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Abstract

Macroscopic instabilities and their unfavourable effects on plasma confinement pose
a central challenge for the development of reactor relevant tokamak scenarios. Some
promising operation scenarios feature extended regions of low magnetic shear. These are
in the core region for hybrid scenarios, and in the pedestal-edge region for e.g. the ELM-
free quiescent H-mode (QH-mode). This thesis presents a non-linear study of macroscopic
magnetohydrodynamic (MHD) instabilities with a focus on plasmas with regions of low
magnetic shear. In the first part, we investigate the triggering of fast growing resistive
modes in hybrid tokamak plasmas, where infernal modes can couple to neoclassical tear-
ing modes (NTMs). Numerical simulations with the non-linear resistive initial value code
XTOR-2F with and without inclusion of bootstrap current effects allow us to determine
the evolution of MHD modes from the linear to the late non-linear phase. An analytical
model is developed to describe the vanishing of mode coupling in the early non-linear
regime. In this context, we extend the tearing stability parameter Δ′ from the linear
to the non-linear phase and calculate the individual contributions to the growth of the
resistive mode. This allows for an identification of the triggering mechanism in the initial
phase and the dominant terms in the non-linear phase. A comparison with the numeri-
cal results shows that infernal mode coupling can destabilise otherwise stable NTMs and
thus seed 2/1 magnetic islands. The helically perturbed bootstrap current is found to
further destabilise the magnetic islands in the non-linear phase. In the second part of the
thesis, 3D free-boundary equilibrium computations are employed to describe saturated
external kink-type modes. The approach is first demonstrated to capture the salient
features of non-linearly saturated external kink modes in standard baseline tokamak sce-
narios and is then applied to QH-mode plasmas. A method to conveniently extract the
saturated displacement amplitude from edge-corrugated VMEC equilibria in terms of
straight field line Fourier modes is presented. For standard current-driven modes the
amplitude is compared with a non-linear analytical model, for which a numerical solver
is implemented. In QH-mode plasmas, dangerous edge localised modes (ELMs) are re-
placed by benign edge harmonic oscillations (EHOs). The latter are commonly assumed
to be connected to saturated external kink states. In our study of QH-mode plasmas, we
consider two different driving mechanisms for external kink type-modes separately. We
find that standard current-driven external kinks are linearly unstable, and non-linearly
stable in a wide parameter range, especially where qedge � m/n. But, where standard
current-driven kinks are linearly stable we find that coupling of pressure-driven infernal
modes can cause instability, and their upper sideband drives edge corrugations that ap-
pear to have external kink features. Both types of modes are identified with the VMEC
equilibrium code, and the spectra are compared favourably with those of linear numerical
approaches and analytic methods. EHOs could be connected to both type of modes.

Keywords: tokamak, magnetohydrodynamics, MHD, nonlinear, neoclassical, tear-
ing, infernal, external kink, quiescent H-mode, edge harmonic oscillations
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Zusammenfassung

Makroskopische Plasmainstabilitäten und deren Auswirkungen auf den magnetischen
Einschluss von Fusionsplasmen sind eine zentrale Herausforderung bei der Entwicklung
von reaktorrelevanten Tokamakszenarien. Einige vielversprechende Operationsszenarien
weisen räumliche Regionen mit geringer magnetischer Scherung der Feldlinien auf. Sol-
che Regionen befinden sich im Zentrum des Plasmas in Hybridszenarios, und in der
Randregion (pedestal), z. B. in der ELM-freien QH-Mode. In dieser Dissertation prä-
sentieren wir eine nichtlineare Untersuchung von makroskopischen magnetohydrodyna-
mischen Instabilitäten mit Fokus auf Plasmen mit geringer magnetischer Scherung der
Feldlinien. Im ersten Teil beschäftigen wir uns mit dem Auslösen von schnell wachsen-
den resistiven Moden in hybriden Tokamakszenarien, wo sogenannte ’Infernal Modes’
mit neoklassischen Tearingmoden (NTMs) koppeln können. In numerischen Berechun-
gen mit dem resistiven Anfangswertcode XTOR-2F mit und ohne Berücksichtigung des
Bootstrapstroms, ist es möglich die Entwicklung von MHD-Moden von der linearen bis
zur nichtlinearen Phase zu bestimmen. Ein analytisches Model wird entwickelt um den
Verlust der Modenkopplung in der frühen nichtlinearen Phase zu beschreiben. Dabei er-
weitern wir den Tearingstabilitätsparameter Δ′ vom linearen in das frühe nichtlineare
Stadium und berechnen die individuellen Beiträge zum Wachstum der resistiven Mode.
Dies erlaubt sowohl eine Identifikation des Auslösemechanismus in der Anfangsphase,
sowie der dominanten physikalischen Effekte in der nichtlinearen Phase. Ein Vergleich
mit den numerischen Ergebnissen zeigt, dass eine Kopplung mit Infernal Modes anson-
sten stabile neoklassische Tearingmoden destabilisieren, und damit magnetische Inseln
generieren kann. In der nichtlinearen Phase destabilisiert die spiralförmige Störung des
Bootstrapstroms die magnetischen Inseln weiter. Im zweiten Teil dieser Dissertation wer-
den 3D Gleichgewichtsberechnungen mit frei beweglichem Plasmarand dazu verwendet
gesättigte externe Kinkmoden zu beschreiben. Zuerst wird anhand von Standardtoka-
makszenarien demonstriert, dass dieser Ansatz die herausragenden Eigenschaften solcher
Moden erfasst. Anschließend wird die Methode auf QH-Modeplasmen angewandt. Eine
Berechnungsmethode zur Bestimmung der Sättigungsamplitude der Randmoden in den
3D VMEC Gleichgewichtszuständen in Form von Fouriermoden wird vorgestellt. Dazu
wird ein Koordinatensystem eingeführt, in welchem die Magnetfeldlinien gerade sind. Für
stromgetriebene externe Kinkmoden wird die Amplitude mit der eines nichtlinearen ana-
lytischen Models verglichen, wozu eine numerische Lösungsmethode implementiert wird.
In QH-Modeplasmen werden ELMs durch gutartige harmonische Oszillationen am Rand
(EHOs) ersetzt. Letztere werden in der Literatur mit gesättigten externen Kinkmoden
assoziiert. In unserer Untersuchung von QH-Modeplasmen berücksichtigen wir separat
zwei unterschiedliche Destabiliserungsmechanismen (Strom und Druck). Die Ergebnisse
zeigen, dass externe Kinkmoden über einen breiten Parameterbereich linear instabil und
nichtlinear stabil sind, insbesondere wenn qRand � m/n. Wenn aber stromgetriebene
externe Kinkmoden linear stabil sind, beobachten wir druckgetriebene Infernal Modes
mit einem oberen Seitenband, das durch die Kopplung benachbarter poloidaler Moden
destabilisiert wird. Diese Seitenbänder haben die Eigenschaften von externen Kinkmo-
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den. Beide Modentypen werden mit dem Gleichgewichtscode VMEC identifiziert und die
Spektren erfolgreich mit denen von linearen numerischen und analytischen Methoden
verglichen.

Stichwörter: Tokamak, Magnetohydrodynamik, MHD, nichtlinear, Plasmainstabi-
litäten, NTM, infernal, Kinkmoden, quiescent H-mode, edge harmonic oscillations
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Résumé

Les instabilités macroscopiques et leurs effets néfastes sur le confinement du plasma
comptent parmis les défis majeurs du développement de scénarios pour un réacteur toka-
mak. Certains scénarios prometteurs présentent des régions étendues de bas cisaillement
magnétique. Ces régions sont situées dans le coeur dans le cas des scénarios hybrides et
dans la région du bord/piédestal dans le cas, par exemple, des modes QH sans ELM.
Cette thèse traite d’études non-linéaires des instabilités macroscopiques magnétohydro-
dynamiques en se concentrant sur des plasmas comportant des régions de bas cisaillement.
La première partie porte sur l’amorçage des modes résistifs à croissance rapide dans les
plasma de scénarios hybrides pour lesquels les modes infernaux peuvent se coupler aux
"Neoclassical Tearing Modes" (NTMs). Les simulations numériques du code non-linéaire
résistif et à valeur initial XTOR-2F, avec et sans prise en compte de l’effet du courant
de bootsrap, permettent de déterminer l’évolution des modes MHD de la phase linéaire
jusqu’à des phases non-linéaires avancées.Un modèle analytique a été développé afin de
décrire la disparition du couplage de mode dans la première phase non-linéaire. De cette
manière, le "tearing stability parameter" Δ′ est étendu de la phase linéaire à la phase non-
linéaire et les contributions individuelles à la croissance du mode résistif sont calculées,
permettant l’identification du mécanisme d’amorcage dans la phase initiale, et des termes
dominants dans la phase non-linéaire. Des comparaisons avec les résultats numériques
montrent que le couplage avec les modes infernaux peuvent déstabiliser des modes NTMs
normalement stables et ainsi déclencher des îles magnétiques 2/1. Additionellement, la
perturbation hélicoidale du courant de bootstrap déstabilise les îles magnétiques dans la
phase non-linéaire. Dans la deuxième partie de cette thèse, des modes kink externes satu-
rés sont décrits par le truchement de calculs 3D d’équilibres au bord libre. Tout d’abord,
la démonstration que l’approche est capable de saisir les éléments essentiels des modes
externes kink non-linéaires dans les scénarios de base standard des tokamaks a été dé-
montrée. Cette approche a ensuite été appliquée à des configurations de plasmas de mode
H calme (quiescent H-mode ou QH-mode). Une méthode pratique pour extraire l’ampli-
tude de déplacement saturée d’un équilibre VMEC corrugé au bord, en terme de modes
de Fourier de ligne de champ droit, est présentée. Pour des modes standards entrainés
par le courant, l’amplitude est comparée à un modèle analytique non-linéaire, pour lequel
un code a été implémenté. Pour les plasmas de mode QH, les modes dangereux localisés
dans le bord (ELMs) sont remplacés par des oscillations harmoniques bénignes (EHOs).
Ces dernières sont communéments liées aux états kink externes saturés. Dans nos études
des plasmas de mode QH, nous considérons séparément deux mécanismes de stimulation
pour les modes de types kink externes. Les modes standards kink externes entrainés par
le courant sont linéairement instables, et non-linéairement stables pour une large échelle
de paramètres, en particuliers quand qbord � m/n, comme attendu. Néanmoins, là où les
modes kink entrainés par le courant sont linéairement stables, on trouve que le couplage
des modes infernaux entrainés par la pression peuvent être la cause d’instabilité. Leur
bande latérale supérieure entraine des corrugations dans le bord du plasma et semble
posséder des caractéristiques kink externes. Les deux types de modes sont identifiés avec
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le code d’équilibre VMEC et le spectre est comparé avec succès avec celui provenant d’ap-
proches numériques linéaires et de méthodes analytiques. Les oscillations harmoniques
bénignes (EHOs) pourraient être liées aux deux types de modes.

Mots clefs : tokamak, magnétohydrodynamique, MHD, non-linéaire, instabilités,
plasma, NTM, mode infernaux, kink externe, quiescent H-mode, edge harmonic oscilla-
tions
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Chapter 1

Introduction

1.1 Nuclear fusion as energy source

The global rise in energy demands and the limitations of fossil fuels in terms of availability
and pollution requires a search for new energy sources. Renewable energy sources such
as wind and solar power are more sustainable than fossil fuels, but the power output
depends strongly on the location and is not constant in time. This brings the need for
energy storage, which itself relies on lithium batteries (not good for the environment)
or hydro storage. The risks and political whims associated with nuclear fission have
resulted in the shutdown of multiple nuclear power plants in the western world. Another
possible energy source is nuclear fusion. Two light elements fuse to a heavier element
while releasing binding energy. This energy can be used to operate a generator. Fusion
reactions with a net energy gain are possible among a multitude of light isotopes, with
varying cross sections and some reactions require large energies. For laboratory fusion
devices the fusion reactions involving deuterium and tritium as fuel are favourable:

2
1
D + 2

1
D → 3

1
T(1.01MeV) + p0(3.02MeV) , (1.1)

2
1
D + 2

1
T → 3

2
He(0.82MeV) + n0(2.45MeV) , (1.2)

and
2
1
D + 3

1
T → 4

2
He(3.5MeV) + n0(14.1MeV) . (1.3)

The cross sections of the reactions of Eqs. (1.1)-(1.3) are shown in Fig. 1.1a and their
reactivity in Fig. 1.1b [1]. Deuterium is available on earth in large scales and can mainly
be found in the oceans. Tritium is radioactive with a half life of 12.32 years. For this
reason there are no practical natural sources on earth. However, tritium can be bread
from lithium reacting with neutrons resulting from the fusion reactions inside the plasma:

6Li + n0 → 4
2
He + T(4.78MeV) . (1.4)

Such fusion reactions (and many others) occur naturally in the sun’s core, where gravity
ensures the confinement of a vast number of reacting particles under high pressure and
temperature. This is necessary since it provides the energy required for two particles
to overcome the barrier due to electrostatic forces and fuse. In the centre of the sun,
a pressure of p ≈ 26.5× 1015 Pa acts on the matter at a temperature of 1.57× 107K.
Recreating such conditions (without the luxury of strongly localised gravitational fields)
on earth is challenging. Matter at such a temperature requires thermal isolation from
any surrounding material since thermal transport would cool down the fuel, but also
because no known material can withstand such temperatures. The approaches on earth
are thus focused on inertial confinement fusion (high density) and magnetic confinement
(low density, high temperature).
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Chapter 1. Introduction

Figure 1.1(a): Cross sections of commonly used
fusion reactions as a function of energy.

Figure 1.1(b): Reactivity of commonly used fu-
sion reactions as a function of temperature.

1.2 Magnetic confinement of plasmas

The confinement of the fuel for nuclear fusion reactions within an isolated space requires
a force to act on the matter. Electromagnetic forces are appropriate, since gravity is
too weak on earth, and the weak and strong nuclear forces are of very short range. Due
to the high temperatures required to enable nuclear fusion reactions, the matter is in
the plasma state. In the following, we define this fourth state of matter and introduce
toroidal magnetic fusion devices.

1.2.1 The basics

A plasma is characterised by a separation of electrons from initially neutral atoms, cre-
ating a gas of freely moving electrons and ions interacting with electromagnetic forces.
This charge separation is only visible at microscopic scales. At scales larger than the
Debye length λD =

√
ε0kBTi/nee2, where ε0 is the vacuum permittivity, kB the Boltz-

mann constant, Ti the ion temperature, ne the electron density and e the electron charge,
the plasma appears electrically neutral [2]. This principle is called quasi-neutrality. A
plasma can be fully or partially ionised and is an electrical conductor. In fact most mat-
ter in the visible universe is in the plasma state. It is found in stars and the intergalactic
medium, but also on earth e.g. in the form of lightnings or fluorescent lamps. Thus,
plasmas exist in a wide range of temperature and density. Now, any charged particle
with non-zero velocity v experiences the force

F = q(E+ v ×B) , (1.5)

in the presence of an electric E and magnetic field B. This results in a helical trajectory
with finite radius around a magnetic field line, enabling the confinement of a plasma
inside a magnetic field (surrounded by a vacuum). In particular, to leading order the
particle streams along a magnetic field. Salient features of plasma confinement can be
assessed by the trajectories of magnetic field lines.

The development of magnetic confinement devices began in the 1950s, starting with
simple magnetic field geometries, e.g. mirror machines, z-pinch. The confinement time

2



1.2. Magnetic confinement of plasmas

for these machines turned out to be very low. One disadvantage of these concepts is
the existence of at least one point where the magnetic field line exits the vessel or the
machine, allowing free streaming of particles. Or the magnetic field strength would
vanish locally, which introduces poor confinement for other reasons. According to the
hairy ball theorem [3] only a torus has the property that a vector field with ∇ · B = 0

does not vanish in any point. Such toroidal confinement systems are discussed in the
next section.

1.2.2 Toroidal confinement devices

There are currently two competing toroidal designs considered for future power plants:
the stellarator and the tokamak. Since this thesis focuses on tokamak studies, we intro-
duce its principles in the following and briefly explain the differences to the stellarator.

The word tokamak as well as the design originates from Russia, meaning toroidal
chamber with axial magnetic field. Plasma confinement is achieved by the creation of
toroidal and poloidal magnetic fields. The magnetic field lines lie on toroidal surfaces.
An example of such a surface is shown in Fig. 1.2 together with essential parts of a
tokamak. Ideally, the radial component of the magnetic field, which is perpendicular to
the toroidal flux surfaces should vanish for the particles to remain confined. The toroidal
magnetic field Bφ, which is the dominant component of B in a tokamak, is created by
current-carrying external magnetic field coils surrounding the plasma. At the inboard
side of the plasma the distance in between the toroidal field coils is much lower than on
the outboard side, as depicted in Fig. 1.2. This results in a strong magnetic field closer
to the central axis that decreases radially outwards, leading to the terminology high-
field and low-field side. Due to their finite Larmor radius, the plasma particles would
experience a variation in magnetic field strength during their gyro motions (c.f. Lorentz
force), causing a drift of particles. This drift is in the opposite direction for unlike charges,
so that electric fields build up and this in turn causes catastrophic loss of confinement
(due to so-called E × B drifts). This is counteracted by applying a poloidal magnetic
field that results in helical magnetic field lines, forcing particles to execute periodic orbits
over the poloidal cross section, averaging out drifts due to magnetic inhomogeneity, and
preventing charge accumulation. A solenoid in the centre of the tokamak (c.f. Fig. 1.2)
acts as a primary transformer coil and induces a current in the plasma, which acts as
a secondary transformer coil. The plasma current then enhances the poloidal magnetic
field. The superposition of toroidal and poloidal fields results in helical field lines which
are aligned on closed surfaces, where the magnetic flux is constant (flux surfaces). As will
be discussed later in this thesis, the exact topology of the magnetic field - particularly
the field line helicity - is crucial for plasma stability. The toroidal shape has another side
effect: the plasma tries to expand in radial direction. This is due to two reasons. First,
because the pressure is distributed equally on a flux surface, but the plasma surface is
smaller on the inboard side than on the outboard side, thus a net force arises in radial
direction. Second, the currents on two opposing sides of the torus repel each other causing
the torus to increase in diameter. This can be compensated by enclosing the plasma in
a (perfectly) conducting wall, which increases the magnetic pressure on the outboard

3



Chapter 1. Introduction

Figure 1.2 – Schematic of a typical tokamak. Toroidal and poloidal field coils are arranged
such that the resulting magnetic field has the topology of a torus and the plasma particles
follow helical field lines. Courtesy of EUROfusion.

side and enables the existence of another equilibrium state in which the magnetic axis is
shifted with respect to the geometrical centre (Shafranov shift). Furthermore, a vertical
magnetic field can be applied to provide a Lorentz force that counteracts the expansion
[4].

The temperatures of 100Mio.K to 150Mio.K required to achieve nuclear fusion are
achieved by several heating mechanisms. The primary heat source is Ohmic heating as
a result of the internal plasma resistivity and the solenoid (and plasma) induced plasma
current. Additional heating mechanisms are neutral beam injection (NBI) and radio-
frequency heating via electromagnetic waves. The latter can be applied to electrons
(electron cyclotron resonance heating (ECRH)) or to ions (ion cyclotron resonance heat-
ing (ICRH)). The optimisation and effects of these auxiliary heating mechanisms are
subject of current research.

An important measure for the performance of the plasma is the ratio of thermal and
magnetic pressure called plasma beta β = p

B2/(2μ0)
, where p is the pressure, B = |B|

and μ0 the vacuum permeability. For a confined plasma β < 1. However, in real fusion
devices β � 1 with typical values of a few percent. The maximum possible value of β is
limited by plasma instabilities. Some of these instabilities are investigated in the frame
of this thesis. A well known gross prediction for the operational limits of tokamaks is
the Troyon limit [5].

As alternative concept to the tokamak, the stellarator [6] is characterised by having
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1.2. Magnetic confinement of plasmas

Figure 1.3 – Magnetic field coils (blue) and resulting flux surface (yellow) in Wendelstein
7-X, a stellarator. Courtesy of Max-Planck Institut für Plasmaphysik.

a magnetic field that is entirely generated by external coils and no current is induced in
the plasma (small self-generated currents such as the bootstrap current exist though).
This has the advantage of avoiding current-driven instabilities and being able to operate
the machine in a continuous manner. However, the coil design is much more complicated
for the stellarator, where the plasma is always non-axisymmetric as shown in Fig. 1.3.
Another challenge in the development of stellarators is the confinement of fast particles
such as alpha particles (necessary to reach fusion burn conditions). In stellarators, fast
particles can form an energetic particle beam that can leave the plasma and damage the
machine.

The high electrical energy costs for creating the magnetic field and heating the plasma
together with further energy losses during operation, require that conditions for nuclear
fusion are maintained sufficiently long to obtain an energy gain. The neutrons created
in the fusion reaction with an energy of 14.1MeV are available for electricity genera-
tion, while the α particles can collide with other particles in the plasma and provide an
additional heat source. Power losses occur in the form of Bremsstrahlung and particle
transport. In order to maintain fusion reactions, the power gain must be larger or equal
to the power losses. Then the fusion reaction becomes self-sustaining. Based on Lawson
criterion [7] ignition is achieved when

neτET ≥ 12 kBT
2

〈σv〉Edt
, (1.6)

where the electron density ne, the energy confinement time τE and the temperature T

define the so-called triple product. Here, Edt = 3.5MeV and 〈σv〉 is the product of the
fusion reaction cross section σ and velocity v averaged over a Maxwellian distribution.
As we can see from Eq. (1.6), a requirement for energy gain in a fusion reactor is a long
energy confinement time. Hence, the plasma state needs to be retained sufficiently long,
i.e. instabilities of the plasma are to be avoided. Generally, an instability occurs when
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the plasma response to a perturbation is such that the perturbation grows further in
time, away from an equilibrium state. This can lead to a loss of plasma particles, energy
and eventually the plasma itself. The investigation of such instabilities in experimental
conditions is thus an important topic and the main focus of this thesis.

1.2.3 Current fusion challenges & future development

In tokamaks, macroscopic plasma instabilities are often associated with the sudden loss of
confinement. Such an event is called a disruption. While disruptions are undesired (but
no real threat to small existing tokamaks), they are intolerable in ITER (International
Thermonuclear Experimental Reactor)1. With a plasma volume of 840m3 and a major
radius of R0 = 6.2m [8] it will be the largest tokamak built to date. The occurrence of
a disruption can be deleterious in ITER, since the energy deposited in the surrounding
vessel is proportional to the plasma volume. Disruption avoidance is an important topic
for the development of the next generation of tokamaks.

The definitive goal of fusion research is to reach steady state conditions, where the
current is driven fully non-inductively. ITER is expected to demonstrate the feasibility
of long plasma discharges and high fusion power gain. Requirements for steady state
include a high bootstrap current fraction (explained in chapter 2) and high beta limits
together with good confinement properties. In the past decades a lot of research has been
conducted with the aim of finding parameter and operating spaces to achieve these goals.
A very important parameter that determines the performance of a tokamak plasma is the
current profile. The current profile is directly related to the helicity of the magnetic field
lines, described by the safety factor or q profile (defined in chapter 2). The derivative
of this profile determines the magnetic shear, a measure for the variation of the field
line helicity and an important quantity for the magnetohydrodynamic (MHD) stability
of a plasma. A variety of current profiles from monotonic to deeply reversed shapes
have been studied in experimental reactors and on this basis three operational scenarios
were proposed for ITER. In the standard scenario the current is driven inductively,
but is expected to have the best fusion performance (Q = Pfusion/Pheat = 10). The q

profile is monotonic with a rational value of q = 1 contained inside the plasma, and
hence the plasma is susceptible to sawtooth oscillations. Further MHD instabilities can
cause possible disruptions and damage to the machine, and some of these instabilities are
triggered by sawtooth oscillations. A larger fraction of non-inductive current is achieved
in hybrid scenarios aimed to achieve long burn times (> 1000 s) and Q = 5. The
total current is lower in this scenario than in the standard scenario and has a higher beta
limit. A main characteristic of the hybrid scenario is an extended region in the core where
the q profile is flat and the magnetic shear very low with q > 1 everywhere (sawteeth
are avoided). Disruption threatening instabilities can be triggered by ideal modes in
these hybrid regimes and we study this phenomena in this thesis. In the advanced
scenario the current is driven predominantly non-inductively or fully inductively to
reach true steady state. The q profile is reversed in the core and gives rise to an internal
transport barrier (ITB) with strongly reduced transport. However, the fusion power in

1Under construction in Cadarache, France and expected to start operation by 2025.
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such discharges is low and alpha-driven instabilities, and impurity confinement can be
problematic [9].

A major step towards achieving good plasma confinement in tokamaks, was the dis-
covery of the high confinement mode (H-mode) [10], which occurs when enough plasma
heating is applied to exceed a certain threshold. In the H-mode, the pressure, tempera-
ture and density profiles steepen close to edge forming the so-called edge pedestal [11].
This causes a strong bootstrap current, which again is desirable to achieve steady state.
However, the improved confinement is accompanied by periodic oscillations at the plasma
edge called edge localised modes (ELMs) [12]. The control and avoidance of ELMs is one
of the biggest challenges of current fusion research, since ELMs cause large heat loads
from the plasma towards the surrounding machine components. For large machines like
ITER ELMs can be deleterious and have to be mitigated if not fully suppressed. Current
research is thus focused on mitigating ELMs for example by application of resonant mag-
netic perturbations (RMPs) [13] and exploring experimentally observed high confinement
regimes without ELMs. The latter is investigated in the frame of this thesis.

1.3 Thesis focus and contribution

The aim of this thesis is an investigation of macroscopic plasma instabilities in tokamak
plasmas with a focus on non-linear phenomena. In this context, we review the theoreti-
cal background of macroscopic instabilities including analytical and numerical methods.
These are applied to compute stability of current-driven and pressure-driven instabilities
in a variety of tokamak configurations with high and low magnetic shear. The latter
is found in the plasma core in hybrid scenarios and after sawtooth crashes, but also in
plasmas with edge pedestal. The common element connecting most of the instabilities in
this thesis is an extended region of low magnetic shear, where infernal modes are driven,
either at the core or the edge.

Macroscopic instabilities are usually investigated using the magnetohydrodynamics
(MHD) model, which forms a set of partial non-linear differential equations. Finding
analytical solutions to this model is challenging. One way to simplify the model is
to linearise it. Numerous studies have been carried out treating the linear stability of
tokamak plasmas. The resulting linear MHD equations are easier to solve, but analytical
solutions are found only for specific simple configurations such as cylindrical limits, large
aspect ratio or circular poloidal cross sections. In the linear model a plasma is perturbed
about an equilibrium state. This approach is valid only in the limit of small perturbations
and is sufficient to determine whether a perturbed plasma goes back to its equilibrium
state (stability), or whether it exhibits further growth (instability). However, there are
two limitations associated with the linear model. First, linear stability analysis does not
apply for modes with large perturbations that occur in experiments, such as neoclassical
tearing modes (NTMs) and (to some extend) edge harmonic oscillations. Hence, linear
models cannot provide a full explanation of these phenomena. Second, dominant linearly
unstable modes are not always dominant in the non-linear phase. In order to predict
the impact of unstable modes in tokamak scenarios a pure linear treatment is usually
insufficient. Non-linear models describe effects such as saturation, non-linear growth
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Chapter 1. Introduction

or damping of certain linearly unstable modes and non-linear coupling. As a result,
certain modes can be dominant in the non-linear phase that were not dominant during
the initial linear phase [14]. For neoclassical tearing modes, non-linearity is particularly
important. These meta-stable modes are driven unstable by a seed (a sufficiently strong
initial perturbation is required to cause the mode to be unstable). The development of
non-linear analytic models is even more challenging. However, a few models exist for some
ideal MHD modes, resistive NTMs usually require the adoption of simple geometries.
Plasmas in modern and future tokamaks with finite aspect ratio are quite highly shaped,
i.e. the poloidal cross section is elongated and triangular to a certain degree. Ignoring
these geometrical effects can lead to inaccurate results and some experimental phenomena
cannot be explained without neoclassical effects. To take these effects into account, non-
linear studies necessitate the application of numerical techniques.

Part of the thesis addresses the triggering of NTMs in hybrid scenario low-shear
plasmas by coupling to infernal modes. Motivated by the experimental observation of
fast-growing resistive modes in various tokamaks, this study is important for the de-
velopment of hybrid scenarios but also for the prediction of fast-growing modes after
sawtooth crashes. Non-linear stability of the classical tearing mode is well described by
Rutherford’s model [15], originally developed for cylindrical plasmas. It predicts that the
growth in the early non-linear phase is linear in time and proportional to Δ′ = ψ′/ψ|rs ,
the tearing stability parameter, which measures the jump of the eigenfunction ψ on the
rational surface rs. Several extensions to Rutherford’s model have been investigated to
include neoclassical effects and therefore to describe NTMs [16, 17]. In developing the
Rutherford equation for plasmas that have a region of extended low magnetic shear,
we define a new driving contribution to Δ′ that originates from toroidal coupling to an
infernal mode. By including effects due to the bootstrap current an additional destabil-
ising mechanism is considered, that could still be maintained even if the driving effect
of infernal modes on the island growth were to disappear, e.g. due to the q profile in
the low-shear region moving away from a rational surface where q = m0/n. In such a
situation, a NTM would be envisaged as developing from the infernal mode ’seed’, and
would be maintained by the bootstrap effect. This allows us to see whether the boot-
strap current is able to maintain NTMs that have been triggered with the help of infernal
modes after the contribution from the triggering mechanism vanished. To do this, an
analytic estimate for Δ′

0(γ) is made, in order to calculate the strength of the coupling
contribution to stability. This is compared with numerical simulations performed by
using the initial value code XTOR-2F. The numerical simulations can calculate the size
of magnetic islands, but it does not permit certain individual contributions to stability
(such as the infernal mode drive) to be identified in isolation. Hence, comparison with
the analytic approach is highly valuable. Nevertheless, by carrying out simulations with
and without bootstrap current, the magnitude of the bootstrap contribution is estimated
and compared with the analytical prediction.

The discovery of ELM-free high confinement regimes in tokamak experiments mo-
tivates the study of non-linearly saturated external kink modes. Experiments observe
harmonic oscillations localised at the plasma edge in the quiescent high confinement
regime (QH-mode). These edge harmonic oscillations (EHOs) are desirable, since they
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are associated to particle and impurity exhaust with tolerable heat and energy loads.
It is still unclear if the QH-mode can be accessed under reactor conditions, but the pa-
rameter range in which the QH-mode is obtained is increasing [18]. The QH-mode can
thus be a promising alternative to the ELMy H-mode in future tokamaks like ITER. In
this context, it is important to understand the nature of EHOs. A link to kink-peeling
modes (saturated external kink modes localised at the plasma edge) is assumed based on
numerical analyses, but the character of these low-n modes is not fully understood. In a
novel approach, we describe non-linearly saturated external kink modes as free-boundary
3D equilibrium states and present a method to calculate the saturated amplitude of the
radial displacements. For a reliable analysis of the dominant Fourier modes, the equi-
libria are transformed to straight field line coordinates. The validity of this approach is
justified by a study of typical tokamak baseline scenario plasmas. For standard current-
driven external kink modes, the non-linear saturated external kink mode amplitude is
calculated from an analytical model using a numerical scheme to solve the corresponding
system of equations. In QH-mode plasmas, we investigate two driving mechanisms: On
the one hand standard external kink modes are driven by the large current gradient in
the pedestal. On the other hand, pressure drives infernal modes that are coupled to
external kink sidebands, the bootstrap current having caused low magnetic shear at the
edge. We determine the relevance of both driving mechanisms in situations where EHOs
are seen in experiments.

1.4 Outline of this thesis

Having introduced the concept of magnetic confinement in this chapter, the main thesis
is organised as follows:

First, the concepts for investigating macroscopic plasma instabilities are explained
in chapter 2. This includes analytical models and numerical tools used for the studies
presented in the next chapters. The basic model governing the dynamics of plasmas that
have long timescales and long wavelengths are introduced together with extended MHD
effects such as the bootstrap current. The behaviour of resistive plasmas are discussed
briefly. We describe methods to compute axisymmetric and non-axisymmetric toroidal
plasma equilibria and introduce the CHEASE and VMEC codes. Finally, the concepts
of linear and non-linear stability are discussed. Of particular relevance is non-linear
stability, i.e. saturation of instabilities. The approach for obtaining saturated states is
briefly introduced.

Chapter 3 presents an investigation of neoclassical tearing mode (NTM) trigger-
ing by coupling to infernal modes in plasmas with extended regions of low magnetic
shear in the core. Classical and neoclassical tearing modes are described together with
the Rutherford equation. Initial value simulations of hybrid tokamak configurations are
performed using the non-linear resistive code XTOR-2F with and without consideration
of bootstrap current effects. An analytical linear model is extended to the early
non-linear phase to reflect the vanishing of the coupling.
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In chapter 4 we explore a novel approach to describe non-linearly saturated external kink
modes by using free-boundary 3D equilibrium simulations. This proof-of-principle study,
focused on tokamak baseline scenarios shows that the equilibrium code VMEC well
describes features of saturated external modes. We discuss the importance of choosing
a straight field line coordinate system for the mode analysis and provide a method to
calculate the displacement amplitude from VMEC. A numerical solver is developed to
calculate the saturated non-linear amplitude of external kink modes from an analytical
model, and it is compared to the results obtained from VMEC computations. Details
about the numerical scheme are described in appendix C.2. A numerical linear analysis
demonstrates that external kink modes are unstable in the range where 3D equilibrium
states are found.

