and that given by
the model. In this thesis, all eigenmode computations are made using a Drude model
fitted to experimental data, whereas the spectra are often computed directly with those
experimental values.

We now concern ourselves with discretized numerical problems, i.e. when the operator
describing the problem is a matrix. We consider a general square, complex valued matrix
O(w) with w € C which entries O, are complex functions of w. The general way to
find non-trivial (¢ # 0) solutions to the equation O(w)¢ = 0 is to solve det(O(w)) = 0.
To use the adequate mathematical terminology, we say that we look for the kernel of
O(w) [16]. In the case of square matrices, the determinant is equal to the product of the
eigenvalues \; so that a vanishing determinant also means that at least one eigenvalue
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vanishes. This offers two possible ways to numerically look for the eigenfrequencies.
Depending on the size and the condition number of the matrix, one possibility can be
more advantageous than the other since different algorithms exist for those two tasks.
Additionally, there exist algorithms that directly look for the smallest eigenvalue of a
matrix, without having to compute all of them and then sort them out [17]. Let us recall
that the vanishing eigenvalue A that is sought here is not the eigenfrequency of the mode,
as it can be the case in other problems, but an abstract number that expresses the fact
that a solution, the eigenvector, exists without any sources. On the other hand, the
eigenfrequency weig is the eigenvalue of the nonlinear eigen-problem O(weig)@eig = 0. We
can summarize this as follow:

det(o(wﬁg)) =0 < O(weig) Geig = Aeig Peig = 0, Aeig = 0 > no sources.
N7 — =~

eigenfrequency eigenvector eigenvalue

(1.22)

Once an eigenfrequency weig is found, one can easily obtain the associated eigenvector ¢eig
that solves the eigenvalue equation O(weig)Peig = 0. Let us mention that the eigenvalues
A of O(w) are indeed complex numbers, but since only their magnitude is important
here, we implicitly refer to |\| when talking about a vanishing eigenvalue. Concerning
the notation, \ designates any eigenvalue of O(w), Apin is the smallest one of them and
Aeig is the eigenvalue that vanishes, i.e. if Apin — 0, Amin = Aeig-

The goal is now to find a particular point in the complex plane where the determinan-
t/eigenvalue of the matrix vanishes. Brut-force scanning of the complex plane is not
a practical solution for matrices larger than a few tens of elements, and one has to
proceed differently. We first outline several ways one can get a first estimate of the
position of the eigenfrequencies in the complex plane. To begin with, the different spectra
obtainable with different excitation conditions already give a first hint as to where the
eigenfrequencies are located in the complex plane. Indeed, for a single eigenmode, the
resonant frequency (the frequency of the maximum response) is related to the real part
of the eigenfrequency, whereas the width of the resonance is linked to the imaginary
part. One can then first acquire a spectrum, measure the resonances lineshape, and use
these two parameters as starting point in the complex plane. Unfortunately, except for
very simple systems and/or for a few sets of eigenvalues, it is rarely as simple as that.
Realistic systems have more than one eigenmode, and thus resonances often overlap
and interfere, making the use of the above-mention relation hard or even impossible.
This is especially the case in plasmonic systems where resonances are broad, i.e. easily
overlapping, but also in dielectric nano-systems where different multipoles easily interfere,
creating a strong asymmetric lineshape [18]. Different excitation geometries may allow
the discrimination of specific eigenmodes thanks to their symmetry, but this trick is
indeed limited to relatively simple systems possessing certain symmetries. Additionally,
looking at the fields at particular points and/or in particular directions can also allow
discriminating eigenmodes with specific symmetries. Finally, in most cases, two or more
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Chapter 1. Eigenmode Analysis

eigenmodes couple to the same excitation and one of the eigenmode may have a response
much smaller than the other one, making it impossible to extract its resonance lineshape.
One way to increase the amount of information deducible from a spectrum is to artificially
set the imaginary part of the permittivity to zero. This will cancel the absorption losses,
thus narrowing the peaks and allowing an easier estimation of the lineshapes parameters.
The eigenfrequency found without losses gives then a relatively good starting point in
the complex plane, with the additional information that the corresponding lossy eigenfre-
quency exists at a larger negative imaginary frequency and at a real part generally only
slightly different. This loss-cancelling approach is especially efficient for high order modes
that often occur in the interband transitions region of metals and are strongly damped.?
Another approach is to conduct a decomposition of the scattering spectrum into vector
spherical harmonics (VSH). It allows a first disentanglement of the spectrum that can
help isolate the contribution of a single eigenmode, even though a single mode cannot
always be related to a single multipole coefficient (see for example Fig. S5 in Sec. 3.2
and Fig. 2 in Sec. 3.3). Another approach is to fit the resonant lineshape with a coupled
oscillator model in order to extract the eigenfrequencies of each modes. Finally, one is not
restricted to monitor far-field scattering: monitoring the near-field is also a possibility,
as the relative weight between radiative and non-radiative components associated with
different modes can change appreciably.

Once an estimate of the eigenfrequency position is obtained, one needs a criterion to be
able to converge to the vanishing determinant. Ideally, the 2D map created by det(O(w))
OT Amin(w) = min(eig(O(w)))® is smooth and has local minima at the positions of the
eigenfrequencies. One may thus use various algorithms, such as Householder’s methods,
to converge to the minima by functions fitting and extrapolation [19]. Unfortunately, it
can be that the 2D map is not smooth at all and that neither method is ideal, see Sec. 2.1.
For example, for large and ill-conditioned matrix, the computation of the determinant is
hard or even impossible so one has to look at the smallest eigenvalue [17]. On the other
hand, there is a priori no reason for the 2D map created by Apin(w) to be smooth. Indeed,
as stated before, in the case of the SIE matrix the eigenvalue Apyin(w) has no particular
physical meaning and is only indicating the frequency at which there is a non-trivial
solution to the problem O(w)¢ = 0. Thus, far from an eigenfrequency, A\pin(w) can take
any value and is not related in any way to the physics of the problem, but rather to
the mathematical structure of the matrix. The consequence is that, except if the initial
guess wy of the eigenfrequency weig is really accurate, the evaluation of Ayin(w) around
w1 will not yield any hint to where wejg is located, see Fig. 1.1(a). Let us note here
that for different problems the minimal eigenvalue map can be smooth and allow a fast

®Since eigenmodes are here found with Drude models, the interband transitions are in fact not a
problem. Practically, even if the spectra used as final results are computed with experimental values of
the permittivity, a spectrum with the corresponding Drude model is often computed in addition as to
remove the interbands contribution, with or without setting the losses to zero, to get a better insight into
the modes.

Seig(-) meaning the set of eigenvalues of ().
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Re{w}

Im{w} Im'{w}

Figure 1.1 — Looking for an eigenfrequency in the complex plane. Bright/dark shades
indicate minimal/maximal values. (a) Monitoring the minimal eigenvalue. Outside a
narrow region around the eigenfrequency (dashed circle), [Apmin| does not give information
about the location of wejg. It is thus impossible to know where to compute the next
eigenvalue. (b) Monitoring the response |¢| to a complex frequency excitation. The
evolution of |¢| is smooth, enabling an algorithm to converge easily to weig through a few
intermediate steps wi_3.

convergence to the eigenfrequency, see Ref. [19] for an example with scattering matrices.

Although the general problem of finding eigenmodes was presented as a search for solutions
without sources, approaching the problem from the point of view of a system response’s
yields another way to study eigenmodes. Let us first consider a simple undamped
harmonic oscillator for which the frequency dependent amplitude x has the form

1

2 _

—_—. 1.23
r (1.23)

T X
When driven at its resonant frequency wg, energy keeps being built up in its motion
and its amplitude diverges to infinity. One can remedy to this non-physical divergence
problem by adding a damping term ~ proportional to the speed of the oscillator, leading
to a finite maximal amplitude. Mathematically, Eq. (1.23) is modified as follows:
1
2

—_. 1.24
wg — w? —iwy (1.24)

x X
Thus, due to the imaginary part of the denominator, the amplitude of z cannot diverge.
However, this is true only for a real frequency excitation, i.e. w € R. Indeed, by setting
w=+/wi - (%)2 — i3, which is precisely the eigenfrequency of the system, in Eq. (1.24)
the denominator vanishes, leading again to a diverging amplitude. Here, and in the rest
of this thesis we use the e ™ convention for the time varying harmonic quantities; the
consequence is that the imaginary part of the eigenfrequencies needs to be negative to
correspond to time decaying amplitudes. If one now considers the problem of finding the
eigenmodes of the matrix O(w), instead of solving for the vanishing determinant, one can
look for solutions leading to diverging responses ¢ [20]. The problem is different than
before as we now have to solve O(w)¢ = s(w) for ¢, with s the excitation vector, and we
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(a) F(w) (b) F(w)

Figure 1.2 — Complex excitation method applied to a coupled system of two different
damped oscillators. On the plots, each line represents a spectrum at a constant imaginary
frequency. (a) The mass on the left is excited and its amplitude is monitored. It appears

that its amplitude diverges at two distinct complex frequencies, corresponding to the
eigenfrequencies of the coupled system wéilg’Q). (b) If the second mass is excited, and the
amplitude of the first one is monitored, we also observe the divergence of the response at
the two eigenfrequencies. The same effect happens if one monitors the second mass. The
lines computed at the imaginary frequencies corresponding to the two eigenfrequencies as
well as the spectra computed at real frequencies are shown thicker. In (a), at Im{w}=0

one can see a typical Fano lineshape.

can formally write ¢eis = O_l(weig)s(weig) — o0o. In all generality, not all elements of
¢eig necessarily diverge, and one has to specify what is exactly meant by ¢ejz — 00. In
practice, monitoring e.g. the electric field at one adequate point is sufficient, but the
exact quantity will depend on the nature of the numerical method used to approximate
Maxwell’s equations. In the case of SIE, it makes more sense to monitor the effective
surface currents as they are the quantities constituting ¢. Contrary to the minimal
eigenvalue method described above, the response that is now monitored is evolving
smoothly with the frequency since it describes a physical quantity, enabling to quickly
converge to the actual eigenfrequency, see Fig. 1.1(b). This is exemplified in Fig. 1.2
where a system of two non-identical coupled lossy oscillators is driven in two different
configurations. It is clearly apparent that the two modes give a divergent response at the
two respective eigenfrequencies in both cases, and that the evolution of the amplitude
is smooth. Additionally, we notice that the two spectra on the real axis (Im{w}=0)
do not show a clean resonant lineshape from which the real and imaginary part of the
eigenfrequencies can be easily guessed. In this example, the operator O is of the form
(1.18), with n = 2.
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Finally, let us remark that the complex frequencies at which the amplitudes of the
responses diverge are precisely those where the determinant of the matrix vanishes, and
the vector ¢eig = O™ ' (Weig)s(weig) tends (with appropriate scaling) to the eigenvector
of the equation O(weig)Peig = 0 [20]. Indeed, recalling that det(O~!) = (det(O))~*,
it follows that if det(O(weig)) = O then det(O *(weig)) — 0. In practice, once an
eigenfrequency is found with the complex excitation method, the smallest eigenvalue of
the SIE matrix at this eigenfrequency is computed and verified to be sufficiently small.
The fact that this approach relies on an excitation inherently implies that one can only
find eigenmodes that couple to this excitation. Although it is relatively easy to design an
excitation that couples to all modes by suitable symmetry breaking, it is to be expected
that some eigenmodes will respond far better that others, thus possibly dwarfing the
response of the latter in comparison. All the modes will still present a divergent response
at their eigenfrequencies, but if one mode is located near another better-coupled one it
can appear to be relatively narrow and it can be harder to converge to it without being
attracted by the maximum of the neighbouring stronger resonance (see for example the
2D map presented afterwards in Fig. 1.4 where some maxima are extremely broader
compared to others). Thus, one can still expect to have to adapt the excitation to
the sought eigenmode symmetries in order for this method to be efficient, implying a
prior knowledge of the modal structure of the system. On the other hand, the previous
approach based on the determinant is indeed excitation free so that all eigenmodes can
be expected to have comparable behaviour in the complex plane, this being however of
no importance in our case since this method is not efficiently applicable to SIE.

The two methods mentioned above have direct physical interpretations, respectively a
solution without excitation and a diverging response to a complex frequency excitation.
Both approaches arise naturally as ways to find the eigenmodes when the problem
is studied mathematically. Unfortunately their efficiency as a whole depends on how
accurate the first estimate of the eigenfrequency is, if one is obtainable at all. However,
an ingenious trick allows one to find all the eigenfrequencies included in a given contour
inside the complex plane. This method is based on Cauchy’s integral formula and
the residue theorem [8]. Since both theorems deal with poles of functions, we need to
use the inverse of the matrix of which we are seeking the kernel (i.e. the eigenvectors
¢eig). We will thus use the matrix S(w) = O~ !(w) and, as just shown above for the
frequency excitation method, the positions of the poles of the inverse operator coincide
with the position of the zero of the operator. We first show below how this method
works on a scalar function and then extend it to matrices; additional details can be found
in [19,21-24].

Let us consider a closed contour « in the complex plane, a complex number zy inside this
contour, as well as a function f(z) € C that is holomorphic inside the contour.” Cauchy’s

"A function is holomorphic if it is complex-differentiable in the domain under consideration. The
terms analytic and regular are also often employed.

33



Chapter 1. Eigenmode Analysis

integral formula states that

EZ) dz = 2mif(20) . (1.25)
v 2 20

One can compute the same integral with zf(z) as the denominator and obtain

j{ L(Z)dz = 2mizpf(20) . (1.26)

zZ— 20

If we now divide Eq. (1.26) by Eq. (1.25) we have,

$, 2
Foic T 20 (1.27)

v z—z0

Thus, the computation of two integrals allows extracting the value of the pole zy. In
the above example, this may seem trivial since we have constructed the pole ourselves,
but in practical problems, the poles are not necessarily known and this method is very
powerful. To apply this method to the problem of finding a complex frequency at which
a given function vanishes, it suffices to use the inverse of the function, since the positions
of its zero will correspond to the position of the poles of the inverse function.

We now extend this method to a matrix S(w), the elements of which are frequency
dependent complex functions, i.e. Sy, (w) = frm(w). The poles will be the values of w
for which det(S(w)) — oco. Since the determinant is the product of the eigenvalues, this
will also correspond to at least one diverging eigenvalue. Additionally, if S(w) = O~ (w)
and O(w) has eigenvalues \;, then S(w) has eigenvalues 7; = A; *. This is straightforwardly
shown:

Eigenvalue problem
with O, u and A

——— O 1y _1 1
Ou = \u —— O 0u=0""\u

u=0"w 2%, A ly=0"l , (1.28)
—_—

Eigenvalue problem
with O™, uand A~1

the first and last equations correspond to eigenvalue problems for O and O~! with X
and u, respectively A~! and u, as eigenvalues and eigenvectors.

We first begin by showing the validity of the method for a diagonal matrix, the extension
to any matrix following afterwards. Let us consider a 2 x 2 diagonal matrix S(w)
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containing two meromorphic® functions with two poles w; and wy inside the contour 7,

f(w) 0
S(UJ) = |f*’6‘*ﬂ g(w) ] s (129)
w—wo

with f(w) and ¢g(w) two holomorphic functions. According to Eq. (1.25) and Eq. (1.26),
the computation of the closed integrals of S and wS around ~ gives

1 _ | flwr) 0 | _
2mi ﬁswdw B [ 01 g(m)] - 130
1 _|wif(wr) 0 _

We then compute 1211_1:

1211_1 _ [wlféwl) 0 ‘| 1 lg(wg) 0 ]

wag(w2)
- [“61 0] . (1.32)

We thus see that the two poles appear in the diagonal of the resulting matrix. This result
is easily extended to a square diagonal matrix of arbitrary size.

The extension to non-diagonal square matrices is not straightforward and is addressed
in ref. [22, p. 313] and [23]; here we briefly summarize the main result. If S(w) is not
diagonal, the two matrices I1 and I» resulting from the integral will not be either. To
show how we can make this method work for non-diagonal matrices, let us first write the
quotient of the two integrals of a given diagonal matrix D,

$§wDdw Do
— =D 1.33
¢ Ddw D, b (1.33)

where D, is a diagonal matrix with the poles of D. We note that since D,, is diagonal,
the poles of D are also the eigenvalues of D,,.? We now introduce a non-diagonal matrix
P and multiply the previous equation by P on the left and P! on the right:

Do
PD,P !=P
b D

P! =PD,D;'P!

' i PD,P!
=PD, P 'PD P! =PD,P H(PDP ) = 2
PD,P
(1.34)

8 A meromorphic function is a function that is holomorphic everywhere except in a discrete set of
points which are the poles of the function.
9The eigenvalues of a diagonal matrix are its diagonal elements.
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Figure 1.3 — Schematic representation of the contour integral method to locate the poles
of Ofl(w). The eigenvalues of the matrix 1211_1 give a very good approximation of the
poles positions inside the contour . The eigenvalues located outside the contour (gray
circle) are simply ignored. If needed, they can be refined by using either of the methods
shown in Fig. 1.1.

The term PDpP_1 is by definition the diagonalization of an unknown matrix,'® which
eigenvalues are in the diagonal of D,,.

We now assume that I; and I, resulting from the integrals of a non-diagonal square matrix,
can be both diagonalized by the same matrix P, and that P contains the eigenvectors
of both I; and I». This point is crucial but is non-trivial to prove, see Refs. [22,23] for
the mathematical details. We can thus write I; = PD;P~! and I, = PDQP_I, with
D; and D» diagonal matrices containing respectively the eigenvalues of I1 and I,. If we
now compute Ing1 using their diagonalization explicitly, we just have to read Eq. (1.34)
backward and see that consequently, PDpP_1 represents a diagonalization of the matrix
1211_1. The eigenvalues of 1211_1 are thus the elements of D, which are the poles of the
matrix S. Figure 1.3 shows the method schematically.

In the previous examples, we considered implicitly that the matrix O had as many zeros
as its number of rows and columns. However, in practical problems it can very well be
that only a few eigenfrequencies are inside the contour and that the matrix has a larger
number of elements. This means that some elements of the matrix will be holomorphic,
and that analytically they will give a vanishing contribution to the contour integrals. To
see how this situation may cause a problem in numerical applications, let us take the
following example of a matrix containing one meromorphic and one holomorphic entry:

20
S(w):[ o g(w)] . (1.35)

10Since here P is for now a general matrix, i.e. not the eigenvectors of D,, the diagonalization is not
necessarily an eigenvalue decomposition.

36



1.2. Numerical Methods

The two integrals I and Is directly give

I :;M£S(w)dw _ [f(g’l) (j , (1.36)
I :;mﬁwS(w)dw _ [‘”lféwl) S] , (1.37)

where € and € are small quantities indicating that the integrals of g(w) and wg(w) do
not identically vanish due to numerical errors. Thus, computing 1211_1 we obtain

_ w1 0
LI, 1_ lo 6/6/1 ) (1.38)

Unfortunately, €¢/€¢’ can be pretty much anywhere in the complex plane, and indeed
inside the contour ~y; spurious poles may thus arise due to numerical inaccuracies. It is
especially critical in the case of SIE because the original matrix O is inverted to obtain
the matrix S at points where O is almost singular. To remedy this problem, one needs
to distinguish between the holomorphic and the meromorphic elements of the matrix. If
€ vanishes, the two column of I; are not linearly independent and the matrix is singular.
Stated otherwise, Iy is rank deficient.!! For non-diagonal matrices, this rank deficiency is
not apparent like in the previous example. Fortunately, the singular value decomposition
(SVD) of a matrix allows extracting a diagonal matrix containing elements called singular
values [17]. Roughly said, a vanishing singular value corresponds to a column of the
matrix that is linearly dependent on the others. By conducting a SVD on the matrix I,
one can then discard the vanishing parts due to the holomorphic components of S and
extract a full rank sub-matrix that contains only information about the poles. Due to
numerical errors, the singular values that can be discarded are not identically vanishing
and one has to set a threshold to distinguish between meaningful/large and useless/small
singular values [19, 23].

In the case of SIE, I found that for metallic structures no spurious poles appear and
that this method is astoundingly effective. Indeed, computing the integral with typically
hundred constant steps with the rectangle rule already yields eigenfrequencies estimates
that are accurate enough for the complex frequency excitation method to converge in a
few steps.

Due to the behaviour of the real part of the permittivity of metals, the resonant frequencies
of the plasmonic modes are bounded to a frequency where the real part of the permittivity
is the opposite of the background permittivity [12]. This is indeed also the limiting
frequency of a SPP and one can interpret the link as follows: due to its extremely short
surface wavelength, a mode of high order will locally see the surface of the nanoparticle as

" The rank of a matrix is the number of its columns that are linearly independent. A matrix is said to
be full rank if its rank is equal to its size, and rank deficient otherwise. If a matrix is rank deficient, its
determinant is zero.
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planar and thus act as a SPP. Therefore the real part of the eigenfrequency of plasmonic
resonances is bounded to a value dictated by the model used for the permittivity, giving
a practical upper bound for the real part of the integration contour. Practically, the
discretization of the nanostructure with a finite number of elements reduces this limit.
Indeed, the surface charges associated with high order modes possess spatially fast
variations that need to be resolved accurately by the mesh. The upper bound'? on the
imaginary part of the contour is 0 whereas the lower bound can be estimated by looking
at the width of the different spectral features and by taking a comfortable margin that
does not excessively increase the length of the contour.

Concerning the implementation of the numerical methods described in this chapter
together with the SIE approach, the method of the vanishing eigenvalue was the first
one to be implemented as it is the most straightforward. Its limitation, namely the
impossibility to converge to the eigenfrequency if the first guess is note accurate enough,
has led to the subsequent implementation of the complex frequency excitation method.
This method works extremely well for simple structures and when the different spectra
allow for a good guess of the eigenfrequencies. However, it became relatively tedious
to find eigenmodes for complex structures like the fractals presented in Sec. 3.4 or the
heterodimers of Sec. 3.2. This methods reached its limit when applied to dielectric
structures, where the modes can easily interfere together and thus strongly hinder
the analysis of the spectrum. Consequently, the contour integral method was finally
implemented.

As an example of the application of the contour integral method, I use it here for the
study of the eigenmodes of a silver nanorod; the eigenmodes of this nanorod are used in
Sec. 2.3 for the study of the dynamics of SHG under femtosecond pulse illumination. The
results are shown in Fig. 1.4 for three different numbers of discretization points for the
contour integral. The poles found with the contour integral method are compared to the
eigenfrequencies obtained with the complex excitation method, the latter having been
obtained before the contour integral method was implemented. Additionally, a complete
2D map of the complex frequency excitation response is shown to evidence the global
behaviour of the response in the complex plane. For this 2D map, the source is a dipole
situated near the tip of the nanorod and the amplitude electric field is probed at one point
~ 120 nm away from the nanorod; the map in Fig. 1.4(b) is composed of 90 x 112 = 10080
points whereas the map detailing larger frequencies in Fig. 1.4(c) contains 80 x 60 = 4800
points. The eigencharge surface distributions for the first few eigenmodes are also shown.
The contour integral is computed with a rudimentary rectangle rule, i.e. a constant
interpolation of the function value between the two successive points. First, one can
notice that even with 50 steps and with this crude integral evaluation method, the results
are remarkably accurate;'3 the improvement in accuracy obtained with 100 and 200 steps

2Tn our case, with the convention of harmonic signals evolving according to e !, the imaginary part
of the eigenfrequency is negative.
13We consider here that the eigenfrequencies obtained with the complex excitation method and indicated
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Figure 1.4 — Contour integral method applied to a silver nanorod in water. (a) Surface
mesh used for the simulations. (b) Complex frequency plane. The contour « is discretized
with 50, 100, and 200 steps, the resulting poles being shown respectively as black circles of
increasing sizes. The crosses indicate eigenfrequencies found with the complex excitation
before the contour integral method was implemented. The colormap shows the amplitude
of the electric field, in logarithmic scale, at a single point ~120 nm away from the
nanorod due to a dipolar source situated near the tip of the nanorod and oriented in
such a way that all the modes are excited. Red-blue plots show the eigencharges for a
few eigenfrequencies. (c¢) Zoom at high energy.
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is useful only for the high order modes at high energy, see Fig. 1.4(c). Second, one can
observe the bunching of poles near the upper limit of the real axis. This is expected
to be due to the permittivity reaching the critical value e(w) = —epg, occurring here at
w = 3.78 eV. On the other hand, the eigencharges of the modes at energies larger than
~ 3.6 eV show variations that start to be poorly resolvable by the mesh, see Fig. 1.4(c).
Thus, those eigenfrequencies cannot be expected to accurately describe the nanorod
true eigenfrequencies because of the limitation of the discretization. However, those
poles and the associated eigenvectors can still describe mathematically correctly the
meshed, approximated structure. Finally, it can also be that some of the poles located at
high real frequencies are spurious poles as explained previously. In this case however,
knowing that the mesh limits the order of the modes accurately resolved, the poles above
~ 3.6 eV can be discarded without further concerns. Although not visible at the scale of
the 2D maps shown here, the degeneracy of the modes is apparent, namely that poles
corresponding to degenerated modes come by pairs, as is also the case for the vanishing
minimal eigenvalues (not shown here).!4

Concerning dielectric systems, the results of the integral method (the eigenvalues of
the matrix Ingl) are plagued with spurious poles inside all the contour. To remedy
to this issue, the method using the SVD was implemented as described in [23]. This
method consists of sampling an increasing subset of the matrix I; and monitoring the
singular values of the resulting matrix. Since the SVD automatically sorts the singular
values in decreasing order, ideally, when all the meromorphic components (that are
associated with a large singular value) are included in the subset, the next iteration
should be accompanied by a small singular value indicating the inclusion of a holomorphic
component into the sampled matrix. One can then stop the algorithm and extract only
the meaningful poles of the original matrix. Unfortunately, when applied to dielectric
nanostructures, no clear drop of the singular value was ever observed. It was noted in
Ref. [18] that the RWG basis functions could lead to the presence of spurious poles, thus
offering a possible explanation for the difficulty encountered with dielectric structures.

1.3 Conclusion

In this chapter, the theory of eigenmodes was briefly presented and a few examples were
given. It was shown how the wave equation is affected by the presence of losses in the
system it describes, and how one can solve for the eigenmodes. It was then explained how
one can numerically search for the eigenfrequencies/eigenvectors of a matrix with three
different methods. The first two methods need a first estimate of the eigenfrequency
position in the complex plane that can be obtain by monitoring spectra acquired at

with the cross are the "true" eigenfrequencies.

1n the case of this nanorod, the modes that show a degeneracy are the ones having eigencharges
having at least one node in the transverse direction of the nanorod (along the short axis), like the last
three modes shown in Fig. 1.4(b).

40



1.3. Conclusion

various positions and with different excitations. Once an estimate is obtained, the first
method consists in looking for the vanishing of the determinant/smallest eigenvalue of
the matrix. For large matrices, the computation of the determinant is not practical, so
it is preferable to compute the minimal eigenvalue. Unfortunately, in the case of SIE,
the 2D map created by the minimal eigenvalue is not smooth and if the first estimate of
the eigenfrequency is not accurate enough, it is not possible to know where it is located.
The second method also relies on a first estimate of the eigenfrequency’s position, but
uses an excitation with a complex frequency. When the complex frequency of excitation
matches the eigenfrequency of the mode, the amplitude of the system’s response diverges.
In this case, the 2D map created by the amplitude of the response is smooth and one
can use an algorithm to quickly converge to the eigenfrequency. The last method uses a
contour integral approach to isolate all the eigenfrequencies included in a given closed
path. Thus, no first guess of the possible positions of the eigenfrequencies is needed,
making this method extremely practical and powerful. Unfortunately, its applicability
to dielectric structures seems to be more complicated due to numerical problems that
still need to be addressed. From a global point of view, it is now possible with the SIE
method to easily and quickly obtain eigenmodes for complex plasmonic nanostructures
allowing a better understanding of their responses to various kinds of excitations.
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Y Eigenmode Analysis and Second-
Harmonic Generation

This chapter contains three publications studying SHG with emphasis on the role played by
the eigenmodes in the response of different plasmonic nanostructures. Each article appears
as a section followed by its bibliography and supplementary informations. The first
article presents the initial method implemented (cf. Chap. 1.2) and used to compute the
eigenmodes, as well as an analysis of the SHG coming from dipolar eigenmodes of different
nanostructures. It is shown that the SHG resulting from the dipolar eigenmodes has a
quadrupolar nature for a nanosphere, a nanorod and a nanospheres dimer. Furthermore,
the value of the permittivity at the SH frequency is shown to be a key parameter to
obtain a strong SHG enhancement, Sec. 2.1.

The second article presents the mode interplay between the transverse dipolar and
quadrupolar SHG emission in nanorods that leads to a shift between the emission
maximum from forward to backward directions for increasing nanorod length. As the
size of the nanorod increases, the resonant frequencies of the two modes decrease and
their relative phase changes. This change is apparent in their far field interference and
leads to a change in the direction of the maximum SHG emission as the nanorod sizes
are varied, Sec. 2.2.

The third article studies numerically the dynamics of the SHG for a silver nanorod
under different femtosecond pulse illuminations. The contribution of the few dominant
eigenmodes participating in the dynamical SH response is studied in detail. Here, the
interference effect described in the second article is observed dynamically: due to the
short lifetime of the transverse dipolar mode, the interference only appears while the
pulse drives the nanorod. It is further shown how the dynamical SH response is affected
by the tuning of the pulse central frequency and width.
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ABSTRACT: Using a surface integral equation approach based on the tan-
gential Poggio—Miller-Chang-Harrington—-Wu—Tsai formulation, we present a
full wave analysis of the resonant modes of 3D plasmonic nanostructures. This
method, combined with the evaluation of second-harmonic generation, is then
used to obtain a better understanding of their nonlinear response. The second-
harmonic generation associated with the fundamental dipolar modes of three
distinct nanostructures (gold nanosphere, nanorod, and coupled nanopar-
ticles) is computed in the same formalism and compared with the other
computed modes, revealing the physical nature of the second-harmonic modes.
The proposed approach provides a direct relationship between the fundamen-
tal and second-harmonic modes in complex plasmonic systems and paves the
way for an optimal design of double resonant nanostructures with efficient
nonlinear conversion. In particular, we show that the efficiency of second-
harmonic generation can be dramatically increased when the modes with
the appropriate symmetry are matched with the second-harmonic frequency.

Introduction

Optical resonances in photonic nanostructures represent a vivid field of research, with
emphasis on plasmonic nanostructures, where the extreme field enhancement and con-
finement, behind the classical diffraction limit [1-3], are promising for many applications
such as biological sensing and optical signal processing down to the nanoscale [4-7].
Furthermore, the control of the resonant response of individual plasmonic and dielec-
tric nanoparticles (including the resonance wavelength, the radiation pattern, and the
resonance width, in both the linear and nonlinear regimes) is important for the design
of metasurfaces that incorporate several subwavelength structures to produce an exotic
behavior, such as a wavefront with controlled phase, for example [8,9]. Using the coupling
and hybridization between different modes is a convenient method for tailoring and
controlling all these properties [10-12].

In this context, it is crucial to understand the underlying mode properties of dielectric
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and plasmonic nanostructures. Indeed, the response of a resonant system to an external
excitation can be understood as the projection of the excitation field onto its eigenmodes.
The coupling strength between one given eigenmode and the excitation field depends
on several parameters, including the symmetry, the polarization, and the frequency
mismatch between the eigenfrequency and the frequency of the driving field. In the case
of plasmonics, the knowledge of the modes can be used to obtain substantial near-field
enhancement, absorption, and/or scattering at a specific wavelength. Several methods
have been developed in order to obtain the electromagnetic resonances of a nanostructure.
These methods can be separated into two main categories: those developed in the quasi-
static [13-21] and dipolar [22] approximations and those using a full wave analysis method
[23-26]. Each category includes several formulations, such as volume [27] and surface
integral equations methods [23], direct application of the Green’s tensor method [22,28],
and direct expression of the electrostatic interaction between surface charges [14,16-19].
All these methods correspond to the derivation of an eigenvalue problem. However, it
is important to note that, due to the presence of losses (both ohmic and radiative),
the eigenfrequencies are complex and the eigenmodes are referred to as quasi-normal
modes, in opposition to the normal modes observed in lossless cavities [24,26,29-36].
The completeness and orthogonality of the basis formed by the quasi-normal modes
have been discussed in detail [29-31] and were proved for simple dielectric nanoparticles
[37,38]. In a more general case, the quasi-normal modes orthogonality has been proven
neglecting the spectral dispersion of the permittivity [34]. One of the main concerns
about the quasi-normal modes is that the associated fields diverge with the distance from
the system due to the imaginary part of the eigenfrequency, making their normalization
challenging [33]. It was recently proposed to use perfectly matched layer (PML) to bound
the quasi-normal modes and to normalize them [34]. Such an issue is not problematic in
the surface integral equation (SIE) method used here because only the scatterer’s surface
needs to be discretized and no external boundary conditions for the outgoing waves need
to be imposed, with the radiation condition being directly fulfilled in this approach.

Since plasmonic systems are, in general, small in comparison with the incident wavelength,
and because many applications rely mainly on the lowest order dipolar modes, methods
developed in the quasi-static approximation are often adequate for understanding the
underlying physical mechanisms in those systems. On the other hand, it is mandatory to
go beyond this approximation when the nanostructures grow in size, with their dimensions
becoming close to the wavelength of light. This is particularly true in nonlinear plasmonics,
when the generated nonlinear signal has a wavelength shorter than the incident light
[39]. In this case, retardation effects become nonnegligible and the calculations must
account for the field variations over the considered structure. This point is particularly
important for one of the nonlinear optical processes, secondharmonic generation (SHG),
which represents the focus of this paper and is forbidden in centrosymmetric media in the
electric dipole approximation [40]. As a direct consequence, SHG from centrosymmetric
nanoparticles, such as nanospheres, requires retardation effects and the excitation of
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high-order multipoles, like quadrupoles and octupoles [41-45].

Recently, mode matching between fundamental and second- harmonic modes in both
the spatial and frequency domains has been demonstrated to yield a high nonlinear
conversion [46-48]. Knowledge of the mode structure offers a useful tool for engineering
the nonlinear properties. The simplest, but limited, method to characterize the modes of
a given nanostructure is to study its response to plane wave illumination over a large
wavelength range and to extract the mode information from the scattering or absorption
peaks. Such a method is very easy to implement, because any numerical method suitable
for scattering calculations can be used [49]; unfortunately, this method cannot provide
complete information on the modes for the following two reasons. First, a plane wave
interacts weakly with any mode having a small net dipolar moment (the so-called dark
modes [50]). Second, even though those dark modes can be excited, they often overlap
spectrally with broad dipolar modes; the resulting response is, in general, a superposition
of several resonances and a clear identification of the modes is not straightforward. As
a consequence, the evaluation of the scattering spectrum is not the best tool for the
investigation of the eigenmodes, in particular when weakly radiative modes are involved.

In this article, we combine a full wave analysis of the eigenmodes for 3D plasmonic
nanostructures based on the SIE method with the computation of surface SHG based on
the same formalism [51]. In Section 3, the SHG associated with the fundamental dipolar
modes is computed and compared with the high-order modes, revealing the quadrupolar
nature of the second-harmonic mode for three distinct nanostructures, namely, a gold
nanosphere, a nanorod, and coupled nanoparticles. In the final section, we discuss how
the proposed approach provides the direct relationship between fundamental and second-
harmonic modes in complex plasmonic systems and demonstrate that this method is
very well suited for designing multiresonant nanostructures with efficient secondharmonic
generation. It is worth noting that the method proposed in this article is very general
and not limited to noncentrosymmetric nanostructures, as reported in the case of the
effective nonlinear susceptibility method, for example [52,53].

Numerical Methods

Surface Integral Equation

The SIE allows the computation of the spatial distribution of the electric and the magnetic
fields from fictitious currents defined solely on the surface of the scatterers. Starting from
Maxwell’s equations and using vector analysis theorems and the properties of the Green’s
function, two equations can be derived for each homogeneous domain (e.g., the scatterer
and the background), one for each field: the electric field integral equation (EFIE) and
the magnetic field integral equation (MFIE). They relate the excitation and the scattered
electromagnetic fields to the electric surface currents J and the magnetic surface currents
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M. The method of moment (MoM) [54] together with Rao—Wilton-Glisson (RWG) [55]
basis functions and a triangular surface mesh are used to numerically solve those two
equations. The electric and magnetic surface current densities of the domain n are
expanded on the RWG basis functions building a triangular mesh approximating the
boundary surface [56],

J, = Zauﬂj, (1)
M, = Zﬁuﬁ» (2)

where the summations occur on all the mesh edges; f;, is the RWG function of the edge
u associated with the domain n. «, and (5, are the unknown coefficients that need
to be determined. Each integral equation becomes a linear matrix equation relating a
vector (the equivalent surface currents) to the excitation field. The corresponding matrix
depends on the nanostructure geometry and the properties of the domains (dielectric
constant). The elements of the vectors J and M are associated with an edge of the mesh
and a RWG function.

