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Abstract

Over a third of the world’s population owns a smartphone. As generic computing de-

vices that support a large and heterogeneous collection of mobile applications (apps),

smartphones provide a plethora of functionalities and services to billions of users. But

the use of these mobile apps and services often introduces privacy risks for users. First,

app developers often fail to take into account the fact that as smartphones are generic

computing devices, they do not provide adequate privacy and security guarantees for

certain types of apps (e.g., those that collect and process sensitive data). As a result,

new security and privacy threats are introduced by such apps. Second, due to the lack

of privacy by design, apps often over-collect information about users, and can misuse

the collected data. Our goal in this thesis is to identify privacy risks in mobile apps and

services, and to design privacy-enhancing technologies to mitigate the identified threats.

To broaden the impact of our research efforts, we focus on popular apps and services

that are currently used by millions of users, and potentially by billions in the future.

These include three use-cases: (mobile-health) mHealth apps, ride-hailing services, and

activity-tracking services.

First, in the case of mHealth apps, we find that the Android operating system allows

apps to easily fingerprint and identify other apps installed on the same phone. This causes

privacy problems for mHealth apps, because the presence of an mHealth app can already

reveal the medical conditions of its users. We investigate the apps’ ability to fingerprint

other apps and present HideMyApp, a practical system for hiding the presence of sensitive

apps on Android. HideMyApp works on stock Android, and no firmware modification or

root privilege is required.

Second, in ride-hailing services (e.g., Uber), to use the services, riders have to share

their pick-up and drop-off locations with service providers. Consequently, the service

providers can infer sensitive information about riders’ activities (e.g., their visits to health

clinics). Therefore, we propose ORide, a privacy-preserving ride-hailing service that

efficiently supports the anonymous matching of riders and drivers. Also, ORide still

supports functionalities that are often considered as important as privacy, including

accountability, payment and reputation-rating operations.

Third, in activity-tracking services (e.g., RunKeeper), users report their location-

based activities to service providers and obtain rewards based on their performance.

However, from the location traces, the service providers can infer sensitive information

about the users, e.g., their home/work addresses. Also, to obtain better rewards, the

users might try to falsely report their activities to the service providers. Therefore,

we propose SecureRun, a solution that enables service providers to compute accurate
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activity summaries of the users, while guaranteeing the users’ location privacy vis-à-vis

the service providers.

In short, in this thesis, we identify privacy risks in popular mobile apps and services.

We show that it is possible to provide them with added privacy, while preserving their

rich functionality and usability. We are confident that the contributions presented in

this thesis will inspire more future work on protecting users’ privacy, not only in the

context of mobile apps and services, but also in many other contexts brought about by

new technological advances.

Keywords : privacy, ride-hailing, Android, fitness apps, location, app virtualization,

data obfuscation, homomorphic encryption.



Résumé

Plus d’un tiers de la population mondiale possède un smartphone. En tant que plate-

forme informatique générique prenant en charge une vaste collection d’applications mo-

biles, les smartphones fournissent une multitude de fonctionnalités et de services à des

milliards d’utilisateurs. Cependant, ces appareils présentent des risques pour la vie privée

de leurs utilisateurs. Premièrement, les développeurs d’applications omettent souvent le

fait que les smartphones sont des outils informatiques génériques et qu’ils ne fournissent

pas nativement les garanties de confidentialité et sécurité suffisantes pour certains types

d’applications (celles traitant des données sensibles, par exemple). En conséquence, de

telles applications introduisent souvent de nouvelles menaces pour la sécurité et la vie

privée. Deuxièmement, la sphère privée n’est pas toujours prise en compte dès la con-

ception du service, poussant souvent leur fournisseur à collecter plus d’informations que

nécessaire sur les utilisateurs et, potentiellement, à en abuser. Par conséquent, l’objectif

de cette thèse est d’identifier les risques de confidentialité dans les applications et ser-

vices mobiles et de concevoir des technologies atténuant lesdits risques. Pour maximiser

l’impact de nos efforts de recherche, nous nous concentrons sur les applications et services

populaires utilisés par des millions d’utilisateurs aujourd’hui, et peut-être par des mil-

liards dans le futur. Celles-ci comprennent notamment trois catégories : les applications

de santé mobile (mHealth), les services VTC (voiture de transport avec chauffeur) et les

applications de suivi d’activités.

Dans le cas des applications mHealth, nous constatons que la plateforme Android per-

met aux applications de profiler et identifier d’autres applications installées sur le même

téléphone. Cela entrâıne des problèmes de confidentialité, car la simple présence d’une

application mHealth peut déjà révéler les conditions médicales de ses utilisateurs. Nous

quantifions la prévalence du problème et présentons HideMyApp, un système pratique

qui fournit une défense robuste contre les attaques par profilage ciblant les applications

sensibles sur Android.

Pour utiliser les services VTC, les usagers doivent partager leurs positions de départ

et d’arrivée avec les prestataires de services. En conséquence, ces prestataires peuvent en

déduire des informations sensibles sur les activités des usagers. Nous proposons ORide,

un service VTC respectueux de la sphère privée et qui prend efficacement en charge la

correspondance anonyme des usagers et des chauffeurs. ORide fourni ce service tout en

garantissant les fonctionnalités requises des applications VTC, telles que les paiements,

la possibilité d’évaluer les participants, ainsi qu’un mécanisme anti-fraude.

Les utilisateurs des applications de suivi des activités comme RunKeeper commu-

niquent leurs données de localisation aux prestataires de services et obtiennent des
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récompenses en fonction de leurs performances. Cependant, à partir de cet historique,

les prestataires de services peuvent déduire des informations sensibles sur les utilisa-

teurs, telles que leur adresse de domicile ou travail, par exemple. De plus, pour obtenir

de meilleures récompenses, les utilisateurs peuvent parfois mentir sur leurs résumés

d’activités. Nous proposons SecureRun, une solution qui garantit la confidentialité des

données de localisations vis-à-vis des prestataires de services tout en permettant d’établir

des statistiques précises des activités des utilisateurs comme, par exemple, la distance

totale parcourue pendant une activité.

Cette thèse analyse donc en profondeur les risques de confidentialité pour les utilisa-

teurs d’applications et de services mobiles populaires. Nous montrons qu’il est possible

de doter ces derniers d’une plus grande confidentialité, tout en préservant leurs fonc-

tionnalités et leur aisance d’utilisation. Nous sommes convaincus que les contributions

présentées dans cette thèse inspireront des travaux futurs sur la protection de la sphère

privée des utilisateurs d’applications ou services mobiles, mais aussi dans de nombreux

autres domaines liés aux nouvelles technologies.

Mots-clés : protection de la sphère privée, service VTC, Android, applications de fitness,

localisation, protection des données, encryption homomorphique.
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Chapter 1

Introduction

It will be a box less than an inch thick and smaller than a deck of cards. [...]

The box will have a high-res color screen, a microphone, a plug for a headset

or earphones, a camera lens, wireless connectivity, a cellphone and beeper

functions, a television and radio receiver, a digital recorder, and it will have

enough processing power and memory to function as a desktop system.

David Gerrold - Star Trek’s author, in 1999,

when he was asked to predict about the future of computing.

In 2007, the first smartphone was publicly introduced, and only a decade later, more

than a third of the world’s population owns a smartphone [1]. Due to their increasing

processing capabilities, smartphones have become a generic computing platform that en-

ables a myriad of mobile apps. A plethora of useful services has been delivered to users

via these mobile apps.1 The availability of app-development tools, app frameworks and

third-party libraries has made it easy to develop mobile apps. Also, any app developer

can publish an app through distribution platforms called app stores. Everyday, more

than 7000 new apps are published on – the two largest app stores – the Google Play

Store and Apple App Store [2], and users have, on average, at least 80 apps installed on

their phones [3]. As illustrated by Apple’s catchphrase, think of anything and “there’s

an app for it!”. Indeed, there is an app for anything that a person could ever imagine,

ranging from simple functionality (e.g., turning a smartphone into a flashlight) to sensi-

tive and critical tasks (e.g., using a smartphone for continuous tracking of users’ medical

conditions).

In many aspects, these technological advances greatly facilitate our daily activities,

empower individuals, and improve society. Obviously, the smartphone’s ability to pin-

point our exact location and use it to deliver context-aware services (e.g., a meal, a taxi

ride or a tip) is useful and convenient. Today, a user with diabetes can use her mobile-

health app to wirelessly connect to an external glucose-monitoring device, for easily keep-

ing track of her medical condition. With their capability to collect and rapidly spread

information on a large scale, smartphones can facilitate political processes. A prominent

1Throughout this thesis, we use the term app to refer to a software program running on smartphones,
and it can connect to remote servers to obtain services for its users.
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2 CHAPTER 1. INTRODUCTION

example of this is the pro-democracy movement in many countries, such as Hong Kong

and Egypt, where smartphones were used to coordinate protests, to document and share

photos and videos about the state oppression with the world, in real time. In this sense,

it looks like we are able to watch over Big Brother too; this is complementary to George

Orwell’s prophecy in his book 1984 where Big Brother would watch over us. This, how-

ever, is just one side to the story. The convenience and the utility of mobile apps and

services come with privacy risks for users; as a consequence, they put users under new

forms of surveillance, control, and manipulation.

First, app developers often fail to take into account the fact that as smartphones are

generic computing devices, they do not provide adequate privacy and security guarantees

for certain types of apps. As a result, new security and privacy threats are often intro-

duced by such apps. For example, the Bluetooth authentication mechanism in Android,

which occurs at the device level, makes the data transferred by one app over Bluetooth

available to all apps on the same phone [4]. Or, as we show in Chapter 2, the Android

operating system allows apps, even those with no permissions, to detect the presence

of other installed apps on the phone. This could lead to devastating consequences for

users of sensitive apps. For instance, in the case of protesters in Hong Kong using a

mobile app (called FireChat) to coordinate protests, if authorities knew that a user had

the app installed, they would know that she probably participated in the protests. The

presence of an app could also reveal the sexual orientation of its users; in some countries,

people are arrested if they are known to be homosexual [5]. In the context of mobile

health (mHealth), the presence of an mHealth app might already reveal the medical con-

ditions of its users. Furthermore, seemingly innocuous public resources of the phones,

such as network statistics, can be used to infer sensitive information about users, such as

their locations, identities and diseases [6]. These aforementioned threats exist, regardless

of tremendous efforts that operating-system providers put on strengthening the smart-

phones’ operating systems and their app frameworks. For example, Android, which was

built based on the Linux kernel, has been updated with many critical security and privacy

features, such as new sandboxing mechanisms, permission models and SELinux, to make

it difficult for apps to access data from other apps. However, as novel use-cases develop,

new threats and vulnerabilities will emerge. Therefore, it is important to continuously

examine and understand the privacy protection provided by smartphones for different

scenarios of apps, and accordingly develop defense mechanisms, when needed.

Second, due to the lack of privacy by design, apps and online service providers often

put users’ privacy at risk. They often encourage users to overshare the data collected by

their smartphones. Each day, 500 million tweets are sent to Twitter, 95 million photos

are uploaded to Instagram and 15 million Uber rides are taken [7, 8]. Moreover, apps

might stealthily collect and misuse user’s sensitive personal data without users’ consent

or knowledge. For example, in 2017, the popular weather app AccuWeather, with a

million-user customer base, was found to collect and share precise geolocation data of

its users, without their consent, with advertising firms [9]. Another example, Facebook,

the world’s largest online social network with more than 2 billion users, was found to

collect users’ contact information, SMS and call records for years [10]. This high volume

of personal data can be used to infer detailed profiles of users, hence potentially lead to

discrimination. For example, some online services were known to approve housing ads

that excluded users based on their religion and gender [11]. The collected data can also

be used by authorities or service providers for purposes that users were not informed. For



3

example, governments can use facial-recognition technologies to identify protesters. They

can also track online activities of their citizens (e.g., comments on online social networks)

to assign social-credit scores for them [12]. Another example, ride-hailing services with

millions of users, such as Uber and Lyft, collected detailed location traces of riders and

their identities, and this data was later used to infer riders’ sensitive activities [13].

Furthermore, the lack of privacy by design not only affects personal privacy, but also

national security. In January 2018, Strava, a popular activity-tracking service, released a

data visualisation map that shows all the activities tracked by its users, and the map was

detailed enough to give away the precise locations of classified military bases and CIA

rendition sites [14]. These examples show that privacy problems caused by mobile apps

and online services are real and they concern a significant fraction of users. Therefore,

it is crucial to enable users to control and limit, in a more effective way, the information

that apps collect. Apps and services should adhere to the data-minimization and privacy-

by-design principles, i.e., they should collect and process only the personal data that they

truly need to achieve their declared purposes. This is required by the EU general data

protection regulation 2016/679 (GDPR) which started to take effect on 25 May 2018 [15].

At the same time, it is important to balance the trade-off between users’ privacy and

apps’ usability, as privacy does not constitute a goal as such, but rather a necessity and

a right.

Contributions

In this thesis, we identify some of the privacy risks that mobile apps and services might

pose to users. We then design and thoroughly evaluate our protection mechanisms by

implementing prototypes of our solutions and by measuring their performance with real-

world data-sets and, when possible, user-studies. We focus on popular apps and services

that are currently used by millions of users, and potentially by billions in the future.

These include three use-cases: mHealth (mobile health) apps, ride-hailing services, and

activity-tracking services.

We begin with the case of mHealth apps, where we design a system for hiding the

presence of such apps on Android. It is known that millions of users rely on mobile

health (mHealth) apps to manage their health and medical conditions. Although the

popularity of such apps continues to grow, several privacy and security challenges can

hinder their success. In particular, the simple fact that an mHealth app (e.g., diabetes

app) is installed on a user’s phone, can reveal sensitive information about the user’s

health (e.g., that he has diabetes). Given Android’s open design, any app, even without

permissions, can easily check for the presence of a specific app or to collect the entire list

of installed apps on the phone; this is possible even if multiple user accounts or profiles

are used. Many third parties are interested in such information; our survey of almost 3000

popular apps in the Google Play Store shows that more than half of these apps explicitly

query for the list of installed apps. To date, no mechanism exists to effectively hide the

use of sensitive apps. Therefore, we designed and implemented HideMyApp, an effective

and practical solution for hiding the presence of mHealth and other sensitive apps from

nosy apps on the same phone. HideMyApp relies on user-level virtualization techniques,

thus avoiding changes to the operating system (OS) or to apps and still supporting their

key functionalities. By using a diverse dataset of both free and paid mHealth apps,

our experimental evaluation shows that HideMyApp supports main features in most apps
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and introduces acceptable delays at runtime (several milliseconds); such findings were

validated by our user study. In short, we show that the practice of collecting information

about installed apps is widespread and that our solution, HideMyApp, provides a robust

protection against such a threat.

We then look into the case of ride-hailing services and design a privacy-preserving yet

accountable solution for them. Ride-hailing services such as Uber and Lyft have become

increasingly popular, serving millions of users per day. However, they raise significant

privacy concerns, because service providers are able to track the precise locations of

all riders and drivers. We present the first analysis of the privacy threats in ride-hailing

services. Our analysis exposes high-risk privacy threats that do not occur in conventional

taxi services. Therefore, we propose ORide (Oblivious Ride), a privacy-preserving ride-

hailing service based on somewhat-homomorphic encryption with optimizations such as

ciphertext packing and transformed processing. With ORide, a service provider can match

riders and drivers without learning their identities and their location information. ORide

provides riders with fairly large anonymity sets (several thousands), even in sparsely

populated areas. In addition, ORide supports key features of ride-hailing services such

as easy payment, reputation scores, accountability, and retrieval of lost items. Using

real data-sets that consist of millions of rides, we show that the computational and

network overhead introduced by ORide is acceptable. For example, ORide adds only

several milliseconds to ride-hailing operations, and the extra driving distance for a driver

is less than 0.5 km in more than 75% of the cases evaluated. In short, we show that a

ride-hailing service can offer strong privacy guarantees to both riders and drivers while

maintaining its usability and functionality.

Finally, we look into the case of activity-tracking services and we design a system

for secure and private proofs of location-based activity summaries. Activity-tracking

services, where people record and upload information about their location-based

activities (e.g., the routes of their activities), are increasingly popular. Such services

enable users to share information and compete with their friends on activity-based

social networks but also, in some cases, to obtain discounts on their health insurance

premiums by proving they conduct regular fitness activities. However, they raise privacy

and security issues: the service providers know the exact locations of their users, and the

users can report fake location information to the service providers (e.g., to unduly brag

about their performance). Therefore, we present SecureRun, a secure privacy-preserving

system for generating and reporting location-based activity summaries (the total

distance covered and the elevation gain). SecureRun is based on a combination of

cryptographic techniques and geometric algorithms, and it relies on existing Wi-Fi

access-point networks deployed in urban areas. We evaluate SecureRun by using real

data-sets from the FON hotspot community networks and from the Garmin Connect

activity-based social network, and we show that it can achieve tight (up to a median

accuracy of more than 80%) verifiable lower-bounds of the distance covered and of the

elevation gain, while protecting the location privacy of the users with respect to both

the service providers and the access point network operator(s). The results of our online

survey, targeted at RunKeeper users recruited through the Amazon Mechanical Turk

platform, highlight the lack of awareness and significant concerns of the participants

about the privacy and security issues of activity-tracking services. They also show a

good level of satisfaction regarding SecureRun and its performance.
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Thesis Outline

Following the three main contributions described above, the remainder of this thesis

contains four chapters. First, we show in Chapter 2 that any app on Android can

check for the presence of other apps installed on the same phone. This is problematic

for sensitive apps such as mHealth or religion-related apps. Therefore, we propose a

practical and effective solution for hiding the presence of sensitive apps. In Chapter 3,

we design and evaluate a system that guarantees privacy for riders and drivers in ride-

hailing services (e.g., Uber and Lyft), and still enables them to enjoy the convenience,

usability and accountability as in current ride-hailing services. In Chapter 4, we propose

a novel system for protecting location privacy of users in activity-tracking services. We

present our concluding remarks in Chapter 5.

Publications

Chapter 2 is based on the results of [16]. Chapter 3 is a combination of [17] and [18].

Chapter 4 rests on the results of [19] and [20].





Chapter 2

HideMyApp: Hiding the Presence of

Sensitive Apps on Android

Given their diverse utility and potential, smartphones are being adopted by many appli-

cations and services. But this is often done without taking into account that, as general

computing devices, smartphones do not provide sufficient security and privacy protec-

tion for certain categories of apps. In this chapter, we show that the Android operating

system permits apps, even those with zero permissions, to query for the presence of other

apps installed on the same phone. This is problematic for sensitive apps, especially in the

context of mobile health (mHealth), where the presence of an app can reveal the medical

conditions of its users. To the best of our knowledge, we are the first to provide a usable

and practical solution that effectively hides the use of sensitive apps with respect to a

strong adversary (i.e., a nosy app that has access to both static and runtime metadata

of the sensitive apps).

2.1 Introduction

Mobile health (mHealth), the use of technologies such as smartphones and wearable

sensors for wellness and medical purposes, promises to improve the quality and reduce

the costs of medical care and research. An increasing number of people relies on mHealth

apps to manage their wellness and to prevent and manage diseases. For instance, more

than a third of physicians in the US recommend mHealth apps to their patients [21], and

there are around 325,000 mHealth apps available in major app stores [22].

Given the sensitivity of medical data, the threats of privacy leakage are one of the

main hindrances to the success of mHealth technologies [23]. In this area, a serious

and often overlooked threat is that an adversary can infer sensitive information simply

from the presence of apps on a user’s phone. Previous studies have shown that private

information, such as age, gender, race, and religion, can be inferred from the list of

installed apps [24, 25, 26, 27]. With the increasing popularity of mHealth apps, an

adversary can now infer even more sensitive information. For example, learning that a

user has apps to manage diabetes and depression can reveal the user’s medical conditions;

such information could be misused to profile, discriminate or blackmail the user. When

7
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inquired about this threat, 87% of the participants in our user-study expressed concern

about it (Section 2.10.5).

Due to Android’s open design, a zero-permission app can easily infer the presence of

specific apps, or even collect the full list of installed apps on the phone through standard

APIs [6]. Our analysis shows that Android exposes a considerable amount of static and

runtime metadata about installed apps (Section 2.4); this information can be misused

by nosy apps to accurately fingerprint other apps installed on the phone. Such attacks

are possible even when the sensitive apps and the nosy apps are installed on different

user accounts or profiles on a single phone. In 2014, Twitter was criticized for collecting

the list of installed apps in order to offer targeted ads [28].1 But Twitter is not the only

app interested in such information. Our static and dynamic analysis of 2917 popular

apps in the US Google Play Store shows that approximately 57% of these apps include

calls to API methods that explicitly collect the list of installed apps (Section 2.5). Our

analysis, corroborating the findings of previous studies [30, 26], also shows that free apps

are more likely to query for such information and that third-party libraries (libs) are

the main requesters of the list of installed apps. As users can have on average 80 apps

installed on their phones [3], most of them being free, there is a high chance of untrusted

third-parties obtaining the list of installed apps.

Since 2015, Android started to classify as potentially harmful apps (PHA)2 the apps

that collect information about other installed apps without user consent [32]. To avoid

this classification, however, developers simply need to provide a privacy policy that de-

scribes how the app collects, uses and shares sensitive user data [33]. We find it interesting

that only 7.7% of the evaluated apps declared that they collect the list of installed apps

in their privacy policies; several of these policies use similar generic statements (probably

based on a common template), and some state that such a list is non-personal informa-

tion (Section 2.5.5). Moreover, few users read and understand privacy policies [34], as

our user-study also confirmed (Section 2.10.5). Android recently announced that their

security services will display warnings on apps that collect without consent users’ per-

sonal information, including the list of installed apps [35]. This is a welcomed step, but

the effectiveness of security warnings is known to be limited [36, 37] and it is unclear how

queries by third-party libs will be handled. It is also unclear if such mechanisms will be

able to detect more subtle attacks, where a nosy app checks for the existence of a small

set of sensitive apps by using more advanced fingerprinting techniques (Section 2.4). In

addition, Android does not provide mechanisms to hide sensitive apps installed on their

phones; a few third-party tools, designed for other purposes, can provide only partial

protection to some users (Section 2.6). Therefore, it is crucial to have a solution that

effectively hides the presence of sensitive apps from other apps on the same phone.

We propose HideMyApp (HMA), the first system that enables organizations and de-

velopers to distribute sensitive apps to their users while considerably reducing the risk

of such apps being detected by nosy apps on the same phone. Apps protected by HMA

expose significantly less identifying metadata, hence it is more difficult for nosy apps to

detect their presence, even when the nosy apps have all Android permissions and de-

bugging privilege (adb). With HMA, an organization such as a consortium of hospitals

sets up an HMA app store where authorized developers collaborating with the hospitals

1Twitter recently announced that it excludes apps dealing with health, religion and sexual orienta-
tion [29].

2Now reclassified as Mobile Unwanted Software (MUwS) [31].
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can publish their mHealth and other sensitive apps. Users employ a client app called

HMA Manager to (un)install, use and update the apps selected from the HMA app store.

HMA transparently works on stock Android devices, it does not require root access and

preserves the app-isolation security model of the Android OS. HMA also preserves the

key functionality of mHealth apps, such as connecting to external devices via Bluetooth,

sending information to online services over the Internet, and storing information in a

database. Moreover, HMA has only negligible effects on the usability of the apps.

With HMA, users launch a sensitive app inside the context of a container app, without

requiring the sensitive app to be installed. A container app is a dynamically generated

wrapper around the Android application package (APK) of the sensitive app, and it dis-

guises the sensitive app at installation and runtime. To launch the APK from the con-

tainer app, HMA relies on techniques described in existing works: the dynamic loading of

compiled source code and app resources from the APKs and user-level app-virtualization

techniques, e.g., [38, 39]. However, note that app-virtualization alone is not sufficient

to provide robust protection against fingerprinting attacks, as many of the information

leaks uncovered by our analysis are still possible when just app-virtualization is used.

Therefore, our main contribution is the design and evaluation of mechanisms built on top

of app-virtualization to reduce the information leaks that could be exploited to finger-

print sensitive apps. For instance, at runtime, the container app dynamically obfuscates

identifiable information output by the sensitive app. Also, we provide developers with

guidelines on how to reduce the identifiable metadata in the app. Moreover, we are the

first to identify the security and functional limitations of using app-virtualization for the

purpose of hiding apps.

Our thorough evaluation of HMA on a diverse data-set of both free and paid mHealth

apps on the Google Play Store shows that HMA is practical, and that it introduces

reasonable operational delays to the users. For example, in 90% of the cases, the delay

introduced by HMA to the cold start of an mHealth app (i.e., the app is launched for the

first time since the device booted, or since the system terminated it) by a non-optimized

proof-of-concept implementation of HMA is less than one second. At runtime, the delay

introduced is only several milliseconds and is unlikely to be noticed by users. Moreover,

our user study, involving N = 30 participants, suggests that HMA is user-friendly and

of interest to users.

Our main contributions in this chapter are as follows.

• Systemized knowledge: We are the first to investigate the different techniques that

a nosy app can use to fingerprint another app in the same phone. Also, through

our static and dynamic analysis of paid and free apps across all app categories in

the Google Play Store, we gain understanding about the prevalence of the problem.

• Design and implementation of a solution for hiding sensitive apps : We present

HMA, a practical system that provides robust defense against fingerprinting attacks

that target sensitive apps on Android. HMA works on stock Android, and no

firmware modification or root privilege is required.

• Thorough evaluation of our solution: The evaluation of HMA’s prototype on apps

from the Google Play Store suggests that our solution is practical. Moreover, the
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results of our user study suggest that HMA is perceived as usable and of interest

to users.

2.2 Related Work

Researchers have actively investigated security and privacy problems in the Android

platform. Existing works show that third-party libraries often abuse their permissions

to collect users’ sensitive information [40, 41], and that apps have suspicious activities

such as collecting call logs, phone numbers and browser bookmarks [30, 4, 26]. Zhou

et al. [6] show that Android’s open design has made publicly available a number of

seemingly innocuous phone resources, including the list of installed apps; these resources

could be used to infer sensitive information about their users, such as users’ gender and

religion [42, 24, 27, 26, 25]. Similarly, Chen et al. present a way to fingerprint Android

apps based on their power consumption profiles. Moreover, a significant amount of work

has been devoted to fingerprinting Android apps based on their (encrypted) network

traffic patterns [43, 44, 45, 46]. Researchers have also shown that it is possible to perform

re-identification attacks based on a small subset of installed apps [27, 47]. Demetriou

et al. [26], in the same line as our work, performed a static analysis to quantify the

prevalence of the collections of the list of installed apps and their meta-data by third-

party libs. We go beyond their work, however, by systematically investigating all possible

information leaks that nosy apps can exploit to fingerprint other apps, by performing a

dynamic analysis and privacy-policy analysis and by designing a solution to address the

problem.

Existing mechanisms for preventing nosy apps from learning about the presence of

another app are not sufficient (Section 2.6). As we will show in Section 2.8, user-level

virtualization techniques that enable an app (called target app) to be encapsulated within

the context of another app (called container app) can be used as a building block for

HMA. These techniques are used to sandbox untrusted target apps (e.g., [38, 39]) or to

compartmentalize third-party libs from the host apps (e.g., [48]). As they were designed

for a different problem, however, they do not directly help hide the presence of a sensitive

target app on a phone: They either require the target apps to be first installed on the

phone, thus exposing them to nosy apps through public APIs (Section 2.4), or they run

multiple target apps inside the same container app, thus violating the Android’s app-

isolation security model. Furthermore, they do not provide any insight into the possible

information leaks that a nosy app can exploit to fingerprint the target apps and how

their app-virtualization techniques can be used for hiding the presence of apps.

2.3 Background

In this section, we provide background knowledge on Android apps and Android security

models.

2.3.1 Android Security Model

Android requires each app to have a unique package name that is defined by its app

developers and cannot be changed during its installation or execution. Upon installation,

the Android OS automatically assigns a unique user ID (UID) to each app and creates
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a private directory where only this UID has read and write permissions. Additionally,

each app is executed in their dedicated processes. Thus, apps are isolated, or sandboxed,

both at the process and file levels. Apps interact with the underlying system (i.e., the

app framework and OS) via methods defined by the Java API framework and the Linux-

layer interfaces. Depending on the API methods and commands, apps might need to be

granted certain permissions [49] or privileges such as Android Debug Bridge (adb)[50].

Since Android 6.0, users could decide to grant or deny permissions to apps at runtime.

2.3.2 Android Apps and APK Files

Android apps are usually written in Java, then compiled into Dalvik bytecode (.dex

format) to be executed on Android devices. Each app must contain a set of mandatory

information, including a unique package name, an icon, a label, a folder containing

the app’s resources, and at least one of the following components: activity, service,

broadcast receiver and content provider. An activity represents a single screen, and a

service performs long-running operations in the background, i.e., without user interface.