Following the approach and philosophy of chapter 4, chapter 5 addresses non-linear
stability of external kink type-modes in quiescent H-mode configurations. Linearly
unstable, but non-linearly stable standard current-driven external kink modes are iden-
tified in a wide parameter range. In addition, it is shown that VMEC can also capture
pressure-driven infernal modes coupled to external kink sidebands. We present free-
boundary non-axisymmetric equilibrium computations that describe saturated coupled
infernal and external kink modes. Linear analytical and numerical calculations show the
existence of such coupled modes, which have recently been named exfernal modes [19, 20].

A summary of the thesis, a discussion of the main results and an outlook for
future investigations is provided in chapter 6.
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Chapter 2

Fluid description of a plasma

In this chapter we introduce the theoretical models to describe macroscopic phenomena
in fusion plasmas. Analytical and numerical tools suited for the investigation of resistive
and ideal modes in low-shear plasmas are explained. This chapter introduces magneto-
hydrodynamics (MHD) theory with various extensions, and the physical concepts that
are later used for the investigations carried out in this thesis. We first give an overview of
the ideal and resistive single-fluid model and then define the safety factor, an important
quantity for stability considerations. Non-MHD effects that can however be combined
with the MHD model and determine the evolution of macroscopic instabilities are de-
scribed. This is followed by the calculation of axisymmetric (2D) and non-axisymmetric
(3D) toroidal equilibria. The concepts of linear and non-linear stability are discussed in
the end.

2.1 Basic and extended MHD models for tokamak plasmas

Due to the complexity of magnetised plasmas together with the non-trivial toroidal
geometry of fusion devices it has not yet been possible to develop a practical unified
model that explains all relevant effects. For example, kinetic models - based on distribu-
tion functions for the plasma particles f(x,v) - are successful in describing microscopic
phenomena and turbulence, but it is not generally suitable for fully electromagnetic,
non-linear, large scale fluctuations of MHD instabilities. The MHD fluid model is valid
on larger length and time scales and is naturally fully electromagnetic and non-linear. It
quite accurately describes dynamics perpendicular to the magnetic field.

2.1.1 Ideal and resistive single-fluid MHD model

The basic equations of the magnetohydrodynamics (MHD) model combine the continu-
ity equation and equation of motion for a given fluid element and Maxwell’s equations
describing the behaviour of the magnetic and electric field. It is also possible to derive
the MHD equations by taking moments of the Boltzmann equation [21]. The MHD
model is suitable for slow dynamics on a macroscopic length scale L >> λD and time
scales of τ >> Ω−1

ci , where Ωci = qiB/mi (with ion charge qi and ion mass mi) is the
ion cyclotron frequency. High collisionality is assumed such that the ion and electron
distribution functions are close to a Maxwellian, and relatively slow time scales. The
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MHD model is given by the following equations [21]:

∂�

∂t
= −∇ · (�v) , (2.1a)

�

(
∂v

∂t
+ v · ∇v

)
= −∇p+ J×B , (2.1b)

∂p

∂t
= −v · ∇p− Γp∇ · v , (2.1c)

∂B

∂t
= −∇× (v ×B) , (2.1d)

∇×B = μ0J , (2.1e)

∇ ·B = 0 , (2.1f)

E+ v ×B = ηJ , (2.1g)

where � is the ion mass density, B is the magnetic field, J is the current density, v the
fluid velocity, p the pressure, E the electric field, η the plasma resistivity, μ0 the vacuum
permeability and Γ = 5/3 the adiabatic index. We first focus on the ideal MHD case
η = 0 in Eq. (2.1g). With assumptions of pre-Maxwell Ampère’s law (no displacement
current in Eq. (2.1e)), the MHD model is appropriate to describe slow electromagnetic
waves (v � c) with frequencies well below the plasma frequency ωpe = (nee

2/meε0)
1/2,

where e is the elementary charge, ne the electron density, me the electron mass and ε0
is the vacuum permittivity. Neglecting space charges (ε0∇ · E) implies quasi-neutrality
of the plasma, i.e. the charge density of ions is equal to that of electrons qini = ene.
Should a charge imbalance on macroscopic scale develop in the plasma, the fast response
of electrons due to their small masses creates an electric field opposite to the imbalance,
keeping the plasma in quasi-neutrality. Thus, the MHD model can only describe waves
with wavelengths of a characteristic scale a (with wavenumber k ∼ 1/a) much above the
Debye length λD. Since the electron mass me/mi � 1 is small, a further approximation
is made to neglect electron inertia me → 0, such that the mass density is only due to the
ions � = min.

It is interesting to look at the conservation of magnetic flux in ideal MHD [22]. Given
an open surface S with normal vector n, the magnetic flux through this surface is

ψ =

∫
S
B · n dS . (2.2)

A change of ψ can be either due to a change of B but also due to the surface moving
with the plasma velocity v, and thus it is given by

dψ

dt
=

∫
S

∂B

∂t
· n dS−

∮
v ×B · dl = −

∮
(E+ v ×B) · dl , (2.3)

where dl is the length element along the surface. For the second equality Stokes’ theorem
and Faraday’s law were applied. Resistive Ohms law (2.1g) gives therefore

dψ

dt
= −

∮
ηJ dl . (2.4)
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Hence, in the ideal MHD limit η = 0, where we have conservation of magnetic flux,
dψ/dt = 0. Since this applies to any surface it implies that the magnetic field lines move
with the fluid and are said to be frozen into the plasma. The conservation of magnetic flux
furthermore restricts the allowed motions of the fluid such that the magnetic topology is
preserved.

The assumption of ideal MHD that a plasma is perfectly conducting is not exactly
satisfied for a real plasma with finite resistivity (Eq. (2.4)). Even though the magnetic
Reynolds number is very low for fusion plasmas with values of Rm ∼ 109, the finite
resistivity gives rise to more complex effects. Even very small resistivity allows the
magnetic field to dissipate through the fluid and allows magnetic field lines to tear and
reconnect. This can form isolated structures, known as magnetic islands. Resistivity
enters via Ohm’s law

E+ v ×B = ηJ , (2.5)

where η is the resistivity and J the current density. Various models exist for the plasma
resistivity η. A simple and widely used model is the Spitzer resistivity [23]

η =
πZe2m1/2 ln Λ

(4πε0)
2 (kBT )

3/2
, (2.6)

where Z is the ionisation of nuclei and Λ ≈ 10 − 20 is the Coulomb logarithm. The
degree of resistivity in a plasma is often expressed by the dimensionless Lundquist num-
ber defined by S = μ0l0vA/η, where l0 is the characteristic length of the system and
vA = B/

√
μ0� is the Alfvén speed. Finite resistivity gives rise to another class of insta-

bilities, which typically grow on a slower time scale, but nevertheless affect the plasma
performance. A more detailed description of resistive instabilities can be found in sec-
tion 3.3.

In the derivation of the MHD model, high collisionality is assumed such that the
electron and ion distributions take the form of a Maxwellian, as particles have short mean
free path. In reality, tokamak plasmas are almost collisionless, but nevertheless the model
has been proven to describe the salient macroscopic properties of fusion plasmas. This is
underlined by experimental evidence, which are broadly instabilities of long wavelengths,
consistent with MHD predictions. The ideal MHD model will later be used to study the
stability of external kink modes and non-resistive infernal modes. The resistive fluid
model will become important for the study of neoclassical tearing modes.

2.1.2 Bootstrap current

Even though it is not derived from the MHD model, the bootstrap current has a cru-
cial influence on the features of MHD perturbations close to so-called ’rational’ surfaces.
Resistivity plays a major role for the non-linear stability of neoclassical tearing modes
and to a lesser extend for the stability of edge modes in H-mode and QH-mode plasma
configurations. In chapter 3 we investigate the direct effect of the bootstrap current on
the non-linear evolution of neoclassical tearing modes, while in chapter 5 we focus on
plasma configurations where the bootstrap current has an indirect effect on the stability
of external kink modes and infernal modes by flattening the q profile. The bootstrap
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Figure 2.1 – Poloidal projection of the banana orbits of trapped particles originating
from θ = 0 (red dot) with opposite velocities on a chosen flux surface in realistic toroidal
geometry. In the presence of a density gradient, more particles populate the inner orbit
than the outer.

current is parallel to the magnetic field and arises in toroidal configurations in the pres-
ence of a pressure gradient in the low collisionality regime. As such it is in the same
direction as the main toroidal current and can provide steady state current in addition to
the Ohmic current without external current drive [24]. In a tokamak the magnetic field
strength scales with the major radius R as B ∼ 1/R, where R is the horizontal coordi-
nate in Fig. 2.1 (and also depicted in Fig. 2.2). During their motion along a field line,
particles hence experience a maximum and a minimum of the magnetic field strength.
Consequently, particles with the property

v2‖ <
Bmax −Bmin

Bmin
v2⊥ ≈ 2εv2⊥ , (2.7)

cannot complete full poloidal orbits and are trapped on the outboard side of the torus,
where they follow banana orbits of finite width wb. For the generation of the bootstrap
current the existence of a fraction of trapped particles together with passing particles is
necessary. The banana orbits of trapped particles that start at the same point, but with
opposite parallel velocities have a different averaged radius, as depicted in Fig. 2.1 for the
case of particles starting at θ = 0. In the presence of a density (or pressure) gradient, the
inner banana orbit is more populated than the outer orbit, leading to an asymmetry in
the parallel velocity distribution, where the maximum is shifted towards negative values
of v‖ (negative toroidal direction) for ions and opposite for electrons. In the presence of a
density gradient a diamagnetic current is generated within the trapped particle species.
Similarly, passing particles with opposite velocities follow different orbits and generate
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another small diamagnetic current. These two currents however provide only a small
contribution to the bootstrap current.

The largest part of the bootstrap current arises due to collisions between trapped and
passing particles. For passing particles to loose their momentum they need to scatter in
an angle of π/2, whereas trapped particles loose momentum at low scattering angles. In
this process ion-ion and electron-ion collisions dominate and net momentum is transferred
from trapped to passing particles. This would create a momentum imbalance between
passing and trapped particles if only the two diamagnetic currents were considered.
The collisions cause an asymmetry in the parallel velocity distributions of both passing
particle species (ions and electrons), such that the total distribution function (of passing
and trapped particles) is a shifted Maxwellian. The resulting current is the bootstrap
current and ensures that momentum balance between trapped and passing particles is
satisfied.

In the simple explanation provided above, only a density gradient was assumed. In
reality the situation is more complex. A good representation of the bootstrap current is
provided by the Sauter model [25, 26] and reads

〈Jbs ·B〉 = −F (ψ)pe

[
L31

p

pe

∂ ln p

∂ψ
+ L32

∂ lnTe
∂ψ

+ L34α
1−Rpe

Rpe

∂ lnTi
∂ψ

]
, (2.8)

where ψ is the poloidal flux, F (ψ) = RBφ, R is the major radius, Bφ = B · êφ, Rpe =

pe/p and the coefficients L31, L32, L34 and α determine the relative contributions of the
pressure and temperature gradients to the bootstrap current. They are defined as

L31 = −1 +
1

Fpe

〈∫
χeZiνe0γ1

v3Te
v3

dv

〉
, (2.9)

L32 =
1

Fpe

〈∫
χeνe0γ1

[
−h

(
v

vTe

)
+ Zi

v3Te
v3

(
v2

v2Te
− 5

2

)]
dv

〉
, (2.10)

L34 = −1 +
1

Fpe

〈
B2

〈B2〉

∫
χeZiνe0γ1

v3Te
v3

dv

〉
, (2.11)

α = − qe
νiTe

〈∫
χiνi0h

(
v

vT i

)
v‖
Ωi

dv

〉
, (2.12)

where Zs is the charge of species s = i, e, γ1 = F (ψ)v||/Ωe, νe0 = 3
√
π/(4Ziτe),

νi0 = 3
√
π/2/(2τi) and h(x) = x−3

[
10 erf(x)− 10x erf ′(x)− 4x2 erf(x)

]
. Contributions

to the bootstrap current arise due to the pressure gradient, but also ion and electron
temperature gradients.

2.2 The safety factor profile

In a general tokamak the magnetic field lines follow helical paths around the torus. The
helicity of the field lines is an important quantity in stability analysis. As magnetic field
lines lie on flux surfaces (i.e. at a constant value of the radial variable ψ), the local pitch
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of a magnetic field line is given by the change in toroidal direction φ in relation to the
change in poloidal direction θ:

ql =
dφ

dθ
=

B · ∇φ

B · ∇θ
. (2.13)

In a general flux coordinate system ql varies along the field line. The safety factor q is
defined as the average of ql along the poloidal angle

q(ψ) =
1

2π

∫ 2π

0
ql(θ, ψ)dθ . (2.14)

This quantity describes the number of toroidal turns of a magnetic field line during one
poloidal turn on a flux surface at radial position ψ. Calculating the integral in Eq. (2.14)
and writing the magnetic field in the form B = F (ψ)∇φ+∇φ×∇ψ, we obtain for the
q profile

q(ψ) =
F (ψ)

2π

∮
dl

R|∇ψ| , (2.15)

where F (ψ) = RBφ, R is the major radius, Bφ the toroidal magnetic field strength and
|∇ψ| = R|Bθ|. Integration is performed along the poloidal arc length l (direction parallel
to the poloidal magnetic field) with dl =

√
dR2 + dZ2, where the coordinates R and Z

are depicted in Fig. 2.1. This expression is convenient, when the R and Z coordinates of
a flux surface are known, and a more basic definition is provided in appendix A.3. The
q profile determines the magnetic shear, which is defined as

s(ψ) =
ψ

q

dq

dψ
, (2.16)

where ψ denotes the radial variable.
We can distinguish two cases for the value of q. First, the value of q on a flux surface

can be irrational. In this case a magnetic field line does not close on itself and covers
the whole flux surface. In the second case, the field line closes on itself after a finite
amount of toroidal N and poloidal M turns and the flux surface with such a value is
called rational. The safety factor here is q = m/n, where m and n are the poloidal and
toroidal mode number respectively. It is on (or near) these surfaces that the plasma
is prone to instabilities, and in addition it is only on these surfaces that resistivity is
important. This thesis will explore the effect of the q profile deeply, especially were q(ψ)

depends only weakly on ψ close to a q = m/n surface (so-called extended weak magnetic
shear).

The value of q at the plasma-vacuum interface is important for plasma stability.
This quantity is well defined for plasmas with nested flux surfaces or limited plasmas. In
diverted plasmas however, q goes to infinity at the separatrix. Hence, the value of q at
the flux surface enclosing 95% of the toroidal flux is taken as the edge value.

2.3 Toroidal plasma equilibrium

The concept of plasma equilibrium is very important in nuclear fusion studies. In equi-
librium the net force on the plasma is zero and theoretically the plasma would remain
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2.3. Toroidal plasma equilibrium

confined. Achieving such a state exactly over the long term is difficult and often pertur-
bations exist that break the equilibrium state. When the plasma is in equilibrium the
force from the pressure gradient ∇p balances J×B,

∇p = J×B . (2.17)

Hence, it is assumed that at equilibrium plasma flows are quite weak (i.e. ρv · ∇v �
J × B − ∇p). By separately forming the dot product of this relation with J and B, it
can be seen that ∇p is perpendicular to the current density and also the magnetic field.
Furthermore, the pressure is constant along the magnetic field lines. In addition, from
Eq. (2.17) it can be seen that J⊥ = B×∇p/B2, where ⊥ is perpendicular to B. There
is of course a component of J parallel to B (the induced current mentioned earlier in
section 1.2.2).

This thesis is dedicated to 3D equilibria, but axisymmetric (2D) equilibrium states
are also important, since they form the initial conditions for initial value computations
that can potentially lead to a saturated 3D state. Both concepts are discussed in the
following.

2.3.1 Axisymmetric equilibrium: the Grad-Shafranov equation

In axisymmetry the magnetic field can be written

B = F (ψ)∇φ+∇φ×∇ψ . (2.18)

We can apply the force balance equation to tokamak geometry (assuming perfect ax-
isymmetry - meaning that all MHD scalars are independent of the toroidal coordinate
φ). The resulting equilibrium equation, known as the Grad-Shafranov equation, was first
derived by Grad [27] and Shafranov [28]. For this derivation we use cylindrical coordi-
nates (R,Z, φ) (c.f. appendix A), suited for the description of an axisymmetric tokamak
equilibrium. In these coordinates the components of the force balance equation read

∂p

∂R
= jZBφ − jφBZ ,

∂p

∂Z
= jφBR − jRBφ ,

∂p

∂φ
= jRBZ − jZBR .

(2.19)

From Maxwell’s equations and in cylindrical coordinates we further know that

∇ ·B = 0 =
1

R

∂(RBR)

∂R
+

∂BZ
∂Z

, (2.20)

and
∇ · j = 0 =

1

R

∂(RjR)

∂R
+

∂jZ
∂Z

. (2.21)

The axisymmetric nature of the equilibrium enables us to introduce stream functions ψ

and F , determined from Eqs. (2.20,2.21) and given by

BR = − 1

R

∂ψ

∂Z
, BZ =

1

R

∂ψ

∂R
, (2.22)
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jR =
1

μ0

1

R

∂F

∂Z
, jZ = − 1

μ0

1

R

∂F

∂R
, (2.23)

where ψ = ψSI/(2π) is the normalised poloidal flux. Writing Ampère’s law in cylindri-
cal coordinates and exploiting axisymmetry (∂x/∂φ = 0 for any quantity x) and with
Eq. (2.22) we obtain from the φ-component

− μ0Rjφ = R
∂

∂R

(
1

R

∂ψ

∂R

)
+

∂2ψ

∂Z2
=: Δ∗ψ , (2.24)

where we defined the Grad-Shafranov operator Δ∗. From the R and Z components
we can identify the second stream function F ≡ RBφ. Expressing the quantities in
Eq. (2.19) in terms of the stream functions it can be seen that F = F (ψ) and p = p(ψ).
Now, p′ = dp/dψ can be written as

p′ =
jφ
R

− FF ′

μ0R2
. (2.25)

Using this result in Eq. (2.24) provides the Grad-Shafranov equation

Δ∗ψ = −μ0R
2 dp

dψ
− F

dF

dψ
, (2.26)

where the two stream functions ψ and F can be chosen freely. The boundary condition
for the Grad-Shafranov equation is the poloidal flux at the plasma-vacuum interface
ψ = const.. In analytical calculations the solution is of the form R(ψ), Z(ψ), with R(ψ)

and Z(ψ) at the edge (where p → 0) forming the boundary conditions of a fixed boundary
problem. Free-boundary problems can also be defined, where the currents in coils must
be prescribed. Note that free-boundary problems will be deployed in much of this thesis
(Chapters 4 and 5). A class of analytical solutions to the Grad-Shafranov equation
exists. These are called Solov’ev equilibria [29]. For most choices of the pressure profile
and magnetic field configurations however the equation needs to be solved numerically.
Note also that the Grad-Shafranov operator Δ∗ can be defined in flux Coordinates

Δ∗ψ =
R2

J

[
∂

∂r

(
ψ′gθθ
J

)
− ∂

∂θ

(
ψ′grθ
J

)]
, (2.27)

where J is the Jacobian and together with the metric elements gθθ and grθ it is defined
in appendix A.

2.3.2 The CHEASE 2D equilibrium code

The CHEASE code [30] is a convenient tool to compute toroidal, axisymmetric equilibria
by solving the Grad-Shafranov equation (2.26). It is a widely used code with very good
convergence properties. The various possibilities to specify equilibrium quantities make
it a flexible tool, and hence it is interfaced with several stability codes. As such, CHEASE
equilibria form the initial conditions for linear and non-linear stability simulations in this
thesis.
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2.3. Toroidal plasma equilibrium

CHEASE uses flux coordinates (s, θ, φ) where θ is a generalised poloidal angle, the
toroidal angle φ can be ignored and the radial variable s is chosen to be the normalised
poloidal flux

s = s(ψ) =

√∣∣∣∣ ψ − ψedge

ψ0 − ψedge

∣∣∣∣ . (2.28)

A specific normalisation for the coordinates can be chosen from the set of COCOS toka-
mak coordinate conventions [31]. For more detail about curvilinear coordinates, please
refer to appendix A.

CHEASE allows only fixed-boundary equilibrium computations, i.e. the plasma
boundary is provided as boundary conditions. The plasma cross-section is thus known
and for the numerical computations it is discretised and transformed into a rectangular
grid of the two variables σ, χ. This grid is then used in a bicubic Hermite finite element
method to solve the variational form of the Grad-Shafranov equation.

In the Grad-Shafranov equation, the two functions p′ and FF ′ are to be chosen freely
and specified as input to CHEASE, which can be done in multiple manners. For the first
function, either p′ = ∂p/∂ψ is provided directly or computed from the pressure p(ψ).
Specifying the function FF ′ directly is possible, but often not very practical, since the
current (density) profile allows for a more straightforward plasma configuration. Another
convenient option is to prescribe the q profile, and the code computes the function F

according to Eq. (2.15).

2.3.3 Non-axisymmetric equilibrium and the VMEC code

Non-axisymmetric equilibria are often associated with stellarators, which are three-
dimensional by design. Even though tokamaks are designed to be axisymmetric, in
reality this condition is impossible to achieve due to unavoidable imperfections (e.g.
small deviations in the production of field coils) and perturbations. An example of such
perturbations that is present in all devices is the toroidal field ripple, caused by a finite
distance between the toroidal field coils resulting in a variation of the magnetic field
strength in the toroidal direction (strong |B| close to coils, lower |B| further away). In
addition, non-axisymmetry of tokamak plasmas can also be desired, for example by ap-
plication of resonant magnetic perturbations (RMPs) for ELM mitigation and control
[13]. Non-linearly saturated states that would result from a linearly unstable axisymmet-
ric system can also be described as 3D equilibria. This was already shown for internal
kink modes [32] where the saturated state is characterised by a helical core and later
in this thesis we demonstrate that saturated external modes can also be described as
non-axisymmetric equilibrium states.

Unlike in the 2D case, the existence of closed flux surfaces cannot be shown mathe-
matically rigorously for general 3D equilibria. However, a variational principle derived by
Kruskal and Kulsrud [33] enables force balance and the existence of nested flux surfaces,
when certain constraints are satisfied. To calculate axisymmetric and non-axisymmetric
equilibria in this thesis we employ the VMEC code [34], an ideal MHD equilibrium code
that uses energy minimisation according to the mentioned variational principle to solve
the force balance equation. Due to its capability to obtain three-dimensional equilibria
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Chapter 2. Fluid description of a plasma

it is a very useful tool not only in stellarator but also tokamak research. The possibility
to provide the code with the currents in the magnetic field coils allows for free-boundary
simulations. This is vital for the study of effects that affect the plasma edge and it will
be used in the frame of this thesis to investigate external kink modes and edge harmonic
oscillations in chapters 4 and 5.

2.3.3.1 Coordinate system

VMEC incorporates two coordinate systems, cylindrical coordinates (R,φ, Z) and flux
coordinates (ρ, θ, ζ)1 as shown in Fig. 2.2. In the (R,φ, Z) system, R measures the
horizontal distance from the central axis of the solenoid, Z the vertical distance from
the plasma midplane and φ ∈ [0, 2π] is the geometrical toroidal angle. These cylindrical
coordinates are orthogonal. In the set of VMEC flux coordinates, ρ = Φ/Φa is a radial
variable corresponding to the normalised toroidal magnetic flux (Φa is the toroidal flux
at the last closed flux surface) and labels the flux surfaces. The two angular variables θ

and ζ = φ are the poloidal and toroidal angles respectively. The so-defined coordinate
system is non-orthogonal with Jacobian

√
g = R(RθZρ −RρZθ) , (2.29)

where the subscripts indicate a derivative with respect to the corresponding variable.
For a definition of the Jacobian and an explanation of general non-orthogonal coordinate
systems, see appendix A. The poloidal angle θ in VMEC is chosen such that good con-
vergence of the Fourier moment expansion is achieved. This is not the case for a straight
field line angle, but the VMEC flux coordinates can be transformed to straight field line
coordinates whenever necessary.

Quantities that are periodic in poloidal and toroidal angles can be expressed as a
Fourier series in the two angular variables. The choice of the exact Fourier series depends
on the symmetry that is assumed for the desired equilibrium. In general equilibria
without stellarator symmetry, the full Fourier series for any quantity f reads

f (ρ, θ, φ) =

{∑
m,n

f cmn(ρ) cos(mθ − nφ) + f smn(ρ) sin(mθ − nφ)

}
, (2.30)

but if stellarator symmetry is assumed, R is written as a cosine series, and Z as a sine
series.

2.3.3.2 MHD equilibrium by energy minimisation

A solution to the force balance equation (2.17) can be found by applying a variational
principle to minimise the energy. Since equilibrium states have dv/dt = 0 there is no
kinetic energy and only the potential energy W needs to be considered. Inside the plasma
W is the sum of magnetic energy Wm and fluid energy Wf :

Wp = Wm +Wf =

∫ ( |B|2
2μo

+
p

γ − 1

)
d3x, (2.31)

1ζ is a generalised toroidal angle. In the remainder we will use ζ = φ, where φ is the geometric
toroidal angle.
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2.3. Toroidal plasma equilibrium

Figure 2.2 – Coordinate systems in VMEC: Cylindrical coordinates (R,φ, Z) (green) and
VMEC flux coordinates (ρ, θ, ζ = φ) (blue).

where μ0 is the permeability of the vacuum, p the plasma pressure, γ the adiabatic index
and integration is performed over the plasma volume. In free-boundary computations
the vacuum energy Wv composed by the magnetic energy of the vacuum magnetic field
Bv needs to be considered as well, such that the total energy functional becomes

W = Wp −Wv =

∫∫∫
plasma

[
|B|2
2μ0

+
p(ρ)

Γ− 1

]
d3x−

∫∫∫
vacuum

|Bv|2
2μ0

d3x . (2.32)

The minus sign is due to the reciprocal variation in energy caused by a change of the
plasma boundary [34]. The vacuum magnetic field Bv = −∇ν can be written in terms
of the vacuum potential ν with descent equation dν/dt = ∇2ν. Conservation of mass is
achieved via

p(ρ) = M(ρ)(V ′)−γ , (2.33)

with mass function M(ρ) and differential volume element V ′ =
∫∫

|√g|dθdφ. It should
be noted that M(ρ) is kept fixed during the variational computations, while V ′ changes
according to the geometry of the flux surfaces. A variation of W is performed with respect
to an artificial time parameter t. In this calculation also the cylindrical coordinates
(R,φ, Z) are functions of t. The variation of W including the vacuum terms is then

dW

dt
= −

∫∫∫
plasma

(
FR

∂R

∂t
+ Fφ

∂φ

∂t
+ FZ

∂Z

∂t

)
dρdθdφ+

1

μ0

∫∫∫
vacuum

∂ν

∂t
∇2νd3x

−
∫
ρ=1

[
|√g| ∂ρ

∂xi

(
|B|2
2μ0

+ p− |Bv|2
2μ0

)]
ρ=1

∂xi
∂t

dθ dφ

− 1

μ0

(∫
ρ=1

∂ν

∂t
Bv · dSρ −

∫
wall

∂ν

∂t
Bv · dS

)
,

(2.34)
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with dSρ = ∇ρ|√g|dθdφ. The boundary conditions for this energy minimisation require
that at the plasma-vacuum interface (ρ = 1) the pressure jump is zero and Bv · dSρ = 0,
and at the conducting wall Bv · dS = 0. The force components in the direction of the
cylindrical coordinates read

FR = − ∂
∂ρ

[
|√g| ∂ρ∂R

( |B|2
2μo

+ p
)]

− ∂
∂θ

[
|√g| ∂θ∂R

( |B|2
2μo

+ p
)]

− ∂
∂φ

[
|√g| ∂φ∂R

( |B|2
2μo

+ p
)]

+ μ−1
o |√g|∇ · [(B · ∇R)B]

+
√
g
R

[ |B|2
2μo

+ p− R2(B·∇φ)2
μo

]
,

Fφ = − ∂
∂ρ

[
|√g| ∂ρ∂φ

( |B|2
2μo

+ p
)]

− ∂
∂θ

[
|√g| ∂θ∂φ

( |B|2
2μo

+ p
)]

− ∂
∂φ

[
|√g|∂φ∂φ

( |B|2
2μo

+ p
)]

+ μ−1
o |√g|∇ ·

[(
R2B · ∇φ

)
B
]
,

FZ = − ∂
∂ρ

[
|√g| ∂ρ∂Z

( |B|2
2μo

+ p
)]

− ∂
∂θ

[
|√g| ∂θ∂Z

( |B|2
2μo

+ p
)]

− ∂
∂φ

[
|√g| ∂φ∂Z

( |B|2
2μo

+ p
)]

+ μ−1
o |√g|∇ · [(B · ∇Z)B] .

It can be shown that these force components correspond to the components of the MHD
force balance equation. In equilibrium, each component of the sum of forces vanishes.
Due to flux and mass conservation and with γ > 1, W is positive definite and finding an
equilibrium state is equivalent to finding a minimum of W . This is achieved by starting
with an initial plasma configuration and following a path of monotonical decrease until
a minimum is found.

VMEC quantities are provided in terms of a Fourier series in the two angular variables
θ, φ. In order to avoid aliasing, the number grid points and poloidal modes should be
chosen such that the condition ntheta ≤ 2 ∗ mpol+ 6 is satisfied. For most equilibrium
configurations computed in this thesis, the input profiles a(ρ) = p(ρ), j(ρ), ι(ρ) = 1/q(ρ)

are provided in terms of a polynomial of order 20

a(ρ) =
20∑
i=0

ρiai , (2.35)

with coefficients ai. This approximation is sufficient for most plasma configurations.
However, when toroidal plasmas with advanced profiles, e.g. flat regions far from the
magnetic axis are computed, a cubic spline representation is favoured. This is another
standard option to provide VMEC input.

2.3.3.3 Fixed and free plasma boundary

A simple approach to obtain an equilibrium is to impose the position of the plasma-
vacuum interface (last closed flux surface) as an initial condition and find the magnetic
field configuration that corresponds to this equilibrium state. This is called a fixed-
boundary run and is for example appropriate for the study of internal modes.

In free-boundary simulations the vacuum magnetic field is calculated from the cur-
rents in the magnetic field coils [35] by using the Biot-Savart law

B(x) =
μ0

4π

∫
V
J(x′)× x− x′

|x− x′|3 dV ′ . (2.36)
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This numerical calculation is carried out with the MAKEGRID code, which evaluates
the magnetic field on a R − Z grid at specific values of the toroidal angle. In VMEC,
an initial guess is provided for the position of the magnetic axis and for the plasma
boundary from which both evolve during the energy minimisation iterations.

2.3.4 Stellarator symmetry

The existence of symmetries often provides simplifications to a given problem. Most
toroidal fusion devices are based on a coil design that inherits stellarator symmetry
[36]. In this thesis we simulate plasmas of MAST and JET. Both devices have up-
down symmetric field coils, which is a special case of stellarator symmetry (we do not
model RMPs). It can be shown that stellarator symmetric current distributions always
generate a stellarator symmetric magnetic field [36]. This is important for the study of
possible perturbations in toroidal fusion devices, since this symmetry reduces the number
of possible states.

Defining a coordinate transformation I0 such that

I0 [f(R,φ, Z)] = f(R,−φ,−Z) , (2.37)

where f is an arbitrary function, a given vector field F is called stellarator symmetric if
it satisfies

I0 [FR, Fφ, FZ ] = [−FR, Fφ, FZ ] , (2.38)

where (R,φ, Z) are the coordinates of an orthonormal cylindrical coordinate system.
Stellarator symmetry can also be expressed through the coordinate system itself and
reads in cylindrical coordinates

R(ρ,−θ,−φ) = R(ρ, θ, φ)

Z(ρ,−θ,−φ) = −Z(ρ, θ, φ) .
(2.39)

When R and Z are expressed in terms of a Fourier series, this allows a representation in
terms of a pure cosine (for R) or sine (for Z) series. In particular, for the coordinates R

and Z describing the position of the flux surfaces Eq. (2.30) reduces to

R(ρ, θ, φ) =
∑
m,n

Rc
mn(ρ) cos(mθ − nφ) ,

Z(ρ, θ, φ) =
∑
m,n

Zsmn(ρ) sin(mθ − nφ) .
(2.40)

It can be shown that B = |B| is also a cosine series under stellarator symmetry.

2.4 Macroscopic plasma stability

A confined plasma is never in a perfect equilibrium state. It is thus important to de-
termine how the plasma responds to perturbations. If the plasma response is such that
an instantaneous perturbation grows further, it is called unstable, otherwise stable. The
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concept is illustrated in Fig. 2.3. Macroscopic instabilities are characterised by long wave-
lengths and low frequencies. They can be classified in terms of their driving mechanism
(current or pressure) and the model they arise from. For the description of macroscopic
modes the MHD model and related theories such as the two-fluid model or extended
MHD equations are successfully applied and capable of explaining various experimen-
tally observed phenomena such as ELMs. The stability of the plasma with respect to
macroscopic modes is crucial since they not only degrade the performance of the plasma,
but can also enhance transport and lead to sudden loss of confinement. In the following
we discuss general fundamental methods to determine macroscopic plasma stability. A
detailed discussion of specific tokamak instabilities can be found in the following chapters,
where these instabilities are investigated based on the method presented here.