Although only the EFIE or the MFIE is sufficient to compute the fields in all the domains,
a combination of the two equations into one matrix (implying the same solution for the
EFIE and MFIE) is found to lead to more accurate numerical results [57-59]. In other
words, in order to further increase the numerical accuracy, one forms a linear combination
of the EFIE and MFIE. Furthermore, the integral equations for each domain are added
together. This can be written as

[&]-T

where the following submatrices and vectors have been introduced:

q(E)n

q(H)vn

Siwu, DT STK"®
[ n n (3)

SK' = > iwe, D"
n n

pro— [ dser). / dS'G(r, 7' )E ('), (4)
’ AL LAY
K", — / dSE(r) / dS'[V' x Gn(r, )] - ('), (5)
’ oV oV
o= [ dsti(r) - i), (6)
ove
A= [ dsEir) - H), (7
ave

where G, (r,r’) is the dyadic Green’s function, and E““(r) and H"(r) are the electric
and magnetic incoming fields, respectively. Equation (3) shows the final linear system:
the first and second subrows correspond to the EFIE (relating {a} and {3} to ¢(F)m)
and MFIE (relating {a} and {8} to ¢")"), respectively.
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At this step, it is worth saying a few words about the different SIE formulations. When
constructing the EFIE and MFIE, one can consider either the tangential or the normal
components of the fields at the domain surface. This leads to two distinct formulations
denoted as T- for the formulations considering the tangential components of the fields and
N- for those considering the normal components [60]. In the present work and on the basis
of our previous studies on linear scattering and SHG, we use the T-PMCHWT [61-63]
formulation, since it provides accurate results for plasmonic nanostructures [56,57]. Note
that the mN-Miiller formulation was used in a previous study of the modal decomposition
for plasmonic systems [23].

Eigenmodes

In this section, we show how the scattering formulation presented in the previous section
can be transformed into an eigenvalue problem. Equation (3) can be re-expressed in the
simple form?!

S(w)y =a, (8)

where the frequency-dependent SIE matrix is denoted S(w). At a resonance frequency,
oscillations can exist in the system without external driving forces. Let us seek a solution
1 for the system of Egs. (8) without any external excitation (q = 0). Rewriting Eq. (8)
as the eigenvalue problem

S(w)hi = &by =0, 9)

where 1; and &; are the eigenvectors and eigenvalues, respectively, it is possible to search
for the angular frequencies w where one of the eigenvalues & tends to zero. In this case,
the eigenvector associated with the vanishing eigenvalue corresponds to a resonant mode
of the structure. The same approach has already been used, for example in Refs. [22,23],
to evaluate the eigenmodes of different plasmonic multimers. Since radiative and ohmic
losses are present in plasmonic systems, both the resonant frequencies and the eigenvalues
associated with the modes are complex. The complex angular frequency is defined as
w = wy + 1w; with w; < 0, where this choice of sign is dictated by the chosen temporal
dependence exp(—iwt) used throughout. For convenience, the resonant wavelength is
considered instead of the frequency in the following. The complex wavelength is defined
as A = A\, +i)\; with \; > 0 since A\ = 27c/w, ¢ being the speed of light. The eigenvalue
&; itself does not have a particular physical meaning, but the frequency associated with a
vanishing eigenvalue corresponds to the resonance frequency of one mode of the considered
nanostructure. In the following, the word “eigenvalue” refers to the norm of the complex

!Note that in this article, the notation is different than the one presented in Sec. 1.2 of this thesis.
In the following, the matrix that was previously noted O is now noted S, whereas the matrix that was
previously noted S = O~! does not appear in this article. The eigenvalue that was previously noted )\, is
now written & and A now stands for the wavelength.
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Figure 1 — (a) A typical example of the scattering spectrum used to find the approximate
position and width of the maxima. In this case, the broad resonance would correspond
to the dipolar mode and the narrow one to the quadrupolar dark mode. (b) Norm of the
smallest eigenvalues in the complex plane as a function of the real and imaginary parts
of the wavelength for a single sphere. Bright color corresponds to small values. The cut
illustrates the emergence of the eigenvalue corresponding to the mode; see text.

quantity &. The complex character of & does not have a physical meaning here and
we seek solutions of Eq. (9) for & = 0, implicitly meaning that |;| — 0. In order to
find all the eigenfrequencies associated with a given geometry, one can scan the entire
complex frequency plane, but this represents a brute force inefficient approach. To avoid
the computation of too many “useless” points in the complex plane, which is very time
consuming and computationally inefficient, one can use the scattering spectrum of the
studied structure to obtain prior knowledge of the spectral position of the eigenmodes,
as illustrated in Fig. 1. This scattering spectrum can be obtained either by a plane wave
excitation or by a suitable dipolar excitation in order to couple to both bright and dark
modes. Indeed, at the wavelength for which the norm of the smallest eigenvalue tends to
zero, the real part of the wavelength is closely related to the resonant wavelength and its
imaginary part relates to the half width at half-maximum of the scattering peak, i.e., to
the losses [Fig. 1(a)]. When only one resonance is present, the spectrum is a Lorentzian
and the real part of the wavelength corresponds exactly to the resonant wavelength.
From a practical point of view, we first extract the central wavelengths and widths of
the different peaks from the scattering spectrum, and then use them as starting points
for the scan of the complex frequency plane [Fig. 1(b)]. The eigenvalues of the SIE
matrix are then computed around those points until a dip leading to a minimum close
to zero is found (typical residual value ~ 107, depending on the number of edges).
The advantage of obtaining the eigenmodes, in comparison with a mere analysis of the
scattering, is that several modes can spectrally overlap at one frequency since plasmonic
resonances are broad (typical quality factor @@ ~ 30). For this reason, the near-field
distribution associated with one scattering peak will not necessarily correspond exactly
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to that of a resonant eigenmode. This is particularly true for modes with low associated
dipolar moments (dark modes) which are weakly coupled to far-field radiation. Figure 1
summarizes this approach.

Practically, only the smallest eigenvalue of the matrix was considered at each frequency.
Indeed, since one looks for vanishing eigenvalues, considering only the smallest one does
not lead to any loss of useful information. However, the subsequent smallest eigenvalues
can also have a physical meaning in the case of degenerate modes, as discussed in Section
3. ARPACK routines ZNAUPD and ZNEUPD that apply the shift invert method were
used to find the smallest eigenvalue of the matrix [64]. The 2D map of the smallest
eigenvalue of the SIE matrix seems to follow a similar general behavior as does the
absolute value of the permittivity, i.e., increasing both along the real and imaginary
wavelengths. The fact of mapping only the smallest eigenvalue results in a sharp hole
around the resonant frequency where the mapped smallest eigenvalue suddenly vanishes
when it corresponds to the mode. This is visible in the cut in Fig. 1(b), where one
observes the localized decrease of the smallest eigenvalue amplitude at the proximity of
the resonant frequency.

Analytically, when an eigenvalue of a matrix is equal to zero, the matrix determinant is
also zero. Another approach for finding the eigenfrequencies would be to compute the
determinant of the SIE matrix for different complex frequencies instead of examining the
smallest eigenvalue. Unfortunately, although the T-PMCHWT formulation is one of the
most accurate SIE formulation for plasmonic nanostructures [56], the SIE matrix was
found to lead to a very broad range of eigenvalues. This is expected, since the matrix is
very ill-conditioned in this formulation [65]. The magnitude of the eigenvalues roughly
ranges from 1073 to 103, with a higher density at higher values. Furthermore, because
the number of eigenvalues is equal to the number of edges in the mesh, commonly larger
than a few hundred, computing the determinant for the SIE matrix appeared to be
numerically challenging since it would quickly reach the highest or the lowest number
storable by a computer, namely, 2192 in double precision [e.g., for 200 edges and an
average eigenvalue magnitude of 103:(103)2%0 = 10600 > 21023 =~ 10308] In addition, the
large number of eigenvalues with large magnitude does not allow for a smooth variation
of the determinant, thus hiding the influence of a single vanishing eigenvalue. For those
reasons, the approach described here, which limits the search to the smallest eigenvalue,
seems the most suitable. Let us finally emphasize that the method described here and
based on the SIE approach represents a full wave analysis and thus goes beyond the
dipolar/quasi-static approximation. Furthermore, it is worth saying a few words about
the mode amplitudes. The relative weights of the different modes have a physical meaning
only when a specific excitation or state is projected on the eigenmodes basis: a mode
does not have any intrinsic amplitude. However, as emphasized in the introduction, the
projection of a plasmonic response on the eigenvector basis is a nontrivial problem since
the fundamental question of the completeness and orthogonality of the quasi-normal
modes basis is still under discussion.
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Chapter 2. Eigenmode Analysis and Second-Harmonic Generation

Second-Harmonic Generation

The SIE method has been extended by Mékitalo et al. to SHG from nanostructures driven
by an incoming plane wave [66]. A similar approach is used here for the computation
of SHG from the eigenmodes. It is well known that SHG is forbidden in the bulk of
centrosymmetric media in the dipolar approximation and the main source of SHG is the
surface nonlinear polarization oscillating at the second-harmonic frequency:

PL2w, ) =X | B (w,r)EL(w,r). (10)

The + and — superscripts denote that the nonlinear polarization sheet is located just above
the metal and the fundamental electric field is estimated just below the interface [67,68],
respectively. The symbol L denotes the component normal to the interface, and || denotes
the tangential component. All components of the nonlinear susceptibility tensor, including
the bulk contributions, can be implemented in this formalism. However, the X(fl i
component is known to be the strongest component of the nonlinear surface susceptibility
for plasmonic nanostructures [69-71]. As a consequence, only this component will be
considered in the following. The fundamental electric field close to the interface in domain

n is related to the electric and magnetic surface current densities by [66]
Mn = —En X fln, VH . Jn = —iwenﬁn . En (11)

where n,, is the outward normal vector on the boundary surface dV,,. In order to
determine the second-harmonic electromagnetic field, the required set of boundary
conditions, including the nonlinear polarization sheet standing at the interfaces, are used
[66,72],

(B (ch) ~ B (7)) = — 5V P (12)
(HSH (r*) — HSH (x7)); =0, (13)

where €’ is the so-called selvedge region permittivity [54]. As for the fundamental wave,
the second-harmonic problem is solved using the MoM and expanding the equivalent
second-harmonic surface densities on the RWG functions [55]. Using Galerkin’s testing, a
linear system of equations is derived from the boundary conditions in Eqgs. (12) and (13).
This linear system permits us to determine the electric surface current Jgge and the
magnetic surface current Mggg oscillating at the second-harmonic frequency and then
to compute the second-harmonic electromagnetic field associated with a given eigenmode.

Results and Discussion

In the following, we illustrate the utilization of this approach by studying three distinct
structures: a gold nanosphere, a dimer of gold nanospheres, and a gold nanorod. First,
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their eigenmodes are evaluated using the method described here and the fundamental
(dipolar) modes are then used as sources of SHG. Finally, the properties of the computed
second-harmonic signals are compared with those of the higher order modes of the
nanostructure. The aim of this comparison is to retrieve the multipolar nature of SHG
in plasmonic nanostructures. All the nanostructures studied in this work are made of
gold, the permittivity of which is obtained using the Drude model:

2
Wy

— 14
w? +iyw’ (14)

€(w) = €00 —
with € = 9, wp = 8.9 €V, andy = 0.07 eV. The first step is to obtain the resonance
wavelengths for the structures and compute the corresponding charge distributions
associated with the different eigenmodes. Indeed, losses result in a broadening and slight
shift of the peak wavelength in the scattering spectrum, but our interest lies in the real
part of the eigenfrequencies and in spatial distributions of the modes, quantities that
are only slightly affected by losses. Furthermore, our analysis is only qualitative and we
choose, without loss of generality, to ignore the losses in the Drude model. In addition,
by neglecting the ohmic losses, the losses are limited to the radiative ones and will allow
us to distinguish easily between bright and dark modes. In the case of dark modes, the
research for the small eigenvalues is limited to the area close to the real line, i.e., for
wavelengths with small imaginary parts [Fig. 1(b)]. All the nanostructures are considered
in water (refractive index of the background n = 1.33), as it is the case in experiments
performed on colloidal suspensions.

The method reported in this article is general, but we focus here on the design of double
resonant nanostructures. As a consequence, we neglect the excitation channels involving
cross coupling between different modes at the fundamental wavelength since their design
for an efficient SHG is even more complicated. Indeed, in this case, the two fundamental
modes must be resonant at the excitation wavelength. For example, using the dipolar
mode as the source of the SHG, we neglect the channel £ + Fo — Fj, where the two
terms on the left of the arrow refer to the nature of fundamental mode and the third
term describes the second-harmonic emission mode and where subscript 1 stands for a
dipolar mode and subscript 2 stands for a quadrupolar mode.

To validate our approach, modes were computed for a small sphere as well as for a small
ellipsoid. The resulting resonance frequencies were then compared and found to be in
agreement with the prediction of the Mie theory for the sphere and the electrostatic
approximation for the ellipsoid [73]; see Tables 1 and 2. For convenience, the modes are
presented in the following as surface charge distributions computed from the difference of
the normal components of the electric field above and below the surface using Eq. (10)
in [74].
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Table 1 — Resonance Wavelength in nm for a @10 nm Gold Sphere in Vacuum

Dipolar Mode  Quadrupolar Mode
Mie 463.16 + ¢0.013 452.32 4 40.000
SIE  463.12 4 40.013 452.26 + ¢0.000

Table 2 — First Two Resonance Wavelengths in nm for a Gold Ellipsoid in Vacuum. The
three semi axes are 5, 3.75, and 2.5 nm.

Dipolar 1  Dipolar 2
Electrostatic 498.08 468.76
SIE 497.75 468.81

Gold Sphere

Analytically, the interaction between a sphere and an electromagnetic wave is described
by the Mie theory. In this framework, the electric field E is expanded onto the vector
spherical harmonic basis as

E= Z Al,li,m + Bl,le,m ) (15)

lym

where M, ,,, and N, ,,, are the vector spherical harmonics associated with the transverse
electric (TE) modes and transverse magnetic (TM) modes, respectively, and are derived
from the spherical harmonics of degree [ and order m

Y{"(6,6) = Ce'™? P (cos(6)) (16)

where P/™ is the associated Legendre polynomial, and C' is a normalization constant [75].
The collective oscillations of the conduction electrons, corresponding to localized surface
plasmon resonances, induce strong surface polarization charges and are then associated
with the TM modes. Indeed, the presence of surface polarization charges requires the
discontinuity of the normal component of the electric field at the nanoparticle surface.
Physically, the degree [ is associated with the angular momentum of the mode and
corresponds graphically to the number of nodes (appearing as a circle) present on the
sphere. The order m ranges from —I to [ (2] 4+ 1 possible values) and corresponds to half
the number of azimuthal nodes. Each spherical harmonic Y;™ exhibits a different set of
nodes and antinodes. Note that the mode energy depends only on the degree [ and not
on the order m [75].

For a given degree [ , there are 2] + 1 different modes with distinct charge distributions.
Therefore, the method described in Section 2.B will not be a priori able to distinguish
between the modes with the same degree [ and different orders m, since the only free
parameter in this model is the energy /wavelength. It is, however, still possible to retrieve
the different modes, as explained in the next paragraph.
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Figure 2 — First lower energy modes for a 40 nm gold sphere. The (a) first, (b) second,
and (c) third rows correspond, respectively, to the dipolar mode (I = 1) at A = 504+42.77
nm, quadrupolar mode (I = 2) at A = 478 4+ i0.02 nm, and octupolar mode (I = 3) at
A =471 4 10.08 nm. For [ > 1 it appears that the spherical harmonics are not retrieved.

The modes obtained for a 40 nm spherical gold nanoparticle are shown in Fig. 2. The
first, second, and third rows correspond to the dipolar (I = 1), quadrupolar (I = 2), and
octupolar (I = 3) modes, respectively. At the first resonance wavelength (A = 504 nm)
corresponding to [ = 1, three eigenvalues much smaller than the others are found and the
three eigenvectors reveal three orthogonal dipoles (Fig. 2, first row). For [ = 2 and | = 3,
the number of distinguishably small eigenvalues is, respectively, 5 and 7, corresponding
to 21 + 1 as expected. However, the surface charge distributions associated with the
eigenvectors are not associated with single spherical harmonic. From linear algebra it
is known that any linear combination of eigenvectors sharing an eigenvalue is also an
eigenvector, since a superposition of modes associated with one specific eigenfrequency
also exhibits divergent amplitude and corresponds to a resonant mode of the system.
Furthermore, due to the mesh symmetry an eigenvector a priori displays the resonant
mode in an arbitrary orientation, and nothing guarantees that this orientation is the same
from one eigenvector to another, even if they are associated with the same degenerate
eigenvalue. For example, the surface charge distributions obtained for the modes with

= 2 do not correspond to a single spherical harmonic but to a linear combination
of spherical harmonics Y}, of the same degree with different orders m and specific
orientations (see Appendix A). Similar effects have been observed in Fig. 3 of [21]. The
fact that dipoles are directly found for the modes of degree [ = 1 but that a superposition
of spherical harmonics is found for the quadrupolar (I = 2) and octupolar (I = 3) modes
is surprising at first sight. However, a superposition of three dipoles with different
orientations results in a dipole with a different orientation. This is not the case for
quadrupolar (and higher order) modes due to the more complex spatial distribution of
the charges associated with different order m.

In this framework, the mesh describing the nanoparticle surface plays an important role.
Indeed, a curved surface is difficult to approximate with planar triangles. In order to
check the influence of the mesh on the found eigenmodes, the mesh reproducing the 40
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Figure 3 — Linear and second-harmonic response of a 40 nm gold nanosphere. (a) The
charge distribution associated with the fundamental dipolar mode. (b) Nonlinear surface
polarization associated with this mode computed using Eqgs. (10) and (11). Near-field
distributions of the (¢) fundamental intensity and (e) real part of the x-component of the
fundamental electric field. Near-field distribution of the (d) second-harmonic intensity
and (f) real part of the x-component of the second-harmonic electric field. Far-field
radiation patterns of the (g) fundamental mode and (h) second-harmonic signal.

nm nanosphere was tilted by a 45° angle. In this case, the two dipolar modes oriented
perpendicularly to this rotation axis were also rotated with the same angle, following the
asymmetry induced by the surface mesh (see Appendix B for a more detailed discussion).
Let us emphasize that the previous considerations about degenerated eigenvalues and
the influence of the mesh symmetry are less problematic when realistic structures (i.e.,
without specific symmetry) are considered.

Having confirmed with Mie theory the accuracy of the SIE method to compute the
eigenmodes in the case of gold nanospheres, let us turn our attention to the main topic
of this article, the SHG associated with these eigenmodes. Although the connection
between fundamental and second-harmonic modes is now well-established for spherical
nanoparticles [76-82], it is worth discussing it to benchmark the proposed approach for
a better understanding of SHG in plasmonic nanostructures. In general, the incident
fundamental wave is described by a linearly polarized plane wave propagating in the
embedding medium. The expansion of plane wave polarized along the x-axis and
propagating along the z-axis over the vector spherical harmonics basis involves only the
terms with an order m = +1, meaning that the set of excited fundamental modes is
established by the symmetry of the driving field [73]. For this reason, we select the
dipolar mode with its dipolar moment pointing along the x-axis as the fundamental
mode [Fig. 3(a)]. The resonant wavelength of this mode is A = 504 + ¢2.77 nm. As
discussed in Section 2, SHG arises from the surface of the plasmonic nanostructures
due to the local centrosymmetry breaking. The corresponding nonlinear source, the
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Figure 4 — Eigenmodes of a 40 x 85 nm gold nanorod: (a) the longitudinal dipolar mode
at A = 647 + i13.9 nm, (b) the longitudinal quadrupolar mode at A = 503 + ¢0.17 nm,
and (c) the transversal quadrupolar mode at A = 491 + 40.23 nm.

surface nonlinear polarization, is computable using Eqgs. (10) and (11), where the electric
surface current J is given by the coefficients « of the eigenvector associated with the
fundamental mode [Fig. 3(b)]. In order to further emphasize the differences between the
second-harmonic and fundamental modes, the corresponding near-field distributions of
the intensity and of the real part of the x-component of the electric field associated with
these two modes are shown in Fig. 3. The near-field distributions clearly reveal that the
parity of the fundamental and second-harmonic modes is different. The fundamental
mode corresponds to an odd (dipolar) mode, while the secondharmonic mode corresponds
to an even (quadrupolar) mode. The multipolar nature of the SHG from spherical
metallic structures has been extensively discussed in the past and is closely related to the
centrosymmetry breaking induced by field retardation [43]. Here, the second-harmonic
channel is E1 + E1 — FEs. Indeed, the fundamental mode is an electric dipole, and
the Fy + E1 — FE; mechanism, which would correspond to dipolar second-harmonic
emission, is forbidden for centrosymmetric nano-objects. These results demonstrate
that the proposed method is in agreement with previous experimental and theoretical
investigations of the SHG from nanospheres [43]. It has been shown that deviations from a
perfect sphere leads to a modification of the relative weight of the dipolar and quadrupolar
contributions to the total second-harmonic emission [83]. Here, as observed in Fig. 3(h),
the emission is perfectly quadrupolar, demonstrating that the mesh describing the sphere
surface does not induce a dipolar second-harmonic emission resulting from any deviations
from the perfectly symmetric case.

Gold Nanorod

Now, we turn our attention to nanostructures with lower symmetry, namely, gold nanorods.
Plasmonic nanorods are important since they are the building blocks for optical antennas
and several important metamolecules [84]. SHG from gold nanorods has been investigated,
underlining the role played by the longitudinal plasmon resonance in the enhancement
of the nonlinear response [85-87]. Here, we apply the same protocol as the one used
previously for the study of the SHG from gold spheres.

The modes found for a 40 x 85 nm gold nanorod in water are shown in Fig. 4. The
lower symmetry, in comparison with a spherical object, allows us to obtain well-defined
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Figure 5 — Linear and second-harmonic response of a 40 x 85 nm gold nanorod. (a)
Charge distributions associated with the fundamental dipolar mode. (b) Nonlinear surface
polarization associated with this mode computed using Eqgs. (10) and (11). Near-field
distributions of the (¢) fundamental intensity and (e) real part of the x-component of the
fundamental electric field. Near-field distribution of the (d) second-harmonic intensity
and (f) real part of the x-component of the second-harmonic electric field. Far-field
radiation patterns of the (g) fundamental mode and (h) second-harmonic signals.

quadrupolar modes in the longitudinal, respectively, transverse directions, at A = 503 +
10.17nm, respectively, A\ = 491 + i0.23nm. Note that, due to the asymmetry, the two
quadrupolar modes do not have the same resonant wavelength as observed for the sphere;
here the longitudinal mode has a lower energy than the transverse one. The transverse
quadrupolar mode has a degeneracy of 2 and, as expected, two modes are actually found
at the same wavelength (with identical charge distributions but with a 90° rotation
around the rod axis, data not shown).

The longitudinal dipolar mode supported by a gold nanorod is coupled to an incoming
plane wave polarized along its long axis and is responsible for the strong SHG from gold
nanorods [85-87]. The nonlinear surface polarization associated with this mode is shown
in Fig. 5(b), revealing that the nonlinear sources are mainly localized at the nanorod
apexes. Despite a lower symmetry, nanorods are still centrosymmetric and SHG is still
forbidden in the electric dipole approximation. As a consequence, the excitation channel
involved here is also F1 + E1 — FE5. The quadrupolar nature of the second-harmonic
mode is confirmed by the computation of the electric field in both the near-field and
far-field regions (Fig. 5). Even more interesting is that the second-harmonic mode
corresponds to the eigenmode shown in Fig. 4(b). These results demonstrate that the
proposed method permits us to clearly identify the link between the fundamental mode
and the second- harmonic mode. This point is important for the design of efficient
plasmonic sources of second-harmonic light and of sensitive nonlinear plasmonic sensors.
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Figure 6 — Eigenmodes of a dimer of two 40 nm spheres with a gap of 5 nm. (a)
Longitudinal dipolar mode at A\ = 551 4 ¢13.9 nm. (b) Transversal dipolar mode at
A =498 4 i4.68 nm. (c) Longitudinal dark mode at A = 489 +¢0.167 nm. (d) Transverse
dark mode at A = 517 + ¢0.240 nm.

@

Dimer of Gold Nanospheres

Finally, the case of coupled plasmonic nanostructures, the socalled nanoantennas, is
considered. Previous studies on the SHG from plasmonic nanoantennas have revealed
a singular behavior referred to as the silencing of SHG [88-90]. Indeed, despite strong
fundamental near-field intensity in the gap, the SHG from plasmonic nanoantennas is not
particularly enhanced. Although the nonlinear surface polarization is very large in this
region, where the spheres are close to each other [see Fig. 7(b)], the second-harmonic
sources standing at each side of the nanogap are out of phase, resulting in a far-field
second-harmonic signal weaker than expected [88]. A dimer of two 40 nm gold spheres
separated by a 5 nm gap is considered as an example of coupled nanostructures. Several
modes are observed, as shown in Fig. 6. To be able to resolve the high concentration of
the charges in the nanogap due to Coulombian interaction, the mesh is specially refined
in this region (smallest element size: 1 nm). The longitudinal dark mode shown in Fig.
6(c), corresponding to two facing dipoles, exhibits clear charge repulsion in the gap,
contrary to the charge concentration associated with the bright dipolar mode [Fig. 6(a)].
Transverse modes are also observed, see Figs. 6(b) and 6(d), with vanishing eigenvalues
of multiplicity equal to two (in each case both modes are rotated by 90° around the
dimer axis with respect to each other, data not shown). These observations are now
used for understanding the SHG from coupled nanoparticles. The nonlinear surface
polarization associated with the fundamental dipolar mode, Fig. 7(a), is shown in Fig.
7(b) as well as the corresponding near-field and far-field distributions in Figs. 7(d), 7(f),
and 7(h). One can see that the nonlinear sources are extremely confined in the gap. As
previously, the second-harmonic mode is an even mode (in the sense of parity) and the
x-component of the second-harmonic field in the plane x = 0 vanishes. This observation
is in agreement with our previous study on the SHG from coupled nanospheres [89].
However, even though it obeys to the right symmetry, the transverse mode shown in Fig.
6(b) does not correspond to the second-harmonic mode in the present case because its
excitation requires retardation effects at the excitation stage [89] (i.e., at the fundamental
wavelength).

This is not the case considering only a dipolar fundamental mode as done in the present
eigenmode method. On the other hand, the design of efficient second-harmonic light
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Figure 7 — Linear and second-harmonic responses of a dimer of two 40 nm gold nanospheres
separated by a gap g = 5 nm. (a) The charge distribution associated with the fundamental
dipolar mode. (b) Nonlinear surface polarization associated with this mode computed
using Egs. (10) and (11). Near-field distributions of the (c¢) fundamental intensity and
(e) real part of the x-component of the fundamental electric field. Near-field distribution
of the (d) second harmonic intensity and (f) real part of the x-component of the second-
harmonic electric field. Far-field radiation patterns of the (g) fundamental mode and (h)
second-harmonic signals.

generators must preferentially involve only one mode at the fundamental excitation
since modes are, in general, resonant at distinct wavelengths. In other words and using
the previous notation, second- harmonic channels with F; + F; as the fundamental
step should be preferred for a strong SHG. In this case, our method based on the
eigenmodes allows us to determine the excited second-harmonic mode and then optimize
the nanostructure geometry in order to tune its resonant wavelength close to the second-
harmonic wavelength. This method is expected to be more efficient and effective than
the plane wave excitation approach used so far.

Toward Engineering of the Second-Harmonic Mode

In this last section, we make a study of double resonant nanostructures and show that the
nonlinear conversion can be dramatically improved by tuning the modes supported by
these structures. In the quasi-static approximation, the only parameter that influences the
resonance wavelengths for a given geometry and surrounding medium is the permittivity
€(w) of the particle [91]. For example, in the case of small spheres (i.e., in the quasi-static
approximation), the resonant permittivities are given by e(w) = —epe(I + 1)/l with [ a
nonzero integer and €, the background permittivity [73]. The dipolar and quadrupolar
resonances are thus observed for €4, = —2€p, and €gyqq = —1.5€p4 , respectively. For larger
nanostructures, retardation effects become non-negligible and the resonant frequencies
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Figure 8 — (a) Scattering spectrum of a sphere. The quadrupolar mode can be shifted
at half the wavelength of the dipolar mode by varying the nanostructure permittivity.
(b) SHG intensity normalized to that obtained for the Drude model without losses
at their respective second- harmonic frequencies (cf. Section 3) as a function of the
secondharmonic permittivity e(2w). Note that the Drude permittivity of gold at the
second-harmonic frequencies is positive in the three cases and thus the second-harmonic
plasmonic modes cannot be resonantly excited.

depend on the nanoparticle size. In this study, the second-harmonic wavelength is fixed
and corresponds to half the resonant wavelength of the considered fundamental mode.
From Section 3.C, we know that SHG from the centrosymmetric structures investigated
here is associated with a quadrupolar emission. However, as illustrated in Fig. 8(a) for
the case of a sphere, the quadrupolar mode is usually not resonant at the second-harmonic
wavelength. For this reason, we consider a fictitious material with varying permittivity
at the second-harmonic frequency e(2w), such that the quadrupolar mode is shifted
to the second-harmonic wavelength, in order to boost the SHG [Fig. 8(a)]. We apply
this idea to the three geometries studied in Section 3 and observe the variation of the
second-harmonic signal intensity. The results are shown in Fig. 8(b). The important
point is the very substantial increase of SHG intensity around the optimal permittivity,
indicating that SHG can be improved by optimizing the mode matching. In the Drude
model, the permittivity of gold at the three second-harmonic frequencies is positive
(thus far from the optimal negative values needed). The ratio of the SHG intensity
for the optimal €(2w) and for the Drude permittivity (without loss) is 4.6 - 10* for the
sphere, 1.1 -10* for the nanorod, and 1.5 - 103 for the dimer. Note that for the sphere we
obtain as optimal permittivity €, = —3 instead of €;y00 = —1.5€5g = —2.65. This small
discrepancy is a consequence of the retardation effects due to the finite nanoparticle
size and to the refractive index of the surrounding medium [92]. It is important to
note that the absolute value of the SHG intensity enhancement for the three different
nanostructures cannot be compared since the fundamental mode amplitudes are not
normalized. Nevertheless, for each structure, the enhancement still describes how SHG
can be enhanced by a suitable design of the plasmonic system.
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Figure 9 — Addition of a spherical harmonic of degree | = 2 with different order m. The
similarity with the second row in Fig. 2 is obvious.

Conclusion

In summary, a new SIE method has been derived for the computation of the SHG
directly from the fundamental eigenmodes. A gold nanosphere was considered as the
first application, demonstrating that this method is able to accurately retrieve previously
published results, especially the quadrupolar nature of the second-harmonic emission.
SHG from a nanoparticle with a lower symmetry, a gold nanorod supporting longitudinal
and transverse plasmon resonances, was then examined underlining that this approach
can be extended to structures with low symmetry.

Finally, a coupled nanoparticle system, a gold nanodimer, has been investigated confirming
the quadrupolar emission. These different examples illustrate the suitability of this
approach for understanding the nonlinear response of complex plasmonic metamolecules.
This approach will be instrumental for the design of efficient nonlinear sources of light at
the nanoscale, as demonstrated in the last section, where a dramatic SHG is observed
when modes with appropriate symmetry are matched with the second-harmonic frequency.

Appendix A: Spherical Harmonic Superposition

Figure 9 shows two examples of linear combinations of spherical harmonics with degree
[ = 2. The resemblance (not considering the orientations) with the five quadrupolar
modes obtained for the sphere in Section 3.A is clearly observed.

Appendix B: Influence of the Mesh Symmetry

To investigate the role of the mesh geometry on the eigenmodes of the sphere, an
asymmetry, stronger than the inherent one, has been purposely introduced. This higher
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Vv
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Figure 10 — Modified mesh with refined elements at two poles and associated eigenvectors.

h------------’
The degeneracy of the vanishing eigenvalue is reduced to 4 (instead of 5 with the
original mesh). Two spherical harmonics are retrieved among the four eigenvectors. The
eigenfrequency variation between the two meshes for this mode is less than 1 nm.

Original mesh

Spherical harmonics ¥;;

asymmetry results in a small splitting of the eigenfrequencies, previously degenerated,
permitting us to partially retrieve the eigenmodes associated with single spherical
harmonics. For example, when refining two opposite sides of the sphere (north and south
poles) with triangles smaller than those used for the rest of the mesh, the quadrupolar
modes (I = 2) appear with an eigenvalue degenerated only four times and the eigenmodes
associated with the spherical harmonics Y;™5 *1 are observed. Figure 10 shows four
modes found with the modified mesh. Only four eigenvectors are shown because the next
eigenvectors (associated with eigenvalues with increasing magnitude) were not physical
solutions. We then assess that the degeneracy of the vanishing eigenvalue is only four.
In this case, there is not a strong separation in the eigenvalue magnitudes, as observed
with the original mesh
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ABSTRACT: In this work, we investigate the generation of second-harmonic
light by gold nanorods and demonstrate that the collected nonlinear intensity
depends upon a phase interplay between different modes available in the
nanostructure. By recording the backward and forward emitted second-
harmonic signals from nanorods with various lengths, we find that the
maximum nonlinear signal emitted in the forward and backward directions
is not obtained for the same nanorod length. We confirm the experimental
results with the help of full-wave computations done with a surface integral
equation method. These observations are explained by the multipolar na-
ture of the second-harmonic emission, which emphasizes the role played by
the relative phase between the second-harmonic modes. Our findings are
of particular importance for the design of plasmonic nanostructures with
controllable nonlinear emission and nonlinear plasmonic sensors as well as
for the coherent control of harmonic generations in plasmonic nanostructures.

Introduction

Motivated by different specific features, the study of nonlinear optical processes in
plasmonic nanostructures has become a vivid field of research [1,2]. First, the intrinsic
nonlinear response of plasmonic materials enables the investigation of subtle nonlinear
mechanisms associated with the surface [3,4], the shape [2], the roughness [5,6], and the
symmetry [2] of plasmonic nanostructures. Second, local field enhancement associated
with the plasmon resonances can boost nonlinear processes including second-harmonic
generation (SHG) [7-9], third-harmonic generation [10-12], and nonlinear photolumines-
cence [13-16], such that these nonlinear signals provide indirect entry to the local field
enhancement [17-19]. Third, the plasmonic modes associated with a nanostructure are
the underlying framework upon which nonlinear processes can be built [20,21]. It is only
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quite recently that the role played in nonlinear plasmonics by the interaction between
the different modes available at the fundamental and harmonic frequencies has been
recognized, leading to different multiresonant nanostructure designs that benefit from the
interaction of several plasmonic modes at different frequencies [21-25]. This is especially
the case for SHG where a dipolar excitation at the fundamental frequency produces a
nonlinear signal that is essentially quadrupolar [26].

In this article, we shed new light on the interplay between the underlying modal structure
supported by a plasmonic nanostructure and the corresponding SHG. Specifically, we
show that the second-harmonic emission from gold nanorods can be controlled using
interferences between two modes excited at the second-harmonic wavelength. By recording
the backward and forward second-harmonic signals emitted by plasmonic nanorods with
different lengths at a fixed pump wavelength, we observed that the nonlinear signal
emitted in opposite directions is maximum for different nanorod lengths, revealing
surprising enhancement mechanisms that do not fit with the well-established relation
between the nonlinear response and the plasmonic enhancement. We explain these
experimental findings with the help of full-wave computations performed with a surface
integral equation method (SIE); the numerical results emphasize the multipolar nature
of the second-harmonic emission and the associated interference effects [27]. These
observations are interesting for the design of efficient second-harmonic nanosources as
well as for the development of nonlinear plasmonic sensing, which aims at probing small
refractive index changes with the help of nonlinear plasmonic nanostructures.

Results and Discussion

The gold nanorods used in this work are fabricated on a glass coverslip with a standard
electron beam lithography fabrication method [28]. The nanorods were designed to reach
a width of 80 nm and a length varying from L = 90 nm to L = 160 nm by 10 nm steps.
For the sake of accuracy, we measured by SEM the real width and length of nanorods,
(see SEM pictures of nanorods in Figure 1(b)). Widths have been found to be 75 + 5
nm and lengths are 15 to 30 nm smaller than expected values from 75 to 138 nm with
a precision of 45 nm. The thickness of the deposited gold layer is 50 nm. The linear
optical response is obtained from dark-field spectroscopy. Figure 1(a) shows the evolution
of the scattering spectrum for a series of gold nanorods whose lengths are reported close
to the related spectrum. In order to perform the linear characterization in the same
experimental conditions as those used for the nonlinear optical measurements, a drop of
immersion oil is deposited on top of the nanostructures. The nanorods are thus immersed
in a homogeneous medium with a refractive index of 1.5. The scattering spectra show
that the localized surface plasmon resonance red-shifts as the nanorod length increases
(from 650 nm for L = 75 to 890 nm for L = 138 nm), as reported in previous studies
of the linear response of gold nanorods [29,30]. One can note that resonances between
the 110 and 120 nm long antennas seem to slightly blue-shift. However, this shift—also
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Figure 1 — (a) Dark-field spectra of the gold nanorods with length ranging from 75 to
138 nm. (b) SEM images of four nanorods. (c) The scattering spectra of the nanorods,
whose length vary from 90 to 160 nm, evaluated with a surface integral equation method.
The nanorod widths and thicknesses are 75 nm and 50 nm, respectively. The spectra are
shifted vertically for clarity.

associated to a broadening of resonances —appears to be not relevant because the shift
is smaller than the width at half-maximum of the resonance. To confirm numerically
this behavior, we compute the scattering from nanorods with similar dimensions with an
SIE method [31]. The edges and corners of the rectangular nanorods are rounded with a
radius of 5 nm to provide a more realistic model [32]. The nanorods are excited by a
planewave polarized along the long axis and placed in a homogeneous medium with a
refractive index of 1.5, similar to the refractive indices of both the glass substrate and
immersion oil. The calculated localized surface plasmon resonance redshifts from 710
nm for L = 90 to 990 nm for L = 160 nm. Both calculated and measured spectra are in
quite good agreement.