A broadcast receiver enables an app to subscribe and respond to specific system-wide

events. A content provider manages the sharing of data between components in the

same app or with other apps. Apps can also support optional features, including intent

filters (an intent filter is an expression in an app’s manifest file; it specifies the type

of intents that the app would like to receive), permissions, shared libraries, customized

app configurations (e.g., supported SDKs, themes and styles), custom permissions, and

assets.

Apps are distributed in the form of APK files and must be digitally signed by

their developers. An APK is a signed zip archive that contains the compiled code

and resources of the app. Each APK also includes a manifest configuration file, called

AndroidManifest.xml; this file contains a description of the app (e.g., its package name

and its components).

2.4 Fingerprintability of Android Apps

In this section, we show that Android apps disclose a significant amount of information

that can be used by nosy apps to perform fingerprinting attacks. This information in-

cludes static information (i.e., information available after apps are installed and that

typically does not change during apps’ lifetimes), and runtime information (i.e., infor-

mation generated or updated by apps at runtime). To be exhaustive in our analysis, we

focus on information leaks through both the Java API framework and the Linux-layer

interface, with respect to the granted permissions and privileges of the nosy apps. The

analysis was conducted on Android 8.0, and its findings are summarized in Table 2.1 and

detailed below.

2.4.1 Information Leaks through the Java API Framework

Static Information. Without permissions3, a nosy app can directly check if a spe-

cific package name exists on the phone. Note that a package name is mandatory and

3Note: Granting permissions to a zero-permission app does not enable it to collect additional static
information about other apps.
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Java API Framework Linux-Layer Interface
without Permissions with Permissions Default App Privilege Debugging Privilege (adb)

Static Mandatory information: (*) See note + Package names + Package names
Information + Package name + APK path

+ Components’ names + APK file

Optional features:
+ Intent filters
+ Requested permissions

Runtime + Files in external storage + UI states† + Files in external storage
Information None + Storage consumption + Power consumption† + Network consumption

+ Running processes + Memory footprints† + Running processes
+ Network traffic + Screenshots
+ Package names + System log
+ Notifications + System diagnostic outputs

Table 2.1: Identifying information about installed apps that a nosy app can learn, with respect
to its permissions and privileges, through the Java API framework and the Linux-layer kernel.
Analysis was conducted on Android 8.0, † means that the information could be learnt in older
versions of Android, but later versions (e.g., Android 8.0) require the calling app to have adb
privilege. (*) Note: Granting permissions to a zero-permission nosy app does not enable it to
obtain more static information about apps.

unique for each app. This can be done by invoking two methods getInstalledApplications()

and getInstalledPackages(). These methods return the entire list of installed package

names. Moreover, apps can register broadcast receivers, such as PACKAGE INSTALLED

and PACKAGE ADDED, to be notified when an app is installed. Apps can also use various

methods of the PackageManager class, such as getResourcesForApplication(), as an

oracle to check for the presence of an app. These methods take a package name as a

parameter and return null if the app does not exist.

If Android restricts access to apps’ package names (for example, by requiring permis-

sions), a nosy app can still retrieve other static information for fingerprinting attacks:

for example, apps’ mandatory information (e.g., components’ names, icons, labels, de-

velopers’ signatures and signing certificates) and optional features (e.g., intent filters,

requested permissions, shared libraries, custom permissions, assets and apps’ configura-

tions such as supported SDKs, themes and styles). This information can be obtained

through a number of methods in the PackageManager class, such as getPackageInfo().

Runtime Information. Without permissions, apps cannot obtain runtime information

generated by other apps. However, with permissions, apps can obtain certain identifying

information. For instance, the PACKAGE USAGE STATS permission permits an app to ob-

tain the list of running processes (method getRunningAppProcesses()), and statistics

about network and storage consumption of all installed apps, including their package

names, during a time interval (method queryUsageStats()). Apps granted with the

READ EXTERNAL STORAGE permission, a frequently requested permission, can inspect for

unique folders and files in a phone’s external storage (a.k.a. SD card). Also, apps with

the BIND NOTIFICATION LISTENER SERVICE permission can receive notifications sent to

other apps. Moreover, apps with VPN capabilities (permission BIND VPN SERVICE) can

intercept network traffic of other apps; existing work shows that network traffic, even

encrypted, can be used to fingerprint apps with good accuracy [44, 51, 46].
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2.4.2 Information Leaks through the Linux-Layer Interface

Static Information. With default app privilege, apps can retrieve the list of all

package names on the phone. This can be done by obtaining the set of UIDs in the

/proc/uid stat folder and using the getNameForUid() API call to map a UID to a

package name. With debugging privilege (adb), an app can retrieve the list of package

names (command pm list packages) and learn the path to the APK file of a specific

app (command pm path [package name]). Moreover, adb privilege enables a nosy app

to retrieve the APK files of other apps (command pull [APK path]); the nosy app can

then use a method, such as getPackageArchiveInfo(), to extract identifying informa-

tion from the APK files.

Runtime Information. With default app privilege, an app can infer the UI states

(e.g., knowing that another app is showing a login screen) [52], memory footprints (se-

quences of snapshots of the app’s data resident size) [53] and power consumption [54]

of other installed apps. Note that access to this information has been restricted in later

versions of Android (e.g., Android 8.0 requires the apps to have adb privilege). Addition-

ally, with adb privilege, apps can learn detailed information about runtime behaviors of

other apps by inspecting the system logs and diagnostic outputs (commands logcat and

dumpsys). Moreover, with adb privilege, apps can directly retrieve the list of running

processes (command ps), take screenshots [55] or gain access to statistics about network

usage of other apps (folder /proc/uid stat/[uid]).

Our analysis shows that Android’s open design makes it easy for a nosy app to finger-

print other apps on the same phone. The diverse source of identifying information leaks

makes it difficult to add permissions or block all related methods, particularly because

most of these methods have valid use cases and are widely used by apps; restricting or

blocking them could break a significant number of apps and anger developers. We are

the first to provide a solution for hiding the presence of sensitive apps with respect to a

strong adversary that has access to all the aforementioned information (Section 2.7).

2.5 Apps Inquiring About Other Apps

We analyze popular apps from the Google Play Store to estimate how common it is

for apps to inquire about other apps on the same phone. Our analysis focuses on apps

that contain API calls to directly retrieve the list of installed apps (hereafter called LIA):

getInstalledApplications() and getInstalledPackages() (hereafter abbreviated as getIA() and

getIP(), respectively). We chose these methods because they are known for being used by

developers to learn about the presence of other apps, whereas other methods presented

in Section 2.4, such as getPackageInfo(), can be used in valid use cases or for app-

fingerprinting attacks. Therefore, the results presented in this section can be interpreted

as a lower-bound on the number of apps that collect identifying information about other

installed apps.

2.5.1 Data Collection

We gathered the following datasets for our analysis:

APK Dataset. We collected APK files of popular free apps in the Google Play Store

(US site). For each category of apps in the store (55 total), we gathered the 60 most
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Analysis method Call origin getIA() (%) getIP() (%) getIA() or getIP() (%)
Static Third-party libs + Apps 36.4 43.6 57.0
Static Apps only 8.05 8.43 13.9

Dynamic Third-party libs + Apps 6.54 15.0 19.2

Table 2.2: Proportion of free apps that invoke getIA() and getIP(), to collect LIAs with respect
to different call origins.

popular apps. After eliminating duplicate entries (an app can belong to multiple cate-

gories), apps already installed on Android by default, and brand-specific apps, we were

left with 2917 distinct apps.

Privacy-Policy Dataset. We collected privacy policies that corresponded to the apps

in our dataset. Out of 2917 apps, we gathered 2499 privacy policies by following the

links included in the apps’ Play Store pages, i.e., 418 apps did not have privacy policies.

Note that Google requires developers to post a privacy policy in both the designated

field in the app’s Play Store page and within the app itself, if their apps handle personal

or sensitive user-data (e.g., the list of installed apps) [56].

2.5.2 Static Analysis

For our static analysis, by using the well-known tool Apktool [57], we decompiled the

APKs in our dataset to obtain their smali code, a human-readable representation of the

app’s bytecode. We searched in the smali code for occurrences of two methods getIA()

and getIP().4 API calls can be located in three parts of the decompiled code: in the code

of Android/Google libs and SDKs (e.g., Android AppCompat supporting library), in the

code of third-party libs and SDKs (e.g., Flurry analytics, Facebook SDK), or in the code

of the app itself. To differentiate among these three origins, we applied the following

heuristics. First, methods found in paths containing the “com/google”, “com/Android”

or “Android/support” substrings, are considered part of Android/Google libs and SDKs.

Second, methods found in paths containing the name of the app are considered part of

the code of the app. We believe this is a reasonable heuristic, because to begin their

package names, Android follows the Java package-name conventions with the reversed

Internet domain of the companies, which generally has a length of two words. If the

methods do not match the first two categories, then they are considered part of the code

of a third-party library or SDK. Note that this approach, also used in previous work [26],

cannot precisely classify obfuscated code or code in paths with no meaningful names

(e.g., developers might not follow naming conventions). Such cases, which represent a

small fraction (less than 5%), are classified as code from third-party libs or SDKs. Still,

this approach provides us with a good estimation of the origin of most method calls.

Table 2.2 shows the proportions of apps that invoke two sensitive methods getIA()

and getIP() with respect to different call origins. Of the 2917 apps evaluated, 1663 apps

(57.0%) include at least one invocation of these two sensitive methods in the code from

third-party libs and the apps. These results show a significant increase in comparison

with the results presented in 2016 by Demetriou et al. [26]. These results also show that

most sensitive requests come from third-party libs or SDKs; app developers might not be

aware of this activity, as has been the case for other sensitive data such as location [58].

4Note that we also found many occurrences of other methods presented in Section 2.4, but we did
not know the purposes of the calling apps.
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Static analysis has two main limitations. First, it might be the case that methods

appeared in the code are never executed by the app. Second, it is possible that the

sensitive methods do not appear in the code included in the APK, rather in the code

loaded dynamically by the app or the third-party libs at runtime. To address these issues,

we also performed a dynamic analysis of the apps in our dataset, as we describe next.

2.5.3 Dynamic Analysis

For our dynamic analysis, by using XPrivacy [59] on a phone with Android 6.0, we

intercepted the API calls made by apps. For the analysis to scale, for each app, we

installed it and granted it all the permissions requested (declared in the app’s Manifest

file). Next, we launched all the runnable activities declared by the app for 10 minutes,

trying to approximate the actions a user might trigger while using the app. Although

this approach has limitations as it only has a short period of time per app and it cannot

emulate all the activities a user could do, it is sufficient to estimate a lower-bound on the

number of apps that query for LIAs at runtime.

Our results, presented in Table 2.2, show that 190 apps (6.54%) called getIA(), 436

apps (15.0%) called getIP(), and 19.2% of the apps in our dataset called at least one of

these two sensitive methods. Because it is not possible to infer the origin of the request

(Google/Android library, third-party library, or the app itself) from the data gathered,

we performed some additional steps. For each app, we used the results of our static

analysis (Section 2.5.2) and searched for occurrences of getIA() and getIP() in the code

belonging to Google/Android libs. We found that most apps did not include calls to

these sensitive methods in the code belonging to Google/Android libs: 181 out of 190

for getIA() and 412 out of 436 for getIP(). This means that, with good certainty, we can

conclude that these sensitive requests came from third-party libs or from the code of the

apps.

Interestingly, we found 49 apps that called at least one of the two methods in our

dynamic analysis, but not in our static analysis. This could be because the decompiler

tool produced incorrect smali code, or because these sensitive requests were dynamically

loaded at runtime. Still, this represents a small percentage of the apps found through

our analysis.

Our static and dynamic analysis shows that a significant number of popular free apps

in the Google Play Store actively queries for LIAs: between 19.2% (dynamic analysis)

and 57% (static analysis) of the apps in our dataset. In addition, our results show that

these sensitive queries are mainly originated from third-party libs. Therefore, we can

conclude that apps are interested in knowing about the presence of other installed apps,

and that, if Android blocked the two methods getIA() and getIP(), nosy apps would likely

make use of other methods presented in Section 2.4.

2.5.4 Analysis of Paid Apps

To estimate if there are differences between free and paid apps with respect to collecting

LIAs, we performed a similar analysis (static and dynamic) with a set of 28 popular

paid apps from different categories in the Google Play Store (see Table 2.3). We found

that 17.8% of the paid apps included at least one call to getIA() or getIP() methods in

their code (upper-bound) and that 7.4% of the paid apps called at least one of these two

methods at runtime (lower-bound). Although the number of paid apps evaluated is much



16
CHAPTER 2. HIDEMYAPP: HIDING THE PRESENCE OF SENSITIVE APPS ON

ANDROID

1. org.xtramath.mathfacts 15. com.maxmpz.audioplayer.unlock
2. co.wordswag.wordswag 16. com.microphone.earspy.pro
3. com.vicman.photolabpro 17. com.tdr3.hs.Android
4. com.ultimateguitar.tabs 18. com.etermax.preguntados.pro
5. com.burleighlabs.babypics 19. com.real.bodywork.muscle.trigger.points
6. com.ellisapps.itrackbitesplus 20. com.devolver.spaceplan
7. com.intsig.lic.camscanner 21. org.twisevictory.apps
8. com.period.tracker.deluxe 22. com.samruston.weather
9. com.mojang.minecraftpe 23. au.com.shiftyjelly.pocketcasts
10. com.wolfram.Android.alpha 24. com.azumio.instantheartrate.full
11. slide.cameraZoom 25. udk.Android.reader
12. com.digipom.easyvoicerecorder.pro 26. radiotime.player
13. com.melodis.midomiMusicIdentifier 27. com.flyersoft.moonreaderp
14. com.laurencedawson.reddit sync.pro 28. kr.aboy.tools

Table 2.3: List of paid apps evaluated in our study. Only a few paid apps (17.8% static analysis,
7.4% dynamic analysis) seems to request information about LIAs (Section 2.5).

smaller than of free apps, our results still indicate that paid apps are less likely to query

for LIAs, probably due to the fact that they rely less on third-party libs, particularly ad

libraries.

2.5.5 Analysis of Privacy Policies

Google’s privacy-policy guidelines require apps that handle personal or sensitive user data

to comprehensively disclose how the apps collect, use and share user-data. An example

of a common violation, included in these guidelines, is “An app that doesn’t treat a user’s

inventory of installed apps as personal or sensitive user data” [56]. In this section, we

explain what developers understand about the guidelines and the declared purposes of

the collection of LIAs by apps. For the sake of simplicity, in this section, we define a nosy

app as an app that calls at least one sensitive method in the static (Section 2.5.2) or

dynamic (Section 2.5.3) analysis.

As mentioned in Section 2.5.1, out of 2917 apps in our dataset, we found and collected

2499 privacy policies. From the 1674 nosy apps found in the static and dynamic analysis,

1524 apps have privacy policies. We semi-automated the policy analysis as follows. We

built a set of keywords consisting of nouns and verbs that might be used to construct a

sentence or paragraph to express the intention of collecting LIAs: retrieve, collect, fetch,

acquire, gather, package, ID, installed, app, name, application, software, and list. For

each privacy policy, we extracted the sentences that contain at least one of the keywords.

From the extracted sentences, we manually searched for specific expressions, for example

“installed app”, “app ID” and “installed software”. Thereafter, we read the matched

sentences and the corresponding privacy policy. During the process, we discovered new

patterns and we updated the expression list. We stopped when the results converged.

From the set of 2499 policies, we found 162 policies that explicitly mention the collec-

tion of LIAs. Among these, 129 belong to the set of 1674 nosy apps (7.7%). Interestingly,

some apps have exactly the same privacy policies, even though they are from different

companies (e.g., [60] and [61]). Also, 33 apps mentioned the collections of LIAs, but we

did not find them in both static and dynamic analyses. For these apps, we performed

a more thorough dynamic analysis: we used them as a normal user, while intercepting

API calls. We did not capture, however, any calls to the two sensitive methods. This
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might be because developers copy the privacy policies from other apps, or because the

apps will make these calls in the future.

Among the generic declared purposes of the collections of LIAs by apps, for example

for improving the service (e.g., [62]) or for troubleshooting the service in case the app

crashes (e.g., [63]), some apps explicitly declare that they collect LIAs for targeted ads

(e.g., [64, 65]), even more specifically targeted ads by third-party ad networks (e.g., [66]).

Unexpectedly, we found that among the 162 privacy policies that mention the collections

of LIAs, 76 of them categorize LIAs as non-personal information, whereas Google defines

this as personal information. This shows a serious misunderstanding between developers

and Google’s guidelines.

2.6 Existing Protection Mechanisms

To the best of our knowledge, there are no robust mechanisms available to help users hide

the existence of their sensitive apps from nosy apps. Below, we present some mechanisms

that can offer partial protection.

2.6.1 Mechanisms by Google

Android does not provide users with a mechanism to hide the existence of apps from

other apps. However, users can repurpose existing Android mechanisms for partially

hiding apps.

Multiple Users. Android supports multiple users on a single phone by separating

user accounts and app data [67]. Sensitive apps could then be installed and used in

one or more secondary accounts. This approach will prevent nosy apps in the primary

account from learning which apps are installed on secondary accounts, if nosy apps use

the getIA() and getIP() methods. Unfortunately, multiple user accounts have a negative

impact on apps’ functionality and usability. For example, while the primary account

is in the foreground, apps on secondary accounts cannot provide notifications to users

or use Bluetooth services (important for mHealth apps). Furthermore, apps in differ-

ent accounts cannot be used simultaneously without switching accounts, an operation

that introduces a noticeable delay. More importantly, this is not an effective protection

mechanism, because to bypass the isolation provided by multiple user accounts, a nosy

app only needs to include additional parameters or uses different methods, as we detail

below.

• On Android 7 or earlier, including an additional parameter flag

(MATCH UNINSTALLED PACKAGES) in methods getIA() and getIP() will reveal

the apps installed in secondary user accounts.

• On Android 9 (the latest version of Android), a nosy app can use API methods such

as getPackageUid(), getPackageGidS() or getApplicationEnabledSetting()

as oracles to check if an app is installed on the device, even if it is installed on a

secondary account or on a work profile. The nosy app only needs to include the

package name of the targeted sensitive app as a parameter to these methods. If

the targeted app is installed on the device, these methods will return valid values,

otherwise they return an error message or null.
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• A nosy app can guess the UIDs of the apps installed on all the accounts and

work profiles, by looking at the /proc/uid directory to learn the ranges of cur-

rent UIDs in the system. It then guesses the UIDs of other apps and uses the

getNameForUid() method to learn the package name. This method will return

a package name given a UID as a input parameter; if the app does not exist, it

returns null. As a result, it can be used as an oracle to retrieve the list of installed

apps on the device. This was tested on Android 6, 8.1 and 9.

• A nosy app with adb privilege can easily verify if a sensitive app is running on the

device, independently of the account or profile it was installed on, by using the

shell command: pidof <PackageName>. This approach was tested on Android 9.

• A nosy app with adb privilege can obtain the list of installed apps, which includes

apps on secondary accounts and work profiles, by using the shell command dumpsys.

This approach was tested on Android 9.

Android for Work. Android supports an enterprise solution called Android for Work;

this solution separates work apps from personal apps [68]. Our tests, using similar

methods as with multiple users (presented above), also confirmed that, as with multiple

users accounts, it is easy to identify which apps are in the work profile. In addition,

Android for Work is only available to enterprise users.

Recently, Android introduced a new feature called Instant Apps [69]; this feature

enables users to run apps instantly without installing them. Such an approach could be

used to hide sensitive apps, however, it only supports a limited subset of permissions,

and it does not support features that are crucial for mHealth apps, such as storing users’

data or connecting to external Bluetooth-enabled devices [70]. Our solution (Section 2.7)

uses this idea of running an app without installing it in order to hide its presence.

Google classifies the list of installed apps as personal information hence requires apps

that collect this information to include in their privacy policies the purpose for collecting

this data. Apps that do not follow this requirement are classified as Potentially Harmful

Apps (PHAs) or Mobile Unwanted Softwares (MuWS) [32, 31]. Android security services,

such as Google Play Protect [71] and SafetyNet [72], periodically scan users’ phones

and warn users if apps behave as PHAs or MuWS. Such mechanisms, however, do not

seem to effectively protect against the unauthorized collection of the list of installed

apps. Our analyses show that only 7.7% of the apps declare their collections of such

information in their privacy policies, and some claim that a list of installed app is non-

personal information (Sections 2.5). Moreover, these mechanisms might fail to detect

more targeted attacks, for example, a nosy app might want to check if a small subset of

sensitive apps exists on the phone.

2.6.2 Mechanisms by Third Parties

Samsung Knox [73] relies on secure hardware to offer isolation between personal and

work-related apps, similar to Android for Work. Hence, it could be used to hide sensitive

apps. Unfortunately, we were not able to evaluate the robustness of the protection

offered by Knox with respect to hiding apps, because Samsung discontinued its support

for work and personal spaces for private users; only enterprise users can use such a feature.

Nevertheless, this solution is device-specific and only hides apps from other apps in a
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different isolated environment, but not from apps in the same environment (apps in

the same isolated environment can come from different, untrusted sources). That is, a

solution that provides per-app isolation is preferable.

There are apps in the Google Play Store that help users to hide the icons of their

sensitive apps from the Android app launcher (e.g., [74]). Even though they help hide

the presence of the sensitive apps from other human users (e.g., nosy partners), these

sensitive apps are still visible to other apps on the phone, through public APIs. Along

the line of user-level virtualization techniques, on the Google Play Store, we found apps

that use these techniques to enable users to run in parallel multiple instances of an

app on their phones and to partially hide the app, (e.g., [75, 76, 77]). However, these

solutions require the hidden app to be installed first on the phone before protecting it,

thus triggering installation and uninstallation broadcast events that can be detected by

a nosy app (see Section 2.4). In addition, these apps provide only a single isolated space,

i.e., they do not protect apps from other apps in the same environment. Our preliminary

evaluation of these apps also shows that their protection is limited, e.g., the names of

the hidden apps can be found in the list of running processes.

2.7 Our System: HideMyApp

In this section, we present HideMyApp (HMA), a system for hiding the presence of sen-

sitive apps.

2.7.1 System Model

The scenario envisioned for HMA is as follows. A hospital or a hospital consortium (here-

after called hospitals) sets up an app store, called HMA App Store, where app developers

working for the hospitals publish their mHealth apps. Hospitals want their patients to

use their mHealth apps without disclosing their use to other apps on the same phone.

To enable the users to manage the apps provided by the HMA App Store, the

HMA App Store provides the users with a client app, called HMA Manager. This app

can be distributed through any available app stores, such as the Google Play Store. To

allow the HMA Manager app to install apps downloaded from the HMA App Store, simi-

larly to other Google Play Store alternatives such as Amazon [78] and F-Droid [79], users

need to enable the “allow apps from unknown sources” setting on their phones. Since

Android 8.0, Google made this option more fine-grained by turning it into the “Install

unknown apps” permission [80]. That is, users only need to grant this permission to the

HMA Manager app to enable it to install apps from the HMA App Store.

2.7.2 Adversarial Model

We assume the Android OS on the users’ phones to be trusted and secure, including the

Linux kernel and the Java API framework. We assume there is a nosy app that wants to

learn if a specific app is present on the phone, and the nosy app can have all permissions

and it can manage to have adb privilege, e.g., by using methods presented by Lin et

al. [55]. As a result, the nosy app can have access to all static and dynamic information

related to installed apps on the phone, as presented in Section 2.4. We assume that

the HMA App Store and the HMA Manager, provided by the hospitals, are trusted and
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Figure 2.1: Overview of the HMA architecture. Nosy apps would only learn the generic names
of the container apps.

secure, and that they follow the prescribed protocols of the system. We discuss mecha-

nisms to relax the trust assumptions on the HMA App Store and HMA Manager app in

Section 2.9.2.

2.7.3 Design Goals

The goal of HMA is to effectively hide the presence of sensitive apps, while preserving

their usability and functionality.

• (G1) Privacy protection. It should be difficult for a nosy app to fingerprint and

identify sensitive apps on the same phone.

• (G2) No firmware modifications. The solution should run on stock Android phones.

That is, it should not require the phones to run customized versions of Android

firmware, such as extensions to Android’s middleware or the Linux kernel. This

also means that the solution should not require the phones to be rooted.

• (G3) Preserving the app-isolation security model of Android. Each app should have

its own private directory and run in its own dedicated process.

• (G4) No app modifications. The solution should not require access to the source-

code of the sensitive apps, i.e., only their APK files are needed.

• (G5) Usability. The solution should preserve the key functionality of sensitive apps

and their usability.

2.7.4 HMA Overview

From a high-level point of view, HMA achieves its aforementioned design goals by enabling

its users to install a container app for each sensitive app (as illustrated in Fig. 2.1). Each

container app has a generic package name and obfuscated app components. As a result,

nosy apps cannot fingerprint a sensitive app by using the information about its container

app. At runtime, the container app will launch the APK file of the sensitive app within

its context by relying on user-level virtualization techniques. That is, the sensitive app

is not registered in the OS.

To do so, HMA requires the hospitals to bootstrap the system by setting up the

HMA App Store and distributing the HMA Manager app to users (Section 2.8.1). Through

the HMA Manager app, users can (un)install, open, and update sensitive apps without

being discovered by the OS and other apps. We detail these operations in Section 2.8.2.
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2.8 HMA System Description

In this section, we detail the design of HMA, including its system-bootstrapping procedure

and operations.

2.8.1 HMA System Bootstrapping

To bootstrap the system, the hospitals need to set up the HMA App Store and provide

users with the HMA Manager app.

HMA Manager App

Recall, to hide their presence, sensitive apps are not registered in the OS; instead, their

container apps are registered. Consequently, if users open their default Android app

launcher, they will not see their sensitive apps; instead, they will see container apps

with generic icons and random names. To solve this usability issue, at installation time

(Section 2.8.2), the HMA Manager app keeps track of the one-to-one mappings between

sensitive apps and their container apps. Using the mappings, the HMA Manager app can

display the container apps to the users with the original icons and labels of their sensitive

apps. To provide unlinkability between users and their sensitive apps with respect to the

HMA App Store, the HMA Manager app never sends any identifying information of the

users to the HMA App Store, and all the communications between the HMA App Store

and the HMA Manager are anonymous. This is a reasonable assumption because the

HMA Manager app can be open-sourced and audited by third parties. Also, in most

cases, users do not have fixed public IP addresses; they access the Internet via a NAT

gateway offered by their cellular provider. If needed, a VPN proxy or Tor could be used

to hide network identifiers.

HMA App Store

The HMA App Store receives app-installation and app-update requests from

HMA Manager apps and returns container apps to them. To reduce the delays in-

troduced to the app-installation and app-update requests, the HMA App Store defines a

set of P generic package names for container apps, e.g., app-1, app-2, . . . , app-P. This

set of generic names is shared by all sensitive apps, thus there is no one-to-one mapping

between a sensitive app and a generic name or a subset of generic names.5 As a result,

for each sensitive app, the HMA App Store can generate beforehand P container apps

corresponding to P predefined generic package names and store them in its database.

Below, we explain the procedure followed by the HMA App Store to create a container

app. Details about the app-installation and update requests from the HMA Manager

apps are explained in Section 2.8.2.

HMA Container-App Generation. To generate a container app for a sensitive APK,

the HMA App Store performs the following steps. Note that this operation cannot be

performed by the HMA Manager app, because the Android OS does not provide tools for

apps to decompile and compile other apps.

5P is defined based on the estimation about the number of sensitive apps that users of the
HMA App Store can have, because Android does not permit duplicate package names for apps. Av-
erage users have around 80 apps installed on their phones [3], therefore P is at most 80.
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• The HMA App Store creates an empty app with a generic app icon, a random

package name and label, and it imports into the app the lib and the code for the

user-level virtualization, i.e., to launch the APK from the container app. Note that

the lib and the code are independent from the APK.

• The HMA App Store extracts the permissions declared by the sensitive app and

declares them in the Manifest file of the container app.

• To enable the container app to launch the sensitive APK, app components (activi-

ties, services, broadcast receivers, and content providers) declared by the sensitive

app need to be declared in the Manifest file of the container app. This information,

however, can be retrieved by nosy apps to fingerprint sensitive apps (Section 2.4).

To mitigate this problem, the container app declares activities and services of the

sensitive app with random names. At runtime, the container app will map these

random names to the real names. For broadcast receivers, the container app dy-

namically registers them at runtime. The case of content providers is discussed in

Section 2.9.

• The HMA App Store compiles the container app to obtain its APK and signs it.

Note that for the sake of simplicity, here we present only a solution that protects

mandatory features of Android apps. A resolute nosy app might try to fingerprint sen-

sitive apps based on, for instance, the runtime information produced by their container

apps. We discuss this in Section 2.9.