Figure 2.3 – Consider the orange ball at equilibrium, and the green ball representing an
instantaneous perturbation. In a linearly stable system the force is such that equilibrium
is restored (left). When the system is linearly unstable, the perturbation grows, i.e.
moves away from the equilibrium state (right).

2.4.1 Linearisation and initial value formulation

The general MHD equations (2.1) are a set of non-linear differential equations and as
such difficult to solve. The problem is simplified by linearising the equations around an
equilibrium state and assume small perturbations [22]. For any quantity f this is written
as

f(r, t) = f0(r) + f1(r, t) , (2.41)

where |f1/f0| � 1. Equilibrium quantities are denoted by the subscript 0 and perturbed
quantities by the subscript 1. The initial 2D equilibrium can be specified by a solution
of the Grad-Shafranov equation or by the variational problem outlined earlier for a 3D
equilibrium. We can model a deviation from the equilibrium by perturbing the velocity

v1(r, 0) =
∂ξ1(r, 0)

∂t
, (2.42)

where the plasma displacement is given by the vector

ξ1(x, t) =

∫
v1(x, t)dt . (2.43)
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In terms of ξ ≡ ξ1, other MHD perturbations are

ρ1 = −∇ · (ρ0ξ) ,
p1 = −ξ · ∇p0 − γp0∇ · ξ ,
B1 = ∇× (ξ ×B0) ,

J1 =
1

μ0
∇× [∇× (ξ ×B0)] .

(2.44)

With this result we obtain a single equation for the displacement

ρ
∂2ξ

∂t2
= F(ξ) , (2.45)

with the MHD force operator F(ξ) = J0×B1+J1×B0−∇p1, and it has been assumed
that v0 = 0. As we will see later, also the full non-linear problem can be expressed in
terms of an initial value formulation.

2.4.2 Normal modes & Energy principle

Equation (2.45) governs the temporal evolution of the displacement ξ. Since this equation
is linear and the equilibrium is stationary, solutions for ξ can be taken to be of the form
ξ ∼ exp (−iωt). We therefore obtain,

− ω2ρξ = F(ξ) =
1

μ0
(∇×B0)×B1 +

1

μ0
(∇×B1)×B0 −∇p1 , (2.46)

which has the form of an eigenvalue problem and is valid for three-dimensional plasma
equilibria. From the self-adjointness of the ideal MHD force operator2 it can be shown
that the normal modes are orthogonal and that the eigenvalue ω2 is purely real. Now
three cases can be distinguished: (1) If ω2 > 0, the solution is a pure oscillation with
frequency ω and the mode does not grow, hence it is stable. (2) On the contrary, if
ω2 < 0, the mode grows exponentially and is unstable. (3) If ω2 = 0, the mode is called
marginally stable. This marks the transition from stability to instability.

The initial value formulation is not always practical when determining linear stability.
The variational principle allows an equivalent formulation of the stability problem and is
used in section 4.2 to calculate linear external kink growth rates and in chapter 3 for the
solution in the ideal region of the plasma. For this formulation we calculate the potential
and kinetic energy of the plasma. A minimisation of the energy allows us to reformulate
the eigenvalue problem in a more convenient form, as it is solved by the KINX code
as described in section 2.4.3. The KINX code assumes perturbations about an initially
axisymmetric equilibrium. It performs variation of the sum of the potential energy

δW = −1

2

∫
ξ · F(ξ)dx , (2.47)

and the kinetic energy

− ω2K = −ω2 1

2

∫
ρ |ξ|2 dr , (2.48)

2∫ η · F(ξ)d3x =
∫
ξ · F(η)d3x
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where it can be shown that
ω2K − δW = 0 . (2.49)

An estimate about whether a system is linearly stable or unstable can be made
from the potential energy given by Eq. (2.47). An equilibrium is stable if and only if
δW (ξ∗, ξ) ≥ 0 for each possible displacement ξ. This is called the energy principle and
proofs can be found in the literature [22, 37]. Finally, an axisymmetric equilibrium can
be approximated by a straight cylinder, and perturbations expanded about an inverse
aspect ratio ε = r/R0. Expanding to second order, and retaining vacuum contributions,
the following potential energy can be identified:

δW2 =
2π2B2

0

μ0R0

{∫ a

0

(
n

m
− 1

q

)2 [
r2ξ′2r +

(
m2 − 1

)
ξ2r
]
rdr

+

[
2

qa

(
n

m
− 1

qa

)
+

(
n

m
− 1

qa

)2
]
a2ξ2r (a)

}
.

(2.50)

This energy, which is of relevance for external and internal kink modes is minimised
revealing the following Euler-Lagrange equation for the displacement

d

dr

[(
n

m
− 1

q

)2

r3
dξr
dr

]
− (m2 − 1)

(
n

m
− 1

q

)2

rξr = 0 . (2.51)

2.4.3 The KINX code

The KINX code [38] computes linear MHD stability (linear growth rates and eigen-
functions) for a given axisymmetric equilibrium. It does this via variation of the total
energy, including the effects of a vacuum region and perfectly conducting wall. In the
frame of this thesis, KINX is primarily employed to determine a parameter space of lin-
early unstable external kink modes and their spectrum. The initial equilibrium for the
stability analysis is a solution to the Grad-Shafranov equation (2.26) calculated with the
CHEASE code. Both codes are interfaced with another equilibrium solver CAXE [38],
which adapts the equilibrium to the numerical grids adopted by KINX. The code solves
the eigenvalue equation

δ
{
W (ξ, ξ)− ω2K(ξ, ξ)

}
= 0 , (2.52)

with potential energy functional

W = Wp +Wv

=

∫
Vp

{
|∇ × (ξ ×B)|2 + 2ξψ(j · ∇ξD) +

dp

dψ
∇ ·

(
∂r

∂ψ

∣∣∣ξψ∣∣∣2)
+

∇ψ × j

|∇ψ|2
· ∇ ×D

∣∣∣ξψ∣∣∣2 + Γp |∇ · ξ|2
}
dV +

1

2

∫
Vv

|∇ ×A|2 ,

(2.53)

and kinetic energy functional

K =

∫
Vp

ρp

{∣∣∣ξψ∣∣∣2 D2

B2
− 2ξψξD

D · ∇ψ

B2
+
∣∣ξD∣∣2 |∇ψ|2

B2
+
∣∣ξB∣∣2 1

B2

}
dV , (2.54)
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due to a plasma displacement ξeiωt. The potential energy includes a term for the energy
change inside the volume Vp occupied by the plasma Wp and a term Wv for the change
of energy in the vacuum region Vv, thus allowing for the description of external modes.
For the displacement vector the following projection is used

ξ = ξψ
D×B

‖B‖2 + ξD
B×∇ψ

‖B‖2 + ξB
B

‖B‖2 , (2.55)

with B = F (ψ)∇φ+∇ψ×∇φ = ∇ψ×D and ξψ = ξ ·∇ψ. The quantity A is the vector
potential that determines the magnetic field perturbation in the vacuum ∇×A = δBv.

2.4.4 Non-linear stability

Often a pure linear stability analysis is not sufficient to assess the actual consequences of
an instability. For strong perturbations the linear model breaks down and the stability
properties might be altered. This is illustrated in Fig. 2.4. If a sufficiently strong initial
perturbation is given to a system that is linearly stable, it might be destabilised non-
linearly. This situation is also called metastable and is found for example in the case of
neoclassical tearing modes (NTMs). In contrast to this, the initial exponential growth of
a linearly unstable mode might saturate (or even decay) due to stabilising effects from
the non-linear terms. The system then approaches a neighbouring equilibrium state
and is thus non-linearly stable. A combination of these two cases is found for NTMs,
which require an initial seed and can later enter a non-linearly stable state. These modes
are investigated in chapter 3. If a mode saturates at low amplitudes, a system that
is linearly unstable, might still be feasible for tokamak operation. On the other hand,
even if a linear model predicts very small linear growth rates but non-linear terms are
further destabilising, a mode can still grow to dangerous levels at a later stage. This
is particularly relevant when comparing individual modes in the spectrum. There is
experimental [14] and theoretical [39] evidence that the linear spectrum of modes does
not necessarily reflect the non-linear spectrum. This means that the most unstable modes
in the linear phase, might not be dominant in the non-linear phase. Experimentally
relevant instabilities often correspond to non-linear modes. Thus, non-linear analyses
are required to explain experimental phenomena but also to make predictions about
favourable plasma configurations.

Solutions to the non-linear equations are generally difficult to obtain analytically,
though a few non-linear models exist, typically assuming simple geometries. An example
is the quasi-linear approximation, where a dynamical system, described by the function
f is taken to follow the form ∂tf+Lf = Nf2, with differential operators L and N [37]. A
more sophisticated approach determines non-linear stability for magnetohydrodynamic
modes close to marginal stability [40]. It was shown that the non-linear amplitude A(t)

it governed by
∂2A(t)

∂t2
+ ω2A(t) + αA(t)3 = 0 , (2.56)

where ω is the linear growth rate and α governs non-linear effects. The parameters ω

and α are calculated from the MHD equations with appropriate boundary conditions,
specific to the problem investigated. It is more common to perform non-linear stability
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Figure 2.4 – A strong perturbation drives a linearly stable system non-linearly unstable
(left). A linearly unstable system can reach neighbouring equilibrium states if non-linear
effects are stabilising (such modes are non-linearly stable).

studies with numerical codes, usually using initial value codes such as XTOR [41, 42] and
JOREK [43, 44], with and without resistive effects. These codes are initialised from a 2D
equilibrium. Finally, if non-linear ideal stability of an initially axisymmetric equilibrium
is achieved, it is in principle possible to recover these 3D neighbouring states with a 3D
equilibrium code such as VMEC. This has been shown for internal kink modes [32]. In
Refs. [45, 46, 47], non-axisymmetric edge corrugations with similarities to kink/peeling
modes were observed in equilibrium simulations. These were predominantly driven by the
pressure gradient, but a detailed study of the corresponding modes was not carried out.
Prior to this thesis it has not been verified whether free-boundary 3D equilibria would
verify non-linear stability of external modes, affecting the plasma-vacuum interface.

2.5 Summary and thesis outlook

In this chapter we addressed the theoretical description of macroscopic plasma phenom-
ena. The MHD model is valid on scales much larger than the Debye length and time
scales much larger than the ion cyclotron frequency and thus appropriate for this purpose.
After reviewing the ideal and resistive single-fluid model, the theoretical description was
refined by introducing the bootstrap current. The safety factor q as a measure of the
magnetic field helicity was defined. Together with its derivative, q is a central quantity
associated with the ideal and resistive instabilities investigated in the remainder of this
thesis. The bootstrap current is crucial for the non-linear evolution of NTMs in low-shear
plasmas as investigated in chapter 3. But the bootstrap current will also be taken into ac-
count in chapter 5, where it flattens the q profile and thus causes regions of low magnetic
shear. We then turned to the calculation of axisymmetric (2D) and non-axisymmetric
(3D) plasma equilibria. These states, satisfying force balance will be important for the
studies presented in the following chapters, where axisymmetric equilibria form the ini-
tial values for linear and non-linear stability calculations. Free-boundary 3D equilibrium
simulations with the VMEC code, introduced earlier in this chapter, will be used in a
novel approach to model ideal non-linearly saturated external MHD modes in chapters 4
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and 5. Approaches that will be used later in this thesis were discussed to determine lin-
ear and non-linear instability. For non-linear stability studies of resistive plasmas we will
employ the initial value method in chapter 3. In this context, we extend an analytical
linear model to the early non-linear phase. Non-linear analytical calculations based on
Eq. (2.56) and linear eigenvalue computations with KINX complete the study of ideal
external kink and infernal modes in chapters 4 and 5.
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Chapter 3

NTM seeding by coupling with
infernal modes

This chapter is dedicated to the numerical and analytical investigation of coupled ideal
and resistive MHD modes in hybrid tokamak scenarios. In the hybrid scenario - one of
the possible operation scenarios for ITER - a flat q profile in the core associated with
low magnetic shear gives rise to (non-resonant) infernal modes. These fast-growing ideal
modes can couple to resistive sideband modes with a resonant surface inside the plasma.
The growth of resistive modes is much slower compared to that of ideal modes. Never-
theless, fast-growing resistive modes have been observed in experiments. In the following
section, we aim to describe this phenomenon theoretically in terms of coupled infernal
and neoclassical tearing modes (NTMs) but also considering effects due to the bootstrap
current. Numerical simulations of such instabilities in a MAST1-like configuration are
performed with the initial value stability code XTOR-2F including the effect of resistiv-
ity. The evolution of magnetic islands is computed from XTOR-2F simulations, and an
analytical model [48] is developed based on Rutherford’s theory in combination with a
model for infernal mode driving. In this framework, the parameter Δ′ is extended from
the linear phase to the non-linear phase. Additionally, the destabilising contribution
due to a helically perturbed bootstrap current is considered. Comparing the numeri-
cal XTOR-2F simulations to the analytical model, we find that coupling has a strong
destabilising effect on (neoclassical) tearing modes and is able to seed 2/1 magnetic is-
lands in situations when the standard NTM theory predicts stability. The results of this
chapter have been published in the journal article [A. Kleiner et al., Neoclassical tearing
mode seeding by coupling with infernal modes in low-shear tokamaks, Nuclear Fusion 56,
092007 (2016)]. It is possible to extend the study to n = 2 modes. Here, one would
expect to find a non-linearly unstable 3/2 mode, driven by coupling with a 2/2 infernal
mode. This will be presented in future work.

3.1 Introduction

Future operation scenarios for tokamaks like ITER are the standard, advanced and hy-
brid scenario [49]. The latter being a scenario of particular interest also in present day
tokamaks, since it allows longer sawteeth-free plasma discharges at high beta and rea-
sonably large current [9]. The hybrid scenario is characterised by low magnetic shear in
the core with a flat or weakly reversed q profile, slightly above unity, where q > 1 across

1Mega-Ampere Spherical Tokamak (MAST)
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the whole plasma. Hybrid plasmas achieve high values of

βN = 〈β[%]〉a[m]BT [T]

Ip[MA]
, (3.1)

with 〈β〉 being the volume averaged normalised plasma pressure, β = 2μ0〈p〉/B2, a

the minor radius, BT the toroidal magnetic field and Ip the plasma current. Plasmas
with low-shear core are also met after sawtooth crashes when the field lines are fully
reconnected [50, 51].

Such toroidal, low-shear core plasmas, or plasmas with shear-free core, are susceptible
to a class of pressure-driven MHD modes called infernal modes [52, 53], which are related
to the quasi-interchange modes described by Wesson for the special case m = n = 1

[54]. Infernal modes are characterised by the coupling due to toroidicity, between a
fundamental harmonic, which does not need to be resonant, in the core with mode
numbers (m0, n) and its (m0 ± 1, n) sidebands due to toroidicity. When resistivity is
included, the sidebands show a tearing character on their rational surfaces where q =

(m0 ± 1)/n. Usually the q profile is selected (by physical processes or by design) such
that there is no exact rational surface associated with m/n, nor can an island develop.
Hence, in an extended region of the core, 0 < q − m0/n � 1. The perturbation due
to the sidebands of the infernal mode contributes to the development of fast growing
modes (neoclassical tearing modes (NTMs)) [55], which decrease plasma the performance
or can lead to disruptions. The linear theory of infernal modes [56] predicts islands
growing up to ideal timescales. Furthermore, it has also been observed experimentally
that such resistive modes are able to grow much faster than classical tearing modes
[15], especially following sawtooth crashes [55, 57] where the safety factor profile is (in
some theoretical models, and according to some experiments) completely above unity.
This might be interpreted as m > 1 modes coupling to the strong m = 1 internal
kink perturbation. Other examples of non-resonant infernal modes have recently been
considered in Refs. [58, 59, 60].

Previous analyses of resistive infernal modes were investigated without the inclusion
of the bootstrap current [53, 61]. The bootstrap current plays a crucial role in the
stability of toroidal plasmas, since it has a destabilising effect which allows for unstable
NTMs in situations in which classical tearing modes would be stable. In the present
work we investigate the (seed island) triggering of NTMs in low-shear plasmas focusing
on the coupling to infernal modes. By including effects due to the bootstrap current
we consider a destabilising mechanism that is still maintained even if the driving effect
of infernal modes on the island growth were to disappear, e.g. due to the q profile in
the low-shear region moving away from a rational surface ρs where q(ρs) = m0/n. This
allows us to see, whether the bootstrap current is able to maintain NTMs that have
been triggered with the help of infernal modes after the contribution from the triggering
mechanism becomes weak. To do this, numerical simulations of MAST-like equilibria
using the initial value code XTOR-2F [42] are performed. By carrying out simulations
with and without bootstrap current, the effect of the bootstrap contribution on these
infernal mode triggered NTMs can be estimated. An analytical model is developed to
calculate the infernal modes’ contribution to the non-linear evolution of the island width.
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Figure 3.1 – JET pulse 78772 showing a 3/2 NTM starting from t = 25.6 s following a
sawtooth crash. Courtesy of J. P. Graves et al. [57]. (left): Mode spectrogram. (right):
The 3/2 mode is detected by the magnetics signal and is followed by a reduction of the
electron temperature.

The model extends the linear coupling of tearing modes and infernal modes mentioned
earlier. The predictions of combined linear and non-linear models are compared to the
numerical simulations.

This chapter is organised as follows: First, section 3.2 presents experimental obser-
vations of fast-growing resistive modes. This is followed by a review of resistive plasma
instabilities in section 3.3 where stability of non-linear classical and neoclassical tearing
modes is introduced. In section 3.4 the effect of infernal mode coupling on the drive
of NTMs is explained and an analytical model is developed to reflect the behaviour in
the early non-linear phase. Numerical simulations of MAST-like equilibria using XTOR-
2F are then performed in section 3.5, and the resulting magnetic island evolution with
and without consideration of bootstrap current effects is presented. By carrying out a
variation of the pressure, the dependency of the saturated island width on βN is inves-
tigated. Finally, the analytical predictions are compared with the numerical XTOR-2F
simulations in section 3.6.

3.2 Fast growing resistive modes in experiments

As mentioned previously, the time scales of ideal MHD differ from the time scales of
resistive MHD. Nevertheless, experiments at JET [62, 57] and TCV [55, 63] found resistive
modes that grow much faster than what would be expected for a resistive mode. These
modes with helical mode numbers 2/1 and 3/2 are often found during and after sawtooth
crashes, but also in hybrid scenario discharges e.g. in JET. For example, Figure 3.1
shows the occurrence of a 3/2 NTM following a sawtooth crash in JET pulse 78772 at
t = 25.6 s. Quickly after a sawtooth crash, the magnetics signal detects a 3/2 mode that
grows within milliseconds and eventually saturates. As a result of this mode, the electron
temperature and stored energy decreases with negative effects on plasma performance
and confinement. The spectrogram indicates also the existence of n = 0, 1, 3 modes.

In TCV fast NTM seeding was observed following sawtooth crashes too. Magnetic
islands are formed within microseconds after a sawtooth crash, as can be seen in Fig. 3.2.
An n = 2 mode appears within microseconds. This mode is associated with a magnetic
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Figure 3.2 – Sawtooth crash and subsequent magnetic island formation in TCV. Courtesy
of G. Canal et al. [55]. (left): Magnetics signal showing the sawtooth crash and fast
growth of a n = 2 mode. (right): Phase space diagram showing magnetic island growth
dw/dt as a function of its width w.

island that can be detected ≈ 800 μs after the sawtooth crash but a seed island is already
present before. These experimental results shown in Fig. 3.2b indicate that classical
tearing modes are stable, but an initial seed drives neoclassical tearing modes non-linearly
unstable. After the initial seed the mode is found to saturate, which again is a non-linear
effect.

It is important to know the origin of this fast-seeding of NTMs but also the behaviour
in the non-linear phase. The situation during a sawtooth crash [54, 51] modelled with
XTOR-2F, when fast-growing resistive modes are triggered is shown in Fig. 3.3. The low
magnetic-shear in the core associated with the flat q profile can potentially destabilise
infernal modes that couple to a resistive mode due to toroidicity.

Figure 3.3 – Sawtooth crash in a plasma with circular cross section and ε = a/R0 = 0.37.
(a) Typical safety factor profile before a sawtooth crash at t = 0 τA and during a sawtooth
crash (t = 2664.68 τA), where it is flattened in the core and completely above 1. The
profile at t = 2664.68 τA was obtained from a CHEASE equilibrium reconstruction based
on the fields during a XTOR-2F stability simulation. (b) Time trace of the kinetic energy
of the lowest n modes.
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3.3 Resistive instabilities and tearing modes

In order to develop a model for infernal mode driving of NTMs, it is useful to review
linear and non-linear theory of tearing modes. First without toroidal effects included,
i.e. without the infernal mode drive. In all cases it is assumed that the q profile is
not flat in the region where the tearing mode grows. In the theoretical work ρ is used
as an appropriate radial variable. Later, in the numerical work ρ will be defined to be
proportional to the square root of the toroidal magnetic flux. However, for the analytical
models presented in this section and section 3.4, this definition is not strictly necessary.

3.3.1 Classical tearing modes

The Euler-Lagrange equation (2.51) governing the ideal MHD displacement is singular at
rational flux surfaces where q = m/n. To describe unstable internal modes, an extension
to the model that resolves the physical structure of the eigenfunction near the rational
surface is necessary. Such an extension is added in terms of inertia and resistivity [64].
With the assumption that the growth of the mode is relatively slow, it is sufficient to
consider inertial and resistive effects only in a narrow region around the singularity,
called the resistive layer. The rest of the plasma (outer region) can be described by ideal
MHD. To obtain the tearing mode dispersion relation, one set of equations is solved in
the resistive layer and one in the outer region with boundary conditions at ρ = 0 and
ρ = a. These solutions are matched at the boundary of the resistive layer.

The derivation usually assumes a plasma with circular cross section and large aspect
ratio, i.e. ε = a/R � 1. The following ordering for the equilibrium (subscript ’0’) and
perturbed (subscript ’1’) quantities is assumed:

Bθ0 ∼
1

ρ

dBφ0

dρ
∼ εBφ0 , Bφ1 ∼ εBρ1 ∼ εBθ1

jθ0 ∼ εjφ0 , jρ1 ∼ jθ1 ∼ εjφ1 .

(3.2)

Outside of the resistive layer the perturbed plasma is in force balance [65] and the
dynamics are described by Eq. (2.17). The curl of this equation is ∇ × (j×B) =

∇ × ∇p = 0, eliminating the pressure from the problem at lowest relevant order in ε.
Applying the large aspect ratio ordering one can identify the toroidal component of the
force balance equation as dominant. Perturbed quantities are chosen to be of the form
ei(mθ−nφ). With that and using Ampère’s law as well as ∇ · B = 0, the outer region is
governed by

1

ρ

d

dρ

(
ρ
dψ

dρ

)
=

m2

ρ2
ψ − 1

Bθ
μ0

(
1− nq

m

) djφ
dρ

ψ = 0 . (3.3)

Here, ψ is a magnetic flux function (perturbed flux) and defined in terms of the perturbed
magnetic field:

Bρ1 = −1

ρ

∂ψ

∂θ
, Bθρ =

∂ψ

∂ρ
, (3.4)

and it is seen from Eq. (3.3) that the destabilising drive comes from the radial current
density gradient. The parameter that will be used to match the resistive region and the
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outer region is:

Δ′ = lim
ε→0

(
ψ′
ρs+ε

ψρs+ε
−

ψ′
ρs−ε

ψρs−ε

)
, (3.5)

where ρs is the position of the resonant surface (where m − nq is singular). We now
identify Δ′ in the outer and inner regions. For the outer region calculation of Δ′, we
simply solve Eq. (3.3) using boundary conditions ψ(0) = 0 and ψ(ρ = a) = 0, and
ψ(ρs − ε) = ψ(ρs + ε). An arbitrary value for ψ(ρs − ε) = ψ(ρs + ε) = 1 can be
assumed. A shooting method can then be used to solve for ψ separately in the regions
0 < ψ < ρs − ε and ρs + ε < ψ < a in order to evaluate Δ′. Note that analytic solutions
of Eq. (3.3) are also obtainable, and will be used in chapter 4.

The dynamics in the resistive layer are governed by resistive Ohm’s law Eq. (2.5) and
the equation of motion. The perturbation in the resistive layer is assumed to have the
form eγt+imθ−inφ. After making use of the expansion(

1− nq

m

)
≈ −

(
q′

q

)
ρs

(ρ− ρs) , (3.6)

at the resonant surface ρs, from Ohm’s law in combination with Faraday’s law and
Ampère’s law one obtains for the discontinuity

Δ′
in =

μ0γ

η

∫ (
1− Bθq

′

q
s
vρ
ψ

)
ds , (3.7)

with s = ρ− ρs. The equation of motion can be written in the form

d2vρ
ds2

−
(
B2
θm

2q′2

ρηγρ2q2

)
s2vρ +

Bθm
2q′

ρηρ2q
sψ +

m2

ργρ2
djφ
dρ

ψ = 0 , (3.8)

and is solved for vρ. ψ(ρ) is considered constant over the (narrow) resistive layer [64]
(so-called constant ψ approximation), but ψ′ is not constant (thus defining Δ′). This
approximation is valid as long as wΔ′ � 1, where w is the magnetic island width. This
is satisfied for classical tearing modes, where the initial island is very small. The solution
in the inner resistive region is:

γ =
0.55

τ
2/5
A τ

3/5
R

(
n
a2q′

Rq

)2/5 (
aΔ′)4/5 , (3.9)

where τR is the resistive time and τA = 1/ωA = R0/vA is the Alfvén time with vA =

I/R0

√
(μ0�0) being the Alfvén speed. The Δ′ in Eq. (3.9) is the value of (ψ′(ρs + ε)−

ψ′(ρs − ε))/ψ(ρs) in the resistive region. We do not know this, but fortunately we may
match it to the Δ′ evaluated in the outer regions (i.e. the solution of Eq. (3.3)) via
the shooting method mentioned earlier. Henceforth, when Δ′ is referred to, it is the Δ′

evaluated in the outer region.
From Eq. (3.9) it is seen that the tearing mode is marginally stable for Δ′ = 0

and unstable when Δ′ < 0. This result, derived from a linear analysis is sufficient to
determine whether a certain plasma configuration is stable or unstable with respect to
tearing modes. It does however not take into account the change of j in the island region
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due to the growing magnetic island. Such finite island width corrections are important
to determine the evolution of tearing modes into the non-linear regime, where mode
growth is slower due to resistive diffusion. Non-linear stability of the tearing mode was
first described by Rutherford [15], originally developed for cylindrical plasmas, predicting
that the magnetic island growth in the early non-linear phase is linear in time and related
to the tearing stability parameter defined by Eq. (3.5):

Δ′(w) = lim
ε→0

(
ψ′(ρs + w/2)− ψ(ρs − w/2)

ψ(ρs ± ε)

)
, (3.10)

where ψ′(ρs±w/2) is obtained again from solution of Eq. (3.3) using the shooting method
described earlier. The constant ψ approximation is retained in this non-linear model.
As will be seen in more detail in the next section, the non-linear growth of a magnetic
island is given by the Rutherford equation [15]

τR
ρs

dw

dt
= ρsΔ

′(w) . (3.11)

Writing the flux function as ψ = ψ0(r)+ψ1(r) cos (mθ − nφ), the width of the magnetic
island associated with a tearing mode can be calculated from w = 4

√
−ψ1/ψ′′

0 .

3.3.2 Non-linear neoclassical tearing modes

The classical non-linear tearing mode model described in section 3.3.1 does not include
neoclassical effects, which are important for realistic tokamak plasmas. These addi-
tional effects are considered now and enable a more sophisticated non-linear treatment
of magnetic islands in tokamaks. Neoclassical tearing modes (NTMs) are considered to
be metastable, i.e. even if the classical tearing mode is linearly stable, a sufficiently
strong ’seed’ can destabilise the mode and lead to a non-linear evolution of the mode
[16]. Such a seed if often provided by sawteeth, but also by linear and non-linear mode
coupling [66]. Rutherford’s model, originally describing the non-linear evolution of the
classical tearing mode, has been extended to include neoclassical effects and thus to de-
scribe neoclassical tearing modes [16, 17]. Denoting the magnetic island width by w, the
modified Rutherford equation (modification relative to Eq. (3.11)) describes the growth
of magnetic islands by:

τR
ρs

dw

dt
= fn

∑
i

ρsΔ
′
i(w) , (3.12)

where τR is related to the Alfvén time τA by the Lundquist number S = τR/τA. The
factor fn comes from a change in radial transport across the island and is typically set to
1.22 or 1.66 [65, 37]. The value of this coefficient cannot be calculated exactly due to the
imprecise definition of Rutherford’s integrals. In our study we set fn = 1.22 in consent
with most of the current literature. Δ′

i are the stabilising or destabilising contributions to
the total tearing stability parameter Δ′

total. These include the linear cylindrical tearing
stability parameter

ρsΔ
′
0 = −2mΛπ cot (Λπ) , (3.13)
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with Λ ≈ −μ0q2

mq′
R2

0
I j′‖|ρs [67]. Eq. (3.13) is obtained in a simple cylinder and is the solu-

tion to Eq. (3.3) (solved analytically, instead of numerically using the shooting method)
described earlier in the limit w = 0 in Eq. (3.10). Large island corrections for Δ′

0(w) of
Eq. (3.10) are also known in the literature [65], where such a correction was first given
by White et al. [68]. However, more recent work [69, 70, 71] reviewed the asymptotic
matching required for a non-linear treatment, and the result for the scenarios considered
in this thesis are that finite width corrections given by e.g. Eq. (29) of Ref. [69] have
the opposite sign to those of Ref. [68]. Taking into consideration these discrepancies,
and noting that the finite width correction of Ref. [69] has a small amplitude, we choose
to define the cylindrical Δ′

0 as Eq. (3.13) for all widths in the rest of the thesis. The
contribution from the bootstrap current

ρsΔ
′
bs(w) =

64

3π

μ0R
3
0q

2
s

F 2q′s
〈Jbs ·B〉 w

w2 + w2
d

, (3.14)

provides a well known non-linear contribution to Eq. (3.12), arising from the current
perturbation associated with pressure flattening in the region of the island [17, 72, 73].
The bootstrap term includes corrections for small island sizes due to transport which are

given by wd ≈ (χ⊥/χ‖)(1/4)
√
2L̂s/k̂θ with L̂s = q2/(q′ε), ε = qBpR/F and k̂θ = m/ρ,

and χ⊥ and χ‖ are the perpendicular and parallel heat transport coefficients respectively.
Other terms usually included in non-linear NTM analysis comprise Δ′

GGJ [72, 74, 75],
arising from toroidal geometry effects and a polarization current term Δ′

pol [76]. We will
include the GGJ contribution given by [72]

ρsΔ
′
GGJ(w) = 6ρs

DR

βp

w

w2 + w2
dGGJ

, (3.15)

where w2
dGGJ = 0.2w2

d is due to a small island width correction, βp = 2μ0p/B
2
p and

the quantity DR is defined in Refs. [74, 75, 72] and is calculated by the CHEASE code
[30, 72]. This contribution represents the stabilising effect of magnetic field line bending
on NTMs. In a more recent model [77, 78], where linear and non-linear results are
matched, for the GGJ contribution the following expression is found:

ρsΔ
′
GGJ(w) = 6.35ρs

DR√
w2 + 0.65w2

c

, (3.16)

with wc = 2
√
2(χ⊥/χ‖)(1/4)

√
ρsR/(ns). Eq. (3.16) predicts a more stabilising effect

in the limit w → 0 (initial phase) than Eq. (3.15). Due to the lack of knowledge on
how to parameterise Δ′

pol, and due to the fact that the polarization effect is missing in
XTOR-2F, we will drop Δ′

pol from the analysis here.
Finally, in the next section we analyse the toroidal coupling of tearing modes with

infernal modes. We choose to look for a coupling contribution
∑

iΔ
′
i that can be inserted

into the Rutherford equation, a method analogous to Ref. [79] which looked at the effect
of magnetic perturbations.
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3.4 Extension of the Rutherford equation to include seeding
by infernal modes

The following provides an explanation of the theoretical origin of infernal modes and
reviews linear analytical treatment that forms the basis for the study of NTM triggering
by infernal modes. A contribution to the modified Rutherford equation is then modelled
to reflect the diminishing of coupling in the early non-linear phase when the infernal
mode saturates. This is followed by a calculation of the eigenfunctions.

3.4.1 Linear model of resistive infernal modes

The model described here constitutes the basis for the derivation of tearing stability
when infernal modes are present. We now focus on the destabilising effect of ∇p, which
- according to Eq. (2.47) - constitutes a potential source of free energy. The most impor-
tant pressure-driven instabilities in tokamaks are ballooning modes and infernal modes.
For ballooning modes it is found that largest n modes are linearly the most unstable,
whereas unstable infernal modes are of low n. Magnetic shear plays an important role for
the destabilisation of both types of instability and the ballooning model assumes finite
magnetic shear. On the contrary, infernal modes are a class of pressure-driven MHD
modes that occur in toroidal plasmas with extended regions of low or vanishingly low
magnetic shear s = (ρ/q) q′. They can be both ideal or resistive in character. The sta-
bility threshold in resistive plasmas lies below the threshold for ideal infernal modes [53].
These modes occur already at very low βp when infinite n ballooning theory predicts
stable modes.