Having characterized the linear responses of the gold nanorods, we now turn our attention
to their second-harmonic responses. The second-harmonic generation from colloidal gold
nanorods has already been investigated with hyper-Rayleigh scattering using a collection
at a right angle [33,34] and for nanofabricated nanorods with a collection performed in the
forward direction only [35,36]. Note that the second-harmonic intensity is also commonly
collected in the backward direction using the same objective as that used for illumination
[24,37,38]. All these works have emphasized the role played by localized surface plasmon
resonances in the enhancement of the nonlinear emission. Inspired by a recent study
of the second-harmonic light emitted from AlGaAs dielectric nanoantennas [39], we
choose in the present work to collect simultaneously the second-harmonic intensity in
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both the forward and backward directions, as depicted in Figure 2(a). A high numerical
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Figure 2 — (a) Sketch of the experimental setup used for the simultaneous detection of
the forward and backward second-harmonic light. (b) Forward (shown in black) and
backward (shown in red) second-harmonic intensities as functions of the nanorod length.
The corresponding dark-field spectra are shown in Figure 1(a). (c¢) Forward (shown
in black) and backward (shown in red) second-harmonic intensities for a second set of
nanorods, showing the reproducibility of the experimental observations. The error bars
represent the error in estimating the SHG intensity.

aperture oil-immersion objective (60x, NA 1.49) focuses on individual nanorods with a
120 fs pulsed laser beam emitted at a wavelength of 820 nm. The pulse energy is kept
constant to a value as low as 4.75 pJ, well below the damage threshold of the nanorods
(the mean laser power is 380 pW). The intensity of the second-harmonic emitted in the
backward direction is collected by the same objective (episcopic objective), while the
second-harmonic intensity emitted in the forward direction is collected with a second
oil-immersion objective (100x, NA 1.30, diascopic objective). Two microscope objectives
with distinct working distances are used for convenience of the alignment procedure.
Figure 2(b) shows the second-harmonic intensity collected in the forward and backward
directions for nanorod lengths ranging from 90 to 160 nm (see the Supporting Information
for the experimental details; the corresponding measured spectra are shown in Supporting
Information Figure S1; both SHG and nonlinear photoluminescence are observed). The
error bars correspond to the sum of the noise level and the error in estimating the SHG
intensity (see Supporting Information for more details). The intensities of the nonlinear
signals in the forward and backward directions reach a maximum for two different nanorod
lengths. According to the literature, this length-dependent signal is understood from the
resonant excitation of a localized surface plasmon mode at the fundamental wavelength
[1,2]. This is confirmed by the experimental dark-field spectra, Figure 1(a), indicating a
resonant excitation of the longitudinal dipolar plasmon mode at the pump wavelength
(A = 820 nm) for L = 110 nm and L = 120 nm. While the second-harmonic intensity
peaks at L = 110 nm in the forward direction, the maximum is reached for L = 120 nm
in the backward direction. A similar behavior has been observed for a dozen of nanorod
arrays (see for example the second set of nanorods provided in Figure 2(c)), emphasizing
the reproducibility of this observation. This observation cannot be inferred from the
simple plasmonic enhancement of the nonlinear responses [36-38] and points toward a
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more complex mechanism.

To understand this behavior, we perform full-wave computations of the second-harmonic
response of the gold nanorod with a SIE method assuming a surface contribution to the
nonlinearity [40] (see the Supporting Information for the implementation details). The
second-harmonic spectra are evaluated for fundamental wavelengths spanning between
600 and 1100 nm and for nanorod lengths varying between 90 and 160 nm. The second-
harmonic intensity is integrated over a sphere in the far-field region (sphere radius 50 pm).
As expected and illustrated in Figure 3(a), the second-harmonic emission is generally
enhanced when the fundamental wavelength matches the dipolar longitudinal plasmon
resonance. However, compared to the calculated scattering cross sections displayed in
Figure 1(b) that exhibit a stronger linear response for larger antennas, the simulations
in Figure 3(a) indicate an enhanced SHG intensity for the small nanorods. Indeed, as
the nanorod length decreases, the dipolar surface plasmon resonance blue-shifts at the
fundamental wavelength, augmenting the retardation effects and then the SHG [26]. For
a fixed pump wavelength centered at 820 nm, the strongest enhancement of the nonlinear
response occurs for 120-130 nm nanorod lengths.

We then calculate the emission pattern of the second-harmonic wave for the different
nanorod lengths considered in this work. Figure 3(b) shows the computed emission
diagrams for four sizes (L = 100, 110, 120, and 130 nm). In the Supporting Information,
Figure S3 gathers the computed patterns for all nanorod sizes. To compare these
numerical results with experimental data, the computed second-harmonic pattern is
divided into two parts, corresponding to the second-harmonic intensity integrated on the
top hemisphere for the forward second-harmonic intensity and that integrated on the
bottom hemisphere for the backward second-harmonic intensity. In the following, all the
simulations are done with a fundamental wavelength of 820 nm. The results are shown in
Figure 3(c). We find that the length of the nanorods drastically influences the emission
pattern. For L = 90 nm, the second harmonic is essentially forward emitted, while for the
longest nanorod, the diagram shows a stronger emission in the backward direction. We
verified that this behavior is not modified by taking into account the different numerical
apertures for the episcopic and diascopic objectives (see Supporting Information, Figure
S3). The evolution of the forward and backward second-harmonic emissions in Figure
3(c) is similar to the one observed in the experimental results shown in Figure 2(b).

Before studying the underlying mechanisms of this effect, we recall that in the case
of a normal planewave illumination of the nanorods the SHG signal comes essentially
from (i) a dipolar mode oriented along the illumination propagation direction and (ii) a
quadrupolar mode oriented along the nanorods axis [2]. The dipolar second-harmonic
emission is thus due to the retardation effect induced by the fundamental wave: the phase
variation of the fundamental wave across the rod thickness induces a second-harmonic
dipolar moment along the wavevector of the pump wave; see the left inset in Figure
3(d). On the other hand, the quadrupolar second-harmonic emission arises from the
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Figure 3 — (a) Second-harmonic intensity as a function of the illumination wavelength
for nanorod lengths ranging from 90 to 160 nm. The spectra are shifted vertically for
clarity. (b) Second-harmonic emission patterns for nanorod lengths of 100 to 130 nm.
The black solid lines correspond respectively to the pattern profiles in the planes x =
0,y =0, and z = 0. (¢) Computed forward (shown in black) and backward (shown in
red) second-harmonic intensities as functions of the nanorod length. (d) Decomposition
of the second-harmonic intensity in dipolar (shown in blue) and quadrupolar (shown in
green) emissions. The insets show the emission patterns of the dipolar and quadrupolar
second-harmonic modes. The fundamental wavelength is 820 nm, except for panel (a).
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fundamental dipole excited along the nanorods axis; see the right inset in Figure 3(d).
In order to disentangle the contribution of these two modes, we perform a multipolar
decomposition of the second-harmonic emission; that is, the second-harmonic field is
expressed using the vector spherical harmonics (VSHs) [41] as

l'nLa:L’

l
Esuc =Y > k&naEimlaimNim + bmMm] (1)

=1 m=—1

where a; ,,, and by ,,, are the complex expansion coefficients, Ej ,, is a normalization factor,
N;,, and M, are the VSHs, and [,,,4, is set to 8. The definition used for the VSHs and
the normalization factor can be found in ref [41]. The expansion coefficients are found
by projecting the computed electromagnetic fields onto the VSHs at a distance of 10 yum
from the nanorods. The amplitudes of the three coefficients for the dipolar (a; ,,) or the
five coefficients for the quadrupolar (az,,) second-harmonic emissions are then summed
up to determine the relative weight of the dipolar or quadrupolar emissions; orders higher
than the quadrupole as well as the magnetic modes, related to the by, coefficients in
eq 1, are found to be negligible. In Figure 3(d), we observe that the second-harmonic
dipolar mode is the highest contribution to the second-harmonic emission, except for
nanorod lengths between 110 and 130 nm, for which the longitudinal dipolar mode is
resonantly excited at the pump wavelength (820 nm); see Figure 1(b).

The evolution of the amplitudes of the dipolar and quadrupolar second-harmonic emissions
cannot explain the flip of the nonlinear responses discussed previously since these two
contributions are symmetric with respect to the forward and backward directions as
pictured by the insets in Figure 3(d). The literature suggests that the interference between
different second-harmonic modes, and thus their relative phase, plays an important role
in the observed emission patterns [42,43]. Especially, it was shown that the phase
induced by the fundamental dipolar mode allows controlling the forward and backward
second-harmonic emission [27,42,44]. For this reason, the multipolar analysis is further
refined in Figure 4. The projection of the second-harmonic field on the VSHs reveals that
the dipole contribution comes from the two expansion coefficients a1, 1 and a1 and that
the quadrupole contribution comes from the three coefficients az 2, a2 2, and ag o, with
the remaining coefficients a1, a2 —1, and as; being negligible. Note that the coefficient
values are dependent on the axis orientation; see Figure 3(b). A careful analysis of the
dipole vector and the quadrupolar matrix (see the Supporting Information), combined
with symmetry considerations, provides the relation between the coefficients a; ,,, and
az,m- For the dipole, the relations a1, = a1,—1 and a1 = 0 are obtained and, for the
quadrupole, |az —o| = |ag 2| and arg(az) = arg(az —2) + 7 = arg(as2) + m, in agreement
with the results shown in Figure 4(a,b). This observation confirms that second-harmonic
emission corresponds to that of a transverse dipole and a longitudinal quadrupole. Since
the phase between the quadrupole coefficients is roughly constant (close to 7) over
the whole nanorod size range (see the green curves in Figure 4(b)) and the two dipole
coefficients are in phase, only the relative phase between the dipole coefficients and the
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quadrupole coefficient as g is considered in the following. In Figure 4(b), we observe
that the phases of the dipolar and quadrupolar components do not evolve at the same
rate (compare the blue and green curves), hinting that the flip in the second-harmonic
emission occurs when the phase difference between the two components reaches a specific
value. Figure 4(c) shows the evolution of the phase difference between the dipole and
quadrupole coefficients, revealing that the flip indeed occurs for a specific phase difference
A¢ between 0.19 7 rad and 0.28 7 rad, corresponding to nanorod lengths between 115
and 120 nm. To confirm the role of this phase difference in the flip of the second-harmonic
emission, the VSHs associated with the dipolar mode have been added to those of the
quadrupole mode with expansion coefficients of constant amplitudes but different relative

phase A¢ as
Espc = [a1,1N1, 1 + a11N11] + €2?[ag_oNa o + as0Nag + ag2Na o) (2)

with a1, 1 =a11 =1, ag,—2 = az2 = —1, and as 9 = 0.82 to reproduce the dipolar and
quadrupolar emissions. The result is shown in Figure 4(d), where we observe that the
direction flip occurs for a phase difference A¢ = 0.15 7 rad, a value very close to the one
extracted from the scattering spectra in Figure 4(c). Concerning the relation between
lag —2| and |ag |, we observe that the flip between backward and forward emission does
not depend upon the VSH Ny ¢ and thus of the amplitude of the as o coefficient (data
not shown). This observation suggests that the flip in the nonlinear emission is due to
a fundamental symmetry relation between the VSHs. Although not required to obtain
the flip in the nonlinear emission, the specific relation |as | = 0.82]|ag,_2| = 0.82az
reproduces a radiation pattern with the expected cylindrical symmetry around the x-axis
(see the Supporting Information). The electric field associated with a VSH does not
have a constant phase over the sphere (i.e., is a function of both 6 and ¢), leading to a
complex interference process.

Beyond their importance for the fundamental understanding of the mechanisms that lead
to second-harmonic emission in plasmonic nanostructures, these observations are also
very important for the development of nonlinear plasmonic sensing: the nonlinear analog
of plasmonic sensing aiming at the detection of small refractive index changes using
the nonlinear properties of plasmonic nanostructures [45-47]. Indeed, nonlinear signal
collected in such an application, i.e., the second-harmonic intensity, is not necessarily max-
imized when the fundamental wavelength matches the scattering maximum. Furthermore,
the modal interplay occurring between the dipolar and quadrupolar second-harmonic
emissions could be directly used for sensing. Finally, when designing a practical device for
nonlinear sensing, it is crucial to collect the signal where it is strongest. Figure 5(a) shows
an example of such an application where the forward and backward second-harmonic
intensities are plotted as a function of the refractive index of the surrounding medium.
A nanorod length of 100 nm has been chosen as an example, and the fundamental
wavelength is 820 nm. The dependence upon the refractive index is identical to the
one discussed previously considering the nanorod length influence; that is, a flip of the
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Figure 5 — (a) Computed forward (shown in black) and backward (shown in red) second-
harmonic intensities as functions of the refractive index of the surrounding medium. (b)
Ratio between the forward and backward second-harmonic intensities as a function of
the refractive index of the surrounding medium. The nanorod length is 100 nm, and the
fundamental wavelength is 820 nm.

nonlinear pattern is observed in Figure 5(a). To quantify this flip, the ratio between the
forward and backward second-harmonic intensities is shown in Figure 5(b). This ratio
evolves between 0.8 and 1.9 for a refractive index of the surrounding medium between
1.5 and 2. In the region of the largest slope, the estimated sensitivity is 4.7 RIU~!
(refractive index unit). Although the comparison with other methods, especially the ones
developed in the linear regime, is not straightforward [48,49], the approach proposed here
is a credible alternative to standard methods for in situ characterization during nonlinear
and ultrafast optical measurements.

Conclusion

In conclusion, we have shown that the emission pattern of the SHG emitted from gold
nanorods strongly depends on the length of the nanorods. We have experimentally
demonstrated a different evolution of the second-harmonic intensities recorded in the
forward and backward directions using an original experimental configuration. Specifically,
we have observed that the nonlinear emission in these two directions is not maximal for the
same nanorod length, a behavior departing from the well-known plasmonic enhancement
of the nonlinear response. Using a full-wave numerical method, we have clearly identified
the underlying mechanisms that lead to the experimental observation and revealed that
it stems from the evolution of the phase between the different multipoles involved in
the second-harmonic emission. This result indicates that, while the modal structure
associated with a plasmonic nanostructure is key to understanding its spectral response,
the dephasing between the different modes can govern fundamental properties, such as
the emission direction and detected intensities. Since the recorded signal depends upon
the experimental configuration of the detection, special care is required to determine
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the nonlinear conversion rate and to design efficient nonlinear plasmonic nanostructures.
Furthermore, we showed that the modal interplay occurring in the SHG from plasmonic
nanostructures may be used to measure small refractive index changes [45-47]. These
results can also open interesting directions for the dynamic control of harmonic generations
in plasmonic nanostructures based on engineering the relative phase between the different
modes [50,51].
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Supplementary informations

Experimental Details
Nanofabrication

Plasmonic gold nanorods are fabricated by standard electron-beam lithography followed
by gold deposition and lift-off. An array of gold nanorods with width around 80 nm and
lengths varying from 90 nm to 160 nm is fabricated. The deposited gold thickness is 50
nm.

Linear characterization

Dark field spectra are obtained using an optical excitation through an oil-immersed
objective with high numerical apertures comprised in the 1.1 to 1.3 range. The spectra
scattered at numerical apertures shorter than 0.9 are collected with an oil-immersed
objective in such a way that nanorods are oil-immersed in a 1.5 optical index medium
similarly to the non-linear experiments.

SHG measurement

A Ti:Sapphire laser producing 120fs pulses at 820nm is focused into a diffraction-limited
300 nm spot by a high numerical aperture oil-immersion objective (x60, NA 1.49). The
nanorod antennas are positioned in the focal plane of the objective. The dispersion
induced along the optical path is carefully pre-compensated with a 4-f zero dispersion
line to ensure Fourier transform limited chirp-free focused optical pulses [1]. The SHG
signal is collected with the same objective for the backward emission while a high
numerical aperture oil-immersion objective (x100, NA 1.30) is used for collecting the
upward emission. Then nanorods are immersed into oil, the refractive index of which
matches the one of the glass substrate, in such a way that nanorods are immersed into
a uniform dielectric environment. A multimode optical fiber of 500 um core diameter
allows injecting the collected signals into a spectrometer in order to separate the SHG
signal to the multi photon luminescence signal.

SHG estimation

The nonlinear spectra show that the SHG is obtained simultaneously with a broad
multiphoton photoluminescence (MPPL) signal. To extract the SHG contribution and
estimate the error made in evaluating the SHG signal, we model the MPPL spectra either
with a linear function or a 5th order polynomial contribution. The linear fit maximizes
the estimation of the SHG while the 5th order tends to minimizes it (see Figure S2).
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The SHG signal plotted in Figure 2 is then obtained as the average of these two values
and the error bar length equals the differences between these two values.

Numerical Methods
SIE method

The linear optical responses have been calculated using a surface integral formulation
[2]. All the nanostructures are considered in homogeneous medium (n = 1.5) and the
dielectric constants for gold are taken from experimental data at both the fundamental
and second harmonic wavelengths [3]. For the SHG computations, the linear surface
currents, which are expanded on Rao-Wilton- Glisson (RWG) basis functions [2, 4], are
used for the evaluation of the fundamental electric fields just below the gold surfaces and
then used for the calculation of the surface SH polarization. For the sake of simplicity,
only the component Xgurfnnn of the surface tensor, where n denotes the component
normal to the surface, is considered. Recent experimental results shows that this term
dominate the surface response of metallic nanoparticles [5]. Note that other contributions
to the SH signal, namely the component Xy, #n 0of the surface tensor (where ¢ denotes
the component tangential to the surface) and bulk contribution, are theoretically allowed
but these contributions weakly contribute to the total SH wave [5, 6]. Furthermore,
the present work is focused on the nonlinear plasmon rulers and the obtained results
are valid whatever the nonlinear sources. The SH surface currents are obtained solving
the SIE formulation taking into account the nonlinear polarization and enforcing the
boundary conditions at the nanostructure surfaces [7]. As the linear surface currents, the
SH surface currents are expanded on RWG basis functions. The expanding coefficients
are found applying the method of moments with Galerkin’s testing [2, 7]. A Poggio-
Miller-Chang-Harrington-Wu-Tsai formulation is used to ensure accurate solutions even
at resonant conditions [2, 4]. The SH electric field is then deduced from the SH surface
currents using a two-term subtraction method for the evaluation of the Green functions
[2].

Multipoles

Here, the Cartesian multipole tensors for the dipole and quadrupole moments are
expressed using the VSHs coefficients. The dipolar vector is given by [8]:

Yz a1 —ai—1
py | = |ilary +ar,—1) |- (3)
Dz —v2a1

For the chosen configuration, the second harmonic dipole (due to retardation effects) is
oriented along the y-axis. This means that, in the previous equation, p, should be the
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only nonvanishing quantity. Thus a1 1 = ai,—1 and a9 = 0. The Cartesian quadrupolar
matrix is given by [8]:

Qxa: sz sz
Qym ny Qyz
sz sz sz
i(az,—2 4+ aszs) — i@@,o as,—2 — a2 i(ag,—1 — az;)
az,_2 — a2 —i(ag,—2 + az2) — i@@,o (ag—1+az1) |+ (@)
i(ag,—1 —az1) (a2,—1 +az1) iv/6as,

with the traceless condition : Quz + Qyy + Q.. = 0. The SH quadrupole should be
oriented along the Ox axis, so its symmetry implies to Qy = Q. = Qy. = 0, leading to
a,—2 = asp and as _1 = az 1 = 0. Furthermore, the ()5, component should be indeed the
strongest one, then the phase relation between as 12 and ag g is arg(ag +2)+m = arg(az)
in order to have Q. > Qyy. Finally, it is observed that in order to obtain a radiation
pattern cylindrically symmetric around the x-axis, the relation between the quadrupolar
coefficients is |ag | = %|a2,,2| = %|a272| with lﬁ = (0.82.
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Figure S1 — Spectra collected in (a) the backward and (b) the forward directions for
nanorod lengths ranging from 75 nm to 138 nm. The photoluminescence below the second
harmonic peak is determined using a linear regression analysis. The second harmonic
intensity is evaluated by integrating the remaining peak at 410 nm.
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Figure S2 — Spectrum in the downward direction for the nanorod L =110 nm. The two
fits of the MPPL spectrum are shown. The SHG is then estimated by evaluating the
area between the nonlinear spectrum and the related fit.
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Figure S3 — Second harmonic emission patterns for nanorod lengths ranging from 90 nm
to 160 nm. The fundamental wavelength is 800 nm.
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Figure S4 — Calculated forward (shown in black) and backward (shown in red) second
harmonic intensities evaluated considering the numerical aperture of the objectives (NA
= 1.30 for the collection in the forward direction and NA = 1.49 for the collection in the
backward direction). The two curves are normalized to their respective maxima.
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ABSTRACT: Second harmonic generation in plasmonic nanostructures is
known to enable the observation of modes with vanishing dipolar moments,
i.e. having small radiation losses and thus long lifetimes. With the aid of
a full wave numerical method, we study the far field temporal dynamics of
the linear and nonlinear responses of a silver nanorod driven by femtosec-
ond pulses. The results show that the plasmons lifetime is observable in
the decaying field oscillations surviving after the exciting pulse, for both
processes, and fits with the damped harmonic oscillator model. In addition,
using a detailed mode analysis, we find that the multipolar characteristic
of the nonlinear radiation is strongly influenced by both the pulse central
frequency and width. Implications for the accurate measurement of plas-
mon lifetime with the help of nonlinear optics are discussed, especially the
need to carefully disentangle the linear and nonlinear plasmon dynamics.

Introduction

Plasmonic nanoparticles are well known for their ability to confine light below the
diffraction limit [1,2]. As a consequence of this light concentration, the electromagnetic
field intensity can be locally enhanced by several orders of magnitude [1-3]. These
localized surface plasmon resonances are versatile and their properties depend upon
several parameters, such as the nanostructure shape, material, surrounding medium as
well as the coupling between nanoparticles [4,5]. Among the different parameters that
describe a plasmon resonance, the lifetime is of prime importance, since it controls the
field enhancement [6]. Furthermore, the coherent control of the field localization both
in time and space is intrinsically linked to the plasmon lifetime [7-10]. However, the
plasmon damping time is very short (10 fs and below) and is thus difficult to measure
experimentally [11,12].

Recently, time-resolved photoemission electron microscopy has emerged as a useful
approach for studying plasmon dynamics, allowing the detection of the electron oscillations
at the nanoscale [13-15]. In this context, optical techniques used for the characterization
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of ultrashort laser pulses have been extended for the investigation of the ultrafast response
of plasmonic systems [16-18], including nonlinear effects [19]. These optical measurements
are based on interferometry and rely on the evaluation of the autocorrelation function.
This is generally performed by recording the nonlinear light conversion, either second
harmonic generation (SHG) [16-18] or third harmonic generation (THG) [20,21], as a
function of the time delay between the light traveling through the two branches of an
interferometer. A broadening of the autocorrelation function, in comparison with a
non-resonant reference (as a BBO crystal for example) is indeed caused by the field
enhancement induced by the free electron collective oscillations.

During the last few years, a particular attention has been devoted to the SHG from
plasmonic nanostructures [22,23] and SHG from plasmonic nanostructures with various
shapes and properties have been reported [24,30]. A key recent advance in this field
has been the design of double resonant nanostructures to boost the nonlinear optical
conversion at the nanoscale [31,35]. These results emphasize the importance of the
plasmonic modes at both the fundamental and second harmonic (SH) frequencies in the
overall nonlinear optical conversion process. To investigate the relation between the
modes at the excitation and emission wavelengths in detail, it was recently proposed
to combine eigenmodes analysis with the evaluation of the SHG [36-38]. However,
the distinct plasmon dynamics at the fundamental and SH frequencies have not been
addressed so far, despite important implications for the coherent control of nonlinear
radiation, as well as for the accurate measurement of the plasmon lifetime using nonlinear
optical processes.

In this article, we study numerically the second order nonlinear response of a silver
nanorod driven by femtosecond pulses under planewave illumination. We use a frequency
domain surface integral equation (SIE) method to compute the linear and nonlinear
fields as well as the eigenmodes of the silver nanorod. We show that single eigenmode
dynamics behaves like a damped harmonic oscillator [12], in both the linear and nonlinear
regimes. A multipolar analysis of the time-dependent far-field intensity for different pulse
central frequencies and widths is also conducted, revealing the importance of the modal
structure to interpret the radiated signals at the SH wavelength.

Theory

Numerical simulations are made using a frequency domain full wave method, namely
the surface integral equation [39]. Only the surface of the nanorod is discretized with
triangular elements and the scattering problem is solved by enforcing the boundary
conditions on the fields at the nanostructure surface. Harmonic oscillations of the form
e~ ™! are assumed throughout the manuscript, with i = /—1. The angular frequency w
has rad-s~! units, but we use electron-Volt (eV) to express it, i.e. w = hv/qy with v the

frequency in Hz, h Planck’s constant and qg the elementary charge.
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A temporal signal with a finite duration is necessarily composed of more than one
frequency and, the second order nonlinearity will lead to sum-frequency generation
(SFG) in addition to SHG [40]. Neglecting optical rectification (wy, — wy,) and difference-
frequency generation (wy, — wy), the second order nonlinear polarization P (t) due to
the complex harmonic fields Ey(t) and Ea(t) of the form E,,(t) = Ep,(wy,)e”“mt is [40]

P(2) (t) :P2w1 €—i2w1t+ P2w26—i2w2t+ Pw1+w2€—i(w1+w2)t ’ (1)

with P, = eoX(Q)E%, Py, = eoX(Q)E% and P, 4w, = 2¢0x D E1 Ey. The first two terms
in Eq. (1) correspond to SHG and the last one to SFG.

The second order nonlinearity is assumed to come uniquely from the surface of the
nanoparticle where the centrosymmetry of the silver crystal is effectively broken. Fur-
thermore, we consider only the Xfl | component of the second order susceptibility tensor
[41-43], the subscript L referring to the component normal to the surface . In the
following, the method described in Refs. [44,45] to compute SHG is modified to also
compute the nonlinear polarization due to SFG. We consider that the frequency range
of interest is far from any electronic resonances in silver and that the second order
process is parametric, thus leading to a X(fl | that is real and frequency independent
[40]. Furthermore, because no comparison is made between the relative amplitude of
the linear and nonlinear fields, the value of the nonlinear susceptibility relatively to the
linear susceptibility is not relevant and we set X(fi | = 1 without loss of generality. Addi-
tionally, we make the undepleted pump approximation and neglect the energy transfer of

second-order waves back to fundamental waves.

The SFG computation can be schematized in 4 steps in the time domain, as shown in
Fig. 1. First the incoming pulse F;,. excites the system and the resulting linear response
E;, is computed. This linear response is then used to create the nonlinear sources Py,
at the surface, through the nonlinear susceptibility X(f)i |- Those nonlinear sources in
turn excite the system at the nonlinear frequencies to give the nonlinear fields Enr,.
Throughout the manuscript Py, is referred to as the nonlinear excitation; the color red
is used for spectra at the excitation wavelength, while blue is used for the nonlinear

response of the system.

In the small particle limit, the two main contributions to SHG are expected to be due to
electric quadrupolar and dipolar modes, noted Es and Fp, the latter being allowed by
retardation effects [46]. Using the standard excitation-radiation schematic notation [47],
these processes are written Fy + E1 — FEs and E; + Fo — Ej, where the symbols on
the left and right refer to the nature of the modes respectively at the fundamental and
nonlinear stages. The exact nature of the nanorod modes, transverse or longitudinal, has
also to be detailed here. The nonlinear quadrupolar emission comes from the interaction
of two dipoles, whereas the dipolar nonlinear emission comes from the interaction of a
dipole and a quadrupole, both at the fundamental stage.
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W re@V t)

Figure 1 — Schematized computation of the SFG temporal signals. The incoming pulse
Einc(r,t) excites the structure and generates the linear response Ef(r,t). The linear
response is used to obtain the nonlinear surface polarization Py (r € 9V,t) at the
nanostructure boundary dV. Finally, these nonlinear sources are used to compute the
scattered nonlinear field Enp(r,t). This sketch illustrates the SFG process in time
domain, although each computation step is performed in the frequency domain (see text).

Ohmic and radiative losses are both present in plasmonic systems, thus the plasmons
oscillations are damped over time and each eigenmode is characterized by a complex
eigenfrequency w. = w, + iw;. If no excitation is present, any quantity A associated
with one eigenmode (field, charge, current...) evolves according to the damped harmonic
oscillator equation. Indeed, since the computations are done in the frequency domain,
the temporal evolution is of the form A(t) o Re{e~*'}. Replacing w by w. leads to

A(t) o cos(wyt)e“ it (2)

with w; < 0, as required for having a decaying amplitude. An example of the response
of a damped harmonic oscillator to a Gaussian pulse is shown in the supplementary
information, Fig. (S1). Notably, there is a delay between the maximum of the driving
pulse and the maximum of the response. Indeed, because of causality, the impulse
response of a damped harmonic system vanishes for ¢ < 0 and is thus asymmetric with
respect to t = 0. The maximum of the response that is given by the convolution of
the impulse response and the excitation, can then only occur at a time larger that the
incoming pulse maxima. Additionally, as the exciting pulse becomes longer this delay
increases, due to the fact that the system has more time to build up its response. As
shown in Fig. (S2), this delay also increases as the central frequency of the pulse becomes
close to the resonant frequency w;, of the oscillator, and increases with the pulse temporal
width At. This effect will be apparent in the subsequent analysis of the dynamical
response of the silver nanorod.

The eigenmodes are obtained by using complex frequency excitation to find poles of the
nanostructure response [48] and then verified to be eigenvectors of the SIE matrix [37].
An analytical continuation of the permittivity function in the complex plane is needed
for the eigenmode computation, thus a Drude model is used to find the eigenmode. The
model is fitted to the experimental values of Ref. [49] in the range 1.5 < w < 3 eV.
The parameters of the model are w, = 9.3 eV, v = 0.03 ¢V and €5, = 4.3, with w, the
plasma frequency, v the damping constant and €., the permittivity for w — co. The
background is assumed to be water, with refractive index ny, = 1.33, i.e. €,y = 1.77. This
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choice is made to render our result comparable to possible experimental findings, where
nanoparticles are usually suspended in water or deposited on a substrate. The effective
background permittivity of the latter medium depends on its composition but is indeed
closer to that of water than vacuum.

For the femtosecond pulse, we consider a Gaussian pulse envelope S(w) in the frequency
domain, with width Aw and centered at wy,

_ (w—wp)?

S(w) =e 2807 . (3)

The corresponding temporal signal is also a Gaussian with width At = 27/Aw and the
full width at half maximum is given by FWHM= 2,/2In(2)At ~ 2.35At. The total
energy of the pulse is given by [|S(w)|? &« Aw, so that it scales linearly with the width
of the pulse, both in frequency and time domains. The construction of the temporal
signal from the frequency domain computation is made using a Fourier transform as

detailed in the Method section.

Results

In this section, we present the dynamic of the linear and second order nonlinear responses
of a single silver nanorod of total length 120 nm and diameter 40 nm with hemispherical
ends, Fig. 2(a).

We consider that the pulse excitation is built from planewaves with electric field polar-
ization and propagation vectors respectively parallel and normal to the nanorod axis Oz
and use the experimental values of Ref. [49] for the silver permittivity.

Harmonic response and eigenmodes

The scattering spectrum (electric field intensity integrated over the sphere) of the silver
nanorod for monochromatic planewaves incident normally to the nanorod axis is shown
in Fig. 2(b), as well as the corresponding SH spectrum. In the linear spectrum, a
strong peak at ~1.7 eV is observed due to the longitudinal dipolar mode (LD). Two
other features between 3.0 and 3.5 eV also appear, due to higher order modes with a
non-vanishing dipolar moment along Oz. The SH spectrum reveals a first small peak at
2.80 eV corresponding to the longitudinal quadrupole resonance (LQ), and one strong
resonance at 3.5 eV. This SHG maximum is mainly due to the dipolar resonance linearly
excited at 1.74 eV but is also expected to benefit from the transverse dipolar (TD)
mode and higher order modes at the SH frequency. Indeed, since the real part of the
permittivity becomes positive at w & 3.8 eV, all the plasmonic modes will have resonant
frequencies below 3.8 eV. From Fig. 2(b), it is thus expected that some high order modes
participate to the SHG scattering due to the fact that the nonlinear sources Py, are
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Figure 2 — (a) Sketch of the excitation configuration. (b) Planewave scattering spectrum,
linear monochromatic response (red curve) and corresponding SHG (blue curve). The
SHG on the left of the vertical dashed line is multiplied by a factor 100 to highlight
the resonance of the LQ mode. The red dots and horizontal lines respectively indicate
the central energies wy and width 2Awy at the fundamental stage for the pulses used
in the manuscript. The blue dots give the central frequency of the corresponding
nonlinear excitation Py, without taking into account the influence of the linear response,
i.e. w'l = 2wy. The position of the eigenmodes presented in (c) are shown on the top
abscissa. (c) Surface charge distributions o of the four eigenmodes discussed in the
manuscript. LD stands for longitudinal dipole, LQ for longitudinal quadrupole, TD for
transverse dipole and TQ for transverse quadrupole, see Table I. Black arrows represent
the local dipolar moment orientations.

spectrally near 3.5 eV. A multipolar decomposition of the far-field [50] is also conducted
for the SHG signal, Fig. (S3), and reveals only dipolar and quadrupolar emissions. The
small peak at 2.8 eV is composed of 85% of quadrupolar emission, whereas the emission
peak at 3.5 €V is 98% dipolar. As stated in Section 2.3, the SHG emission arises mainly
from two excitation channels, coming from the modes presented in (2)(c). The first one
is the interaction of the LD mode with itself to excite the LQ mode at the SH frequency.
Using the previously introduced notation and specifying the precise nature of the modes,
this excitation channel is B + EFP — Eé“ @ Higher order modes with even charge
distribution parity along the Oz axis, like the LQ mode, can be excited through identical
processes involving higher order modes at the linear stage. The other excitation channel
allows a dipolar emission at the SH frequency through the interaction of the LD and
the transverse quadrupolar (TQ) mode, the latter being excited by retardation effects,
i.e. phase difference of the driving field across the nanorod diameter in the Oy direction.
This excitation channel is EfP + E; Q@ ETP. As in the case of the quadrupolar
nonlinear emission, other higher order modes having the transverse characteristic, i.e. odd
charge distributions along Oy, can participate to the dipolar nonlinear radiation through
similar processes, since their symmetry does not forbid it. Figure 2(c) shows the four

98



2.3. Dynamics of Second Harmonic Generation in a Plasmonic Silver
Nanorod

eigenmodes discussed above, where the arrows indicate the dipolar moments orientations.
Their complex eigenfrequencies, as well as their plasmon lifetimes and associated quality
factors, are given in Table 1. The fit of the Drude model used to obtain the eigenmodes
is optimized up to 3 eV, the parameters for the TQ and TD modes are thus expected to
slightly deviate from those effectively existing with the experimental permittivity data.
Since the real and imaginary parts of the permittivity are both underestimated around 3
eV in our case, the real part of the eigenfrequency would be smaller and the imaginary
part larger i.e. the experimental mode is likely to be red-shifted and more lossy.

Table 1 — Eigenmodes eigenfrequencies, lifetimes given by 7 = h/(2mqo|w;|) and quality
factors @ = w,/|w;|. LD stands for longitudinal dipole, LQ for longitudinal quadrupole,
TQ for transverse quadrupole and TD for transverse dipole. Arrows indicate the local
dipolar moments as in Fig. 2(c).

wr (V) w; (eV) 7 (fs) @
LD — 1.74 -0.0936  7.03 18.5
LQ +— 2.80 -0.0244 27.0 115
TQL 1t 327 -0.0418 157 78.3
™D ¢ 3.38 -0.168  3.93 20.1

Pulse excitation, linear regime

We now consider a pulse, centered at ¢t = 0, with a Gaussian frequency envelope with
wo = Re{wrp} = 1.74 €V, i.e. centered at the longitudinal dipolar resonance, and width
Aw = 0.071 eV leading to a Gaussian pulse with FWHM=22 fs. Figure 4 shows the
spectrum and temporal dynamics of the E, component of the electric field, oriented along
the nanorod axis, at a distance R = 10 um in the forward direction (x =0, y = R, z = 0).
Even though the pulse spectral width is smaller than the width of the harmonic response
Ep(w), the response E(w) = Ej(w)S(w) is indeed narrower than the pulse, Fig. 4(a),
and must thus correspond to a longer time signature. This is indeed what is observed
in the temporal plots shown in Fig. 4(b). At all times, the field corresponding to the
blue curve shows a 7/2 phase shift with respect to the driving pulse (black curve), see
zoomed-in plot Fig. 4(c,d), a typical behavior for a forced oscillator driven at its resonant
frequency. At larger times t 275 fs, Fig. 4(d), when the amplitude of the excitation pulse
becomes negligible, an exponential decay of the oscillating field amplitude is observed, as
expected for a free damped harmonic oscillator. In order to confirm that the behavior
observed at t 275 fs is due to the LD resonance, the field evolution given by Eq. (2)
with the parameters of the LD mode given in Table 1 is superposed to the full wave
computations, blue circles in Fig. 4(d). The excellent agreement between the full wave
computation and the dynamics associated with the LD mode demonstrates that the
latter plays the dominant role in the system; furthermore, this demonstrates how the
knowledge of the modes supported by a system can be used to reconstruct its dynamics
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Figure 3 — Linear response of the F, component at a distance of 10 pym in the forward
(positive y) direction. (a) Spectra obtained with monochromatic planewave excitations
(dashed blue curve), frequency envelope of the pulse centered at w = 1.74 eV with
Aw = 0.071 eV (black curve) and the linear response driven by the pulse (blue curve).
(b) Time domain electric field evolutions of the driving pulse (black line) and the linear
response (blue curve). (c¢) Zoom on the forced regime. The vertical line to highlight the
7 /2 phase shift between the excitation and the response. (d) Zoom on the free harmonic
motion and fit of the damped harmonic oscillator free response with the parameters of
the longitudinal dipolar eigenmode. The black arrowhead indicates where the fit was
made.