HMA User-Level Virtualization. To launch the APK of a sensitive app without

installing it, its container app spawns a randomly named child-process in which the APK

will run, i.e., the APK is executed under the same UID as its container app. Thereafter,

the container app loads the APK dynamically at runtime, and it intercepts and proxies

the interactions between the sensitive app and the underlying system (the OS and the

app framework). To do so, we rely on the technique implemented by DroidPlugin [81],

an open-source lib for app-virtualization.

2.8.2 HMA Operations

In this section, we detail the procedure followed by a user when she (un)installs, updates,

or uses sensitive apps.

App Installation

An illustration of the app-installation procedure is shown in Figure 2.2. To install a

sensitive app, the user opens her HMA Manager app to retrieve the set of apps provided

by the HMA App Store. Once she selects a sensitive app, the HMA Manager app sends an

installation request consisting of the name of the sensitive app and her desired generic

package name for the container app to the HMA App Store. The HMA App Store finds in

its database or creates a container app for the requested sensitive app (see Section 2.8.1),

and it sends the container app, together with the original label and icon of the sensitive

app, to the HMA Manager. The HMA Manager prompts the user for her confirmation

about the installation. Once the user accepts, the installation occurs as in standard app

installation on Android. In addition, the HMA Manager saves a record of the package
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name of the container app and the package name, the original icon and label of the

sensitive app in a database in its private directory.

Figure 2.2: Steps to install an example app (called Cancer.Net) by using the HMA Manager app.
The screenshots were taken from our proof-of-concept implementation (Section 2.10).

App Launch

To launch a sensitive app, the user opens her HMA Manager app to be shown with

the set of container apps installed on her phone. Using the information stored in its

database about the mappings between container apps and sensitive apps (Section 2.8.2),

the HMA Manager displays to the user the container apps with the original labels and

icons of the corresponding sensitive apps. Therefore, the user can easily identify and

select her sensitive apps.

The first time a container app runs, it needs to obtain the sensitive APK from the

HMA App Store, and then stores the APK in its private directory. This incurs some delays

to the first launch of the sensitive app. However, it is needed to prevent the sensitive app

from being fingerprinted: if the sensitive APK was included in the resources or assets

folders of its container app so that the container app could copy and store the APK in

its private directory at installation time, a nosy app would be able to obtain the sensitive

APK. Recall, any app can obtain the resources and assets of other apps (Section 2.4).

Also, Android does not permit apps to automatically start their background services

upon their installation.

At runtime, the container app dynamically loads the sensitive APK. Thereafter, it

intercepts and proxies API calls and system calls between the sensitive app and the

underlying system, as described in Section 2.8.1. If the version of the Android OS is at

least 6.0, permissions requested by the sensitive app will be prompted by its container

app at runtime. As a result, they will be shown with the generic package name of the

container app. This, however, does not affect the usability and comprehensibility of the

permission requests, as shown by our user study (Section 2.10.5).
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App Update

When a sensitive app on the HMA App Store has an update, for each predefined generic

container-app package name, the HMA App Store generates a corresponding container

app for the updated sensitive app. This step is needed, because the configuration file of

the container app needs to be updated with respect to the updates introduced by the

sensitive app. The HMA App Store then sends a push notification to all HMA Manager

clients to notify them about the update. If a user has the sensitive app on her

phone, her HMA Manager sends the package name of its existing container app to the

HMA App Store. In return, it receives the corresponding updated container app from the

HMA App Store. It then prompts the user for her confirmation about the installation.

Once the user accepts, the updated container app is installed on the phone, similarly to

the standard app-update procedure on Android (i.e., the updated app reuses its existing

directory and UID).

App Uninstallation

To uninstall a sensitive app, the user opens her HMA Manager app to be shown with the

set of container apps installed on her phone. Once she selects the app, the HMA Manager

prompts her to confirm the uninstallation. Thereafter, the uninstallation occurs similarly

to the standard app-uninstallation procedure on Android.

2.9 Privacy and Security Analysis

Here, we present an analysis of HMA to show that it effectively achieves its privacy and

security goals (Section 2.7.3) with respect to the source of possible information leaks

described in Section 2.4.1.

2.9.1 Privacy

Mandatory Static Information. Obviously, HMA effectively protects the mandatory

information of sensitive apps by obfuscating the metadata associated with the sensitive

app. First, a nosy app cannot obtain the package name of a sensitive app, because the

sensitive app is never registered on the system; instead, its container app with a generic

package name is installed. With adb privilege, the nosy app can obtain the path to the

APK of the container app, but this path does not contain any information about the

sensitive app. Moreover, the nosy app can retrieve the APK file of the container app, but

it cannot retrieve the APK file of the sensitive app. This is because the sensitive APK is

not included in the container-app’s APK; instead, the sensitive APK is stored inside the

private directory of its container app. Second, the resources, shared libraries, developers’

signatures and developers’ signing certificates of the sensitive app cannot be learnt by

the nosy app, because they are not declared or included in the container-app’s APK

file, i.e., they are dynamically loaded from the sensitive app’s APKs at runtime. Third,

the nosy app cannot learn the components’ names of the sensitive app, because these

names are randomized. To prevent a nosy app from being able to fingerprint sensitive

apps by using the number of app components declared in their container apps, during

the generation of container apps, the HMA App Store adds dummy random components

such that all container apps generated by the HMA App Store declare the same number
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of random components. Moreover, the HMA App Store cannot link an app-installation

with an app-update event of the same user, because all users share the same set of

generic package names for container apps defined by the HMA App Store. This reduces

the linkability between a user and a sensitive app with respect to the HMA App Store.

Optional Static Information. A nosy app might try to fingerprint sensitive apps

by using the set of permissions declared by their container apps. This problem can be

mitigated if all container apps declare a union of permissions requested by sensitive apps

in the HMA App Store. Note that if the device’s OS is at least 6.0, container apps only

request, at runtime, for permissions needed by their sensitive apps, and users can grant

or decline the requests. This makes it difficult for nosy apps to fingerprint sensitive apps

by using the set of permissions that their container apps have been granted. Further-

more, to hide their presence, the sensitive apps should not support content providers and

implicit intents, because these features expose the sensitive apps to other apps, hence

enabling fingerprinting attacks (Section 2.11.1). Moreover, to prevent a nosy app from

fingerprinting sensitive apps based on their customized configurations, such as themes

and screen settings, the HMA App Store can define a guideline for app developers to fol-

low such that all apps have the same configurations. This will affect the look and feel of

the sensitive apps, but it is a trade-off between usability and privacy. Note that the same

approach has been used in other deployed systems, such as in the Tor browsers where all

the versions have the same default window size and user-agent strings [82]. To facilitate

guideline compliance, the HMA App Store can also provide developers with IDE plugins

to help them write guideline-compliant code; such an approach has been proposed in

existing work (e.g., [83] and [84]).

Runtime Information. A nosy app cannot fingerprint a sensitive app by using the list

of running processes it can retrieve, because the sensitive app runs inside the child pro-

cess of its container app with a random name. To prevent nosy apps from fingerprinting

sensitive apps by using statistics about resources consumed by their container apps (in-

cluding network and storage consumption, power consumption, and memory footprints,

system logs and diagnostic outputs), the container apps can randomly generate dummy

data to obfuscate the usage statistics of sensitive apps. Also, app developers should not

write identifying information about their sensitive apps to the log. The container apps

can also obfuscate the UI states of the sensitive apps by overlaying transparent frames

on the real screens of the sensitive apps. Regarding files in the phone’s external storage,

container apps can intercept and translate calls from sensitive apps when they create

or access files in the external storage. However, note that apps are not recommended

to store data in external storage, especially mHealth apps. In addition, to prevent the

nosy app from receiving notifications sent to other apps, the users should not grant the

BIND NOTIFICATION LISTENER SERVICE to apps that they do not trust. Apps with adb

privilege can take screenshots of sensitive apps and infer their names from the screenshots.

This, however, requires the nosy app to do extra and error-prone operations (e.g., image

processing) to identify sensitive apps.

2.9.2 Security

As explained in Section 2.8.1, the user-level virtualization technique used by HMA to

launch an APK in HMA does not require users to modify the OS of the phone. The

Android’s app-sandboxing security model is also preserved, because each APK runs inside



26
CHAPTER 2. HIDEMYAPP: HIDING THE PRESENCE OF SENSITIVE APPS ON

ANDROID

the context of its container app. Thus, it is executed in a process under the same UID as

its container app, and it uses the private data directory of its container app. Similarly

to other third-party stores (e.g., Amazon or F-Droid), HMA requires users to enable the

“allow apps from unknown sources” setting on their phones. However, apps installed from

these sources are still scanned and checked by Android security services for malware [71].

Also, recently, this setting was converted to a per-app permission [80]. As a result,

granting the HMA Manager app the permission to install apps from unknown sources

will not give other apps on the phone the same permission.

With HMA, developers still control and sign their apps, and the HMA App Store

validates these signatures before publishing the apps on the app store. The container apps

are signed by the HMA App Store, vouching for the developers’ signatures. Furthermore,

HMA container apps only ask users for permissions requested by sensitive apps. To relax

the trust assumptions on the HMA App Store and HMA Manager, the HMA App Store

can provide an API so that anyone can implement her own HMA Manager app, or the

HMA Manager app can be open-source, i.e., anyone can audit the app and check if it

follows the protocols as prescribed. Therefore, assuming that the metadata of the network

and the lower communication layers cannot be used to identify users, for instance, by

using a proxy or Tor, the HMA App Store cannot link a set of sensitive apps to a specific

user.

2.10 Evaluation

To evaluate HMA, we used a real dataset of free and paid mHealth apps on the Google

Play Store. We looked into three evaluation criteria: (1) overhead experienced by

mHealth apps, (2) HMA runtime robustness and its compatibility with mHealth apps,

and (3) HMA usability.

2.10.1 Dataset

In February 2018, we selected 50 apps from the medical category on the Google Play

Store, of which 42 apps are free and 8 apps are not. To have a diverse dataset, we

selected apps based on their popularity (more than 1000 downloads), their medical spe-

cialization, and their supported functionality. From the 50 apps, we filtered out apps that

make calls to APIs that we did not support in our prototype implementations, including

Google Mobile Services (GMS), Google Cloud Messaging (GCM) and Google Play Ser-

vices APIs. Note that these services could be supported, similarly to other services, the

only challenge is engineering efforts. We also filtered out apps that use Facebook SDKs,

because such SDKs often use custom layouts that have not been yet supported by the

user-level virtualization library that HMA uses. Exploring the interaction mechanisms

between custom layouts and custom notifications with the Android app framework is an

avenue for future work.

After filtering, we narrowed down the dataset to 30 apps (24 free apps and 6 paid apps,

see Table 2.4). Our dataset is somewhat diverse with 15 medical conditions. Also, apps

in our dataset support features that are crucial for mHealth apps, such as a Bluetooth

connection with external medical devices (e.g., Beurer HealthManager app [85]) and an

Internet connection (e.g., Cancer.Net app [86]).
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Index App Name Package Name # Downloads

1 My Ovulation Calculator com.ecare.ovulationcalculator 1M - 5M
2 Blood Pressure Log - MyDiary com.zlamanit.blood.pressure 500K - 1M
3 DreamMapper com.philips.sleepmapper.root 100K - 500K
4 Breathing Zone com.breathing.zone 5K - 10K
5 Alzheimer’s Speed of Processing Game com.TinyHappySteps.Bird 1K - 5K
6 Cancer.Net Mobile com.fueled.cancernet 10K - 50K
7 AIDS Info Drug Database com.aidsinfo.aidsinfoapp 5K - 10K
8 My Pain Diary com.damonlynn.mypaindiary 5K - 10K
9 iBP Blood Pressure com.leadingedgeapps.ibp 10K - 50K
10 Squeezy: NHS Pelvic Floor App com.propagator.squeezy 10K - 50K
11 OneTouch Reveal com.lifescan.reveal 500K - 1M
12 ADHD Adults com.labshealth.tdahadults 10K - 50K
13 Baritastic - Bariatric Tracker com.baritastic.view 100K - 500K
14 Mole Mapper edu.ohsu.molemapper 1K - 5K
15 Respiroguide Pro com.tremend.respiroguide 10K - 50K
16 FearTools - Anxiety Aid com.feartools.feartools 10K - 50K
17 Back Pain Relieving Exercises com.backpainrelieving.backpain 10K - 50K
18 OnTrack Diabetes com.gexperts.ontrack 500K - 1M
19 Asthmatic be.sarahvn.asthmatic 50 - 100
20 MoodTools - Depression Aid com.moodtools.moodtools 100K - 500K
21 Pain Diary & Forum CatchMyPain com.sanovation.catchmypain.phone 50K - 100K
22 Beurer HealthManager com.beurer.connect.healthmanager 100K - 500K
23 Constant Therapy com.constanttherapy.Android.main 10K - 50K
24 Self-help Anxiety Management com.uwe.myoxygen 100K - 500K
25 Pregnancy Calendar and Tracker ru.mobiledimension.kbr 1M - 5M
26 BELONG Beating Cancer Together com.belongtail.belong 10K - 50K
27 AsthmaMD com.mobilebreeze.AsthmaMD 10K - 50K
28 Propeller com.asthmapolis.mobile 5K - 10K
29 mySugr: the blood sugar tracker made just for you com.mysugr.Android.companion 500K - 1M
30 QuitNow! - Quit smoking com.EAGINsoftware.dejaloYa 1M - 5M

Table 2.4: mHealth apps tested with HMA.

2.10.2 Implementation Details

Our prototype implemented the main components of HMA, including the HMA App Store

and the HMA Manager app. To measure the operational delay introduced by HMA, we

implemented a proof-of-concept HMA App Store on a computer (Intel Core i7, 3GHz, 16

GB RAM) with MacOS Sierra. Our HMA App Store dynamically generated container

apps from APKs, and it relied on an open-source library called DroidPlugin [81] for the

user-level virtualization. Our prototype container apps dynamically loaded the classes

and resources of the apps from the mHealth APKs, and they supported the interception

and proxy of API calls that are commonly used and crucial to mHealth apps, such as

APIs related to Bluetooth connections and SQLite databases.

2.10.3 Performance Overhead

In this section, we present the delays introduced by HMA to sensitive apps during app-

installation and app-launch operations. We omit the app-update operation, because

app-update and app-installation operations are similar. For the evaluation of delays

added by the user-level virtualization to commonly used API methods and system calls

at runtime of sensitive apps, we refer the readers to existing work such as Boxify [39];

they show that such overhead is negligible, e.g., opening a camera introduces an overhead

of 1.24 ms.

Results presented in this section were measured on a Google Nexus 5X phone run-

ning Android 7.0, one of the most recent Android versions. In our experiments, the

HMA App Store connected to the phone through a micro-USB cable, thus network delays

were not considered. However, note that, compared to the standard use of apps, HMA

incurs negligible network-delay overheads, because the only bandwidth overhead intro-
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duced by HMA is the container-app payload whose size is of several hundreds of kilobytes

only.

App Installation

When a user wants to install an mHealth app, the HMA App Store first needs to create a

container app for it. Based on our experiments, assuming the HMA App Store decompiles

the mHealth APKs beforehand, for 90% of the cases, generating a container app takes,

on average, 5 s. Note that a large part of the delay comes from the compilation of

the container app, and the measurement was performed on a laptop computer (MacOS

Sierra, 3 GHz Intel Core i7). Also note that the HMA App Store can always prepare

in advance container apps for each mHealth app, as presented in Section 2.8.1. The

size of the container apps is only several hundreds of kilobytes, which would take less

than a second for the HMA Manager app to download (assuming a 3G or 4G Internet

connection). As a result, the total delay incurred by HMA will take less than 5 s in the

worst-case scenario, and less than a second if container apps are generated beforehand,

which is acceptable.

App Launch

On Android, apps can be launched from two different states: cold starts where apps are

launched for the first time since the phone was booted or since the system killed the

apps, and warm starts where the apps’ activities might still reside in memory, and the

system only needs to bring them to the foreground, hence faster than cold starts.

Experiment Set-Up. To measure cold-start delays (i.e., the time elapsed since a

user clicks on the app’s icon until the first screen of the app is loaded), we rely on the

Android’s official launch-performance profiling method [87]. For each app, we installed its

container app, copied its APK file to the container-app’s private directory, and launched

the container app through adb. Thereafter, we extracted the time information from the

Displayed entry of the logcat output. To simulate a first launch, before we launched

an app, we used the command adb shell pm clear [package-name] to delete all data

associated with the app [50] (i.e., to bring the app back to its initial state). To simulate a

cold start, before we launched an app, we used the command adb shell am force-stop

[package-name] to kill all the foreground activities and background processes of the

app. For each app, we collected 50 measurements per launch setting. For baseline

measurements, we measured the delays experienced by mHealth apps when they were

executed without HMA, i.e., we installed the apps on the phone and followed the same

procedure.

To measure warm-start delays, due to the lack of Android supports for profiling

warm starts, we have to instrument the source-code of the sensitive apps to log the time

that the app enters different stages in its lifecycle. Because apps in our dataset are

closed-source, we used an open-source app [88]. To simulate a warm start, we used the

command input keyevent 187 to bring the app to the background, and then we used

the monkey command to bring the app back to the foreground. By subtracting the time

when the onResume() method is successfully executed with the time before the monkey

command is sent, we know the warm-start delay experienced by the app. We measured

the warm-start delays experienced by the app in both settings (with and without HMA),

50 measurements per setting.
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Figure 2.3: Cold-start delays experienced by mHealth apps when they are executed with and
without HMA. Note that our HMA implementation is a proof-of-concept, hence not-optimized.
The heights of the bars represent mean values and the error bars represent the standard devia-
tion. For each setting, we collected 50 measurements per app. The full names of the apps can
be found in Table 2.4.

Results. It is intuitive that, in HMA, the first launch of an mHealth app will experience

longer delays than the subsequent cold starts, because the container app has to download

the APK from the HMA App Store and stores the APK in its private directory. It also

needs to process the APK and cache the information needed for the user-level virtualiza-

tion. Our experiments show that the median of the first launch delays is 6.5 ± 0.16 s (as

compared to 0.74 ± 0.07 s if the mHealth apps were launched without HMA). However,

this delay occurs only once, therefore it is negligible with respect to the lifetime of the

app on the phone.

Fig. 2.3 shows the bar plot of subsequent cold-start delays experienced by mHealth

apps when they are executed with and without HMA; the heights of the bars represent

the mean values and the error bars represent one standard deviation. It can be seen that

the average delays are at most 3.0 ± 0.5 s and 1.3 ± 0.05 s if the apps are executed with

HMA and without HMA respectively. For 90% of the cases, the average delay with HMA

is less than 2.0 ± 0.3 s. Note that our prototype implementation is a proof-of-concept

hence not optimized. However, the observed delays are still under the delay limit of 5 s

suggested by Android [87]. Also, in our user study, 97% of participants agreed that a

launch delay of around 5 s is acceptable (see Section 2.10.5).

Regarding the warm-start delays, we found that the average warm-start delays ex-

perienced by our tested app when it was launched with and without HMA were both

approximately 0.55 s. This is intuitive, because the app’s processes were still running

and the activities still resided in the phone’s memory. In case the garbage collector

evicts the activities from the phone’s memory, warm-start delays can be longer, due to

the overheads of activity initializations. Unfortunately, we cannot simulate this case,

because Android does not provide methods to control the garbage collector. However, in

that case, the delay will still be less than cold-start delays (i.e., at most 3 s, see above).

2.10.4 HMA Robustness and Compatibility

In this section, we present the evaluation of HMA in terms of its robustness and its

compatibility with Android versions.

Runtime Robustness. Following the approach used in previous work, (e.g., [40]

and [89]), we manually tested each app in our dataset with HMA. For each mHealth

app, we extracted its APK and used the HMA App Store to create a container app and

installed the container app on the phone. Thereafter, we used the HMA Manager to
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launch the app. We manually used most of the functionality of the mHealth app, and

checked if it crashed during its execution. We found that all of the apps in our dataset

work normally, except one app that threw an error when making an SQLite connection.

However, we ran an example app (from [90]) that uses the official Android APIs for

database (i.e., Android.database.sqlite) to insert and retrieve records from an SQLite

database, and the app ran successfully. We suspected that the app specified the full path

to the directory of the database (i.e., /data/data/package-name/db-name) hence failed

the call, because the directory does not exist. This problem could be solved if the

developers specified the relative path to the database (i.e., ./db-name) instead of its full

path.

Compatibility. We ran HMA on a series of smartphones with Android OS from version

5.0 to 8.0 and found that HMA can be successfully deployed on mainstream commercial

Android devices. However, there are two apps (Mole Mapper and Alzheimer’s Speed

of Processing Game) that initially failed to run on our Nexus 5X (Android 7.1.1) due to

the incompatibility between 32-bit and 64-bit systems. We fixed the problem by enabling

the option --abi armeabi-v7a when installing them. From the list of 20 apps that we

filtered out, we found that 3 apps (Hearing Aid, What’s Up and Cardiac diagnosis)

successfully ran on Android 5.0 and 6.0, but they failed to run in later versions of An-

droid. We investigated the log of the three apps and found that API methods related to

GMS services that we have not supported were called in the later versions of Android.

This problem, however, could be solved if these services are hooked, as we discussed in

Section 2.10.2.

2.10.5 HMA Usability and Desirability

To evaluate the usability of HMA and the users’ interest for it (i.e., desirability), in

February 2018, we conducted a user study at the laboratory for behavioral experiments

at University of Lausanne (UNIL).6 Our study involved 30 student subjects (19 males,

11 females, age: 22 ± 4.5 years old) from 18 different majors. The participants were

experienced Android users: 87% of the participants have been using an Android phone

for at least one year. Also, they were relatively concerned about their privacy; using the

standard metric for measuring users’ privacy perception (IUIPC) [91], we found that, on

a scale from 1 to 5 for privacy postures, 97% of participants graded at least 3.0 and an

average of 4.1.

We began the study with an entry survey about demographic information, privacy

postures, and users’ awareness and concerns about the problem of LIA collections. Then,

we provided each participant with a fresh phone and asked them to install and use

two apps: a popular app about public-transportation timetables in Lausanne called

tl-live and an mHealth app called Cancer.Net. In order to precisely measure the

users’ perception of the delay introduced by HMA, the participants were asked to use

the two aforementioned apps with and without HMA. The participants were provided

with detailed instructions in English, including screenshots, on how to install and run

the apps with and without HMA. 67% of the participants had used the tl-live app

before, whereas only 7% of them had used the Cancer.Net app or an app of the same

category. We finished the user study with an exit survey containing questions related

to the usability of the solution and the users’ levels of interest in HMA. The user-study

6Our user study was approved by our institutional ethical committee.
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session took approximately 45 minutes and we paid each participant 25 CHF. The full

transcript of survey questions and the user-study instructions can be found at [92]

Our study shows that the participants are concerned about the privacy of health-

related data: 90% of the participants would be at least concerned if their health-related

information were to be collected by mobile apps installed on their phones and shared with

third parties, and 87% of participants would be at least concerned if third-parties learned

that they had used health-related apps. Indeed, our study confirms the findings from

previous works (e.g., [34]) that the majority of people never read privacy policies. As a

consequence, the current solution of using privacy policies by Google for LIA collections

is not satisfactory. These findings show the need for a solution to hide the presence of a

sensitive mobile app.

Regarding the usability of HMA, only 30% of the participants noticed a difference

when the two apps ran with and without HMA. Note that the delays that users expe-

rienced in the user study were the first-launch delays, which are 4.2 ±0.06 s and 5.1 ±
0.07 s for the tl-live app and the Cancer.Net app, respectively. From the open-ended

question in our exit survey, we found that the observed differences are mainly about the

launching delay of the apps and the change in the app names in permission prompts.

From the close-ended questions, which were coded with a five-point Likert scales, we

made the following observations. Almost all participants agreed that these changes and

delays are acceptable (97% and 93% of the participants, respectively). 93% of the par-

ticipants also agreed that the use of HMA Manager to install and launch apps is at least

somewhat acceptable. Also, 90% of the participants agreed that HMA does not affect

the user experience of the apps that it protects, and that they are at least somewhat

interested in using HMA. These results suggest that HMA is usable and desirable.

As most lab experiments, our study has some limitations, which we acknowledge here.

However, it should be noted that the purpose of our study was not to evaluate the design

and the usability of the solution as a final product but rather to evaluate, based on a

proof of concept with a basic UI, the interest and the perception of users in terms of

the general approach and its technical implications (e.g., delays). First, the participants

used phones provided by the experimenters, with only two apps and in a hypothetical

scenario. Second, the users were provided with detailed instructions; therefore, we did

not test how intuitive the proposed solution is. Finally, when they took the exit survey,

the participants had already been briefed about the privacy problems of LIA, which

might have introduced a bias.

2.11 Discussion

In this section, we discuss some shortcomings of HMA and how HMA can be extended to

be used in other alternative scenarios.

2.11.1 HMA Limitations

As explained in Sections 2.9 and 2.10, HMA effectively hides the mandatory features and

runtime information of sensitive apps. However, as sensitive apps hide their presence,

optional features that help them to intentionally expose themselves to other apps, in-

cluding content providers and implicit intents, should not be used. This can limit their

data-sharing capabilities. A possible workaround for this problem is to put apps that
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want to share data with each other in the same container app. In addition, due to the

limitation of user-level virtualization library that HMA uses, if sensitive apps use many

customizations with third-party SDKs, the container apps might fail to launch them.

This might be a problem with complex apps, such as dating apps, but mHealth apps

are unlikely to require many customizations. In the scenario envisioned by HMA, devel-

opers build apps for hospitals, thus the HMA App Store can provide developers with a

guideline about supported features so that their apps are HMA-compatible. To facilitate

guideline compliance, the HMA App Store can also provide developers with IDE plugins

to help them write compliant code; such an approach was proposed in existing work

(e.g., [83, 84]). Lastly, if the number of apps in the HMA App Store is small, a nosy app

could guess the name of the sensitive app. To increase the anonymity-set, the hospitals

can include simpler, non-sensitive apps (e.g., informational) in the HMA App Store, and

the popularity of apps on the store should not be public.

2.11.2 An Alternative Scenario

HMA is designed to work for the case of hospitals hosting their mHealth apps. However,

there are other categories of apps that can be considered sensitive, such as apps about

religion or sexual orientation. In some countries, people would be arrested if they use

a gay dating app [93]. Moreover, developers might publish their mHealth and other

sensitive apps on app stores other than the HMA App Store, such as the Amazon or

Google Play app stores. In such cases, the community or an organization can run a

proxy service that retrieves the APKs of these apps from these stores and create container

apps for them accordingly; this service can be free or for a fee. This might require an

agreement between the proxy service and the app developers. Also, as discussed in

Section 2.11.1, some apps might have optional features that are not recommended or

features that are not supported by user-level virtualization techniques. Similarly to the

case of the Amazon app store, the proxy service can provide developers with a testing

service to test the compatibility of their apps.

2.12 Conclusion

In this chapter, we have systematically investigated the problem of apps fingerprinting

other installed apps. We have shown that apps can collect a significant amount of static

and runtime information about other apps to fingerprint them. We have also quantified

the prevalence of the problem and have shown that many third parties and apps are

interested in learning the list of installed apps on people’s phones. Moreover, our analysis

has shown that there are no existing mechanisms for hiding the presence of a sensitive app

from other apps. Therefore, we have proposed HMA, the first solution that addresses this

problem. HMA does not require any modifications to the Android OS and it preserves

the key functionality of apps. Our thorough evaluation of HMA on a diverse data-set

of both free and paid mHealth apps from the Google Play Store has shown that HMA

is practical with reasonable operational delays. Moreover, the results of our user study

have suggested that HMA is perceived as usable and of interest to the users.



Chapter 3

A Privacy-Preserving Yet Accountable

Ride-Hailing Service

In Chapter 2, we showed that smartphones do not provide adequate privacy protection

for certain apps. As a result, the use of such apps introduces privacy risks for users.

In this chapter and Chapter 4, we look at privacy threats from a different perspective:

due to the lack of privacy by design, apps and online service providers often put users’

privacy at risk. That is, they often over-collect information that might not be needed for

the functionality of the services, and the collected information can be used for purposes

that users did not consent to. We will show that it is possible to design systems that

gracefully balance the users’ privacy and the services’ usability. We will begin with the

case of ride-hailing services (e.g., Uber and Lyft). Afterwards, in Chapter 4, we will look

into the case of activity-tracking services (e.g., RunKeeper).

3.1 Introduction

Ride-hailing services (RHSs), such as Uber and Lyft, enable millions of riders and drivers

worldwide to set up rides via their smartphones [8]. Their advantage over traditional

taxi services is due to the convenience of their services: ride requests at the touch of

a button, fare estimation, automatic payments, and reputation ratings. Moreover, the

accountability provided by RHSs is a key feature for riders and drivers, as it makes them

feel safer [94, 95]. For instance, in case of a criminal investigation, the RHS provider

can provide law-enforcement agencies with the location trace of a particular ride and the

identities of the participants.