Infernal modes are characterised by an ideal mode with mode number (m0, n) located
in the low-shear region, coupled to its poloidal sidebands with mode numbers (m0 ±
1, n). The existence of such coupled modes was predicted by Zakharov in Ref. [80]. The
destabilisation of pressure-driven modes, far below the ballooning stability threshold is
due to the effect of the q profile with extended low-shear when it is close to a rational
value. Coupling allows for an energy transfer between the ideal mode in the low-shear
region and the sideband mode. It can thus result in a much larger growth of the sideband
or destabilise a sideband mode that would be stable without the coupling drive. When
resistivity is included, the sideband modes develop a tearing character on their magnetic
surfaces, which contributes to the formation of magnetic islands and enhances the growth
of the m0 main mode. Classical tearing modes grow on resistive timescales like γ ∼ S−3/5,
whereas the scaling for infernal modes is dramatically faster with γ ∼ S−3/13 at the ideal
stability boundary. The growth rate of infernal modes is larger for higher pressure and
small absolute δq = q −m0/n, representing the distance of q in the low-shear region to
the rational value. The typical shape of a q profile that gives rise to infernal modes and
the parameter δq are shown in Fig. 3.4.

The analysis of tearing modes driven by infernal mode coupling differs from that of
classical tearing modes in section 3.3.1 in so far as a region of low magnetic shear is
assumed in the core extending from 0 ≤ ρ ≤ ρ∗ (region (i) in Fig. 3.4). In this region,
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Figure 3.4 – Typical q profile considered in the analytical theory of infernal modes. The
radial variable ρ is normalised with respect to the minor radius (ρ = 1 at the boundary).
Region (i) is characterised by a flat q and low to vanishing shear. Region (ii) constitutes
the external region in which the shear is high. The resistive layer (iii) or internal region
is located at the resonant (m0 + 1)/n surface.

the displacement is modelled in the form

ξ = ξm0e
im0θ−inφ + εξm0±1e

i(m0±1)θ−inφ +O(ε2) , (3.17)

where the main harmonic (infernal mode) has poloidal mode number m0 and the side-
bands with m = m0 ± 1 are one order in ε smaller than the main mode. In the sheared
region extending from ρ∗ < ρ < ρs and ρs < ρ ≤ a (region (ii) in Fig. 3.4), the modes
are decoupled at leading order [56, 81]. Resistivity is only important in a narrow region
around the rational surface at ρs (region (iii) in Fig. 3.4) and a solution for the sideband
eigenfunction is calculated separately. The equations governing the sideband (tearing)
m0 + 1 eigenfunction in the regions ρ∗ < ρ < ρs and ρs < ρ < 1 are similar to those
describing classical tearing modes, explained in section 3.3.1. However, the boundary
conditions are different. For the classical tearing mode the sheared region extends to the
magnetic axis, where the eigenfunction ψ reduces to zero, whereas in the infernal mode
problem, the eigenfunction in the sheared region is matched to the sideband solution
obtained in the low-shear region, where the modes are coupled. The dispersion relation
for linear resistive infernal modes for the case m0 = n (appropriate for our study of
non-resonant modes close to q = m0/n = 1) has been derived by Brunetti et al. [56] and
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reads
−γ2

ω2
A

=
n2

1 + 2q2∗

[(
δq

q∗

)2

+
[
β̃p(ρ0)

]2
G0

B0 − ρsΔ
′
0(γ)

A0 − ρsΔ′
0(γ)

]
, (3.18)

where in the region of the resistive layer Δ′
0(γ) is defined as [56]

ρsΔ
′
0(γ) = S̄3/4γ̂5/4 . (3.19)

Here, S̄ = 2.73
[
(1 + 2q2s)/s

2
s

]1/3
S, where s = q′r/q is the magnetic shear and subscript

’s’ indicates that a quantity is evaluated at the resonant surface ρs. Solving the eigen-
value equation requires matching of Eq. (3.19) with Δ′

0 in the outer region, which is
identified with Eq. (3.3) and Eq. (3.5), but with different boundary conditions (as com-
pared with those discussed under Eq. (3.5)), taking into account the effect of coupling
with the fundamental harmonic (n,m0) of the infernal mode. This is discussed in detail
in Refs. [53, 56], and is included in the calculations for the sideband eigenfunctions in
section 3.4. In addition, ωA is the Alfvén frequency and the subscript ∗ indicates that
a quantity is evaluated at position ρ∗, the transition of low-shear and sheared region.
The poloidal β in this analytic calculation is given by β̃p =

μ0p0
B2

p

(
R0
R

)2, where R0 is the
plasma major radius, Bp is the poloidal magnetic field strength and p0 is the pressure
on the magnetic axis (where R = R0) for a pressure profile p = p0

(
1− (ρ/ρ0)

2
)

for
ρ < ρ0 ≤ 1. Here, Δ′

0(γ) is the tearing stability parameter of the internal resistive layer
for the (m+1)/n surface, which is related to the growth rate by Eq. (3.9). The ι profile
near this surface, i.e. in the sheared region, is given by:

1/q = ι ≈ 1

m0 + 1

{
n

m0

[
1−

(
ρ

ρs

)λ]
+ n

}
. (3.20)

The closeness of the q profile to the rational value is expressed through δq = qmin−m0/n.
ρs is the position of the rational surface of the sideband, where q = (m0 ± 1)/n. Note
that this internal resistive Δ′ can be matched to the outer Δ′ assuming very small
island width. It should therefore be matched with Eq. (3.13). With this, and setting
m = m0 +1, the coefficients A0 = −π cot (πã)

λ (m2 −m2) and B0 = π cot (πb)(m2 −m2)/λ

carry information locally on the shape of q. Here, m is defined as m =
√
m2 + 2λ+ λ2,

ã = (m−m)/λ and b = (m+m)/λ. The quantity

G0 =
ε2∗(ρ∗/ρs)2m

m(m+ 1)

Γ(ã)Γ(b)Γ(1− ã− b)

Γ(−ã)Γ(−b)Γ(1 + ã+ b)
, (3.21)

with ε∗ = qBpR/I|ρ∗ , carries information about the shape of eigenfunction in terms of
the q profile in the region ρ < ρs and is written in terms of the Γ function. In general the
model [56] also includes plasma diamagnetism, subsonic equilibrium toroidal flow shear
and viscosity, but these effects are not considered in our study of MAST-like plasmas.

With infernal mode coupling effects taken into account in the calculation of Δ′
0(γ) ac-

cording to Eq. (3.18) and adding other relevant contributions to the non-linear evolution
of the NTM, the modified Rutherford equation (3.12) now reads

τR
ρs

dw

dt
= 1.22ρs

[
Δ′

0(γ) + Δ′
GGJ(w) + Δ′

bs(w)
]
. (3.22)
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Note that here Δ′
0(γ) replaces Δ′

0 of Eq. (3.13) and depends on the linear growth rate γ

of the infernal mode. For γ = 0, i.e. when the infernal modes disappears, the classical
tearing mode is recovered and Δ′

0(γ = 0) = Δ′
0. In the next section, we will introduce

Δ′
0(γ,w), a finite width correction to Δ′

0(γ).

3.4.2 Infernal mode saturation and modelling of Δ′ in the early non-
linear phase

The destabilising effect of infernal modes coupling to NTMs is described in the linear
phase by the solution to the dispersion relation Eq. (3.18). In the later non-linear phase
close to saturation of the island, the main infernal mode has already saturated and thus
the coupling from the main infernal mode to the NTM would be expected to vanish.
We will now develop a model that captures the decrease of the linear growth rate in the
early non-linear phase and hence the loss of coupling for the further non-linear evolution
of the sideband mode. In this model the tearing contribution in the presence of infernal
modes to the modified Rutherford equation (Eq. (3.12)) depends on the magnetic island
width, i.e. Δ′

0(γ) → Δ′
0(γ,w). Hence, mode coupling can play an important role in the

initial phase of mode growth, but vanishes in the deep non-linear phase (so that for large
width the RHS of Eq. (3.12) will depend only on the standard contributions Δ′

0,Δ
′
bs and

Δ′
GGJ). The evolution of the early non-linear phase will depend on a parametrisation

based on consistency with the XTOR-2F fully numerical simulations.
In order to obtain Δ′

0(γ) explicitly during the linear phase, one has to solve Eq. (3.18)
for the growth rate of the resistive infernal mode as discussed earlier and substitute it
back into Eq. (3.19). Examples of such solutions for varying δq = qmin −m0/n and βp
are shown in Fig. 3.5. For larger βp and low δq the mode is more unstable as expected
for infernal modes. The growth rate is very large for small δq. As δq is increased the
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Figure 3.5 – Normalised growth rate γ̂ =

γ/ωA versus δq for different values of βp.
The Lundquist number is chosen to be S =

106.
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Figure 3.6 – Dependence of the linear tear-
ing stability parameter Δ′

0(γ) of Eq. (3.5)
calculated in presence of infernal modes on
δq for different values of βp. The Lundquist
number is chosen to be S = 106.
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growth rate drops drastically and undergoes a transition to tearing-like behaviour. This
behaviour is also reflected in Fig. 3.6, where Δ′

0(γ) is shown as a function of δq. The
transition point appears at larger δq as βp is increased.

Solving the general non-linear resistive infernal mode problem analytically is outside
the scope of this thesis. In order to provide an analytical estimate of the magnetic island
evolution in the non-linear phase, we choose an approach based on extending the linear
results, with a transient diminishing of infernal mode coupling as the island grows. In
particular, it is assumed that the coupling between the main harmonic and its sidebands
vanishes around the time that the main infernal mode saturates in amplitude. The
vanishing of the coupling causes a dramatic change of the eigenfunction and thus affects
the parameter Δ′

0(γ). For the non-linear extension to the linear model, we choose the
growth rate to decrease with the island width as

γ̂(w) = γ̂lin exp [−w/wI ] , (3.23)

where γ̂lin is the linear growth rate obtained from Eq. (3.18) and wI is the characteristic
width of the island at the time when the infernal mode is saturated. We incorporate
this change of γ with the growing magnetic island into the calculation of Δ′

0(γ) and thus
obtain a finite width correction reflecting the loss of infernal mode coupling:

Δ′
0(γ,w) = Δ′

0(γ) exp

[
−5

4
(w/wI)

]
+Δ′

0(γ = 0)

(
1− exp

[
−5

4
(w/wI)

])
. (3.24)

In the initial phase when w = 0, Eq. (3.24) reduces to the expression for Δ′
0(γ) in the

linear model. In the late non-linear stage when the infernal mode is saturated (γ = 0),
Eq. (3.24) recovers the classical tearing mode stability index Δ′

0 of Eq. (3.13) and the
boundary conditions of the sideband mode correspond to those of the classical tearing
mode described in section 3.3.1. It is argued that the characteristic width wI should not
change significantly when adding or neglecting bootstrap effects or other physics that
affect the late non-linear evolution of the island. With this model, the width evolution
can be obtained either by solving the modified Rutherford equation or from numerical
simulations. However, for the Rutherford approach, wI is determined from the XTOR-2F
simulations.
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Figure 3.7 – Δ′ contributions and their dependency on island width w. (a) without
coupling and Δ′

GGJ calculated according to Eq. (3.15). (b) without coupling and Δ′
GGJ

calculated according to Eq. (3.16). (c) with infernal mode coupling. It is seen that
the coupling term is dominant for small w, whereas for increasing island width it drops
and its value is comparable with the bootstrap current term Δ′

bs. For this calculation
δq = 0.019, βN = 1.17 and S = 106 in a MAST-like equilibrium.
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The growth of an NTM with helicity m = 2/n = 1 is calculated using Eq. (3.22) for
the MAST-like equilibrium chosen for the numerical study and explained in section 3.5.
Cases with and without inclusion of bootstrap current are considered. In the latter case
the term Δ′

bs in Eq. (3.22) is set to zero. Plots of the contributions to the Rutherford
equation Δ′

0 (with and without coupling), Δ′
GGJ(w) and Δ′

bs(w) are shown in Fig. 3.7,
where wI has been set to 0.015. First, we do not consider the coupling effect, and in
Fig. 3.7a the curvature contribution is calculated according to Eq. (3.15) and vanishes
in the limit w → 0. The cylindrical contribution (classical tearing mode) Δ′

0(γ = 0) is
negative and thus stabilising. In addition, at w = 0 the bootstrap contribution is zero.
As a result a standard 2/1 NTM would be stable, if infernal mode coupling was not
considered. Hence, for an unstable 2/1 mode an additional seed is required. If Δ′

GGJ(w)

is calculated according to Eq. (3.16) the total stability parameter Δ′ is more negative
at w = 0, and thus an even larger seed is necessary to trigger an NTM, as shown in
Fig. 3.7b. Such a seed is provided by coupling, as demonstrated in Fig. 3.7c. For small
islands, the infernal mode coupling contribution is dominant and triggers the creation of
a 2/1 magnetic island. The coupling drops very strongly as the island width increases
and its magnitude becomes comparable to Δ′

bs for w � 0.04. For large islands the
coupling term approaches zero and Δ′

0(γ,w) approaches Δ′
0(0), recovering the standard

cylindrical contribution. In the non-linear phase the bootstrap effect is proportional
to 1/w for w � wd and thus as a result reduces in amplitude more slowly than the
infernal mode contribution. So strong is this coupling effect at small w that it is seen
that evolution of w is almost independent of the choices of model (Eq. (3.15) or (3.16))
for Δ′

GGJ(w). The neglect of Δ′
pol is also not a significant approximation.

This shows that infernal mode coupling provides a necessary seed island for NTM
growth. During the early non-linear phase, the growth of the island is very fast. In
addition, as seen in the last section, the destabilising effects from the bootstrap current
are able to maintain island growth to considerably larger widths than in situations where
the bootstrap current is not considered.

3.4.3 Ad-hoc calculation of coupled non-linear infernal modes and
their eigenfunctions

It is interesting to examine the eigenfunction evolution that would be expected from
Eq. (3.23) and Eq. (3.24) in the linear and non-linear phase. The sideband eigenfunctions
obtained from the linear model drop rapidly before the rational surface due to the strong
drive from the infernal mode. Together with the rather flat eigenfunctions at ρ > ρs this
results in a strong discontinuity of the radial derivative of ψ and thus a large Δ′

0(γ). In
the non-linear regime, the mode coupling diminishes and this behaviour should also be
reflected in a change of the eigenfunctions. The sideband (m = m0+1, n) eigenfunctions
ξr± are governed by [56]

d

dz

[
z2/λ+1(1− z)2

dξr±
dz

]
− m2 − 1

λ2
z2/λ−1(1− z)2ξr± = 0 , (3.25)
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where a new radial variable z = (ρ/ρs)
λ has been introduced. The fluid displacements

ξr± are related to the perturbed poloidal flux by

ψ± = −(f ′
0k̂‖/m)ξr± , (3.26)

where f ′
0 ∼ ρB0 is the radial derivative of the equilibrium toroidal flux, k̂‖ = mι − n is

the parallel wave vector. For ι profiles given by Eq. (3.20) this differential equation can
be solved analytically. The eigenfunctions ξr± describe the fluid displacement at ρ < ρs
(ξr−) respectively at ρ > ρs (ξr+) and are given by

ξr−(z, w) = z(m−1)/λ(1− z)−1

(
A∗

1(w)F (ã, b; ã+ b+ 1; z)

+B∗
1(w)z

−ã−bF (−b,−ã; 1− ã− b; z)

)
,

(3.27)

ξr+(z, w) = z−(1+m)/λ(z − 1)−1

(
A∗

2(w)F (b,−ã; 1 + b− ã; 1/z)

+B∗
2(w)z

b−ãF (−b, ã; 1 + ã− b; 1/z)

)
,

(3.28)

where we defined the quantities ã = (m − m)/λ and b = (m + m)/λ, and F (a, b; c; d)

denotes the hypergeometric function of the kind 2F1 [82].
The external (sheared region) eigenfunctions, given by Eqs. (3.27) and (3.28) both

consist of a regular term, describing the classical tearing behaviour and a term due to
mode coupling. The coefficients A∗

1, B
∗
1 , A

∗
2, B

∗
2 in Eqs. (3.27) and (3.28) are calculated

from the boundary conditions and matching of the eigenfunctions in the three regions of
Fig. 3.4. Ensuring the asymptotic behaviour of ξr− for z � 1 [83, 56]

B∗
1

A∗
1

= −C∗A0 − D0
1+D0

(A0 +B0 +m)− ρsΔ
′
0(γ,w)

B0 − D0
1+D0

(A0 +B0 +m)− ρsΔ′
0(γ,w)

, (3.29)

where

D0 = −ρ2ms
F (b,−ã; 1− ã+ b; ρλs )

F (−b, ã; 1 + ã− b; ρλs )

Γ(−ã)Γ(b)Γ(1 + ã− b)

Γ(ã)Γ(−b)Γ(1− ã+ b)
, (3.30)

and C∗ = Γ(−ã)Γ(−b)Γ(1+ã+b)
Γ(ã)Γ(b)Γ(1−ã−b) with Γ being the Gamma function. In Eq. (3.29), a finite

width generalisation for Δ′
0(γ) is assumed, i.e. Eq. (3.24), so that the effect of time

evolving coupling to the infernal mode can be examined. The condition ξr+(a) = 0

provides an equation for the coefficient B∗
2 :

B∗
2

A∗
2

= −ρ2ms
F (b,−ã; 1− ã+ b; ρλs )

F (−b, ã; 1 + ã− b; ρλs )
. (3.31)

From the matching of ξr− with ξr+ on the rational surface ρs we obtain

A∗
1

A∗
2

=
F (b,−ã; 1 + b− ã; 1) +

B∗
2

A∗
2
F (−b, ã; 1 + ã− b; 1)

F (ã, b; ã+ b+ 1; 1) +
B∗

1
A∗

1
F (−b,−ã; 1− ã− b; 1)

, (3.32)
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where the ratios B∗
2

A∗
2

and B∗
1

A∗
1

are already known from Eqs. (3.29) and (3.31).
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Figure 3.8 – Sideband eigenfunction ψ in the external region (high magnetic shear) for
the MAST-like equilibrium, plotted for different widths of the magnetic island. The
rational (m0 + 1, n) surface is indicated by the dashed black line. As the island width
increases, the steepening of the eigenfunction due to coupling relaxes.

We are now ready to examine the evolution of the eigenfunction expected during the
early non-linear phase when the infernal mode contribution to the Rutherford equation
would be dominant, but weakening as the width of the island grows, and coupling di-
minishes. This is undertaken simply by substituting Eq. (3.24) into Eq. (3.29), taking
γ̂5/4 from the solution to the linear dispersion relation (Eq. (3.18)), and calculating the
eigenfunction for various widths. The result is shown in Fig. 3.8 where ψ(ρ) is plotted
for different magnetic island widths from the beginning of the linear phase until the later
non-linear phase. At w = 0, which corresponds to t = 0 the eigenfunction drops very
strongly close to the rational surface due to the effect of the strong coupling between the
1/1 infernal mode and its 2/1 sideband. As the island grows, the eigenfunction relaxes to
a smoother profile. For large width, which corresponds to the situation in the non-linear
phase, the infernal mode contribution diminishes and the eigenfunction becomes that of
the cylindrical linear tearing mode at marginal stability, i.e. Eq. (3.13). The constant ψ

approximation underlying the Rutherford equation is seen to be satisfied better in the
non-linear stage than at earlier times when the infernal mode drive is very strong.
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3.5 Resistive non-linear stability simulations

In this section, resistive XTOR-2F simulations of a MAST-like equilibrium are presented.
The simulations have been performed with and without inclusion of bootstrap current.
Because the effect of coupling is stronger for tighter aspect ratio tokamaks, a MAST-like
equilibrium is chosen. We first introduce the initial value code XTOR-2F used for the
numerical simulations, followed by an explanation of the plasma equilibrium and physical
model and a discussion of the numerical results.

3.5.1 The non-linear initial value code XTOR-2F

XTOR-2F is an initial value stability code based on the two-fluid model [42]. As for any
initial value calculation, an initial state needs to be provided. For XTOR-2F the initial
conditions are provided in form of a solution to the Grad-Shafranov equation (2.26)
calculated with the CHEASE code (c.f. section 2.3.2).

3.5.1.1 Extended MHD equations and geometry

The physical model used in XTOR-2F [42] is derived from the full resistive MHD equa-
tions that result from the full Braginskii equations [84] and includes non-MHD effects
like thermal transport, diamagnetism and some neoclassical effects such as bootstrap
current [42]:

ρ∂tv = −ρ(v · ∇)v − ρ (v∗
i · ∇)v⊥ + j×B−∇p+ (∇ν∇)v ,

∂tB = ∇× (v ×B) + α∇×
∇‖pe
ρ

−∇× η(j− jboot) ,

∂tp = −Γp∇ · v − v · ∇p− αΓ
pi
ρ
∇p · ∇ × B

B2

+∇ · χ⊥∇p+∇ ·
[
B
( χ‖
B2

(B · ∇)p
)]

+H ,

(3.33)

with
ρ = Cp−Γ , (3.34)

or

∂tρ = −ρ∇ · v − v · ∇ρ− α∇pi · ∇ × B

B2
+∇ ·D⊥∇ρ+ S . (3.35)

In the above equations the density and the pressure are defined as � = mini = mine
and p = pe + pi respectively. The subscripts e, i denote the electron and ion species,
respectively. The fluid velocity is given by v. ν is the viscosity, η the resistivity and Γ

the ratio of specific heats. J = ∇ × B is the current density field. Diamagnetic effects
are written in terms of the quantity α = (ωciτA) with ion cyclotron frequency ωci and
v∗
i = αB×∇pi

ρB2 is the ion diamagnetic velocity. Transport is modelled in terms of the
parallel and perpendicular diffusion coefficients χ‖, χ⊥ and D⊥. Via the quantities H

and S heat and density sources can be added, respectively. For the exact normalisations
of the physical quantities in the XTOR-2F model we refer to Refs. [42, 41].
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Figure 3.9 – Coordinate system of XTOR-2F in the poloidal plane. For a given point,
the covariant and contravariant basis vectors of the coordinates r and θ are shown. Lines
of constant r are plotted in black.

XTOR-2F includes the effect of resistivity, which in the model equations enters as a
free parameter. This is because the density profile ρ is a free variable that is chosen as
input for the simulations. The initial temperature depends on the choice for the density
profile like T0 = p0/ρ0, where p0 is the equilibrium pressure provided by CHEASE. The
initial resistivity profile in XTOR-2F is set such that η0(jφ0−jφ,bs0) = Eφ0. The toroidal
component of the equilibrium electric field Eφ0 is held constant in the plasma and is
imposed as a boundary condition. This initial η profile can either be kept constant
throughout the temporal evolution of the system, i.e. ∂tη = 0, or it can be evolved
according to Spitzer’s resistivity model Eq. (2.6), where the temperature is a function
of time and calculated in each time step. The magnitude of η in XTOR-2F is specified
via the Lundquist number S ∝ 1/η in the core (parameter snumber) and a lower limit of
S (parameter slimit). We note that another recently developed implementation [85] of
Ohm’s law allows for a splitting of Ohmic and non-inductive current to model plasmas
with additional heating more realistically. This model is not used in this thesis and hence
not discussed further.

Like its predecessor, the one fluid code XTOR [41], XTOR-2F uses a flux coordinate
system (r, θ, φ), with equidistant poloidal θ and toroidal angles φ, and the radial variable
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r =
√
ψ/ψa is defined in terms of the normalised poloidal flux. The contravariant metric

elements are provided by the CHEASE equilibrium and read

grr =

(
∂r

∂R

)2

+

(
∂r

∂Z

)2

, grθ =
∂r

∂R

∂θ

∂R
+

∂r

∂Z

∂θ

∂Z
, (3.36)

gθθ =

(
∂θ

∂R

)2

+

(
∂θ

∂Z

)2

, gφφ =
1

R2
, (3.37)

where R and Z are cylindrical coordinates. More detail about curvilinear coordinates
is given in appendix A. An illustration of the XTOR-2F coordinate system is shown in
Fig. 3.9. In XTOR-2F, the initial perturbation to the 2D equilibrium can be applied
either to the magnetic field or to the velocity field.

3.5.1.2 Numerical method

The set of equations (3.33)-(3.35) can be expressed in the form ẋ = F(x), where x =

(vr,
√
gvθ, vφ, Br,

√
gBθ, Bφ, p) represents all variables of the system. This is then solved

by a Newton-Krylov method. In tokamak geometry the MHD equations form a very stiff
problem. Furthermore, it is necessary for studies to capture the long time behaviour
of the system due to the coexistence of very fast (compressible Alfvén) and very slow
(resonant shear Alfvén) modes and the fact that relevant physics are slow compared to
the basic time scale (Alfvén time). A fully implicit time advance method is used to tackle
this problem. In XTOR-2F, for a finite time step Δt the system evolves according to

xn+1 − xn = ΔtF

[
xn+1 + xn

2
+ Θ(xn+1 − 2xn + xn−1)

]
(3.38)

where n labels the time steps and Θ is a numerical constant. It can be shown that
this numerical scheme is linearly unconditionally stable for Θ > 0. At each time step
Eq. (3.38) needs to be inverted and solved for xn+1. It is convenient to rewrite the
previous equation in the form

G (Δn, x̄) ≡ Δn −ΔtF

[{
1

2
+ Θ

}
Δn + x̄

]
= 0 , (3.39)

where Δn = xn+1 − xn and x̄ = (1 − Θ)xn + Θxn−1. The non-linear problem is now
solved for Δn with a preconditioned Newton-Krylov method:

M−1G′
(
Δk
n, x̄

)(
Δk+1
n −Δk

n

)
+M−1G

(
Δk
nx̄
)
= 0 , (3.40)

where M denotes the preconditioner, k labels the Newton iterations and G′ (Δk
n, x̄

)
is

the MHD operator linearised around x̄. More details about the preconditioner are given
in Ref. [42]. It is evident from Eq. (3.40) that in each iteration the Krylov method
requires only matrix-vector products. This is exploited to avoid an exact evaluation
and inversion of the Jacobian matrix G′ by expressing the product G′(Δk+1

n −Δk
n) as a

finite difference. This so-called ’matrix-free’ method [86] replaces the matrix G′ in the
first term in Eq. (3.40) with an evaluation of G. In the first versions of the XTOR-2F
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3.5. Resistive non-linear stability simulations

Figure 3.10 – Domain of poloidal and toroidal Fourier modes in XTOR-2F. Physical
modes lie inside the yellow shaded band limited by aliasing constraints indicated by the
black lines.

code the Newton-Krylov solver is provided by the NITSOL library [87], while the newer,
parallelised versions of the code use PETSC [88, 89]. For the calculations of coupled
infernal modes and NTMs presented below, the results were obtained with a version
based on NITSOL.

The implementation of MPI as well as OpenMP parallelisation [90] reduces the real
time required for simulations particularly of complex plasma configurations. Another
recent version of the code considers the presence of a vacuum region around the plasma
with a conducting or resistive wall [91]. Effects due to the vacuum are not important
for the study of internal modes and hence we employ the fixed boundary version of
XTOR-2F.

The discretised grid has lmax radial points - each corresponding to one equilibrium
flux surface - and consists of mmax equally spaced points in the poloidal angle and nmax
points in the toroidal angle. The combinations of toroidal and poloidal modes taken into
account in a simulation lie in a band around the m = n line with a width determined by
the values minf and msup as sketched in Fig. 3.10. An exception is the n = 0 mode, which
has mn0 poloidal harmonics. Toroidal mode numbers span the range 0 ≤ n ≤ nsmax/2−1,
where nsmax is an integer and determines the highest n considered. Aliasing criteria set
constraints for the highest possible mode number for a given grid size as indicated by
the black lines in Fig. 3.10. Physical modes satisfy the conditions

nsmax <
2

3
nmax ,

nsmax
2

− 1 + msup <
2

3

(mmax
2

− 1
)
, (3.41)

and for the poloidal n = 0 modes

mn0 <
2

3

(mmax
2

− 1
)
. (3.42)
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At the largest toroidal mode number this allows us to resolve MHD modes up to a rational
value of q = 1 + msup/(nsmax/2− 1). In the simulations carried out later, nsmax = 4 in
order to include only n = 0, 1 modes. The memory required for a simulation scales like
lmax*nmax*mmax2.

3.5.2 Physical model & Equilibrium

For convenience in the following we make use of the normalised time t̂ = t/τA. The
radial variable used in the remainder of this chapter is defined as ρ =

√
Φ/Φa, where Φ

is the toroidal flux and the subscript ’a’ indicates that the quantity is evaluated at the
plasma boundary. x′ describes a derivative of x with respect to ρ. The magnetic island
width w is a dimensionless relation to coordinate ρ, i.e. w = 1 would correspond to the
width of an island extending from the magnetic axis to the plasma boundary.

The physical model used in XTOR-2F [42] was introduced in Section 3.5.1. Since
the main extended MHD effect of interest is that of the bootstrap current, the general
model Eq. (3.33) providing the time evolution of the velocity field v, magnetic field B,
pressure field p and density field �, used by XTOR-2F is simplified to

� [∂tv + (v · ∇)v] = J×B−∇p+ (∇ν∇)v ,

∂tB = ∇× (v ×B)−∇× η(J− Jbs) ,

∂tp = −Γp∇ · v − v · ∇p+∇ · χ⊥∇p

+∇ ·
[
B
( χ‖
B2

(B · ∇)p
)]

,

∂t� = −�∇ · v − v · ∇�+∇ ·D⊥∇� .

(3.43)

We choose for the bootstrap current density Jbs to be calculated according to the Sauter
model [25, 26] given by Eq. (2.8). Resistivity is allowed to vary over the radial extension
of the plasma, but is kept constant in time. The resistivity profile is chosen in a way
that the equilibrium toroidal electric field is kept constant over the radius [42]. χ⊥ and
χ‖ are the perpendicular respectively the parallel heat transport coefficients and D⊥ the
perpendicular diffusion coefficient.

For simulating MAST-like plasmas we set the major radius at the magnetic axis to
R0 = 0.796m and the elongation to κ = 1.60015. The minor radius of the plasma
boundary is defined as a := (Rmax − Rmin)/2 = 0.466m, where Rmax and Rmin denote
the maximum and minimum radial position of the plasma. The resonant q = 2/1 surface
is located at the normalised radius ρs = 0.72. The equilibrium profiles are shown in
Fig. 3.11a. The q profile is flat from the magnetic axis up to ρ ≈ 0.45. We refer to this
region as low shear region. For ρ ≥ 0.45 finite and considerably large shear is present
(high shear region). We stress the fact that Eq. (3.20) cannot be used to express the q

profile over the whole range. Nevertheless, in the region around ρs the q profile can be
approximated by 1/ι with ι given by Eq. (3.20). The value of λ lies between 6.3 and 7

and is set to 6.7 for the following calculations. Finally, in the XTOR-2F simulations to
come, the island width is defined as the radial extension of the magnetic island, i.e. the
difference between the outer and inner radial position of the island separatrix. For the
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3.5. Resistive non-linear stability simulations

cases considered in this paper, stochasticity associated with large islands is weak, so the
island width is fairly easy to identify.

Figure 3.11 – A MAST-like configuration which is susceptible to infernal modes. (a)
Equilibrium profiles are plotted over the radial position ρ =

√
Φ/Φa. The dashed line

indicates the position of the resonant q = 2/1 surface. p is presented in CHEASE units
[30]. I∗ is proportional to the surface averaged current density and is also given in
CHEASE units [30]. (b) Lines of constant pressure indicating the shape and location of
the flux surfaces.

The numerical simulations are carried out with the equilibrium code CHEASE [30]
which is interfaced with the initial value code XTOR-2F [42], used for the stability calcu-
lation. The CHEASE equilibrium (profiles and magnetic topology) constitutes the initial
conditions for the stability computations and is shown in Fig. 3.11. First, simulations are
performed with the exact profiles shown in Fig. 3.11a. Further simulations with varied
pressure and current profiles enable the investigation of the effect that βp and δq have on
the growth of the sideband magnetic island. In all the XTOR-2F simulations resistivity
is included, while ion and electron diamagnetic effects are switched off. We set nsmax = 4

in XTOR, such that only n = 0, 1 modes are retained. Poloidal modes up to m = 13

for n = 1 are considered in the simulations. For n = 0 the maximum poloidal mode
number is chosen for each equilibrium configuration individually such that convergence
is achieved. The largest poloidal mode considered msup, lies in the range 12 ≤ msup ≤ 24

for each simulation. The discretisation grid consists of 201 points in radial direction, 24
points in toroidal direction and in poloidal direction of 96 points when msup ≥ 20 and
64 points in simulations where msup < 20. The Lundquist number is set to S = 106 on
the magnetic axis. This value is lower than the typical values for present day tokamaks
(ranging from S = 108 − 109), but larger values in the simulation can lead to unneces-
sary convergence problems. Equilibrium toroidal rotation is neglected in the simulations.
The resistivity is allowed to vary over the radial extension of the plasma, unlike in the
analytical model, where resistivity matters only in the resonant region, where it can be
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Figure 3.12 – Island width with and without bootstrap current as computed in the
XTOR-2F simulations with βN = 1.17 and qmin = 1.019. When bootstrap current is
included, the island grows to a larger size.

considered constant. With the resistivity model adopted by XTOR-2F, the value of the
Lundquist number on the resonant surface is S = 1.107 11× 106. The value for the
normalised viscosity is ν = 5× 10−6.