[12]. The exponential decay envelope is prolonged before ¢ ~78 fs to clearly show the
transition between forced and free regimes. Note that the maximum of the driving pulse
indeed occurs at ¢ = npyR/co = 44.36 fs, with ¢g =299,792,458 ms™!, Fig. 4(b). In
addition, it is apparent that the maximum of the field response is delayed relatively to
the driving pulse maximum, another well-known feature of harmonic oscillators driven at
their resonances, see Fig. (S1-S2).

Pulse excitation, nonlinear regime

The nonlinear response of the nanorod is now studied for a pulse with the same width as
in Section 2.3 but centered at wy = Re{wrg/2} = 1.4 €V, i.e. at half the LQ resonance.
This is done to avoid the excitation of higher order modes at the SH frequencies and
thus concentrate only on the LQ and TD modes radiation which are expected to be the
only contributions at the nonlinear frequencies around 2.8 €V in the small nanoparticle
limit, see Fig. 2(b). The width of the pulse, Aw = 0.071 €V, further ensures that the
contribution of the high order modes above wrp remains negligible. In Fig. 4 we show
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the F, component of the electric field at a distance R =10 pum and at a £45° angle in
the Oyz plane as well as in the Oz direction.

(a) ‘_Ej5 g _ES < (E§5° T E;450)‘ (b) ‘ o LQ fit -LQ decay‘
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Figure 4 — Nonlinear response for a pulse of central frequency wp=1.4 eV and width
Aw=0.071 eV. (a) E, component of the electric field at a distance of 10 gm. Red, green
and blue curves respectively show the field in the forward 45° (z=y), backward —45°
(z= —y) and top 0° (z= 0) directions. The black marker curve is the sum of the green
and red curves. The blue and black marker curves are vertically shifted for clarity. (b,c)
Details of the time evolution shown in (a). The vertical dashed line in (c) is here to
highlight the phase difference between the fields. The arrowhead in (b) indicates the
time where the fit with the LQ mode was made. (d) Radiation patterns of the L(Q and
TD modes in the Oyz plane and corresponding qualitative amplitudes of the E, field
component at the positions where the fields of panels (a-c) are evaluated.

The electric fields taken at the +45° angles exhibit a clear resonant dynamic with a long
lifetime due to the LQ mode, see Table 1. In the Oz direction (0°), the LQ mode cannot
radiate and the field observed (blue curve) is thus solely due to the TD mode. Since the
TD mode is driven below its resonant frequency and is relatively lossy, 7rp = 3.93 fs, only
its forced behavior is observed and the temporal response is symmetric with respect to
its center. To understand why the TD mode shows a response as strong as the LQ mode
even though its resonant frequency is relatively far from 2x1.4=2.8 eV, one needs to
consider a few points. First, the TD mode is spectrally broad due its large eigenfrequency
imaginary part (Im{wprp} = —0.168 V), and since it is a dipolar resonance it is better
coupled to the far-field than the LQ. Indeed, the multipole decomposition of the SHG
spectrum gives a 15% contribution of the dipole component for a harmonic planewave
excitation at 2.8 eV see Fig. (S3). Second, even though the central linear frequency is
fixed at 1.4 eV, the LD resonance is effectively blue-shifting the linear response maximum,
making the maximum of the nonlinear excitation closer to the TD eigenfrequency. Finally,
the linear pulse width is 0.071 €V, so that the effective spectral width of the nonlinear
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excitation Py can be expected to be roughly twice this value, making the spectral
overlap between Py and the TD even greater.

We observe in Fig. (4)(c) that the electric fields in the forward (45°, red line) and
backward (—45°, green line) directions have slightly different amplitudes for ¢t < 60 fs.
The difference in the field amplitudes in the +45° directions for ¢ < 60 fs is caused by the
interference between the LQ and TD modes, as already reported in the continuous regime
in Refs. [51,52]. Indeed, the electric field orientation associated with the quadrupolar
and dipolar emissions at the two observation points is different, Fig. 4(d), and interferes
constructively in the backward direction and destructively in the forward direction. Let
us note that the constructive/ destructive interferences can generally happen in either
direction depending on the relative spectral position of the excitation, the LQ, and the
TD modes [52]. To further study this phenomenon, the sum of the two responses in the
+45° directions (red+green curves) is computed and it is observed that the result, black
markers in Fig. 4(a,c), fits almost perfectly with the transverse dipolar response taken in
the Oz direction (blue curve). The extremely small discrepancy is fortuitous: it is due to
the difference in amplitude of the dipolar and quadrupolar radiations in the +45° and
Oz direction as well as to the relative amplitude of each mode. Let us note that a similar
interference effect between the TD and LQ modes also exists for the F, component of
the fields (data not shown). The temporal overlap of the sum of the two fields in the
4+45° and Oz directions, respectively due to the LQ and TD modes, thus confirms that
the TD resonance is indeed the source of the observed amplitude difference in the +45°
directions.

For times ¢t 2 65 fs the short-lived TD mode vanishes with the exciting pulse so the
interference process disappears and the two fields in the +45° directions retrieve the
same amplitude, Fig. (4)(b). As for the linear response in Section 2.3, at ¢ 265 fs, the
behavior of a free damped harmonic oscillator is observed. The parameters of the LQ
mode are used to plot Eq. (2) (red circle), which fit with great accuracy the computed
field evolution in the +45°, the same agreement being expected in the backward —45°
directions due to the symmetry of the geometry. We additionally notice that during the
time where the interference between the two modes occurs, Fig. (4)(c), the two fields at
+45° are not perfectly out of phase as they should be if only the LQ mode was excited
Fig. (4)(d). This is because the TD and LD modes do not have the same phase with
respect to the nonlinear excitation and thus to each other. The interference created
by the TD mode thus modifies the relative phase shift between the fields in the +45°
directions. When the dipolar mode vanishes, the two fields retrieve their relative m phase
shift (4)(b), as expected for a purely quadrupolar radiation. Finally, we observe again a
shift between the excitation maximum and the response of the quadrupolar mode. As
was the case in the linear regime, we see that the eigenmodes are of prime importance
in the study of the spectral and dynamical behavior of the SH response of plasmonic
nanoparticles.
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Multipolar analysis

Finally, we study the nonlinear temporal response of the nanorod for various pulse
parameters. Six different pulses at two different central frequencies and with three
different widths are considered, viz. wp= 1.4 and 1.74 ¢V, Aw= 0.071, 0.14 and 0.21 eV.
The three spectral widths correspond respectively to temporal FWHM of 22, 15 and 7 fs
for the field amplitude, the effective FWHM for the corresponding intensity is given by
FWHM/+/2. The central frequencies and widths of the pulses at the fundamental stage
are shown in Fig. 2(b). The corresponding nonlinear central frequencies, obtained by
multiplying by two each linear one are also shown as blue dots. Note however that the
real excitation of the nonlinear process comes from the linear response, and will thus not
necessarily have a maximum at 2wy nor a Gaussian shape due to the resonant character
of the linear response. For each case, we project the time-dependent linear and nonlinear
far-fields onto the vector spherical harmonics to decompose the radiation into multipole
moments [50]. The results are shown in Fig. 5, where the panels (a-f) show the linear
and nonlinear scattered intensities and the panels (g-1) the dipolar and quadrupolar
components of the nonlinear scattered intensity. Other multipolar moments are found
to be negligible and the linear response is purely dipolar. To clarify the plot, the linear
intensity is shown only at the peak values of the oscillations, indicated by red markers,
since the dynamics does not involve any additional effect that the ones presented in
Section 2.3. Additionally, the intensity is integrated over the range 25 < ¢t < 120 fs for
both linear and nonlinear signals and normalized to the weakest case, which is wg = 1.40
eV and Aw = 0.071 eV. The corresponding data are shown in each panel, thus providing
the total energy of the radiated fields. Every curve in Fig. 5 (a-f) is normalized to the
maximum intensity of the corresponding curve for the case wg = 1.4 eV and Aw = 0.071
eV which gives the weaker linear and nonlinear peak signals. Finally, the exciting pulses
are all normalized to have unit energy so that the comparison of the peak and integrated
intensities reflect the intrinsic efficiency of the linear and nonlinear signal generations.
We recall Parseval’s theorem that states that the energy of a signal in the frequency
domain is proportional to the energy of the temporal signal, [ |E(w)|?dw o< [ |E(t)|?dt,
the proportionality constant being dictated by the definition of the Fourier transform
[53]. Thus the integrated intensities in time domain can be explained by analyzing the
corresponding spectra. Concerning the linear dynamics, every case shows a fully dipolar
response (data not shown), as expected from the excitation of the LD mode, see Fig. 2.
For the pulse centered at 1.4 eV, Fig. 5 (a-c), it appears that the peak and the integrated
intensity increase as the pulse shortens. Indeed, the shorter the pulse, the broader the
spectrum, and since the central frequency is here below the LD peak, a broadening means
a better overlap with the LD resonance at 1.74 eV and thus a stronger signal. This
better overlap with the resonance also leads to a slight increase in the delay between the
driving pulse and the linear response, see the black and red arrowheads respectively. On
the other hand, when the pulse central frequency is tuned to the LD resonance at 1.74
eV, the shorter pulses lead to a weaker integrated signal, compare Fig. 5 (d-f), and it
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Figure 5 — Multipolar analysis of the linear and nonlinear radiations. Six different pulses
are considered, at central energies wp: 1.4 and 1.74 eV, and widths Aw: 0.071, 0.14 and
0.28 eV. (a-f) Linear (red markers, value on the left vertical axis) and nonlinear (blue
curve, value on the right vertical axis) scattered intensity. The pulse parameters (wp, Aw)
are indicated in the top right corner of each plot. For clarity the linear response is taken
only at the maxima of I7(¢). Each linear, respectively nonlinear curve, is normalized
to the corresponding curve in (a). We observe that both the linear and nonlinear peak
intensities are minimal for the pulse parameters used in panel (a). The linear intensity
integrated in the range 25 fs < ¢t < 120 fs is indicated in the plots and normalized to
the one in (a). The black arrowheads on the horizontal axis indicate the center of the
exciting pulse at 44.36 fs whereas the red and blue ones indicate the maximum of the
linear and nonlinear responses. (g-h) Corresponding multipolar decompositions of the
nonlinear radiations. Multipoles other that electric dipolar and quadrupolar components
are found to have negligible contributions. The intensity integrated in the range 25 fs
< t < 120 fs is indicated in the top left corner of each plot and normalized to the one in
(g). The colored arrowheads on the horizontal axis indicate maximum of the dipolar and
quadrupolar components when possible. Note that the indicated FWHM is given for the
field, not the intensity.
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additionally appears that the peak intensity slightly increases for shorter pulses. Keeping
in mind that each excitation pulse is normalized to have unit energy, the broadening of
the spectrum, which is linked to the reduction of the pulse duration, leads to a weaker
maximum amplitude of the pulse spectrum that is centered at the LD resonance. This
could explain the decrease in integrated intensity, but not the slight increase in peak
intensity for shorter pulses. We first recall that the maximum of the temporal signal can
be linked to the integrated signal because E(t = 0) «x [ E(w)dw, which is indeed different
from the energy [ |F(w)|?dw. To explain the increase in peak intensity that occurs in
parallel to the decrease in integrated intensity, we multiplied three Gaussians (with the
width of the pulses used in this section and having unit energy) with a damped harmonic
oscillator spectral line-shape in order to simulate the linear response E(w) of the system.
We then compared the results of [ E(w)dw and [ |F(w)|?dw and found a good qualitative
agreement with the previous results, namely an decrease of the energy and a slight
increase of the integrated signal (data not shown). Finally, we observe that for the pulse
centered at 1.74 eV, Fig. 5(d-f), the linear response delay is the largest, and it decreases
for shorter pulses as expect for a pulse that shortens, see Fig. (S2). The nonlinear field
dynamics is first studied for femtosecond pulses centered at 1.4 eV, Fig. 5 (a-c, g-i). In
panels (a-c), the nonlinear intensity oscillations do not decrease down to zero at short
times. This effect is easily understood by looking at the multipolar decomposition, panels
(g-1). It appears that the dipolar and quadrupolar components, mainly due to the TD and
LQ modes respectively, are out of phase, as explained in Section 2.3. When the driving
pulse vanishes, only the long-lived quadrupole mode remains and the scattered intensity
oscillations can indeed vanish periodically. Indeed, the TD mode has a lifetime of 3.93
fs and thus cannot outlive the exciting pulse. As the pulse shortens and its spectrum
broadens, the overlap between the nonlinear excitation spectrum and the TD mode
increases. Thus, it appears that the short-lived dipolar component due to the TD mode
becomes predominant during the excitation and that the quadrupolar component takes
the lead afterward, see panels (g-i). The strong intensity difference between the dipolar
and quadrupolar components is due to the fact that dipolar modes are intrinsically more
efficient to radiate in the far field, and that, as shown in Fig. (S3), there is a non-negligible
dipolar contribution to the SHG around 2.8 eV. Notice the different vertical axis scales
that indicate that the quadrupolar component still increases form panels (g) to (i), the
maxima of the Ig curve being respectively 1, 1.8 and 2.5. In panel (i), at around 48 fs,
one can also observe a small dip in the quadrupolar component envelope, caused by the
interference between the L mode and higher order modes having a quadrupolar far-field
response. Additionally, the overall nonlinear response is also stronger both in peak and
integrated intensity for shorter pulses, due to the corresponding stronger linear response.
When the central pulse energy is resonant with the LD mode, wy = 1.74 eV, the nonlinear
signal is mainly dipolar Fig. 5 (d-f, j-1). Indeed, the nonlinear excitation is now centered
around 2x1.74=3.48 eV, close to the TD mode at 3.38 eV and far from the LQ mode.
Nevertheless, a long-lived oscillation is observed for the two shortest pulses, panels (k-1).
The decay observed is too slow to be attributed to the TD mode, and thus originates
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from a higher order mode having a non-vanishing dipolar moment in the Oy direction. As
discussed in Section 2.3, such high order modes are expected to have resonant frequencies
around the nonlinear excitation Pyz, in the present case, explaining further the strength
of this dipolar component. This is also in agreement with the SHG spectrum shown in
Fig. (S3), where the SHG response is mostly dipolar around the peak at 3.5 eV. The total
energy of the signals follows the evolution of the linear response, i.e. a smaller integrated
intensity is obtained for shorter pulses. Overall, the maximum peak and integrated
intensities are indeed obtained when the pulse is centered at the longitudinal dipolar
resonance mode for both the linear and nonlinear fields. The delayed-response behavior
of a mode excited at resonance is also apparent in the nonlinear signals, keeping in mind
that the source of the nonlinear signal is the linear response, that is itself delayed with
respect to the exciting pulse. For the pulse centered at 1.4 eV, the nonlinear excitation
Py, is close to the LQ mode and thus the delay between the linear response and the
quadrupolar component is large, and increases with the pulse duration. For the shortest
pulse, panel (i), interferences with high order modes makes the measure of the delay not
pertinent. On the other hand the nonlinear excitation is far from the TD mode, leading
to a vanishing delay for the dipolar component. Concerning the pulse centered at 1.74
eV, the nonlinear excitation is now close to the TD mode and we observe a delay of the
dipolar response that increases with the pulse duration as expected.

Conclusion

The dynamics of the linear and second order nonlinear fields scattered by a single silver
nanorod under femtosecond pulse planewave illumination have been studied. The linear
response was first presented to establish the method. It was shown that it is indeed
possible to observe the dynamics of single eigenmodes that behaves like damped harmonic
oscillators. Then the nonlinear scattered fields were studied, first in detail for the case
when the longitudinal quadrupolar mode is resonant at the nonlinear frequency. It
was observed that the transverse dipolar mode interfered with the quadrupolar mode
during the time where the excitation pulse is still present, but that only the quadrupolar
response remains afterward, due to its longer lifetime. Finally, a multipolar analysis
of the scattered field was conducted for two different pulse center energies and three
different widths. Different responses are observed depending upon the pulse width and
center frequency, like a switch between quadrupolar and dipolar dominant emissions over
time as well as changes in the peak intensity value or the total energy radiated. It appears
that the modal structure of the nanorod is of high importance to correctly understand
the temporal evolution of the nonlinear fields. These results provide a new insight into
the linear and nonlinear dynamics of localized surface plasmons, as one could tailor the
exciting pulse parameter to achieve a variety of dynamical responses. Furthermore, these
results are important regarding the accurate measurement of plasmon lifetime with the
help of nonlinear optics [16-18]. Indeed, to do so, one needs to carefully disentangle the
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linear and nonlinear plasmon dynamics as discussed in this article.

Methods

To reconstruct a temporal signal from its frequency components, the following inverse
Fourier transform is used:

E(t) = FYEMt) = / E(w)e ®tdw. (4)

The temporal signal E(t) must be real, hence F(—w) = E*(w), where * denotes the
complex conjugate. Equation (4) then reduces to

E(t) = 2Re { / E(w)e—iwtdw} . (5)
0

A finite amount of frequencies w, is computed, and the above integral reduces to a
sum. Consequentially F(t) becomes T-periodic with 7' = 27/dw, dw being the constant
frequency step between each considered frequency w,. To correctly retrieve the plasmon
dynamics it is mandatory that the periodicity induced by the frequency sampling is
sufficiently large compared to the largest plasmon lifetime. Plasmons are known to have
lifetime of the order of fs, we choose dw = 0.02 eV leading to T = 207 fs.

To construct the linear and nonlinear temporal signals, the first step is to compute a set
of N linear harmonic solutions Ej(w,) at equally spaced frequencies between wy and wp,
that can then be used to form any signal E(w) having a limited bandwidth wy < w < wp.
Ep(wy,) effectively acts as a transfer function, so that the response F(w,,) of the nanorod
to an excitation having the spectrum S(wy,) is E(wy) = Ep(wy)S(wy,), meaning that each
frequency component Ejp(w,,) is weighted according to the function S(wy,). One then
has to make second order computation for each possible pair of frequencies (wy,,wn)
composing the femtosecond pulse, taking into account the different weights of each
components

E(wpm + wn) = E(wm) E(wn)
= Ep(wm)S(wm)En(wn)S(wn) , (6)

and adding accordingly the pairs that give the same frequency. The total number of
combination is N? with N SHG and (N? — N) SFG combinations. Since the process
(Wi, wp) gives the same nonlinear response as (wy,, wy, ), only half of the SFG computations
have to be performed. Thus the total number of required nonlinear computation is
N + (N? — N)/2 = (N% + N)/2. The temporal responses, both linear and nonlinear are
obtained using Eq. (5).
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Figure S1 — Damped harmonic oscillator intensity response to a Gaussian pulse centered
at t = 0. The envelope of the response is fitted to the maxima and allows to compute de
delay between the maximum of the pulse at ¢ = 0 and the maximum of the response.

The horizontal axis is normalized to the lifetime 7 of the oscillator.
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Figure S3 — Multipolar decomposition of the SHG spectrum shown in Fig. 2. Ep and
Eq respectively correspond to electric dipole and quadrupole.
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8] Eigenmode Analysis and Electron
Energy Loss Spectroscopy

This chapter contains four publications studying electron energy loss spectroscopy (EELS),
organized as four successive sections with the corresponding references and supplementary
informations following at the end of each publications. The first article describes
the numerical implementation of EELS simulation as well as a novel approach for its
computation: instead of computing the work done by the electron against the scattered
field of the nanoparticle, we sum the energy dissipated by absorption and the energy
radiated in the far field, Sec. 3.1.

The next three articles present experimental EELS results accompanied with eigenmode
computations to analyse and interpret the spectra and maps. First, heterodimers made
of two compositionally different metals are studied. The importance of the spatial and
spectral overlap between the different modes of individual parts composing the dimer is
emphasized, and the additional degree of freedom brought by the compositional difference
is shown to strongly affect the hybridization pattern, Sec. 3.2. Second, dolmen-like
nanostructures with 4 different geometries are analysed in detail with an emphasis on the
strong coupling occurring between the nanorods comprising the dolmens. Eigenmodes
of perfectly symmetric dolmens are computed to understand the modal structure of
the different dolmens geometries and this knowledge is then used to understand the
experimental EELS map acquired on capillary assembled dolmens (i.e. with small
orientation defects and size mismatch), Sec. 3.3. Finally, the study of a Koch snowflake
fractal nano-antenna is presented. The experimental EELS map are link to the different
eigenmodes of the three first iterations of the fractal, revealing degenerated modes and
the evolution of the modes through the iterations, Sec. 3.4. Thanks to the ability of SIE
to model complex and realistic nanostructures accurately, the comparison between the
experimental data and the simulations shows an overall excellent agreement in all the
results presented in this chapter.
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3.1 Where does the Energy go in Electron Energy Loss
Spectroscopy of Nanostructures?

Manuscript state: Published

Reference: *Gabriel D. Bernasconi, *Jérémy Butet, Valentin Flauraud, Duncan T.L.
Alexander, Jiirgen Brugger and Olivier J.F. Martin "Where Does Energy Go in Electron
Energy Loss Spectroscopy of Nanostructures?' ACS Photonics 4, 156-164, (2017).
*equal contribution.

Publication date: December 5, 2016
DOI: 10.1021/acsphotonics.6b00761
URL: https://pubs.acs.org/doi/10.1021/acsphotonics.6b00761

Adapted with permission from the above-mentioned reference.
Copyright (2016) American Chemical Society.
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Where does the Energy go in Electron Energy Loss
Spectroscopy of Nanostructures?

Gabriel D. Bernasconi!, Jérémy Butet!, Valentin Flauraud?, Dun-
can T.L. Alexander?, Jiirgen Brugger? and Olivier J.F. Martin'

Nanophotonics and Metrology Laboratory, 2Microsystems Laboratory, and
3Interdisciplinary Center for Electron Microscopy, Swiss Federal Institute of
Technology Lausanne (EPFL), 1015, Lausanne, Switzerland.
Corresponding author: jeremy.butet@epfl.ch

ABSTRACT: Electron energy loss spectroscopy is a method of choice for
the characterization of both the spatial and spectral properties of local-
ized surface plasmon resonances. The energy lost by the impinging elec-
trons is commonly explained by the Lorentz force acting on their motion.
Here, we adopt another point of view to compute the electron energy loss
spectra. Coupling the energy conservation law with full-wave electromag-
netic computations based on a surface integral equation method, we derive
the electron energy loss spectra directly from two dissipative processes,
namely, absorption and scattering. This antenna-based approach is applied
to nanostructures with different sizes and materials, showing an excellent
agreement with experimental observation and computations based on the
evaluation of the Lorentz force. This formalism permits the easy separation
of absorption losses in the nanostructures forming a coupled system and
reveals the subtle interplay between absorption and scattering, which are
controlled by the materials, the nanostructure size, and the energy range.

Introduction

Electron energy loss spectroscopy (EELS) is a wellestablished experimental technique
based on the measurement of the energy lost by an electron owing to its interaction with a
sample [1,2]. The implementation of EELS obviously requires the use of an electron beam
and is in general performed in a scanning transmission electronic microscope (STEM)
combined with an electron spectrometer [1,2]. EELS is an important experimental
technique for both solid and surface sciences, combining very high spatial and energy
resolutions [3-7]. Indeed, the spatial resolution of EELS is mainly related to the electron
beam size, which can be squeezed to subangstrom dimensions, allowing for the direct
observation of single atoms [3-7]. At the same time, a high energy resolution is mandatory
for the identification of various chemical species and atomic bonds present in the sample
under study [3-7]. In particular, the energy resolution has been increased to ~10 meV,
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allowing performing vibrational spectroscopy in STEM [8]. Examples of the successful
utilization of EELS include the investigation of important biological molecules such as
nucleic acid bases [9], confined fluids within individual nanobubbles [10], oxidation states
in transition metal oxides [11], single-atom dopants in graphene [12], and light elements
(alkali metal and halogen) [13].

The characterization of localized surface plasmon resonances (LSPRs) using swift electrons
in STEM has also become an important research topic during the past decade [14,15].
This is mainly due to the combination of high spatial and spectral resolutions, which
enables direct mapping of the electromagnetic hot-spots associated with LSPRs [16]. The
interaction between the impinging electrons and the LSPR is observed either as energy
lost by the electron beam, corresponding to EELS [16-37], or as cathodoluminescence
(CL) [37-41], which corresponds to the photon emission resulting from the radiative
decay of the LSPR. EELS and CL have been widely investigated in a broad variety of
plasmonic systems, including nanospheres [ 17,18], nanorods [19,20], nanowires [21,22],
nanoprisms [16,23], nanodisks [24], nanocubes [25,26], nanosquares [27], nanodecahedra
[28], nanostars [29], bipyramids [30], split-ring resonators [31], nanodimers | 32-34],
trimers [35], chains of nanoparticles [36], and nanodolmens [ 37]. Recently, EELS was
used to control the precise placement of gold nanorods in coupled systems obtained
by capillary assembly [42]. Furthermore, EELS has been used to probe LSPR kinetics
and damping in single plasmonic nanostructures [29]. Indeed, the LSPR quality factor
and dephasing time depend upon the total losses, including radiative and nonradiative
channels [43]. In order to support these experimental observations, numerical methods
for nanophotonics have been extended to describe the interaction between plasmonic
systems and propagating electrons [14]. For example, the discrete dipole approximation
[44-46], the 3D Green’s dyadic method [47], the finite difference time domain method [48],
the discontinuous Galerkin time-domain method [49], the boundary element methods
(BEM) [50-52] —in particular the MNPBEM Matlab toolbox [53] —and the finite element
method [32] have been used for computing EELS and CL spectra.

In order to obtain more insights into the corresponding interaction mechanisms, the
electron energy loss (EEL) spectra and maps have been related to a well-established
physical quantity, the local density of states (LDOS) [54-57]. It was shown that EELS is
sensitive to the component of the LDOS parallel to the electron propagation direction
and that the EEL spectra are related to the total LDOS, while CL is related to the
radiative part only [54-57]. Different tomography methods have been proposed for the
complete reconstruction of the plasmonic eigenmodes [58,59], and a circuit model has
been applied to understand the evolution of plasmon resonances observed with EELS
[60,61]. However, until now, all the numerical methods developed for the computation
of EEL spectra are based on the direct computation of the work done by the Lorentz
force on the electron. This corresponds to a description from the point of view of the
electron, thus somehow hiding the role played by the intrinsic properties of the plasmonic
nanostructure in the EEL spectrum. It should be noted that the methods based on a
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modal decomposition also use the evaluation of the Lorentz force acting on the electron
as a starting point [54-57]. In parallel, the relation between EELS and absorption and
scattering cross sections has been investigated. It was shown that, in specific cases, the
EEL probability can be equal to only the radiative loss probability, i.e., to CL, such as
the case of Al;O3 nanoparticles [62]. Further, it was formally proved that EELS is related
to the extinction (the sum of absorption and scattering) cross sections in the case of
small nanospheres [14]. Slight shifts observed between EELS and CL spectra have been
explained by the differences in the scattering and absorption cross sections [37,40,57].
However, a systematic investigation of the relationship between EEL spectra and the
absorption/scattering properties of the nanostructures has not yet been done, especially
in the retarded case and for coupled nanostructures, although important advances have
recently been made in this direction [40].

In this article, we evaluate the EEL spectrum directly from the properties of the plasmonic
nanostructure. On the basis of energy conservation, the EEL spectrum is related to the
fundamental electromagnetic properties of the plasmonic nanostructure—which can be
viewed as an optical antenna [63] —namely, absorption and scattering. Here, the antenna
theory is implemented in a surface integral equation (SIE) method [64], but this can be
easily adapted for other numerical techniques. Spherical nanoparticles are considered
first in order to introduce the antenna theory in a simple case. The roles of both the
nanoparticle size and the constituting metal are then discussed in detail. Simple coupled
plasmonic systems, i.e., nanodimers, are also investigated using the antenna theory,
demonstrating that the contribution of each nanoparticle in the total EEL spectrum can
be clearly identified in this framework. Finally, silver nanodiscs have been fabricated,
and their EEL spectra have been interpreted using the novel theoretical approach.

Results

Theory

A swift electron propagating in a homogeneous medium generates an electromagnetic
field that can probe matter with a high spatial resolution. Contrary to a planewave,
which is monochromatic but spatially extended, the electromagnetic field associated with
a propagating electron is strongly localized close to its trajectory but is associated with
a broad spectrum. The spectral components of the electric field E(r,w) and magnetic
field H(r,w) associated with an electron propagating along the z-axis are conveniently
given by analytical expressions involving modified Bessel functions [65]:

wz/v T R
E(rw) = 2 — [ Lk (20) 2 - 1 (20 A (1)
V77Ye€ Ye Ve Ve
2queiwz/v wR\ -
Hirw) =~k (27) 6 2)
VYeC Ve
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where v = 1/1/1 — ev?/c? is the Lorentz contraction factor, v is the electron velocity, €
is the relative permittivity of the medium, ¢ is the electron charge, Ky and K; are the
modified Bessel functions of the second kind, R is the radial unit vector, R and z are
respectively the perpendicular distance to and along the electron trajectory (r = (R, 2)),
and qg is the azimuthal unit vector. These formulas are directly used in all the numerical
methods implemented in the frequency domain for the evaluation of EEL spectra. In
this work, we use a SIE method previously applied to the computation of the interaction
of nanostructures with incoming planewaves and radiative dipoles [66]. This method has
been proven to be very accurate for the description of the electrodynamic response of
plasmonic systems, even under resonant conditions [64,66]. The nanostructure’s surface
is discretized with triangular mesh elements, and using surface integral equations, the
electric and magnetic fields in the entire space (inside and outside the nanoparticle) are
related to fictitious electric and magnetic surface currents. The incident conditions are
defined using eqs 1 and 2, and the induced field, resulting from the interaction between
the electromagnetic field generated by the electron and a scatterer, can be accurately
determined. The spectral loss probability, the quantity measured in standard EELS
experiments, is generally expressed invoking the Lorentz force exerted by the induced
electric field Emd(r,w) on the incident electron. Considering a straight line trajectory
re(t) and a constant electron velocity v (the so-called nonrecoil approximation [13]), the
energy loss is expressed as [67]

AFE = e/dt v-EmM(r t) = /oo hwIl(w)dw (3)
0
where
P(w) = —— / Re{ (ve~™!) - E™(r, w)}dl (4)

is the loss probability given per unit of frequency w. A priori, EEL spectra can be
computed with any numerical method suitable for the evaluation of the induced electric
field [68]. All these numerical methods are based on the evaluation of the work done by
the Lorentz force against the propagation of the electron. The current implementation of
the SIE method for the evaluation of the EEL spectra has been tested and compared
to the BEM (with the MNPBEM package) [52-54]; see Figure S1 in the Supporting
Information. In the following, the method based on the evaluation of the Lorentz force is
referred to as the standard formulation and the corresponding loss probability is denoted

as Lstana(w).

In this article, we introduce another point of view to describe EELS by combining
antenna theory with energy conservation. Indeed, an electron does not lose energy as
it propagates in a homogeneous medium with a velocity lower than the speed of light
in this medium, i.e., without Cherenkov radiation [14]. As a consequence, the unique
possibility for the electron to lose energy is through its interaction with the plasmonic
nanostructures close to its trajectory. The energy transferred from the electron to the
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nanostructure can then be dissipated either via heat generation in the nanostructure or
by radiation into the far field. Note that a small amount of the energy absorbed in the
nanostructure can be tied to the generation of hot excitons, which may leave the plasmon
nanostructures without generating any phonons [69,70]. This effect is not considered in
the present work. The latter dissipative process corresponds to the emission of photons
and is known as CL [38-41]. Due to energy conservation, the power lost by a beam of
temporally well-separated electrons, i.e., if the time separating two impinging electrons
is much longer than the dissipation of the energy generated in the nanostructure by one
electron, Pj,ss(w) can be written as

Ploss = Lsca t+ Pabs (5)

where Pg., is the power scattered by the nanostructure and Py, is the absorbed power,
corresponding to the ohmic losses. The absorbed power P, is easily computed as [71]

Pass () = % /Q dVRe{o}[E" (r, )2 (6)

where the integration is performed over the volume 2 of the plasmonic system. The
conductivity o is expressed as [71]

o(w) = —iweg(€m — 1) (7)

where €, is the complex dielectric constant of the metal and €q is the vacuum permittivity.
The dielectric constants of gold and silver are extrapolated from experimental results in
the present work [72]. The scattered power Pj, is evaluated by integrating the Poynting
vector S(r,w) over a surface A enclosing the nanostructure,

Prra(w) = /A dA - S(r,w) . (8)

Note that scattering denotes here the electromagnetic radiation, not the electron scattering
by the LSPR. In this framework, the loss probability I';,ss(w) per unit of frequency w is
proportional to MAQPZOSS (w) , where N is the constant number of incident electrons per
time unit. The loss probability I'j,ss(w) can then be related to two dissipation processes,
namely, scattering and absorption. Furthermore, in the case of coupled plasmonic systems,
the absorption in each individual nanoparticle can be computed separately by an adequate
definition of the integration volume as shown below.

Before discussing several examples in detail, it is worth saying that the antenna point of
view proposed here is compatible with the common description of EELS based on the
LDOS [54-57]. Indeed, it was recently demonstrated that the CL spectra are related
to the radiative LDOS, while EEL spectra are related to the full LDOS, including the
radiative and the nonradiative components [56]. However, there was a long controversy
about the link between the LDOS and EELS and how they are intimately related to each
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Figure 1 — (a) EEL spectra for silver nanospheres in vacuum. (b) Normalized loss proba-
bility evaluated using the standard formulation corresponding to eq 4. (¢) Normalized
loss probability evaluated using the antenna theory corresponding to eq 5. (d) Absorbed
power (dashed lines) and scattered power (solid lines) shown as functions of the energy.
The minimal distance between the nanoparticle surface and the electron trajectory is
fixed to 4 nm. The incident electron energy is 300 keV.

other [54-57]. It is now well-established that EELS is able to probe only the component
of the LDOS parallel to the electron trajectory [54-57]. This is generally attributed to the
scalar product between the electron velocity and induced electric field in the integrand
of eq 4. This scalar product is also invoked to explain that EELS is blind to some of the
electromagnetic hot-spots, as the ones observed in the gap of dipolar nanoantennas, due
to an inappropriate orientation of the electric field [54-57,73]. This has been intensively
discussed in the frame of the modal decomposition of the EEL spectra [56]. While
this point of view is correct, the approach proposed in this article emphasizes that the
inability of EELS to reveal some of the hot-spots is indeed due to the specific symmetry
of the incident field associated with the incoming electrons.

Silver Nanoparticles

We start with simple plasmonic systems, namely, silver nanospheres in vacuum. The
sphere diameters range from d = 20 nm to d = 100 nm, Figure la. The incident electron
energy is fixed to 300 keV. The impact parameter is b = d + 4 nm, meaning that the
minimal distance between the sphere surface and the electron trajectory is 4 nm. The
corresponding EEL spectra have been computed using the standard formulation, i.e., the
evaluation of the work done on the electron by the induced field, and the antenna point
of view proposed in this article. A very good agreement between the two formulations
is observed, confirming the validity of the antenna point of view for EELS. For the 20
nm silver nanoparticle, the EEL spectra are composed of one maximum close to 3.49 eV
with a shoulder at higher energy. The Mie theory reveals that the mode peaking at 3.49
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eV corresponds to the electric dipole mode and the shoulder is due to the contribution
of higher modes, mainly the electric quadrupole mode [74]. As the nanoparticle size
increases, the dipolar mode red-shifts and its contribution to the EEL spectra evolves;
see Figure 1. The contribution of the electric dipole mode to the EEL spectra is maximal
for a sphere diameter d between 40 and 60 nm. As the nanoparticle size increases, the
contribution of the electric quadrupole mode becomes more significant and a new (electric
octupole) mode appears for the largest nanoparticles at an energy close to that of the
quadrupolar mode, explaining the peak at 3.6 eV for d = 100 nm.

Having briefly described the evolution of the EEL spectra with the size of silver nanoparti-
cles, we now turn our attention to the cornerstone of the approach proposed in this article:
the decomposition of the EEL spectra into the different energy loss channels. The ohmic
losses (dashed lines) and the scattered power (full lines) are shown in Figure 1d. First of
all, it is worth noticing that the maxima are slightly shifted relatively to the ones observed
in the EEL spectra. Indeed, the EEL spectra correspond to the probability that an
electron undergoes an energy loss equal to hw. In other words, the EEL spectra reveal the
number of loss events. On the other hand, the total dissipated power is the convolution
between the loss probability and the energy loss during each event, proportional to Aw,
explaining the small shift between the two kinds of spectra. This shift is even higher for
20 nm aluminum nanoparticles, which are resonant in the UV close to 10 eV; see Figure
S2 in the Supporting Information. At this energy, an energy shift as high as 0.5 eV is
observed between the maximum of the EEL spectrum and the maximum of the total
energy loss. For the smallest silver nanoparticles, the energy dissipation is dominated
by the internal absorption, in agreement with previous discussions [17]. However, the
scattering also plays a more important role as the nanoparticle increases. For example,
the peak at 3.38 eV observed in the EEL spectrum of a 60 nm silver nanoparticle is
mainly due to scattering, and not to absorption. This peak is associated with the electric
dipole mode. In the case of 100 nm silver nanoparticle, the electric dipole mode is
shifted to lower energy and the scattering associated with this mode is the main energy
dissipation process for energy lower than 3.4 eV. At the same time, new modes, which
are strongly absorbing, appear close to 3.6 €V, resulting in EEL spectra also dominated
by absorption. Note that the small scattering peak observed at 3.5 eV corresponds to
the electric quadrupole mode.