To offer such services, however, RHSs collect a vast amount of sensitive information,

which puts at risk the privacy of riders and drivers. First, for each ride, the location

traces and the rider’s and driver’s identities are known to the service provider (SP). As

a result, the SP, or any entity with access to this data, can infer sensitive information

about riders’ activities such as one-night stands [13], monitor the locations of riders in

real time for entertainment [96], track the whereabouts of their ex-lovers [97], look up trip

information of celebrities [98], and even mount revenge attacks against journalists critical

of such services [99]. In the case of drivers, there are reports of SPs that track drivers to

33
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find if the drivers attended protests [100]. Second, due to the release of drivers’ personal

identifiable information (PII) early in the ride set-up procedure, an outsider adversary

can massively collect drivers’ PII [17]. Therefore, there is a strong need to provide privacy

and anonymity for both riders and drivers with respect to the SP and each other.

In this chapter, we analyze privacy threats in RHSs and develop a threat taxon-

omy. We then focus on designing protection mechanisms for defending against two

critical threats: location tracking of riders by the SP and harvesting of drivers’ per-

sonal information by an external adversary. To target these threats, we present ORide, a

privacy-preserving RHS that enables the SP to efficiently match riders and drivers with-

out learning either their identities or their locations, while providing accountability to

deter misbehavior. ORide provides strong privacy for both riders and drivers, i.e., all

users in the system are part of large anonymity sets, even if they are in sparsely pop-

ulated areas. Even in the extreme case of targeted attacks (i.e., a curious SP wants to

know the destination of a ride taken by a specific rider given the time and location of her

pick-up event [101]), the location privacy of the rider’s destination is still guaranteed.

For this purpose, ORide relies on a state-of-the-art somewhat-homomorphic encryption

system [102] (SHE), to which we apply optimizations for ciphertext packing and trans-

formed processing [103], hence enabling a notable boost in performance and a reduction

in overhead with respect to naive cryptographic solutions.

Accountability and usability are often considered to be as important as privacy in

RHSs [94, 95]; this introduces challenges in resolving the uneasy tension between privacy,

accountability and usability. To achieve accountable privacy, ORide enables the SP to

revoke, when needed, the anonymity of misbehaving riders or drivers. However, the SP

does not have full control over this re-identification operation, i.e., it is able to do it only

with the support from the affected party. In addition, to preserve the convenience of the

service, ORide supports automatic payment through credit cards and enables riders to

contact drivers for lost items. ORide also preserves the reputation-rating operations of

current RHSs.

The evaluation of ORide by using real data-sets from NYC taxi cabs [104] shows that,

even with strong bit-security of 112 bits, ORide introduces acceptable computational and

bandwidth overheads for riders, drivers and the SP. For example, for each ride request,

a rider needs to download only one ciphertext of size 186 KB with a computational

overhead of less than ten milliseconds. ORide also provides large anonymity sets for

riders at the cost of acceptable bandwidth requirements for the drivers: For instance,

for rides in the boroughs of Queens and Bronx, a ride would have an anonymity set of

about 26,000, and the drivers are only required to have a data-connection speed of less

than 2 Mbps.

In summary, in this chapter, we make the following contributions:

• A threat taxonomy for RHSs. We present the first general privacy analysis of

RHSs. By analyzing currently deployed RHSs, we develop a threat taxonomy and

identify high-risk threats, particularly the unreported threat of drivers’ personal

information being harvested.

• A novel, oblivious, and efficient ride-matching mechanism. To match riders and

drivers without revealing their identities and locations to the SP, ORide includes

a novel protocol based on quantum-resistant SHE. We optimize our SHE-based
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Figure 3.1: Ride-hailing services overview.

protocol to considerably reduce the bandwidth requirements and the processing

overhead, compared to a vanilla SHE-based protocol; and we propose an efficient

extension to deal with malicious drivers.

• The design and prototype of ORide. ORide supports the matching of riders and

drivers, different accountability mechanisms, and it reduces the amount of sensitive

information revealed to the SP. In particular, ORide supports functionalities that

are often also considered as important as privacy, such as credit-card payment,

reputation rating, contacting drivers in case of lost items and traceability in case

of a criminal activity during a ride.

• Thorough performance evaluation. Using real data-sets and robust security param-

eters (112 bits security), we show that ORide provides strong privacy guarantees for

riders and drivers. The computational and network overhead introduced by ORide

is also practical for riders, drivers and SP. We also show that ORide has a negligible

effect on the accuracy of matching riders and drivers, compared with current RHSs.

The source code of our prototype implementation is available at [105].

3.2 Ride-Hailing Services

In general, RHSs involve three parties: riders, drivers, and a service provider (SP) (see

Figure 3.1). The SP handles incoming ride-requests and matches riders with available

drivers, based primarily on their locations; it also offers key services such as fare esti-

mation and calculation (based on the route of the rides), ride payment and reputation

management. In exchange for these services, the SP charges a fee for each completed

ride (e.g., Uber charges around 20% of the total fare). Some SPs also sell ride data or

location traces to third parties (e.g., for city planning [106] or marketing [107]). To use

a RHS, riders and drivers need an account, a GPS-equipped smartphone with the SP’s

mobile app installed, and an active Internet connection.

To hail a ride, the rider sends a request to the SP by using the mobile app. In some

countries, before requesting a ride, the SP can confirm upfront with the riders about the

fare, given her desired pick-up and drop-off locations. A ride request includes the rider’s

identity and the precise pick-up, and (optionally) drop-off locations. The SP selects an

available driver, based on her proximity to the pick-up location (while on duty, drivers

continuously report their locations to the SP). The SP sends the request, together with

the rider’s username, reputation and phone number (for ride coordination) to the driver.
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If the driver declines the request, the SP sends the request to another available driver. If

the driver accepts the request, the SP notifies the rider and sends her back the driver’s

information such as the driver’s real name, photo, phone number, and car plate number.

The rider uses this information to decide if she accepts the ride, as well as to coordinate

the pick-up event.

As the driver approaches the pick-up location, the SP shares the driver’s location

and estimated time of arrival with the rider. Once the rider is in the car, the driver

notifies the SP that the ride has begun. Both the rider and the driver can cancel a ride

at any point. However, in certain cases, the SP can charge them a penalty fee or lower

their reputations [108] (e.g., in case of systematic ride cancelation). Unlike the rider,

the driver must keep her smartphone switched on (with Internet and GPS connectivity)

during the ride, in order to report her location to the SP. Upon reaching the destination,

the driver notifies the SP that the ride has ended. The SP automatically charges the

rider (e.g., her credit card); the amount charged to the rider (minus the service fees)

is credited to the driver’s account. Both the driver and rider can check the details of

the ride via the mobile app and rate each other. This operation is optional and it can

be performed within a predefined period of time that begins right after the end of the

ride. The SP uses the reputation information to keep the quality of the service high by

detecting and punishing misbehaving parties. For example, riders and drivers with low

reputations could be banned temporarily or permanently.

3.3 Privacy and Security Analysis of RHSs

In this section, we present a privacy and integrity analysis of current RHSs and identify

the most critical privacy threats in these services.

3.3.1 Adversarial Model

We define four adversaries in current RHSs:

Rider. Active adversary who might attempt to harvest personally identifiable informa-

tion (PII) from drivers (e.g., for stalking or blackmailing purposes).

Driver. Active adversary who might attempt to collect PII from riders she picks up

(e.g., for stalking or blackmailing purposes).

SP. Passive adversary that strives to safeguard its business and maximize its profits. It

has incentives to profile riders and drivers and infer sensitive information about them,

to either improve its own services or to monetize harvested data (e.g., for advertisement

purposes or coercion [99]). However, it also has incentives to prevent certain attacks,

such as data harvesting from outsiders, or pervasive fare overcharging, as these attacks

threaten the viability of the SP’s business over its competitors. Finally, we assume the

SP has no incentive to actively cheat (e.g., by providing a malicious app to users, or

otherwise deviating from an established protocol), if there is a non-negligible chance of

the SP being caught in the act. Indeed, the risk of public exposure and reputation loss

is a strong economic deterrent against such attacks from the SP.

Outsider. Active adversary who tries to collect and/or steal riders’ and drivers’ PII,

account credentials, and ride data. The malicious outsider might have more resources

than a single driver or rider. For instance, it could be a competitor SP, a criminal

organization, or a group of regular taxi drivers.
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Privacy Threats
Description Risk-RH

1) R→ D PII harvesting [109] Low
2) D→ R PII harvesting Low
3) SP→R location tracking [13, 96, 110] High
4) SP→D location tracking [111, 100] Medium
5) O→ R PII harvesting Medium
6) O→ D PII harvesting High
7) O→ SP PII and ride data breach [112] High

Integrity Threats
Description Risk-RH

1) R→ D fare undercharging [113] Low
2) R→ SP reputation cheating Low
3) R→ SP incentives abuse [114] Low
4) D →R fare overcharging [115] High
5) D→ D ride matching cheating [116] Low
6) D→ SP reputation cheating Low
7) D→ SP fees and incentives cheating [117] Medium
8) O→ R,D account theft [118, 119] High

Table 3.1: Threat taxonomy for RHSs (Risk-RH) based on four possible adversaries: riders (R),
drivers (D), service provider (SP), and outsiders (O). The notation X→Y means X attacks Y.

3.3.2 Threat Taxonomy

We built the first threat taxonomy for RHSs (Table 3.1) with a focus on privacy and

integrity threats. Privacy threats affect the personal information of riders and drivers

(e.g., PII, ride data) and integrity threats affect the correctness of the services offered

by the SP (e.g., fare calculation, ride matching, reputation systems). To identify these

threats, we reviewed online sources (e.g., news articles, RHSs websites, forums, blog

posts) and experimentally evaluated some of the most popular RHSs, see Section 3.3.3

for more details. To estimate the level of risk associated with each adversary and threat,

we followed the OWASP risk-rating methodology where the risk is defined as Risk =

Impact ∗ Likelihood [120]. In our risk assessment, we assume that only a small subset of

the riders and drivers are malicious. This is a reasonable assumption, given the current

success of RHSs.

In general, threats with low risks involve attacks that are not scalable, offer limited

rewards, and can be deterred by existing mechanisms such as decreased reputation [121,

108]. Threats with medium risks involve attacks that have relatively higher impact,

offer higher rewards, and are more likely to happen. Threats with high risks involve

attacks that have the highest impact and reward, have the highest likelihood and reported

incidents, and for which current defense mechanisms are insufficient. Appendix A details

each threat and justifies each risk level.

From the high-risk threats in RHSs in Table 3.1, privacy threat 7 and integrity threat 8

are not exclusive to RHSs; data breaches and account theft can affect almost any online

service. Hence, there are existing mechanisms for reducing these risks. For example,

the SP database could use CryptDB [122] to securely store riders’ and drivers’ data.1

1Inference attacks against CryptDB [123] do not apply in RHSs as there is no “auxiliary database”
available to adversaries.
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Therefore, in this work we focus on the high-risk threats that occur exclusively due to

the design of current RHSs and for which there are no current solutions.

SP→R Location Tracking. By design, a SP can track, in real time or offline, riders’

precise locations during their rides and infer private information from such data. Com-

pared with other forms of public transportation, ride-hailing data can reveal significantly

more private information about millions of riders. For example, the SP and other parties

with access to this data (e.g., by agreement, coercion or attack) can determine where

riders live, work, socialize, where exactly they go [124, 125, 126], even for one-night

stands [13]. Furthermore, there are reported incidents of SP’s employees abusing such

data to track riders for entertainment [96] or revenge [99].

O→D PII Harvesting. A malicious outsider could exploit privacy weaknesses in

the services offered by the SP to efficiently collect PII of a large number of drivers. A

particular weakness that could be exploited for this purpose is that, in current RHSs, the

driver’s information is revealed to the rider before the ride begins in order to coordinate

the pick-up event. Hence, an adversary could efficiently collect drivers’ PII in a particular

area by using fake rider accounts, selecting different pickup locations, requesting and

then canceling rides. This attack can be used by shady marketers (e.g., loan sharks) or,

even worse, angry taxi-cab drivers trying to physically harm RHSs’ drivers [127]. The

possibility of this attack was demonstrated when Uber and Lyft employees harvested,

from each other, information about thousand of drivers for recruitment purposes [128,

129]. To defend against this attack, the SP could define thresholds on the number of

canceled requests that a user can make to the service. If a user passes this threshold,

she is banned from the service. However, an adversary could bypass such measures

by creating more fake accounts (they are relatively easy to create) or by buying stolen

accounts on online black markets [130]. In Section 3.7, we present an effective solution

for this unreported high-risk threat.

D→R Fare Overcharging. In case the fare is not calculated upfront by the SP, a ma-

licious driver could exploit weaknesses in the fare calculation service offered by the SP to

unduly charge riders a higher fare. In most RHSs, drivers use their personal smartphones

to report to the SP the distance and duration of each ride for fare calculation. However,

unlike the trusted hardware used for fare calculation in regular taxi cabs (i.e., taximeter),

smartphones are general-purpose devices and are relatively easy to tamper with. Thus,

a malicious driver could modify her smartphone to report longer ride distances to the SP

and, as a result, charge a higher fare. Malicious drivers do not need high technical skills

to perform such attacks, as they could acquire modified devices [117] or access tools on

the Internet. The SP’s mobile app could perform some checks to detect such attacks,

but there are also ways to avoid detection (see Section 3.3.3 for more detail about the

feasibility of this attack). Moreover, the SP could also provide drivers with restricted

smartphones; this approach, however, is less scalable and unpopular among drivers.

3.3.3 Assessment of Popular RHSs

In this section, we present our experimental evaluation of popular RHSs. In particular,

we assess how well these services deal with the three high-risk and RHS-specific threats

described in Section 3.3.2. For this purpose, we installed the rider and driver Android
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Provider SP→R Location
tracking

O→D PII
harvesting

D→R Fare
overcharging

Uber � �� ��
Ola Cab � � ��
Lyft � �� ��
GrabTaxi � �� �
EasyTaxi � � �

Table 3.2: Robustness level of popular RHSs against high-risk threats (Section 3.3.2). Current
RHSs provide no protection (�) or only partial protection (��) against these threats.

mobile app2 of the selected RHSs and, when possible, made ride requests. In addition, we

reviewed the online documentation of the selected RHSs. Table 3.2 presents the results.

For the SP→R location tracking threat, we used rider apps to make ride requests to

RHSs. From these requests, we learnt the information that the riders have to present

to the SPs and the information that the SPs return to the riders. Unsurprisingly, we

did not find any evidence that the evaluated SPs provide any sort of privacy-preserving

mechanisms (e.g., pseudonyms, obfuscated ride traces or ride summaries instead of full

location traces) for protecting the riders from inference attacks. All the evaluated SPs

collect the full location trace of each ride, together with the riders’ and drivers’ identities.

For the O→D PII harvesting threat, we determined how much drivers’ information

is revealed to the rider by the SP when she makes a ride request. First, all the SPs

reveal the driver’s name, phone number, current location, and car’s plate number; some

SPs also reveal the driver’s photo and car model and picture. Second, we checked how

SPs punish riders if they cancel rides too often (e.g., penalties or lower reputation).

Only Uber [121], Grabtaxi, and Lyft [108] provide such types of penalties; this can

partially deter harvesting attacks. Reported incidents [128, 129, 131] demonstrate that

such mechanisms are insufficient.

For the D→R fare overcharging threat, we determined, for each SP, whether the

mobile app for drivers checks if the mock location API [132] is enabled or if the device

is rooted. Only the Uber’s driver app checked for both conditions, whereas Lyft only

checked for the first condition. Still, these checks could be bypassed with tools that are

already available for Android [133] and iOS [134]. Moreover, only Uber and Ola Cab offer

the option of providing drivers with restricted smartphones. However, this is optional

and country dependent.

3.4 Related Work on Privacy-Preserving RHS Design

Researchers have proposed different privacy-enhancing solutions for ride sharing (i.e., car

pooling) services [135, 136, 137, 138, 139] and public transportation ticketing sys-

tems [140, 141, 142]. However, little work exists in the area of privacy and security

for RHSs, probably due to their relative novelty. According to our literature review, the

most relevant work in this area is PrivateRide [17].

PrivateRide is our first attempt to design a solution to enhance location privacy for

riders and protect drivers’ information from harvesting attacks. PrivateRide gracefully

balances the trade-off between privacy guarantees and the convenience of the services.

2We assume RHSs apps offer equivalent privacy and security mechanisms on different mobile plat-
forms.
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However, it has several limitations that are addressed in this work. First, due to the

use of static location cloaking, PrivateRide cannot guarantee the same level of privacy

to all riders, because the size of the anonymity set in a particular cloaked area depends

on the density of riders in that area. For instance, the anonymity set is smaller for

ride requests in areas outside a city center. Also, the tradeoff between the size of a

cloaked area and the accuracy of the ride-matching results prevents the use of larger

cloaking areas (to achieve larger anonymity sets). Second, PrivateRide does not protect

drivers’ privacy, also important [100]. Third, PrivateRide provides limited accountability

features to deal with relatively common scenarios such as drivers and riders physically

attacking each other (i.e., safety concerns) or items being lost during a ride; for many

users, such features can be as important as their privacy. Fourth, PrivateRide’s usability

is reduced with respect to current RHSs because the supported payment mechanism is

less convenient (i.e., PrivateRide requires payments with e-cash bought in advance before

a ride). Moreover, ride-matching in PrivateRide is suboptimal, because the distance

between rider and drivers is estimated using the centers of the cloaked areas, instead of

precise locations, resulting in additional waiting time for riders.

3.5 Our System: ORide

Our goal is to design a RHS that provides strong privacy guarantees to both riders and

drivers, as well as equivalent usability and accountability compared with current RHSs

(e.g., Uber, Lyft, and Easy Taxi). To do so, we assume a system consisting of three

parties: riders, drivers and the service provider (SP). We now describe our adversarial

and system assumptions.

3.5.1 Adversarial Assumptions

In our model, riders and drivers are active adversaries, and the SP is a passive adversary.

We assume that most riders and drivers do not collude with the SP, as drivers are

independent contractors rather than SP’s employees. The case of a covertly active SP is

discussed in Section 3.9.2. In such a case, we assume that the SP does not provide riders

and drivers with malicious apps. This is a reasonable assumption, because such attacks

can be detected by third parties via reverse-engineering or black-box analyses; the risk

of public exposure and reputation loss is a strong deterrent against such attacks.

Given that they have been observed in current RHSs (see Section 3.3), we focus on

the following attacks:

• (A1) The riders and drivers might attempt to assault each other [143]; in extreme

cases, a driver might attempt to kidnap and/or kill a rider, or vice versa [144, 145].

• (A2) The SP uses its knowledge about side information about riders and drivers,

including their home/work addresses, together with protocol transcripts, to perform

large-scale inference attacks in order to profile riders’ and drivers’ activities [13].

• (A3) The SP might attempt to carry out targeted attacks on specific riders. That

is, besides their home/work addresses, the SP knows the precise pick-up location

and time of a specific rider and wants to know the drop-off location and time of

this ride, or vice versa [98, 99, 101].
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• (A4) A malicious outsider might attempt to massively collect driver’s PII

(e.g., drivers’ vehicle information).

3.5.2 Design Goals

The goal of ORide is to defend against the attacks listed in Section 3.5.1, and to offer the

same level of accountability and usability as current RHSs, as follows.

• Riders and drivers are held accountable for their behaviors during their rides. That

is, the SP is able to identify misbehaving riders or drivers when needed, for instance,

if one party attacks the other. However, the SP is able to identify the misbehav-

ing party only with support from the affected party (or her trusted contacts, see

Section 3.8.)

• The system preserves the convenience and usability properties offered by current

RHSs, such as payment through credit cards and reputation rating. In addition,

once a rider is matched with a driver, the rider can track the location of the driver

when she is driving towards the pick-up location, and they can contact each other

to coordinate the pick-up event. The system also enables riders to contact drivers

of their past rides to find lost items.

3.5.3 System Assumptions

We assume that the metadata of the network and lower communication layers cannot

be used to identify riders and drivers or to link their activities. Such an assumption is

reasonable because, in most cases, the smartphones of drivers and riders do not have fixed

public IP addresses; they access the Internet via a NAT gateway offered by their cellular

provider. If needed, a VPN proxy or Tor could be used to hide network identifiers.

We also assume that, besides localization capabilities, the riders’ and drivers’ smart-

phones support peer-to-peer wireless communication, e.g., Bluetooth and WiFi Direct.

And for all location-based computations, the apps use a coordinate system such that the

Euclidean distances correspond to the great-circle distances, e.g., by using map-projection

systems for local areas such as UTM [146] to convert a pair of (latitude, longitude) to

planar coordinates (x, y). Moreover, drivers use a navigation app that does not leak

their locations to the SP. This can be done by using a third-party navigation/traffic app

(e.g., Google Maps, TomTom, Garmin) or pre-fetching the map of their operating areas

(e.g., a city) and using the navigation app in off-line mode.

3.5.4 Notation

Throughout the rest of this work, we denote polynomials and scalar values with lowercase

letters, variables and rings with uppercase letters, and vectors with boldface letters.

�.� denotes rounding to the nearest integer. A polynomial of degree (d − 1) will be

interchangeably denoted as a =
∑d−1

i=0 aiX
i or in its vector form a when there is no

ambiguity. The used symbols and terms are summarized in Table 3.3.

3.5.5 Cryptographic Primitives

In this section, we briefly describe the cryptographic building blocks used in ORide.
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Notation Description

ks Ephemeral private key
kp Ephemeral public key
certX Public-key certificate of X
skX Public-key associated with the certificate of X
pkX Private-key associated with the certificate of X
locX Planar coordinates of X, locX = (xX , yX)
n Number of available drivers
d Degree of the polynomial
dt Deposit token
rdt A random number to create a deposit token
z A geographical zone (e.g., a city)
sigX{m} Message m and signature of X on m
BsigSP (m) Blind signature of the SP on message m
sigR−D{m} Message m is signed by both the Rider and the Driver i.e., sigD{sigR{m}}

Table 3.3: Table of notations

Blind Signatures

A blind-signature scheme [147] is a form of digital-signature schemes in which the signer

does not know the content of the message that she is signing. This is achieved by enabling

the signature requester to ‘blind’ (i.e., randomize) the message before sending it to the

signer. When the signature requester receives the signature on her blinded message, she

‘unblinds’ it to obtain a valid signature for the original message. The signer can verify

the signature of an unblinded message but she is not able to link this message back to

the blinded version she signed.

Anonymous Credentials

An anonymous credential (AC) is a cryptographic token with which the credential owner

can prove to another party that she satisfies certain properties without revealing her real

identity. In ORide, a user is identified when she obtains ACs from the SP. However, when

she wants to start an anonymous session, she reveals to the SP only the expiration date

and the role specified in the AC (rider or driver), and she proves to the SP that, in a

zero-knowledge fashion, she knows the private key associated with the AC. To prove her

reputation to a driver, a rider reveals to the driver the reputation score specified in her

AC, together with the proof to show that the revealed value is trustworthy. ORide relies

on the Anonymous Credentials Light (ACL) [148]. However, note that ACL is a linkable

anonymous credential scheme, i.e., a user can only use a credential once to avoid her

transactions from being linkable.

Somewhat-Homomorphic Encryption

Somewhat-Homomorphic Encryption (SHE) is a special kind of malleable encryption

that allows a certain number of operations (additions and multiplications) to be made

over ciphertexts, without the need to decrypt them first. All SHE cryptosystems present

semantic security, i.e., it is not (computationally) possible to know if two different en-

cryptions conceal the same plaintext. Therefore, it is possible for a party without the

private key (in our case, the SP), to operate on the ciphertexts produced by riders and
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drivers, without obtaining any information about the plaintext values. Additionally, we

choose one of the most recent and efficient SHE schemes based on ideal lattices, the

FV scheme [102]. This scheme relies on the hardness of the Ring Learning with Errors

(RLWE) problem [149]. Note that whenever working with cryptosystems based on finite

rings, we usually work with integer numbers, hence, from here on, we will assume that all

inputs are adequately quantized as integers. Here, we briefly describe the main functions

of the FV scheme.

For plaintext elements in a polynomial quotient ring m ∈ Rt = Zt[X]/(Xd + 1) and

ciphertext elements in Rq = Zq[X]/(Xd + 1), where q and t are positive integers q > t

defining the upperbound of the ciphertext and plaintext coefficients, respectively. Let

Δ = �q/t� and χk, χn be two short noise random distributions in Rq, the FV encryption

of a message m ∈ Rt with secret key ks = s ∼ χk and public key kp = [p0, p1] =

[(−a · s+ e), a] ∈ R2
q , with e drawn from χn and a randomly chosen in Rq, generated by

FV.GenKeys, results in a vector expressed as

c = FV.Enc(kp,m) = [p0 · u+ e1 +Δ ·m, p1 · u+ e2], (3.1)

where u is drawn from χk, and e1, e2 are short random polynomials from the error

distribution χn. All operations are in Rq.

Decryption of a ciphertext c = [c0, c1] works as

m = FV.Dec(ks, c) = (�t · [c0 + c1 · s mod q]/q�) mod t.

The scheme enables us to seamlessly add (FV.Add), subtract (FV.Sub) and multiply

(FV.Mul) two encryptions to obtain the encryption of the added, subtracted, and mul-

tiplied plaintexts respectively; multiplications consider the encryptions as polynomials

in v: [c0, c1] → co + c1 · v, such that the product between c and c′ is evaluated as

[c0, c1] · [c′0, c′1] → c0 · c′0 + (c0 · c′1 + c1 · c′0)v + c1 · c′1 · v2 → [c′′0 , c
′′
1 , c

′′
2 ], which results

in a ciphertext in R3
q , with one extra polynomial. It is possible to recover a fresh-like

encryption with two polynomials by employing a relinearization primitive, which requires

the usage of a matrix (relinearization key) composed of encrypted pieces of the secret

key (we refer the reader to [102] for further details).

3.6 Oblivious Ride-Matching Protocol

One of the challenges in privacy-preserving RHSs is how to efficiently match ride requests

to ride offers, without revealing the riders’ and drivers’ locations to each other and to

the SP. For this, ORide relies on somewhat-homomorphic encryption (see Section 3.5.5)

where the riders and drivers send their encrypted locations to the SP, from which the

SP computes the encrypted squared Euclidean distances between them. We detail this

in the following sections.

3.6.1 Naive Approach

SHE can be applied to the ride-matching problem in RHSs as follows. When a rider wants

to make a ride request, she generates an ephemeral FV public/private key-pair together

with a relinearization key. She uses the public key to encrypt her planar coordinates

and obtains their encrypted forms. She then informs the SP about the zone of her pick-

up location, the public and relinearization keys, and her encrypted planar coordinates.
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Figure 3.2: Our optimized ride-matching approach enables the SP to send to the rider a single ci-
phertext containing all the squared Euclidean distances (dist2Di

) between the rider and available
drivers as opposed to one ciphertext per driver (naive approach). Note that dist2Di

≥ dist2Dj
⇔

distDi ≥ distDj , hence instead of using Euclidean distances for comparisons, we can use squared
Euclidean distances.

When this information arrives at the SP, the SP broadcasts the public key to all drivers

available in that zone. Each driver uses the public key to encrypt their planar coordinates

and sends them to the SP. The SP computes, based on their encrypted coordinates, the

encrypted squared-Euclidean-distances between the rider and the drivers, and it returns

the encrypted squared-Euclidean-distances to the rider, from which the rider can decrypt

and select the best match, e.g., the driver who is the closest to her pick-up location.

However, due to the high ciphertext expansion, a naive use of SHE would incur

impractical computational and bandwidth costs for the riders and the SP. Furthermore,

for each ride request, the SP would need to separately compute the encrypted squared-

Euclidean-distances between the rider and each of the drivers: For n drivers, this would

mean n squared-distance calculations between encrypted polynomials of d coefficients

each, and n encrypted squared-Euclidean-distances returned to the rider. This would

incur an unfeasible overhead in terms of computations for the SP, consequently delaying

the ride-matching for the rider and causing a considerable bandwidth overhead at the

rider-SP link, e.g., hundreds of MBs if the system has several thousand drivers (see

Section 3.11.3).

3.6.2 Optimized Approach

In order to enable the SP to operate on d elements of Zt packed as a polynomial in Rt

in a single ciphertext, such that each encrypted operation affects all the coefficients in

parallel (see Fig. 3.2), we propose two optimizations: ciphertext packing and transform

processing. When the rider decrypts this ciphertext, she can recover these d values

by looking at all the coefficients. From here on, we assume that d ≥ n, which will

usually be the case due to the security bounds on d (see Section 3.10); in other cases,


n/d� encryptions can be used to analogously pack the whole set of squared Euclidean

distances.