3.5.3 Evolution of coupled modes in a MAST-like plasma

First, simulations with the above equilibrium profiles are performed with qmin = 1.019.
The poloidal beta for this equilibrium is βp = 0.2243 for which βN = 1.17. In XTOR-2F,
only n = 0, 1 modes are retained to isolate the relevant physics (coupling of n = 1 poloidal
harmonics) and to avoid n > 1 island chains that would overlap with the relevant 2/1

magnetic islands. In the simulations, growing n = 1,m = 2 islands are observed, both in
the cases with and without bootstrap current. For the evaluation of the size of magnetic
islands from Poincaré plots, a tool has been developed as described in appendix C.1.
The island evolution can be seen in Fig. 3.12. During the linear phase which ends at
t ≈ 1200 τA the growth of the magnetic island is exponential and comparable in both
cases. The large growth rate occurs due to coupling to the infernal mode as will be
explored in more detail in section 3.6. For t > 1200 τA, during the early non-linear stage,
the mode growth is stronger and maintained for a longer time in the case where the
bootstrap current is included. The effect of bootstrap current is seen in the non-linear
phase as expected, since Δ′

bs becomes important there and has a strong destabilising
effect for larger island width. Fig. 3.13 shows Poincaré plots of the poloidal cross section
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3.5. Resistive non-linear stability simulations

(a) (b)

Figure 3.13 – Poincaré plot at ϕ = 0 at time t = 2480 τA in simulations with equilibrium
profiles as in Fig. 3.11a with βN = 1.66 and qmin = 1.022. The magnetic 2/1 island is
clearly visible. (a) with inclusion of bootstrap current. (b) without inclusion of bootstrap
current.

at toroidal angle φ = 0 at t ≈ 2480 τA, when the 2/1 island reaches a significant size
in both simulations. The main 1/1 mode can also be seen, shifting the magnetic axis
outward and giving the flux surfaces in the core a bean-like shape. We note that in
both cases the amplitude of the 1/1 mode appears to be quite similar. In contrast, the
difference is the size of the 2/1 islands for the cases with and without bootstrap current
is seen to be considerable (Fig. 3.13a and b).

The typical evolution of the kinetic energy of an n = 1 infernal mode is shown in
Fig. 3.14. The energy grows linearly until t ≈ 1200 τA and then enters the non-linear
stage, characterised by an oscillating behaviour. The poloidal spectrum is well converged.
The kinetic energy is related to the linear growth rate by γ = −iω = 1/2 d ln (EK)/dt,
where Ek is the kinetic energy of the mode and is linked to the fluid displacement ξ

by Ekin = 1/2m (∂ξ/∂t)2. This therefore allows the estimation of the mode amplitude
during the linear phase. In both cases, the amplitude of the oscillations reduces during
the non-linear phase. However, the infernal mode saturation is seen more easily via
the magnetic energy which is shown in Fig. 3.15. The main 1/1 harmonic saturates at
t ≈ 1200 τA no matter if bootstrap current effects are considered or not.

The saturated state in the case without bootstrap current effects is illustrated by
the Poincaré plot Fig. 3.16. The infernal mode is located at r ≈ 0.4, and several n = 1
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Figure 3.14 – Comparison of the kinetic energy of the n = 1 mode in the simulations
with and without inclusion of bootstrap current and using the equilibrium profiles seen
in Fig. 3.11a with βN = 1.17 and qmin = 1.019. (a) shows the kinetic energy on a
logarithmic scale. The m spectrum of the n = 1 mode is shown in (b) for t = 2000 τA.
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Figure 3.15 – Magnetic energy of the 1/1 mode in the two cases with and without inclusion
of bootstrap current effects as result of XTOR-2F simulations. The equilibrium profiles
of Fig. 3.11a are used with βN = 1.17 and qmin = 1.019 in a MAST-like configuration.
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3.5. Resistive non-linear stability simulations

Figure 3.16 – Poincaré plot showing the magnetic topology in the r − θ plane of the
saturated state in the XTOR-2F simulation without bootstrap current effects. The
saturated infernal mode in the plasma core and multiple island chains can be identified.

island chains with poloidal mode number m = 2, 3, 4 are distributed in the outer part
of the plasma, where the q profile takes rational values. For the case with inclusion of
bootstrap current effects the picture is similar, but the magnetic island chains have a
larger width.

From the dispersion relation Eq. (3.18) it can be seen that the growth rate of infernal
modes depends on βp = 2μ0p/B

2
p . In order to examine the influence of βp on the growth of

the 2/1 NTM, the pressure profile is scaled by multiplying p(ρ) with a constant parameter
c over the range 0.2 ≤ c ≤ 1, while the shape of the profile is maintained. The q profile
has an extended region of low shear and the value of q on the magnetic axis is set to
q0 = 1.03 when varying βN . This is the same q0 as in the case considered in Figs. 3.12 -
3.15, and in those figures βN = 1.17 was chosen. In each case qmin is close to 1.019 but
varies very slightly with varying βN . Including only n = 0, 1 modes to isolate the relevant
physics, these simulations are done for cases with and without bootstrap current and the
result is shown in Fig. 3.17. With the effect of bootstrap current, and its dependence on
pressure, the island width is seen to scale non-linearly on the pressure. In Fig. 3.17 the
island width w is plotted with respect to βN = 〈β〉aBT /Ip.
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Figure 3.17 – Saturated magnetic island width wsat versus normalised beta βN as ob-
tained from XTOR-2F simulations with and without inclusion of bootstrap current. The
equilibrium profiles of Fig. 3.11a are used. The different values of βN are obtained by
scaling the pressure profile and keeping all other equilibrium quantities unchanged.

3.6 Comparison of the Model with the XTOR-2F Simula-
tions

Saturation in the width of the island can be estimated by parameterising dw/dt̂ =

τAdw/dt with the width w. The relation between island growth and width is shown
in Fig. 3.18 for both the analytical results and XTOR-2F, with and without bootstrap
current effects. This case has βN = 1.17 and qmin = 1.019 and corresponds to the case
with third largest βN (bootstrap free) respectively second largest βN (with bootstrap
current) in Fig. 3.17. The value for wI for both cases is chosen to be 0.015, based on
the XTOR-2F simulations which indicate infernal mode saturation at this island width.
In the XTOR-2F simulation without inclusion of bootstrap current, magnetic island
saturation is achieved at a width around wsat = 0.045. In the case with bootstrap
current the island grows only very slowly at the end of the simulation at t = 4590 τA,
as indicated by the small value of dw/dt̂ in Fig. 3.18. For the analytic modelling of the
case with no bootstrap current, the island reaches saturation at a width of wsat = 0.070.
This is slightly larger than in the numerical simulation. The saturated island widths are
evaluated at the point in time where dw/dt̂ = 0, i.e. where Δ′

total = 0.
For small island width the values of dw/dt̂ obtained in the numerical simulations

for the case of no bootstrap current agree well with the analytical prediction from the
Rutherford equation. In the case with bootstrap current effects, the term Δ′

bs contains a
small width correction (associated with finite wd), which may not be accurate in the limit
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Figure 3.18 – Island growth dw/dt̂ = τAdw/dt is shown with respect to island width
w for XTOR-2F simulations and the analytical prediction for (a) cases without and (b)
with bootstrap current. For this calculation qmin = 1.019, βN = 1.17 and S = 106 have
been chosen in the MAST-like equilibrium described above. For the case with bootstrap
current several curves are shown, reflecting various limits of the finite width correction
wd.

of tight aspect ratio. Therefore, Fig. 3.18 shows the analytical island growth calculated
with the Rutherford equation for various choices of wd. When wd is calculated with the
analytic formula wd ∝ (χ⊥/χ‖)1/4, and χ⊥/χ‖ employed values used in the XTOR-2F
simulations (dashed graph), dw/dt̂ is lower than in the numerical simulations. In the
limit of infinite parallel conductivity (χ⊥/χ‖ → 0 or wd = 0), the island growth dw/dt̂

is then comparable to the numerical result. In the opposite limit wd → ∞ the bootstrap
current contribution reduces to zero and the situation is identical to the one shown in
Fig. 3.18 (a). It can be seen in Fig. 3.18 that for large (nearly saturated widths), the
agreement between the XTOR-2F simulation with bootstrap current and the Rutherford
equation becomes better. The strong influence of wd on island growth at smaller island
width is due to the effects of parallel heat conductivity, which plays a negligible role as
w increases. As a consequence the value of wd is of little importance when looking at
island growth at large width. Both, the numerical and analytical methods predict that
the magnetic island maintains growth longer times and to larger width when compared
to the case without inclusion of bootstrap current. It is therefore clear that effects from
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Figure 3.19 – Poincaré plot of the saturated infernal mode and 2/1 magnetic islands at
φ = 0 for a case with strong (left) and small (right) seed from the infernal mode.

the bootstrap current can drive a magnetic island to a larger width, compared to a case
when its effect is neglected. However, it should be pointed out that, as seen in Fig. 3.18,
the XTOR-2F simulation with finite bootstrap current may not have quite saturated
for w > 0.075. The analytical island growth is calculated using Eq. (3.22). In order
to compare bootstrap-free XTOR-2F simulations to the analytical model, the term Δ′

bs

in Eq. (3.22) is set to zero. For both cases the numerical and analytical results agree
reasonably. The apparent large seed island effect, where dw/dt̂ is large for small w is
observed in both the analytic results and XTOR-2F. As mentioned earlier, differences
between saturated values in w are likely to be due to the approximations that have been
made for the non-linear corrections in the derivation of Eq. (3.22). In so far as the infernal
and classical contributions, these assumptions and approximations are most accurate
in the early non-linear phase, which continues the linear analytical model for resistive
infernal modes. More refined non-linear modelling is reserved for future publications.

It was argued in section 3.4.2 that infernal mode coupling can provide a seed for
an NTM, and that in the non-linear phase the coupling vanishes. The modes are then
decoupled and can evolve independently. If this is the case, the strength of the seed
should not have a strong effect on the saturated magnetic island width in the XTOR-2F
simulations. This means that small infernal modes, which saturate at small amplitudes,
should trigger NTMs that saturate at comparable magnetic island widths as those that
were seeded by a strong infernal mode. To verify this, we compare the saturated states
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of two plasmas with βN = 1.17, but different values of δq. For the case with strong
seed we choose δq = 0.019, and the case with small seed has δq = 0.031. It can be seen
in Fig. 3.19, that the amplitude of the saturated infernal mode differs considerably in
the two cases while the width of the 2/1 magnetic islands are comparable in size, thus
indicating that the modes are indeed decoupled in the non-linear regime.

3.7 Conclusions

In this chapter analytical and numerical studies in the frame of resistive MHD with
inclusion of bootstrap current have been presented. In particular we investigated the
triggering of fast growing MHD modes by infernal modes in low-shear plasmas. Analytical
and numerical results for cases with and without bootstrap current have been compared
and reasonable agreement has been found.

Standard NTM analysis [72] is not applicable when islands are coupled to infernal
modes. In this work a derivation of the infernal mode coupling contribution to the
modified Rutherford equation has been presented. To obtain the linear contribution
to Δ′, which describes the seed that can trigger the creation of an NTM, the external
eigenfunctions have been evaluated in the limit of vanishing island width. The resulting
destabilising effect is much stronger than that of standard contributions to tearing modes,
suggesting that coupling provides the dominant destabilising effect in the early evolution
of the island. A non-linear extension which evaluates Δ′ at finite width has been provided
in order to generalise the equation governing island growth. This non-linear extension
includes a model which ensures that coupling to the infernal mode diminishes as the
main harmonic of the infernal mode saturates in amplitude. The characteristic width of
the island when this occurs is identified from XTOR-2F numerical simulations.

The linear and non-linear analytical model has been applied to a MAST-like equi-
librium with low-shear core. In such a plasma, where infernal modes are present, the
modified Rutherford equation used in standard (neoclassical) tearing theory predicts sta-
bility, even when the destabilising contribution of bootstrap current is included. With
the new contribution Δ′

0(γ,w) in the modified Rutherford equation, the island initially
grows very fast. This highly destabilising effect of coupling can explain the triggering of
magnetic islands in numerical simulations and the experimentally observed fast growing
modes.

Numerical simulation results obtained with the XTOR-2F code in the same equi-
librium, show the existence of a fast growing 2/1 island. When bootstrap current is
considered, the island grows to a larger width than in the case without bootstrap cur-
rent. By virtue of the bootstrap effect the numerical simulations show how the width
of the infernal mode seeded tearing modes increase non-linearly with the plasma pres-
sure. A comparison with the analytical model shows reasonable agreement for the island
growth for cases with and without bootstrap current.

An investigation of n = 2 modes, focusing on 2/2 infernal modes driving 3/2 NTMs,
is reserved for future work. This involves a modification of the q profile such that classical
n = 2 tearing modes are stable. It is also required that the rational surfaces of the most
unstable modes (presumably having poloidal mode numbers m = 1, 2, 3, 4) are sufficiently
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separated and thus island chains do not overlap.
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Chapter 4

Non-linear saturated current-driven
external kink modes modelled with

3D free-boundary equilibria

In this chapter we present a study of current-driven non-linear saturated external kink
modes by means of free-boundary 3D equilibrium simulations. It is shown that free-
boundary 3D equilibrium calculations in tokamak geometry are capable of capturing
the physics of non-linearly saturated external kink modes for monotonic current and q

profiles typical of standard (baseline) plasma scenarios [92]. The VMEC ideal MHD equi-
librium model exhibits strong flux surface corrugations of the plasma vacuum boundary,
driven by the core current profile. A method is presented which conveniently extracts
the amplitude of the corrugation in terms of Fourier components in straight field line
coordinates. The Fourier spectrum, and condition for non-linear corrugation agrees well
with linear simulations, and the saturated amplitude agrees well with non-linear analytic
calculations. This chapter is based on an extension of the work that has been published
in the journal article [A. Kleiner et al., Free boundary 3D ideal MHD equilibrium calcula-
tions for non-linearly saturated current driven external kink modes in tokamaks, Nuclear
Fusion 58, 074001 (2018)].

4.1 Introduction

External kink modes are known [22, 93] to be of concern for the development of plasma
scenarios. They set operational limits and define inaccessible windows for the edge safety
factor and the peaking of the current profile. External kink modes tend to be linearly
unstable for large current gradients, especially when these gradients are close to the
plasma edge and where the edge safety factor is just below a rational value (especially
assuming external kink has n = 1). After an initial linear growth in the non-linear
phase, a mode usually saturates (non-linear stability) [94, 95], though in practice, the
corrugation can be so large as to touch the vacuum vessel or plasma-facing components,
thus causing disruptions [22].

The investigation of non-linear instabilities is typically carried out [32] with initial
value codes (e.g. XTOR-2F [42]). Such simulations are computationally expensive due
to the resolution and number of time steps necessary and require a certain level of
parallelisation [90]. Since a saturated state without equilibrium flows is characterised
by being time-independent, an equilibrium code can in theory obtain a saturated state,
satisfying the force balance equation j×B−∇p = 0. Indeed, this was already shown for
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non-resonant internal kink modes with q > 1, where initial value (XTOR-2F) saturated
states and VMEC fixed-boundary calculations showed similar m = n = 1 displacement
amplitudes [32].

The goal of this chapter is to investigate the degree to which 3D free-boundary equi-
librium codes can model conventional external kink modes, driven by current gradients
associated with standard tokamak operation (baseline scenario) with monotonic (stan-
dard [Wesson-like [93]]) q profiles. The work differs from recent [45, 46, 47] deployment
of VMEC for modelling edge harmonic oscillations in plasmas with low magnetic shear
at the edge. Those oscillations are driven predominantly by pressure gradients, rather
than current gradients. The 3D converged equilibria in this manuscript will be compared
with the spectral properties of linear numerical stability analysis, and further verified by
analytic non-linear calculations [95]. Lack of a converged equilibrium will be taken to
mean that an unstable external kink mode forms, but non-linear saturation has not been
achieved. The advantages of the equilibrium approach to external kink mode problems
are numerous. First, the computations are fast and accurate, and second they provide
convenient Fourier decomposed magnetic geometry for advanced studies such as fast
particle [96] and impurity transport [97] in non-axisymmetric plasmas. Such studies re-
quire long and highly accurate particle simulations. To obtain the required accuracy, the
VENUS-LEVIS guiding centre code [98] for example exploits the Fourier decomposition
of the magnetic field for orbit calculations.

After discussing the linear and non-linear treatment of external kink modes in Sec-
tion 4.2, we present in section 4.3 ideal MHD free-boundary computations of JET-like
plasmas carried out with the VMEC code [34]. First, the characteristics of the observed
three-dimensional equilibria and the choice of the coordinate system for mode spectrum
analysis are discussed. This is followed by the VMEC calculation of the non-linear satu-
rated displacement amplitude for varying edge q value, and two choices of current density
profiles. The spectral properties of VMEC are compared with those of the linear code
KINX in section 4.4. Then in section 4.5, the VMEC results are compared with the he-
lical external kink amplitude calculated from an analytical model based on a non-linear
large aspect ratio expansion.

4.2 Linear and non-linear external kink modes

This section provides an overview of external kink modes and their physical background.
External kink modes move the plasma boundary and are driven by current gradients. The
linear stability of these modes sets an operational limit on various plasma parameters.
However, the non-linear behaviour of a linearly unstable mode is important, since it
determines whether the perturbation saturates or grows further.

4.2.1 Linear theory of external kink modes

The NTMs and infernal modes studied in the previous chapter are both internal modes
and as such do not necessarily affect the position of the plasma-vacuum boundary. On
the contrary, external kink modes have a finite displacement at the edge, i.e. [n · ξ⊥]r=a.
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4.2. Linear and non-linear external kink modes

For these modes the resonant surface can be seen to lie in the vacuum region and hence
external kinks are unstable when the edge safety factor lies below a rational value. The
existence of external kink modes is predicted by the ideal MHD model when including the
vacuum region [22, 93]. The linear growth rate ω and displacement ξ can be derived from
the energy principle for a standard tokamak (large aspect ratio, circular cross section and
β ∼ ε2). The total energy change δW is given by the sum of a change of plasma energy
due to a displacement ξ given by Eq. (2.50) (including the boundary term) and vacuum
energy

δWV =
1

2

∫
V
d3x |B1|2 , (4.1)

where the integral is performed over the vacuum region extending from the plasma
boundary at r = a to a perfectly conducting wall at r = b. Due to the absence of
plasma in the vacuum region, the displacement vanishes here. Because the parallel com-
ponent of the perturbed field δB‖ ≈ δBφ, vanishes in the vacuum, δB2 ≈ δB2

r + δB2
θ .

These components of the magnetic field can be expressed in terms of a flux function as
δBr = −(1/r)∂ψ/∂θ = −imψ/r and δBθ = ∂ψ/∂r. Inserting this into the condition
∇ · δB = 0 leads to a Laplace equation for ψ (δB = −∇ψ)

1

r

d

dr

(
r
dψ

dr

)
− m2

r2
ψ = 0 , (4.2)

with solutions of the form ψ = αrm + βr−m. The two constants α and β can be deter-
mined from the boundary conditions. At the conducting wall the radial component of the
perturbed magnetic field vanishes δBr = 0 i.e. at r = b it follows that ψ(r = b) = const..
The perturbed radial magnetic field is continuous across the plasma-vacuum interface
and thus for the boundary condition at r = a we get ψ(r = a) = Bθa

(nqa
m − 1

)
ξa. One

then obtains

ψ = Bθa

(nqa
m

− 1
) ( r

b

)m −
(
b
r

)m(
a
b

)m −
(
b
a

)m ξa . (4.3)

Expressing δB in terms of ψ and inserting Eq. (4.3) into Eq. (4.1) the total potential
energy reads

δW =
π2B2

φ

μ0R

{∫ a

0

[(
r
dξ

dr

)2

+ (m2 − 1)ξ2

](
n

m
− 1

q

)2

rdr

+

[
2

qa

(
n

m
− 1

qa

)
+ (1 +mλ)

(
n

m
− 1

qa

)2
]
a2ξ2a

}
,

(4.4)

with λ = 1+(a/b)2m

1−(a/b)2m
. The first term is always positive and describes the stabilising effect of

magnetic field line bending inside the plasma. The second term is strongly destabilising
when qa < m/n. However, a plasma below such a rational value can still be stable if the
contribution of field line bending is strong enough. The displacement ξ can be obtained
from a solution of the Euler-Lagrange equation (2.51) and substituted back into Eq. (4.4).
The sign of the potential energy in Eq. (4.4) determines whether the system is linearly
stable or unstable according to the energy principle (c.f. section 2.4.2). Note that the
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Figure 4.1 – (a) Linear growth rate of a m = 2/n = 1 external kink mode with parabolic
j profile (ν = 1) and conducting wall at infinity. (b) Typical external kink eigenfunction
(here m = 2, ν = 3, b → ∞, nqa = 1.8).

growth rate of an external kink mode can be calculated from a minimisation of the
total energy, i.e. inertia contributions and potential energy (which includes the vacuum
and boundary terms in δW in Eq. (4.4)). This provides the following Euler-Lagrange
equation for external kink modes in the plasma region of a cylinder [81]:

1

r

∂

∂r

{
r3

(
B2

μ0

m2

R2

(
1

q
− n

m

)2

+ �γ2

)
ξ′rm

}

−
{
(m2 − 1)

B2

μ0

m2

R2

(
1

q
− n

m

)2

+ γ2
[
�(m2 − 1)− r�′

]}
ξrm = 0 ,

(4.5)

where ξrm is the radial displacement of the harmonic with poloidal mode number m, � the
mass density and γ the growth rate. In the vacuum region a < r < b, the perturbation
can be described in terms of the radial projection of the perturbed magnetic field[

r(rδBr)
′]′ −m2δBr = 0 . (4.6)

By solving Eqs. (4.5) and (4.6) with the boundary conditions

δBr(r = a) =
iBφm
R

(
1
q − n

m

)
ξrm , (plasma-vacuum interface) ,

δBr(r = b) = 0 , (conducting wall) ,
(4.7)

one obtains the dispersion relation

γ2
(�μ0

B2
[ln(rξrm)]

′
)
a−ε

=
m2

R2a

(
1

qa
− n

m

)2
(

2

qa

1
1
qa

− n
m

− m+ 1 + (m− 1)
(
a
b

)2m
1−

(
a
b

)2m − a(ln ξrm)
′
a−ε

)
.

(4.8)

Linear external kink growth rates are illustrated in Fig. 4.1 for the Wesson-like current
density profiles of the form j(r) = (ν+1)(1−ρ2)ν as a function of qa. For these profiles,
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as ν is increased the plasma becomes more stable (lower growth rate and lower marginal
point moves to a larger value of qa). The window of qa values, where the mode is linearly
unstable will be important in the next section. If the conducting wall is placed on the
plasma boundary (ρ = 1), external kink modes are linearly stable and the destabilising
effect increases as the wall is moved away from the plasma.

4.2.2 Non-linear external kink stability

Due to the general complexity of non-linear problems, analytical non-linear models of
the external kink mode [99, 100, 94, 95] make use of multiple approximations and sim-
plifications to make the problem tractable. In the following we provide a concise and
self-contained summary of an analytical model [95] for the non-linear saturated external
kink amplitude. In this context, we correct Eq. (34) of [95], where one term in the typed
equations (not in the calculations / numerical results in the Figures) is missing. The
model assumes cylindrical geometry, circular cross section and no pressure effects. The
variables used to describe the system are the helical angle ζ = φ − kz/m and a radial
coordinate ρ describing the position of the flux surfaces in equilibrium. In this straight
tokamak model, k replaces the toroidal mode number n, and z represents the variable in
the direction of the cylindrical axis. By adding a perturbation, the position of the flux
surfaces in the perturbed helical state is written as

rs(ρ, ζ) = ρ+ η(ρ, ζ) , (4.9)

where close to marginal stability a third order expansion provides a reasonable approxi-
mation for the helical displacement

η(ρ, ζ) = η(1)m (ρ) cosmζ + η
(2)
2m(ρ) cos 2mζ + η(3)m (ρ) cosmζ − [η

(1)
m (ρ)]2

4ρ
. (4.10)

The last term in Eq. (4.10) ensures that the volume of flux tubes stays constant up to
third order. For non-resonant modes the non-linear evolution [40, 101, 102] of the helical
displacement η is given by the solution of

∂2η

∂t2
+D1η +D3η

3 = 0 , (4.11)

where the parameters D1 and D3 are defined below. For the saturated and hence time-
independent state the solution to the amplitude η is

η =

√
−D1

D3
. (4.12)

For linear instability D1 is negative. It is proportional to the square of the linear growth
rate ω2 and thus D1 = 0 defines the marginal points. Non-linear stability is determined
by the coefficient D3. The system is non-linearly stable, i.e. the mode can saturate if
D3 > 0. We do not explicitly explore conditions of non-linear instability where D3 < 0.
The non-linear stability problem can be seen as a bifurcation, which is subcritical in
the case of non-linear growth or supercritical in the case of non-linear saturation. The
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bifurcation is called subcritical for D3 < 0 and supercritical for D3 > 0. The coefficients
D1 and D3 are obtained from physical constraints on the plasma surface [95]. The
requirement of having a tangential magnetic field at the plasma boundary, together with
the boundary condition at the conducting wall B ·n = 0 and pressure balance across flux
surfaces results in an equation consisting of terms proportional to cos(mζ) and cos(2mζ)

and of the same form as Eq. (4.11). Thus, from this equation D1 and D3 can be identified
and read

D1 =
[
F (f1ρ −m2β1 + 1)− 2

]
F , (4.13)

and

D3 =
F 2f1ρ

4

[
6f1ρ(f1ρ + 1) +m2 − 3

]
− F 2

(
3

2
n2ρf1ρ − n3ρ +

1

4

)
+m2F 2

[
β1
4
(6m2+1) +m2β1β2(1−2m2β1)−

11

8
m2β2

1 +
3

8

]
−F

[
m2

(
7

2
β1 − β2 + 4m2β1β2 − 2

)
− 1

2

]
+
n2F

2

2

[
m2
(
β1(m

2β1−1)+8m2β1β2−5
)
+1
]

+n2F
[
2m2(β1 + 2β2)− 1

]
− 2m2β2 −

5

2
+ 2n2 +

1

ln b

(
Fm2β1 + 1

)2
,

(4.14)

where xρ = ∂x/∂ρ. The coefficients D1 and D3 in Eqs. (4.13) and (4.14) differ from
D1 and D3 in Eq. (4.11) by a constant but common factor that cancels out [103] in the
calculation of η in Eq. (4.12). The wall distance b is normalised by the minor radius, i.e.
for b = 1 the wall is located at the plasma boundary and we define β1 := − 1

m
b2m+1
b2m−1

and
β2 := − 1

2m
b4m+1
b4m−1

. The function F is defined as

F (ρ) :=
I(ρ)

ρ2
− nqa

m
, (4.15)

where I(ρ) =
∫ ρ
0 2ρ′j(ρ′)dρ′ is the total current enclosed by a flux surface with radius

ρ and normalised such that I(1) = 1. To obtain the functions f1, n2 and n3, with
the expansion of Eq. (4.10) a coupled system of differential equations arising from the
ideal MHD model is solved numerically providing a solution for η to each order. These
solutions can be written as sums of homogeneous fi(ρ) and particular gi(ρ) solutions and
are denoted η

(1)
m (ρ) ≡ f1(ρ)η

(1)
m (1) to first, η(2)2m(ρ) ≡ f2(ρ)η

(2)
2m(1) + g2(ρ) to second and

η
(3)
m (ρ) ≡ g3(ρ) to third order. They satisfy the boundary conditions

lim
ρ→0

f1(ρ) ∝ ρm−1 , f1(1) = 1 ,

lim
ρ→0

f2(ρ) ∝ ρ2m−1 , f2(1) = 1 ,

g2(0) = g2(1) = 0 , g3(0) = g3(1) = 0 .

(4.16)

Using a normalisation constant η̂ := η
(1)
m (1), we further define the normalised solutions to

second and third order n2 := η
(2)
2m(ρ)/η̂

2 and n3 := g3(ρ)/η̂
3 respectively. In Eqs. (4.13)
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and (4.14), F, f1ρ, n2, n2ρ and n3ρ are evaluated at ρ = 1. Defining the operator

Lk =
d2

dρ2
+

[
3

ρ
+ 2

d

dρ
lnF (ρ)

]
d

dρ
+

1− k2m2

ρ2
, (4.17)

with k = 1, 2 we obtain the solutions for η to each order from the following system of
ODEs: [95]

L1η
(1)
m = 0 , (4.18)

L2η
(2)
2m =− Fρ

2Fρ2

(
3ρ2(η(1)mρ)

2 +m2(η(1)m )2
)

− 1

2ρ3

[
(3m2 − 1)(η(1)m )2 + 2ρη(1)m η(1)mρ + 5ρ2(η(1)mρ)

2
]
,

(4.19)

L1η
(3)
m = (η(1)m )3

1

4ρ4F

[
F (12m2 −m4 − 7)− 2ρm2Fρ

]
+ η(1)mρ(η

(1)
m )2

1

4ρ3F

[
F (2− 16m2)− 3ρm2Fρ

]
+ (η(1)mρ)

2η(1)m

1

4ρ2F
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F (41− 19m2) + 12ρFρ
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+ η(1)m η

(2)
2m

1

ρ3F

[
F (1− 3m2) + 2ρm2Fρ

]
− η(1)m η

(2)
2mρ

1
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(1− 3m2)

+ (η(1)mρ)
3 1

4ρF
[18F + 15ρFρ]− η(1)mρη
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2mρ

1

ρF
[5F + 3ρFρ]

− η(1)mρη
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1

ρ2
(1− 6m2) .

(4.20)

The normalisation constant η̂ can be eliminated by exploiting pressure balance across
the plasma-vacuum interface [95], resulting in the expression

D2n2(1) =−1

4

(
m2(m2β2

1 + 8m2β1β2 − 4β2 − 2)− 3(f1ρ)
2 + 4

g2ρ
η̂2

+ 1

)
F 2

−
(
m2(β1 + 2β2)−

1

2

)
F − 1 ,

(4.21)

with
D2 =

(
F (f2ρ − 4m2β2 + 1)− 2

)
F . (4.22)

Note that Eq. (4.21) corrects Eq. (34) of [95], where one term was found to be missing.
We stress the fact that in this model, η depends only on single helical mode numbers m

and n (as expected for cylindrical geometry), current density profile j(ρ), wall distance
b and edge safety factor qa. This completes the equations and identities required for
solving for saturated states of Eq. (4.11), i.e. for η with ∂η/∂t = 0.

The window in qa where external kink modes are linearly unstable is limited by two
marginal points. The upper marginal point is the rational value qa < m/n and the lower
marginal point is given by

nqa = m
f ′
1 −m2β1 − 1

f ′
1 −m2β1 + 1

. (4.23)

69



Chapter 4. Non-linear saturated current-driven external kink modes
modelled with 3D free-boundary equilibria

In the numerical solver this point is determined by iteration, starting with an initial
guess for f ′. Eq. (4.18) is then solved with the corresponding marginal point according
to Eq. (4.23). This procedure is repeated until the guess and the resulting value of f ′

match.
The set of equations (4.18)-(4.20) is numerically solved using a finite difference scheme

of second order, where the radial domain is reduced to a grid. In this solver, the cur-
rent density profile can be specified in multiple ways. Besides Wesson-like profiles it is
possible to read the current density profile j(ρ) from VMEC input files. The code is
also able to solve the equations for a given q profile instead of current density profile. A
fourth order scheme has been implemented, but it does not provide more accurate results
despite requiring much more computational resources. The numerical scheme and the
implementation is discussed in more detail in Appendix C.2.

4.3 3D equilibrium simulations

The computation of 3D ideal MHD equilibria is performed using the free-boundary
VMEC code [34, 104], which, as discussed in section 2.3.3, arrives at an equilibrium
state by minimising the energy functional

W =

∫∫∫
plasma

[
|B|2
2μ0

+
p(ρ)

Γ− 1

]
d3x−

∫∫∫
vacuum

|Bv|2
2μ0

d3x , (4.24)

with respect to an artificial time variable. Here, B is the magnetic field inside the
plasma, Bv is the vacuum magnetic field, p(ρ) is the pressure as a function of the radial
variable ρ =

√
Φ/Φa. (Note that in this chapter the radial variable is the square root

of the normalised toroidal flux, whereas in section 2.3.3 it was defined as Φ/Φa.) The
toroidal flux is denoted by Φ, and subscript ′a′ indicates that a quantity is evaluated
at the plasma boundary. The poloidal and toroidal magnetic field coils are modelled
as discretised filaments with specified coil currents. In this proof-of-principle study we
employ an accurate model of the up-down symmetric toroidal and poloidal JET coils
[47], but we do not include the effects of other coil systems (e.g. divertor coils, error field
correction coils), the vacuum vessel conductor nor iron core. The set of coils is visualised
in Fig. 4.2. The vacuum magnetic field is calculated from the coil currents according
to the Biot-Savart law [35] as explained in section 2.3.3.3. During the iterations that
minimise the energy functional Eq. (4.24), the plasma boundary is free to move. We
impose stellarator symmetry on the 3D equilibrium and choose 289 flux surfaces and for
the mode spectrum to include 0 ≤ m ≤ 14 poloidal modes and all toroidal modes in the
range −6 ≤ n ≤ 6. In order to converge towards the 3D equilibrium quickly, we provide
a small perturbation to the magnetic axis initial guess.

The linear growth rate and the non-linear saturated amplitude of external kink modes
depend on the distance to a conducting wall surrounding the plasma. The VMEC model
does not include such a wall. Instead, the plasma is enclosed inside a structure of
magnetic field coils at a finite distance from the plasma. We hence cannot investigate
the influence of the wall distance on the VMEC edge corrugations. For comparison with
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Figure 4.2 – Full set of magnetic field coils of JET (Courtesy of W.A. Cooper [47]). For
the numerical simulations presented here, only the (up-down symmetric) toroidal and
poloidal field coils - shown in blue, yellow, orange and red - are used. Other coils, e.g.
divertor coils (green) are excluded.

