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Abstract

Human ability to coordinate one’s actions with other individuals to perform a task together
is fascinating. For example, we coordinate our action with others when we carry a heavy
object or when we construct a piece of furniture. Capabilities such as (1) force/compliance
adaptation, (2) intention recognition, and (3) action/motion prediction enables us to assist
others and fulfill the task. For instance, by adapting the compliance, we not only reject un-
desirable perturbations that undermine the task but also incorporate others’ motions into
the interaction. Complying with partners’ motions allows us to recognize their intention and
consequently predict their actions. With the growth of factories involving humans and robots
working side by side, designing controllers and algorithms with such capacities is a crucial step
toward assistive robotics. The challenge, however, is to attain a unified control strategy with
predictive/adaptive capacities at the task, motion, and force-level which ensures a stable and
safe interaction. To this aim, this thesis proposes a state-dependent dynamical system-based
approach for prediction and control in physical human-robot interactions.

In the first part of this dissertation, we focus on the human capacity to predict their part-
ners’ motion. More specifically, we investigate mechanisms of spatio-temporal coordination
between two partners. We employ a simple scenario called “the mirror game” where two
individuals (human, robot, or avatar) imitate each other’s motions. Our empirical assessment
reveal that the intention-based prediction of the leader’s motions allows the follower to com-
pensate for perception-action delays and to improve the tracking performance in terms of
temporal coordination and confidence.

In the second part of this dissertation, we propose an adaptive mechanism that enables the
robot to recognize the intention of a human user. We utilize state-dependent dynamical sys-
tems for motion planning and impedance control to deliver safe and compliant human-robot
interaction. We consider a series of tasks (possible human intentions) encoded by dynamical
system. Applying a similarity metric between the real velocities (induced by the human) and
desired velocities generated by the dynamical systems, the robot is thus able to recognize the
human’s intention and switch to the intended task. We provide a rigorous experimental and
analytical evaluation of our method yielding an interaction behavior that is safe and intuitive
for the human.

Finally, we tackle the compliance adaptation capability. We propose an admittance controller
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Abstract

that reacts only when human-intentional forces are detected. Intentional and accidental
forces are distinguished by measuring the persistency of the external forces, through a com-
putation of the autocorrelation/energy of the force patterns. The overall controller exhibits
variable stiffness where high stiffness allows the robot to reject the external disturbances and
execute the task autonomously whereas low stiffness enables the robot to comply with human
intentional forces. We demonstrate that our control architecture is effective in delivering
satisfactory tracking and compliant behavior through a series of robotic experimentations.

Keywords: Physical human-robot interaction, intention recognition, task adaptation, motion

prediction, compliance and motion control, dynamical systems, impedance and admittance
control.
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Résumé

La capacité humaine de coordonner nos actions avec celles des autres pour mener a bien une
tache ensemble est fascinante. Par exemple, nous coordonnons nos actions avec les autres
lorsque nous transportons un objet lourd ou lorsque nous devons assembler un meuble. Les
capacités de (1) adaptation des forces/compliance, (2) reconnaissance de I'intention et (3)
prédiction du mouvement/des actions nous permettent de porter assistance aux autres et de
réaliser la tiche. Par exemple, en adaptant la compliance, nous pouvons non seulement rejeter
les perturbations indésirables qui pourraient compromettre le succes de la tache, mais aussi
incorporer les mouvements des autres dans I'interaction. S’adapter de maniere souple aux
mouvements du partenaire nous permet de reconnaitre ses intentions et par conséquent de
prédire ses actions. Avec I'avenement des usines out humains et robots travaillent cote a cote, la
mise en place de controleurs et d’algorithmes qui incluent de telles capacités apparait comme
une étape cruciale vers la robotique d’assistance. Le défi consiste a atteindre une stratégie
de contrdle unifiée avec des capacités de prédiction/adaptation au niveau de la tache, du
mouvement et des forces qui garantisse une interaction stable et sécurisée. Dans ce but, cette
these propose une approche basée sur les systémes dynamiques invariants pour la prédiction
et le controle dans les interactions physiques humain-robot.

Dans la premiére partie de cette thése, nous explorons la capacité humaine de prédire les
mouvements d'un partenaire. En particulier, nous étudions les mécanismes spatio-temporels
de coordinations entres deux partenaires. Nous exploitons un scénario minimaliste appelé
le Jeu du Miroir, ou deux individus (humains, robots ou avatars) imitent réciproquement
leurs mouvements. Notre évaluation empirique révele que la prédiction des mouvements du
meneur, basée sur I'intention, permet au suiveur de compenser les délais de perception-action
et d’améliorer les performances de suivi en termes de coordination temporelle et de confiance.