First, ciphertext packing enables the SP to pack n ciphertext squared-distances into

one ciphertext, hence reducing the bandwidth overhead. But this is not enough for

our goal. As we show in Section 3.7.4, we use all the n packed encrypted planar co-

ordinates from the drivers independently of each other to homomorphically calculate

all the squared-distances in the same encrypted operation, so we need coefficient-wise
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homomorphic operations. While polynomial additions and subtractions are naturally

coefficient-wise, polynomial multiplication in Rt (and its homomorphic counterpart in

Rq) is a convolution product of the coefficients. A well-known method for transform-

ing convolution products into coefficient-wise products (and vice-versa) in polynomial

rings is the Number-Theoretic Transform (NTT) [103], a Fourier transform specialized

for finite fields. This transform is commonly used in the ciphertext space to speed up

polynomial multiplications that are then implemented as coefficient-wise products. In

our case, for the second optimization, in order that products in the encrypted domain

be translated into coefficient-wise products in the plaintext domain, we apply an inverse-

NTT to plaintexts before encryption and an NTT after decryption. The NTT does not

affect additions and subtractions because it is linear. We note that the NTT exists only

for certain values of d and t, in particular when t is a prime and d divides t − 1 (see

Section 3.11). To make operations in Zt simulate operations in N on our values, we

choose d = 2l as a power of two and t as a sufficiently large Proth prime (of the form

k2l + 1, see [103]) such that all squared Euclidean distances are less than t. As a result,

we improve on both the bandwidth and the computation overhead.

Moreover, due to the low degree of the evaluated operations (squared Euclidean dis-

tances), we avoid the use of re-linearizations at the SP, which (a) reduces the need to

generate and to send the relinearization key from the rider to the SP, (b) reduces the noise

inside the encryptions, and (c) enables more efficient operations at the SP, at the cost of

one extra polynomial to represent the encrypted squared-Euclidean-distance returned to

the rider.

3.7 ORide Protocols

In this section, we present our solution, called ORide (Oblivious Ride). We begin with

an overview of the system and then detail ORide operations.

3.7.1 ORide Overview

ORide provides strong location privacy and anonymity for riders and drivers and still

guarantees service accountability, secure payment and reputation rating operations. For

this purpose, the riders and the drivers must possess ride prerequisites (Section 3.7.2),

including anonymous credentials (ACs), deposit tokens, and digital certificates issued by

the SP. To participate in the system, both riders and drivers create anonymous sessions

by logging in to the service (Section 3.7.3) with their respective ACs. Drivers periodically

report to the SP the geographical zones where they are located. These zones are defined

by the SP to balance the network load in the system and the size of the anonymity set of

the zones (Section 3.11.4). Note that, in contrast to PrivateRide, expanding the size of a

zone in ORide does not affect the performance of the ride-matching and fare-calculation

operations (Section 3.7.4).

When a rider initiates a ride request, the SP, the rider and drivers are involved in

a ride set-up procedure (Section 3.7.4) that matches the rider to a driver. In addition,

as in current RHSs, the rider and the driver agree on the fare based on the estimated

distance and duration of the ride [150, 151]. Some random time after the fare agreement,

they terminate their anonymous sessions. When the ride is completed, the driver creates

a new anonymous session and notifies the SP that she is available again. Note that
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drop-off times and locations are not reported to the SP. Moreover, some time after the

ride finishes, e.g., at the end of the day, the rider and driver perform ride-payment and

reputation-rating operations (Section 3.7.5).

3.7.2 Ride Prerequisites

Digital Certificates. We assume each rider and driver has a digital certificate denoted

as certR or certD , issued by the SP at registration time. Each certificate contains a

public key and a randomly generated ID. The SP can use this random ID to find the real

identity of the certificate holder. Note that the digital certificates are not used by the

riders and drivers to log in to the service, and they are not revealed to the SP during a

ride. They are used by the riders and drivers to identify each other during the ride, as

part of ORide’s accountability mechanism (Section 3.8).

Anonymous Credentials. ORide relies on Anonymous Credentials Light (ACL) [148],

a linkable anonymous credential system, i.e., a user should use an AC only once to avoid

her transactions from being linkable. To use the service anonymously, each user (rider or

driver) requests ACs in advance from the SP, using their digital certificate. Hereafter, we

denote the anonymous credential for a user X as ACX , where X is R for riders or D for

drivers. Each ACX contains the average reputation score repX , an expiration date expX ,

and the secret key skX associated with the public key pubX in the digital certificate of

the AC holder. To differentiate between riders and drivers in the system, an AC also

contains a role attribute roleX , e.g., roleX = 1 if X = D, and roleX = 0 if X = R.

Note that to prevent the SP from de-anonymizing users by correlating the time an

AC is issued with the time it is used, or by relying on the AC’s expiration date, the user’s

app could automatically request ACs from the SP at a certain time (e.g., at midnight),

and the expiration date is coarse-grained, e.g., all ACs issued in a day expire at the end

of that day. The reputation scores cannot be used by the SP to de-anonymize the users,

as they are never shown to the SP during the rides. Furthermore, to prevent users from

abusing the system, the SP defines a threshold on the number of ACs a rider or driver

can acquire per day.

Deposit Token. Each rider is required to possess a deposit token and give it to the

SP at the beginning of a ride. In case of misbehavior, the token is not returned to the

rider. A deposit token, denoted as dt, is worth a fixed amount of money defined by the

SP. It is a random number generated by the rider, blindly signed by the SP (by using

blind-signature schemes, e.g., [147]) such that the SP is not able to link a token it issued

with a token spent by a rider. A rider deposits a token to the SP in the beginning of

the ride, and she is issued a new token by the SP after the ride payment is successfully

completed. Note that the driver is not required to make a deposit because, during the ride

set-up operation, the rider and driver exchange their digital certificates with each other.

Consequently, if the driver misbehaves, the SP can identify the driver by collaborating

with the rider. We discuss this in more detail in Section 3.7.6.

3.7.3 Login to the Service

To use the service, the rider and the driver need to create anonymous sessions to the SP:

to do so, they use their anonymous credentials ACR and ACD , respectively.
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Rider: anonymous session sR SP Driver: anonymous session sD

Generate (kp, ks)

pxR =
∑d−1

i=0 xRXi

pyR =
∑d−1

i=0 yRXi

cxR = FV.Enc(kp, NTT−1(pxR ))
cyR = FV.Enc(kp, NTT−1(pyR ))

qixD
= xDi

Xi

qiyD = yDi
Xi

cixD
= FV.Enc(kp, NTT−1(qixD

))

ciyD = FV.Enc(kp, NTT−1(qiyD ))

cxD =
∑n−1

i=0 cixD

cyD =
∑n−1

i=0 ciyD
cdist = (cxR − cxD )2 + (cyR − cyD )2

dist = NTT(FV.Dec(ks, cdist))
Select driver, denoted ibest

(1) z, dt, cxR , cyR , kp (2) kp, i

(3) cixD
, ciyD

(4) cdist

(5) ibest (6) Notify the selected driver

(7a) Secure channel (via SP): exchange repR and repD

(7b) Secure channel (via SP): exchange kp, certR, certD,precise loc.

(8) Proximity check and validation of secure channel

(9) Driver’s identifying info: plate number, profile picture

(10) Fare report: sigR−D{day, fare, certR, certD}

Figure 3.3: ORide ride setup protocol. The dashed arrows represent the secure channel (via the
SP), and the dotted arrows represent the proximity channel.

Rider. The rider sends to the SP the rider-role roleR and the expiry date expR stated

in her ACR. In addition, she proves to the SP that the claimed values are correct and

that, in a zero-knowledge fashion, she knows the secret key skR tied to the ACR.

Driver. Similarly to the rider, by using her ACD , the driver follows the same afore-

mentioned procedure to anonymously log in to the service.

In order to keep track of that session for coordination, the SP assigns a one-time

session ID to each anonymous session. For the sake of simple exposition, hereafter, we

exclude this one-time session ID from messages exchanged between the rider/driver and

the SP.

3.7.4 Ride Set-Up

When a rider requests a ride, the operations performed by the rider, the drivers and the

SP are as follows (see Fig. 3.3).
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1. The rider generates an ephemeral FV public/private key pair, denoted as (kp, ks).

She first computes the polynomial representations of the coordinates pxR
=∑d−1

i=0 xRX
i and pyR

=
∑d−1

i=0 yRX
i. She then applies the inverse-NTT on the

polynomials and uses kp to encrypt these values: cxR
= FV.Enc(kp, NTT

−1(pxR
)),

and analogously for cyR
. She then sends the zone of her pick-up location (denoted

as z), deposit token dt, kp, cxR
and cyR

to the SP.

2. The SP checks the validity of the deposit token, i.e., if it has not been used before.

If the token is valid, the SP adds it to the list of used tokens. It then sends to each

driver in zone z a randomly permuted index 0 ≤ i < n and the public key kp.

3. The i-th driver encodes her coordinates in the i-th coefficient: qixD
= xDi

Xi and

qiyD
= yDiX

i. Similarly to the rider, she applies the inverse-NTT, encrypts these

values and sends them to the SP: cixD
= FV.Enc(kp, NTT

−1(qixD
)), and analogously

for ciyD
.

4. The SP sums all drivers’ ciphertexts by using the homomorphic property of the

cryptosystem to pack them together: cxD
=

∑n−1
i=0 cixD

and similarly for cyD
.

It then homomorphically computes the n packed squared-values of the Euclidean

distances between the n drivers and the rider in parallel, due to the packing cdist =

(cxR
− cxD

)2 + (cyR
− cyD

)2, and it sends the result to the rider (see Fig. 3.2).

5. The rider decrypts the ciphertext and applies the NTT to obtain a squared Eu-

clidean distance in each coefficient: dist = NTT(FV.Dec(ks, cdist)). Then, she

selects the driver with the smallest distance.

6. The SP notifies the selected driver. If she declines the offer, the SP asks the rider

to select a different driver; it repeats this operation, until one driver accepts. The

SP confirms,to the rider and the driver, that they have been assigned to each other.

7a. The rider and the driver establish a secure channel via the SP, e.g., using the unau-

thenticated Diffie-Hellman protocol, to exchange data that should not be observed

by the SP.3 From the information used to derive the secret key of the secure channel,

the rider and the driver compute a shared secret pairing PIN . This pairing PIN

will be used for the proximity-check operation in Step 8. With this secure channel,

the rider and the driver reveal their reputation scores to each other. The trustwor-

thiness of the revealed values is proved by showing that they are indeed the values

in the rider’s and driver’s ACs. If the rider’s reputation is too low, the driver can

abort the protocol at this step. Likewise, the rider can select another driver, by

using the list of decrypted squared-Euclidean-distances she obtained in Step 5.

7b. Via the secure channel, the rider and the driver exchange their precise locations

(locR and locD, respectively). In addition, they exchange their digital certificates

(certR and certD) with each other. This provides accountability for the rider and

driver (see Section 3.8). Also, the driver can reveal to the rider the public key kp

that she used to encrypt her locations; this helps to detect possible man-in-the-

middle attacks at Step 2 of the protocol by the SP.

3Detection of possible man-in-the-middle attacks by the SP is done in Step 8. Note that this check
is needed only if the SP is an active adversary.
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The driver drives from her current location locD to the pick-up location locR, using

an off-line navigation app or a third-party navigation app (such as Google Maps or

TomTom). She sends, in real time via the secure channel, her precise locations to

the rider, thus the rider can track the movements of the car. Also, at this point,

the rider and the driver can call or message each other through their ride-hailing

apps, if needed.

8. When the rider and the driver are in proximity, the driver performs a proximity

check to verify the physical presence of the rider before releasing her identifying

information: they use a short-range wireless technology (e.g., Bluetooth or WiFi

Direct) to set up a proximity channel using the pairing PIN . If the channel is

successfully established, the driver can verify that the rider is in her proximity.

This helps prevent drivers’ PII from being harvested. If this step fails, the driver

can decide to abort the protocol. Also, via the proximity channel, the rider and the

driver can check whether the secure channel (established at Step 7a) was tampered

with by the SP.

9. The driver releases her identifying information to the rider, including her vehicle’s

license plate number and her profile picture. This information helps the rider

to identify the driver and her car and to prevent certain threats, such as fake

drivers [152]. Therefore, it is needed when the rider is about to enter the car. That

is, the required communication distance between the phones of the rider and the

driver is small (e.g., several meters).

10. The rider and the driver create a fare report. A fare report is a token generated

by the rider and driver; and at the end of the day, the driver deposits it to the SP

to get paid (Section 3.7.5). A fare report is created as follows. The rider sends

her drop-off location to the driver via the secure channel, they agree on the path

and, based on the estimated path, they compute the fare. The rider and driver

then use the private key associated with their certificates to sign a message that

reports about the day of the ride, the fare and their certificates, i.e., fare report

= sigR−D{day , fare, certR, certD}. Note that this upfront-fare method has been

implemented in current RHSs, such as in Uber [151] and in Lyft [150]. Once the

driver receives the fare report from the rider, the ride begins. The rider’s and

driver’s apps do not report any information to the SP at this step and during the

ride. Also, to prevent the SP from inferring the starting time of the ride based on

the interactions between the rider and the driver over the secure channel, the rider

and driver can randomly send dummy information to each other through the secure

channel. Also, some random time after the fare-report agreement, they terminate

their anonymous sessions.

Intuitively, because the distances between the rider and drivers are computed based

on their (encrypted) precise locations, expanding the size of the zone will not result in

negative effects on the performance of the ride-matching and fare-calculation operations.

In addition, with ciphertext packing, we reduce by a factor of n the communication

between the SP and the rider. However, if the drivers are malicious, they could corrupt

the inputs from other drivers. Furthermore, note that in Step 1 of the protocol, any

valid rider can generate an ephemeral public/private key pair. Consequently, if the SP
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is an active attacker, it could track the locations of the drivers, thus indirectly track the

locations of the riders. We discuss solutions to these potential issues in Section 3.9.

3.7.5 Ride Payment and Reputation Rating

When the car arrives at the drop-off location, the driver creates a new anonymous session

to the SP. This enables her to receive ride-request broadcasts from the SP. Note that the

driver does not report to the SP that the ride is completed.

At the end of the day, the driver sends to the SP the fare report

sigR−D{day , fare, certR, certD} she received during the ride set-up operation (step 10,

Section 3.7.4). The SP checks the correctness of the rider certificate certR in the fare

report and the correctness of the signature. If they are valid, the SP charges the rider

according to her payment method, e.g., credit card. It then subtracts the service fee, and

deposits the remainder to the driver. The SP then notifies the rider about the payment

and that a new deposit token is available. The rider generates a random number rdt,

blinds it to r′dt, and sends r′dt to the SP. The SP signs r′dt (i.e., dt′ = sigSP {r′dt}, and
it sends this blind signature to the rider’s account. The rider unblinds the signature to

obtain the deposit token which she can use for her next ride. Note that this procedure

can be done automatically by the rider’s app.

Once the payment is successfully completed, the rider and driver can rate the repu-

tation of each other, similarly to current RHSs. They can log in to the service with their

real credentials and provide the reputation score for the party whom they rode with.

Note that ORide preserves the payment and reputation-rating operations of the cur-

rent RHSs. Also, as both the rider and driver are anonymous during the ride, ORide

does not require the rider and the driver to hide their identifying information from the

SP during the payment and reputation-rating operations. However, it is important to

note that, in order to prevent the SP from de-anonymizing the rider and the driver by

correlating the time that a fare report is deposited with the drop-off event of the ride, the

payment operation should not occur immediately after the ride, e.g., the drivers deposit

the fare reports to the SP at the end of the day.

3.7.6 Ride Cancelation

As in current RHSs, a rider or a driver can cancel a ride at any time before or during the

ride. This is, however, discouraged by the SP, because it can lead to malicious behavior:

For example, once a rider and a driver are assigned to each other by the SP, they meet

at the pick-up location and start the ride as normal; but, to avoid the service fee, the

rider or the driver can send a cancelation notification to the SP. Therefore, similarly to

current RHSs, if a rider or a driver cancels a ride a certain amount of time after the ride

request, they should be penalized by the SP, for example, their reputation scores are

lowered or fees are charged [153].

In ORide, when a rider cancels a ride, the SP can offer her two options: to lose her

deposit token (i.e., pay a penalty) or to reveal her certR and have her reputation score

lowered. If a driver cancels a ride, the SP can ask the rider to reveal the certD, from

which the SP can identify and penalize the driver according to its policy.
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3.8 Accountability

In this section, we discuss the accountability goals (mentioned in Section 3.5.2) of ORide.

This includes audit-trail mechanisms against the attack A1 in Section 3.5.1 and addi-

tional features such as retrieval of lost items, assurance of payment, and integrity of the

reputation-rating operation. Attacks A2, A3 and A4 are discussed in Section 3.10.

(A1) Accountability. ORide enables the rider and the driver to exchange, during the

ride set-up procedure, their digital certificates, i.e., certR and certD, respectively, and

the fare report. This provides accountability for riders and drivers, i.e., an affected party

can report to the SP the digital certificate of the attacker and the fare report, from which

the SP can identify the attack in order to charge her a fee, lower her reputation and/or to

support legal action. However, the SP is only able to identify the attacker with support

from the affected party; likewise, the affected party cannot obtain the real identity of

the attacker without support from the SP. This is because the certificates certR and

certD contain only the pseudonyms and only the SP knows the mapping between the

pseudonyms and the real identities of the certificate owners.

ORide enables the rider to share with her trusted peers the driver’s certificate certD
and the fare report, via out-of-band channels such as messaging apps, or a plug-in in her

rider app. Similarly, during the ride, via out-of-band channels, she can share her GPS

trace with her friends using (k, l) threshold secret sharing [154], i.e., each GPS location

point is split into l parts so that any k out of l parts reconstruct the original coordinate.

The driver can follow the same mechanism. Such information can be shared with law

enforcement in case riders or drivers disappear (e.g., kidnapping), as in current services.

This is similar to the approach used in personal safety apps, such as Google Trusted

Contacts [155].

ORide guarantees assurance of payment. A rider cannot avoid paying the fare of a

ride, because the fare report contains her digital certificate certR and the day of the ride.

As the rider and driver agree on the fare and both sign it before the ride, they cannot

subsequently increase or decrease this fare. However, they might collude to underpay

the service fee to the SP, by agreeing on a small fare and paying the difference in cash.

Yet in this case, ORide offers the same guarantees as current RHSs, because riders can

already request a small ride through the application and then pay in cash for a longer

ride, once they have met the driver.

Furthermore, the bilateral rating system enables the SP to ban abusive riders and

drivers from the service. Neither a rider nor a driver can claim a better reputation for

herself, because the proof for attributes in her AC will not be correct with respect to

her falsely claimed reputation. They also cannot arbitrarily rate the reputation of each

other, because a payment record is needed (the deposit of a fare report). As discussed in

Section 3.7.6, similarly to current RHSs, ORide enables the SP to hold riders and drivers

accountable for ride cancelations.

SP Incentives. From an economic perspective, ride-hailing service SPs would have

incentives to deploy ORide because it provides privacy and security for the riders and

still preserves their business models (i.e., the SP can still charge a commission for each

ride). In order to monetize ride data, the SPs can provide a discount for riders if they

reveal (part of) their GPS traces. In addition, privacy and security for RHSs could be

required by law and legislation, and ORide shows that it is technically possible to achieve
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a strong level of protection. As such, this work lays the foundation for the design of a

privacy-preserving and secure RHSs.

Additional Features. Similarly to current RHSs, ORide enables the riders to retrieve

lost items (i.e., items forgotten in the car), as drivers’ certificates certD and car infor-

mation are provided during the ride set-up procedure. As discussed earlier, the riders

can share certD with their friends, hence even if the riders lose their phones, they can

still retrieve the certD from their friends and contact the driver (as in current RHSs).

Moreover, due to the secure channel established between the rider and the driver, the

rider can still track the driver trajectory while waiting at her pick-up location, or they

can contact each other (e.g., messaging or calling).

3.9 Protecting against Malicious Behaviors

In this section, we describe how the protocol presented in Section 3.7 can be extended

to defend against malicious drivers and a covertly active SP.

3.9.1 Malicious Drivers: Masking

As mentioned in Section 3.7.4, if a driver behaves maliciously, she could encrypt non-

zero values in the slots other than her allotted one, thus corrupting the inputs from

other drivers. Our protocol can cope with this malicious behavior by adding one extra

step in which the SP homomorphically multiplies each driver ciphertext by a mask mi =

NTT−1(Xi) for the driver’s index i (see notations from Section 3.7.4), which preserves

only the contents in the allocated slot. However, because the mask does not hold any

sensitive information and it is known by the SP, a naive homomorphic multiplication

with an encrypted mask would incur an unjustified overhead. Therefore, we propose,

instead, a more efficient multiplication operation, denoted �, as follows.

Given a ciphertext c = [c0, c1] ∈ R2
q corresponding to a plaintext m ∈ Rt, and a

mask mi ∈ Rt, we want to obtain a ciphertext c′ = c � mi corresponding to the masked

plaintext FV.Dec(ks, c) ·mi. Here, mi can be thought of as its own noiseless and unscaled

encryption (Equation (3.1) on page 43, evaluated for u, e1, e2 = 0, and no scale Δ), being

a vector in R2
q with only one non-zero component ([mi, 0] ∈ R2

q). Therefore, the product

results as

c � mi = [c0 ·mi, c1 ·mi].

The � operation consists of two polynomial multiplications, it avoids encryption ofmi,

halves the number of products with respect to an encrypted homomorphic multiplication,

and keeps the cipher size from growing after the product, thus considerably improving

the performance of this operation.

In any case, this precaution is only needed in case the drivers are malicious; and

random checks on their locations can be implemented instead if the drivers are only

covertly active (i.e., they refrain from cheating if there is a negligible chance of being

caught in the act).

3.9.2 Covertly Active SP

If the SP is an active attacker, it might attempt to perform a man-in-the-middle (MITM)

attack at Step 2 of the ride set-up protocol (Section 3.7.4) by replacing the public key
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Rider SP Driver

[Steps (3) to (10) are the same as in Fig. 3.3]

(1) z, dt, cxR , cyR , kp, PoR
(2) kp, PoR

(10) Fare report

(10a) rand

(10b) BsigSP {sigD{rand}}
(10c) PoR = sigSP {sigD{rand}}

Figure 3.4: Changes introduced to the original ride set-up protocols (Fig. 3.3) to handle covertly
active SP.

kp. However, this can be detected because the driver can share the key she received with

the rider through the secure channel. If the rider detects that this key is different from

the one she originally sent to the SP, then she can know that a MITM attack must have

happened. The SP might also attempt to tamper with the set-up of the secure channel

(Step 7a, Fig. 3.3). However, this can be detected because via the proximity channel,

the rider and the driver can compare with each other the inputs that they received from

the SP during the set-up protocol.

As mentioned in Section 3.7.4, any valid rider can generate an ephemeral key to make

a ride request. As the SP issues credentials for riders and drivers, it can impersonate a

rider or a driver in its own system. If the SP continuously impersonates a rider, it could

learn the drivers’ locations from which it could learn the coarse-grained pick-up locations

of the riders. In other words, if a rider chooses the driver who is the closest to her pick-up

location, the SP would know that she is in the Voronoi cell of her selected driver [156].

In what follows, we will present a mechanism for deterring this attack. However, we note

that the attack is not trivial, due to the high dynamics of the system, i.e., drivers can

arbitrarily go on-line and off-line anytime. Also, the SP would not have strong incentives

to perform this attack, because it would add computational and bandwidth overhead to

the service, thus negatively affecting the productivity of the service itself.

To deter this attack, we introduce the notion of Proof-of-Ride (PoR), defined and

used as explained below. An illustration of the protocol with PoR is shown in Figure 3.4.

A PoR is a random number rand generated by the rider, signed by the driver by using

the secret key associated with her certD, and then blindly signed by the SP by using

blind-signature schemes such as [147], i.e., PoR = BsigSP {sigD{rand}}. It is used to

prove to the drivers that the rider is real, i.e., she took a ride in the past. When a rider

makes a ride request, she has to provide in her ride request a PoR, the certD and the

random number rand used in the PoR. A PoR can be used only once. For the first ride,

PoR = certR.

To prevent the SP from creating its own certR and certD in order to create its own fake

PoR, the SP has to provide a public bulletin board such as certificate transparency [157]:

the SP maintains and publishes a publicly auditable and append-only log of all rider

and driver certificates it has issued and revoked. Whenever a driver receives a PoR,

she can check whether the rider’s certificate certR (in the case of the first ride), or the

driver’s certificate indicated in the PoR, is in the list of certificates published by the

SP. In this way, similarly to the cases of companies opening fake user accounts [158],
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Identities Pick-up loc. Pick-up time Drop-off loc. Drop-off time Loc. trace Fare
Current RHSs Rider, Driver Precise Precise Precise Precise Full Yes
PrivateRide Driver Zone Obfuscated Zone Obfuscated Partial Yes
ORide N/A Zone Obfuscated N/A N/A N/A N/A

Table 3.4: Information observed by the SP during ride set-up procedure with respect to different
RHS designs. Note that the zone in ORide is larger than the zone in PrivateRide without affecting
the ride-matching optimality (see Section 3.11.4). Also note that, the payment operation in
ORide reveals some information about the riders, but it cannot be used to break the anonymity
of the rides (see Section 3.10).

if the SP internally creates fake accounts, it can be detected by auditing authorities.

Also, to prevent a rider from double-spending a PoR, and the SP from reusing a valid

PoR to perform the aforementioned active attack, the SP maintains and publishes an

append-only logs of PoRs that have been spent, or cancelled (due to ride cancelations).

Note that PoR could create a point of linkability, i.e., the SP is able to know that the

rider is in the set of identities indicated in the fare reports deposited by a specific driver.

This can be easily prevented by using anonymous-reputation and anonymous-payment

systems (e.g., e-cash), as used in the PrivateRide system [17].

3.10 Privacy and Security Analysis

In this section, we present an analysis of ORide to show that it effectively defends against

the privacy attacks described in Section 3.5.1. In Table 3.4, we provide a comparison

between information observed by the SP during the ride set-up procedures of different

RHS designs.

With ORide, the SP cannot de-anonymize a rider or driver through their anonymous

logins by using their ACs. This is guaranteed due to the anonymity and unlinkability

properties of the ACL anonymous credential system [148]. Additionally, the SP cannot

obtain extra information from the riders’ and drivers’ encrypted locations and their

encrypted squared-Euclidean-distances; this is due to the semantic security property

of the FV encryption scheme [102]. The information observed by the SP from ORide

operations can be put in two databases (DB), as follows.

• Ride DB, in which each entry contains the role and expiration date of the AC,

the pick-up zone and obfuscated pick-up time. The role and expiration date are

coarse-grained, i.e., all ACs issued on the same day expire at the end of the day

they were issued.

• Payment DB, in which each entry contains a rider’s ID, a driver’s ID, a fare, and

the day the fare report is deposited to the SP. Note that this database does not

exist if payment is done through e-cash or regular cash, as the fare and payment

are done without the SP knowledge.

(A2) Large-Scale Inference Attacks by the SP

To profile riders’ and drivers’ activities, the SP needs to learn the identities, the locations,

and the times associated with their rides.

By using the Payment DB, the SP would know which specific rider took a ride with

a specific driver, on which day, and what its fare was. As RHS drivers are often licensed
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to operate in a city or state, knowing that a rider took a ride with a specific driver, the

SP might be able to know the city where the rider took a ride, but it does not know the

specific location in the city. Note that, in most cases, as the city could be inferred from

the zones reported by the riders in their ride requests, this is not an additional leakage of

information. In addition, knowing the home/work addresses and the fares of the rides,

the SP might be able to infer if a rider went from home to work. However, note that

even for frequent rides between the home and work of the same rider, the fares would

not be the same due to different routes and traffic conditions. Therefore, the inference

of rides between the home and work of a rider is error-prone. Moreover, such rides are

not sensitive, compared to others, such as one-night stands, going to abortion clinics or

political-party meetings. For improved anonymity, anonymous-payment methods, such

as e-cash or regular cash, could be used to decouple the riders’ identities from the fares,

thus preventing the SP from learning about rides between the homes and places of work

of the riders.

By using the Ride DB, the SP might be able to guess the identities of the riders, only

if the pick-up zone has a limited number of ride activities and riders, e.g., a zone where

only one rider lives. This case, however, is unlikely to happen in ORide, because the

zones are defined in such a way that each zone has at least a large minimum number of

ride requests per day, while balancing the bandwidth requirements for the drivers. We

illustrate this in Section 3.11. Note that the SP would be detected if it lied about the

activity densities in the zones, because these densities are public knowledge [159], and

the drivers would notice if they received very few ride requests from a certain zone.