Gold Nanoparticles

As expressed by eqs 6 and 7, the ohmic losses are proportional to the imaginary part of
the dielectric constant of the metal. Therefore, the metal constituting the investigated
nanostructures is an important parameter in EELS, beyond its influence on the resonant
frequencies of the observed modes. Furthermore, the penetration of the electromagnetic
field inside the nanoparticle also depends on the dielectric constant, because this physical
quantity is involved in the boundary conditions describing the electromagnetic field
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Figure 2 — (a) EEL spectra of gold nanospheres in vacuum. (b) Normalized loss probability
evaluated using the standard formulation corresponding to eq 4. (¢) Normalized loss
probability evaluated using the antenna theory corresponding to eq 5. (d) Absorbed
power (dashed lines) and scattered power (solid lines) shown as functions of the energy.
The minimal distance between the nanoparticle surface and the electron trajectory is
fixed to 4 nm. The incident electron energy is 300 keV.

behavior at the nanoparticle surface. To investigate the influence of the metal dielectric
constant on EELS measurements, EEL spectra of gold nanoparticles with diameter d
ranging from 20 to 100 nm have been evaluated in vacuum using the standard formulation
and the antenna theory; see Figure 2. All the EEL spectra are characterized by two
distinct features. First, a maximum at 2.41 eV, associated with the excitation of LSPRs
and with an increase of the internal electric field, is observed. The second feature is
a plateau for energy higher than 3 eV, corresponding to the excitation of electronic
interband transitions from the d-band to the hybridized sp-band and to an increase of
the imaginary part of the gold dielectric constant. The nanoparticle size modifies the
relative weight of these two features in the EEL spectra. The antenna theory reveals
that, for all the studied nanoparticle diameters, the energy is mainly converted into heat
by ohmic losses (see Figure 2d) and that the scattering is weak, resulting in a limited CL
signal. Indeed, scattering corresponds approximately to 15% of the energy lost at 2.41
eV by a 100 nm gold nanoparticle, the other part being lost by heat dissipation.

Silver Dimers

In the EELS of the isolated nanoparticles, the energy is dissipated either by scattering
or by absorption. The case of coupled nanostructures is a bit more complex. Indeed,
the absorption is decomposed into the ohmic losses occurring in each nanoparticle
constituting the coupled plasmonic system. The absorption in each nanoparticle can be
easily computed considering the appropriate volume for the integration occurring in eq
6. The simplest coupled plasmonic system is composed of two spherical nanoparticles
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Figure 3 — (a) EELS of silver nanodimers in vacuum for an electron trajectory passing
through the dimer center and perpendicular to the dimer main axis (top panels) and for
an electron trajectory passing close to the dimer extremity (the minimal distance between
the nanoparticle surface and the electron trajectory is fixed to 4 nm in this case) and
perpendicular to the dimer main axis (bottom panels). (b) Normalized loss probability
evaluated using the standard formulation corresponding to eq 4. (c¢) Normalized loss
probability evaluated using the antenna theory corresponding to eq 5. (d) Absorbed
power in nanoparticle 1 (dash-dotted lines) and in nanoparticle 2 (dashed lines) and the
scattered power (solid lines) shown as functions of the energy. The incident electron
energy is 300 keV.

separated by a short distance. The EEL spectra of silver dimers made of two 80 nm silver
nanospheres with gaps g = 8, 16, and 24 nm have been evaluated using the standard
formalism and the antenna theory (Figure 3). When the incident electron trajectory
passes through the dimer center and is perpendicular to the dimer main axis (top panels),
the EEL spectra are composed of two peaks, which red-shift as the gap between the two
nanoparticles increases. This behavior is explained by the antibonding nature of the
modes, where surface polarization charges with the same signs stand at each side of the
gap (see the charge distributions in Figure 3a), excited in this configuration. Indeed,
due to the symmetry properties of the electromagnetic field generated by the impinging
electrons, the bonding modes (where surface polarization charges with opposite signs
stand at each side of the gap) cannot be excited. This has been intensively discussed in
the past, leading to the conclusion that the Lorentz force associated with the bonding
modes vanishes since the corresponding electric field is perpendicular to the electron
trajectory in this case [54,55]. A priori, in this framework one cannot determine whether
a given mode is not excited or is instead excited but not probed by the electron beam.
In comparison, the absorbed and scattered power are not directly related to the induced
local field orientation (contrary to the Lorentz force). It follows that the vanishing
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signal in the gap reveals that the bonding modes are simply not driven by the incident
electrons and therefore do not provide additional channels for energy dissipation. The
standard formalism and the antenna theory lead to the same physical results, but the
latter description introduces a subtle conceptual difference in the interpretation of the
EEL spectra. It is interesting to note that, despite the antibonding nature of the modes,
a nonnegligible part of the energy is dissipated through scattering. Furthermore, the
absorption in the two nanoparticles is always identical, as expected from simple symmetry
considerations. This observation confirms the validity of the antenna theory for the
description of the EEL spectra.

In order to go beyond the selective excitation of the antibonding modes, the electron
beam is moved close to the dimer edges with a distance of 4 nm between the sphere
surface and the electron trajectory. In this case, the EEL spectra reveal two main
peaks as well as energy losses at lower energy (between 2.5 and 3 e¢V). This feature is
attributed to the contribution of the dipolar bonding mode, which was not excited in the
previous configuration; see the charge distributions in Figure 3a. Note that this mode
is broader than the other ones due to its high radiative losses. The absorption in the
two nanoparticles reveals their relative contributions to the EEL spectra. Interestingly,
it is observed that the nanoparticle close to the electron beam dissipates more energy
than the other one. This is expected since the internal electric field is higher inside this
nanoparticle due to the fast spatial decay of the electric field generated by the incident
electrons, eq 1. Note that the relative contributions of the nanoparticles cannot be easily
determined using the standard formalism and the evaluation of the Lorentz force, mainly
because the external electric field is associated with the complete coupled system, not
to only one of the nanoparticles. These results emphasize the potential of the antenna
theory for the interpretation of the EEL spectra associated with coupled plasmonic
systems, especially the role played by the different nanoparticles in the global response.

Comparison with Experimental Results

Finally, the numerical method proposed in this article for simulation of EELS is compared
to experimental EEL spectra obtained for silver nanodiscs with various sizes, with diameter
d ranging from 25 to 100 nm and with a constant thickness of 30 nm. As discussed
previously, the energy dissipation in gold nanoparticles is mainly due to ohmic losses,
and silver is chosen here to emphasize the role played by the two energy loss channels
(scattering and internal absorption). The silver nanodiscs were fabricated by electron
beam lithography along with a standard lift-off technique on an electron-transparent
silicon nitride membrane with a thickness of 30 nm. The EEL spectra were extracted
from 30 x 30 pixel regions of high-resolution EELS maps allowing for an improved
signal-to-noise ratio and low sample damages in comparison with a long single-point
spectra acquisition. The comparison of the experimental spectra with the simulated
EEL spectra convoluted with the experimental zero-loss peak (ZLP, with 0.12 eV fwhm)
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Figure 4 — (a) EEL spectra of silver nanodiscs. (b) Experimental spectra. (c¢) Normalized
loss probability evaluated using the standard formulation corresponding to eq 4. The
raw data and the convolution with the experimental zero-loss peak (ZLP) are shown
in dashed lines and solid lines, respectively. (d) Absorbed power (dashed lines) and
scattered power (solid lines) shown as functions of the energy. The incident electron
energy is 300 keV for both experiments and computations.

shows a good agreement. The slight discrepancy is thought to come from the fact that an
effective medium is used to mimic the influence of the substrate (see Methods). Especially,
a gradual red-shift of the electric dipole mode as the nanodisc diameter increases and a
quasi-planar mode at 3.5 €V are observed. Furthermore, both the experimental results
and the theoretical predictions reveal that the number of modes distinctly observed in
the EEL spectra increases as the nanodisc size grows. Now, we turn our attention to the
loss mechanisms and their evolutions with the nanodisc diameter; see Figure 4d. For
the smallest studied silver nanodisc (d = 25 nm), the energy is mainly absorbed in the
nanoparticle, and the scattering remains weak over the whole spectrum. However, as
the nanodisc size increases, scattering plays a more prominent role in the total energy
dissipation, as observed previously in the case of the silver nanospheres. It is interesting to
note that scattering mainly contributes to the EEL spectra at low energy and absorption
at high energy. This observation is related to the physical properties of the modes and
their coupling to far-field radiations, as emphasized by the antenna theory.

Conclusions and Perspectives

In summary, a new method for the evaluation and interpretation of the EEL spectra has
been proposed. Contrary to the approaches proposed previously, the Lorentz force is
not directly evaluated, but an antenna point of view is adopted instead, thus allowing
distinguishing between the different loss channels provided by the nanostructure. Several
examples, including gold and silver spherical nanoparticles, silver dimers with various
gaps, and silver discs made by lithography, have been considered in order to confirm the
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validity of this approach and to demonstrate the new insights it provides. It should also
be emphasized that this approach is complementary to the LDOS description proposed
in several seminal articles. Indeed, the antenna theory enables determining the relative
role of each nanoparticle constituting a coupled plasmonic system, while this information
is hidden in the LDOS of the global system. For this reason, the antenna point of
view proposed in this article will become an important theoretical tool for the subtle
interpretation of EEL spectra in complex plasmonic systems, such as those supporting
Fano resonances for example [75].

Methods

Simulations

A surface integral equation method is used to compute the interaction between the
electromagnetic field associated with the swift electron and the plasmonic nanostructures.
The nanostructure’s surface is discretized with triangular mesh elements with a typical
side length between 1.5 nm for 20 nm spherical nanoparticles and 8 nm for 100 nm
spherical nanoparticles, and using integral equations [61], the electric and magnetic
fields in the entire space (inside and outside the nanoparticle) are related to fictitious
electric and magnetic surface currents. The same numerical method is used for the
implementation of both the standard formalism and the antenna theory. For the silver
nanodiscs, a homogeneous medium with an effective dielectric constant (e = 1.8) is
considered for the computation in order to mimic the influence of the silicon nitride
substrate on the LSPRs (e = 4.0).

EELS Measurements

STEM-EELS maps were acquired using a FEI Titan Themis 80-300 equipped with a
Wien-type monochromator and a Gatan GIF Quantum ERS spectrometer. A 300 keV
incident electron beam was used for all experiments, monochromated to give an energy
spread of ~110 meV fwhm in the zero-loss peak of elastically scattered electrons, and
with beam currents of ~150 to 230 pA. A 17 mrad convergence semiangle of the probe
and a 22 mrad collection semiangle on the spectrometer were used, with the probe having
a mean diameter of <1 nm for fwhm in incident intensity. Mapping was performed using
the ultrafast spectrum imaging mode with typical dwell times of 0.25 to 0.5 ms per pixel
and with the probe rastered in X, Y step sizes of 0.5-0.6 nm for a total of >105 pixels
per map. Each map was treated with the HQ Dark Correction plugin to reduce noise
associated with dark current subtraction. Using this approach, the resultant plasmon
maps have excellent spatial statistics when considering the inherently delocalized nature
of this type of excitation.
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EELS Processing

The EELS data cubes were processed using Gatan digital micrograph and custom
Matlab scripts for the removal of the zero-loss radiation background and extraction of
point spectra. The ZLP was first centered pixel by pixel using a Gaussian-Lorentzian
approximation. The reflected tail model yielded a significantly lower signal-to-noise ratio
and alignment accuracy, whereas fitting of a vacuum zeroloss offered no practical benefit
while requiring a significantly longer computation time. Following zero-loss alignment,
each data cube was spectrally cropped to the region of interest including ZLP (-2 to 6
eV), and artifacts from cosmic rays were removed and the ZLP subtracted. Spectra in
Figure 4 were integrated over a 30 x 30 pixel region of interest in the periphery of the
discs.
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Figure S1 — (a) Comparison between the SIE and BEM (MNPBEM Matlab toolbox)
for the evaluation of the EEL spectrum for a 20 nm silver nanosphere in vacuum. (b)
The same computation but performed with the Mie theory (module of the MNPBEM
Matlab toolbox) considering different numbers of spherical harmonic degrees [, azx. (c)
Comparison between the SIE and BEM for the evaluation of the EEL spectrum of a 100
nm silver nanosphere in vacuum. (d) The same computation but performed with the Mie
theory considering different numbers of spherical harmonic degrees [,,ax. The minimal
distance between the nanoparticle surface and the electron trajectory is fixed to 0.5 nm.
The incident electron energy is 50 keV.

Influence of the surrounding medium

A convenient method for changing the ratio between the absorption and scattering
from a plasmonic nanoparticle is to change the dielectric constant of the surrounding
medium €. Indeed, these two physical processes have different dependences on the size

parameter ka, where k = 2”/\\/g is the wavenumber and a is the nanoparticle radius [62].

The EEL spectra for a 60 nm silver nanoparticles embedded in a homogeneous medium
with a dielectric constant ranging from 1 to 1.5 have been evaluated using the standard
formulation and the antenna theory, see Fig. S2. The corresponding results for a 20 nm
and a 100 nm silver nanoparticles are shown in Fig. S3 and in Fig. S4. As expected,
the ratio between the absorption and scattering evolves as the dielectric constant of
the surrounding medium increases. Interestingly, for 60 nm silver nanosphere, the peak
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Figure S2 — EEL spectrum for a 20 nm aluminum nanosphere in vacuum. (a) Normalized
loss probability evaluated using the standard formulation (solid line) and using the antenna
theory (dashed line). (b) Absorbed power (dashed lines) and scattered power (solid lines)
shown as functions of the energy. The minimal distance between the nanoparticle surface
and the electron trajectory is fixed to 0.5 nm. The incident electron energy is 50 keV.

associated with the electric dipole mode in the EEL spectra for a dielectric constant of
the surrounding medium € > 1 is mainly associated with scattering. For the smallest
nanoparticles studied here (d = 20 nm), the EEL spectra is well reproduced considering
only the ohmic losses. Indeed, it is well-known that the extinction spectra of small
nanoparticle is dominate by absorption and, even for the highest dielectric constant of
the surrounding medium (e = 1.5), the scattered power is approximately one order of
magnitude lower than the absorbed power for a 20 nm silver nanoparticle. For the largest
nanoparticles (d = 100 nm), the ohmic loss is also the most important loss mechanism.
However, for the highest values of the dielectric constant of the surrounding medium, the
quadrupolar electric mode (peak at 3.3 €V for € = 1.5) is explained by the two dissipation
processes. These results confirm that EELS is related to both the absorption and the
scattering.
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Figure S3 — EEL spectra of a 60 nm silver nanosphere embedded in a homogeneous
medium with dielectric constant ranging from 1 to 1.5. (a) Normalized loss probability
evaluated using the standard formulation corresponding to Eq. (4). (b) Normalized loss
probability evaluated using the antenna theory corresponding to Eq. (5). (¢) Absorbed
power (dashed lines) and scattered power (solid lines) shown as functions of the energy.
The minimal distance between the nanoparticle surface and the electron trajectory is
fixed to 0.5 nm. The incident electron energy is 50 keV.
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Figure S5 — EEL spectra of a 100 nm silver nanosphere embedded in a homogeneous
medium with dielectric constant ranging from 1 to 1.5. (a) Normalized loss probability
evaluated using the standard formulation corresponding to Eq. (4). (b) Normalized
loss probability evaluated using the antenna theory corresponding to Eq. (5). (c¢) The
absorbed power (dashed lines) and the scattered power (solid lines) shown as functions
of the energy. The minimal distance between the nanoparticle surface and the electron
trajectory is fixed to 0.5 nm. The incident electron energy is 50 keV.
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Figure S7 — EEL spectra of silver nanodimers in vacuum for (a) an electron trajectory
passing through the dimer center and perpendicular to the dimer main axis and for
(b) an electron trajectory passing close to the dimer extremity (the minimal distance
between the nanoparticle surface and the electron trajectory is fixed to 0.5 nm) and
perpendicular to the dimer main axis. The loss power is divided into the part absorbed
in the nanoparticle 1 (dashed lines) and the nanoparticle 2 (solid lines). The incident
electron energy is 50 keV.
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ABSTRACT: While plasmonic antennas composed of building blocks made
of the same material have been thoroughly studied, recent investigations
have highlighted the unique opportunities enabled by making compositionally
asymmetric plasmonic systems. So far, mainly heterostructures composed of
nanospheres and nanodiscs have been investigated, revealing opportunities
for the design of Fano resonant nanostructures, directional scattering, sensing
and catalytic applications. In this article, an improved fabrication method
is reported that enables precise tuning of the heterodimer geometry, with
interparticle distances made down to a few nanometers between Au-Ag and
Au-Al nanoparticles. A wide range of mode energy detuning and coupling
conditions are observed by near field hyperspectral imaging performed with
electron energy loss spectroscopy, supported by full wave analysis numerical
simulations. These results provide direct insights into the mode hybridiza-
tion of plasmonic heterodimers, pointing out the influence of each dimer
constituent in the overall electromagnetic response. By relating the cou-
pling of nondipolar modes and plasmon-interband interaction with the dimer
geometry, this work facilitates the development of plasmonic heterostruc-
tures with tailored responses, beyond the possibilities offered by homodimers.

Introduction

Collective oscillations of the conduction electrons in metal nanostructures, known as
localized surface plasmon resonances [1], have been intensively studied and designed
by manipulating both the nanostructures size and geometry, as well as their dielectric
environment [2]. These investigations, carried out over the entire visible light spectrum,
including the near-UV and near-IR, have demonstrated the control of both nanoscale
optical fields and far field radiation [1], leading to the concept of optical nanoantennas
[2,3]. The electromagnetic properties of these structures are governed by their eigenmodes,
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ranging from dipoles to high order multipoles [4,5]. When the nanoparticles are arranged
in pairs or multimers, these modes couple to each other and hybridize, producing further
optical properties [6-8]. In the simplest and most common geometry, involving the
coupling of two self-similar spherical nanoparticles separated by a nanogap, a wellknown
dipole-dipole interaction along the dimer axis is produced [6]. This coupling generates
an intense and confined near field in the gap region, which can enable large nanoscale
fluorescence enhancement [9] and surface enhanced Raman scattering down to the single
molecule level [10,11]. Thanks to a complete description of the plasmonic coupling for
spherical self-similar nanoparticle dimers, Nordlander and coauthors [7] have shown that
the gap dependent hybridization in such nanostructures stems from the interaction of the
uncoupled eigenmodes. Specifically, the uncoupled modes hybridize with bonding and
antibonding interactions and each of these two configurations occur along the longitudinal
and transverse axes of the nanodimer. As gap size decreases, and hence mode coupling
increases, the bonding modes exhibit large red-shifts, whereas antibonding modes are
subject to moderate blue-shifts. Additionally, the relative phase of the charge oscillation
between the two nanoparticles may lead to either enhanced or vanishing net dipole
moments, so forming, respectively, bright and dark modes [12].

Beyond symmetric dimers, heterogeneous pairs formed by two dissimilar nanoparticles,
each having distinct spectral properties owing to a compositional or geometrical difference,
have recently become a topic of wide interest. The resulting near field overlap and far field
interference of eigenmodes with distinct energy or multipolar orders have been studied for
a wealth of unique properties, such as directional scattering [13-15]; Fano resonances in
both radiation [16-18] and absorption processes [19,20]; enhanced nonlinear processes [21];
photothermal effects [22]; sensing [15,23-25]; and catalysis [26,27]. As with symmetric
dimers, the hybridized eigenmodes of these heterogeneous pairs (known as heterodimers)
also originate from the uncoupled eigenmodes supported by each dimer constituent
[7,16,28]. However, due to the reduced symmetry of the system, the hybridized modes of
heterodimers will be less likely to possess a vanishing dipole moment, the latter effect
being a direct consequence of the mirror symmetry of homodimers.

To date, most experimental studies of heterodimers have focused on their far field
properties, by monitoring their dark field spectra [16,29,30] and radiation patterns [14].
Here we instead evidence the benefit of direct experimental investigations of their modal
responses, especially for geometries beyond the sphere and disc dimers. Indeed, only
a few experimental studies, mostly limited to large nanostructures exhibiting minimal
energy mismatch [31] and limited design flexibility [32,33], have focused on measuring the
near field properties of heterodimers in order to visualize and tailor their electromagnetic
properties. In this article, we reveal the coupled modes of a wide range of heterodimers
using electron energy loss spectroscopy (EELS) combined with a full wave analysis based
on surface integral equations (SIE) methods. By fabricating heterodimers of different
materials and geometries using a precise multilayer electron beam lithography fabrication
process, we span a large range of energy detuning conditions and coupling strengths

144



3.2. Mode Coupling in Plasmonic Heterodimers Probed with Electron
Energy Loss Spectroscopy

between each dimer component, thereby unveiling the rich electromagnetic properties of
mismatched particle pairs.

Results and Discussion

Motivated by the unique opportunities enabled by asymmetric plasmonic systems, a
vast palette of enabling nanofabrication methods has been developed. Exploiting the
mode energy mismatch in heterodimers calls for techniques that can create narrow
interparticle gaps in order to significantly hybridize the eigenmodes of the constituent
elements [16]. To this end, colloidal assembly methods have been effective for providing
simple access to few nanometer gaps, with techniques varying from capillary assembly
[34,35] and electrostatic interactions [16,19,24,36] to DNA linkers [29,37] and origamis
[30,38]. A different approach relies on the use of dielectric microbeads for hole-sphere
lithography schemes, combined with tilted evaporation | 14,15,33,39-42]. Although these
various techniques are highly scalable and cost efficient, they suffer from a poor geometric
degree of freedom. While mode energy detuning is the central aspect of asymmetric
plasmonic systems, the mediation of coupling strength by controlling the geometry of each
nanoparticle and their gap distance is essential to tailor their electromagnetic response.
To this end, compositional asymmetry achieved with multistep lithography can be used
advantageously to disentangle the influence of the mode energies and nanoparticle shapes
on the coupled modes. To realize this capability, a double layer lift-off process based on
electron beam lithography [21,25] was developed and optimized in order to reach few
nanometer gap distances while exploiting the geometric freedom of lithography. The
process, outlined in Figure 1a,b, is entirely carried out on freestanding Si3sN4 membranes;
an approach that enables high resolution metrology of the heterodimers by transmission
electron microscopy as well as their electromagnetic characterization with EELS. Briefly,
alignment marks are etched on the front side of a silicon substrate, which is subsequently
coated with low-pressure chemical vapor deposition SigNy. The SizsNy layer is then
locally released by backside processing. Next, multiple steps of electron beam lithography,
evaporation and lift-off steps are repeated on the membrane for each Au, Ag and Al
layer (see Methods for details). The high quality markers and the related alignment
scheme reliably enable a sub-10 nm layer-to-layer alignment accuracy and a reproducible
fabrication of heterodimers arrays with few-nanometer interparticle distances. The
ultimate nanogap resolution and dispersion are limited by the metal line-edge roughness
and the associated thin-film polycrystallinity (Figure S1). After fabrication, structure
topography was characterized by atomic force microscopy, and the overall dimensions
and gaps were measured by transmission electron microscopy and high angle annular
dark field scanning transmission electron microscopy (HAADF STEM), for both Au-Ag
(Figure lc-f) and Au-Al heterodimers (Figure 1g-i). In addition, scanning transmission
electron microscopy energy dispersive X-ray spectroscopy (EDX) was performed to verify
the quality and absence of contamination in the Ag nanostructures (Figure S2), as well
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Figure 1 — Heterodimer fabrication.
SizN4 membrane, lithographically patterned structures, and electron beam lithography
alignment marks on the Si frame. (b) Fabrication process including marker patterning,
membrane release, and subsequent aligned lift-off steps. (¢) HAADF STEM image of
Au-Ag dimers, (d) corresponding EDX Au-Ag map, and (e) AFM topography map. (f)
TEM image of a single, nanometer gap dimer. (g) Au-Al square dimer array. (h) Au-Al
nanorod dimer EDX map, with the Al surface oxide shown in blue. (i) TEM image of the
Al»O3 layer, shown by a lack of diffraction contrast in comparison with the crystalline
Al grain. Scale bars are 200 nm (c,d,e), 50 nm (f, h), and 500 nm (g), respectively.
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Figure 2 — Material dependent resonance energies. (a) Resonant energy of the dipole
mode as a function of the inverse of the nanoparticle length L, measured from a series of
nanoparticles of varying aspect ratios as shown in the HAADF STEM image in inset.
Interband regions are shown schematically. (b-d) EELS intensity maps extracted at 1.1
eV from the three datacubes acquired for similar parallel nanorod sequences made with
Al, Ag, and Au, respectively. (e) EELS response from the Al nanorod sequence. The
datacube was binned spatially along the nanorod axis yielding an energy against rod
length visualization, displayed here to highlight the size dependent evolution of higher
order modes in Al nanorods.

as the composition and stability of the 3 nm-thick alumina layer on the Al nanoparticle
surfaces.

Au, Ag and Al were chosen as prototypical materials of the constituent nanoparticles due
to their ability to support plasmonic resonances and interband transitions at distinct
energies. While layered [43] and alloyed [44] materials may also be of interest for the
fabrication of heterogeneous plasmonic systems, the present study focuses on the coupling
of the aforementioned pure metals [45,46]. In order to first characterize the response
of each constituent metal used to make the heterodimers, EELS measurements were
performed on monometallic Au, Ag and Al arrays of nanorods with varying lengths,
ranging from a 40 nm diameter dot to a 400 x 40 nm rod. By measuring the evolution
of the longitudinal dipolar mode energy as a function of the nanorod size, the spectral
tunability and resonance range of the different materials is evidenced for this specific
morphology evolution (Figure 2a). Resonance energy differences between each material
stem from their different free electron densities and associated plasma frequencies as
well as the difference in their intrinsic losses due to collisions. As particle aspect ratio
decreases (and wavenumber increases), the energy difference between dipole modes of
two equivalently sized nanoparticles of different materials increases. Al displays the
largest energy tunability across the geometric parameter space investigated here [47],
due to its higher plasma frequency [48]. Interestingly, the interband transitions of Al,
occurring at 1.5 eV, are well evidenced by a discontinuity in the dispersion curve around
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Figure 3 — EELS response of a coupled homodimer and weakly coupled heterodimer.
(a) HAADF STEM image of an Ag homodimer with ~100 nm disc diameter and ~9
nm gap width. Experimental EELS maps of the homodimer and associated computed
eigencharge distributions for (b) the longitudinal bonding, (c¢) the transverse bonding,
(d) the transverse antibonding, and (e) the longitudinal antibonding modes. (f) Au-
Al heterodimer with ~100 nm disc diameter and 60 nm gap width and the associated
EELS intensity maps of the dipole modes of (g) the Au nanoparticle and (h) the Al
nanoparticle.

this energy loss. Already for EELS intensity maps extracted at a relatively low energy
(1.1 eV Figure 2b-d), the detuning between the different materials is clearly observed, as
their dipolar modes are supported by nanorods of different lengths; a quadrupolar EELS
response also appears on the longest Au and Ag nanorods. Note that the localization
and symmetry of the focused electron probe used in STEM EELS allows for an efficient
excitation of high order modes, regardless of their radiative nature [49] as shown in
Figure 2e. Within the parameter space displayed, it is clear that bimetallic dimers formed
from nanoparticles of equal dimensions may exhibit two distinct mode energy mismatch
conditions. First, for large nanostructures, the dipolar and/or higher order modes of one
nanoparticle may spectrally overlap with those of the other, resulting in a significant
plasmonic coupling. Second, a different condition is predicted for small particle dimers,
especially for Au-Al pairings, where the energy of the fundamental dipole of the Al
component may be at sufficiently high energy to avoid having any significant spectral
overlap with any of the modes supported by the Au component. Both of these coupling
conditions are investigated in the next section, by the study of the near field response of
selected heterodimers.

First we highlight the specificities of EELS signals associated with mode hybridization in
symmetric pairs [50-52], by investigating the response of an Ag-Ag disc homodimer with
a diameter of 100 nm and gap of 9 nm (Figure 3a). The eigenmodes of the corresponding
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structure are computed using a surface integral equation (SIE) method, solving for the
eigenvectors of the associated matrix [53]. Four modes, mainly based on dipole-dipole
interactions, are identified, and compared to those of an isolated Ag monomer of similar
dimensions having a dipole resonance energy of ~2.12 eV (Figure S3). As expected, the
bonding modes (longitudinal and transverse Figure 3b,c) are red-shifted in comparison
to the dipolar mode supported by the solitary Ag disc. The strong coupling of the
bonding longitudinal mode (Figure 3b) is evidenced by a larger red-shift, along with a
strong EELS intensity inhomogeneity in each nanoparticle which vanishes in the gap
region. This insensitivity of EELS to bonding modes in gap regions, as compared to
strong gap sensitivity to antibonding modes, has been thoroughly discussed in relation
to the field symmetry of the electron probe [54,55]. Although EELS does not directly
map the electromagnetic near field and cannot reveal high intensity hot-spots formed by
bonding interactions, this apparent limitation actually proves useful in distinguishing
the coupling nature and symmetry of hybridized modes. The aforementioned signal
silencing in the gap is also seen for the transverse bonding modes in Figure 3¢, but to a
lesser extent due to the weak interaction between transverse modes. In contrast, both
of the higher energy transverse (Figure 3d) and longitudinal modes (Figure 3e) exhibit
a strong EELS signal in the gap region, which expresses their antibonding nature. In
agreement with the simulated eigenmodes, the longitudinal antibonding mode is the most
blue-shifted, owing to a strong near field interaction for this dipole orientation. Besides
small asymmetries in the EELS intensity maps, which arise from the grain structure of
the fabricated nanodimers, the near field maps of the two dimers have a mirror symmetry,
in keeping with their compositional and structural symmetry.

The EELS response of a heterodimer is now considered, but one with limited coupling.
In order to minimize the electromagnetic interactions, discs made of Au and Al are
chosen, yielding a large energy separation between their isolated particle plasmonic
modes. They are positioned 60 nm apart from each other (Figure 3f). In consequence,
each disc’s unique dipolar mode is observed, at 1.82 eV (Figure 3g) and 2.70 eV (Figure
3h) for Au and Al, respectively. Due to the weak coupling between the nanoparticles,
the longitudinal and transverse modes do not split and are therefore degenerated [56].
Consistent with this, the EELS maps display no nodes or specific symmetry relations to
the dimer axis. At 2.70 eV the Au nanoparticle shows a strong and uniform EELS signal,
corresponding to uniform interband absorption inside it (Figure 2a).

Now we move to a heterodimer displaying strong mode hybridization, by investigating
an Au-Ag disc dimer (Figure 4a) with the same geometry as that of the Ag-Ag dimer
discussed earlier. The EELS spectra extracted at different locations of this heterodimer
(Figure 4b) show various resonances, the intensity of which varies with the position
of the electron beam, as also observed in EELS simulations (Figure S4). The EELS
maps suggest that the electromagnetic near field is mainly localized close to the Au
nanoparticle for the two lowest energy modes (that support a dominant longitudinal
(Figure 4c) and transverse (Figure 4d) dipolar contribution). This is in agreement with
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Figure 4 — Coupled Au-Ag and Au-Al disc heterodimers. (a) HAADF STEM image
of an Au-Ag heterodimer with ~100 nm disc diameter and ~10 nm gap width. (b)
Experimental EELS spectra corresponding to the impact positions highlighted in (a).
EELS maps and associated eigencharges for modes dominated by (c¢) the longitudinal
dipole mode in the Au nanoparticle, (d) the transverse dipole mode in the Au nanoparticle,
and (e) some combinations of dipole mode in the Ag nanoparticle with high order modes
of the Au nanoparticle. (f) HAADF STEM image of an Au-Al heterodimer with ~100
nm disc diameter and ~2 nm gap width. (g) Experimental EELS spectra corresponding
to the impact positions highlighted in (f). EELS maps and associated eigencharges for
modes dominated by (h) the longitudinal dipole mode in the Au nanoparticle, (i) the
transverse dipole mode in the Au nanoparticle, and (j) some combinations of dipole mode
in the Al nanoparticle with high order modes of the Au nanoparticle (j).
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previous EELS computations performed for detuned dimers [57]. As revealed by the
eigenmode simulations, the charge distributions on the Ag disc surface (Figure 4c,d) also
have a dipolar nature, although weaker and with opposite phase. This behavior is due
to the energy mismatch of the dipolar modes of each nanoparticle and is reminiscent of
the transverse antibonding mode of a symmetric structure (Figure 3c). In this Au-Ag
heterostructure, the overlap between the Ag dipole (~2.12 eV) and Au quadrupole (~2.22
eV Figure S3) allows for a strong interaction between these modes (Figure 4e). This
especially holds for the longitudinal hybridized modes, as also evidenced in simulations,
that tend to bonding (eigenmode at 2.13 eV) and nearly antibonding (eigenmode at
2.28 eV) configurations, reminiscent of observations made in symmetric dimers (Figure
3b,e). As discussed previously, the weaker interaction between transverse modes leads
to two hybridized modes with a limited coupling (and thus energy shift), one with a
strong transverse dipole mode in the Ag nanoparticle (eigenmode at 2.10 eV) and another
with a strong transverse quadrupole mode in the Au nanoparticle (eigenmode at 2.20
eV). Here we use the terminology transverse quadrupole for modes having an odd parity
(charge-wise) relatively to the dimer axis, and longitudinal for an even parity, analogously
to the dipole modes. The spectral proximity of these four modes, between 2.10 and 2.28
eV, results in a partial overlap of their contribution in the experimental EELS maps.
Nevertheless, the nature of the dominant longitudinal modes is evident from the subtle
differences in the EELS intensity maps such as the stronger signal confinement in the
gap region at 2.30 eV from the antibonding mode compared to the bonding mode at
2.10 eV. For the quadrupole mode in the Ag nanoparticle, the EELS map (2.64 eV)
shows a rotational symmetry around the center of the Ag disc, indicating that the
coupling of this mode with the nearby Au disc is weak. This is in agreement with the
calculated eigenmode that shows a charge distribution on the Ag disc barely affected by
the neighboring Au disc. Overall, our analysis provides an important insight into the
response of this system which has been previously studied for the purpose of directional
color routing [14]. Namely, all the observed modes possess a net dipole moment and
therefore varying degree of far-field radiation symmetry (Figure S5). When the coupled
modes entail a large energy mismatch, they are predominantly supported by a single
constituent (here the dipole in the Au nanodisc); whereas a collective response is favored
for modes with matching energy (here the quadrupole in the Au disc and the dipole in
the Ag one), even if the original modes have a distinct multipolar nature.

A similar analysis was carried out for smaller dimers with 50 nm disc diameter (Figure
S6), demonstrating the influence of the dimer size, associated with energy tuning, on the
mode hybridization. In the case of small Au-Ag discs, the increased energy mismatch
between the Au and Ag modes (Figure 2) leads to a minimal contribution of the high
order (i.e., quadrupole) modes. Indeed, only the longitudinal dipole mode of the Au
nanoparticle exhibits a significant coupling with the Ag nanoparticle (Figure S6c¢). The
intrinsic modes of the Ag nanoparticle are at energies corresponding to the Au interband
transitions, and so are only weakly coupled to the Au nanoparticle. At this point, the Au
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disc effectively acts as a modification of the dielectric environment of the Ag nanoparticle
with nonresonant properties (Figure S6e-g).

These observations on the 50 nm disc diameter Au-Ag heterodimer, which are in excellent
agreement with previous far-field optical studies of geometrically comparable systems,
[29,30], prompt the investigation of phenomena occurring with the large energy detuning
associated with Au-Al disc dimers (Figure 4f-j). The small gap width (2 nm) is intended
to compensate for the large spectral mismatch between the modes of the isolated
nanoparticles, by creating a strong near field overlap. Similarly to the Au-Ag 100
nm disc dimer studied previously, EELS spectra were recorded for various positions of
the electron beam (Figure 4g) and intensity maps made for different observed resonance
energies (Figure 4h-j). A near field asymmetry much larger than that for the Au-Ag 100
nm disc dimer is revealed for the low energy maps, as the dipole in the Au nanodisc
couples only weakly to the dipole in the Al disc in both the longitudinal (Figure 4h)
and transverse (Figure 4i) directions. Also, for this structure, the near field coupling
involving the longitudinal quadrupole in the Au nanodisc is now well evidenced because
of its limited overlap with other modes (Figure 4j 2.23 €V). The EELS maps for the
longitudinal dipole (2.75 €V) and transverse dipole (3.11 eV) in the Al nanodisc in turn
exhibit limited coupling and thus rotational symmetry. These results are similar to the
observations made for the Au-Ag dimer with 50 nm disc diameter where, again, each
coupled mode is mainly associated with one constituent of the dimer. Nevertheless, the
EELS maps associated with the higher energy modes (Figure 4j) exhibit strong signal
modulations in the Au disc. This evidences the strong absorption modulation in the off
resonant system, since the near-field associated with the resonant component decays into
the nonresonant nanoparticle [20,26].