Dans la seconde partie de cette thése, nous proposons un mécanisme d’adaptation qui permet
au robot de reconnaitre I'intention d’un utilisateur humain. Nous exploitons les systémes
dynamiques invariants pour la planification du mouvement et le contréle d'impédance pour
fournir une interaction humain-robot sécurisée et souple. Nous considérons une série de
taches (ou intentions humaines possibles) encodée par des systemes dynamiques. En appli-
quant une métrique de similarité entre la vitesse réelle (causée par 'humain) et la vitesse
désirée générée par les systemes dynamiques, le robot est alors capable de reconnaitre I'in-
tention du partenaire humain et de passer a la tAche correspondant a cette derniere. Nous
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Résumé

fournissons une évaluation expérimentale et analytique rigoureuse de notre méthode, qui
permet d’obtenir un comportement sécurisé et intuitif pour I’étre humain.

Enfin, nous abordons la capacité d’adaptation de la compliance. Nous proposons un contro-
leur d’admittance qui réagit uniquement lorsque des forces d’origine humaine sont détectées.
Les forces intentionnelles et accidentelles sont distinguées en mesurant la persistance des
forces externes, par un calcul de I’autocorrélation/énergie des motifs de forces. Le controleur
final dispose d'une rigidité variable. Une rigidité importante permet de rejeter les perturba-
tions externes et d’exécuter la taiche de maniere autonome, alors qu'une rigidité faible permet
au robot de s’adapter en souplesse aux forces humaines volontaires. Nous démontrons que
notre architecture de contréle est efficace pour fournir un suivi satisfaisant et un comporte-
ment adaptatif lors d'une série d’expériences robotiques.

Mots-clés : Interaction physique humain-robot, reconnaissance d’intention, adaptation a
la tache, prédiction de mouvement, compliance et controle de mouvement, systemes dyna-
miques, contrdle d'impédance et d’admittance.
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|§ Introduction

History is on the cusp of a robotic revolution. It is estimated that it will transform the global
economy over the next 20 years. By physically collaborating with humans, robots aim at re-
ducing human effort further in performing repetitive and cumbersome tasks. Many domains
will benefit from such assistance offered by robots: manufacturing, home applications, as
well as medical and social services. Manufacturing is a particular domain where such repet-
itive and cumbersome tasks are ubiquitous; e.g., pick-and-place, polishing, brushing, and
transferring heavy loads. However, until the last decade, robots were designed only to operate
autonomously with minimum human interaction in an isolated workspace. Therefore, the
collaboration between industrial robots and humans was limited. For instance, an industrial
robot is indeed able to lift and orient a heavy object to be operated by a human worker; e.g., to
be polished or welded. However, the safety and performance of such systems are limited as
traditional robots do not react or adapt to human behavior. This excludes many collaborative
tasks which, as humans, we perform through physical interactions with one another. To over-
come this, in the last two decades, tremendous amount of work was dedicated by roboticists
toward collaborative robots.

In contrast to industrial robots, the new generation of robots aim at physically interacting with
humans in a shared workspace; i.e., to interact in direct contact with humans or via a jointly
manipulated objected. These collaborative robots are often referred to as cobots or co-robots.
The capacity to interact physically with humans allows cobots to be adaptive and reactive
toward the human user. For example, by following the human guidance, a robot can orient
and position a heavy object as intended by the human user. The ability to react to human
guidance and to continuously rely on human leadership enables the robot to perform complex
tasks. In this fashion, the human supervises the execution of the task and modifies the robotic
behavior. Consider an example where a human supervises a robot polishing a surface and
changes the polishing patterns by physically demonstrating his/her desired behavior. This
leaves the repetitive and cumbersome aspects of the task to the robot while the human acts
as a leader on a decision-making level. Given the multifarious applications of physically
interactive cobots, it is not a surprise that their popularity is on the rise. Robotic Industries



Chapter 1. Introduction

Association (RIA) estimated that collaborative robots will make up about 34% of all robot sales
in 2025. Currently, it is only 3%. However, reaching an effective collaboration through physical
interaction imposes several challenges especially for control and motion-planning.