In the case where the SP knows that a rider makes ride requests from a specific zone

(e.g., the zone that contains her home/work addresses) and it wants to know the pick-up

times of these rides, the anonymity set of a ride is the number of rides that occurred on

the same day from that zone. As this requires the SP to have precise knowledge about

the pick-up zones, the anonymity-set size in this case is the lower-bound estimation of

the anonymity set for the general case of large-scale profiling attacks by the SP. This

lower bound is used in the evaluation of the anonymity set achieved by ORide, presented

in Section 3.11.

(A3) Targeted Attacks by the SP

In the case where the SP knows the precise pick-up location and time of a ride, it still

cannot know the drop-off location and time of the ride, because, in ORide, the drop-off

event is not reported to the SP. Knowing the fare from the Payment DB, the SP might

be able to guess whether the target went home or to work, but it could not know about

other destinations. However, note that similar to the aforementioned case, the inference

of rides between home and work of a rider is error-prone. Also such rides are not very

sensitive. Anonymous-payment methods, such as e-cash could be used to prevent these

attacks.

(A4) PII- and Location-Harvesting Attacks by Outsiders

In the current form of RHSs, a malicious outsider can easily harvest PII from drivers: it

could create a rider account, fake different pick-up locations, make ride requests, obtain

drivers’ information, and then cancel the ride requests. This is possible, because the

drivers’ information is revealed to the riders right after the riders are matched with the
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drivers. With ORide, the driver can easily check the proximity of the rider by using a

short-range wireless communication channel before sending her PII to the rider. Thus, to

collect PII from drivers, a malicious outsider not only needs to make a ride request but

also to be physically close to the pick-up location reported. As a result, ORide prevents

large-scale PII-harvesting attacks.

A malicious outsider might attempt to triangulate drivers, to obtain a snapshot of

the locations of all drivers in a zone: It could make three fake ride requests from different

locations at the same time to obtain the distances, and cancels these requests immedi-

ately. ORide mitigates this attack by applying two measures: (1) requiring a deposit

token from each rider per request, thus making the attack more financially expensive

and enabling the SP to identify riders who make many requests and cancelations (as

discussed in Section 3.7.6), and (2) permuting the list of drivers’ indices for each ride

request (Step 2 in Section 3.7.4). Also, if the threat of such an attack is high, the SP

can define a low threshold on the number of ACs each rider account can obtain per day.

3.11 Evaluation

In this section, we evaluate our protocols by using a real data-set of taxi rides. We

first evaluate the performance of the ride-matching operation in terms of computational

and bandwidth requirements for the riders and drivers. We then evaluate the effect of

Euclidean distances on the optimality of ride-matching operations.

3.11.1 Data Sets

Our data-set consists of over 1.1 billion taxi rides in New York from January 2009 to

June 2015 [104]. We extracted data for the month of October in 2013, one of the busiest

months in the data set, which resulted in a subset of over 15 million rides. In this subset,

the average duration of the rides is 13 minutes. The GPS traces of the rides are not

given; however, the precise pick-up and drop-off locations and times, and the pseudo-

IDs of the taxi drivers associated with the rides are provided. In addition, the data set

provides mapping between latitude/longitude coordinates to NYC census tracts (CTs),

neighborhood tabulation areas (NTAs) and boroughs in NYC.

We make the following assumptions. First, the drop-off location of a driver is her

waiting location for new ride requests. Second, a ride-request event is a pick-up event

(consisting of a pick-up location and pick-up time) in our data set. Third, for each ride-

request event, the set of drivers available for that request consists of drivers who have

at least one drop-off event in the last 30 minutes since the ride-request timestamp. The

30-minute interval is chosen, because the data-set shows that 99th percentile of the time

gap between the drop-off event of a driver and her next pick-up event is approximately

30 minutes.

3.11.2 Implementation Details

Our ORide prototype features the main cryptographic operations for the ride matching in

the ride set-up procedure (Section 3.7.4). To measure the cryptographic overhead of ride-

matching operations, we implemented a proof-of-concept ORide in C++, by relying on

the NFLlib library [160]. In our experiments, the SP, the rider, and the driver are located

on the same computer, hence network delays are not considered. However, the network
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delay would not impose a considerable overhead, because a ride-matching operation

requires only only one round-trip message between the rider and the SP, and one round-

trip message between the SP and each driver. Also, the amount of data exchanged

between the rider and the SP, and the SP and the drivers, is small (as discussed in

Section 3.11.4). Note that, similarly to current RHSs, the SP can implement a timeout

for responses from the drivers such that the latency is reasonable for the service. Due to

the dependency requirements of the NFLlib, it is not trivial to port the implementation

to mobile platforms. However, to make our experiments close to the performance of

smartphones, in all of our evaluations, we did not use SSE or AVX optimizations for

Intel processors. The source code is made available at [105].

3.11.3 Per-Ride Overhead

In this section, we describe our experimental setup and present the bandwidth and com-

putational overhead per ride request for a rider and a driver.

We used ORide’s prototype to estimate the overhead added for ride-matching op-

erations in three settings: (S1) the naive SHE approach (Section 3.6.1) without using

re-linearizations at the SP, (S2) ciphertext-packing optimizations and honest-but-curious

drivers (i.e., drivers follow the protocols correctly) (Section 3.7.4), and (S3) ciphertext-

packing optimizations and malicious drivers (Section 3.9.1).

Experimental Setup. To measure the performance of our system, we used a com-

puter (Intel i5-4200U CPU, 2.6 GHz, 6 GB RAM) with Debian Jessie (Linux kernel

3.16). The security parameters used in our experiments are tuned to achieve an equiva-

lent bit-security of more than 112 bits, therefore exceeding current NIST standards for

2016-2030 [161]. With this security target, and a plaintext size of 20 bits, the needed

polynomial dimension is d = 4096, with coefficients of size 124 bits (each polynomial has

a size of 62 KB). These parameters guarantee both 112-bits of security and correct opera-

tions for homomorphically adding up to 4096 encrypted locations in the same ciphertext

and calculating the corresponding squared Euclidean distances. We refer the reader to

Section 6 in [102] for more details on the choice of cryptographic parameters for FV. It is

worth noting that we have considered pessimistic bounds in order to cope with recently

published attacks that reevaluate the security of lattice-based cryptosystems [162]. Also

note that, with 20-bit plaintext space, a geographical area of size 60 km2, such as the

borough of Manhattan in NYC, would be quantized into a fine-grained grid of resolution

approximately 10 m × 10 m.4

Assuming that a rider makes a ride request to the SP and that there are 4096 drivers

available for the request (n = 4096), with the aforementioned security parameters, the

bandwidth requirements and computational overhead per ride request, for a rider and a

driver, are shown in Table 3.5 and Table 3.6, and explained below.

4The calculation is done as follows. Assume a geographical area of size s×s and a plaintext space of b
bits to represent the squared Euclidean distances between points in the area. The area can be quantized
into a grid with cells of size s/2(b−1)/2 × s/2(b−1)/2, with the explanation as follows. Assuming the
area is discretized into a grid of v × v cells, the largest possible squared Euclidean distance between
any two points on the grid is 2 × v2, and this has to be at most 2b. Therefore, v ≤ 2(b−1)/2. In other
words, each edge of size s can be discretized into v points, and the distance between any pair of two
consecutive points is s/2(b−1)/2. Therefore, the area can be represented by a grid with cells of size
s/2(b−1)/2 × s/2(b−1)/2.
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Setting Rider Driver

Algorithm
Upload
(KB)

Download
(KB)

Download
(KB)

Upload
(KB)

S1 372 761856 124 248
S2 372 186 124 248
S3 372 186 124 248

Table 3.5: Per-ride bandwidth requirements of ORide, with d = 4096, log2(q) = 124, and there
are 4096 drivers available for a ride request (n = 4096). Compared to the naive SHE approach
S1, optimized approaches (S2 and S3 ) significantly reduce the bandwidth requirements for the
riders

Setting Rider Driver SP

Algorithm
Gen. keys

(ms)
Encrypt
(ms)

Decrypt
(ms)

Load key
(ms)

Encrypt
(ms)

Load key
(ms)

Compute Dist.
(ms)

S1 1.51±0.06 2.6±0.2 7823.4±573.4 0.53±0.01 2.6±0.2 0.53±0.01 113868.8±6553
S2 1.51±0.06 2.6±0.2 2.2±0.1 0.53±0.01 2.6±0.2 0.53±0.01 208.9±4
S3 1.51±0.06 2.6±0.2 2.2±0.1 0.53±0.01 2.6±0.2 0.53±0.01 745.5±24.5

Table 3.6: Per-ride computational overhead of ORide (without AVX/SSE optimizations), for d =
4096, log2(q) = 124, and there are 4096 drivers available for a request. Statistics (avg ± std.dev.)
were computed from 1000 experiments. Compared to the naive SHE approach (S1 ), optimized
approaches (S2 and S3 ) significantly reduces the computation time for the SP and the decryption
time for the riders.

• Bandwidth overhead for a rider: In all three settings, for each ride request, a

rider sends to the SP a public key and two ciphertexts for her encrypted planar

coordinates. This totals 6 polynomials, a payload size of 372 KB.

Regarding the number of squared-distance ciphertexts a rider receives from the

SP, in setting S1, it is equal to n, i.e., the number of responding drivers. In

settings S2 and S3, it is significantly reduced to 
n/d�, due to ciphertext packing.

A ciphertext of the squared Euclidean distance, when avoiding relinearizations

(see Section 3.7.4), consists of 3 polynomials, thus having a total size of 186 KB.

Assuming 4096 drivers respond to a ride request, setting S1 would require the SP

to send 4096 ciphertexts (744 MB) to the rider, whereas S2 would require only one

ciphertext (186 KB).

• Bandwidth overhead for a driver: In all three settings, for each request: (1) on

the downlink, the SP forwards to each driver a public key, 2 polynomials of size

124 KB, and (2) on the uplink, each driver sends back to the SP her encrypted

planar coordinates, totaling 4 polynomials of size 248 KB.

• Computational overhead: As shown in Table 3.6, for both riders and drivers, in

all three settings, the computational overhead introduced by key generation and

encryption operations are small, i.e., 1.5 ms and 2.6 ms, respectively. Due to mask-

ing, setting S3 introduces a small computational overhead for the SP in homo-

morphic squared Euclidean-distance computation, compared to setting S2 (745 ms

vs. 208.9 ms). However, noticeably, due to ciphertext packing, settings S2 and S3

significantly reduce the computational cost for the SP (208.9 and 745 ms compared

to 113.9 s required by S1 ). It also significantly reduces the decryption overhead

for the rider, from 7823 ms in setting S1 to 2.2 ms in settings S2 and S3.

Note that the results for the rider and driver are optimistic, as we used a lap-



3.11. EVALUATION 59

 0

 20

 40

 60

 80

 100

100 101 102 103 104 105

Pr
op

or
tio

n 
of

 r
id

es
 [

%
]

(a) Anonymity-set size

 0

 20

 40

 60

 80

 100

 0  0.5  1  1.5  2

Pr
op

or
tio

n 
of

 th
e 

tim
e 

[%
]

(b) Upload speed [Mbps]

Zones: 
Manhattan CTs

Manhattan NTAs
Queens + Bronx

Brooklyn + Staten

Figure 3.5: System performance. (a) Anonymity-set size, (b) Upload speed requirement for the
drivers. Our results show that ORide is scalable while providing good anonymity-sets for riders.

top instead of a smartphone (however, as stated before, CPU optimizations were

disabled to reduce the difference). Although such comparisons are not straight-

forward, we can make a rough estimation of the expected performance of ORide

in smartphones. For instance, by comparing the performance scores of top mul-

ticore CPUs in smartphones [163] with top multicore CPUs in desktops [164], we

can see that the difference is less than an order of magnitude. Assuming such a

difference, then we can see that the computational overheads for key generation, en-

cryption, and decryption are still acceptable in smartphones, around 15 ms, 26 ms,

and 22 ms, respectively. The overhead is still acceptable even if we consider two

orders of magnitude difference, as the total time to hail a ride is in the order of

minutes [165].

3.11.4 Riders’ Anonymity and Drivers’ Bandwidth Requirements

In this section, we present the trade-off between the ride anonymity set vs. bandwidth

requirements for the riders and drivers, by using the real data-set presented in Sec-

tion 3.11.1. Due to the high demand of taxi rides in Manhattan with respect to the lower

level of activity in other boroughs in NYC (from our data-set, Manhattan accounts for

90% of ride requests), we define two zone settings as follows.

• Setting one (Z1): Manhattan is divided into census tracts (CTs). Each CT is

one zone. The boroughs of Queens and Bronx are merged into one zone, and the

boroughs of Brooklyn and Staten Island are merged into one zone.

• Setting two (Z2): Manhattan is divided into neighborhood tabulation areas

(NTAs). Each NTA is one zone. Similarly to setting one, the boroughs of Queens

and Bronx are merged into one zone, and the boroughs of Brooklyn and Staten

Island are merged into one zone.

Estimation of the Anonymity Set. As explained in Section 3.10, the number of

rides in a day from a zone is a lower-bound estimation of the anonymity set for a ride.

Fig. 3.5a shows the experimental cumulative distribution function (CDF) of the lower-

bound anonymity-set size. It can be observed that, for Manhattan with the zone granu-

larity of census tracts, 81.7% of the rides have an anonymity set of size at least 50, and



60
CHAPTER 3. A PRIVACY-PRESERVING YET ACCOUNTABLE RIDE-HAILING

SERVICE

 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50

Pr
op

or
tio

n 
of

 d
ri

ve
rs

 [
%

]

(c) Data plan [GB]

Zone settings: 
Z1
Z2

Figure 3.6: Monthly data-plan requirement for the drivers.

for a zone consisting of Queens and Bronx, all of the rides have an anonymity-set size of

at least 26,000.

Bandwidth Requirements for Riders. The bandwidth requirements for a rider, per

ride request, depends on the number of available drivers. Our experiments show that for

both zone settings, for all ride requests, the number of available drivers is less than 3,500.

This means that with the security parameter chosen (as presented in Section 3.11.3) and

when proposed optimized packing approaches are used, a rider needs to download only

one ciphertext, i.e., 186 KB, which is negligible.

Bandwidth Requirements for Drivers. Fig. 3.5b shows the CDF of the upload

speed required for the drivers; the upload speed is computed by multiplying the number

of requests a driver receives per second with the size of the ciphertexts she has to upload

per request. Note that the required downlink speed is half of the uplink speed, because

the downlink payload is half the size of the uplink payload (Section 3.11.3). It shows that

for Manhattan with the zone granularity of census tracts, the required upload speed is

less than 0.5 Mbps; and for other zones, the required upload speed is less than 2 Mbps,

which is provided by 3G or 3.5G networks.

Monthly Data-Plan Required for Drivers. Fig. 3.6 shows the CDF of a data

plan required for the drivers for two aforementioned zone settings; this is calculated by

multiplying the total number of requests a driver would receive during her waiting time

with the uplink and downlink payloads per request. The result shows that with the

zone setting Z1, a driver needs at most 10 GB of data per month, and with the zone

setting Z2, 60% of drivers need less than 25 GB of data per month. This requirement is

reasonable: For example, in the U. S. , an unlimited data plan typically offers 20-26 GB

of high-speed data for less than $100 [166]. In addition, the drivers can reduce their

data-plan consumption by using free WiFi networks, such as LinkNYC [167].

The requirements on bandwidth for the drivers and the anonymity-set sizes for riders

enables the SP to define the zones that balance the trade-off between the two aforemen-

tioned requirements. For example, for areas that have a high density of ride activities

such as Manhattan, the SP could discretize the borough into zones of CTs or NTAs, or

combinations of CTs and NTAs. Note that, as shown earlier, at the granularity level of

CTs (Z1), the anonymity set provided by ORide for the case of a very strong adversarial

SP is already large. In special cases, such as concerts and sport events, the SP can split a

crowded zone into sub-zones, in order to find a balance for the aforementioned trade-off.

For areas that have fewer ride activities, such as other boroughs in NYC or other cities,
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Figure 3.7: Effect of Euclidean distance on the extra distances for the drivers (left) and on the
waiting time for the riders (right) with respect to different zone settings. Our results show that
the overhead added by ORide is reasonable.

an entire borough or city can be a zone. For example, a zone consisting of the boroughs

of Queens and Bronx would guarantee an anonymity-set size of at least 26,000 for a ride,

while requiring the drivers to have an Internet connection of only at most 2 Mbps. It is

worth noting that the zones used in our experiments were chosen based on the existing

zones predefined in our NYC dataset; however, the SPs can adjust the zones such that

each individual rider receives approximately the same level of privacy guarantee (all the

zones have approximately the same anonymity-set size). This can be calculated, for ex-

ample, based on the knowledge of the SPs about the taxi demand in the past and the

future events (e.g., concerts or sport events) in an area.

3.11.5 Effect on Ride Matching

Ideally, to minimize the extra costs for both the drivers (e.g., gas and driving time

to pickup) and the riders (e.g., waiting times at pick-up locations), the ride-matching

algorithm should take into account the road networks and real-time traffic conditions.

Due to the limited operations supported by SHE, ORide uses a simpler matching metric,

i.e., Euclidean distances between the riders’ and drivers’ projected locations. Due to the

bandwidth constraints, the ORide ride-matching algorithm matches a rider to drivers in

the same zone, hence suboptimality, e.g., if a rider is close to the border of a zone, the

closest driver might be in one of the neighboring zones.

Fig. 3.7 shows the CDFs of the extra costs due to the suboptimality of ORide, com-

pared to the ideal solution, with respect to three different zone settings: Z1, Z2, and the

entire city of New York (NYC). The experiment was done on a set of 1,000 randomly

selected ride requests. For the ideal matching, we used the Google Maps Distance Ma-

trix APIs [168] to compute the times and distances between a pick-up request and the

available drivers (see assumptions in Section 3.11.1). To reduce the number of requests

made to the Google APIs5, from the set of available drivers, we selected 100 drivers who

were closest to the pick-up location as the potential candidates for the ideal matching.

It can be observed that the median extra costs are small: when Z1 is used, in more

than 45% of the cases, the driver selected by ORide and the ideal solution is the same, and,

in nearly 80% of the cases, the extra driving distance is less than 0.5 km. In addition, the

5The number of requests per day is limited.
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size of the zone has only negligible effects on the optimality of the matching algorithm:

If the set of all the drivers available in NYC was used for the ORide matching algorithm,

compared to the ideal solution, 78.7% of the cases would have an extra distance of less

than 0.5 km, compared to 76.2 % and 76.8 % of the cases when Z1 and Z2 were used,

respectively.

3.12 Conclusion

In this chapter, we have proposed ORide, a practical solution that efficiently matches

riders and drivers in a privacy-preserving way while still offering key RHS features such as

easy payment, reputation scores, accountability, and retrieval of lost items. ORide enables

the SP to choose a balanced trade-off between anonymity sets for riders vs. bandwidth

requirements for the drivers. For example, for a lower-bound anonymity-set size of 26,000

for rides from the boroughs of Queens and Bronx, drivers only need to have an Internet

connection of at most 2 Mbps. The trade-off enables the SP to define the zones such that

all users in the system are guaranteed large anonymity sets, even if they are in sparsely

populated residential areas with sparse ride activities (by expanding the zones). We have

also shown that, even in the extreme case of targeted attacks, i.e., a curious SP wants

to know the destination of a rider given the time and location of a rider’s pick-up event,

the location privacy of the rider’s destination is still guaranteed.



Chapter 4

Cheat-Proof and Private Summaries for

Location-Based Activities

In Chapter 3, we presented a privacy-preserving system for ride-hailing services. In these

services, in order to provide privacy for users, we focused on how to provide anony-

mous ride matching between riders and drivers, and on how to still be able to provide

accountability and key ride-hailing operations (secure payment and reputation rating).

In this chapter, we will present a privacy-preserving design for the context of activity-

tracking services. Such services enable people to record and upload information about

their location-based activities (e.g., the routes of their activities). They also enable users

to share information and compete with their friends on activity-based social networks

and, in some cases, to obtain discounts on their health insurance premiums by proving

they conduct regular fitness activities. Our goal is to design a system that enables users

to prove to service providers that they have truly achieved certain activity summaries

(e.g., they have run 10 km), while preserving their location privacy (i.e., they do not

have to reveal their location traces to the service providers).

4.1 Introduction

More and more people rely on activity-tracking services and quantified-self devices to

monitor, manage and to encourage themselves to do physical activities. Mobile apps,

such as Endomondo, Garmin Connect, RunKeeper, Runtastic and Strava, and wearable

devices, such as Fitbit, Nike+ Fuelband and Jawbone UP, enable users to keep track

of their performance while running, hiking or cycling. This information is collected

using location-based services (LBSs) and embedded sensors in smartphones and wearable

devices. Due to the popularity of these apps, top mobile operating systems now include

APIs that facilitate the gathering and sharing of fitness and health data across multiple

apps and devices (e.g., HealthKit for iOS and Google Fit for Android). A key feature of

these services is to enable users to access summaries of their activities and performance

statistics and to share this information with other users and service providers on online

social networks. For instance, users can share the total distance covered, the cumulative

elevation gain and the path taken during their activities. For this purpose, activity-

63
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tracking apps collect and send users’ location and fitness data, possibly while they pursue

their activities, to service providers.

In exchange for their data, users are offered various incentives. For example, users

can receive discounts, coupons or even cash [169, 170, 171, 172, 173], awards at com-

petitions [174, 175] or simply points to improve their social reputation. In addition,

many companies, including big names such as British Petroleum (BP), Bank of Amer-

ica and Autodesk, are giving activity-tracking devices to their employees to encour-

age healthier lifestyles and, as a result, improve productivity and lower corporate in-

surance costs [176, 177, 178]. Similarly, health insurance companies such as United

Health, Kaiser Foundation Group, Humana Group, Aetna and Chrétienne Sociale Su-

isse (CSS) have created programs to include activity-tracking devices into their policies,

i.e., consumers are rewarded by the insurers with lower rates based on their activity sum-

maries [177, 179, 173, 180]. Also, activity-tracking service providers, such as Fitbit, have

partnered with organizations to enable them to continuously monitor their employees’

health and wellness conditions [181].

Although activity-tracking and sharing services are gaining popularity, there are two

important issues that could hinder their wide-scale adoption and viability. First, the

privacy concerns associated with the data collected by these apps. In particular, users’

location data, which is revealed to service providers, can be used to infer private informa-

tion about them, such as their home/work locations [182, 183], activity preferences [184],

interests [185], social networks [186], or even locations of classified military bases [14].

Moreover, the current privacy protection mechanisms provided by activity-tracking apps,

such as the Endpoint Privacy Zones (EPZs) supported by Strava, are shown to be in-

sufficient to protect the users’ privacy [187]. Second, the concerns about the integrity of

the data reported by users. As the value of incentives increases, users could be tempted

to cheat when reporting their performance [188], which would endanger the viability of

the system for the service provider and its affiliates, as well as its attractiveness to the

users. For example, location cheating can be achieved by making mobile devices re-

port erroneous location information [189, 4], or by spoofing the GPS/Wi-Fi signals used

for geo-location users [190, 191, 192]. Moreover, some tools enable users to manipulate

activity data to lie about their performance [193, 194, 195].

To assess the awareness and concerns of users of activity-tracking services regarding

opportunities to cheat and privacy issues, we conducted a user survey of 50 participants.

Our survey participants are active RunKeeper users who we recruited on the Amazon

Mechanical Turk platform. In the survey questionnaire, we first informed the participants

about existing opportunities to cheat and the privacy issues of fitness-tracking services

such as RunKeeper; we then polled them about their awareness and their concerns (see

Section 4.6.1 and Appendix B, including the full transcript of the questionnaire). Re-

garding opportunities to cheat, we found that all the participants were unaware of them

and 48% declared themselves very or extremely concerned about the cheating possibility.

We also found that 90% of the participants were unaware of privacy issues and 82%

declared themselves very or extremely concerned about privacy. These results highlight

the need to raise awareness and the need for technical solutions to build cheat-proof and

private activity-tracking services.

A straightforward solution to these issues consists in enforcing the use of either secure

and/or privacy-preserving location proofs for users [190, 196, 197, 198], where their loca-

tion could be either (1) trusted and known (as it is the case for activity trackers) or (2)
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untrusted and known (but useless for obtaining rewards). In fact, solutions guaranteeing

(1) would benefit the service provider by ensuring that cheating is infeasible, whereas

solutions satisfying (2) would protect users’ location privacy but would provide locations

that are too coarse-grained for computing meaningful summaries.

In this chapter, we propose SecureRun, a novel infrastructure-based approach that

provides guarantees both in terms of the prevention of cheating and location privacy for

the users vis-à-vis the service provider, while allowing the service provider to compute

accurate summaries and statistics of users’ activities, such as the total distance covered

during an activity. SecureRun relies on existing wireless access-point (AP) networks

and alleviates the need for a costly deployment of a dedicated ad-hoc infrastructure.

Instead, it could rely on strategic partnerships between social network providers and

access-point network operators. SecureRun consists of two phases: First, users obtain

secure and privacy-preserving proofs of performance during their activities, by relying on

a lightweight message exchange protocol between their mobile device and the Wi-Fi access

points encountered while pursuing the activity. Second, the service provider computes

an accurate summary of a user’s activity, such as the total distance covered between two

time instants or the elevation gain, without learning any additional information about

the user’s actual location. SecureRun produces, in a privacy-preserving way, a secure

and accurate lower bound of the actual distance covered by a user while she performs an

activity. Finally, it is able to take advantage of the co-existence of multiple access-point

operators to improve the accuracy/privacy trade-off. Unlike the initial version of our

system presented in [20], in order to maximize the accuracy of the activity summaries

produced, SecureRun computes the optimal set of access points to communicate with. To

the best of our knowledge, this is the first work to address privacy and cheating issues

in the computation of activity summaries.

We evaluate our solution on a large data-set of real user-activities, collected from

the Garmin connect [199] social network in the regions of Brussels (Belgium), London

(UK) and Paris (France). For these regions, we also extract the actual locations of

a network of deployed Wi-Fi APs operated by FON [200]. Moreover, to evaluate the

benefits of having multiple operators in a given area, we extract the locations of a second

access-point network in the urban area of Paris. The experimental results show that our

solution can gracefully balance accuracy and privacy. SecureRun achieves good accuracy,

up to a median accuracy of more than 80%. This constitutes a significant improvement

compared to the performance of the initial version of the system reported in [20]: On

average, we achieved an absolute improvement of 5-10% in the median accuracy. In our

survey, we also asked the participants about their level of satisfaction regarding activity

summaries for different values of the summary accuracy (i.e., “Assuming that you have

run 10 miles, what would your level of satisfaction be if SecureRun issues a certificate

of 6 mi? 7 mi? 8 mi? 9 mi?): We found that for an accuracy of 80% (i.e., SecureRun

issues a certificate of 8 mi when the user runs for 10 mi), which roughly corresponds to

the median performance of SecureRun, the “high” and “very high” levels of satisfaction

account for 42% of the participants (74% with the “medium” level of satisfaction). We

also conduct a sensitivity analysis to evaluate the effect of the distribution of the APs

on the performance of SecureRun.
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4.2 Related Work

Cheating on activity-based social networks is becoming a serious problem. For example,

He et al. [190] show that users can easily override Foursquare’s GPS verification mech-

anisms by modifying the values returned by the calls to the geo-location API of smart-

phones. Similarly, Polakis et al. [201] use a black-box approach to uncover the mecha-

nisms used by Foursquare and Facebook Places to detect location attacks and propose

several ways to circumvent them. Moreover, work from Carbunar and Potharaju [188]

analyze data from Foursquare and Gowalla and find that incentives to cheat exist because

people actively check-in and collect rewards. Thus, it is necessary to carefully balance in-

centives with a more effective verification of users’ location claims. In this regard, Zhang

et al. [191] show that fake check-ins lead not only to monetary losses for the venues that

offer special deals on location-based check-ins but also to the degradation of the quality

of service provided by recommendation systems that rely on users’ location information.

Carbunar et al. [198] also show that there is tension between privacy and correctness in

location-based services, where users are unable to prove that they have satisfied badge

conditions, without revealing the time and location of their check-ins.

Meanwhile, to defend against cheating, researchers have also proposed several mech-

anisms that offer secure verification of location information. From a broad perspec-

tive, such mechanisms can be grouped in three categories: infrastructure-independent,

infrastructure-dependent and hybrid mechanisms. In the infrastructure-independent ap-

proach, a user obtains location evidence from her neighbors by using short-range commu-

nication technologies, such as Bluetooth [202, 203, 204]. Specifically, Talasila et al. [202]

propose a location authentication protocol where a set of users help verify each others’

location claims. The protocol operates by keeping a centralized authority that, based

on users’ spatio-temporal correlations, decides whether such claims are authentic or not.