VMEC, the conducting wall distance must be set to infinity (very large) for models
that have the effect of a conducting wall. These models (linear and non-linear) well
investigate the sensitivity of wall distance, and thus the likely correction to VMEC due
to the vacuum vessel.

We start by examining dominant n = 1,m = 4 external modes with edge safety factor
qa � 4. The mode spectrum includes axisymmetric components (n = 0) as well as all
non-axisymmetric modes with |n| ≤ 6. Following the philosophy of previous studies of
non-linear external kink modes [95] we choose a current density profile j(ρ) ∝ (1− ρ8),
which is similar to those used by Wesson [93], however with a steeper gradient to make the
non-linear structure in VMEC simulations larger, and hence easier to resolve numerically.
For all simulations the pressure is chosen to be p(ρ) ∝ (1− ρ2). These input profiles are
shown in Fig. 4.3. In order to investigate the effect of finite pressure on the resulting edge
corrugations, p(ρ) is multiplied by a scalar to achieve different values of βN = βaBφ/Ip,
where a is the minor radius, Bφ the toroidal magnetic field and Ip the plasma current.
The value of qa (edge safety factor) is crucial for both linear and non-linear external
kink stability. We vary Ip in the VMEC simulations in order to study the dependency
of the saturated edge displacement η on qa with the given forms of j(ρ) and varying
pressure. The q profiles resulting from these equilibrium configurations are monotonic
where q(ρ) ≈ Bφρ

2

μ0R
/
∫ ρ
0 j(ρ′)ρ′dρ′.
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Figure 4.3 – Equilibrium profiles for pressure p and current density j are provided as
input to VMEC.

Figure 4.4 – Plasma boundary and magnetic axis (indicated by a cross) of a free-boundary
VMEC equilibrium with qa = 3.752 and βN = 0.552 are shown at different toroidal angles
φ. The non-axisymmetric edge corrugation is clearly visible.
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Figure 4.5 – Visualisation of the resulting 3D equilibrium with qa = 3.752 shown for
the φ = 0 case of Fig. 4.4. (a) Shape and position of the magnetic flux surfaces. The
perturbation is strongest at the plasma edge and vanishes towards the magnetic axis.
(b) Perturbation δp = p3D−p2D arising from the comparison of the pressure in the 3D
equilibrium with the neighbouring state.

First, we simulate a plasma with a total toroidal current of It = 2.6MA such that
the resulting edge safety factor of qa = 3.752 is below the rational value m/n = 4/1.
On allowing n �= 0 modes, the resulting VMEC equilibrium is non-axisymmetric with
a strong edge corrugation in the toroidal and poloidal directions. This is illustrated
in Fig. 4.4, where the plasma boundary and the magnetic axis are shown at different
toroidal angles φ. From Fig. 4.5a, which shows a poloidal cross section of the flux
surfaces for the φ = 0 case of Fig. 4.4, it is evident that the perturbation is strongest at
the plasma boundary and decreases towards the magnetic axis where it vanishes (hence
only one cross observed in Fig. 4.4). This behaviour is characteristic of external kink
modes. By retaining only n = 0 modes, we can find a neighbouring axisymmetric state
to the obtained 3D equilibrium. This equilibrium is used for the basis of linear external
kink calculations, non-linear analytic calculations, and could in principle be used for the
initial state of XTOR initial value calculations. A comparison of 3D VMEC states with
their neighbouring axisymmetric equilibria was previously used to determine toroidal field
ripple [105]. We now employ a similar method for the external kink application. Defining
δp = p3D−p2D as being the difference of p in the 3D state compared to the axisymmetric
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state, we can identify the periodicity and the location of the perturbation. It is noted
in passing that the 3D displacement ξ of the magnetic surfaces can be approximately
determined via ξ = −δp (∂p2D/∂ρ)

−1. Fig. 4.5b shows δp for the φ = 0 case of Fig. 4.4. It
can be seen that the perturbation is located at the plasma edge and the m = 4 character
is evident.

4.3.1 Fourier analysis of VMEC saturated external kink modes

To characterise the non-linear external kink amplitude, emphasis has to be placed on the
coordinate system underlying the spectral analysis of the displacement. It will be seen
that converting VMEC coordinates to straight field line (sfl) coordinates permits physical
insight into the main poloidal mode of the external kink instability and comparison with
linear KINX calculations and non-linear analytic calculations.

The VMEC code employs the following poloidal and toroidal angle decomposition
(assuming stellarator symmetry):

R(ρ, θ, φ) =

Mmax,Nmax∑
m,n

Rmn(ρ) cos(mθ − nφ) ,

Z(ρ, θ, φ) =

Mmax,Nmax∑
m,n

Zmn(ρ) sin(mθ − nφ) ,

(4.25)

where Rmn and Zmn are Fourier coefficients in VMEC coordinates. From VMEC, at a
given radial position ρ = ρ̂ the 3D flux surface

S3D(θ, φ) =

⎛⎝R(ρ̂, θ, φ) cosφ

R(ρ̂, θ, φ) sinφ

Z(ρ̂, θ, φ)

⎞⎠ , (4.26)

as well as the neighbouring, axisymmetric flux surface

S2D(θ, φ) =

⎛⎝R(ρ̂, θ, φ = 0) cosφ

R(ρ̂, θ, φ = 0) sinφ

Z(ρ̂, θ, φ = 0)

⎞⎠ , (4.27)

are known in VMEC flux coordinates (s = ρ2, θ, φ) [34]. Note that the coordinates differ
in the 3D and neighbouring 2D states, since they are aligned with the flux surfaces. In
the following, the angular variables θ and φ are those of the axisymmetric equilibrium.
For a given point P0 lying on S2D with normal vector

N(θ, φ) =

∂S2D
∂θ × ∂S2D

∂φ∣∣∣∂S2D
∂θ × ∂S2D

∂φ

∣∣∣ , (4.28)

a convenient definition of the corrugation displacement is

η(θ, φ)N(θ, φ) = S3D − S2D(θ, φ) . (4.29)
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The Fourier series representing η is of the same form as that of the magnetic field strength,
i.e.,

η(θ, φ) =

Mmax∑
m=0

Nmax∑
n=0

ηmn cos(mθ − nφ) , (4.30)

so that

ηmn =

∫ 2π

0

∫ 2π

0
cos(mθ−nφ) (S3D−S2D) ·N dθ dφ . (4.31)

We can calculate the mode spectrum separately for η(θ, φ) using Eq. (4.31), |B|(θ, φ)
as well as R(θ, φ) and Z(θ, φ) at the edge. The spectrum of each of these quantities in
VMEC coordinates is rich and exhibits a variety of strong poloidal modes for n = 1. For
the case shown in Fig. 4.5, the 4/1 VMEC coordinate coefficients of R, Z, |B| and η are
not dominant. This is in contradiction with the visual observations from the magnetic
topology, which has a clear 4/1 structure. The mode amplitudes for η(φ, θ) in VMEC
coordinates can be seen in Fig. 4.6a.

Mode spectra are expected to be most narrow (and most peaked) for a straight field
line coordinate system. Dominant poloidal modes can thus be identified for comparison
with those seen in Figs. 4.4 and 4.5 (simply by inspection), and for suitable comparison
with the non-linear analytic treatment described later. For this we introduce the sfl angle

θsfl(l) = 2π

[∫ L

0

dl

R(l) |∇ψ|

]−1 ∫ l

0

dl

R(l) |∇ψ| . (4.32)

Integration is performed along a chosen flux surface of the axisymmetric equilibrium at
fixed toroidal angle φ. L denotes the poloidal circumference and R(l) the major radius
which varies along the line of integration. With Eq. (4.31) and the arc length

l(θ, φ) =

∫ θ

0

√(
∂R(θ′, φ)

∂θ′

)2

+

(
∂Z(θ′, φ)

∂θ′

)2

dθ′ , (4.33)

it is possible to relate the poloidal angle in VMEC coordinates θ to the straight field line
angle θsfl. An equivalent, but more straightforward method of calculating the sfl angle
is obtained by equating the volume elements in VMEC coordinates and straight field line
coordinates

Jsfl dφ dθsfl dρ
2 = JVMEC dφ dθ dρ2 . (4.34)

Since the toroidal angle φ and the radial variable ρ are identical in both coordinate sys-
tems, the only variables requiring transformation are θsfl and θ. Integration of Eq. (4.34)
yields

θsfl(θ) = 2π

[∫ 2π

0

JVMEC(θ)

R2(θ)
dθ

]−1∫ θ

0

JVMEC(θ)

R2(θ)
dθ , (4.35)

where Jsfl ∝ R2 was used and JVMEC and R are computed by VMEC from the axisym-
metric equilibrium. Now with Eq. (4.31) we are able to calculate the coefficients for the
Fourier series of η(θsfl, φ). In this sfl coordinate system the mode spectrum cleanly and
clearly identifies a standard external kink mode. As shown in Fig. 4.6b the 4/1 mode is
dominant as expected from the visual observations of Fig. 4.5 as well as from external
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Figure 4.6 – Mode spectrum of the edge displacement obtained in two different coordinate
systems. (a) In VMEC coordinates. (b) In straight field line coordinates (dominant
m = 4/n = 1 mode).

kink mode theory. With all other modes being fairly weak compared to the dominant
one, poloidal and toroidal coupling thus appears to have a weak effect. Toroidicity and
beta can be expected to have only a mild effect on mode structure, and hence we can
compare the mode amplitudes to an analytical model that assumes cylindrical geometry
[95] (this is due to the modes being current-driven - in contrast to the modes examined
in the second part of chapter 5).

It is also desirable to determine the magnetic field perturbation δB associated with
the edge displacements. In analogy to linear approaches δB can be expressed as

δB(ρ, θ2D, φ2D) = B3D(θ2D)−B2D(θ2D) , (4.36)

where quantities with subscript ’2D’ are evaluated on the axisymmetric flux surfaces.
The most relevant component is the radial one

δB · ∇ρ2D = B3D(θ2D) · ∇ρ2D . (4.37)

The problem associated with evaluating B3D along the axisymmetric boundary is illus-
trated in Fig. 4.7. VMEC explicitly evaluates all physical quantities including B only
inside the space occupied by the plasma in the equilibrium solution. However, the neigh-
bouring axisymmetric flux surfaces on which we want to evaluate B lie partially outside
of the volume occupied by the 3D equilibrium i.e. where the magnetic field is not known
explicitly. Another method to calculate the perturbed magnetic field is described in
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Figure 4.7 – Cross sections of the last closed flux surface of a 3D state and its neighbouring
equilibrium. The shaded region corresponds to the vacuum in the 3D state, where no
quantities are computed by VMEC.

appendix B. This analytical derivation is strictly valid only in the linear limit. How-
ever, since the non-linear structures of the VMEC displacement modes are very similar
to the linear eigenmodes, this approach probably provides reasonable estimation of the
non-linear δB too.

4.4 Linear stability analysis

To obtain non-linearly saturated external kink modes, the system is initially required to
be linearly unstable. This condition is verified from numerical computations with the
linear eigenvalue code KINX [38]. The equilibria for the KINX stability computations
are the axisymmetric neighbouring states to the 3D VMEC equilibria. The VMEC
profiles are expressed as a function of the normalised poloidal flux and together with the
position of the unperturbed plasma boundary used as input to CHEASE. The effects
of small aspect ratio, shaping and finite beta are retained in these computations and in
Figs. 4.8a, 4.8b the distance to the perfectly conducting wall surrounding the plasma is
set to b/a = 10, i.e. sufficiently large so that the effects due to the wall can be considered
negligible. The linear growth rate γ = −iω of the n = 1 mode is calculated as a function
of qa. This is presented in Fig. 4.8a, where γ is normalised by the Alfvén frequency
ωA. n = 1 external kink modes (with dominant m = 4) are linearly unstable in a wide
range of qa, where saturated non-linear states can possibly arise. The sfl harmonics
of the linear radial eigenfunction ξ · ∇ρ = ξ · ∇ψ (dψ/dρ)−1 = ξ · ∇ψ q/ρ in KINX
resemble the mode spectrum calculated in sfl coordinates in Fig. 4.6b (for the non-linear
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equilibrium calculations). For an edge safety factor below qa < 4, the eigenfunction
(radial displacement) of the m = 4 mode is dominant over all the other poloidal modes
at the plasma boundary. This is shown in Fig. 4.8b for the case with an edge safety factor
of qa = 3.752. The similarity of these linear eigenfunctions and the non-linear saturated
VMEC displacement ηmn as a function of the radial variable, shown in Fig. 4.8c, is
remarkable.

Figure 4.8 – (a) Linear external kink growth rate γ of the n = 1 mode calculated with
KINX. (b) Linear n = 1 (KINX) radial displacement functions for various poloidal mode
numbers (sfl coordinates). (c) Non-linear n = 1 saturated (VMEC) radial displacement
functions η for various poloidal mode numbers (sfl coordinates).
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Figure 4.9 – Dependence of the saturated 4/1 external kink amplitude on the wall distance
b as calculated from the non-linear analytical model.

4.5 Analytical predictions and comparison with VMEC re-
sults

After demonstrating the external kink spectral properties of the VMEC 3D equilibria
with the linear KINX code, we now compare the non-linear saturated amplitude of the
displacement in VMEC with analytical predictions. In order to study the degree of
relevance of the equilibrium free-boundary approach without a conducting wall, it is
important to investigate the sensitivity of the effect of the conducting wall distance from
the plasma on the non-linear saturated state. This is achieved with the analytical model.
Figure 4.9 shows how η depends on qa for different values of the wall distance b. As the
wall distance increases, not only does the mode amplitude grow, but also the unstable
domain widens. The variation is strong for b ≤ 1.5, but weak for b > 1.5. Thus we can
approximately treat a wall distance of b � 1.5 as if no wall was present. In the VMEC
computations presented here, the field coils have a minimum distance of b ≈ 1.55 to the
plasma surface.

We find that the behaviour of η calculated from VMEC agrees well with the expected
characteristics of external kink modes. In particular, the window of qa over which η is
non-zero, and also the shape of η with respect to qa (plotted in Fig. 4.9) is roughly
mirrored by the shape of γ with respect to qa in Fig. 4.8a. Figure 4.10 shows the
amplitude of η for each m (with n = 1), with ηmn calculated according to Eq. (4.31).
For an edge safety factor larger than the upper marginal point – given by the rational
value qa = m/n – the plasma remains (nearly) axisymmetric. Lowering qa below m/n

results in 3D equilibria that have edge corrugations with external kink-like properties
as described previously. The amplitude of the saturated non-linear edge displacement is
finite and dominated by a 4/1 component throughout the linearly unstable domain, as
expected for the spectral properties of Fig. 4.6b. As qa decreases below the lower marginal

79



Chapter 4. Non-linear saturated current-driven external kink modes
modelled with 3D free-boundary equilibria

Figure 4.10 – Lowest m components with n = 1 of the edge displacement obtained from
free-boundary VMEC simulations with current profile j(ρ) ∝ (1 − ρ8) and βN = 0.08.
m = 4/n = 1 is the dominant mode throughout the range of qa, where the external kink
mode is expected to be linearly unstable and non-linearly stable. The two black lines
indicate the position of the marginal points computed with KINX.

Figure 4.11 – Amplitude of the saturated edge displacement of the 4/1 mode η41 com-
puted from VMEC simulations at various values of βN and comparison to the analytical
model for current profile j(ρ) ∝ (1− ρ8).
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Figure 4.12 – Mode spectrum (straight field line coordinates) of the VMEC edge displace-
ment obtained in a simulation with j(ρ) ∝ (1− ρ4)1.1 and qa = 2.913 at low pressure
(βN = 0.08). The m = 3/n = 1 mode is dominant.

point, i.e. the value at which the linear external kink mode is stable, the displacement
vanishes. For a small range of values of qa slightly higher than the upper marginal point,
or slightly lower than the lower marginal point, we see small perturbations to η. We do
not yet know the origin of these weak 3D saturated states.

A weak scaling of η with βN is observed as shown in Fig. 4.11, where η41 calculated
from VMEC at different values of βN is compared with the analytically predicted non-
linear saturated external kink amplitude η. The mode is present already at very low
βN , strongly indicating that the 3D states are dominantly current-driven, as expected
for external kink modes. For the largest value of βN the lower marginal point is shifted
towards lower qa, whereas it remains approximately constant for lower βN values. Since
finite beta effects are neglected in the analytical model, the most relevant comparison
between VMEC and the non-linear analytic model is for small βN in Fig. 4.11. Consid-
ering the shaped plasma and edge aspect ratio of the VMEC JET-like simulations, the
comparison with the cylindrical analytic model in Fig. 4.11 is surprisingly good.

Now that agreement between the VMEC displacement amplitude and the non-linear
analytical external kink mode amplitude has been demonstrated, we further verify the
results for a case with qa � 3, for which a n = 1,m = 3 external mode is dominant. For
this, in order to prevent the amplitude of the mode from becoming too large, we choose a
less steep current profile j(ρ) ∝ (1− ρ4)1.1. As seen in Fig. 4.12, the 3/1 component (eval-
uated in sfl coordinates) is dominant in the edge mode spectrum of the resulting VMEC
3D equilibria as expected for a current-driven external kink mode. Figure 4.13 shows
the flux surfaces and the 3D pressure perturbation, which are both non-axisymmetric
and consistent with the mode spectrum. In Fig. 4.14 the analytically predicted satu-
rated external kink amplitude is compared with the 3/1 component of the VMEC edge
displacement at different values of βN . Again a weak scaling of η with the pressure is
observed. The upper marginal point agrees well with the analytical value, whereas the
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Figure 4.13 – Visualisation of the 3D equilibrium with current profile j(ρ) ∝ (1− ρ4)1.1,
qa = 2.913 and βN = 0.08 shown at φ = π/3. (a) Flux surfaces. (b) Perturbation
δp = p3D − p2D arising from the comparison of the pressure in the 3D equilibrium with
the neighbouring state.

Figure 4.14 – Non-linear amplitude of the 3/1 mode η31 obtained from VMEC with
current profile j(ρ) ∝ (1− ρ4)1.1 and qa around 3 at two values of βN and comparison
with the analytical prediction.
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lower one differs slightly. The saturated external kink amplitude peaks at a value of
qa closer to the lower marginal point, whereas the peak in the VMEC computations is
somewhat shifted towards larger values. The reason for this is not currently certain, but
it could be a result of finite aspect ratio and cross section shaping effects which are not
taken into account in the analytic model.

4.6 Conclusions

Employing three-dimensional, free-boundary equilibrium computations, is shown to pro-
vide a novel way of obtaining saturated current-driven external kink modes. In principle,
such saturated external states are time-independent and thus satisfy the force balance
equation solved by an equilibrium code. For the first time, current-driven external kink
modes are observed with an equilibrium code in free-boundary plasma configurations
with standard monotonic current and q profiles typical of standard (baseline) tokamak
plasma scenarios. Windows of the edge safety factor where external kink modes would
be linearly unstable have been identified. In VMEC simulations with current profiles
that result in an edge q value lying inside these regions, non-axisymmetric edge corru-
gations are observed. Analytical calculations of non-linear external kink modes reveal
linear instability but non-linear stability, i.e. saturated mode amplitudes for the studied
plasma configurations. To compare the analytic external kink amplitudes with VMEC,
and thus verify that VMEC corrugations are those of standard non-linear saturated ex-
ternal kinks, the spectra of the VMEC fluctuations are converted to spectra of a straight
field line coordinate system. The Fourier spectrum calculated in this coordinate system
shows one dominant mode, thus indicating consistency between 3D VMEC equilibria
and analytical external kink models. Even though the mode amplitude scales weakly
with βN , the external perturbations seen in VMEC are of considerable size already at
low βN , indicating a current-driven mode. Finite pressure is shown to have a weakly
destabilising effect. The edge displacement in VMEC is found to be comparable to the
analytically calculated saturated external kink mode amplitude. Small differences are
observed in the value of qa where the amplitude reaches a maximum. Due to the lack of
the stabilising effect of a conducting wall the 3D equilibrium simulations overestimate the
saturated amplitude of a real tokamak by about 25% (for a wall distance b = 1.2a), the
difference having been quantified via the analytic approach. We conclude that VMEC
free-boundary calculations capture the salient features of saturated external kink modes,
thus enabling efficient prediction of non-linear instability amplitudes, and e.g. accurate
fast ion and impurity transport studies using codes such as VENUS-LEVIS that exploit
Fourier decomposition of magnetic equilibria.
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Chapter 5

Saturated current-driven and
pressure-driven external kink modes

in extended low-shear QH-mode
plasmas

In the previous chapter we demonstrated that the 3D free-boundary code VMEC is ca-
pable of describing the characteristics of non-linearly saturated external kink modes in
tokamak baseline scenarios. In the current chapter, VMEC is applied to investigate satu-
rated ideal edge modes in quiescent H-mode (QH-mode) plasmas. We consider standard
current-driven external kink modes arising due to the strong bootstrap current close to
the plasma edge, but also pressure-driven infernal modes with coupled external kink-like
sidebands. The goal of this study is to provide a theoretical description of edge harmonic
oscillations observed in QH-mode discharges, with special attention given to equilibria
with an extended region of low magnetic shear at the edge. A journal article for publica-
tion in Plasma Physics and Controlled Fusion is currently being prepared [106] covering
the main themes of this chapter.

5.1 Introduction

The H-mode [10] is a candidate operating mode in present and future tokamaks because
it provides large energy confinement times. By applying auxiliary heating, the plasma
undergoes a transition from low to high confinement (L-H transition) when the heating
power exceeds a certain threshold. The plasma is then characterised by having an edge
transport barrier (ETB) [107], which reduces turbulent transport and hence improves
plasma confinement. H-mode operation is however associated with the occurrence of
edge-localised modes (ELMs) - periodic relaxations at the plasma edge - which are driven
by large gradients in the ETB [12]. ELMs cause large particle and heat loads on the
plasma-surrounding structure and thus pose a danger to the plasma vessel. For large
tokamaks such as ITER, the energy deposition due to large ELMs is intolerable and thus
mitigation or suppression of ELMs is of crucial importance to achieve economic fusion
performance in tokamaks.

ELM avoidance can be achieved in two ways: First, conditions can be explored
that lead to a weakening and eventually suppression of ELMs (for example by applying
resonant magnetic perturbations (RMPs)), which appear to have a stabilising effect on
peeling-ballooning modes, commonly associated with ELMs [108, 109]. Another way
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is to explore the possibility of fully ELM-free regimes. There are two known ELM-
free H-modes, the QH-mode and the I-mode. The I-mode is not considered here. The
existence of the ELM-free operating regime known as quiescent H-mode (QH-mode) was
first discovered in DIII-D [18] and was subsequently observed in further machines such as
ASDEX-U, JET and JT-60U [110, 111, 112, 113] over a large range of parameters. In this
so-called QH-mode, ELMs are completely suppressed and benign long wavelength edge
harmonic oscillations (EHOs) appear instead [18, 114]. Similar to ELMs, EHOs appear
to be capable of providing an energy and impurity exhaust, but without the risk of large
heat and particle loads on plasma-facing components. Unlike ELMs, which are generally
driven by intermittent high n,m ballooning/peeling modes, EHOs are long wavelength
(small n,m) continuous (saturated) perturbations. In JET, the experimentally observed
outer mode [115] is assumed to be similar (or identical) to EHOs.

Experimental [18] and numerical [116] studies indicate that QH-mode operation is
located below but close to the peeling (external kink) stability limit of the peeling-
ballooning stability diagram. In a previous study, saturated modes at the plasma bound-
ary were observed in non-linear numerical simulations with a reduced MHD model. It
was shown that edge modes with high toroidal mode number n become suppressed in
the non-linear phase and only n = 1, 2 modes are dominant [39]. Furthermore, ideal
MHD studies with the 3D equilibrium code VMEC have shown edge corrugations in
JET and TCV plasmas in which external kink modes are linearly unstable [46, 47]. The
numerically observed structures have been argued to correspond to kink/peeling modes
[117, 118].

As explained in detail in chapter 4, standard external kink modes affect the plasma
boundary and are driven by current gradients. These modes can be linearly unstable
in QH-mode plasmas due to the strong bootstrap current localised close to the plasma
edge. In chapter 4 it was shown that saturated (non-linearly stable) external kink modes
develop in standard (monotonic-q) scenarios when qedge � m/n, and in the current
chapter it is shown that such current-driven modes cause very large edge corrugation
when q is flat near the edge and qedge � m/n. It is shown furthermore that such modes
can be avoided by accounting for the effect of a separatrix, which lifts the safety factor
sharply above m/n near the edge. With such a mode stabilised, the steep pressure
gradient in the edge where q is flat can cause the instability of pressure-driven infernal
modes [56]. This has been observed in recent linear numerical computations [119] and
analytical modelling [120, 121]. The main mode can couple to sideband modes with
m = m0 ± 1, where, this time, the upper sideband has the character of an external kink
mode [120, 121]. The window of instability for coupled pressure-driven external kinks
occurs where the low-shear region has q near (either above or below) m/n. When linearly
unstable, such external kink modes driven by coupling with pressure-driven edge infernal
modes can potentially lead to edge corrugations in a non-linearly saturated state as in
the case of standard external kink modes. But, different from current-driven external
kinks, the main corrugation is shown here to be connected with the upper sideband
(m = m0 + 1) of the infernal mode.

Given the potential of the QH-mode to serve as a viable high confinement regime in
future tokamak operation, in the present work we aim to explain the connection between
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EHOs and saturated non-linear MHD phenomena. This theoretical investigation also
helps to determine the parameter space in which QH-mode discharges with EHOs can
be expected. Since experimental measurements show that EHOs are saturated modes, a
comparison to theoretical predictions can be made in terms of the saturated amplitude
of the edge perturbation. The phase of the mode is not important and the fluid velocity
v has no time dependence in the saturated state, i.e. ∂v/∂t = 0. We do not consider
equilibrium flows, such that the convective derivative dv/dt = ∂v/∂t+ v · ∇v vanishes
and the problem to solve is described by a force balance equation

j×B−∇p = 0 , (5.1)

where as usual j denotes the current density, B is the magnetic field and p the plasma
pressure. This problem can be solved using various approaches. First, non-linear sta-
bility simulations based on a perturbed equilibrium can find a saturated state satisfying
Eq. (5.1), but must include the vacuum region. Following the approach described in
chapter 4 we aim at finding a direct solution to Eq. (5.1) by means of free-boundary
3D equilibrium computations with the VMEC code, which naturally retains non-linear
effects. For current-driven external kink modes, we compare the VMEC displacement
amplitudes ηmn in straight field line coordinates with the analytically predicted non-
linear saturated external kink amplitude based on [95] and described in section 4.2. The
investigation is completed by a calculation of the linear growth rates and eigenfunctions,
verifying that the chosen plasma configurations are indeed linearly unstable to external
kink modes. For external modes driven by coupling to edge infernal modes, a model
for the saturated amplitude does not exist currently. However, the non-linear results
can be compared with a linear analytic model [120, 121] and linear numerical results in
terms of the growth rates and structure of the Fourier decomposed eigenfunctions. In
this context, we also discuss the damping of modes with higher toroidal mode number
in the non-linear phase.

The chapter is organised as follows: In section 5.2 we motivate our investigation by
presenting experimental data showing the existence of quiescent tokamak discharges and
associated edge harmonic oscillations. Section 5.3 investigates the saturated amplitude
of current-driven external kink modes in QH-mode regimes and their linear stability
properties. Section 5.3 differs from chapter 4 in that the Wesson-like current profiles
are substituted for QH-mode relevant current and pressure profiles, where in particular,
the safety factor is very flat near the edge. This is followed by a study of coupled edge
infernal and external kink modes in section 5.4. Here, the current profile is chosen so that
current-driven external kinks are stabilised and pressure-driven effects can be studied
in isolation. The non-linear results are compared with linear results. The non-linear
damping of certain toroidal modes is discussed subsequently in section 5.5. Conclusions
are presented in section 5.6 and an outlook towards non-linear initial value simulations
with XTOR-2F is given in section 5.7.
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Figure 5.1 – Experimental plasma profiles of quiescent H-mode discharges. (left): Ion
and electron pressure profiles for two different values of the triangularity δ of DIII-D
shot 115099 [18]. (middle and right): Temperature and density profiles in ELMy and
quiescent phases of JET pulse 59611 [110].

5.2 Experimental observation of quiescent H-mode regimes

The good confinement properties of the H-mode are essential for viable operation of a
tokamak fusion reactor. Future tokamaks with large plasma volumes such as ITER re-
quire methods to at least mitigate ELMs, but completely ELM-free operation is favoured.
A widely studied method to mitigate or suppress ELMs in the otherwise ELMing H-mode
is the application of resonant magnetic perturbations (RMPs) [122]. However, it is un-
certain to which degree this method can fully avoid ELMs in ITER and henceforth such
coils could be employed in DEMO. As an alternative, one can aim at finding a quiescent
scenario without ELMs. The existence of regimes with good H-mode-like confinement
properties and at least partially ELM-free phases has been demonstrated. For example,
the Hot ion H-mode [123] and VH-mode [124] both feature improved confinement prop-
erties and are initially free of ELMs. However, they are eventually terminated by the
onset of large ELMs [115] with the associated deleterious effects. In JET a so-called outer
mode (OM) has been observed [125]. This mode - which is localised in the outer 20% of
the plasma has a low toroidal mode number, usually dominantly n = 1, but n = 2, 3, 4

outer modes are also known. Another experimentally described scenario is the I-mode
[126] which features a large edge temperature pedestal but a density profile similar to L-
mode. The most promising ELM-free high confinement regime is probably the quiescent
H-mode (QH-mode), first established in DIII-D [127, 18] and later observed in various
other tokamaks including ASDEX-U [128], JT-60U [111] and JET [110]. QH-mode op-
eration is achieved by strong auxiliary plasma heating (neutral beam injection) and a
reduction of density via cryopumping [127]. It is typically observed in plasmas with low
collisionality ν∗ and plasma flows are found to play a role [129, 130] (not considered here).
The similarity of the plasma profiles in quiescent and ELMing H-modes is illustrated in
Fig. 5.1, where density, temperature and pressure profiles of ion and electron species are
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Figure 5.2 – Experimental data from DIII-D indicating a quiescent high-confinement
mode with edge harmonic oscillations. (left): Time history of DIII-D shot 103818. The
divertor Dα emission signal indicates a long ELM-free period starting around t = 1500ms

after the density was slightly reduced [127]. (right): Experimental measurements in
DIII-D indicate the absence of ELMs in an H-mode shot. Edge harmonic oscillations are
observed in the ELM-free phase [18].

shown in DIII-D and JET discharges. The edge pedestal is clearly visible in the ns, Ts
and ps profiles (s = i, e). Comparing the profiles in an ELMy phase with those of the
quiescent phase, reveals only minor differences. This highlights the good confinement
properties of the QH-mode, which are attributed to the edge transport barrier. Exper-
iments that achieved QH-mode operation at ITER-relevant values of βN and density
[131] confirm the importance of this regime for ITER and future machines. ELMing and
quiescent phases can be easily distinguished in experimental measurements. ELMs drive
large particle loads close to the divertor allowing for ELM detection via light emission
due to the Hα and Dα Balmer lines with a wavelength of λ = 656 nm. The left part of
Figure 5.2 shows measurements from DIII-D shot 103818 that demonstrate the existence
of a long quiescent phase without ELMs. After an initial peak, the density is slightly
reduced for most of the remainder of the shot.

QH-mode operation is accompanied by low-n (long wavelength) magnetohydrody-
namic oscillations located close to the plasma edge, called edge harmonic oscillations
(EHOs). Measurements detecting EHOs are shown in the time history of DIII-D shot
114981 illustrated in Fig. 5.2. During the shot a quiescent phase interrupts an other-
wise ELMing plasma as indicated by the divertor Dα emission signal. The amplitude
of the EHOs is measured by Mirnov coils, which are commonly used for magnetic mea-
surements. Furthermore it is seen, that the density is lower during the quiescent phase
compared with the ELMing part of the discharge. Another type of EHOs with small
amplitude is found in NSTX. These oscillations have a higher toroidal mode number of
n = 4− 6 and displacement amplitudes of a few mm, and might not be large enough to
provide particle exhaust [132]. NSTX however is a spherical tokamak with tight aspect
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ratio which could lead to a different behaviour of MHD modes compared to machines
with larger aspect ratio.