In order to favor the resonant interaction between detuned modes, we exploit the
opportunities of our lithographic fabrication method to design square dimers. Compared
to round dimers, these structures allow for a distinct Coulomb interaction at similar gap
distances. These structures also break the rotational symmetry in discs that was observed
with some EELS maps, while preserving the degeneracy of the uncoupled eigenmodes
along the longitudinal and transverse directions. Considering first an Au-Ag dimer with
a 100 nm square side length and average 2.2 nm gap (Figure 5a), very limited asymmetry
in the lowest energy mode is seen (Figure 5b) as compared to the disc case, due to the
enhanced coupling. On the other hand, asymmetry in the EELS map is observed for a
transverse dipole in the Au nanosquare, which is more weakly coupled (Figure 5¢). Now
considering higher order modes, due to the strong spatial coupling conditions induced by
the gap geometry, a complex hybridization scheme is expected, involving multiple high
order contributions [7]. This is seen with the coupling of the longitudinal dipole in the
Ag nanoparticle to highly multipolar modes in the Au nanoparticle (Figure 5d,e), where
the eigencharge distributions for the closest energy matching modes reveal numerous
nodes in the gap region. Above the Au interband threshold, the 2.76 eV EELS map is
characteristic of an octupole in the Ag nanoparticle (Figure 5f) with a limited coupling
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Figure 5 — Coupled Au-Ag and Au-Al square heterodimers. (a) HAADF STEM image
of a Au-Ag square heterodimer with 100 nm square edge length and 1.5 nm gap. (b-f)
EELS maps and the corresponding computed eigencharge distributions for the Au-Ag
dimer. (g) HAADF STEM image of a Au-Al square heterodimer with 200 nm square edge
length and 10 nm gap. (h-1) EELS maps and the corresponding computed eigencharge
distributions for the Au-Al dimer.
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to the Au nanoparticle. Similar observations are made for a larger (200 nm square side
length) Au-Al dimer with 15 nm gap (Figure 5g-1). Considering the dispersion curves in
Figure 2a, the large square size allows for a reduced energy mismatch between the Au and
Al nanoparticles compared to the Au-Al disc dimer discussed previously. Additionally,
the larger gap limits the contribution of high order modes that lead to complex nodal
patterns in the gap. Low energy longitudinal (Figure 5h) and transverse (Figure 5i)
modes follow the mechanisms pointed out previously; however the interplay between
high order modes is better revealed in this differently coupled nanodimer. Quadrupole
(Figure 5j) and octupole (three nodal lines) (Figure 5k) modes in the Au nanoparticle
now couple efficiently to nondipolar modes in the Al one. Indeed, the quadrupolar mode
in the Au nanoparticle is coupled to another weak quadrupolar charge distribution in the
Al nanoparticle, whereas, at even higher energy, the Au octupolar mode couples weakly
to the Al nanoparticle, leading to asymmetric surface charge deformations involving
multiple contributions in the Al nanoparticle. At 2.22 eV, the quadrupole supported by
the Al nanosquare is then imaged overlapping in energy with the breathing mode in the
Au nanoparticle, with high EELS signal at the square center [56]. Uncoupled high order
multipoles in the Al square are mapped at 3.14 (octupole) and 3.80 eV, with additional
contribution of a breathing mode for the latter (Figure 51). The engineering of the gap
geometry therefore allows resonant coupling conditions to be achieved beyond those of
the well-studied dipole-dipole interactions or dipole-quadrupole interactions observed in
the disc heterodimers.

Finally, in order to tune resonant coupling conditions even further, heterodimers composed
of Au and Ag nanorods are considered. Contrary to the nanodiscs and nanosquares
studied previously, individual nanorods possess longitudinal and transverse modes at
distinct energies. When coupled, this property is useful to favor selected interactions,
depending on the spatial arrangement of the nanorods. As serial (i.e., end-to-end)
nanorod homodimers are coupled by their apexes, the low energy bonding mode is bright
and the high energy antibonding mode is dark [28,58]. This relation is inverted in the
case of parallel (i.e., side-by-side) rod homodimers, which are coupled by their edges
[28,58]. Considering these geometries in heterodimer form (Figure 6a,d), in both cases the
hybridized modes observed at the lowest energy correspond to a strong excitation of the
nanorod which has the lowest energy resonant dipole mode (Figure 6b,e). At the same
time, the high energy mode corresponds to a strong excitation of the nanorod possessing
the dipole mode resonant at the highest energy (Figure 6¢,f). When the coupling is
weak, i.e., when the gap is larger than ~10 nm, the distinct radiative signatures of both
components is recognized in the global (plane wave excitation) response of the dimers,
and a Fano resonance is observed due to the interference between the dipolar modes
(Figure S7b) [18,59]. Upon increased coupling (e.g., by reducing gap size), the radiative
nature of one or the other mode is significantly modulated, leading to a weakening of
the Fano line shape as well as the appearance of a strong absorption modulation, as
previously reported for spherical heterodimers. [19,20,60]. EELS does not only provide
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Figure 6 — Nanorod heterodimers. (a) HAADF STEM image of a Au-Ag heterodimer,
where the nanorods are coupled by their apexes. EELS maps and computed eigencharge
distributions for (b) the bonding and (c) antibonding dipole modes. (d) HAADF STEM
image of a Au-Ag heterodimer, where the nanorods are coupled by their edges. EELS
maps and computed eigencharge distributions for (e) the bonding and (f) antibonding
dipole modes. Computed EELS signal from the end of the Au nanorod from a parallel
dimer with (g) a 9 nm gap and (h) a 55 nm gap, respectively. The decomposition into
the different loss mechanisms is represented by the filled areas under the curves. (i)
EELS maps and HAADF image of the 55 nm gap parallel heterodimer. (j) Measured
EEL spectra integrated over the Au nanorod for the two heterodimers.
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information on the near field distributions and the modal nature of the observed peaks,
but also an insight into the evolution of the absorption and scattering mechanisms
[61-63]. Indeed, the relative weights of these two loss channels is expected to evolve upon
geometric modifications. For example, in the case of the parallel rod dimers, a strong
reduction of the radiative channel is seen as the gap width reduces, as emphasized by
the simulated EELS decompositions (Figure 6g,h and also evidenced by the plane wave
scattering Figure S7b) [64]. This weakened scattering, responsible for the reduction of
the absolute EELS signal, is well measured experimentally (Figure 6i,j and Figure S8),
emphasizing that the combination of EELS with accurate modeling permits the tracking
of energy loss mechanisms in heterodimers. By tuning the gap width and the parallel
or serial arrangement of nanorod Au-Ag dimers, one can therefore favor or inhibit the
optical access, namely the net dipole moment, of modes associated with either the Au or
Ag constituent. In turn, this enables a specific engineering of the absorption within the
system, as in the parallel nanorod configuration where a large enhancement of absorption
in the Au nanoparticle, at the resonance energy of the Ag nanorod, may be achieved
with increased coupling.

Conclusion

In conclusion, by combining the high flexibility of electron beam lithography for the
fabrication of coupled plasmonic nanostructures of various geometries with near field
imaging using EELS, we have reported experimental insights into the coupling occurring in
heterogeneous plasmonic dimer systems. The case of heterodimers composed of discs was
considered first, and then used as a benchmark for the investigation of the role of the gap
lateral extent (in square nanodimers) and mode selection (in nanorod dimers). Especially,
the importance of both the spatial and spectral overlap between the modes has been
explored. The results provide opportunities for the design of heterodimers with tailored
interactions, such as the coupling of plasmonic modes of different multipolar nature or the
engineering of absorption within the dimers. They therefore provide efficient means to
control of the nanoscale optical response, enabling efficient tuning of directional scattering
[14], Fano interferences [65], molecular sensing [66] and multiple bright resonances for
broadband fluorescence enhancement [67], as well as second harmonic generation [68].

Methods

Sample Fabrication

Silicon wafers (100 mm diameter, 380 pum thickness prime grade double side polished)
were cleaned following a standard RCA procedure prior to the fabrication of front side
alignment marks. Positive photoresist (AZ ECI 3000, 0.6 pm) was spun and exposed by
direct laser writing (Heidelberg Instruments VPG-200) and developed. The markers were
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etched in the Si wafers by RF biased SF6 dry etching (Adixen AMS200) to a depth of 3
pm followed by another RCA cleaning step and low pressure chemical vapor deposition
of 30 nm-thick silicon nitride. Backside photolithography and wet etching by potassium
hydroxide were performed to release 500 x 100 um? freestanding silicon nitride windows.
A single layer of poly(methyl methacrylate), (PMMA 495 A2, Micro- Chem) was then
spun at 2500 rpm for 60 s yielding an approximately 90 nm-thick coating following a 3
min bake at 180 °C prior to the coating of a conductive layer (Espacer 300Z ShowaDenko,
2000 rpm, 60 s). The samples were then exposed by electron beam lithography (VISTEC
EBPG50004, 100 kV), rinsed in deionized water to remove the conductive coating and
developed at room temperature for 60 s in a 1:3 mixture of methyl isobutyl ketone and
isopropyl alcohol. Chromium and Gold (0.5 nm/25 nm) were evaporated first by electron
beam heating at a base pressure of 8 x 10~7 mBar prior to lift-off in acetone. In a second
step, lithography, evaporation and lift-off were repeated for the Ag or Al structures.
Al was evaporated with 35 nm thickness after overnight pumping of the evaporation
chamber to reduce residual water at the wafer surface in order to obtain low line edge
roughness and high shape accuracy. Ag was evaporated with 30 nm thickness using
a 0.5 nm Ni wetting layer that was shown to improve the quality of otherwise poorly
wetting Ag films [69]. Alignment markers were protected by Kapton stencils during each
evaporation steps. After all lift-off steps, the samples were finally cleaved in 3 x 3 mm?
dies for measurements in the TEM and stored in N5 cabinets in order to preserve Ag
from ambient contamination.

Alignment Accuracy

In order to assess the accuracy and repeatability of feature dimensions and gap widths,
heterodimer arrays and Vernier patterns were imaged in both TEM and STEM mode (FEI
Talos 200 kV) and the images were processed with a custom Matlab toolbox. The Vernier
patterns (S1) allowed for the measurement of alignment accuracy with limited influence
of metal line edge roughness. Inspection of the Vernier patterns revealed consistent
(~ 90%) alignment equal or better than 10 nm offset on each axis. An example with
sub-5 nm alignment in shown in Figure Slc,e. In addition to layer to layer alignment,
metal wetting and line edge roughness were found to be the main contributions of gap
variations with a standard deviation ~2.5 nm (Figure S1f,g). Overall, designs included
arrays with gaps down to 10 nm overlap guaranteeing that the target designs of sub-5
nm were consistently achieved.

EELS Measurements

STEM-EELS maps were acquired using a FEI Titan Themis 60-300 equipped with a
Wien-type monochromator and a Gatan GIF Quantum ERS spectrometer. A 300 keV
incident electron beam was used for all experiments, monochromated to give an energy
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spread of ~110 meV fwhm in the zero-loss peak of elastically scattered electrons, and
with beam currents of ~240 pA. A 17 mrad convergence semiangle of the probe and a 22
mrad collection semiangle on the spectrometer were used, with the probe having a mean
diameter of <1 nm for full width at tenth maximum in incident intensity. Mapping was
performed using the “ultrafast” spectrum imaging mode with typical dwell times of 0.20
to 0.26 ms per pixel, and with the probe rastered in X, Y step sizes of 0.5-0.6 nm for
a total of >10° pixels per map. Each map was treated with the HQ Dark Correction
plugin to reduce noise associated with dark current subtraction.

EELS Data Processing

The EELS data cubes were processed using Gatan Digital Micrograph and custom Matlab
scripts for the removal of the background from the tails of the zero-loss peak (ZLP), and
extraction of point spectra and spatial EELS maps. The ZLP was first centered pixel by
pixel using a Gaussian-Lorentzian approximation. Following zero-loss alignment, each
data cube was spectrally cropped to the region of interest including the ZLP (-2 to 6 ¢V),
and artifacts from cosmic rays were removed. To account for the absorption and other
scattering mechanisms inside the metal nanoparticles, the data cubes were normalized
by dividing each pixel-spectrum by the integrated zero-loss fit. Spectra in Figure 3 were
integrated over a 30 x 30 pixel region of interest centered around the point overlaid on the
STEM image, whereas EELS maps were typically integrated over a 0.06 eV window. For
visualization purposes, the maps were smoothed using a penalized least-square method
[70]. Overall, the resonance peak positions are identified from spectra extracted in regions
with high EELS signal and with minimal spatial overlap with other resonances allowing
for a high fitting accuracy, the main limitations being the effect of the precision of the
ZLP alignment at higher energy losses and the ZLP convolution with the resonances at
lower energy losses.

Simulations

A surface integral equation method [71] is used to compute the interaction between the
electromagnetic field associated with the swift electron and the plasmonic nanostructures
as well as for the computation of the eigenmodes. The nanostructure’s surface is
discretized with triangular mesh elements and the electric and magnetic fields in the
entire space (inside and outside the nanoparticle) are related to fictitious electric and
magnetic surface currents through a matrix describing the geometry and material of the
structure. EELS is computed in two steps: first by exciting the structure with the fields
associated with a swift electron, and then by computing the work done on the electron
by the Lorentz force against this scattered field [72,73]. The eigenmodes are found by
looking for the eigenvectors of the aforementioned matrix when no excitation is imposed
[53]. Concerning the eigenmode analysis, a Drude model is used for the permittivities of
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Au, Ag and Al, fitted to the experimental values found in ref [74] for Au and Ag and
in ref [75] for Al. The same experimental values are used for the computation of the
EELS and plane wave spectra. For all simulations, a homogeneous background medium
of permittivity e = 1.8 (index n = 1.34) is used to account for the influence the SiN
substrate (¢ = 4).
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Figure S1 — Layer to layer alignment accuracy. (a) TEM image of a two-layer
Au—Ag Vernier pattern. (b) Averaged horizontal line profiles from the Au and Ag layers
and (c) measured rod offset versus designed offset. The zero crossing of the linear fit to
the measured offsets defines the alignment accuracy along this axis. (d) and (e) similar
measurements for the horizontal axis. TEM image of an Au—Ag parallel wire pair (f)
and corresponding vertical gap histogram (g).
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Figure S2 — EDX spectra of an Au—Ag dimer. (a) EDX spectra for an Au-Ag 50
nm diameter disc dimer. Au and Cr adhesion layer, Ag and the Ni wetting layer are
respectively well identified in the Au and Ag spectra with a common Si peak seen for all
regions of interest.
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Figure S3 — Computed eigenmodes for single and coupled Au, Ag, and Al discs.
Each eigencharge distribution is placed according to its energy.

Simulation N

Experimental /™

Au axis \
Ag axis [\

Center /

Ag side \

EEL probability (A.U.)
EEL signal (A.U.)

12 14 16 18 20 22 24 26
Energy (eV)

o
N
o
<}
[
o
]
[N}
N
~
i)
o

Energy (eV)

Figure S4 — Au-Ag 100nm disc EELS simulations. (a) HAADF STEM image of an
Au-Ag dimer with 100 nm disc diameter and (b) EELS impact regions. (¢) Simulated
spectra and (d) corresponding experimental spectra. The experimental spectra are
convoluted with the zero-loss peak of ~100 meV FWHM thereby explaining their wider
resonances.
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Figure S5 — Multipolar decomposition of the Au—Ag 100nm disc eigenmode.

(a~h) Radiation pattern and multipolar decomposition associated with each eigenmode.

The multipolar decomposition is made as described in Ref. [1]. The contribution of all

degrees for a given multipole order (1 standing for dipoles, 2 standing for quadrupoles,

etc...) are added together. The compositional and structural asymmetries allow a net

dipolar moment for all the modes shown here.
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Figure S6 — Au-Ag 50 nm disc heterodimer. (a) HAADF STEM image of an Au-Ag
dimer with 50 nm disc diameter and 2 nm gap width. (b) EELS spectra extracted for
the impact positions highlighted in (a). EELS maps of the modes dominated by (c) a
longitudinal dipole mode in the Au nanoparticle, (d) a transverse dipole mode in the
Au nanoparticle, and (e) a dipole mode in the Ag nanoparticle. (f) EELS map of the
convergence of high order modes in the Ag nanoparticle, referred to as a quasiplanar
mode [2]. (g) EELS map of the Ag bulk plasmon contribution at 3.82 eV.
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Figure S7 — Optical response of Au-Ag rod heterodimers. Nanorod dimensions
are and gaps are 45x105 nm; the gaps are 5 nm for the serial coupled case, 9 nm for the
parallel coupled case. and 55 nm for both weakly coupled cases. (a) Imaginary part of
the charge distributions at the resonance energy of the modes (i.e. 90° out of phase with
the excitation). (b) Scattering computed for an incident plane wave polarized along the
long nanorod axis. Total and relative absorbed power for parallel heterodimer with (c) a
55 nm and (d) a 9 nm (d) gap width.
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Figure S8 — EELS spectra and loss channel decompositions with impact pa-
rameter close to the Ag nanorod apex. Computed EELS signal for a parallel dimer
with (a) a 55 nm gap and (b) a 9 nm gap. The decomposition into the different loss
mechanisms is represented by the filled area under the curves. (c¢) Measured EELS
spectra integrated over the Ag nanorod for the two heterodimers.
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ABSTRACT: Plasmonic antennas have enabled a wealth of applications
that exploit tailored near-fields and radiative properties, further endowed by
the bespoke interactions of multiple resonant building blocks. Specifically,
when the interparticle distances are reduced to a few nanometers, coupling
may be greatly enhanced leading to ultimate near-field intensities and confine-
ment along with a large energy splitting of resonant modes. While this concept
is well-known, the fabrication and characterization of suitable multimers with
controlled geometries and few-nanometer gaps remains highly challenging.
In this article, we present the topographically templated assembly of single-
crystal colloidal gold nanorods into trimers, with a dolmen geometry. This
fabrication method enables the precise positioning of high-quality nanorods,
with gaps as small as 1.5 nm, which permits a gradual and controlled symme-
try breaking by tuning the arrangement of these strongly coupled nanostruc-
tures. To characterize the fabricated structures, we perform electron energy
loss spectroscopy (EELS) near-field hyperspectral imaging and geometrically
accurate EELS, plane wave, and eigenmode full-wave computations to reveal
the principles governing the electromagnetic response of such nanostructures
that have been extensively studied under plane wave excitation for their Fano
resonant properties. These experiments track the evolution of the multipolar
interactions with high accuracy as the antenna geometry varies. Our results
provide new insights in strongly coupled single-crystal building blocks and
open news opportunities for the design and fabrication of plasmonic systems.
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Introduction

Plasmonic nanoantennas are well established tools for the manipulation of light at the
nanoscale and for the control of light-matter interaction via the excitation of localized
plasmon resonances in metallic nanostructures [1]. With continuous efforts carried out
for the development of novel nanofabrication methods, along with the emergence of
powerful numerical simulation techniques and models [2], optical antennas have been
tailored to exploit their strong scattering and absorption cross sections as well as their
deep subwavelength focusing ability [3]. Besides the intrinsic plasmonic properties of
individual metal nanoparticles, many applications take advantage of the coupling between
multiple plasmonic constituents. Indeed, the spectral tuning of different antenna building
blocks and their controlled spatial arrangement enable, a wealth of unique properties
such as nanometric mode confinement [4], directional color routing [5], and Fano line
shapes [6].

These effects, all based on the interaction between multiple plasmonic modes, are highly
dependent on the coupling strength. Several coupling regimes have been identified
[7]. Weak coupling induces only slight shifts of the modes energies, in comparison
with that of the uncoupled systems. The tailored spectral overlap and phase of the
different eigenmodes may nonetheless give rise to pronounced far-field interferences [8].
Moderate coupling has been thoroughly explored, due to the relative ease of fabricating
nanostructures with nanogaps larger than ~10 nm. By reducing gap size further to a few
nanometers, extreme coupling, and hybridization of the eigenmodes are induced, leading
to large spectral splitting and ultimate near-field intensities [9,10].

In this article, we investigate the influence of the coupling strength on the mode evolution
of tunable nanorod dolmens. These trimer structures are composed of a pair of parallel
nanorods hosting a third central one, perpendicular to them (Figure 1a). Dolmens have
been widely investigated often considering optical excitations, in both 2D and 3D designs
with mostly large interparticle gaps, since they support Fano resonances [11], which are
advantageous for the fabrication of plasmonic sensors [12-14] and plasmonic nanorulers
[15], as well as for the observation of plasmon induced transparency [16] and absorption
[17]. The richness of this system arises from the interplay between bright and dark
modes and from a spectral response deeply related to the intricate geometric details.
Beyond the implementations proposed above, such features may be enriched through the
enhanced coupling and hybridization between high order modes. The latter suggests new
opportunities for the design of plasmonic nanostructures, which are however practically
challenged by the demanding requirements of nanometer interparticle gap fabrication.

Indeed, the fabrication of highly coupled systems with a fully controlled geometry is
still elusive to date. Several lithographic attempts for the fabrication of nanometer scale
gaps have been demonstrated for simple geometries such as dimers [18] and bowties [19],
but line edge roughness, repeatability, and scalability remain challenging to control. An
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Figure 1 — EELS analysis of weakly coupled Au dolmens fabricated by electron beam
lithography and thin-film patterning. (a) High angle annular dark field scanning trans-
mission electron microscope (HAADF-STEM) images of three different dolmens with
varying offset parameter S for the central horizontal nanorods and corresponding experi-
mental EEL spectra extracted from the regions highlighted in the HAADF images. (b)
Experimental EELS maps and corresponding simulated eigenmodes for the symmetric
nanodolmen H (S = 0). (c, d) Similar analysis for the nanodolmen I (S = 23 nm), and
the nanodolmen P, (S = 43 nm). All scale bars are 50 nm. Each EELS map is displayed

with a colorscale normalized to its maximal energy loss probability.
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efficient approach relies on the manipulation of colloids to couple them in pairs and
multimers [20] or by placing them above a metallic film [21]. Prompted by the vast library
of anisotropic building blocks readily available [22], surface chemistry and DNA origami
[23] have successfully been employed to provide further levels of colloidal organization
and functionality in static [24] and dynamic configurations [25,26]. Such techniques
provide a simple access to single or few nanometer interparticle distances often defined
by molecular spacers [27,28].

In the present work, we utilize a templated colloidal assembly method to fabricate highly
plasmonic coupled systems. This method combines at once the intrinsic crystalline and
geometric qualities of chemically synthesized nanoparticles, the simple definition of gaps
by molecular elements, and the patterning versatility of nanolithography. Using this
approach, and in opposition to colloid surface functionalization alone, whereby energy
minima define a limited set of assembly configuration [29,30], we have recently demon-
strated highly accurate nanorod positioning in predetermined patterns with arbitrary
geometries by capillary assembly [31]. These are essential prerequisites for the fabrication
of complex plasmonic nanostructures relying on colloidal building blocks. Here we extend
this concept by performing a finely tunable assembly of multiple anisotropic building
blocks within a single trap. This represents, to the best of our knowledge, the first fully
deterministic assembly of such complex structures, controlling both relative and absolute
position of three nanorods with gap distances of only a few nanometers.

To probe the electromagnetic response of coupled dolmens with various geometric con-
figurations, and to assess the quality of the fabricated structures, electron energy loss
spectroscopy (EELS) characterization was performed in a scanning transmission electron
microscope. While both scanning near-field optical microscopy [32] and photoemission
electron microscopy [33] have been used to image the near-field properties of multimeric
structures, EELS in modern monochromated instruments is an ideal method for the
mapping of plasmonic resonances with ultimate spatial and high spectral resolution
[34]. Due to the nanometric localization of the electron probe and its intrinsic field
symmetry, in addition to its sensitivity to both the radiative and nonradiative decay
channels, bright modes and dark ones (with a vanishing dipole moment) are efficiently
imaged [35-38]. The cylindrical symmetry of the probe also implies that asymmetric
charge distributions in nanogap regions are inefficiently excited [39]. Typically, bonding
modes associated with intense hotspots are not revealed in gap regions, although these
modes can be probed efficiently at other locations in the structures. This distinction can
be exploited to interpret the nature of the different modes in addition to measuring their
inherent spectral and spatial specificities. As EELS allows direct insight into the modal
nature of the system, which defines a base for its response independent of excitation
conditions, here the identification of the underlying coupling mechanisms of dolmen
nanostructures is complemented by a rigorous and geometry accurate full wave numerical
eigenmode analysis [40] besides the simulation of the EELS spectra. By performing
these experimental and computational investigations under different gap and geometric
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conditions at once, the nature and the highly geometry sensitive response of strongly
coupled systems is evidenced. The article is organized as follows. The case of dolmens
made by lithography with relatively large gaps is considered first, in order to address
the plasmon coupling in the moderate regime. In a second part, the plasmon coupling
in ideal dolmens made of gold nanorods with the same dimensions separated by 2 nm
gaps is numerically investigated, allowing to discuss the mode evolutions in the strong
coupling regime. Finally, gold dolmens with small gaps fabricated with capillary assembly
are considered. In this last section, the experimental data are supported by simulations
done considering the experimentally measured rod geometries, including the symmetry
breaking induced by the size dispersion.

Results and Discussion

Dolmens Made by Lithography: The Moderate Coupling Regime

Prior to the investigation of strongly coupled structures, a baseline of interactions in
the moderate coupling regime is presented. Although moderately coupled structures
may also be produced by assembly, Au dolmens are first fabricated by electron beam
lithography (EBL) and lift-off. This is meant to provide a direct comparison of the
novel fabrication method with a benchmarked standard. PMMA is coated and exposed
on freestanding 30 nm thick SisNy membranes guaranteeing a lithographic resolution
mostly limited by forward scattering. A collection of dolmens with varying central
nanorod offset is fabricated with target nanorod dimensions of 40 nm x 105 nm and a
gap width varying from 5 to 30 nm in 5 nm steps. After performing TEM metrology, the
geometries with 15 nm gap size present the smallest distances between the nanorods while
having noncontacted and uniform gap distributions, and are thus chosen as prototypical
standards for the lithographic approach. Three dolmens with a vertical offset of the central
nanorod, parameter S, chosen equal to 0, 20, and 40 nm are mapped and investigated by
EELS (Figure 1). In the context of these structures, gold nanodolmens with 7- shape
and 20 nm gap distances have already been investigated using EELS [35,36].

When the EELS signal is compared at each end of one of the vertical nanorods in the
three dolmen structures (Figure 1a), a gradual evolution of the initial resonance peak into
multiple resonances of different energy is observed as the offset of the central nanorod
increases. The EELS maps and the corresponding calculated eigenmode give insights
into the nature of this evolution and underlying mode coupling mechanisms. For the
symmetric dolmen, labeled H, simulations reveal that the EELS map at the resonant
energy (1.56 eV) consists of an overlap of three eigenmodes, which are closely overlapped
in energy and hence not spectrally resolvable in EELS. Mode (1) is the longitudinal
bonding dipole, which can be efficiently driven by a plane wave polarized along the central
nanorod main axis whereas mode (3) corresponds to the mode that can be optically
driven with a polarization along the axis of the two vertical nanorods (see Figure S1
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in the Supporting Information for plane wave spectra). Mode (2) is characterized by
out of phase longitudinal dipoles in the vertical nanorods. For the dolmen H, no energy
splitting between the modes is observed due to the limited near field overlap of the dipole
modes supported by each nanorod. When the central nanorod is displaced by 23 nm
(dolmen I, Figure 1c) and 43 nm (dolmen P, Figure 1d), a gradual energy splitting occurs
between the longitudinal bonding mode (1) moving to lower energies and the modes
(2. Now that mode (1) is spectrally separated, its spatial distribution can be isolated,
with its bonding nature evidenced by the minimal EELS intensity in the gap [39]. The
excitation of mode (2), which tends toward an antibonding dipole arrangement between
the nanorods as S increases, is consequently responsible for the enhanced EELS intensity
in the gap regions. This selective excitation of antibonding modes when the electron
beam passes through the nanogaps effectively enables the distinction between modes
(D and (2), even though the energy splitting is as small as 0.11 eV in the case of the
dolmen I. While these lower order modes are sensitive to the central nanorod offset in
this moderate coupling regime, that is not the case for the energy of higher order modes
based on the interaction of quadrupolar modes in each nanorod, such as mode (4). This
is inherent to the fast spatial decay of the electric field associated with high order modes,
which results in weaker coupling strength than for dipole modes. Interestingly, as shown
in Figure S1, the spectral proximity of modes (1) and (2) leads to the gradual appearance
of a Fano profile under optical illumination due to the interference between these two
modes [41].

Ideal Dolmens with 2 nm Gaps

To consider how behavior may differ in a stronger coupling regime, we investigate
numerically ideal dolmens constituted of three similar hemispherical nanorods of 105 nm
length and 40 nm diameter with 2 nm interparticle gaps. Five structures are considered,
from the symmetric case (S = 0) up to a maximum vertical shift of the central nanorod
S = 40 nm. The EELS response of these dolmens is computed for two positions of the
electron beam; one at the top end of one vertical nanorod (Figure 2a) and one close to the
side of the central nanorod (Figure S3) in order to probe all the modes of interest. Each
eigenmode is computed and shown, as a surface charge distribution, in Figure 2b. In this
ideal symmetric geometry, modes (1) and (2) have an odd charge parity with respect to
the vertical symmetry plane, whereas modes (3) and (4) exhibit an even parity. Modes (1)
and (4) are respectively characterized by a longitudinal dipolar and quadrupolar charge
distribution on the central nanorod, in all geometric configurations. These two modes
are significantly red-shifted in comparison with the weakly coupled dolmens discussed
previously; a behavior that is explained by a strong bonding interaction to the adjacent
rods. In the case of mode (1), increasing the offset S results in a gradual evolution of the
charge distributions in the vertical nanorods, from a transverse dipolar distribution to a
longitudinal dipole. This progressively allows the coupling of three longitudinal dipoles
at the same energy leading to the redshift of the mode resonance. For mode (4), the
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Figure 2 — EELS simulations of symmetric dolmens with 2 nm gaps. (a) EEL spectra
simulated for ideal dolmen geometries with five different central nanorod offset parameters
S from 0 to 40 nm. All nanorods are 40 nm x 105 nm and are separated horizontally by a
2 nm gap. The impact parameters for the EEL spectra are indicated on the schematics of
the dolmen structures. Four main resonances numbered from 1 to 4 are highlighted. (b)
20 eigencharges computed from the eigenmodes corresponding to the labeled resonances in
the EEL spectra. Eigencharges colormaps were saturated to allow a clear representation of
the modes when the charges were highly confined in the nanogap regions. (c) Multipolar
decomposition of the four identified modes for each of the five geometries. Each bar
represents the total scattering decomposed in the different contributions. (d) Eigenmode
spectral positions as functions of the central nanorod offset parameter S.
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inverse tendency is observed. The coupling with the adjacent nanorods is weakened by
the position offset resulting in a blue shift of mode (4). Indeed, for S = 0, the central
rod quadrupolar charge distribution is stretched toward the adjacent rods and tends to
the charge distribution of the longitudinal quadrupole of an isolated nanorod (Figure
S2) with increasing S. For modes (2) and (3), a crossing between the resonant energies is
observed as the central nanorod offset increases. This crossing indicates that modes (2)
and (3) do not interact due to their symmetry properties [42]. In the case of mode (2),
characterized by the two out-of-phase vertical dipoles, the charge distribution supported
by the central nanorod evolves from a transverse quadrupole to a longitudinal dipole
with an antibonding interaction with other dipoles yielding to an effective blue shift of
mode (2). For mode (3), characterized by two in-phase dipoles on the vertical nanorods,
the central nanorod gradually moves into the near field of the vertical dipoles, here with
a bonding interaction, yielding to a red-shift of the mode energy.

Together, these observations clearly indicate that the electromagnetic response of highly
coupled nanodolmens, with a 2 nm gap, has a multipolar nature. Namely, short gaps
enable an important modulation of the multipolar response of the dolmen via a collective
coupling mediated by the central nanorod position. To investigate this in detail, a
multipole expansion has been performed for each eigenmode (Figure 2c¢), that is, the
contribution of the electric and magnetic multipoles to the radiation pattern has been
determined [43]. The nature of mode (1) corresponds to a pure electric dipole for S = 0,
with a magnetic dipole contribution appearing as the central nanorod offset increases.
Indeed, for S = 40 nm, a current loop is observed, similar to that of a split ring resonator
[44]. For mode (2), the strong magnetic dipole contribution originating from the out-
of-phase dipoles supported by the two vertical nanorods is gradually complemented by
the appearance of an electric dipole contribution established on the central nanorod.
Interestingly, when the central nanorod reaches the S = 40 offset, the gap between
nanorods jumps from 2 to 2.66 nm, due to the rounded apex of the nanorods. This
translates into a decrease of the near-field coupling and a resultant blue shift (Figure 2d)
of mode (1). Overall, therefore, gaps in the few nanometers range in the context of dolmen
structures present a 2-fold interest. First, both the spectral tunability and geometry-
based mode energy shift sensitivity are enhanced. Second, important contributions of
quadrupoles and transverse dipoles are enabled. This results in important redistributions
of the charges as the geometry evolves, that is, as the central nanorod offset changes.

Strongly Coupled Dolmens Made with Capillary Assembly

To investigate these possibilities experimentally, dolmens with nanometer scale gaps
have been fabricated by capillary assembly. In the process, a drop of colloidal solution
containing Au nanorods is heated and swept across a topographically patterned template
(see schematic in Figure 3a). As previously reported [31], upon heating, the nanorods
tightly accumulate at the contact line of the drop, enter the topographic traps when
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Figure 3 — Capillary assembly process for the fabrication of strongly coupled Au dolmens
based on single crystal nanorods. (a) Schematic representation of the capillary assembly
process. Funneled traps patterned in a 30 nm thick silicon nitride membrane selectively
and tightly capture the nanorods from the solution into predetermined locations on
the substrate. The designed funnel allows for a deterministic nanorod placement and
orientation as highlighted in the SEM micrograph of the inset, here on a solid silicon
substrate. (b) Tilted view transmission electron image of an assembled dolmen structure.

crossing them, and finally dry into a final location with deterministic position and
orientation (inset Figure 3a). In order to obtain the desired trap funneled profile, a
critical parameter for an efficient nanorod assembly, templates are fabricated as follows.
Holes are first etched into silicon substrates by the transfer of resist tapering into the
silicon to produce a straight trap decorated by an upper funnel that increases the nanorod
capture cross-section (see Supporting Information for details). The silicon substrates
are then coated by 30 nm of low-stress Si rich Si;N, by low pressure chemical vapor
deposition that is subsequently released from the backside by potassium hydroxide Si
wet etching. After functionalization with a hydrophobic silane, the substrates are cleaved
into 17 x 17 mm? dies for capillary assembly and subsequently cleaved into 3 x 3 mm?
samples with single Si;N, windows for TEM measurements. A typical dolmen structure
is shown in Figure 3b, underlining that interparticle distances as short as 1.5 nm can
indeed be achieved. In addition to nanometric interparticle distances, capillary assembly
harnesses the plasmonic qualities of single crystalline gold [45], giving a similar design
versatility as previously demonstrated by the FIB milling of single crystal gold flakes
[46,47].

Among all the fabricated nanostructures, symmetric dolmens (denoted H1, H2, and
H3) with gap sizes between 1.5 and 6 nm are studied first (Figure 4a). As shown
from the previous simulations and measurements, the lowest energy bonding mode (1)
is the most sensitive to gap variations within the structure. This is experimentally
demonstrated by integrating the EELS signal along the side of the dolmens H1, H2, and
H3 (Figure 4b). The energy of mode (1) gradually shifts from 1.4 to 1.15 eV as the gaps
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Figure 4 — Gradual coupling and EELS analysis for symmetric dolmens fabricated by
capillary assembly. (a) HAADF image of three quasisymmetric assembled dolmens
with gaps ranging from 1.5 to 6 nm. (b) Experimental EELS spectra extracted at the
highlighted impact positions. (c-e) EELS maps end eigenmodes of dolmen H1. (c¢) EELS
map and eigenmode associated with the low energy bonding mode. (d) EELS map at
1.50 eV with modes 2 and 3 that are spectrally overlapped. (e) EELS map of the higher
order mode 4 dominated by quadrupoles and corresponding eigencharges. Each EELS
map is displayed with a colorscale normalized to its maximal energy loss probability.

are reduced, in good agreement with the expected shift calculated for the simulated
dolmens. As mentioned previously, modes (2) and (3) spectrally overlap for symmetric
dolmens. Although these two modes cannot be resolved directly in EELS because of their
overlap, a slight asymmetry of the structure H1 (with the smallest gap sizes) appears
to yield a stronger charge localization on the rightmost nanorod. This is well shown in
its EELS map, in accordance with the computed eigenmode (Figure 4d). Mode (4) also
exhibits a strong red-shift in comparison with the ~15 nm gap lithographic nanodolmens,
as predicted by simulations. Further comparing to mode (4) in the lithographic structures
(Figure 1), in H1 we also observe the disappearance of the two dark regions close to
the central nanorod extremities, which correspond to nodes in the charge distributions.
Additionally, strong EELS signal is measured in the central nanorod (Figure 4e). These
observations are direct consequences of the stretching of the central quadrupole via the
coupling to the adjacent nanorods.

Upon a shift of the central nanorod, a splitting of modes (1) and (4) is expected along
with the crossing of modes (2) and (3) (Figure 2). To study this, we finally consider two
assembled dolmens with central nanorod offset of 19 and 46 nm and average gap sizes
of 2.5 nm (Figure 5a,b). Following the methodology described above, the EELS signal
is extracted from the bottom end of one of the vertical nanorods along with the EELS
signal from a gap region for both nanostructures. The comparison between experimental
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Figure 5 — EELS analysis for intermediate and fully offset dolmens fabricated by capillary
assembly. (a) HAADF image of an assembled dolmens with 19 nm central rod offset and
(b) 43 nm offset. (¢) Experimental EELS spectra extracted from the locations highlighted
in the HAADF images and corresponding simulations (d). (e) EELS maps and associated
eigencharges of dolmen I with 19 nm central rod offset. (f) EELS maps and associated
eigencharges of dolmen P with 43 nm central rod offset. Each EELS map is displayed
with a colorscale normalized to its maximal energy loss probability.
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(Figure 5¢) and simulated (Figure 5d) spectra reveals an excellent spectral agreement
and broader resonances for experimental data are primarily due to the convolution with
the EELS zero-loss peak of 0.11 eV fwhm. For both dolmens, the low energy bonding
mode (1) is gradually red-shifted to 1.16 and 1.11 eV for S = 19 nm and S = 46 nm,
respectively. The same mode was measured at 1.26 eV for the symmetric dolmen H2
with similar gap dimensions. For the intermediate dolmen I made by capillary assembly
(Figure 5e), modes (2) and (3) are not distinguished experimentally owing to a spectral
overlap revealed by the simulations. In comparison, these modes are well distinguished
for a large offset of the central nanorod (Figure 5f), as evidenced in both the EELS
spectra and the EELS maps. The energy difference between the modes (1) and (4), which
increases from 0.7 to 0.9 eV, is another useful metric demonstrating the control of the
assembly and sensitivity of the displacement of the central nanorod in this highly coupled
system.