Similarly, Zhu et al. [203] propose a system where mutually co-located users rely on Blue-

tooth communications to generate their location claims that are then sent to a centralized

location verifier. In addition to the security and privacy guarantees presented in [202],

Zhu et al. [203] enable individual users to evaluate their own location privacy and decide

whether to accept location proof requests by other users. Jadliwala et al. [205] provide

a formal analysis of the conditions needed in an ad-hoc network to enable any distance-

based localization protocols in wireless networks. Similar approaches were explored in

mobile sensor networks [206, 207].

More in line with our work, the infrastructure-dependent studies assume the presence

of a centrally-operated set of access points (AP) that produce and verify location claims.

For instance, to ensure the presence of a user in a given region, the AP can require

her to execute together a nonce-based challenge-response protocol, with constraints on

the maximum round-trip delay of the messages exchanged between the user and the

AP [208], or any distance bounding protocol [209, 210, 211, 212], which enables the AP

to check the minimum distance between itself and the user. In particular, Capkun and

Hubaux [211] propose a verifiable multilateration protocol that can be used to securely

position nodes in a wireless network. Once the secure localization phase is done, the

user can obtain a location proof to certify that the user is at a specific geographical

location [208]. Alternatively, Luo and Hengartner [197] show that a user can obtain

location proofs with different precision levels and then select one to disclose to the service

provider, depending on her privacy preferences.
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Figure 4.1: Overview of SecureRun’s system architecture. A user first obtains a set of
pseudonyms {p1, . . .} from the social network provider. Then, while performing an activity
along the dotted trajectory, she sporadically requests location proofs (LP) at times ti, using
pseudonyms pi, to the APs encountered along the trajectory. By using the LPs, the APs com-
pute, and deliver to the user, distance proofs for the different time intervals. The user finally
sends the distance proofs to the social network provider that combines them and publishes the
summary on her profile.

Hybrid approaches rely on both landmarks (e.g., WiFi, cellular base stations) and

short-range communications between users (e.g., Bluetooth) to obtain location evidences.

For instance, Uchiyama et al. [213] describe an opportunistic localization algorithm for

positioning mobile users in urban areas. The area of presence of a user is calculated based

on a map of obstacles (i.e., the area where there is no radio signal), the last presence

areas of the node itself and the nodes it encountered. Similarly, Koo et al. [214] present

a hybrid system that relies on landmarks located at corners or intersections of streets

and short-range communication between users. The system considers the users’ routes

(i.e., a sequence of segments connecting successive landmarks), the average moving speed

in the segment and the collaboration between mobile nodes to locate the users.

Along the line of protecting users’ privacy in activity-tracking services, Hassan et

al. [187] show that the privacy measures provided by popularly used systems, e.g., Strava,

are insufficient. SecureRun relies on an infrastructure of wireless access points to provide

secure distance proofs, in line with the infrastructure-dependent models discussed above.

However, it is the first work, to the best of our knowledge, that provides secure distance

proofs and that addresses the challenge of provable activity summaries while protecting

the users’ privacy.

4.3 System Architecture

In this section, we describe the different entities involved in our system: a user, one or

more Wi-Fi network operator and a service provider (e.g., a social network). Figure 4.1

depicts the system considered and a sketch of SecureRun. We also describe the adversarial

model in this scenario. Moreover, we discuss and analyze the incentives of the various

involved entities and the adoption of SecureRun in Section 4.6. For the sake of readability,

notations used throughout the chapter are summarized in Table 4.1.
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Notation Description

AP Access Point
LP Location Proof
DP/EP Distance/Elevation Proof
R Communication range of APs
ΔT Duration of silence periods
GKpub The public group key. It is known by everyone.
GKpriv The private group key. It is known only by (all)

the APs.
LPi,j The j-th LP collected at sampling time ti. It has

format {Pi, ti,j , (xi,j , yi,j)}.
Pi The pseudonym which is used at sampling time ti.
ti,j The time at which the j-th LP is collected at sam-

pling time ti.
(xi,j , yi,j) The coordinate of the AP from which the j-th LP

is collected at sampling time ti.
Ci The set of APs from which the LPs are collected

at sampling time ti.
Ai The time-aligned intersection of the communica-

tion disks of the APs from which the LPs are col-
lected at sampling time ti.

Table 4.1: Summary of notations.

4.3.1 Users

We assume that some users pursue location-based activities, where they move in a given

geographical region, and that they want to obtain statistics or summaries of their activ-

ities. These users are equipped with GPS- and WiFi-enabled devices and have sporadic

Internet connectivity (at least at some point in time before and after the activity). Thus,

they can locate themselves and communicate with nearby Wi-Fi access-points. We as-

sume a unit-disk model for Wi-Fi communications, in which a user and an AP can

communicate only if the distance between them is less than a given radius R, which is

constant across all users and all APs. Note that we do not assume that users can com-

municate with the APs as soon as the distance is less than R (we only assume that if

they can communicate with an AP, then the distance between the user’s device and the

AP is less than R). As such, this is a relaxed version of the unit-disk model. Note also

that this assumption can always be enforced by choosing a high value of R. In particular,

we assume that users cannot violate this model by, for example, increasing the trans-

mission power of their devices. We assume that users can obtain random identifiers (or

pseudonyms) from the online service provider, and that they can use such pseudonyms to

protect their privacy while pursuing their activities. We assume that users do not hand

their pseudonyms to other users (this can be enforced by embedding sensitive or critical

information about the users in their pseudonyms, such as tokens that enable the users

to reset their passwords). Finally, we assume direct Wi-Fi connections to have much

smaller communication delays than cellular Internet connections, thus enabling us to

prevent proxy/relay attacks [190] by using delay-based challenge-response mechanisms.

In order to brag or obtain rewards, users might be tempted to unduly increase their

performance by deviating from the protocol. To do so, such users could, for instance,

report locations that are different from their actual locations, forge messages, or reuse

messages they, or their friends, obtained in the past.
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4.3.2 Wi-Fi AP Network Operator

We assume the existence of one or multiple Wi-Fi network operators, and that each

operator controls a set of fixed Wi-Fi APs deployed in the regions where the users pur-

sue their activities. ISP-controlled Wi-Fi community networks such as British Telecom

Wi-Fi, LinkNYC (or a federation of such networks, such as FON) constitute typical can-

didates for deploying and running the APs used by SecureRun, because they own and

control the routers that they provide to their subscribers (e.g., the ISPs can transpar-

ently remotely update the firmware of their subscribers’ routers). Each AP is aware of

its geographic position and of its communication radius. We assume that all the APs

have synchronized clocks (by using e.g., the Network Time Protocol (NTP) [215]), and

that they are able to compute public-key cryptographic operations. In particular, we

assume that all the APs from a same network operator share a public/private group key

pair (GKpub,GKpriv), where GKpub is known by the users and the service provider, and

GKpriv is only known to the network operator and to its APs. Finally, we assume that

the APs cannot uniquely identify mobile devices based on the characteristics of their

wireless-network adapters (i.e., wireless fingerprinting techniques based on clock skews

or physical layer signatures [216, 217, 218]).

Some access-point operators might be interested in tracking the users’ locations, based

on the information obtained by all of their APs.1 We assume them to be semi-honest or

honest-but-curious, meaning that they do not deviate from the protocol specified in our

solution, but that they analyze the information they collect while executing the protocol.

4.3.3 Social Network Provider

We assume that there is a social-network provider that offers activity summaries and shar-

ing services to its registered users. The provider is able to generate sets of pseudonyms

for its users, by using a suitable public-key encryption scheme. Moreover, it is able to

verify the authenticity of messages signed with the network operators’ group keys (by

using their public group keys). Like the network operators, the social-network provider

might be interested in the users’ locations1 and is assumed to be honest-but-curious .

Finally, we assume that the different entities do not collude with each other.

4.4 Our System: SecureRun

We build an activity-tracking system that (1) guarantees the authenticity of the user’s

activity data with respect to cheating users who try to unduly increase their performance

and (2) protects the users’ location-privacy with respect to curious network operators

and service providers that try to track them.

In this section, we present SecureRun, our solution for secure and privacy-preserving

activity summaries. First, we give a high-level overview of SecureRun and define the main

operations it involves. Then, we provide a detailed description of each of the aforemen-

tioned operations. Figure 4.1 shows an overview of SecureRun and of its operations.

1The information available to the adversaries is made explicit in the description of the protocol
(Section 4.4) and summarized in the security analysis (Section 4.7).
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4.4.1 Overview

From a high-level perspective, SecureRun operates as follows. As a user pursues her

location-based activity, she moves and communicates (through her smartphone) with

the wireless access points located along her route (and in her communication range) to

obtain location proofs (LP). A location proof is a digitally signed message, delivered by

an access point, that certifies that the user is, at a given time t, in a given range of an

access point that is located at a given position (x, y).2 The times/positions at which

users request such location proofs are determined by a sampling algorithm.

A user employs different pseudonyms (provided to her beforehand by the service

provider) when communicating with the access points. The different location proofs ob-

tained by a user (from different access points) in a short interval of time are aligned in

time and combined into a more precise location proof by using intersection techniques.

To obtain an activity proof, a user provides pairs of consecutive precise location proofs

to an access point; more specifically, she obtains a distance proof (DP) and/or an eleva-

tion proof (EP). The activity proofs that the user obtains do not provide any location

information, as they do not include information about where the activity was pursued

but only about the distance or elevation. Such proofs are digitally signed messages that

certify that a user achieved (at least) one given performance during a given time span,

e.g., that she ran at least 1 km between 3:02pm and 3:08pm on March 19th. Finally,

a user sends all the activity proofs she collects, while pursuing her activity, to the ser-

vice provider that performs the adequate verifications; if the information is correct, the

provider combines the proofs into an activity summary that it publishes on the user’s

profile.

In terms of privacy, the use of pseudonyms protects users’ locations with respect to

the access-point operators; the lack of location information in activity proofs provides

protection with respect to the social-network provider. Finally, the use of digital sig-

natures and pseudonyms, combined with the fact that the activity proofs represent the

lower bounds of the user’s actual performance, provide security properties with respect

to dishonest users.

4.4.2 Location Proofs

At each sampling time ti (determined by the sampling algorithm described below), a user

begins to collect location proofs from the access points in her communication range. To do

so, she periodically broadcasts (during a short time interval starting at time ti) location-

proof requests that contain one of her pseudonyms P . Note that a different pseudonym is

used for each sampling time. All the access points in her communication range send back

messages that contain the pseudonym P , a timestamp t (i.e., the time at which the request

is processed by the access point) and their coordinates (x, y), digitally signed with the

private group key GKpriv, specifically a location proof LP = sigGKpriv
{P, t, (x, y)}. We

denote by LPi,j = (Pi, ti,j , (xi,j , yi,j)) the j-th location proof collected at sampling time ti
(note that we omit the signature for the sake of readability). As the communication and

processing delays differ from one access point to another, the location proofs collected

from different access points at a same sampling time have different timestamps. Under

2Throughout the chapter, we use an equi-rectangular projection to map the latitude and longitude
of the considered locations to a Cartesian coordinate system, in which the Euclidean distance is a good
approximation of the Haversine distance.
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Figure 4.2: Time alignment of location proofs LP11 and LP12 at time t1. At t1, the user was in
the gray area defined by the intersection of the two solid disks.

the relaxed unit-disk communication model (with radius R), such a location proof certifies

that, at time t, the user is at a distance of at most R to the access point that issues the

location proof. In other words, it certifies that the user is in a disk of radius R, centered

at the point of coordinate (x, y). We denote such a disk by C((x, y), R). In addition, we

denote by C the entire set of APs located along the user’s route and by Ci the set of

APs defined by the location proofs collected by the user at time ti. The sensitivity of

our solution with respect to the density and distribution of the access points is presented

in Section 4.5.3.

4.4.3 Activity Proofs

To obtain an activity proof (i.e., a distance proof or an elevation proof), a user sends to

any access point (whenever she needs it) the location proofs collected at two consecutive

sampling times ti and ti+1. The contacted AP first combines the location proofs (those

collected at each of the two sampling times) into more precise location proofs, by aligning

them in time and intersecting them. As these location proofs have different timestamps,

the first step of the combination consists in aligning the different location proofs as

follows. Assuming the speed at which users move is upper-bounded by a constant vmax

defined by the system, the fact that a user is at a distance at most d to an access point

at time t means that, at time t′, the user is at a distance of at most d+ vmax · |t− t′| to
this access point. The second step of the combination simply consists in computing the

intersection of the aligned location proofs. Note that only the locations proofs with a

timestamp in [ti, ti + δt] are combined. The access point determines a geographical area

Ai where the user was at time ti from the following expression.

Ai =
⋂

j∈Ci

C((xi,j , yi,j), R+ vmax · |ti − ti,j |) (4.1)

The AP repeats the same operation for the location proofs obtained at sample time

i + 1. Figure 4.2 shows an example of a location-proof combination: Assuming that

at sampling time t1, a user obtains two LPs: LP11 = (P1, t11, (x11, y11)) and LP12 =

(P1, t12, (x12, y12)) from two APs.

The activity proofs are computed from a lower bound of a user’s performance. As for

distance proofs, knowing that a user was in an area Ai at time ti and in an area Ai+1

at time ti+1, the distance di between Ai and Ai+1 (i.e., the minimum of the distances

between any point in Ai and any point in Ai+1) constitutes a lower bound of the distance

covered by a user during the time interval [ti, ti+1]. More specifically, using the Euclidean
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Figure 4.3: Computation of distance and elevation proofs. The shaded areas correspond to the
intersections of the location proofs obtained at the same sampling time. The 3D plots correspond
to the elevation profiles of the shaded areas, based on which the lower-bound of the elevation
gains are computed.

distance, we have

di = min
(x, y) ∈ Ai

(x′, y′) ∈ Ai+1

√
(x− x′)2 + (y − y′)2 (4.2)

A tight approximation of di can be obtained by using a non-linear optimization toolbox

such as IPOPT [219].

With respect to the elevation proofs, the following expression gives a lower bound of

the cumulative elevation gain3 achieved by a user during the time interval [ti, ti+1].

ei = min
(x, y) ∈ Ai

(x′, y′) ∈ Ai+1

(max (0, z(x′, y′)− z(x, y))) (4.3)

where z( · , · ) denotes the elevation of the point of coordinate (x, y). Note that the

“max” operator is used here in order to account for only positive elevation gains. Unlike

for the lower bound of the covered distance, we compute the lower bound of the ele-

vation gain analytically: ei = max
(
0,min(x,y)∈Ai+1

z(x, y)−max(x,y)∈Ai
z(x, y)

)
. Fig-

ure 4.3 illustrates the stages of the generation of activity proofs in the case of the

covered distance/elevation gain. Finally, the access point generates an activity proof

sigGKpriv
{di, ei, [ti, ti+1], {Pi, Pi+1}} and sends it back.

Note that, in Equation 4.1, we consider only the set Ci and do not take into account

the fact that the user was not in the regions defined by the access points in the set

C\Ci (hereafter, we call this negative information). Intuitively, if negative information

is considered, the region that the user is inside at time ti could be redefined as the

intersection of Ai (as defined in Equation 4.1) and the complements of the regions defined

by the APs in C\Ci. Therefore, the negative information would provide a tighter estimate

of the area the user was in at time ti. This would provide better accuracy for the system,

as the refined region is included in Ai, but it would also enable the user to cheat by

selectively reporting only a subset of the collected LPs (i.e., omitting some of the collected

LPs to unduly increase the resulting distance proofs). For this reason, in our evaluation of

3Note that the elevation loss can be computed by following the same line of reasoning.
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Figure 4.4: The lower-bound distance with and without considering negative information. The
figures on the left show the case that using negative information improves the tightness of the
lower-bound distance. The figures on the right show that using negative information can enable
the users to unduly increase their lower-bound distance. The location samples of the user are
shown with a dot.

SecureRun, we do not consider the negative information when calculating the lower-bound

distance. These situations are illustrated in Figure 4.4: It can be observed on the left-

most figures that, when the user is not in the intersection of the communication ranges

of two or more APs, considering negative information (bottom) increases the accuracy

of the distance proof compared to the base case (top). It can also be observed on the

right-most figures that, when the user is in the intersection, by omitting to report one of

the LP she collects (bottom), she can unduly obtain a larger distance proof (potentially

higher than the actual distance) compared to the base case (top).

4.4.4 Activity Summary

To publish an activity summary on her profile, the user uploads her collected activity

proofs to the social-network service provider. In turn, the provider checks that (1) the

signatures of the activity proofs are valid (using the public group keys of the access

points), that (2) all the pseudonyms that appear in the activity proofs indeed belong to

the same user, and that (3) time intervals of the activity proofs do not overlap (otherwise

the distance covered in the time overlap would be counted twice, hence violating the

lower-bound property of the summary). If this is the case, the social-network provider

simply sums the distances (or the elevation gains, respectively) from the activity proofs

and adds the resulting summary to the user’s profile.

If the user’s mobile device has an active wireless Internet connection (e.g., 3/4G), the

user can upload on-the-fly the activity proofs she collects, while she pursues the activity.

By doing so, it enables real-time online tracking of the user’s activity by her friends, such

as the live-tracking feature offered by the Runtastic and Endomondo mobile apps.

4.4.5 Sampling Algorithms

We now describe SecureRun’s sampling algorithm. The sampling algorithm determines

the sampling times/positions at which the user requests location proofs from the access

points in her communication range. The general objective of the sampling algorithm is

to achieve high accuracy (i.e., tight lower-bounds in the activity proofs) and a high level

of privacy.

We distinguish between two cases: the case where a user knows beforehand the path

she is about to take, namely planned sampling, and the case where she does not, namely
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silence period (ΔT )

Figure 4.5: Silence period. By implementing a silence period between every pair of successive
distance proofs (i.e., not requesting a distance proof for this period), a user reduces the risk of
her distance proofs being linked by the access-point, hence protecting her privacy.

unplanned sampling. In both cases, the sampling algorithm knows the locations of the

access points. Planned sampling corresponds to the quite common situation where a

user records the set of her preferred paths and of her past activities. Such a feature is

commonly implemented in activity-tracking apps (including Garmin’s) in order to enable

users to compete against their own previous performance. For instance, the activity-

tracking app indicates to the user whether she is late or in advance, compared to her

best performance. With planned sampling, the sampling points are determined before

the user starts the activity with the full knowledge of the path and of AP locations,

thus yielding potentially better results. We now describe both variants of the algorithm,

considering at first the case of a single access-point operator and, subsequently, multiple

operators.

We focus our description on the case of distance proofs.4 The planned and unplanned

versions of the algorithm share a common design rationale: (1) limit the discrepancies

between the actual path and the lower-bounds, by requesting location proofs where

the direction of the path changes significantly; and (2) enforce a silence period after

requesting certain location proofs, in order to achieve unlinkability of successive activity

proofs.

Silence Periods. To highlight the importance of silence periods, consider a user who

collects three location proofs at three successive sampling times (with pseudonyms P1,

P2 and P3). If she requests a distance proof for the time interval between the first two

location proofs and another distance proof for the time interval between the last two,

the access-point operator can link the three location proofs (as it knows that P1 and P2

belong to the same user and so do P2 and P3) and thus track the user, despite the use of

pseudonyms. To circumvent this issue, a user requests an additional location proof some

time after she requests the second location proof, leaving her with four location proofs.

The time between the second and the third (i.e., the additional) location proofs is called

a silence period. Finally, the user requests distance proofs only for the time intervals

between the first and the second, and between the third and the forth location proofs.

The distance covered between the second and the third location proofs is not counted

in the user’s activity summary. The user repeats this process throughout her activity,

as depicted in Figure 4.5. The duration ΔT of the silence period5 is a parameter of the

system that enables users to balance their accuracy of the activity summaries and their

privacy: Short silence periods yield high-accuracy activity summaries (as the distances

covered during the silence periods, which are not counted in the activity summary, are

4The reasoning is the same for elevation proofs.
5In practice, the length of the silence period is a random variable of mean ΔT (e.g., drawn for the

uniform distribution on [0.5ΔT, 1.5ΔT ]) in order to prevent an access-point operator from linking two
distance proofs based on the time elapsed between them.
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Figure 4.6: Case of multiple access-point operators (Operator 1 in red and Operator 2 in blue).
At every sampling point, a user requests location proofs from both operators. Then, she requests
distance proofs, alternatively from different operators, to reduce the risk of linking the distance
proofs she collects without reducing the accuracy of her activity summary (unlike with silence
periods).

small) but provide low privacy guarantees (as the access-point operators can link with

high confidence two successive activity proofs, because the time interval between them

is short). Conversely, long silence periods yield low-accuracy activity summaries and

provide high privacy guaranties.

Multiple Access-Point Operators. In the case where multiple access-point operators

are involved, the silence periods are not always needed: By requesting successive distance

proofs from different operators (assumed to not collude with each other), a user does not

need to wait for ΔT seconds (i.e., implement a silence period) to reduce the risks of

linking her distance proofs. To protect her privacy, a user should not need to request

two successive distance proofs from the same operator, unless she implements a silence

period. With two operators, a user can alternatively request distance proofs from each

of the two operators, as illustrated in Figure 4.6.

We now describe the planned and unplanned sampling algorithms.

Planned Sampling. In the planned case, we formalize the sampling problem at discrete

time: The path of a user is represented as a sequence of time/position samples, ordered

by increasing times {(τi, pi)}i=1..T . Such a discrete formalism matches the conventional

format of activity traces (e.g., Garmin represents the paths of activities as sequences of

time/positions samples). In such a formalism, the sampling problem consists in selecting

sampling times (i.e., , a subset of T = {τi}i=1..T ) at which a user needs to collect location

proofs from the neighboring access points so that the sum of the resulting activity proofs

is maximized. Using the notations from Equations 4.1 and 4.2, the sum of the distance

proofs obtained by collecting locations proofs at times τi1 , . . . , τiK ∈ T , with a single

operator and without silence periods, is

K−1∑

k=1

d
(
Aik , Aik+1

)
, (4.4)

and the optimal set of sampling points is the subset of T that maximizes this quantity.6

This optimization problem is equivalent to a maximum-weight path problem in a directed

graph G, where the vertices of G are the time samples (i.e., T ), and where the edges

of G connect each time sample τi to all the subsequent time samples τj (j > i), with a

weight equal to the value of the distance proof obtained by combining the location proofs

obtained at time τi, with those obtained at time τj (i.e., d (Ai, Aj)). A sample graph is

shown in Figure 4.7, together with an example of a set of sampling points (in red). As

G is a directed acyclic graph, the maximum-weight path problem can be solved in linear

6The exact same reasoning applies to elevation-gain proofs. The distance function d() that appears
in Equation 4.4 should be replaced with the elevation-gain function e() from Equation 4.3.
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Figure 4.7: Graph construction for the maximum-weight path formulation of the sampling
problem (one operator, no silence periods). The thick, red path shows an example of a set of
sampling points: The user collects location proofs at times τ1, τ3, and τ5. The total of the
obtained distance proofs is d1,3 + d3,5 (di,j is the short for d(Ai, Aj)).
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Figure 4.8: Graph construction for the maximum-weight path formulation of the sampling prob-
lem (one operator, with silence periods). Solid edges have weights equal to the corresponding
distance proofs (di,j is the short for d(Ai, Aj)). Dashed edges have zero weights. The thick, red
path shows an example of a set of sampling points: The user starts a distance proof at time τ1
(by collecting location proofs), which she ends at time τ2 thus collecting a proof of value d1,2;
she then starts a new distance proof at time τ4 (thus observing a silence period) which she ends
at time τ5. The total weight of this path is d1,2 + d4,5.

time with respect to the number of edges, that is O(T 2). Unlike the heuristic proposed

in [20], this formalization enables SecureRun to find the optimal set of sampling points,

resulting in an absolute improvement of 5-10 points in the median accuracy of SecureRun

(see Section 4.5).

In the case of silence periods, unlike in the base case, we must distinguish between

the samples where a user collects a location proof to start a distance proof and those

where she collects a location proof to end a distance proof. The case of a single operator

with silence periods is illustrated in Figure 4.8. We build a graph with two vertices per

time sample that corresponds to both situations (“start” and “end”). The “start” vertex

corresponding to τi is connected to all the “end” vertices corresponding to τj (j > i),

which means that a distance proof started at time τi can be ended at any time τj (j > i).

The weight of such edges (depicted with solid lines in the figure) is the value of the

distance proof obtained, i.e., d(Ai, Aj). To start a new distance proof, the users must

observe a silence period. Implementing silence periods means that a user cannot start

a new distance proof before ΔT time units after she ended her last distance proof. In

other words, assuming that the time between two time samples is 10 seconds and that

ΔT = 15, if a user ends a distance proof at τi, she can start a new distance proof at τi+2

at the earliest. Therefore, we connect the “end” vertex corresponding to τi to all the

“end” vertices corresponding to τj (j > i+ 1). The weight of such edges (depicted with

dashed lines) is zero.

In the case of multiple operators, we build a graph with two vertices per sample

(“start”/”end”), for each operator. A distance proof started with a location proof of a

given operator can be ended only with a location proof from the same operator, therefore

the “start” vertices are connected only to the “end” vertices of the same operator. The

“end” vertices, however, are connected to the start vertices of all the operators as a user
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can start a new distance proof with any of the operators. The construction of these edges

follows the same rationale as above, except that a user does not need a silence period

when beginning a distance proof with an operator different than that of the previous

distance proof.

Note that, in practice, a user normally does not follow the exact same path as she

previously did. Therefore, the algorithm determines sampling points based on the previ-

ously recorded path, and the user requests location proofs when she reaches the vicinity

of a pre-determined sampling point (e.g., within 20 m).

Unplanned Sampling. In the unplanned version, only the current and past positions

of the user are known to the algorithm. A users first collects location proofs at the

starting point of her activity (e.g., when she presses the “start” button on her mobile

device). As the user pursues her activity, the algorithm periodically determines whether

location proofs should be requested. To do so, the algorithm compares the actual distance

covered since the last sampling point with the straight-line distance between the last

sampling point and the current position. If the difference between the two distances is

higher than a threshold, the algorithm triggers the collection of location proofs. To limit

the rate at which location proofs are collected, we impose a minimal distance between

two sampling points. Algorithm 1 presents the pseudo-code version of the unplanned

sampling algorithm, where d( · , · ) denotes the distance between two locations.

Algorithm 1 Unplanned sampling algorithm.

Input: MIN LP � Minimum distance between two LPs
MAX LP � Maximum distance between two LPs
MAX ERR � Maximum error

1: S ← [ ] � List of past locations since last sampling
2: while true do
3: pc ← current location
4: S ← S + [pc]
5: pl ← S[1]
6:
7: if d(pl, pc) < MIN LP then
8: next
9:

10: e←
⎛
⎝

|S|∑
k=1

d(S[k], S[k + 1])

⎞
⎠− d(pl, pc)

11:
12: if d(pl, pc) > MAX LP or e > MAX ERR then
13: sample()
14: S ← [pc]

4.4.6 Summary

In this section, we have presented SecureRun, a solution for providing secure and privacy-

preserving activity summaries, and we have described in detail the different operations

this involves. The inaccuracy of the activity summaries, defined as the difference between

the lower bounds and the actual values, produced by SecureRun are due to the fact that

(1) the distances covered inside the areas {Ai} and the distances covered during the

silence periods are not counted, and (2) the paths taken by the users between two areas

are approximated with a straight line. We will report on the evaluation of the accuracy

of SecureRun in the next section. The security and privacy properties of SecureRun are
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Figure 4.9: Heat-maps of the densities of FON access points (top) and of Garmin activities
(bottom) in (a) Brussels, (b) London, and (c) Paris.

provided by the use of pseudonyms and cryptographic techniques, by the aggregation and

sanitization of data (with respect to location information), and by the silence periods.

We discuss this in more detail in Section 4.7.

4.5 Evaluation

We evaluate SecureRun’s performance on real traces of users’ activities from Garmin

Connect [199], pursued in cities where wireless access-point networks are deployed by

the FON operator [200] (and possibly Free [220]). We consider scenarios where mobile

users, equipped with Wi-Fi-enabled devices, report the total elevation gain and distance

covered during their location-based activities (e.g., running). We focus our evaluation on

three geographical areas that correspond to the cities of Brussels, London and Paris. We

also discuss the practical aspects of the implementation of SecureRun on wireless routers.

4.5.1 Data Sets

In order to evaluate SecureRun, we collected data sets of access-point locations and

activities, and we relied on the Google Elevation API. All the data we collected was

publicly available and the data collection was in accordance with the policies of the

ethical committee at EPFL (HREC).

Wi-Fi Access Points. In late 2013, we collected the geographic coordinates of the Wi-

Fi access points from the FON community network in the region of Brussels, London and

Paris. FON is a large community network with more than 14 million hotspots (12 million

at the time of the data collection) worldwide; most of them are located in western Europe.