5.3 Current-driven external kinks in QH-mode plasmas

As in the case of baseline scenarios, QH-mode plasmas can have a q profile with an edge
value below a rational value. In these situations current-driven external kink modes are
expected to be linearly unstable. In contrast to chapter 4, we now use a q profile with
a region of low shear near the edge of the plasma. As described below, we select this q

profile so that it causes current-driven external kinks, as opposed to pressure-driven kinks
examined in section 5.4. It is the edge pedestal in the QH-mode regime (together with
low collisionality) that causes the flattening of the q profile near the plasma boundary via
the bootstrap current (the q profile can even become slightly reversed). In this section
we do not include the effect of a separatrix, which generally causes the safety factor in
the far pedestal to rise quickly. As such, for qa � m/n we expect edge corrugations (as
seen before in chapter 4). For this analysis we consider a JET-like configuration with
up-down symmetric field coils (previously illustrated in Fig. 4.2). We note, that the
VMEC model does not include a conducting wall. The mesh of field coils is at a distance
of b/a ≈ 1.5 and a conducting wall at this distance would influence the amplitude only
weakly (c.f. Fig. 4.9). Thus the computed saturated displacements correspond to the
most unstable situation in the limit b → ∞. A pressure profile similar to experimental
QH-mode profiles [18] with edge pedestal is chosen. Fig. 5.3 shows the current and
pressure profiles together with the resulting safety factor q. The latter is flat close to
the edge, constituting a region of low magnetic shear s = (ρ/q)q′, and the large current
gradient has a destabilising effect on external kink modes. The edge safety factor qa

Figure 5.3 – Equilibrium profiles of a JET-like configuration with edge transport barrier
and large edge bootstrap current as encountered in QH-mode operation. These profiles
give rise to current-driven modes at the plasma edge.
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Figure 5.4 – Visualisation of the VMEC 3D equilibrium with qa = 3.893. (a) Shape and
position of some magnetic flux surfaces at different toroidal angles. The perturbation
is strongest at the plasma edge and vanishes towards the magnetic axis (indicated by a
cross). (b) Perturbation δp = p3D−p2D arising from the comparison of the pressure in
the 3D equilibrium with the neighbouring state.

is below the rational value m/n = 5, but is later scaled to study the sensitivity of the
saturated non-linear amplitude of the VMEC edge displacement η to qa. Two scalings
are employed, one based on a variation of the total plasma current and another with a
fixed shape of the q profile.

With a total toroidal current of It = 2.56MA, the edge safety factor qa = 3.893 lies
below a rational value. VMEC converges to a 3D equilibrium state with strong edge
corrugations as shown in Fig. 5.4. Similar to the 3D states obtained in baseline scenarios
(Figs. 4.4 and 4.5 of chapter 4) the perturbation peaks at the last closed flux surface
and vanishes towards the magnetic axis. However, the perturbation is very strong as
expected from the strong current gradients close to the plasma edge.

We now vary the edge safety factor qa by modifying the total current It in a range of
1.8MA ≤ It ≤ 2.8MA while keeping a realistic [131] beta value of βN = 1.9 (correspond-
ing to a beta value at the pedestal top of β̂ = 0.6%). This scaling is easier to access
from an experimental point of view, compared to a direct scaling of the q profile, which
would modify the current density profile. In the VMEC simulations we obtain 3D states
when qa is below a rational value as seen in Fig. 5.5, where the non-linear displacement
ηmn is calculated according to Eq. (4.31) in straight field line (sfl) coordinates. Three
different windows can be identified where 4/1, 5/1 and 6/1 modes are clearly dominant,
while other harmonics are fairly weak. Similar to the case of the current-driven modes
in baseline tokamak scenarios, coupling of poloidal modes thus plays a negligible role
and therefore we can expect good comparisons with the analytical prediction of the edge
displacement η in the straight tokamak limit. We emphasise that the ranges of qa values,
where the plasma remains axisymmetric are very narrow, indicating that saturated ex-
ternal kink modes exist for almost all qa values. This is consistent with the range of edge

91



Chapter 5. Saturated current-driven and pressure-driven external kink
modes in extended low-shear QH-mode plasmas

Figure 5.5 – Low-m saturated n = 1 edge displacement amplitudes of free-boundary
VMEC equilibria with βN = 1.9. For the scaling of qa, the j profile was kept constant
and It was varied. 3D states with dominant m = 4, 5, 6 occur, when qa is lower than the
corresponding rational value m/n.

safety factor values where QH-mode regimes were obtained experimentally in DIII-D
[18]. A scaling of the saturated displacement amplitude with the poloidal mode number
m is seen, where η decreases with m. This behaviour is expected for non-linear saturated
external kink modes and is consistent with analytical non-linear models [99, 95]. The
features of these free-boundary 3D equilibria are similar to those obtained in the baseline
scenario (c.f. Fig. 4.5), with a perturbation peaking at the last closed flux surface and
vanishing towards the magnetic axis.

Figure 5.6 – Linear n = 1 growth rates γ/ωA of the dominant m = 4, 5, 6 modes as
a function of the edge safety factor qa computed with KINX. A realistic beta value of
βN = 1.9 is chosen.

Non-linearly saturated external kink states arise from a linearly unstable plasma
configuration. We now perform a linear stability analysis with KINX to determine the
linear growth rate γ as a function of qa, to verify that the neighbouring equilibria of the 3D
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VMEC states are linearly unstable to external kink modes. For the KINX computations
the axisymmetric, neighbouring equilibria of the VMEC 3D states are reconstructed
with the CHEASE code. We first calculate γ for n = 1 modes, i.e. the same modes
that are dominantly seen in the non-linear VMEC states. The normalised growth rates
γ/ωA of the dominant m = 4, 5, 6 external kink modes are shown in Fig. 5.6 and the
linearly unstable domains agree well with those where VMEC finds corrugated states in
Fig. 5.5. For the m = 4 and m = 5 mode, the growth rate approaches zero very close
to qa = 4 and qa = 5 respectively. This corresponds to the expected upper marginal
point of these modes. For the lower marginal points and the upper marginal point of the
m = 6 mode, the situation is not as clear. In the regions of qa where the lower marginal
points would be expected, γ does not vanish. However, the regions where these marginal
points are located, are close to a rational value and thus finite pressure (here βN = 1.9)
and low shear close to the edge gives rise to infernal modes that couple to external kink
sidebands. Note that a weaker β case is considered next in order to eliminate the infernal
mode coupling effect. A detailed study of infernal mode coupling is treated in section 5.4.

Figure 5.7 – n = 1 saturated VMEC edge displacement amplitudes ηmn of the m = 4, 5, 6

modes obtained at low and realistic values of βN as a function of qa using a large aspect
ratio scaling for the q profile.

So far we varied qa indirectly by specifying It in the VMEC simulations. With this
initial scaling, a reduction of β in the equilibrium computations crucially affects the
shape of the q profile close to the edge, making a comparison of η at different values
of βN meaningless. In the large aspect ratio approximation q(ρ) ∝ 1/I(ρ) and thus
a variation of the total current I corresponds to a multiplication of a scalar with the
whole safety factor profile. This does not hold exactly for the shaped, finite aspect ratio
equilibria such as those computed with VMEC in the present work. In order to allow
for a better comparison with the analytical model, we now use a different scaling of qa
by providing the q profile in VMEC and multiplying it by a scalar. This also permits a
reduction of β and thus an investigation of the pressure dependency of the non-linear,
saturated displacement η. With this scaling we compute VMEC free-boundary equilibria
at very low (e.g. Ohmic plasma beta) pressure with βN = 0.15 and with βN = 1.9

respectively. For these two cases, Fig. 5.7 shows the n = 1 Fourier components of the
dominant m = 4, 5, 6 modes (according to Eq. (4.31)) versus the edge safety factor qa.
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Figure 5.8 – VMEC edge displacements are compared with the analytic saturated external
kink amplitude η and the normalised linear growth rate γ/ωA computed with KINX. (a)
4/1 mode. (b) 5/1 mode. (c) 6/1 mode.

For the m = 6 mode a weak scaling with βN is found, whereas η41 and η51 remain almost
unaffected by the pressure except for a shift of the lower marginal point towards lower
values. The displacement amplitudes of all modes are comparable in the low and high
pressure case and thus the results clearly identify a current-driven mode. For a few values
of qa the mode is larger for βN = 0.15 than for βN = 1.9. These minor differences might
be the result of changes in plasma shape and aspect ratio as the pressure is increased.

We can now compare the non-linear VMEC displacements in the low β case with
the analytical prediction. Figure 5.8 shows the numerical VMEC edge displacement
amplitude and analytical saturated external kink mode amplitude ηmn together with the
normalised linear growth rate γ/ωA (KINX) for the m = 4, m = 5 and m = 6 dominant
modes. Again, the linearly unstable domains are very wide for all considered mode
numbers. Even though the linear growth rate can give an idea about the initial growth
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Figure 5.9 – Linear and non-linear radial displacement functions (in straight field line
coordinates) in a plasma with qa = 3.83 and βN = 0.15. (a) Linear n = 1 (KINX) radial
displacement functions for various poloidal harmonics. (b) Non-linear n = 1 saturated
radial displacement functions ηmn from VMEC for various poloidal harmonics.

of modes appearing in a system, it does not in general indicate what modes are dominant
in the non-linear phase. Nevertheless, it is interesting that the VMEC saturated edge
displacement follows the behaviour of the linear growth rate, i.e. larger values of ηmn
are obtained where γ is large and vice versa. The agreement with the analytical external
kink mode amplitude is reasonable for m = 4 and m = 5. However, the lower marginal
point is shifted to a larger value in the analytical calculation. For the m = 6 mode,
the analytical model predicts considerably larger values for η than those obtained in
the equilibrium computations. In other words, the scaling of η with m is weaker in the
analytical model compared with VMEC. These differences might be attributed to the
large aspect ratio approximation and circular cross section assumption of the analytical
model. In KINX, the geometry effects are retained and it is interesting to compare
the marginal points in the analytical model with those obtained in the shaped, toroidal
equilibrium used in the numerical computations. The marginal points of KINX indeed
coincide with the boundary of the domain where VMEC 3D states arise.

The VMEC non-linear radial displacement functions indicate the spatial structure
of the non-linearly saturated mode. A comparison with the linear eigenfunctions from
KINX is interesting and shown in Fig. 5.9. As in the case of the tokamak baseline
scenario, the non-linear results well resemble the linear eigenfunctions.

In the QH-mode plasmas investigated here, external kink modes are more unstable as
compared with the baseline scenario, examined in chapter 4. This is seen first from the
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linear growth rates in Fig. 5.6, where for the m = 4 mode γ/ωA peaks at a value of 0.124
compared to a peak of γ/ωA = 0.04 in the baseline scenario calculated in Fig. 4.11 of
chapter 4. Similarly, comparing the non-linear saturated states of Figs. 4.10 and 4.11 with
Fig. 5.7 it is clear that baseline scenario current-driven external kinks modes have smaller
helical displacements than in QH-mode plasmas. In real machines the displacements of
the QH-mode plasmas would reach the plasma-surrounding vessel. However, in our study
the stabilising effect of a conducting wall was not considered and the results correspond
to the most unstable situation. In the presence of a conducting wall close to the plasma,
the amplitudes are expected to be considerably smaller and presumably small enough
to not touch the wall. Even more importantly, in this section we have not modelled the
effect of the separatrix on the safety factor. As will be seen in the next section, with
more realistic QH-mode q profiles generally stable to the current gradient effect here, the
pressure gradient produces smaller corrugations, which would not touch the vessel wall.

5.4 Pressure-driven external kink modes in QH-mode plas-
mas

External kink modes are mainly driven by the current gradient, but in addition the
pressure can have a small destabilising effect as well. In this section we investigate edge
instabilities, that are stable at low values of β and unstable as the pressure is increased.
Thus, these modes can be seen as not being current-driven, however, the shape of the
current profile is important since low magnetic shear close to the edge is required. The
main mode seen under these circumstances is of infernal character (having poloidal mode
number m0), but coupled to external kink-like sidebands with a higher poloidal mode
number of m = m0+1. As a result, external kink modes can arise that are normally stable
if only effects due to the current gradient are considered. These modes are important
because they can also occur in diverted plasmas with a separatrix. Since qa → ∞ at the
separatrix, current-driven modes are stabilised under such conditions.

5.4.1 Prediction of edge infernal modes with external kink sidebands

The low collisionality in the QH-mode and the steep pressure gradient in the edge pedestal
constitute conditions for a strong edge bootstrap current, which flattens the q profile
creating a region of low magnetic shear. As we saw in chapter 3 this can destabilise in-
fernal modes. Linearly unstable low-n infernal modes were observed in numerical studies
[133, 119]. While the current peaking close to the plasma edge due to the bootstrap
current can directly trigger current-driven modes, it also flattens the q profile creating a
region of low magnetic shear. This has a destabilising effect on pressure-driven infernal
modes [52, 53], which can couple to sideband modes with external kink character [56, 48].

5.4.2 Non-linear numerical simulations & linear stability analysis

As in the case of current-driven modes we obtain the non-linearly saturated states in
terms of free-boundary 3D VMEC equilibria. The non-linear model of external kink
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Figure 5.10 – Pressure p and safety factor (q) profiles in the numerical (solid) and ana-
lytical (dashed) study.

modes that was used in the previous sections to calculate the saturated amplitude η is
not applicable for the coupled pressure-driven modes here. Due to the lack of a non-linear
model for this type of modes, the saturated amplitude cannot be directly compared to
analytical predictions. However, a comparison with a linear analytical model and linear
numerical stability calculations are possible in terms of the growth rate γ, the linearly
unstable domain and the eigenfunctions. The latter can be compared to the non-linear
radial displacement functions.

The equilibrium setup differs between the analytical model and the numerical sim-
ulations. In the simulations we take profiles closer to experiments in shaped JET-like
plasmas, whereas in the analytical model the profiles reflect the features of QH-mode
configurations, but are chosen such that the calculations are tractable. First, in the
analytical linear model [121] the q profile is taken to have the form

q(ρ) =

⎧⎨⎩
m0−1

S̃

[
1−

(
ρ
ρs

)λ
]
+n

, 0 < ρ < ρ∗

qp , ρ∗ ≤ ρ ≤ 1
, (5.2)

with S̃ = (n/m0)/
[
(ρ∗/ρs)λ − 1

]
, where qp is the value of q in the low-shear region,

ρ∗ denotes the transition from sheared to low-shear region and ρs is the position of the
resonant surface of the lower sideband. In this model, current-driven modes, relevant
when qp < m0/n, are assumed to be linearly stable. Hence, the analytic calculations do
not need the small spike visible in Fig. 5.10. The pressure profile is approximated by a
tanh function, which well represents the edge pedestal

p(ρ) = p∗
1

2
[1− tanh (ρ− ρp)/δ] , (5.3)
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where δ is small and p∗ = p(ρ∗) is varied to scale the value of β. In the following, we
denote the beta value on top of the pedestal with β̂. With these profiles - illustrated in
Fig. 5.10 - the linear growth rate γ of the coupled infernal mode with mode numbers
m0/n and the external kink sideband with m = m0 + 1 is calculated according to the
dispersion relation [121]:

γ2
1 + 2q2

2(nωA)2
+

(
δq

q

)2

=

(
β̃

2ε

)2 [
L̂+

1 +m0
+

L̂−
1−m0

]
Aγ , (5.4)

where δq = qp − m0/n is the distance of the q profile in the low shear region to the
rational value, ε = a/R0, R0 is the major radius, β̃ = 2p∗q2/B2

0 ≡ β̂q2, B0 is the mag-
netic field strength on the magnetic axis, Aγ = h/c[(ch/δ−tanh−1 (c tanh (h/δ)))/(h/δ−
c tanh−1 (c tanh (h/δ)))], h = a(1− ρ∗)/2 and the constants L̂± are related to the eigen-
functions and defined in Ref. [121]. In the numerical computations it is imperative that
the safety factor profiles be stable to current-driven modes while retaining the features
of the QH-mode. We therefore choose a profile with a flat plateau close to the plasma
edge. The flattening is caused by the strong edge bootstrap current in the low collision-
ality regime in QH-mode. Even though the ratio qa/q0 is rather large, the profiles would
still be linearly unstable to current-driven modes. Such modes are avoided by adding a
spike to the plateau at ρ = 0.99 as illustrated in Fig. 5.10. This is similar to previous
modelling [134, 119] of kink/peeling modes. This spike on the one hand reflects the drop
of the bootstrap current in the vicinity of the last closed flux surface, but also provides
a more realistic transition to the scrape of layer of a diverted plasma, where q → ∞ at
the separatrix. Small variations of the spike do not affect stability. We emphasise that
instead of qa, the linear growth rate of infernal modes depends on the value of q in the
low shear region, denoted by qp. In the VMEC and KINX computations the q profile is
modelled in the form

q(ρ) =

⎧⎨⎩
q0 + a1ρ

b1 + a2ρ
b2 , 0 ≤ ρ < ρ∗

qp , ρ∗ ≤ ρ < ρx
a3ρ

b3 + a4ρ
b4 , ρx ≤ ρ ≤ 1

, (5.5)

with a1 = b2(qp−q0)ρ
−b1∗ /(b2−b1), a2 = b1(qp−q0)ρ

−b2∗ /(b1−b2), a3 = b4qpρ
−b3
x /(b4−b3),

a4 = b3qpρ
−b4
x /(b3− b4). The coefficients b1, b2 and b3 are provided as input to shape the

profile. Furthermore, we define

b4 =
−b3qaρ

b3
x ln (ρx) + (qp − qaρ

b3
x )W (Ŝ)

(qp − qaρ
b3
x ) ln (ρx)

, (5.6)

with

Ŝ =
b3qpρ

(b3qp)/(qp−qaρb3x )
x ln (ρx)

qp − qaρ
b3
x

, (5.7)

where ρx is the radial position separating the plateau from a spike and qa is the value of
q at ρ = 1, i.e. on top of the spike. To investigate the influence of δq = qp −m0/n on
the non-linear mode amplitude, the value of the safety factor at the plateau qp is varied.
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Figure 5.11 – Last closed flux surface and selected inner flux surfaces of the 3D VMEC
equilibrium for β̂ = 0.87% and qp = 3.95 are shown at different toroidal angles φ. The
cross indicates the position of the magnetic axis.

However, a change of qp necessarily affects the shape of the q profile and (with fixed p(ρ))
modifies the current profile. The variation of qp thus needs to be performed such that no
qualitative changes of the current density profile arise that would affect infernal mode
stability. At the same time, the value of qa has to remain below the lower marginal point
of the current-driven (m+1)/n external kink mode and above the upper marginal point
of the current-driven m0/n mode. This is achieved by keeping the ratio qp/q0 constant
and fixing the value of qa, i.e. the scaling is performed by multiplying the q profile from
the magnetic axis to the plateau with a scalar α and matching the lower point of the
spike q(ρx) to αqp. In order to consistently investigate the influence of pressure on the
non-linear amplitude, we directly specify the q profile in the input for the computations.
If j(ρ) was provided instead, a variation of β would critically modify the q profile in the
low shear region with a strong effect on stability. The pressure profile is modelled in
terms of two Gaussians - one representing the core profile and the other one representing
the pedestal. The sum of those Gaussians is shown in Fig. 5.10.

In the VMEC computations we now increase the size of the radial grid to 383 flux
surfaces to resolve the strong variation of the q profile close to the last closed flux surface
and choose coefficients b1 = 50, b2 = 4.0 and b3 = 20 in Eq. (5.5) with qa = 4.2. The
VMEC simulations are carried out with edge safety factors below and above the rational
value qp = 4 and the features of the resulting 3D equilibrium states are visualised in terms
of the perturbed flux surfaces in Fig. 5.11 for a plasma with β̂ = 0.87% and qp = 3.95.
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Figure 5.12 – Mode spectrum in straight field line coordinates for the plasma with qp =

3.95 and β̂ = 0.89% (and global βN = 2.28). n = 1 modes are dominant.

It is clear that the equilibrium state is non-axisymmetric with strong corrugations at the
plasma boundary (outer flux surface shown in Fig. 5.11). Towards the plasma core the
corrugation decreases and eventually vanishes at the magnetic axis, as indicated by the
approximately constant position of the cross in Fig. 5.11. These properties characterise
the mode as an external mode. The presence of an infernal mode, which is internal and
localised in the low shear region, is not seen in this plot of flux surfaces. These connections
will later be verified from the harmonics of the radial displacement functions. We now
calculate the straight field line (sfl) mode spectrum of the saturated edge displacement at
the last closed flux surface according to Eq. (4.31) in combination with the transformation
to sfl coordinates Eq. (4.35). The result for the case of Fig. 5.11 with qp = 3.95 and
β̂ = 0.87% is shown in Fig. 5.12. The m = 5/n = 1 mode is dominant, while some other
low-m modes with n = 1 have a finite but small amplitude. This is clearly different
from a current-driven mode that would have a dominant m = 4/n = 1 component at
the given value of qp = 3.95. The observation is however consistent with the expectation
from Eq. (5.4) (and the results of Ref. [121]) predicting a linearly unstable 4/1 infernal
mode with an m = 5 external kink-type sideband, and a growth rate of γ/ωA = 0.007677.
Even though the n = 1 modes dominate, we also find small n = 2 modes with m = 9, 10

in the sfl spectrum of Fig. 5.12. This could be either due to the finite linear growth rate
of the m = 8, n = 2 infernal mode (which is larger than that of the 4/1 infernal mode)
or non-linear mode coupling.

If the analytical growth rate and the saturated displacement is assumed to be linked,
the amplitude of the VMEC edge displacement should depend on qp and the pedestal
beta β̂. This dependency is investigated using the scaling for q described above and the
resulting edge displacement amplitudes ηmn for the 5/1 and 4/1 modes are shown in
Fig. 5.13 for various values of β̂. We first focus on the cases where qp < 4. Here, like
current-driven external kinks, the modes are non-resonant since the main infernal mode
has m = 4. At very low pressures, the plasma remains axisymmetric and the saturated
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Figure 5.13 – Saturated edge displacement amplitudes of the 5/1 and 4/1 modes obtained
from VMEC as a function of qp around the rational value qp = 4. The 5/1 is clearly
dominant, whereas the m = 4 mode vanishes even for qp < 4.

displacement amplitude grows with increasing pedestal beta. The domain of qp, where
non-axisymmetric states are found is wider at larger values of β̂ with dominant m = 5

components throughout. The current-driven 4/1 mode is stable as a result of having
qa = 4.2 fixed for all cases presented. For qp > 4 the VMEC displacement amplitudes are
not as easy to evaluate. Since qa is fixed at a value of 4.2, the safety factor profile becomes
flatter for larger values of qp. As qp approaches qa, a current-driven m = 5 external kink
mode is triggered. This is shown in Fig. 5.14, where the VMEC edge displacement is
nearly independent of the pressure and strong already at vanishing values of beta.

We now verify that the axisymmetric equilibria neighbouring the saturated 3D states
are linearly unstable to edge infernal modes by employing the KINX code and also from
the dispersion relation Eq. (5.4) with a wall distance of b/a = 20. The calculations are
performed using the same values of β̂ as in the VMEC simulations. For the case of
β̂ = 0.87% the non-linear saturated displacement amplitude of the 5/1 external kink
sideband is compared with the linear growth rate in Fig. 5.15. The analytical model

Figure 5.14 – VMEC edge displacement η of the 5/1 mode as a function of the pedestal
beta β̂ identifying a current-driven mode for qp > 4.
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Figure 5.15 – Edge displacement amplitude from VMEC and linear growth rates calcu-
lated analytically and with KINX for β̂ = 0.89%.

predicts a linearly unstable domain that has a lower marginal point of qp = 3.877. When
the growth rate is calculated with KINX, the linearly unstable domain agrees reasonably
well with the domain where 3D states are found in VMEC. Agreement is less good if the
analytic growth rate is compared with VMEC. As seen in Fig. 5.16, for other values of β̂
the plasma is also linearly unstable in windows of qp, where VMEC obtains 3D equilibria.
However, the lower marginal points are shifted to slightly larger values, which can be
attributed to the choice of different profiles in the model and shaping effects.

The VMEC radial displacement functions resemble the linear eigenfunctions as illus-
trated in Fig. 5.17, and are similar to those of edge-localised infernal modes computed
in numerical stability analyses with the MARS code in similar equilibria [135]. Very
good agreement between non-linear and linear eigenfunctions was already seen earlier for
current-driven modes. In the analytical case the m = 4 eigenfunction reduces to zero
in the sheared region and at the last closed flux surface due to the imposed boundary
conditions, while it peaks in the low-shear region. In the numerical computations the
transition from sheared to low-shear region is smoother and thus the m = 4 displacements
are wider.

Around a rational surface q = m0/n, one would expect a current-driven external kink
mode of poloidal mode number m0. However, when the mode is driven by coupling to
edge infernal modes, the sideband mode that shows external kink character is of poloidal
mode number m0+1. This observation holds particularly below the rational value, where
standard current-driven external kinks of m0 + 1 would be stable. Cases where current-
driven m0 modes with qp < m0/n are unstable and at the same time m0 + 1 modes are
destabilised by infernal mode coupling were not investigated. For these modes however,
one would expect the m0 eigenfunction to have an infernal mode shape superimposed by
an external kink structure, i.e. a bell shape with an additional local maximum at the
last closed flux surface.
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Figure 5.16 – Analytical (Eq. (5.4)) normalised linear growth rate γ/ωA as a function of
qp for multiple values of β̂ and a wall distance of b/a = 20.

In the non-linear VMEC and linear KINX computations the separatrix was simulated
only by its effect on the q profile, but with flux surfaces taking the shape of a non-
diverted plasma. External kink modes would probably be stable in a diverted plasma
due to qa → ∞. Pressure-driven infernal modes and their sidebands however remain
unstable, since their stability is determined by δq rather than qa. This can be verified
by computing the linear growth rates and eigenfunctions with KINX but now using a
single-null X-point boundary for the equilibrium and with q → ∞ at the separatrix. For
this calculation, the parallel current density j‖ and pressure gradient p′ are kept in the
2D equilibrium reconstruction and the shape of the plasma-vacuum interface is changed
to a single-null X-point geometry. Indeed, the mode is also seen under these conditions.
Due to the sharp increase of q close to boundary, it is now possible to avoid low-m
current-driven instabilities completely and observe an isolated pressure-driven infernal
mode with external kink sideband at qp > m0/n = 4. These results are reserved for
future publication in Ref. [106].

Non-axisymmetric equilibrium states are found for values of the pedestal beta β̂ in
between 0.72% and 0.93%. Within this range DIII-D experiments observe QH-mode
regimes with EHOs [18]. For larger values of β̂, convergence in VMEC is more difficult
to achieve. This could mean that mode saturation would not be achieved and the plasma
would be non-linearly unstable. In experiments this situation would lead to a disruption
or could correspond to ELMs.

103



Chapter 5. Saturated current-driven and pressure-driven external kink
modes in extended low-shear QH-mode plasmas

Figure 5.17 – Comparison of linear eigenfunctions and VMEC saturated displacement
functions. (a) The analytical model predicts a strong m = 4 eigenfunction with smaller
sidebands. (b) Linear n = 1 (KINX) radial displacement functions for various poloidal
harmonics in sfl coordinates. (b) Non-linear n = 1 saturated radial displacement func-
tions η from VMEC for various poloidal harmonics in sfl coordinates.
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Figure 5.18 – Normalised growth rate γ/ωA of the most unstable mode versus the toroidal
mode number n for current-driven external kinks with qa = 3.83 and βN = 0.15.

5.5 Higher n modes and non-linear damping

The results from the VMEC simulations show dominant n = 1 modes, while modes with
higher toroidal mode number are negligible1. This is interesting, since it suggests that
only n = 1 modes dominate the saturated states. We emphasise that in the VMEC
computations no flows are considered and the situations might be different when flows
are taken into account. The non-linear damping of higher n modes that are the most
unstable in the linear phase was already found in reduced MHD stability calculations
[39] and in the experiment [14]. We now identify to what extent certain toroidal modes
are non-linearly damped in the plasma configurations studied above. For this purpose
we first compute the linear growth rates of various toroidal modes with KINX.

For the current-driven external kink mode we choose qa = 3.83 and βN = 0.15, and
take the same plasma profiles as for the neighbouring 3D state with dominant n = 1

structure in VMEC. The growth rate of the most unstable mode for various n is shown
in Fig. 5.18. The growth rate of the n = 1 mode is rather small while modes with
n = 2− 4 have larger linear growth rates and thus appear more unstable linearly. Above
these values, γ decreases and modes with n > 7 are stable. In all shown cases the
most unstable mode corresponds to an external kink mode. Thus the mode spectrum in
the non-linear phase is markedly different compared to the linear phase. In particular,
n > 1 modes are strongly diminished non-linearly. These results are consistent with
other observations of non-linear damping [39].

For the pressure-driven modes, we evaluate the linear growth rate γ/ωA as a function
of n for the equilibrium with qp = 3.95 and β̂ = 0.89%. As in the previous case of the
current-driven mode, modes with n > 1 grow faster in the linear phase. This is seen

1VMEC equilibria with dominant external n = 2 structures were observed in some plasmas with
reversed shear close to the edge and βN ≈ 2. A detailed investigation of these states might follow in the
future.
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Figure 5.19 – Normalised growth rate γ/ωA of the most unstable mode versus the toroidal
mode number n for an equilibrium with qp = 3.95 and β̂ = 0.89%.

in Fig. 5.19, where the normalised growth rate of the most unstable mode for each n is
plotted. The scaling is almost linear. In addition to the coupled infernal / external kink
modes, for n > 2, ballooning mode structures can be seen in the spectrum. For n ≤ 4, the
coupled infernal mode/external kink mode is the most unstable. For even larger n, the
ballooning modes become unstable as shown in Fig. 5.20. Linearly unstable ballooning
modes are found with KINX at high values of β and for small and large values of δq.
External infernal modes on the contrary disappear when qp is far from the rational value.
Recent numerical modelling suggests that medium and high n modes are stabilised by
non-linear coupling and/or rotation or rotational shear [136, 137], such that only low-n
kink/peeling modes remain in the non-linear phase. Even more recently Brunetti [20]
has shown that high-n modes can be damped linearly by poloidal flows. In any case, the
ideal non-linear damping of high n modes is reflected in the saturated VMEC states.

5.6 Conclusions

A study of non-linearly saturated external MHD modes in JET-like plasmas with edge
pedestal and strong edge bootstrap current has been presented. With profiles as encoun-
tered in QH-mode operation, where edge harmonic oscillations (EHOs) are observed in
experiments, we have investigated current-driven external kink modes and external kink-
like sidebands connected to infernal modes by poloidal mode coupling. We have shown
experimental data from DIII-D, JET and ASDEX-U that highlight the absence of ELMs
in quiescent tokamak discharges accompanied by EHOs. The potential of this regime
to serve as a future operation scenario motivated us to study saturated external kink
states (kink/peeling modes), since a connection to EHOs is assumed. In the first part
of this chapter dedicated to standard external kink modes destabilised by the current,
VMEC observes n = 1 saturated external 3D states in a wide range of 3 ≤ qa ≤ 6 with
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Figure 5.20 – n = 6 KINX sfl harmonics of the radial displacement in an equilibrium
with qp = 3.95 and β̂ = 0.89%. The value of m is annotated to each graph.

dominant m = 4, 5, 6 Fourier components as expected from linear and non-linear theory.
The obtained 3D equilibria clearly show the characteristics of external kink modes, and
the obtained mode amplitudes in terms of the radial displacement agree well with the
non-linear analytical model, introduced in chapter 4. In the windows of qa where 3D
states are found, the plasma is linearly unstable to external kink modes. The structure
of the linear eigenfunctions agrees well with the non-linear radial displacement functions
from VMEC.

In addition, it was demonstrated that VMEC also captures the features of external
kink modes driven by coupling to pressure-driven edge infernal modes. These modes arise
in the low-magnetic-shear region around the edge pedestal. The q profile was chosen such
that current-driven modes are stable and the coupled infernal / external kink modes can
be investigated in isolation. This was achieved by adding a spike to the q profile before
the last closed flux surface, representing the sharp increase of q towards the separatrix of
a diverted plasma, where qa → ∞. VMEC equilibria remain axisymmetric at low values
of β and develop strong edge corrugations as β is increased. A clear scaling with δq is
found. Corrugations are strong when the safety factor in the low-shear region is close
to the rational value qp = 4, but far away the mode remains linearly and non-linearly
stable. The non-linear radial displacement functions clearly show the infernal mode
localised in the low-shear region and the associated external kink mode, which peaks at
the last closed flux surface. It compares well with the linear eigenfunctions from KINX
and an analytical model. The poloidal mode number of external kink modes driven by
edge infernal modes m = m0 + 1 is augmented compared to standard current-driven
external kinks. Thus, when the q profile is known in an experiment, both modes can be
distinguished.

Modes of higher n appear to be damped in the non-linearly saturated states. Even
though these modes are linearly more unstable, the non-linear states show dominant
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n = 1 structures. This is particularly interesting in the pressure-driven cases, where
n ≥ 4 ballooning modes are seen in the linear phase. We conclude that VMEC is
capable of capturing the features of non-linearly saturated current-driven external modes
as well as external kink modes driven by coupling to pressure-driven edge infernal modes.
Current-driven as well as infernal mode-driven external kinks could be connected to
EHOs. The obtained VMEC equilibria can be conveniently used for fast particle and
impurity transport study under QH-mode conditions.

5.7 Outlook: Non-linear stability simulations with XTOR-
2F

The most direct approach to study non-linear instabilities in realistic tokamak geometry
and profiles would be in terms of numerical non-linear stability simulations. For such a
study the initial value code XTOR-2F could be used. For an investigation of external kink
modes the code is required to model the vacuum region around the plasma. A comparison
of such non-linear stability simulations with the saturated 3D states from VMEC would
be valuable. Furthermore, VMEC is limited to configurations with nested magnetic flux
surfaces. In most cases however, the QH-mode is observed in diverted configurations.
XTOR-2F simulations including a vacuum region could model the plasma through the
X-point of the separatrix and into the vacuum, and allow for a modelling of edge modes
closer to experimental situations.