Remarkably, the capillary-assembled nanorod structures are stable even under prolonged
electron beam irradiation, also when they are separated by the smallest possible interpar-
ticle distance as determined by the collapsed cetyltrimethylammonium bromide (CTAB)
surfactant bilayer (1.5 nm). By instead fusing neighboring nanorods using an oxygen
plasma treatment and annealing, the lower energy modes are red-shifted to energies below
1 eV, indicating the formation of charge transfer plasmons [31,48] (Figure S4). This hints
to a unique alternative to Au flake milling for the fabrication of monomeric antennas with
single crystal building blocks [46,47]. Additionally, we have also investigated the influence
of asymmetries for a dolmen in which a vertical nanorod is significantly longer than the
other ones while having zero offset for the shorter vertical nanorod respectively to the
horizontal one (Figure S5). These measurements allow us to highlight the significant
impact of asymmetry on near field localization and energy splitting of modes (2) and (3),
which respectively support out-of-phase and in-phase longitudinal dipoles on the vertical
nanorods. In the case of this asymmetric dolmen, modes (2) and (3) become strongly
localized on the longer and shorter nanorods, respectively, and markedly split in energy.
Owing to the different net dipole moments in each vertical nanorod, modified modes
(2 and (3) are expected to present a radiative nature, providing a good metric for the
far-field analysis of the dolmen symmetry disentangled from offset parameter and gap
width.

Conclusion

In conclusion, we have experimentally and theoretically investigated the near field coupling
mechanisms in gold nanodolmens with different arrangements and interparticle distances.
By using capillary assembly, interparticle gaps as short as 1.5 nm were produced leading
to enhanced coupling and large energy splitting between bonding and antibonding modes.
Additionally, the short gap distances produce a strong contribution from high energy
quadrupole and transverse dipole modes. Their influence on the electromagnetic response
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were tracked by a gradual symmetry breaking of the nanodolmen via controlled vertical
offsetting of the central nanorod. By relating the experimental findings to eigenmode
simulations and multipolar decompositions, an excellent agreement was found between
the response of idealized and fabricated structures. This work therefore paves the way
for the fabrication of complex plasmonic nanoparticle assemblies that may enable new
opportunities for the design of plasmonic rulers, refractive index sensors, and nonlinear
antennas based on single crystal, low loss building blocks. Furthermore, and although
our experiments have been fully interpreted and simulated relying on classical theory,
combining the capillary assembly method with specific molecular spacers is a promising
way to control plasmon resonances with molecular tunnel junction [49].

Acknowledgement

The research leading to these results has received funding from the European Commission’s
Seventh Framework Programme (FP7-ICT-2011-7) under Grant Agreements 288263
(Nano- Vista) and ERC-2015-AdG-695206 (Nanofactory) and the Swiss National Science
Foundation (SNSF; 200020_153662). The authors gratefully acknowledge the valuable
support from the EPFL center of micro- and nanofabrication (CMi).

References

[1] Maier, S. A. Plasmonics: Fundamentals and Applications; Springer Science + Business
Media LLC: New York, 2007.

[2] Gallinet, B.; Butet, J.; Martin, O. J. F. Numerical methods for nanophotonics:
standard problems and future challenges. Laser Photonics Rev. 2015, 9, 577-603.

[3] Paolo, B.; Jer-Shing, H.; Bert, H. Nanoantennas for visible and infrared radiation.
Rep. Prog. Phys. 2012, 75, 024402.

[4] Chikkaraddy, R.; de Nijs, B.; Benz, F.; Barrow, S. J.; Scherman, O. A.; Rosta, E.;
Demetriadou, A.; Fox, P.; Hess, O.; Baumberg, J. J. Single-molecule strong coupling at
room temperature in plasmonic nanocavities. Nature 2016, 535, 127-130.

[5] Shegai, T.; Chen, S.; Miljkovié¢, V. D.; Zengin, G.; Johansson, P.; Kéall, M. A bimetallic
nanoantenna for directional colour routing. Nat. Commun. 2011, 2, 481.

[6] Verellen, N.; Sonnefraud, Y.; Sobhani, H.; Hao, F.; Moshchalkov, V. V.; Van Dorpe,
P.; Nordlander, P.; Maier, S. A. Fano Resonances in Individual Coherent Plasmonic
Nanocavities. Nano Lett. 2009, 9, 1663-1667.

[7] Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P. A hybridization model for the
plasmon response of complex nanostructures. Science 2003, 302, 419-422.

[8] Luk’yanchuk, B.; Zheludev, N. I.; Maier, S. A.; Halas, N. J.; Nordlander, P.; Giessen,
H.; Chong, C. T. The Fano resonance in plasmonic nanostructures and metamaterials.
Nat. Mater. 2010, 9, 707-715.

[9] Halas, N. J.; Lal, S.; Chang, W. S.; Link, S.; Nordlander, P. Plasmons in strongly

183



Chapter 3. Eigenmode Analysis and Electron Energy Loss Spectroscopy

coupled metallic nanostructures. Chem. Rev. 2011, 111, 3913-61.

[10] Kauranen, M.; Zayats, A. V. Nonlinear plasmonics. Nat. Photonics 2012, 6, 737-748.
[11] Yan, C.; Martin, O. J. F. Periodicity-Induced Symmetry Breaking in a Fano Lattice:
Hybridization and Tight-Binding Regimes. ACS Nano 2014, 8, 11860-11868.

[12] Gallinet, B.; Martin, O. J. Refractive index sensing with subradiant modes: a
framework to reduce losses in plasmonic nanostructures. ACS Nano 2013, 7, 6978-87.
[13] Gallinet, B.; Siegfried, T.; Sigg, H.; Nordlander, P.; Martin, O. J. Plasmonic radiance:
probing structure at the Angstrom scale with visible light. Nano Lett. 2013, 13, 497-503.
[14] Butet, J.; Martin, O. J. Refractive index sensing with Fano resonant plasmonic
nanostructures: a symmetry based nonlinear approach. Nanoscale 2014, 6, 15262-70.
[15] Liu, N.; Hentschel, M.; Weiss, T.; Alivisatos, A. P.; Giessen, H. Three-Dimensional
Plasmon Rulers. Science 2011, 332, 1407-1410.

[16] Liu, N.; Langguth, L.; Weiss, T.; Kastel, J.; Fleischhauer, M.; Pfau, T.; Giessen, H.
Plasmonic analogue of electromagnetically induced transparency at the Drude damping
limit. Nat. Mater. 2009, 8, 758-762.

[17] Taubert, R.; Hentschel, M.; Késtel, J.; Giessen, H. Classical Analog of Electromag-
netically Induced Absorption in Plasmonics. Nano Lett. 2012, 12, 1367-1371.

[18] Zhu, W.; Crozier, K. B. Quantum mechanical limit to plasmonic enhancement as
observed by surface-enhanced Raman scattering. Nat. Commun. 2014, 5, 5228.

[19] Duan, H.; Ferndndez-Dominguez, A. I.; Bosman, M.; Maier, S. A.; Yang, J. K.
W. Nanoplasmonics: Classical down to the Nanometer Scale. Nano Lett. 2012, 12,
1683-1689.

[20] Punj, D.; Regmi, R.; Devilez, A.; Plauchu, R.; Moparthi, S. B.; Stout, B.; Bonod, N.;
Rigneault, H.; Wenger, J. Self-Assembled Nanoparticle Dimer Antennas for Plasmonic-
Enhanced Single- Molecule Fluorescence Detection at Micromolar Concentrations. ACS
Photonics 2015, 2, 1099-1107.

[21] Hu, M.; Ghoshal, A.; Marquez, M.; Kik, P. G. Single Particle Spectroscopy Study of
Metal-Film-Induced Tuning of Silver Nanoparticle Plasmon Resonances. J. Phys. Chem.
C 2010, 114, 7509-7514.

[22] Sau, T. K.; Rogach, A. L. Nonspherical noble metal nanoparticles: colloid-chemical
synthesis and morphology control. Adv. Mater. 2010, 22, 1781-804.

[23] Tan, S. J.; Campolongo, M. J.; Luo, D.; Cheng, W. Building plasmonic nanostruc-
tures with DNA. Nat. Nanotechnol. 2011, 6, 268- 276.

[24] Acuna, G. P.; Moller, F. M.; Holzmeister, P.; Beater, S.; Lalkens, B.; Tinnefeld, P.
Fluorescence Enhancement at Docking Sites of DNADirected Self-Assembled Nanoanten-
nas. Science 2012, 338, 506-510.

[25] Kuzyk, A.; Schreiber, R.; Zhang, H.; Govorov, A. O.; Liedl, T.; Liu, N. Reconfig-
urable 3D plasmonic metamolecules. Nat. Mater. 2014, 13, 862-866.

[26] Yang, S.; Ni, X. J.; Yin, X. B.; Kante, B.; Zhang, P.; Zhu, J.; Wang, Y.; Zhang, X.
Feedback-driven self-assembly of symmetrybreaking optical metamaterials in solution.
Nat. Nanotechnol. 2014, 9, 1002-1006.

[27] Ciraci, C.; Hill, R. T.; Mock, J. J.; Urzhumov, Y.; Ferndndez- Dominguez, A. 1;

184



3.3. Mode Evolution in Strongly Coupled Plasmonic Dolmens Fabricated
by Templated Assembly

Maier, S. A.; Pendry, J. B.; Chilkoti, A.; Smith, D. R. Probing the Ultimate Limits of
Plasmonic Enhancement. Science 2012, 337, 1072-1074.

[28] Bidault, S.; Devilez, A.; Maillard, V.; Lermusiaux, L.; Guigner, J.- M.; Bonod, N.;
Wenger, J. Picosecond Lifetimes with High Quantum Yields from Single-Photon-Emitting
Colloidal Nanostructures at Room Temperature. ACS Nano 2016, 10, 4806-4815.

[29] Gao, B.; Arya, G.; Tao, A. R. Self-orienting nanocubes for the assembly of plasmonic
nanojunctions. Nat. Nanotechnol. 2012, 7, 433- 437.

[30] Jones, S. T.; Taylor, R. W.; Esteban, R.; Abo-Hamed, E. K.; Bomans, P. H;
Sommerdijk, N. A.; Aizpurua, J.; Baumberg, J. J.; Scherman, O. A. Gold nanorods with
sub-nanometer separation using cucurbit[n]uril for SERS applications. Small 2014, 10,
4298-303.

[31] Flauraud, V.; Mastrangeli, M.; Bernasconi, G. D.; Butet, J.; Alexander, D. T. L;
Shahrabi, E.; Martin, O. J. F.; Brugger, J. Nanoscale topographical control of capillary
assembly of nanoparticles. Nat. Nanotechnol. 2016, 12, 73-80.

[32] Khunsin, W.; Dorfmuller, J.; Esslinger, M.; Vogelgesang, R.; Rockstuhl, C.; Et-
rich, C.; Kern, K. Quantitative and Direct Near-Field Analysis of Plasmonic-Induced
Transparency and the Observation of a Plasmonic Breathing Mode. ACS Nano 2016, 10,
2214-24.

[33] Yu, H.; Sun, Q.; Ueno, K.; Oshikiri, T.; Kubo, A.; Matsuo, Y.; Misawa, H. Explor-
ing Coupled Plasmonic Nanostructures in the Near Field by Photoemission Electron
Microscopy. ACS Nano 2016, 10, 10373-10381.

[34] Bellido, E. P.; Bicket, I. C.; McNeil, J.; Botton, G. A. Very High Resolution Energy
Loss Spectroscopy: Applications in Plasmonics. Microsc. Microanal. 2016, 22, 974-975.
[35] Coenen, T.; Schoen, D. T.; Mann, S. A.; Rodriguez, S. R.; Brenny, B. J.; Polman,
A.; Brongersma, M. L. Nanoscale Spatial Coherent Control over the Modal Excitation of
a Coupled Plasmonic Resonator System. Nano Lett. 2015, 15, 7666-70.

[36] Coenen, T.; Schoen, D. T.; Brenny, B. J. M.; Polman, A.; Brongersma, M. L.
Combined electron energy-loss and cathodoluminescence spectroscopy on individual and
composite plasmonic nanostructures. Phys. Rev. B: Condens. Matter Mater. Phys.
2016, 93, 195429.

[37] Losquin, A.; Zagonel, L. F.; Myroshnychenko, V.; Rodriguez- Gonzélez, B.; Tencé,
M.; Scarabelli, L.; Forstner, J.; Liz-Marzan, L. M.; Garcia de Abajo, F. J.; Stéphan, O.;
Kociak, M. Unveiling Nanometer Scale Extinction and Scattering Phenomena through
Combined Electron Energy Loss Spectroscopy and Cathodoluminescence Measurements.
Nano Lett. 2015, 15, 1229-1237.

[38] Bernasconi, G. D.; Butet, J.; Flauraud, V.; Alexander, D.; Brugger, J.; Martin, O.
J. F. Where Does Energy Go in Electron Energy Loss Spectroscopy of Nanostructures?
ACS Photonics 2017, 4, 156- 164.

[39] Hohenester, U.; Ditlbacher, H.; Krenn, J. R. Electron-Energy- Loss Spectra of
Plasmonic Nanoparticles. Phys. Rev. Lett. 2009, 103, 106801.

[40] Bernasconi, G. D.; Butet, J.; Martin, O. J. F. Mode analysis of second-harmonic
generation in plasmonic nanostructures. J. Opt. Soc. Am. B 2016, 33, 768-779.

185



Chapter 3. Eigenmode Analysis and Electron Energy Loss Spectroscopy

[41] Gallinet, B.; Martin, O. J. F. Relation between near-field and far-field properties of
plasmonic Fano resonances. Opt. Express 2011, 19, 22167-22175.

[42] Nordlander, P.; Oubre, C.; Prodan, E.; Li, K.; Stockman, M. I. Plasmon Hybridiza-
tion in Nanoparticle Dimers. Nano Lett. 2004, 4, 899-903.

[43] Miihlig, S.; Menzel, C.; Rockstuhl, C.; Lederer, F. Multipole analysis of meta-atoms.
Metamaterials 2011, 5, 64-73.

[44] Sarychev, A. K.; Shvets, G.; Shalaev, V. M. Magnetic plasmon resonance. Phys.
Rev. E 2006, 73, 036609.

[45] Shao, L.; Tao, Y. T.; Ruan, Q. F.; Wang, J. F.; Lin, H. Q. Comparison of the
plasmonic performances between lithographically fabricated and chemically grown gold
nanorods. Phys. Chem. Chem. Phys. 2015, 17, 10861-10870.

[46] Huang, J. S.; Callegari, V.; Geisler, P.; Bruning, C.; Kern, J.; Prangsma, J. C.;
Wu, X.; Feichtner, T.; Ziegler, J.; Weinmann, P.; Kamp, M.; Forchel, A.; Biagioni,
P.; Sennhauser, U.; Hecht, B. Atomically flat single-crystalline gold nanostructures for
plasmonic nanocircuitry. Nat. Commun. 2010, 1, 150.

[47] Celebrano, M.; Wu, X.; Baselli, M.; Grossmann, S.; Biagioni, P.; Locatelli, A.; De
Angelis, C.; Cerullo, G.; Osellame, R.; Hecht, B.; Duo, L.; Ciccacci, F.; Finazzi, M.
Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic
generation. Nat. Nanotechnol. 2015, 10, 412-417.

[48] Pérez-Gonzdlez, O.; Zabala, N.; Borisov, A. G.; Halas, N. J.; Nordlander, P.; Aizpu-
rua, J. Optical Spectroscopy of Conductive Junctions in Plasmonic Cavities. Nano Lett.
2010, 10, 3090-3095.

[49] Tan, S. F.; Wu, L.; Yang, J. K. W.; Bai, P.; Bosman, M.; Nijhuis, C. A. Quantum
Plasmon Resonances Controlled by Molecular Tunnel Junctions. Science 2014, 343,
1496-1499.

186



3.3. Mode Evolution in Strongly Coupled Plasmonic Dolmens Fabricated
by Templated Assembly

Supplementary informations
Methods

Sample fabrication: Lithographic samples

Silicon wafers (100 mm diameter, prime grade double side polished) were cleaned following
a standard RCA procedure prior to low pressure chemical vapor deposition of 30 nm-thick
silicon nitride. Backside photolithography and wet etching by potassium hydroxide were
performed to release 500 x 100 pm? freestanding silicon nitride windows. A single layer
of polymethylmethacrylate, (PMMA 495 A2, MicroChem) was then spun at 2500rpm
for 60 s yielding an approximately 90 nm-thick coating following a 3 min bake at 180°C
prior to the coating of a conductive layer (Espacer 300Z ShowaDenko). The samples
were then exposed by electron beam lithography (VISTEC EBPG5000+, 100 kV) and
developed at room temperature for 60 s in a 1:3 mixture of methyl isobutyl ketone /
isopropyl alcohol. Chromium and Gold (Inm / 25 nm) were then evaporated by electron
beam heating at a pressure of 8 - 107 mBar prior to lift-off in acetone. The samples
were finally cleaved in 3 x 3 mm? dies for measurements in the TEM.

Sample fabrication: Assembly templates

Silicon wafers (100 mm diameter, prime grade double side polished) were cleaned following
a standard RCA procedure. Topographical traps defining the 2D dolmen geometries
were defined using ZEP-520A (Zeon Chemicals) resist spun at 2500 rpm (~150 nm-
thickness), exposed by electron beam lithography, developed at room temperature for
60 s in n-amyl-acetate and rinsed in a mixture of methyl isobutyl ketone / isopropyl
alcohol (9:1) for 60 s before being blow dried with a nitrogen gun. The funnel profile of
the traps was obtained by exploiting resist faceting during Cl2-based inductively-coupled
plasma reactive ion etching of silicon (STS Multiplex ICP) that was transferred to the
underlying silicon substrate. Low pressure chemical vapor deposition of 30 nm-thick
silicon nitride was then performed followed by the release of freestanding membranes
as described above. The substrates were then cleaved, surface-activated by exposure to
oxygen plasma (Tepla Gigabatch, 1000 W, 5 min, 500 SCCM Os) and finally rendered
hydrophobic by vapor-phase absorption of 1H,1H,2H,2H- perfluorodecyltrichlorosilane
(Aldrich) under vacuum for 1 h. The wettability of the substrates was characterized
through static contact angle measurements by the sessile drop method before experiments,
obtaining values in excess of 110°C for water and 63° C for CTAB solution at its CMC
at room temperature.

187



Chapter 3. Eigenmode Analysis and Electron Energy Loss Spectroscopy

Nanoparticle assembly

Nanoparticle assembly was performed relying on the same equipment and methodology
as previously reported [1]. Briefly, CTAB stabilized nanorods purchased from Nanopartz
(USA) were concentrated at ~2.64 - 101! particles - ml~! and washed in CTAB 0.9 mM. 50-
70 pL of the prepared solution was injected between the templates and a static coverslip.
Upon heating (45-50°C) the template was set in relative motion to the coverslip at

1

~2um - s~ in order to generate nanoparticle accumulation at the meniscus and cross

the topographic traps.

EELS measurements

STEM-EELS maps were acquired using a FEI Titan Themis 60-300 equipped with a
Wien-type monochromator and a Gatan GIF Quantum ERS spectrometer. A 300 keV
incident electron beam was used for all experiments, monochromated to give an energy
spread of 110 meV full width half maximum in the zero-loss peak of elastically-scattered
electrons, and with beam currents of ~240 pA. A 17 mrad convergence semi-angle of
the probe and a 22 mrad collection semi-angle on the spectrometer were used, with the
probe having a mean diameter inferior to 1 nm for full width tenth maximum in incident
intensity. Mapping was performed using the “ultrafast” spectrum imaging mode with
typical dwell times of 0.20-0.26 ms per pixel, and with the probe rastered in X, Y step
sizes of 0.5-0.6 nm for a total of >10° pixels per map. Each map was treated with the
HQ Dark Correction plugin to reduce noise associated with dark current subtraction.

EELS data processing

The EELS data cubes were processed using Gatan Digital Micrograph and custom
Matlab® scripts for the removal of the background from the tails of the zero-loss peak
(ZLP) and extraction of point spectra and spatial EELS maps. The ZLP was first
aligned at 0 eV pixel by pixel by fitting the ZLP of each pixel spectrum with a Gaussian-
Lorentzian approximation to identify its center. Following zero-loss alignment, each data
cube was spectrally cropped to the region of interest including ZLP (-2 eV to 4 eV),
and intensity spikes from cosmic rays were removed. To account for the absorption and
scattering inside the Au film or nanoparticles, the data cubes were normalized by dividing
each pixel-spectrum by the integrated intensity of its corresponding fitted ZLP. In this
way the “true” projected plasmon intensity distribution is retrieved [2]. Experimental
spectra shown in the figures were integrated over 50 x 50 pixel regions of interest at the
positions indicated on the corresponding HAADF-STEM images, whereas EELS intensity
maps were typically integrated over an energy window of 0.06 eV width centered on
the relevant plasmon peak resonance energy. For visualization purposes, the maps were
smoothed using a penalized least square method [3].
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Simulations

A surface integral equation method [4] is used to compute the interaction between the
electromagnetic field associated to the swift electron and the plasmonic nanostructures as
well as for the computation of the eigenmodes. The nanostructure’s surface is discretized
with triangular mesh elements and the electric and magnetic fields in the entire space
(inside and outside the nanoparticle) are related to fictitious electric and magnetic surface
currents through a matrix describing the geometry and material of the structure. EELS
is computed in two steps: first by exciting the structure with the fields associated to a
swift electron, and then by computing the work done on the electron by the Lorentz
force against this scattered field [5-6]. The eigenmodes are found by looking for the
eigenvectors of the aforementioned matrix when no excitation is imposed [7]. Only the
real part of the surface charge of the eigenmodes is shown, as the imaginary part is
either vanishing or negligible compared to the real part and does not bring any useful
information to associate the modes to the EELS map.

Supplementary figures
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Figure S1 — Plane wave excitation. (a) Scattering spectra computed for a normal
incidence plane wave excitation polarized along the central rod long axis for the litho-
graphically defined dolmen geometries of Figure 1. (b) Similar simulation for the 2 nm
gap ideal dolmens of Figure 2. (¢) and (d) experimental dark field scattering spectra
for two extreme cases of the central rod offset for two dolmens assembled on SiO9 tem-
plates. The slight blue-shift between experiments and simulations is due to the different
surrounding index. Simulations were computed for comparison with EELS experiments
where assembly was performed on Si;N, membranes (refractive index n~2) whereas the
samples for optical excitations are on SiOy (n~1.5).
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Figure S2 — Hybridization pattern. Eigencharges for the modes of an isolated nanorod
(40 nm x 105 nm) with, in increasing energy, the longitudinal dipole Dy, longitudinal
quadrupole Qr,, transverse quadrupole Qr and transverse dipole Dp. Eigenmodes of
dolmens with two extreme offset parameters for the central rod (S = 0 nm and S = 40
nm) show the evolution and decomposition of the coupled system from the eigenmodes
of the isolated nanorod.
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Figure S3 — Second impact parameter. EELS spectra computed for an impact
parameter 8 nm away from the central top side of the central rod. Due to symmetry
reasons only mode 3 is driven confirming its progressive red-shift independently from
mode 2.
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Figure S4 — Fused nanorods. (a) HAADF image and associated plasmon resonance
EELS intensity maps of fused dolmen structure induced by oxygen plasma treatment.
Charge transfer plasmon modes are created, leading to a strong red-shift of the lower
energy modes down to 0.66 €V. (b) Line profiles of Au lattice fringes observed by high
resolution TEM from the locations indicated with corresponding colors on the image
below, showing that the crystallinity of the Au nanorods has been preserved after oxygen
plasma and annealing. Diffraction contrast suggests the presence of only a thin ~5 nm
amorphous layer on the surface.
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Figure S5 — Asymmetric dolmen assembly. (a) HAADF image and associated
plasmon resonance EELS intensity maps of an asymmetric dolmen. (b) Corresponding
eigencharge distributions.
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ABSTRACT: We investigate the plasmonic behavior of Koch snowflake frac-
tal geometries and their possible application as broadband optical antennas.
Lithographically defined planar silver Koch fractal antennas were fabricated
and characterized with high spatial and spectral resolution using electron
energy loss spectroscopy. The experimental data are supported by numerical
calculations carried out with a surface integral equation method. Multiple
surface plasmon edge modes supported by the fractal structures have been
imaged and analyzed. Furthermore, by isolating and reproducing self-similar
features in long silver strip antennas, the edge modes present in the Koch
snowflake fractals are identified. We demonstrate that the fractal response
can be obtained by the sum of basic self-similar segments called characteristic
edge units. Interestingly, the plasmon edge modes follow a fractal-scaling rule
that depends on these self-similar segments formed in the structure after a
fractal iteration. As the size of a fractal structure is reduced, coupling of the
modes in the characteristic edge units becomes relevant, and the symmetry of
the fractal affects the formation of hybrid modes. This analysis can be utilized
not only to understand the edge modes in other planar structures but also in
the design and fabrication of fractal structures for nanophotonic applications.

Introduction

The use of fractal geometries has significantly impacted many areas of science and
engineering. One such area is antenna design, where fractal geometries are often utilized
in portable communication devices for their compact, broadband characteristics [1,2].
The term fractal is used to describe curves (most commonly in two dimensions) that
present repeating patterns (exact, quasi, or statistical self-similarity), at all scale, often
obtained by iteratively applying some transformation on a system [3]. This particular
property, as well as their ability to compactly fill space, makes fractals ideal candidates
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for broadband antennas, and they have indeed inspired the design of several macroscopic
antennas that exhibit broadband behavior and improved performance in the GHz regime
[4-9].

In recent years, interest in a new type of antenna based on surface plasmon resonances,
designed to operate at visible light frequencies, has been motivated by potential appli-
cations in sensing [10], imaging [11], energy harvesting [12,13], and disease prevention
and cure [14]. These so-called “optical antennas” or “nano-antennas” have characteristic
dimensions at nanometer-length scales, requiring nanometer precision for their fabrication
and characterization [15]. With improved nanofabrication tools, including focused ion
beam and electron beam lithography (EBL) [16], their fabrication is becoming increas-
ingly feasible. Early prototype structures studied include dipole [17] gap [18,19] bowtie
[20], and Yagi-Uda [21] antennas. The nanoscale dimensions of optical antennas call for
demanding characterization requirements and experimental techniques that can image
beyond the optical diffraction limit are necessary for the detailed study of subwavelength
field confinements in optical antennas. Electron energy loss spectroscopy (EELS), per-
formed in a scanning transmission microscope (STEM), is one of the few techniques
which meets all these requirements, combining subnanometer spatial resolution and
spectral resolution exceeding 100 meV [22]. Although the EELS energy resolution is lower
compared with its optical counterparts, deconvolution techniques and new designs of
monochromators can achieve resolutions close to 10 meV [23,24]. The STEM-EELS tech-
nique has been used successfully to map optical excitations in a variety of nanostructure
geometries, including triangular prisms [25], rods [26,27], wires [28], cubes [27], among
others [29-42]. Early studies of optical fractal antenna designs, including the Cayley tree
[43], Sierpinski fractals [44-47], and other self-similar geometries [48-51], suggest that
broadband absorption can be achieved in fractal plasmonic nanoantennas. Plasmonic
fractal structures have also been tested to improve the efficiency in application such as
photovoltaics [52,53], extraordinary transmission [47], fluorescence enhancement [54],
third harmonic generation [55], and molecular detection [56]. In this work, we focus on
the Koch snowflake fractal geometry. A Koch fractal is constructed by starting with
an equilateral triangle (iteration 0) and repeating the following procedure iteratively:
Divide each edge of the structure into three segments of equal length and then place
an equilateral triangle pointing outward in the central segment in each line, that is,
the central segment is the base of the new triangle. The fractals are defined by the
number of times the described procedure was applied (i.e., an iteration). Figure S1 in the
Supporting Information shows the iterations of the Koch fractal geometry. Furthermore,
the insets in Figures la, 2a, and 5a show annular dark-field (ADF) images of the Koch
fractal iterations 0, 1, and 2, respectively. We use EBL to fabricate a set of nanoscale
fractal antennas, and STEM-EELS is used to image the optical excitations supported
by the structures (see Methods section). The high spatial resolution achieved with
STEM-EELS allows us to visualize the multiple plasmonic modes supported by the
fractal structures, to analyze the structural origin of the modes present, and to study the
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effect of self-similarity by comparing the response of different fractal geometry iterations.
The experimental results are complemented with numerical calculations of both EELS
spectra and eigenmodes, as described in the Methods section. In this work, we show
that the localized plasmon resonances in a complex geometry such as the Koch snowflake
fractal follow simple scaling rules based on the number of self-similar segments found
in the structure. These scaling rules may be used in the design of fractal antennas for
applications in sensing and compact nanophotonic architectures.

Results and Discussion

To analyze the effect of self-similarity on the spectral response of metallic nanoantennas,
silver Koch snowflake fractal antennas of iterations 0, 1, and 2 have been fabricated, as
shown in the insets in Figures la, 2a, and 5a. The iteration 0 structure has a side length
of 2 pm and a thickness of 30 nm. The first and second iteration structures maintain a
thickness of 30 nm. Figures la, 2a, and 5a show the experimental (top) and simulated
(bottom) EELS spectra of the fractal structures obtained at several positions indicated
by the color-coded boxes in the insets. Overall, we observe a fair agreement between
the simulation and the experiment with plasmon peaks and energies well reproduced.
The increasing difference of the peaks energy between experiment and simulation is
assumed to be due to the absence of the substrate in the simulations, whose influence
can change with increasing mode energy [57], as well as possible deviations of the actual
Ag permittivity from the Drude model used for computations. The spectral response of
each structure exhibits several surface plasmon resonances with a first resonant peak at
approximately the same energy (0.22 4+ 0.04 V) for all the iterations of the Koch fractal
behavior. The simulations confirm this effect.

Edge Modes and Koch Fractal Iteration Zero

As previously described in the literature, the resonances in a planar structure can be
described as quasi one-dimensional resonances (edge modes) along the edge of a structure
[33,58-60]. Even the fundamental dipolar and quadrupolar modes can be described
in terms of edge modes [61]. An edge mode of order m is noted E,,, m being the
number of nodes along the edge. Also, edge modes can be designated as odd or even
depending on the number of nodes m (or, equivalently, with opposite or identical charges
at the edge extremities). The maps in Figure 1b show the resonances of the fractal
iteration 0 that display along each one of the edges the characteristic node distribution
of edge modes. Thus, the first resonant peak at 0.22 4+ 0.03 eV corresponds to a dipolar
mode or edge mode order one (E7), and the following peaks can be identified as formed
by edge modes order two (Es), three (Es3), four (E4), five (E5), and six (FEg) at 0.44,
0.62, 0.78, 0.90, and 1.06 eV respectively (with an effective energy resolution of 30
meV). These results are supported by simulations of the eigenmodes, in Figure lc, that
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Figure 1 — (a) Experimental (top) and computed (bottom) EEL spectra of Koch fractal
antenna iteration 0, acquired at the color-coded positions indicated in the ADF image
in the inset. The numbers indicate the resonant peaks. (b) Experimental EELS maps
of the resonant peaks, indicated in (a), formed by edge modes. (¢) Computed charge
distributions of the equilateral triangle eigenmodes. The even edge modes only form one
eigenmode, while the odd edge modes form two degenerate modes one symmetric and
one antisymmetric. (d) Symmetrized near-field intensity distributions of the eigenmodes
found in the Koch fractal antennas of iteration 0. Degenerate eigenmodes display
identical symmetrized near-field intensities. The EELS maps are obtained at the energies
corresponding to the peaks in the EEL spectra £30 meV. The energies indicated in the
near-field intensity maps are those of the eigenmodes, not the energy of the peaks in the
EEL spectra.
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show the charge distribution of edge modes at the edges of the equilateral triangle
according to the symmetry of the nanostructure. Based on the symmetry of the Koch
fractal structures, we will designate as symmetric or antisymmetric the eigenmodes with
symmetric or antisymmetric charge distributions with respect to the vertical axis. Due
to the structure symmetry, each eigenmode having only the mirror symmetry (symmetric
or antisymmetric) will implicitly exist 3 times for the iteration 0 and 6 times for higher
iterations. Since this does not bring any additional information, this “degeneracy” will
not be mentioned further, and the term degeneracy will only refer to eigenmodes having
the same energy but different charge distributions that cannot be matched by mirror
or rotation operation. The choice of the vertical axis as the reference axis is arbitrary,
and considering one of the other two symmetry axes would give the same results. EELS
maps also follow the structure symmetry because the signal is obtained by exciting and
probing at the same location, the simplest example being the resonances of a nanodisk
that appear like concentric rings [62]. For the same reason, Koch snowflake fractals
EELS maps always have a Cs or Cg symmetry, for iteration 0 and higher, respectively.
Otherwise, this is not the case for all the computed eigenmodes, and to be able to identify
them easily in the EELS maps, the electric near-field intensity of each eigenmode (Figures
1d, 2d, and 5d) is “symmetrized” by adding itself 3 times following 0°, 120°, and 240°
rotations. These symmetrized maps provide a qualitative link between the measurements
and the simulations. Interestingly, we observe that degenerate eigenmodes give the same
symmetrized near-field map, despite different charge distributions. The electric near-field
intensities of the eigenmodes before being symmetrized are shown in in Figures S2-S4.

Following this description, the eigenmodes present in the equilateral triangle (Koch fractal
of iteration 0) can be analyzed. Figure 1c,d shows the surface charge distributions and
the simulated, symmetrized, electric near-field intensity distributions of the eigenmodes
for the fractal iteration 0. From the surface charge distributions, it is clear that all
three edges of the triangle in the eigenmodes of the resonant peaks 2, 4, and 6 display
a charge distribution corresponding to a one-dimensional mode of the same order Fj,
Ey, and Eg (with even edge modes), respectively. For the case of the eigenmodes formed
by Fi, E3, and E5 (with odd edge modes), two degenerate eigenmodes are present:
one in which two edges have the same charge distribution corresponding to an edge
mode (symmetric eigenmode), and another eigenmode in which only one edge exhibits
the charge distribution corresponding to an edge mode and the two other edges have
opposite charge distribution sign relatively to each other (antisymmetric eigenmode).
The eigenmodes Fs, Fy, and Fg follow the same Cs symmetry as the triangle, whereas
other eigenmodes only have the mirror symmetry with degeneracy two (antisymmetric
and symmetric respectively to the vertical axis). Based on the symmetry of the triangle,
the formation of two degenerate eigenmodes for odd edge modes is understandable. This
is due to the fact that in all odd edge modes the charge at the extremities of the edge
(the triangle corner) must be opposite, and in a triangle only two edges at maximum
can fulfill this constraint at the same time. The odd edge modes therefore split into
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Figure 2 — (a) Experimental (top) and computed (bottom) EEL spectra of Koch fractal
antenna iteration 1, acquired at the color-coded positions indicated in the ADF image
in the inset. The numbers indicate the resonant peaks. (b) Experimental EELS maps
of the resonant peaks, indicated in (a), displaying the modes formed by edge modes
that can be analyzed by isolating its characteristic “V” edge unit as shown in Figure
3a,b. The analysis shows that the first peak is a dipolar mode, and the next modes are
formed by E,, (m = 1-5) modes in the characteristic edge units. (¢) Computed charge
distributions of the fractal iteration 1 eigenmodes. All the eigenmodes formed by edge
modes are degenerate, and they can be understood considering the interaction of the edge
modes within the fractal structure and its symmetry as shown in Figures 4b,c and S9.
(d) Symmetrized near-field intensity distributions of the eigenmodes found in the Koch
fractal antennas of iteration 1. Degenerate eigenmodes display identical symmetrized
near-field intensities.

symmetric and antisymmetric degenerate edge modes. The surface charge distributions
of the eigenmodes of iteration 0 confirm that it is possible to describe them as formed by
edge modes.

Characteristic Edge Units and Koch Fractal Iteration one

As is the case of the Koch fractal iteration 0, the lowest energy mode in the fractals of
iteration 1 is also identified as a dipolar mode. Although the geometry modification from
iteration 0 to 1 is large, the energy of the dipolar mode shifts only by 30 meV in the
simulations. Figure 2c shows the surface charge distributions for the modes of the fractal
iteration 1. For the dipolar mode, two degenerate eigenmodes are supported, one with
a vertical dipole moment and the other with a horizontal dipole moment, as observed
for the dipolar modes of the fractal iteration 0. However, the higher order modes of the
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Figure 3 — Experimental EEL spectra of the characteristic edge units of Koch fractal
antennas of iterations 1 (a) and 2 (c,e) reproduced at the very end of a 50 pym long silver
strip, acquired at the color-coded positions indicated in the ADF image in the insets.
The arrows indicate the peaks corresponding to resonant edge modes. EELS maps of the
plasmon modes found in the characteristic edge units of Koch fractal antennas of iteration
1 (b) and 2 (d,f). The second peak in (e) is labeled as “2,3” because it represents two
different resonant modes that are energetically close. The modes have been separated
with a Gaussian fit yielding EELS maps 2 and 3, in (f), at 0.46 + 0.07 eV and 0.58 +
0.09 eV, respectively.