FON achieves very high coverage in urban areas (up to 2,500 AP/km2) through strate-

gic partnerships with local ISPs (e.g., Belgacom, British Telecom, SFR): The routers of

the ISPs’ subscribers, provided by the partner ISP, act as FON hotspots. As ISPs hold
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Figure 4.10: Heat-map of the density of Free access points in Paris.

total control over the routers of their subscribers (through automatic firmware updates),

they could easily implement and deploy SecureRun. Overall, we obtained the locations

of 92,280 unique APs in Brussels, 39,776 unique APs in London, and 87,521 unique APs

in Paris. In order to evaluate SecureRun with multiple access-point network operators

(used jointly as described in the previous section), we also collected the geographic co-

ordinates of the Wi-Fi access points from the Free community network. Free is a major

French national ISP that offers community network features based on the routers of its

subscribers. We obtained the locations of 60,280 unique APs from Free in Paris, which

correspond to a density of 445±381 AP/km2. Figure 4.9 (top) and Figure 4.10 depict,

in the form of heatmaps, the densities of FON access points in Brussels, London and

Paris and the densities of Free access points in Paris respectively. We can observe that

the density of access points is low in regions that correspond to rivers, cemeteries, parks,

highways and railways; this is due to the community nature of the FON network.

Activities. In early 2014, we collected activity information from Garmin Connect, an

online service where users can upload and share information about their location-based

activities, including the type of activity (e.g., running, biking) and the path of the activity

(under the form of time-coordinates samples). We collected running activities and we

computed, for each of them, the duration, the length and the cumulative elevation gain

of the path, the inter-sample times, and the density of APs along the path (i.e., the

number of APs met along the path, assuming a unit-disk communication model with

a radius R = 25 meters, normalized by the length of the path). For each activity, we

divided its path into chunks of 500 m, and we determined for each chunk whether it is

covered by at least one access point (i.e., it intersects with the communication range of

at least one access point). This metric is crucial for SecureRun to work, as having a high

proportion of covered chunks ensures that users will be able to collect location proofs,

and thus distance proofs. To exclude clear outliers or activities that are not covered by a

minimal number of access points from our data set, we filtered out activities that (1) last

less than 10 minutes or more than 4 hours, or (2) are shorter than 2 km or longer than

45 km, or (3) have a gap of more than 10 minutes between two samples, or (4) have less

than 4 AP/km along their paths, or (6) have less than 20% of covered chunks. In the

remainder of the chapter, we consider only the activities that pass the aforementioned

filters (i.e., the filtered data-sets). Table 4.2 summarizes the filters applied to our raw

data-set.

Figure 4.11 shows the distributions (experimental CDFs) of the main characteristics

of the activities used in our evaluation, and Figure 4.9 (bottom) depicts the heat-maps

of the densities of activities (i.e., the number of distinct activities that cross a given area
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Property Filter
Duration <10 min or > 4 h
Length <2 km or > 45 km
Elevation gain > 50 m
(only for elevation gain summaries)
Inter-sample times > 10 min
Density of AP along activities < 4 AP/km
Proportion of covered chunks < 20%

Table 4.2: Summary of the filters applied to our activity data-set.

 0

 20

 40

 60

 80

 100

 0  50  100  150  200

pr
op

or
tio

n 
of

 a
ct

iv
iti

es
 [

%
]

duration [min]

(a)

 0  10  20  30  40

length [km]

(b)

 0  100  200

elevation gain [m]

(c)

 0  20  40  60  80

density of APs [AP/km]

(d)

 0  20  40  60  80  100

prop. of covered chunks [%]

Brussels
London

Paris

(e)

Figure 4.11: Experimental CDF of the (a) duration, (b) length, (c) elevation gain (d) density
of FON AP (along the activity) and (e) proportion of chunks covered by FON APs, among the
activities from the Garmin data-set.

Brussels London Paris
Number of AP 92,280 39,776 87,521
Number of activities 107 294 437
Density of AP (AP/km2) 401±569 109±96.6 646±686
Density of AP along path (AP/km) 17.1±12.0 5.99±1.67 23.8±18.6
Proportion of covered chunks (%) 63.9±20.0 83.0±15.0 77.7±23.5

Table 4.3: Summary of the statistics of the filtered data-sets (FON and Garmin Connect) used
in the evaluation (mean and standard deviation).

of the map). It can be observed that many activities take place in parks, where the

density of access points is relatively low. In the filtered data set, we observe a median

inter-sample time of 3-4 seconds (which correspond to 7-11 meters). Table 4.3 gives some

statistics on our (filtered) data sets of access points and activities (i.e., FON and Garmin

Connect). It can be observed that the density of access points is lower in London but

they are more uniformly spread, especially along activities (as illustrated by the relatively

small standard deviation compared to Brussels and Paris).

Elevation. We evaluate SecureRun for the case of elevation only in the region of Paris,

and we filter out the activities with bogus elevation data or with an elevation gain lower

than 50 m. In order to determine the minimum and maximum elevation in a given region,

typically the intersection of communication disks centered at the AP locations, we rely

on the Google Elevation API and sample the elevation of random points in the regions

of interest. We make sure that every region contains at least 20 samples. We obtained a

total of 701,793 such elevation samples.
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Parameter Description Value Unit
vmax Maximum speed 3 m/s
R Communication range of APs 25 m
MAX LP Maximum distance between two LPs 500 m
MIN LP Minimum distance between two LPs 50 m
MAX ERR Maximum relative error 10 m
δt Threshold on the time difference between 5 s

aligned LPs

Table 4.4: Parameters used in the simulation.
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Figure 4.12: Accuracy of the distance summaries, with the (a) planned and (b) unplanned
sampling algorithms, for different values of the duration of the silence periods, with the FON
network (+ Free for Paris 2 operators).

4.5.2 Methodology

We implement SecureRun in a Java simulator and evaluate its performance for the activ-

ities from the Garmin Connect data-set, with the access-point networks from the FON

and Free data-sets (under the relaxed unit-disk communication model with a radius of 25

meters). The parameters used in our simulation are shown in Table 4.4. For each activ-

ity, we simulate the execution of SecureRun in different scenarios: with one or multiple

access-point network operators, with the planned/unplanned sampling algorithm, and

for different values of the parameters (such as the duration ΔT of the silence periods).

For each such setting, we compute the corresponding activity summary. We measure

the SecureRun’s performance in terms of the accuracy of an activity summary: the ratio

between the distance (respectively elevation) in the summary and the actual distance

(respectively elevation) covered by the user during her activity.

4.5.3 Results for Distance Summaries

First, we look at SecureRun’s absolute performance in different settings. Figure 4.12

shows a box-plot representation (first quartile, median, third quartile, and outliers) of

SecureRun’s accuracy in the (a) planned and (b) unplanned cases, in the cities of Brussels,

London and Paris, for different durations of the silence periods. In the case of Paris, we

also evaluate SecureRun with two access-point operators (Free and FON).

Overall, SecureRun achieves good performance: up to a median accuracy of 78%
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(Paris, FON, planned sampling, ΔT = 0). This value drops to 69% when unplanned

sampling is used. It can be observed that, as expected, the planned sampling algorithm

yields consistently better results than the unplanned algorithm, and that the accuracy

decreases with the duration of the silence period. In the case of two operators (in Paris),

it can be observed that the accuracy is substantially better (84%) compared to the

scenario with a single operator, when the duration of the silence period is set to 0. This is

because a user can optimize the lengths of her distance proofs between the two operators.

Moreover, the (negative) effect of the duration of the silence periods on the accuracy is

substantially lower in the case of two operators (73% for the case of two operators vs.

53% for the case of a single operator, with planned sampling and ΔT=180 s). This is

because silence periods are less frequently needed in such a scenario, only when a user

requests a distance proof from an operator and cannot find any access points belonging to

the other operator for the subsequent distance proof. Finally, the performances are quite

similar across the different cities, with a slight advantage for London, as it has a higher

proportion of covered chunks. This confirms our intuition and suggests that SecureRun’s

performance increases with the proportion of covered chunks. Compared to the initial

version of SecureRun [221], we observed an absolute improvement of 5-10 points in the

median accuracy. The improvement is lower for situations where the accuracy is already

good, typically when no silence periods are used (except in the case of two operators).

This means that the optimal sampling algorithm is most beneficial for adjusting the

silence periods (except in the case of two operators in which they are less needed) and

for choosing a best operator when there are several of them. Note that, as the number of

Wi-Fi access points and their communication ranges are likely to increase in the coming

years, SecureRun’s performance is expected to increase. Moreover, with the emergence of

activity-tracking services, the deployment of networks of wireless access points (including

in parks) dedicated to activity tracking could become a thriving business, thus further

increase the performance and applicability of SecureRun.

To further study the sensitivity of SecureRun to the density and the distribution of

the access points (as captured by the number of AP/km and the proportion of covered

chunks, respectively), we split the activities into three buckets, based on the values of

these two metrics, and we plot the experimental cumulative density functions of the

accuracy in each of these buckets. Activities with a low density of AP and/or a low

proportion of covered chunks typically correspond to those located in parks; thus they

do not really match our target context, i.e., urban areas. In the case of two operators,

we only consider the values of the metrics with respect to the FON network.

The results are depicted in Figure 4.13, with planned sampling and ΔT = 60 s. It

can be observed that the performance is substantially better for high densities and for

high proportions of covered chunks, as compared to the low counterparts. In Brussels for

instance, the median accuracy goes up to 74% for activities with high densities, whereas it

is only 57% for all the activities. Note that even for some activities with a high density,

the accuracy can be quite low (i.e., <25%). We investigated this issue by manually

inspecting the paths of these activities and we report on the results in Section 4.5.5.

4.5.4 Results for Elevation-Gain Summaries

Figure 4.14 shows a box-plot representation of the accuracy of our solution for the case

of elevation gain in Paris, with the planned sampling algorithm, for different durations of
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Figure 4.14: Accuracy of the elevation gains proofs in Paris, with the planned sampling algo-
rithms, for different values of the duration of the silence periods, with the FON network (+ Free
for 2 operators).

the silence periods. Overall, SecureRun achieves reasonable performance: up to a median

accuracy of 60 % with one operator and silence periods of 60 seconds. This number goes

up to 78 % when two operators are used.

4.5.5 Investigation of the Corner Cases

In this section, we report on our manual inspection of the paths of the activities for which

SecureRun provides low-accuracy summaries despite the high density of access points

along the path and the high proportion of covered chunks. During our investigation, we
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Figure 4.15: Example of an activity for which the proportion of covered chunks is greater than
80% and the precision is smaller than 25% (planned sampling, ΔT = 60 s). The path is shown
as a dashed line and the circles denote the communication ranges of the APs. The shaded areas
represent the combined location proofs obtained at the sampling points.

found one typical case of such situations, which we show in Figure 4.15 and explain below.

The general pattern is when a fraction of the path is very densely covered by access points

but the rest is not; hence the average density over the whole path remains relatively high.

More specifically, the user typically runs in a periodic fashion (e.g., around a stadium or

back and forth on a street) on the part that is not well covered by access points, but this

part is still covered by one or several APs (very close to each other) in a single location;

hence the user cannot obtain any distance proofs (all the location proofs come from the

same set of access points located close to each other) and almost all the chunks of the

path are covered.

It can be observed in the sample case that the user first runs to a stadium through

a residential area and then runs a dozen of times inside the stadium on the 400-meter

track. Because the stadium is covered by a single AP, all the chunks of the activity are

covered, but it is not sufficient to increase the accuracy as all LPs are obtained from the

same AP.

4.5.6 Practical Aspects of SecureRun

For SecureRun to have low latency, it should be implemented at a low layer, typically

at the MAC layer. Moreover, the computations involved in the AP-part of the protocol

(e.g., cryptography, optimization) should be lightweight.

To better understand the technical challenges of the implementation of SecureRun on a

router and to assess its feasibility, we developed a proof-of-concept prototype on a router

(alix2d2 @ 500 MHz, 256 MB of RAM) running OpenWrt by using the Click framework7

for network operations and OpenSSL for cryptographic operations. To do so, we defined

a new frame at the MAC layer of the Wi-Fi protocol. In our experiments, we observed a

delay of 9 milliseconds for the two-way message exchange between a user’s mobile device

and an AP to obtain an LP (for an ECDSA signature algorithm with a 224-bit key).

The router managed to handle 12 clients that simultaneously send one LP request per

second. As for the message exchange to obtain DPs, we estimated the additional running

time incurred by the computation of a DP with IPOPT at 150 milliseconds (i.e., we ran

it on a laptop and made a projection for a router based on the CPU speed). Note that

as IPOPT’s optimization algorithm is iterative, we can easily balance the running time

and the accuracy of the computation. Note also that the computation of the DPs could

be advantageously offloaded to a cloud server maintained by the AP network operator.

Finally, to put the aforementioned delays in perspective, note that, in our dataset, a user

7http://www.read.cs.ucla.edu/click
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(a) authenticity concerns (b) privacy concerns

Figure 4.16: Survey participants’ concerns regarding (a) the authenticity of the activity data
shared by their friends and (b) the privacy implications of the activity data they share.

remains in the connection range of an AP for about 10.7 seconds on average (i.e., the

total delay for a message exchange between the user and the AP for a LP/DP is less

than 2% of the in-range time).

As for the battery consumption overhead induced by SecureRun on the mobile de-

vice, SecureRun essentially consists of two main operations: the sampling algorithm and

LP/DP collection. The unplanned sampling algorithm is lightweight and the planned

sampling algorithm can be run offline (and only once per route). The LP/DP collection

process is sporadic and involves cryptographic operations, the overhead of which is neg-

ligible compared to those performed by activity-tracking applications (e.g., continuous

geolocation, HTTPS communication over 3G/4G).

4.6 Adoption of SecureRun

In order for SecureRun to be adopted, it must be beneficial to all the stakeholders: the

users, the Wi-Fi AP network operator, and the social-network provider. In this section,

we discuss and analyze the incentives for the stakeholders.

4.6.1 Users

In order to assess the interest, as well as the expectations, of users in SecureRun, we

conducted a user survey in early 2015. Our survey involved 50 participants recruited

through the Amazon Mechanical Turk platform. The online survey was composed of 11

questions covering general demographics, awareness and concerns about opportunities to

cheat and privacy issues in activity-tracking systems, and satisfaction and expectations

regarding the accuracy of cheat-proof and private summaries (see Appendix B for the

full transcript of the survey questionnaire). The survey took approximately two minutes

to complete; we paid each participant US $2. In order to be allowed to participate in our

survey, participants were required to have an active RunKeeper account8 and a minimum

Human Intelligence Task (HIT) approval rate of 95% with at least 100 past approved

HITs. We obtained a diverse and balanced sample of participants: 44% of male and 56%

8An active account is an account with at least 20 running activities, recorded with the mobile apps,
with a duration of at least 10 minutes and a distance of at least 2 miles over the time period spanning
from 2013-01-01 to 2014-12-01. In order for us to check this, the participants had to grant us access to
their RunKeeper account through the API
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Figure 4.17: Level of satisfaction of the survey participants for various values of the accuracy of
activity summaries.

of female, diverse primary areas of employments, ages ranging from 20 to 47 years old

(avg.: 31, std.: 5.9). Most participants used a single activity-tracking service.

We polled the participants about their awareness of applications that enable users to

cheat (i.e., claim performances they did not actually achieve) and about their concerns

regarding the authenticity of the performance reported by their friends. We depicted

the results in Figure 4.16. None of the participants were aware of the existence of such

applications; however, a large proportion of the participants (48%) were very or extremely

concerned about them. Similarly, we polled the participants about their awareness of

the privacy implications of activity-tracking services (i.e., the ability to infer home/work

locations, demographic information, and medical conditions, and the fact that activity

data can be sold to third parties such as insurance companies9) and about their concerns

regarding these issues. Only 10% of the participants were aware of the existence of

such privacy issues; a large majority of the participants (82%) were very or extremely

concerned about it. These results clearly make the case for SecureRun.

Finally, we briefly introduced SecureRun to the participants and we polled them about

their satisfaction (on a 5-point Likert scale) if, for a 10-mile run, SecureRun provided them

with a certificate of 5, 6, 7, 8 or 9 miles. We show the results in Figure 4.17. It can

be observed that for an accuracy of 80% or more (which is the case for SecureRun in

representative scenarios), the participants’ opinions were mostly positive.

4.6.2 Wi-Fi AP-Network Operators and Service Providers

Social network providers10 offering activity-tracking services have incentives to deploy

SecureRun as it increases their attractiveness to the users and certifies the data provided

by their users. In order to deploy SecureRun, the social-network provider needs the help

of one or multiple Wi-Fi AP-network operators. The social-network provider could pay

the AP-network operator for the certified activities, in a B2B fashion, either directly

(e.g., in currency) or through advertisement. For instance, we envision a business model

in which the activities that are certified by distance proofs provided by the FON network

and uploaded on Garmin Connect or RunKeeper are displayed with an icon “Certified by

FON”, thus providing FON with ad space on the activity-based social network website.

9http://www.dailymail.co.uk/news/article-2409486/
10The same applies to health insurance companies that provide their customers with activity-tracking

apps.
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The AP-network operator could also charge the distance proofs to the users (e.g., via

a specific subscription). Finally, with the emergence of activity-tracking services and

inexpensive low-power Bluetooth beacons (e.g., iBeacons), wireless networks dedicated

to activity-tracking could be deployed (e.g., in parks).

4.7 Security and Privacy Analysis

In this section, we discuss the security and privacy guarantees provided by SecureRun,

by considering the adversarial model from Section 4.3 (i.e., three possible adversaries:

the users, the service provider and the AP operator(s)).

4.7.1 Cheat-Proof Guarantees

Adversary: User. Malicious users can attempt to cheat by forging or modifying lo-

cation or activity proofs. To prevent these types of attacks, SecureRun relies on digital

signatures to protect the integrity of the proofs created by the APs. Moreover, users can-

not double-count some of the distances they cover, because the service provider validates

that the time intervals on each activity proof do not overlap before summing them up.

Note that as the service provider does not permit users to declare activities that overlap

in time, a user cannot use twice a collected distance proof. Users could also try to claim

other users’ location or activity proofs as their own. However, the service provider can

detect such cheating attempts by checking that the pseudonyms included in the activity

proofs belong to the user claiming them. A malicious user could also ask other users to

collect proofs on her behalf by sharing her pseudonyms. To discourage such attempts,

pseudonyms include sensitive information such as tokens to reset the user’s password or

modify certain service settings.11 Also note that pseudonyms are sent encrypted to the

APs with their group public key to prevent eavesdropping by other parties and that our

threat model assumes honest-but-curious APs (i.e., they do not abuse the information

on the pseudonyms).

SecureRun also requires users to be in the communication range with the APs to

obtain valid location proofs. Users can try to bypass this restriction by launching proxy

attacks, in which two or more users collude to obtain valid location proofs. Still, such

attacks can be limited by introducing constraints on the execution time of the protocol

(i.e., distance-bounding mechanisms). For instance, the AP operator could impose a

communication delay on the Wi-Fi interface that is smaller than the one achieved by

connecting through the cellular network.

Finally, the activity proofs obtained are, by design, lower-bounds of the performance

achieved by the users. Thus, independently of the way users obtain and combine their

location proofs, the reported summary will always be lower than the actual performance.

4.7.2 Privacy Guarantees

Adversary: Service Provider. In our mechanism, the service provider has access

only to activity proofs and pseudonyms of the users. As activity proofs do not contain any

location information, the service provider cannot link the activity proofs to the actual

11A similar approach was proposed in systems such as PKIs [222] and anonymous credentials [223] to
ensure non-transferability.
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locations. In a region covered by APs, given the number of access points that issued

location proofs to users, a distance (more precisely, its lower bound) can be attributed to

many possible trajectories between any two sets of APs, hence rendering unfeasible an

accurate inference of the actual locations and trajectory. Moreover, as the distance also

depends on the time difference between the location proofs, attributing a single distance

to a given trajectory is even more challenging.

Adversary: AP Operator(s). SecureRun is also designed to prevent curious AP

operator(s) from tracking users’ locations, particularly by linking location proofs to re-

construct users’ trajectories. For this purpose, SecureRun relies on both randomized

pseudonyms (generated by the service provider) and silence periods. On every sampling

point, a new pseudonym is used, therefore it is difficult for AP operator(s) to link users’

proofs and activities. For single-operator scenarios, the use of silence periods reduces

the chances of an AP operator linking users’ proofs during an activity, as described in

Section 4.4.5. Note that, even if no silence periods are used, the operator can track a user

only during her activity, without being able to link different activities over time. Thus,

this prevents the AP operator from inferring patterns from activity trajectories over time.

In addition, unlike the service provider, the operators have no personal information about

the users (e.g., their names). Also note that, because of the need for physical proximity

to interact with the APs, the privacy features of SecureRun are offerred on a best-effort

basis. We do not provide formal privacy, but it still provides significant improvements

compared to the current solutions of activity-tracking services.

Finally, quantifying the location-privacy of users when pseudonyms and silence pe-

riods are employed is a typical mix-zone [224]/mix-network problem; a mix-zone allows

users to change their pseudonyms and mix with each other, without being observed.

Note, however, that in SecureRun the pseudonym-change strategy optimizes the sum of

the distance proofs, whereas for traditional mix-zones it optimizes the users’ privacy.

In such situations, the location privacy of a user depends on the other users, as shown

in [225, 226, 227], where the higher the number of users is, the better their privacy is.

4.8 Conclusion

Activity-based social networks have become increasingly popular over the last few years.

In their current form, such systems rely on the users’ mobile devices to report the users’

real locations while they pursue their activities. This provides neither security guarantees

against cheaters, nor privacy protection against curious social-network providers, thus

potentially discouraging their adoption.

In this chapter, we have proposed SecureRun, a system for providing secure and private

proofs of location-based activities. SecureRun relies on the existing wireless access-point

networks deployed in urban areas (at the cost of only a software upgrade, hence alleviating

the need for deploying ad-hoc infrastructures), and it provides protection for both users

and service providers. Our experimental evaluation, conducted using real data-sets of

deployed wireless access-points and actual users’ outdoor activities, shows that SecureRun

achieves a good accuracy (up to 79%) when estimating a lower-bound of the distance that

users cover during their activities, and it provides privacy and security properties. From

a practical perspective, we envision our scheme to be of interest for strategic partnerships

between social-network providers and access point network operators. In addition, our

proof-of-concept implementation of SecureRun on a router has shown that it can be
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deployed in practice. As such, this work constitutes a first step towards the design of

secure and private activity-based social networks.





Chapter 5

Conclusion

In this thesis, we have performed threat analyses for popular mobile apps and services,

and have designed privacy protection mechanisms for them by using state-of-the-art

privacy enhancing technologies. We have shown that it is possible to enable users to

benefit from added privacy, while enjoying the rich functionality and convenience of

mobile apps and services.

In Chapter 2, we have shown that Android allows apps, even those with zero permis-

sion, to fingerprint and identify other installed apps. This is problematic for mHealth

apps because their presence might already reveal the medical conditions of their users.

We have systematically analyzed and shown a diverse set of information leaks that nosy

apps can exploit (through the Linux-layer interface and the Java API framework) to

identify other apps. Also, our static and dynamic analysis, conducted on a large num-

ber of apps from the Google Play Store, has shown that apps are interested in learning

about the presence of other installed apps. Our solution, HideMyApp, effectively hides

the presence of sensitive apps, does not require any modifications to the Android op-

erating system, and preserves the key functionality of apps. The thorough evaluation

of HideMyApp on a diverse set of apps from the Google Play Store suggested that it is

practical and usable. This is also confirmed by the results of our user study.

In Chapter 3, we have analyzed the privacy threats in ride-hailing services. We have

also proposed ORide, a practical solution that provides location privacy for riders and

drivers with respect to the service providers, and privacy for the drivers with respect

to malicious outsiders. By employing and optimizing the state-of-the-art somewhat-

homomorphic encryption system for the scenario of ride-hailing services, ORide efficiently

and effectively supports the anonymous matching of riders and drivers. The location

privacy of the rider’s destination is still guaranteed, even in the extreme case of targeted

attacks, i.e., a curious service provider wants to know the destination of a rider given the

time and location of a rider’s pick-up event. In addition, ORide still offers key features

of ride-hailing services, such as easy payment, reputation scores, accountability, and

retrieval of lost items.

In Chapter 4, we have proposed SecureRun, a system for providing secure and private

proofs of location-based activities. By relying on existing wireless access-point networks,

SecureRun provides privacy protection for the users with respect to service providers,

while enabling the service providers to compute accurate summaries and statistics of
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users’ activities. Our experimental evaluation, conducted using real data-sets of deployed

wireless access-points and actual users’ outdoor activities, shows that SecureRun achieves

a good accuracy when estimating a lower-bound of the distance and elevation gain that

users covered during their activities. In addition, as shown by the results of our user

study, SecureRun is perceived to be usable and of high interest to users.

In conclusion, this thesis has shown that it is technically possible to provide privacy

for mobile apps and services, and to balance the trade-off between privacy and usability.

For each privacy-preserving solution presented in the thesis, we have shown the entire

development process by spanning from the analysis of possible threats, the definition of

the privacy and security requirements, to the design of a potential privacy-preserving

system and its evaluation and usability. Analyzing security and privacy threats in the

smartphone ecosystem, and correspondingly addressing them, is a challenging and fas-

cinating endeavor, and the author hopes that the contributions presented in this thesis

will inspire more future work on the preservation of the users’ privacy.

Future Work

Despite the concrete solutions provided in this thesis, as the smartphone ecosystem

continues to grow, its attack surfaces will also augment, and the prevention of possible

privacy risks is an “arms race” between the defenders and the attackers. As technology

continues to quickly advance, many novel use-cases will emerge. For example, self-driving

cars, which rely on a plethora of sensors and data in order to ensure safe rides and also

provide users with convenient features, will also enable the car providers to have a detailed

look into users’ habits and activities. A number of ride-hailing services has considered

using self-driving cars instead of human-driving cars [228]. In such a case, the privacy-

preserving design presented in this thesis needs to be adjusted to a different threat model,

due to the collusion between the self-driving systems of the cars and the service providers.

Technological advances will also help increase the accuracy of measurements provided by

quantified-self devices. These devices will enable users to record and share not only

their location-based activities but also other sensitive personal data, such as their heart

rate and galvanic skin response. The Internet of Things (IoT) technologies will also

expose users’ habits to the service providers, hence privacy risks. Therefore, protecting

user privacy requires continuous efforts from the research community to understand the

technologies and to design privacy-enhancing solutions for them.

In addition to research efforts, on the engineering side, it is important to educate

app developers about possible security and privacy threats caused by smartphones to

their apps, and about tools that they could use to mitigate the problems. The sta-

tus quo is that even if operating-system providers provide app developers with secu-

rity/privacy guidelines or tools, the developers might not follow the guidelines or use

the tools properly. For example, even with sensitive apps such as mHealth apps, de-

velopers still stored unencrypted data on SD cards, sent data over the Internet with

insecure protocols (e.g., HTTP) or misconfigured HTTPS [229]. In addition, to bring

privacy-preserving systems from the academic world to the real world, we should raise

the awareness of the general public about possible privacy risks caused by their mobile

apps and services. Consequently, they can demand better privacy guarantees. Only then

will we enjoy an equitable society, where technology advances and privacy co-exist.
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Appendix A

RHS Threat-Taxonomy Details

In Table A.1, we present a more detailed description of the main threats against current

RHSs (Section 3.3.2 of Chapter 3), and the key reasons for their associated risk level.
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Appendix B

SecureRun Survey Details

In this appendix, we give the complete transcript of our survey questionnaire used in

the evaluation of our SecureRun system (Chapter 4). Long lists of options have been

truncated for the sake of conciseness. Our online questionnaire was designed with the

LimeSurvey system and interfaced with the HealthGraph API in order to access the

participants’ RunKeeper account data. We used this data only for screening purposes.
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Secure and private activity summaries

11. We designed a system, named SecureRun, that provides you with two main features:

• It protects your privacy. Specifically, the GPS traces of your activities is known only
to you. You share only the summaries of your performance (e.g., the covered distance),
and the coarse-grained information about the region where you perform your activities.

• It guarantees the authenticity of a fraction of the performance you report. For exam-
ple, if you run 10 miles and report it, SecureRun can certify (based on cryptographic
techniques) that you indeed ran at least 8 miles out of the 10 miles you ran.

We illustrate the differences between RunKeeper and SecureRun in the images below.

Assuming that you have run 10 miles, please choose your levels of satisfaction for the
different values for which you would receive certification from SecureRun.

Very low Low Medium High Very high
5 miles © © © © ©
6 miles © © © © ©
7 miles © © © © ©
8 miles © © © © ©
9 miles © © © © ©

Figure B.2: Transcript of our survey questionnaire (2/2).
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