In XTOR-2F this is realised by taking a very high value of the resistivity outside of
the plasma volume, such that no current can penetrate into the vacuum [91]. To model
external instabilities realistically one needs to focus an the behaviour of the resistivity
profile during the time advance in the simulations. In XTOR-2F, the grid is aligned
with the initial axisymmetric equilibrium and fixed in time. It does not yet move with
the plasma. Since external instabilities are accompanied by a deformation of the plasma-
vacuum interface, it is necessary for the resistivity field, to follow the motion of the plasma
boundary. Hence, it needs to evolve in time and in the spatial domain. Resolving these
difficult technicalities will eventually provide very important results in the future.
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Chapter 6

Summary & conclusions

In this thesis the non-linear stability of neoclassical tearing modes, infernal modes and
external kink modes in tokamaks has been addressed. Various numerical and analytical
approaches were applied to describe non-linearly saturated states of macroscopic plasma
instabilities. In addition, linear stability of the neighbouring 2D equilibria was evaluated
since non-linear states can either be the result of a linearly unstable system or a
linearly stable system that requires a strong seed. We now summarise the results of the
preceding chapters and in this context discuss open questions that can be addressed in
future studies.

The theoretical background required for the study of MHD instabilities was de-
scribed in chapter 2. The ideal and resistive one-fluid MHD models are valid for long
wavelength and long time scale phenomena and are capable of describing most macro-
scopic plasma dynamics. A central concept in the study of fusion plasmas is the plasma
equilibrium, where the plasma is in force balance. We introduced the Grad-Shafranov
equation that is solved to find axisymmetric toroidal equilibria. Non-axisymmetric
equilibria can be found by energy minimisation, performed e.g. by the VMEC code. The
concept of linear and non-linear stability was explained. While the linear approach is
valid for infinitesimal perturbations and is easier to handle analytically and numerically,
a non-linear treatment is important when the perturbations are of considerable size.
This is particularly true for the theoretical explanation of experimentally observed
plasma modes.

The occurrence of fast-growing resistive modes in experiments motivated our study of
neoclassical tearing mode (NTM) triggering by coupling to infernal modes in chapter 3.
Infernal modes are pressure-driven low n modes that arise in regions of low magnetic
shear below the stability threshold of ballooning modes and are characterised by
coupling to neighbouring poloidal modes with m = m0±1. We saw that when resistivity
is included in the modelling, the upper sideband has a tearing mode character. A linear
model describing the dispersion relation of these coupled modes was already known. In
the frame of this thesis we extended the linear model to include saturation of the infernal
mode in the early non-linear phase and thus a vanishing of the mode coupling. This
model requires knowledge about the magnetic island width associated to the NTM at
the moment of saturation. Numerical simulations of resistive MAST-like plasmas were
performed with the XTOR-2F code. The linear and non-linear evolution of NTMs was
investigated with and without inclusion of bootstrap current effects. NTMs are triggered
in both cases and the linear evolution is unaffected by the bootstrap current. Calculated
from the Rutherford equation, the tearing stability index Δ′ indicates that tearing
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modes are stable in the considered equilibrium when no coupling effects are taken into
account. By including the contribution due to infernal mode coupling the threshold for
instability is exceeded and thus coupling is found to seed NTMs. As expected from the
standard Rutherford equation, effects due to the bootstrap current are found to provide
a destabilising effect in the non-linear phase. The saturated magnetic island width is
thus larger when bootstrap current effects are present compared to the case without
bootstrap current. The investigation focused only on m = 1/n = 1 infernal modes with
m = 2/n = 1 NTMs.

In a future step, simulations of experimentally important n = 2 modes could be
carried out. This requires a modification of the equilibrium used for the n = 1 study,
which is linearly stable to classical 3/2 tearing modes. A modification of the q profile in
the sheared region around the q = 3/2 rational surface can stabilise the tearing mode
linearly. At the same time, the q profile should be chosen such that this rational surface
is sufficiently far from other low m rational surfaces such that the island chains do
not overlap. The results could then be compared to the analytical model for the early
non-linear phase.

Non-linearly saturated modes are typically calculated with numerical initial value
stability codes such as XTOR, or in a few simple cases by analytical calculations. In
chapter 4 we explored the possibility to describe current-driven saturated external kink
modes by means of free-boundary 3D equilibrium states computed with the VMEC code.
Here, the vacuum magnetic field is determined from the currents in the magnetic field
coils and the plasma boundary evolves during the energy minimisation iterations. This
is essential since external kink modes alter the shape of the last closed flux surface. For
this study, monotonic equilibrium profiles were assumed, which is relevant to tokamak
baseline scenarios. VMEC obtains 3D states with displacement amplitudes maximum
at the last closed flux surface in well defined regions of the edge safety factor qa, where
the system is also linearly unstable. By comparing the 3D states to their neighbouring
axisymmetric equilibria, we calculated the radial displacement of the VMEC flux
surfaces based on geometric considerations. The radial displacement is taken as the
distance of the 3D flux surface to the 2D flux surface (in direction perpendicular to
the latter), and as such it is a function of the poloidal and toroidal angles on each flux
surface. A transformation from VMEC flux coordinates to straight field line coordinates
is performed to describe the Fourier spectrum in the most intuitive way. To compare the
saturated VMEC displacement amplitudes to an analytical prediction, a system of three
coupled differential equations was solved numerically. The code uses a finite difference
scheme of second order, and was implemented in Python and benchmarked with known
results. The lack of a conducting wall in VMEC means that the obtained displacement
amplitudes correspond to the most unstable situation in the limit of infinite wall distance
b → ∞. The agreement with the analytical model is very good. Differences can be
attributed to the simplifications made in the analytical model, especially the neglect of
pressure and geometrical effects. Linear growth rates were calculated numerically with
KINX, showing that the equilibria are linearly unstable with respect to external kink
modes in the parameter space where VMEC captures non-axisymmetric states. The
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results show that VMEC is capable of describing the characteristic features of external
kink modes.

VMEC was then employed to study the non-linear stability properties of external
kink modes in quiescent H-mode (QH-mode) plasmas in chapter 5. In the QH-mode
regime, low collisionality and the edge pedestal give rise to a strong bootstrap current
close to the edge. Two very different destabilising mechanisms were considered indi-
vidually. First, standard current-driven external kink modes were investigated at low
values of β and with q profiles that have a low ratio qa/q0. Such cases were found to be
linearly unstable to external kink modes, but stable to pressure-driven modes. Saturated
n = 1 states with dominant m = 4, 5, 6 components were obtained with VMEC when
qa < m/n. Again, the equilibria were shown to be indeed linearly unstable to external
kink modes in the parameter space where VMEC converges towards 3D equilibrium
states. Good agreement with the analytically predicted saturated external kink mode
amplitude η was found for the m = 4, 5 modes. However, the scaling of η with m is
slightly different.

A different destabilising mechanism is effective when the pressure is kept at realistic
QH-mode values of βN ≈ 1 − 2. Together with the low magnetic shear caused by
the bootstrap current, the pressure gradient in the edge pedestal linearly destabilises
infernal modes that are coupled to external kink-like sidebands. These instabilities
were investigated in the second part of chapter 5. The q profile was modified to have
a low value on the magnetic axis above q = 1 and a plateau close to the plasma
edge where it is flat with a value close to m/n. A spike on top of the plateau lifts
the safety factor on the last closed flux surface sufficiently above the rational value
to avoid current-driven external kink modes. This also simulates the presence of a
separatrix of a diverted plasma. In the spectrum of radial VMEC displacements strong
n = 1 infernal modes localised in the low-shear region were identified together with
an external kink sideband. On the last closed flux surface the external kink mode is
dominant. Here, the external kink modes that appear in the form of sidebands differ
from current-driven external kinks in the poloidal mode number. The edge corrugation
has a poloidal mode number augmented by 1 (compared to current-driven modes), since
the rational value corresponds to the main infernal mode. The results suggest that
EHOs could correspond to both standard current-driven external kinks or sidebands
linked to an infernal mode. Finally, in the saturated VMEC states we find only one
dominant toroidal mode number, while in the linear phase multiple modes with higher
n are unstable. These modes appear to be damped non-linearly such that only n = 1

(and in rare cases also n = 2) modes remain. No flows were however considered in the
presented analysis, which could alter the mode structure. Dissipative effects could be in-
cluded in future non-linear initial value simulations, for example with the XTOR-2F code.

This thesis shows that non-linear studies are important to understand the macro-
scopic processes in toroidal fusion plasmas. On the one hand, a strong initial
perturbation can be provided in terms of a seed for neoclassical tearing modes, driving
a mode unstable that would be otherwise stable in a purely linear picture. On the
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other hand, this thesis has shown that the spectra of unstable modes differ in the
experimentally relevant non-linear stage. Low magnetic shear is experienced in various
tokamak operation scenarios and can be central for the development of non-linear
pressure-driven instabilities with associated toroidal sidebands.
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Appendix A

Curvilinear coordinates & vector
formalism

Choosing a coordinate system that reflects the geometry of a given problem does not only
simplify its formulation, but can be crucial to finding a solution. Curvilinear coordinates
are of crucial importance for the study of toroidal systems and various coordinate choices
are used throughout this thesis. We now provide a general description of curvilinear
coordinates starting with the definition of the dual basis and an explanation of the
related vector formalism. This is followed by the introduction of a few specific curvilinear
coordinate systems used in this thesis.

A.1 Definition of general curvilinear coordinates

A system of general, non-orthogonal, curvilinear coordinates ui in a three-dimensional
space can be defined by a set of functions depending on Cartesian coordinates xi

u1 = u1(x1, x2, x3) , u2 = u2(x1, x2, x3) , u3 = u3(x1, x2, x3) . (A.1)

In the following, Einstein notation is used, i.e. summation is performed over repeated
(upper and lower) indices. We have the freedom to choose any set of three linear in-
dependent vectors as a basis. After defining appropriate functions ui and writing the
position vector r in terms of ui, the basis can either be expressed in terms of covariant
basis vectors

ei =
∂r

∂ui
, (A.2)

which are tangent to the ui coordinate curves or in terms of contravariant basis vectors

ei = ∇ui , (A.3)

which are perpendicular to the ui coordinate surfaces [138]. The covariant and contravari-
ant basis vectors are in general a function of the position vector r. Fig. A.1 sketches
the two dual bases in a point P . Any arbitrary vector can be written in terms of both
covariant or contravariant basis vectors with contravariant or covariant components re-
spectively:

A = Aiei = Ai∇ui . (A.4)

The Jacobian matrix of the coordinate system is defined as

J =

⎛⎜⎜⎜⎝
∂x1/∂u1 ∂x1/∂u2 . . . ∂x1/∂un
∂x2/∂u1 ∂x2/∂u2 . . . ∂x2/∂un

...
...

...
∂xn/∂u1 ∂xn/∂u2 . . . ∂xn/∂un

⎞⎟⎟⎟⎠ , (A.5)
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Figure A.1 – Curvilinear coordinates defined by three functions u1, u2, u3 with corre-
sponding covariant ei and contravariant ∇ui basis vectors at the point P .

where a three-dimensional space is assumed in this thesis (i.e. n = 3). J is related to
the metric tensor g = JTJ . The Jacobian J is given by [139]

J =
√
g =

1

∇u1 · ∇u2 ×∇u3
= e1 × e2 · e3 , (A.6)

and the volume element of a curvilinear coordinate system reads

dV = J du1du2du3 . (A.7)

This expression is used in chapter 4 to perform a transformation of VMEC flux coordi-
nates to straight field line coordinates. For right-handed coordinate systems the Jacobian
is positive, whereas it is negative for left-handed coordinates (e.g. in VMEC). It also
allows a transformation of covariant and contravariant basis vectors according to

∇ui =
1

J ej × ek , ei = J (∇uj ×∇uk) . (A.8)

Finally, we define the differential operators in curvilinear coordinate systems. First,
for a scalar field Φ the gradient is conveniently written in terms of the contravariant basis
vectors as

∇Φ =
∂Φ

∂ui
∇ui . (A.9)
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For a vector field A the divergence can be expressed in terms of contravariant vector
components

∇ ·A =
1

J
∂

∂ui
(JAi) , (A.10)

and the curl is
∇×A = ∇Aj × ej =

∂Aj
∂ui

ei × ej . (A.11)

A.2 Cylindrical coordinates

Two types of cylindrical coordinate systems are used in the study of fusion plasmas, both
of them are orthogonal. First, standard cylindrical coordinates (r, θ, z), with position
vector

r = r cos (φ)ex + r sin (φ)ey + zez , (A.12)

are convenient for analytical studies of cylindrical or straight tokamak plasmas. Here,
the z coordinate replaces the toroidal angle. A second system of cylindrical coordinates,
adapted for toroidal problems, is the one used for example in the VMEC code and
shown in Fig. 2.2. The Jacobian of the cylindrical VMEC coordinate system is given by
J = R det(Gij), where Gij = ∂xi/∂αj with (x1, x2, x3) = (R,φ, Z) and (α1, α2, α3) =

(ρ, θ, φ) (VMEC flux coordinates). In general, the orientation of the angular variable can
be chosen. Both systems, (R,Z, φ) and (R,φ, Z) are right-handed, but with opposite
orientation of φ.

A.3 Straight field line coordinates

Flux coordinates well reflect the geometry of toroidal systems and consist of a radial
variable and two angular variables θ, φ in poloidal and toroidal direction respectively.
The radial variable is zero on the magnetic axis and increases radially outwards. It is
constant on each flux surface and ’labels’ the flux surfaces. Common choices for the radial
variable are the poloidal magnetic flux ψ or the toroidal magnetic flux Φ. In numerical
codes it is also customary to use integers to number the flux surfaces. In general, any
flux surface quantity can be used as a radial variable. Straight field line coordinates
are a special case of flux coordinates. In general flux coordinates magnetic field lines
have a trajectory that is not straight when viewed in the (θ, φ)-plane. However, it is
possible to modify the angular variables in order to straighten the magnetic field lines.
Since such a transformation can be applied either to the poloidal angle, the toroidal
angle or a combination of both, there is an infinite number of possible straight field line
(sfl) coordinates. In tokamak studies we naturally choose to keep the toroidal angle the
same as the orthogonal cylindrical angle described in section A.2. Thus, we modify the
poloidal angle, which can be defined in terms of the q profile as given by Eq. (2.15).
Similarly, in axisymmetry the poloidal angle is

θ =
F (ψ)

q(ψ)

∫ l

0

dl

R|∇ψ| , (A.13)
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where F (ψ) = RBφ, |∇ψ| = R|∇ψ×∇φ| = R|Bθ| and dl is the poloidal arc length l (arc
length in direction of the poloidal magnetic field). A more sophisticated expression for
dl is found by equating the volume elements of cylindrical (R,Z) and flux coordinates
(ψ, l) [22], i.e. dRdZ = J dψdl. In the latter coordinate system the poloidal angle θ

is replaced by the arc length in poloidal direction l. The Jacobian of this coordinate
transformation is J = 1/RBθ and thus we obtain dl = RBθdRdZ/dψ. The angle given
by Eq. (A.13) is equivalent to the sfl angle defined by Eq. (4.35) used to calculate the
mode spectrum of the VMEC displacements in chapters 4 and 5.

For 3D systems it is possible to define straight field line angles by a modification
of the poloidal and toroidal angles. Examples of such widely used straight field line
coordinate systems are Hamada coordinates and Boozer coordinates. The latter are
commonly applied in stellarator studies.

One peculiarity of sfl coordinates is the low resolution on the low field side com-
pared to other toroidal coordinates, such as flux coordinates or coordinate systems with
geometrical angles. A comparison is shown in Fig. A.2, where equidistant lines of the
poloidal variable are plotted among lines of constant magnetic flux.

Figure A.2 – Equidistant lines of constant poloidal angle θ with Δθ = π/10 (blue) are
shown in different coordinate systems among lines of constant magnetic flux (black) in
the poloidal cross section.
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Appendix B

Reconstruction of the magnetic field
perturbation from the radial

displacement

In the following, we provide equations that allow for a calculation of the magnetic field
perturbation based on the radial displacements obtained from the KINX code and even-
tually the VMEC 3D equilibria.

We start with an axisymmetric magnetic field, written in the form

B = F (ψ)∇φ+∇φ×∇ψ , (B.1)

where F (ψ) = RBφ is a flux function and ψ is the poloidal flux. The Jacobian is given by
J = qR2/F and the linear perturbations taken to be of the form ξ ∼ exp (imθ + inφ).
In linear MHD the perturbed magnetic field is given by δB = ∇ × (ξ × B) and the
components of δB are determined by [140]

˙δB
ψ
=

1

J

[
inq +

∂

∂θ

]
δUψ , (B.2)

˙δB
θ
= − 1

J

[
∂δUψ

∂ψ
+ in(δUφ − qδU θ)

]
, (B.3)

˙δB
φ
= − 1

J

[
∂

∂ψ
(qδUψ) +

∂

∂θ
(qδU θ − δUφ)

]
, (B.4)

where U is the fluid velocity and related to the displacement by U = dξ/dt. To obtain
the δB components as a function of the displacements, we can straightforwardly integrate
Eqs. (B.2)-(B.4) with respect to time. In addition, from the Shear-Alfvén law1 [141] the
parallel perturbed magnetic field is

δB‖ =
ξψ

B

dp

dψ
. (B.5)

Now, the contravariant component of the perturbed magnetic field is δBφ = δB · ∇φ =

δB · eφ/R and the parallel magnetic field perturbation is approximately given by δB‖ =
δB · eφ. Combining these equations and equating it with the integrated form Eq. (B.4),
we obtain

∂

∂θ

(
qξθ − ξφ

)
≈ −J ξψ

RB

dp

dψ
− ∂

∂θ
(qξψ) . (B.6)

1The Shear-Alfvén law is valid for low frequency waves far from the sound frequency and for radial
wavelengths much smaller than the size of the system.
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which allows us to eliminate the poloidal and toroidal components of the displacement.
Substituting the last term of Eq. (B.4) by Eq. (B.6) we obtain for the contravariant
toroidal magnetic field perturbation

δBφ ≈ ξψ

RB

dp

dψ
. (B.7)

Integrating Eq. (B.6) with respect to θ we can substitute ξφ− qξθ in the last term of the
integrated form of Eq. (B.3), yielding

δBθ = − 1

J

[
∂ξψ

∂ψ
+ in

∫ (J ξψ

RB

dp

dψ
+

∂

∂ψ
(qξψ)

)
dθ

]
. (B.8)

Finally, for the radial component of δB, integration of Eq. (B.2) with respect to time
directly yields

δBψ =
1

J

[
inq +

∂

∂θ

]
ξψ . (B.9)

Knowing the radial displacement ξψ from KINX, Eqs. (B.7)-(B.9) provide the perturbed
magnetic field. Given the similarity of the linear external kink eigenfunctions and the
non-linear radial VMEC displacement functions, Eqs. (B.7)-(B.9) could also provide
information about the non-linear perturbed magnetic field.
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Appendix C

Development of numerical codes &
tools

C.1 Calculation of the magnetic island width based on
Poincaré plots

Poincaré plots show the magnetic topology in the poloidal cross section. Remapping the
actual poloidal plasma cross section into a plane with θ on the vertical axis and r on the
horizontal axis, magnetic islands can be conveniently visualised. Using image processing
methods combined with a graphical user interface (GUI) implemented in Matlab, a tool
was created to estimate the width of magnetic islands from the location of the island
separatrix. This GUI is shown in Fig. C.1.

Figure C.1 – Graphical user interface written in MATLAB for the evaluation of the
magnetic island width based on Poincaré plots.

The GUI reads a rasterised image file with a fixed position of the plot area inside the
image. Each magnetic field line in the Poincaré plot is therefore associated to certain
(x, y) coordinates in the image plane. The coordinates of the innermost and outermost
points on the island separatrix are determined by selecting these points inside the image.
The island width in units of pixel is simply given by wpx = xout − xin. The width of
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the plot area in units of pixel apx corresponds to the normalised plasma minor radius
r(a) and is used to express the island width in terms of the normalised poloidal flux
wψ = wpx/apx, known from the equilibrium computations. However, since the normalised
poloidal flux is not proportional to the minor radius, the actual island width in terms of
the normalised toroidal flux can be calculated from further mapping ψ to Φ, since Φ(ψ)

is known from the CHEASE equilibrium computations. Each Poincaré plot is associated
to a certain point in time t in the XTOR-2F initial value simulation. The GUI enables
the evaluation of multiple plots at different t and associated island width, thus allowing
for a quick determination of the temporal evolution of a magnetic island.

C.2 Solver for non-linearly saturated external kink ampli-
tudes

The following section provides details about the implementation of the numerical solver
for the boundary value problem given by the system of equations (4.18)-(4.20) that
determines the saturated non-linear external kink mode amplitude η. Second and fourth
order finite differences schemes were implemented.

C.2.1 Numerical scheme & Implementation

In the following calculations we assume a one-dimensional grid with N+1 equally spaced
grid points ρi with distance h = ρi+1 − ρi. Expressions for finite differences are found
via Taylor expansion of a function f(ρ) around the grid points neighbouring a point ρi

T f(ρ; ρi) = f(ρi) + f ′(ρi)(ρ− ρi) +
f ′′(ρi)

2
(ρ− ρi)

2 + ... . (C.1)

Rearranging terms and dropping terms of higher order than two, yields a finite difference
scheme of second order. For the inner derivatives we obtain central finite differences

f ′(ρi) =
f(ρi+1)− f(ρi−1)

2h
+O(h2) , (C.2)

and
f ′′(ρi) =

f(ρi−1)− 2f(ρi) + f(ρi+1)

h2
+O(h2) . (C.3)

For the points on the boundary of the computational domain (first and last grid point)
central finite differences are not applicable and replaced by one-sided formulas. A second
order representation is again obtained by Taylor expansion of f around the neighbouring
grid points (in only one direction) and reads

f ′(ρi) =
−3f(ρi) + 4f(ρi+1)− f(ρi+2)

2h
+O(h2) , (C.4)

f ′′(ρi) =
2f(ρi)− 5f(ρi+1) + 4f(ρi+2)− f(ρi+3)

h2
+O(h2) , (C.5)

for the right-handed differences (used at the left boundary ρi = 0), and

f ′(ρi) =
3f(ρi)− 4f(ρi−1) + f(ρi−2)

2h
+O(h2) , (C.6)
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f ′′(ρi) =
2f(ρi)− 5f(ρi−1) + 4f(ρi−2)− f(ρi−3)

h2
+O(h2) , (C.7)

for the left-handed differences (used at the right boundary ρi = 1) respectively. Here,
the error is of order h2. Similarly, higher order schemes can be derived by evaluating the
Taylor series of f on more neighbouring grid points and keeping the associated higher
order terms in the expansion. These schemes however lead to more matrix elements which
requires more complex algorithms to solve the corresponding linear system of equations
and hence increases the computational cost.

In the following, the superscript j = (1, 2, 3) denotes the order of the solution. Sub-
script i means that a function is evaluated at the i-th grid point and prime denotes finite
differences with respect to ρ. The radial grid is constituted by the points 0 ≤ ρi ≤ 1,
with 0 ≤ i ≤ N . We write the discrete solutions as

η1i = f1
i η̂ , (C.8a)

η2i = f2
i n

2η̂2 + g2i , (C.8b)

η3i = g3i , (C.8c)

where f ji are the homogeneous and gji the inhomogeneous parts. n2 is the normalised
amplitude of the second order solution at ρ = 1. The normalisation constant η̂ is unknown
at this stage. However, in the calculation of D3 and thus in the calculations of η, this
constant cancels out and can be set to an arbitrary value in the numerical solver (we use
η̂ = 1.0).

Replacing the radial derivatives in the operator defined in Eq. (4.17) by finite dif-
ferences of second order (Eqs. (C.2) and (C.3)), and rearranging terms, the system of
differential equations (4.18)-(4.20) in discrete form reads

≡ai︷ ︸︸ ︷{
1

h2
−
[
3

ρi
+

2

Fi

d

dρ

∣∣∣∣
ρi

F (ρ)

]
1

2h

}
f ji−1 +

≡bi︷ ︸︸ ︷{
1− k2m2

ρ2i
− 2

h2

}
f ji

+

{
1

h2
+

[
3

ρi
+

2

Fi

d

dρ

∣∣∣∣
ρi

F (ρ)

]
1

2h

}
︸ ︷︷ ︸

≡ci

f ji+1 = dj(ρi) ,

(C.9)

where k = 1 for j = 1, 3 and k = 2 for j = 2. For the multiple choices of current
density profiles used in this work, the radial derivative of F in Eq. (C.9) can be calculated
analytically as a function of ρ and thus is not replaced by a finite difference. The function
dj(ρi) describes the inhomogeneous part. For the first order equation d1i = 0∀i. For the
second order equation with solution η2i the r.h.s of Eq. (C.9) reads

d2i = −η̂2

{
F ′(ρ)

∣∣
ρi

2Fiρ2i

(
3ρ2i ((f

1
i )

′)2 +m2(f1
i )

2
)

− 1

2ρ3i

[
(3m2 − 1)(f1

i )
2 + 2ρif

1
i (f

1
i )

′ + 5ρ2i ((f
1
i )

′)2
]}

,

(C.10)
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and for the third order equation

d3i = −η̂3
{
(f1
i )

3 1

3ρ4iFi

[
Fi
(
12m2 −m4 − 7

)
− 2ρim

2F ′
i

]
+ (f1

i )
′(f1

i )
2 1

4ρ3iFi

[
Fi(2− 16m2)− 3ρim

2F ′
i

]
+ ((f1

i )
′)2f1

i

1

4ρ2iFi

[
Fi(41− 19m2) + 12ρiF

′
i

]
+ f1

i

(
η2i
) 1

ρ3iFi

[
Fi(1− 3m2) + 2ρim

2F ′
i

]
− f1

i

(
η2i
)′ 1

ρ2i
(1− 3m2) + ((f1

i )
′)3

1

4ρiFi

[
18Fi + 15ρiF

′
i

]
− (f1

i )
′ (η2i )′ 1

ρiFi

[
5Fi + 3ρiF

′
i

]
− (f1

i )
′ (η2i ) 1

ρ2i
(1− 6m2)

}
.

(C.11)

Now, to obtain η2i we need to calculate the constant n2 in Eq. (C.8b):

n2 =
−1

4

(
A− 3((f1

i )
′)2 + 4(ĝ2i )

′ + 1
)
F 2
i −B − 1

(F (f2ρ − 4m2β2 + 1)− 2)Fi
, (C.12)

with A = m2(m2β2
1 + 8m2β1β2 − 4β2 − 2) and B =

(
m2(β1 + 2β2)− 1

2

)
Fi.

To obtain the saturated non-linear amplitude η, a total of five problems in the form
of Eq. (C.9) need to be solved. First, the two homogeneous solutions f1

i and f2
i are

calculated, where dj=1,2
i = 0. In the next step, the particular solution g2i is obtained

and n2 is calculated according to Eq. (C.12). Finally, the particular solution g3i can be
computed. Equation (C.9) can be conveniently written in matrix form as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 c1 0 · · · 0

a2 b2 c2 0 · · · 0

0 a3 b3 c3 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 ai bi ci · · · 0
... 0

. . . . . . . . .
...

0 · · · 0 aN−2 bN−2 cN−2

0 · · · 0 aN−1 bN−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f j1
f j2
f j3
...
f ji
...

f jN−2

f jN−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dj1
dj2
dj3
...
dji
...

djN−2

djN−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (C.13)

with solution vector f ji , and the matrix coefficients ai, bi and ci are defined in Eq. (C.9).
The values f j0 and f jN are determined from the boundary conditions Eq. (4.16):

f1
0 = 0 , f1

N = 1 ,

f2
0 = 0 , f2

N = 1 ,

g20 = g2N = 0 , g30 = g3N = 0 .

(C.14)

This system can in general be solved with any numerical implementation of Gaussian
elimination, which is however computationally expensive. For the second order scheme

122
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employed here, the coefficient matrix in Eq. (C.13) is tridiagonal and a faster method of
solution is the Thomas algorithm [142] consisting of two subsequent iterations. First, a
forward iteration determines the coefficients

qi =

⎧⎪⎪⎨⎪⎪⎩
c1

b1
; i = 1

ci

bi − qi−1ai
; i = 2, 3, . . . , N − 2

, (C.15)

and

pi =

⎧⎪⎪⎨⎪⎪⎩
d1

b1
; i = 1

di − pi−1ai

bi − qi−1ai
; i = 2, 3, . . . , N − 1

, (C.16)

followed by a backward iteration that provides the solution vectors f ji as

fN−1 = pN−1 ,

fi = pi − qifi+1 ; i = N − 2, N − 3, . . . , 1 .
(C.17)

This numerical scheme was implemented in MATLAB and in Python. A comparison
showed that memory consumption and CPU time is considerably lower in the Python
implementation.

The edge safety factor qa is an input parameter to Eq. (C.9) and the boundary value
problem is solved for numerous values of qa in between the two marginal points. We
recall that the upper marginal point is given by qa = m/n, but the lower marginal point

qa =
m

n

(f1)′ −m2β1 − 1

(f1)′ −m2β1 + 1
, (C.18)

depends on the solution to the first order boundary value problem. To find this point we
start with an initial value for (f1)′ in Eq. (C.18) and calculate f1 at the corresponding
value of qa. The solution is then plugged back into Eq. (C.18) and the relative error
between left and right hand side is determined. The value of (f1)′ computed from the
solution is then used as a new initial guess and the problem is solved again. This process
is repeated until the initial guess for (f1)′ and the resulting value from the solution are
smaller than a predefined threshold.

In addition to the second order finite difference scheme, a fourth order scheme was
implemented. For the fourth order finite difference scheme one obtains a pentadiagonal
matrix and the Thomas algorithm is not applicable. LU factorisation is used instead to
solve the linear system corresponding to the matrix. This increases the computational
cost, while reducing the error to h4. The accuracy of the second order scheme is suffi-
ciently good and was thus used for the results presented in this thesis. Nevertheless, for
completion we provide the equations for the fourth order scheme. The inner derivatives
are given by the central finite differences

f ′(ρi) =
f(ρi−2)− f(ρi+2) + 8f(ρi+1)− 8f(ρi−1)

12h2
+O(h4) , (C.19)
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and

f ′′(ρi) =
−f(ρi−2) + 16f(ρi−1)− 30f(ρi) + 16f(ρi+1)− f(ρi+2)

12h2
+O(h2) . (C.20)

Similar to the second order scheme, for the outer grid points we use non-central differ-
ences. They read

f ′(ρi) =
f(ρi+3)− 6f(ρi+2) + 18f(ρi+1)− 10f(ρi)− 3f(ρi−1)

12h2
+O(h4) , (C.21)

f ′′(ρi) =
f(ρi+4)− 6f(ρi+3)− 14f(ρi+2)− 4f(ρi+1)− 15f(ρi) + 10f(ρi−1)

12h2
+O(h4) ,

(C.22)
for the two left hand sided grid-points, and

f ′(ρi) = −f(ρi−3)− 6f(ρi−2) + 18f(ρi−1)− 10f(ρi)− 3f(ρi+1)

12h2
+O(h4) , (C.23)

f ′′(ρi) =
f(ρi−4)− 6f(ρi−3) + 14f(ρi−2)− 4f(ρi−1)− 15f(ρi) + 10f(ρi+1)

12h2
+O(h4) ,

(C.24)
for the two right hand sided grid points respectively. The coefficient matrix that follows
from this fourth order scheme is pentadiagonal.

For comparison with numerical results from VMEC, the current density profile can be
directly read from the VMEC input file. Since the analytical model assumes a cylindrical
plasma, the total current is

I(ρ) = 2
20∑
i=0

ac[i]
ρ2i+2

2i+ 2
, (C.25)

where ac is a list of polynomial coefficients. Again, the total current is normalised such
that I(1) = 0. Instead of specifying a current density profile, we can also perform the
non-linear stability calculation by providing a q profile. The normalised toroidal current
is then

I(ρ) =
qaρ

2

q(ρ)
, (C.26)

and its radial derivative

I ′(ρ) = qa
2ρq(ρ)− ρ2q′(ρ)

[q′(ρ)]2
. (C.27)

C.2.2 Benchmark of the solver

For the case of a uniform current density profile j(ρ) = const., the system of equa-
tions (4.18)-(4.20) can be solved analytically and compared to the result of the numer-
ical solver for benchmarking. This is done at the lower marginal point. For simplicity
j(ρ) = 1 is chosen. A comparison of the analytical calculation with the results of the
numerical solver is shown in Table C.1 for m = 2, n = 1, b = 1.5 and different values
of the radial step size. It can be seen that the results converge towards the analytical
values as the grid becomes finer.
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h = 1/500 h = 1/1000 h = 1/6000 analytical
f ′
1 1.0 1.0 1.0 1.0
f ′
2 2.99400 2.99700 2.99950 3.0
g′2 -1.47763 -1.48878 -1.49813 -1.5
n2 0.62324 0.62602 0.62835 0.62882
n2ρ 0.38835 0.38740 0.38661 0.38645
n3ρ -0.62454 -0.61531 -0.60749 -0.60592
D3 0.28413 0.28299 0.28205 0.28187

Table C.1 – Benchmark of the external kink solver. A comparison of numerical results
with the analytical solution shows very good agreement.

In an additional test of the code with current density profile

j(ρ) =

{
(ν + 1)(1− ρ2)ν , ν ≥ 1
1−νρ2
1−ν/2 , ν < 1

, (C.28)

the results of Fig. C.2 recover those obtained by Eriksson & Wahlberg [95].

Figure C.2 – Non-linear external kink mode amplitude η as a function of nqa for b = 1.2,
m = 2, and taking into account magnetic flux conservation. The results shown here
recover those of Fig. 4 of Ref. [95].
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