Koch snowflakes of iteration 1 display complex EELS maps and charge distributions as
observed in Figure 2b,c. To understand these complex modes, the edges of the fractal
structure are divided into characteristic edge units, composed of two segments with a 120°
angle between them (“V” shape), as shown in Figure S1 and in the inset of Figure 3a.
To isolate the characteristic edge unit of the Koch fractal iteration 1, we reproduced this
“V” shape at the end of a 50 pm-long silver strip (extending vertically beyond the insets
in Figure 3). Figure 3a,b shows the EELS spectra and energy-filtered maps of the silver
strip representing the characteristic edge units of the Koch snowflake fractal iteration 1.
Here we are able to identify four resonant peaks that correspond to edge modes, in a
similar manner to the modes found in straight edges on silver strips [58,60], despite the
fact that the characteristic edge unit of the Koch fractal is formed by two edges at an
angle. Hence, the EELS intensity distribution of these resonant peaks corresponds to
edge modes of order one (E1), two (E2), three (E3), and four (Fy). A similar behavior
was found in bent silver nanowires in which the plasmon modes were unaffected by the
presence of kinks [28].

To further support the hypothesis that bent edges will maintain the same quasi one-
dimensional modes than those found in straight edges, let us draw a parallel with the
one-dimensional modes of silver nanowires. We performed simulations of a straight wire
and two bent wires at 120° and 60° as shown in Figure S5. For a 120° bending, which is
the angle of the characteristic unit in the Koch fractals, the bending produces only an
energy shift of the odd edge modes, compared to the straight wire, while maintaining
their nodal distributions. For a 60° bending, modes E3 and Ej; begin to merge. The
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angle at which this process occurs is characteristic of each pair of modes and depends
on the order of the modes and the dimensions of the wires. A detailed study of this
interaction is beyond the scope of this work and will be discussed elsewhere.

Based on the observation that bent edges can support edge modes equivalent to those in
straight edges, we can now compare the EELS maps of the isolated edges that form a
characteristic edge unit with those of the Koch snowflake iteration 1. From the EELS
energy filtered maps shown in Figures 2b and 3b, we can recognize that the second peak
in the snowflake, at 0.32 €V, is formed by edge modes of order one (Ej) or edge dipolar
modes in each one of its characteristic edge units. In a similar manner, the third, fourth,
fifth, and sixth peaks in Figure 2a are formed by edge modes of order two (Es), three
(Es3), four (Ey4), and five (E5), respectively, by comparison with the isolated characteristic
“V7” edge unit. The excellent agreement between the nodal distributions observed in the
EELS maps of the isolated edge units (strip extremities) and the snowflake iteration 1 is
revealed by a side-by-side comparison, shown in Figure S6. If we compare the spectra
from the Koch snowflake and the isolated characteristic “V” edge unit in Figures 2a and
3a, respectively, we observe that the peak corresponding to the E; edge mode in the
isolated edges is red-shifted by 70 meV with respect to the second mode in the snowflake.
If we align these peaks by red shifting the spectra in the Koch snowflake iteration 1,
as shown in the side-by-side comparison in Figure S6a, then we observe an excellent
match between the peaks present in the Koch snowflake fractal and the modes of the
isolated edge unit in the 50 pm silver strips. This supports the analysis of the charge
and nodal distribution of the modes in the fractal and confirms that the modes in the
Koch fractal are equivalent to the modes in the isolated edge units. The small energy
difference between the modes present in both structures can be attributed, to a greater
extent, to the interaction between the edge modes within the Koch snowflake [61] and to
imperfections in the fabricated structures.

Eigenmodes and Coupling of Edge Modes

In the simulated EELS spectra of the Koch snowflake iteration 1 (Figure 2a), we notice
that the second peak at 0.32 eV, which is formed by F; modes, is actually composed of
two close resonant peaks separated by only 46 meV. Due to the intrinsic and experimental
broadening, the experimental EEL spectra cannot resolve those two peaks, and thus only
one peak appears. To further analyze the formation of these two peaks, we simulated the
EELS spectra of Koch snowflake fractals iteration 1 of several sizes while maintaining
the thickness of the structure constant as shown in Figure 4a. The changes in these two
peaks, as we change the size of the fractal, will indicate if these two peaks are produced
by the coupling of edge modes. As the size of the fractal reduces, all of the peaks will
blue-shift. However, we want to examine the energy splitting between the modes formed
by E7 edge modes, and not the shift in energy due to the different fractal sizes; therefore,
we align the second peak of each fractal to the second peak in the fractal with the initial
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Figure 4 — (a) Simulated spectra of Koch fractal iteration 1 for several initial side lengths
of the fractal. The spectra are shifted to align the second resonant peak. The two peaks
show the evolution of the interaction of the bonding (B) and antibonding (A) E; edge
modes; as the structure shrinks, a stronger interaction between E; modes results in larger
splitting energy of these peaks. The inset shows the position where the spectra were
calculated. (b) Energy diagram (not to scale) showing the formation of bonding and
antibonding modes due to the coupling of two E; edge modes. (c) Charge distribution
diagrams of the bonding and antibonding F7 modes in Koch fractal iteration 1. Due to
the symmetry of the structure, the bonding mode supports two degenerate eigenmodes;
the calculated eigenmodes are displayed inside the diagrams.
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length of 2 um. To this end, the spectra of the fractals of initial length of 1 pm, 500
nm, and 250 nm were red-shifted by 0.27, 0.69, and 1.2 eV, respectively. The energy
splitting is a measure of coupling strength, and we observe that, as we increase the size of
the fractal, the energy splitting reduces. This behavior corresponds to a mode splitting
caused by coupling of edge modes within a structure, as shown in the work of Schmidt et
al. in rectangular structures [61]. Thus, this might suggest that interaction of the E;
edge modes is responsible for the formation of these two peaks. As the size of the fractal
increases, the distance between edges increases, and the interaction between edge modes
is weaker, thus the energy splitting is reduced.

The simulations also show that the second and third resonant peaks, observed experimen-
tally, are formed by three eigenmodes each, two eigenmodes being degenerate as shown
in Figure 2c. Although the experimental results could be explained by neglecting the
formation of these three eigenmodes, their charge distributions indicate the interaction
of edge modes within the fractal structure. To understand the charge distributions of
the eigenmodes in the Koch fractal iteration 1, we use the hybridization model [63].
When edge modes interact, the hybridization model dictates the formation of a bond-
ing and an antibonding mode. In the case of the Koch fractal formed by connected
characteristic edge units, the hybridized modes become bonding (B) and antibonding
(A) charge-transfer hybridized modes [64,65], as shown in Figures 4b and S9 for modes
FE4q and Es, respectively. These modes can be understood intuitively as the coupling of
two edges through a conductive junction (using the terminology from ref [65]) in which
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charges can indeed be “transferred”. From Figure 4b, we observe that the F; antibonding
edge mode is formed by two E; modes with equal charges at the junction which, due to
the charge-transfer, merge and become one antinode. The F; bonding mode is formed
by opposite charges at the junction that cancel each other by charge transfer, leaving
the bonding modes with two opposite charges at the extremities. The C3 symmetry
of the Koch fractal would allow a configuration in which all the edges can display the
antibonding modes as shown in Figures 4c and S9 for edge modes Fy and FEs, respectively.
However, for the bonding modes, in which the charges at the extremities are opposite,
the symmetry only allows two sides of the structure to fulfill this constrain. As it was
the case for the edge modes in Koch fractal iteration 0, this constraint promotes the
formation of a symmetric and an antisymmetric degenerate eigenmodes. The symmetric
eigenmodes can be classified into two distinct groups, each group formed by bonding
edge modes at the left and right sides of the fractal (blue and red + signs in Figures
4¢ and S9): one group with a junction between bonding edge modes at the top apex
and the other with the junction at the bottom apex. For the antisymmetric eigenmodes,
two bonding edge modes at opposite upper and lower part of the fractal are observed
(blue and red + signs in Figures 4c and S9), displaying indeed an antisymmetric charge
distribution. This description of the formation of eigenmodes in the Koch fractal order
1 based on the hybridization of edge modes suggests that the eigenmodes are formed
by the interaction of edge modes within the fractal structures. However, an in-depth
analysis of edge modes coupling that goes beyond the purpose of this work is required to
confirm this hypothesis. In this analysis, we show how the edge modes formed in the
characteristic “V” edge units and the symmetry of the structure determine the three
different charge distributions of eigenmodes. Equivalently, the energy loss peaks four,
five, and six in Figure 2a that are formed by edge modes of order three, four, and five,
respectively, exhibit eigenmodes. However, for these peaks, we were only able to find
two degenerate eigenmodes as shown in Figure 2c. Indeed, the symmetry and spectral
proximity between the expected additional nondegenerated mode and the degenerated
ones make their numerical extraction very difficult.

Koch Fractal Iteration 2

The edge isolation approach is now applied to understand the structure modes present in
the Koch fractal of iteration 2. We therefore divided the edges of the snowflake structure
to find the characteristic edge unit, which is the same “V” shape as for the iteration 1
but one-third smaller, as shown in Figures 3d and S1. In the EELS spectra and energy
filtered maps of the isolated characteristic shape, shown in Figure 3c,d, two resonant
peaks that correspond to edge modes Fy and FEs, similar to those found in the iteration
1 fractal, but at higher energies due to the shorter length of the edge, are identified. A
comparison of these two modes, excited in the characteristic isolated edge unit, with
the modes present in the Koch snowflake fractal of Figure 5a,b enables us to identify
peak four of the fractal as formed by edge mode order one (E;) of the isolated edge
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Figure 5 — (a) EEL spectra of Koch fractal antennas of iteration 2 (experimental (top)
and computed (bottom)) acquired at the color-coded positions indicated in the ADF
image in the inset. The arrows indicate the peaks corresponding to resonant modes. (b)
Experimental EELS maps of the resonant peaks, (c¢) computed charge distributions, and
(d) near-field intensity distributions of the eigenmodes found in the Koch fractal antennas
of iteration 2. The EELS maps are obtained at the energy corresponding to the peak in
the EEL spectra 30 meV. The energy indicated in the near-field intensity map is the
one of the eigenmode, not the energy of the peak in the EEL spectra.

(because of the same strong EELS signal on each small vertex) and peak seven of the
fractal as formed by an edge mode order two (E2) of the isolated edge on the strip. To
corroborate this argument, a side-by-side comparison of the maps and spectra of the
isolated characteristic “V” edge unit and the snowflake fractal iteration 2 is shown in
Figure S7. This comparison emphasizes the excellent nodal distribution agreement of
the modes between the Koch fractal and the isolated edge. As we did in the comparison
between the fractal iteration 1 and its characteristic isolated edge unit, for iteration 2
we also red shift the spectra in the Koch snowflake iteration 2 by 70 meV, as shown in
Figure STa. We observe that, after this shift, the energy peaks corresponding to the
and F> modes in the isolated characteristic units in the 50 pm silver strips match the
peaks present in the Koch snowflake fractal.

For the fractal structure iteration 2, we also isolate and analyze a larger portion of the
structure, as shown in Figure 3e,f, that is, the characteristic edge unit of the Koch fractal
iteration 1 to which an additional fractal iteration is applied. In this larger portion of
the fractal, five peaks are observed, as shown in Figure 3e. The first peak at 0.27 £ 0.04
eV corresponds to a Fp mode or dipolar mode, which is the same mode displayed in the
silver strip of the Koch fractal iteration 1 at 0.28 £ 0.04 eV. This result suggests that the
dipolar mode of iteration 1 can still be excited in the next iteration of the fractal as the
dipolar mode is the most fundamental one (as seen in Figure 5c) and is thus expected to
be marginally affected by the small modification of the second iteration. This effect is
also observed in the Koch snowflake fractal iteration 1 (Figure 2a), where the second
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peak, which is a dipolar edge mode (E1), at 0.32 £ 0.04 €V is also present in the Koch
snowflake iteration 2 (Figure 5a) at 0.31 £ 0.04 eV.

The second peak in Figure 3e is labeled as “2,3” because in the spectrum image, two
dissimilar intensity localizations, one with the antinodes located in the inner vertices
and the other located in all vertices, are observed in the maps two and three in Figure
3f, respectively. To extract the EELS maps corresponding to each surface plasmon
resonance, we isolate the contribution from each edge mode to the spectrum image using
the nonlinear least-squares fitting tool of the “Digital Micrograph” software [66], which
fits Gaussian peaks to a spectrum image. The separation fits two Gaussians to the
peak at 0.55 eV yielding the two EELS maps at 0.46 + 0.07 eV and 0.58 4+ 0.09 €V for
the second and third modes, respectively. The third and sixth peaks of the isolated
characteristic edge units of fractal iteration 2 on the strip shown in Figure 3e,f are the
same two modes found in the isolated characteristic edge unit of Koch fractal iteration
2 shown in Figure 3c,d. Thus, the modes of the isolated characteristic edge units can
be described as edge modes order one (E;) and two (E2) and represent peaks four and
seven found in the Koch snowflake fractal iteration 2 in Figure 5. These results confirm
that the modes present in the strips are a good representation of modes present in the
Koch snowflakes.

When two of the characteristic “V” edge units of Koch fractal iteration 2 are joined
by a 120° angle, an inverted “U”-like shape is generated as shown in the central area
of the inset in Figure 3e and in Figure S1. This characteristic “U” shape, despite the
multiple kinks, also sustains edge modes. Modes E; (dipolar edge mode), Fy, and F3
are identified at 0.46 4+ 0.07, 0.72 4+ 0.04 eV, and 0.95 + 0.04 eV as seen in Figure 3f.
This “U” shape is also present in the full Koch snowflake fractal iteration 2 in Figure 5,
and by comparison, it displays the same edge modes found in the isolated edge seen in
Figure 3e,f. The third, fifth, and sixth peaks in the full Koch snowflake can be identified
as being formed by E7 or dipolar edge mode, Es, and F3 edge modes, respectively. To
confirm this identification, Figure S8 shows the good match of the nodal distributions
between the modes present in the Koch snowflake fractal iteration 2 and the modes
isolated in the 50 pm silver strips. The spectra in Figure S8 also shows a good energy
overlap between the modes in the isolated characteristic edge units on the strip and the
modes of the snowflakes after the latter is red-shifted by 70 meV. This nodal and energy
match supports the evidence that the isolated modes on the silver strip are equivalent
to the modes present in the Koch snowflake fractals. The energy shift can be mainly
attributed to interaction of edge modes in the snowflake [61] and to a lower extent to the
fabrication procedure that did not produce equal edges and sizes in both structures and
locally modifies the plasmon response [67]. To support the proposed concept that a “U”
characteristic unit structure can sustain plasmonic edge modes similar to the ones found
in a straight edge, we draw a parallel and analyze the modes in a simulated “U” shape
bent silver nanowire. Figure S10 shows the spectra and the energy-filtered maps of the
bent nanowire, demonstrating that, despite the bending, the nanowire still supports edge
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modes. This was also demonstrated by Rodriguez-Fortufio et al [68].

Self-Similarity of Edge Modes

Now that the modes present in the Koch snowflake fractals have been identified, we can
analyze their self-similarity (i.e., fractal character) as the number of iterations increases.
Due to the C3 symmetry of the Koch snowflake fractal, each mode exists 3 times. As
stated above, we ignore this “degeneracy” in our analysis. For each edge mode in the
Koch snowflake fractal structure, multiple eigenmodes can be found. However, in our
analysis of self-similarity of edge modes, we will not consider these eigenmodes, and
we only focus on the modes found experimentally. Figure 6 shows a diagram depicting
the evolution of edge modes as the Koch fractal iteration increases. For the iteration 0,
only one mode of a particular order is observed for each edge. In the Koch snowflake
fractal of iteration 1, two modes that originate from a dipolar/E; mode and only one
mode formed by each higher order edge mode are observed. The first mode is the same
dipolar mode found in iteration 0, and the second mode is formed by the F; modes in the
characteristic “V” edge unit in this iteration as shown in Figures 3c and S1. In the case
of the Koch fractal iteration 2, four modes formed by dipolar/FE; edge modes are present,
one coming from fractal iteration 0, one from the F; mode of fractal iteration 1, and
two new modes originated by F7 modes. As discussed previously, this structure presents
two types of characteristic edge units, one is the characteristic “V” shape and the other
is the “U” shape as shown in Figures 3e and S1, and each one of these two units can
support edge modes, thus two new E; formed modes are created during this iteration.
Also two new modes, one per type of characteristic edge unit, of a particular higher
order are supported. Fractals of iterations 0 and 1 have only one type of characteristic
edge unit, therefore, only one mode is supported for each higher order edge mode. From
this analysis, the fractal character of the Koch snowflake is reflected in the number of
dipolar/FE; modes supported by the fractal structure. In addition, the total number
of edge modes in a Koch snowflake is equal to the number of dipolar/E; modes in the
previous fractal iteration plus the modes formed on all the characteristic edge units
present in the fractal. In Figure 6, we also observe Koch iteration 3 that we have not
analyzed in the previous sections. The small features introduced in iteration 3 make the
fabrication as well as the simulation challenging. However, as seen in the ADF in Figure
S11, we were able to fabricate and reproduce some of the features of iteration 3. The
EELS maps of iteration 3 show that the fractal character of the Koch snowflake fractal
is also identified in this iteration, with the dipolar/FE; modes of the previous iterations
also supported in this iteration. Due to the fabrication constrains, the characteristic
edge units of iteration 3 are not well reproduced, but despite this fact, we can observe
the antinodes corresponding to Fy modes in a few of the smaller corners of the fractal.
Because the experimental results show that the modes in the fractal are governed by
the modes in the characteristic edge units, this analysis can be applied to other planar
fractal structures.
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Figure 6 — Diagram of the formation of the plasmon modes in Koch snowflake fractal
antennas. The diagram shows the fractal character of the Koch snowflake structures, in
which the dipolar/E; modes of each iteration are carried to higher iterations. Due to
the small size of the features in iteration 3, the characteristic edge units were not well
reproduced, and only a few edges supported F; modes as seen in the EELS map.
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Now that we understand how the modes evolve as the fractal iteration increases, we
can extend and quantify the number of dipolar/E; modes (N/°4) generated by the
self-similarity in the Koch snowflake fractal iteration “n”. From this analysis, one can
infer how many types of characteristic edge units in the Koch fractal are produced after
“n” iterations of the fractal. For n = 0 and 1, only one type of characteristic edge unit is
produced, however for n > 1, after each iteration two types of characteristic edge units
are produced, the “V” and the “U” shapes. Therefore, N(S”Odes =1, and for n > 0, N,T"des
= 2n. Additionally, the Koch fractal structure will have one mode for each higher order
mode for n = 0, 1 and two modes for each higher order mode for n > 1. The results show
that the plasmons excited on Koch snowflake fractal structures show a self-similar fractal
response with the number of modes increasing after each iteration. This confirms that
plasmonic fractal optical antennas can exhibit a multiresonant or broadband behavior
while maintaining a compact structure similar to those found in macro-scale antennas.
The simple scaling rule described here can be used for nanoantenna design. However,
this scaling has limits due to mode coupling within the fractal, as pointed out in the
coupling of edge modes section. The smaller the structure, the stronger is the effect
of the coupling. In measurements where coupling within the fractal is relevant, the
symmetry of the fractal structure plays a critical role, as shown above. In that case, one
can also think of the fractal structure as the sum of characteristic edge units, each one
contributing the basic components for the formation of the fractal eigenmodes. Taking
into consideration the coupling of edge modes[60] and analyzing how the symmetry affects
the nodal distribution and therefore the hybridization of the modes, the final distribution
of the hybrid modes could be predicted. This analysis can be applied to other 2D fractal
structures to understand how the fractal character affects the plasmon modes and guide

the design and fabrication of fractal structures for nanophotonic applications.

Conclusion

The plasmon modes present in planar silver Koch snowflake fractal antennas have been
investigated using EELS and numerical computations. The lowest energy modes present
in all of the fractal structures were identified as dipolar modes. For the higher energy
modes, insight into their origin was gained by measuring simplified geometries describing
the basic building block segments of the fractal structures. Two types of basic segments
were found and studied: a “V” characteristic edge unit, formed by two lines at 120°
angle, and a “U” characteristic edge unit, formed joining two characteristic “V” edge
units also at 120° angle. In spite of the fact that these two geometries presented were not
straight-line segments, the modes sustained were edge modes (E;). All the edge modes
supported in the Koch snowflake fractal have been identified from an analysis of the
isolated characteristic edge units. Interestingly, the fractal response can be obtained
by the sum of the modes supported by its characteristic edge units that are the basic
components of the fractal. We also showed that, as the size of the fractal structure is
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reduced, the coupling within the structure can become relevant and how the influence of
the symmetry of the fractal on edge mode coupling of the basic components must be
considered. When the coupling is weak and it can be neglected, the total number of edge
modes in a Koch snowflake of a given number of iterations depends on the number of
characteristic edge units created in the fractal. Introducing this simple rule, we observed
that the number of plasmon dipolar/FE; edge modes increases by two after a fractal
iteration, confirming that the plasmonic Koch snowflake fractal antennas can exhibit a
multiresonant or broadband behavior while maintaining a compact structure reflecting
the characteristics of their macro-scale counterparts.

Method

Simulations

The computation of the EELS spectra and the eigenmodes of the Koch snowflake fractals
were done using a full wave surface integral equation (SIE) method [69,70]. The fractal
structures are considered in a homogeneous medium with a permittivity of ¢ = 1.8 to
account for the substrate influence. A Drude model was used for the permittivity of Ag
with a plasma frequency w, = 9.3 eV, losses v = 0.03 eV, and €5, = 4.3. The simulations
of the bent nanowires were performed using the MNPBEM toolbox [71,72] that uses the
boundary element method to solve Maxwell’s equations. The wires were calculated using
a tabulated dielectric function [73], and a permittivity of 2 for the medium surrounding
the structure to account for the substrate influence. A comparison between SIE and
BEM can be found in the Supporting Information of ref [69].

Sample Fabrication

The structures were fabricated by EBL directly onto silicon nitride TEM grids [23]. We
deposited poly(methyl methacrylate), 950,000 molecular weight at 3% anisole, on a 50
nmthick silicon nitride TEM grid (Norcada) by spin coating at 6000 rpm. The sample
was then baked at 175 °C for 2 min. The patterning was performed on a JSM-7000F
SEM (JEOL) equipped with Nano Pattern Generation System (NPGS). Development
was done in a 3:1 isopropyl alcohol:methyl isobutyl ketone solution for 70 s and rinsed in
isopropyl alcohol and dried with No. Ag was deposited in an electron beam evaporator
system, with a 6 keV and 250 pA electron source. Finally, the lift-off was done by soaking
the sample in acetone, followed by isopropyl alcohol rinsing.

EELS Measurements

The EELS spectral response of the structures was characterized using an ultrastable
STEM-TEM (FEI Titan 80-300) equipped with an electron monochromator. We focused
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an 80 keV electron beam on the sample and rastered it over a region of interest, and
we simultaneously acquired signals from an annular darkfield detector and an EELS
spectrometer (Gatan Imaging Filter, Tridiem model 865) from each position in the raster
scan. The spectra were recorded with an exposure time of 1 ms/spectrum and a dispersion
of 10 meV per channel for the Koch snowflake fractals and 5 meV per channel for the
isolated characteristic edge units. To further improve the energy resolution, we performed
the Richarson-Lucy algorithm procedure [23], achieving an effective energy resolution
up to 30 meV in our spectrum images. Each spectrum image was deconvoluted using
seven deconvolution iterations and normalized by the total electron count at each pixel
position. To have a better comparison between experiments and simulations, that do not
have the “zero-loss-peak” (ZLP), we subtract it from the spectra. After deconvolution,
we remove the ZLP contribution to the spectra by fitting the ZLP tails using a power
function.
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Supplementary informations

Figure S1 — (Left) Equilateral triangle which is the iteration 0 of the Koch snowflake
fractal. (Center) Koch snowflake fractal iteration 1 showing the characteristic "V" edge
unit of the structure formed by two line segments at an 120 degrees angle. (Right) Koch
snowflake fractal iteration 2 showing its two types of chracteristic edge units: One type
is the characteristic "V" shape (in black). The other type is the "U" shape (in blue)
formed by two characteristic "V" shapes at 120 degrees angle. The figure shows the
charge distribution of an edge mode that is supported in each one of the edges.
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Figure S2 — Measured energy filtered maps of the Koch snowflake fractal iteration 0 and
their corresponding calculated eigenmodes and their near-field distribution. The numbers
on the EELS maps correspond to resonance peaks in Figure la in the main text, and the
numbers on the near-field distributions correspond to the eigen-energies.
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Figure S3 — Measured energy filtered maps of the Koch snowflake fractal iteration 1 and
their corresponding calculated eigenmodes and their near-field distribution. The numbers
on the EELS maps correspond to resonance peaks in Figure 2a in the main text, and the
numbers on the near-field distributions correspond to the eigen-energies.
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Figure S4 — Measured energy filtered maps of the Koch snowflake fractal iteration 2 and
their corresponding calculated eigenmodes and their near-field distribution. The numbers
on the EELS maps correspond to resonance peaks in Figure 5a in the main text, and the
numbers on the near-field distributions correspond to the eigen-energies.
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Figure S5 — Simulated EELS spectra (a) and energy filtered maps (b) of bent silver
nanowires 222x44x30nm?®. We observe that as the angle decreases from 180 to 60
degrees the odd edge modes shift to higher energies. The maps (b) show that the nodal
distribution of the modes is preserve in the 120 degrees bent nanowire. However in
the case of the 60 degrees bent nanowire the nodal distribution is distorted due to the
interaction of the fields in each side of the nanowire. Intensity crosscuts of the E3 and
FE4 modes taken from the side of the bent nanowires.
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Figure S6 — Side-to-side comparison of the modes in the isolated characteristic edge
units in the 50 pm silver strips (dashed lines) and in the full Koch snowflake fractals
(solid lines) of iteration 1. (a) EELS spectra acquired at the positions marked on the
insets. The spectra of the full Koch snowflake fractal is red shifted 70 meV to align the
E; modes of both structures. (b) Comparison of the EELS energy filtered maps of the
isolated characteristic edge units (left) and of the full snowflake (right) showing that the
modes on both structures are equivalent.
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Figure S7 — Side-to-side comparison of the modes in the isolated characteristic edge unit
in the 50 pm silver strips (dashed lines) and in the full Koch snowflake fractals (solid
lines) of iteration 2. (a) EELS spectra acquired at the positions marked on the insets.
The spectra of the full Koch snowflake fractal is red shifted 70 meV to align the £; modes
of both structures. (b) Comparison of the EELS energy filtered maps of the isolated
characteristic edge unis (right) and of the full snow ake (left) showing that the modes on
both structures are equivalent.
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Figure S8 — Side-to-side comparison of the modes in the isolated characteristic edge
units in the 50 pm silver strips (dashed lines) and in the full Koch snowflake fractals
(solid lines) of iteration 2. (a) EELS spectra acquired at the positions marked on the
insets. The spectra of the full Koch snowflake fractal is red shifted 70 meV to align the
E; modes of both structures. (b) Comparison of the EELS energy filtered maps of the
isolated characteristic edge units (left) and of the full snowflake (right) showing that the
modes on both structures are equivalent.
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Figure S9 — (a) Energy diagram (not to scale) showing the formation of bonding and an-
tibonding modes due to coupling of Fy edge modes. (b) Charge distribution diagrams
and calculated eigenmodes of the bonding (B) and antibonding (A) F3 modes in Koch
fractal iteration 1. Due to the symmetry of the structure the bonding mode supports
two degenerate eigenmodes, and the antibonding mode one non-degenerate eigenmode.
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Figure S10 — Simulated EELS spectra (a) and energy filtered maps (b) of a 444 x44 x 30nm?
silver nanowire bent in a "U" shape formed by joining two 120 degrees bent nanowires.
The maps (b) show that the nodal distribution of a straight nanowires is maintained in
the "U" shaped nanowire.

Figure S11 — ADF image on Koch snowflake fractal iteration 3 on the left, and EELS
energy filtered maps of the £; modes in this fractal structure. The EELS maps have an
energy window of 60 meV, with exception of the last map at 1.16 eV that has an energy
window of 100 meV.
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Conclusion

In this thesis, eigenmodes of plasmonic nanostructures were used to analyse and interpret
several experimental results from SHG and EELS experiments. First, the different
approaches for the numerical computation of eigenmodes were presented in details. Three
main methods arise from the mathematical formulation of the problem: 1) looking for
vanishing determinants/eigenvalues of the matrix describing the system, 2) searching
for a diverging response of the system driven by a complex-valued frequency excitation,
and 3) a contour integral-based approach that allows finding all resonances included in a
given domain of the complex plane. It was found that for the SIE method used in this
thesis, the last method was the most efficient, both in terms of computation time, and
in terms of ease of use, as it requires little prior knowledge of the structure’s response.
However, a general approach combining the contour integral method and the complex
excitation method seems to be the most advantageous to rapidly obtain accurate results.
The integral method is used to effortlessly obtain a good first estimate of the poles
positions, and the complex-valued excitation is then used to converge to a more accurate
value of each pole, ideally in a few steps.

With respect to SHG, it was first shown how one can use eigenmodes as fundamental
sources to compute the corresponding SHG, as opposed to the complete linear response
to an excitation. This allows to study separately the different channels of SHG and it
was shown that for a nanosphere, a nanorod, and a nanospheres dimer, the fundamental
dipolar mode always leads to a quadrupolar resonance. It was also emphasized that
the value of the material permittivity at the second harmonic wavelength is of great
importance for an efficient SHG. A rigorous multipolar analysis was then used to explain
the change of maximum SHG emission direction for gold nanorods of increasing sizes.
The interference between the dipolar and quadrupolar second harmonic emissions varies
as the relative phase between the different modes changes with the nanorod size. This
analytical and numerical analysis gives results in good agreement with the experimental
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measurement for the length at which this flip occurs. Finally, the dynamical second
harmonic response of a silver nanorod to femtosecond Gaussian pulses was investigated
numerically. It was shown that for both linear and nonlinear regimes, the free response
of the eigenmodes can be fitted with damped harmonic oscillator models, the parameters
of which were deduced from the eigenfrequency of the corresponding eigenmode. The
interference effect mentioned previously is observed dynamically, and lasts only while
the short-lived transverse dipolar mode is driven by the exciting pulse. Additionally, it
was shown that the width and central frequency of the pulse can greatly influence the
multipolar dynamics, peak intensity and total radiated energy of the response, both in
the linear and nonlinear regimes.

Regarding EELS, eigenmodes and numerical simulations allowed comprehending and
analysing experimental EELS spectra of complex metallic nanostructure. First, a new
approach to numerically evaluate EELS was proposed. Instead of the usual approach
which consists in integrating the work done by the impinging electron against the field
scattered by the nanostructure, we add the energy radiated by the nanostructure to
the energy dissipated inside it. Both methods show a good agreement, and the new
approach allows decomposing the extinction spectra given by EELS into the contributions
from scattering (cathodoluminescence) and absorption. Compositionally asymmetric
heterodimers of different shapes and metals were then studied. The additional degree
of freedom given by the difference between the materials of the two components of the
dimer leads to a rich variety of asymmetric modes, increasing the possibilities for the
design of specific resonance properties. The experimental EELS maps and spectra showed
excellent agreement with the eigenmodes computations, highlighting the importance of
both spatial and spectral overlap of the modes of the different constituents to obtain a
strong hybridization. Then, dolmen shaped nanostructures with varying central nanorod
positions were studied. EELS simulations and eigenmodes computations were conducted
on ideal (perfectly symmetric mesh) and realistic (SEM image based mesh) dolmens
with very short inter-particle gaps in order to first understand the modal structure of
the different geometries, and then investigate the deviation from the ideal cases due to
imperfections. The contribution of high order modes such as longitudinal quadrupole as
well as transverse dipoles and quadrupoles from the constitutive nanorods was observed
numerically and correlated with the experimental EELS data. The eigenmodes evolution
with the varying position of the central nanorod was analysed in detail and showed very
good agreement with the experimental EELS maps and central energy of the modes.
Finally, the first 3 iterations of a Koch fractal antenna were studied. The eigenmodes
computation helped disentangle the different contributions of degenerated modes that
give the same EELS map, as well as to interpret the modal structure in terms of edge
modes. It was also observed that degenerated modes occur by pairs, each having only
two odd and/or even reflection symmetries, whereas non-degenerated modes have the Cs
or Cg rotation symmetry of the structure. Finally, eigenmodes where also computed for
the analysis of double resonant antennas for efficient SHG [1], capillary assembled gold
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nanorods dimers [2] and graphene discs and disc dimers [3].

Future Developments

The most recent numerical method I have implemented to compute eigenmodes, based on
the contour integral method, is extremely faster and more efficient than the first version
implemented, namely the vanishing eigenvalue method. However, there are still a few
improvements that can be made to facilitate its use. First and foremost, the application
of the Cauchy integral method to dielectric nano-structures is still problematic due to
the occurrence of spurious poles. As hinted in Ref. [4], this can be due to the RWG
basis functions, in which case it will be hard to solve this problem without an in-depth
modification of the SIE code. On the other hand, since the apparition of the spurious
poles seems to be due to the specific value of the matrix entries, it could be that a different
formulation of the SIE matrix than the PMCHWT one could help solve this problem [5].
For now, the contour integral is evaluated with a crude rectangle rule approximation that
already gives good results, but the implementation of at least a trapezoidal integration
scheme will certainly give more accurate results. One could also envision an algorithm
that can separate the spurious poles from the real ones, as it seems that the former are
relatively sensitive to the integration path and the number of elements discretizing it.
Finally, the natural extension of the actual codes used to compute the eigenmodes would
be for the user to use it as a black box, i.e. to be able to give only the mesh of the
structure and the permittivities of the different domains, the output being the complex
resonant frequencies and the eigenvectors corresponding to the eigenmodes, without
the need for the user to guide the program in any way. The application of the code to
find the eigenmodes of periodic structures should be relatively straightforward as the
matrix corresponding to the periodic case still describes the same phenomenon as in the
non-periodic cases [6].

Another point worth addressing is the normalization of the eigenmodes and their use
as a basis. Indeed, this is one of the main attractive point of the eigenmode formalism.
QNMs lead to some difficulties concerning normalization procedures, although those
issues have been investigated in details and partly solved for specific cases [7,8]. In the
framework of SIE, it should be possible to straightforwardly adapt the theory exposed
in [4], although it seems that even slight modifications in the numerical formulation of
Maxwell’s equation can change the rigorous validity of such normalization and expansion
procedures [9]. A correct normalization should open the door to several applications, the
most natural one being to be able to project the response of a nanostructure onto the
eigenmode basis, and thus gain quantitative information about the different eigenmodes
participating into the nanostructure response. The other natural use of the eigenmode
basis is the possibility to compute the response of the nanostructure to any excitation
without having to make a complete SIE computation. Such a projection of the excitation
on the eigenmode basis should be much faster than a complete SIE computation, as it
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would only need handling several eigenvectors without having to invert the SIE matrix.

Regarding SHG, the eigenmode-based approach proposed in the second chapter (Sec. 2.1)
can be extended to the use of different modes (i.e. other than the longitudinal dipole) as
well as the combination of two different modes. Using two modes stems from the fact
that SHG is a second order nonlinear process, hence it comes from the combination of
two fundamental fields. However, instead of using a single mode for each fundamental
field, one could also combine different modes in order to study more complex nonlinear
responses. This would however require a normalization of the modes to be able to assess
the relative influence of one mode in a two-mode channel. Additionally, a normalized
eigenmode basis could allow projecting the nonlinear response and thus quantitatively
analyse the SHG modal contribution. Finally, the double resonant connected dimer
proposed in Ref. [10] is worth investigating in greater details. Indeed, this preliminary
study showed that the double resonant condition seemed to be too sensitive to the exact
geometry of the junction, making its practical use difficult. However, the mechanism at
play is still promising as a way to achieve efficient SHG through double resonance.

Concerning EELS simulations, the question of the possibility of implementing penetrating
trajectories in an accurate way is still open. I have made some unsuccessful attempts but
the definition of the problem itself is non-trivial [11]; it is also not clear how valid and
justifiable certain approximations may be. It is worth noting that penetrating trajectories
were successfully implement in a boundary element scheme [12], which shares a lot of
similarities with the SIE method, hinting that it should be possible to do the same in
the SIE framework.

As nanofabrication methods allow building more and more complex nanostructures, there
is no doubt that an efficient, versatile, and easy-to-use eigenmode methods can benefit
the nano-optics community.
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Technical skills

IT

e Finite element method simulation for electrodynamics.

e Matlab: good general knowledge and basics in signal and image processing.

e Comsol multiphysics: radiofrequency, microwave heating modules and meshing.
e Latex: basic knowledge.

e C/C++: basic knowledge.

Specific practical and theoretical skills

e Good knowledge in theoretical electrodynamics and optics.
e Optical devices:
o Hologram recording.
o Optical alignement.
o NdYAG laser and second harmonic generation.
£38asic knowledge in acoustics.
e Basic knowledge in nuclear physics and notion of radioprotection.



Soft Skills

Persistence, proactive, creative, critical thinking, teamwork.

Interests

Sciences in general, especially electrodynamics and its history, music.

Languages

French: Mother tongue
English: Fluent
German: Basic

239



Ce document a été imprimé au Centre d’impression EPFL,
imprimerie climatiquement neutre, certifié¢e myClimate.