The safety of the human user is of paramount importance as collaborative robots are expected
to come into direct contact with human beings. The safety can be addressed both from a
mechanical design and a control perspective. Force-limited robots, equipped with force-
torque sensors, are designed to detect and react properly to abnormal interaction forces.
For instance, in coming into high-impact contacts with humans, the robot stops by sensing
an abrupt change in interaction forces. Moreover, to reduce potential mechanical impact,
cobots are designed to be lighter, with soft and round surface areas on the body parts. From a
control perspective, safety can be ensured through active compliance offered by the controller.
Traditionally, the sole purpose of a robot in an industrial setting was to precisely repeat a pre-
defined trajectory where high-gain position control is favored. Such control strategy is unsafe
in coming into contact with humans. Without any reactivity toward human, this strategy
is prone to generating high mechanical impacts due to heavy robotic arms and high speed
movements. As a solution, compliant control has been proposed to control the dynamics of the
interaction where the robot appears as a mass-spring-damper to the external world. Instead
of solely minimizing the tracking error, this controller minimizes a combination of tracking
error and applied forces to the environment. Therefore, compliant control allows for safe
interaction with a human-user while executing a reference trajectory; i.e., the robot moves in
the direction of human applied-forces and smoothly returns to its reference trajectories when
human retreats. However, this compliant behavior is limited to the force-level. The human-
induced motions are damped and “forgotten” as the human retreats from the interaction. This
turns the robot into a passive follower toward human guidance. Advanced motion-planners
with prediction and adaptive capabilities can overcome this limitation and extend the robotic
compliant behavior to the motion and task-level. In this manner, the robot also complies to
human-intended motions and tasks which renders the robot as a proactive follower.

Cobots are aimed to be versatile in terms of number of tasks that they can perform. This
is considered in their flexible design which allows to use different end-effectors and tools.
For instance, the robot can perform pick-and-place using a gripper and change its tool to a
polisher for polishing tasks. This enables cobots to be used in diverse locations and setting;
both stationary or with mobile platforms. Therefore, it is necessary for the robot to be able
to learn new tasks in a simple and efficient way. Learning from demonstration is a suitable
approach where the robot learns new tasks from human-guided motions. The literature of
robot learning offers an abundance of machine learning techniques to encode such desired
motions into a motion-planner. Having learned a new task and using compliant control, the
robot can physically collaborate with its human partner. Yet, it is another challenge for the
robot to modify its task or switch across tasks during the interaction. This is a crucial step
toward proactivity; i.e., the robotic capability to recognize the human intentions and comply
to human desired behaviors by adapting robotic motions and tasks. In this line of thought,
the proactivity is achieved through adaptation of different components; i.e., force-generation,



motion-generation, and task-selection. Such adaptation toward human intention remains
an unsolved challenge, specially due to environmental uncertainties. Cobots are expected to
operate in natural environments, which compared to the highly controlled industrial settings,
elicit a higher level of uncertainties. The human behavior can be the main source of such
uncertainties. For instance, the human motions might be noisy and not a clear representative
of the intended task. In some cases, the human intention might abruptly change or the applied
forces might be accidental and detrimental to the stability of the task. Therefore, a seamless
robotic interaction requires a control architecture which accounts for all these situations. This
thesis tackles these challenges by providing solutions toward human-intention recognition,
motion and task-adaptation, and intentional forces recognition.

Proactivity can be achieved in two forms. In the first form, the robot adapts its task according
to the human interaction; namely motion-adaptation. In the other form, the robot adapts
its task by means of switching to another task that resembles the human input; namely task
adaptation. Both forms impose new challenges for stable and efficient motion planning. For
instance, a parameterized motion-generator that is adaptable and remains stable under the
variation of its parameters. It is also required that the motion generator encodes for different
tasks and allows for smooth and stable transition across them. Given the adaptability of the
motion-generation, human-intention recognition is still required for a meaningful adaptation
toward an assistive behavior. The robotic literature offers methods to identify the underlying
intention of an observed motion. Reviewing this literature in Section 2, we point out that such
proposed methods are often offline whereas the intentions are required to be recognized online
as the human physically interacts with the robot. In short, online intention-recognition along
with task-adaptation and motion-adaptation are the key challenges in reaching a proactive
robotic behavior.

The recent advancements in motion-planning and control are significant contributions in
achieving robotic proactive behavior. For instance, state-dependent Dynamical Systems (DS)
offers a powerful tool for motion-planning aspects of the interaction. Khansari-Zadeh and
Billard (2011b) proposed a learning approach for encoding demonstrations in a DS in a stable
manner; i.e., avoiding spurious attractors and divergent behavior. The first advantage of
this approach is its generalization to unseen contexts. For example, the robot can perform a
reaching motion from an unseen initial condition. The other advantage is the reactivity of the
motion planning which arises from the state-dependency of DS. Upon perturbations, instead
of returning to the initial planned trajectory, the robot re-plans with respect to the new state.
This enables the robot to intelligently reacts to human interactions. This approach is also
suitable for incremental learning methods where the robot gradually learns a new task during
the interaction. As exploited in this thesis, DS-based motion planning lays a strong foundation
for further development with regard to adaptive behavior.

To address the compliant-control aspect of the interaction, compliant control strategies are
of great interest. The impedance control has been proposed by Hogan (1988) in order to
achieve compliant interaction with the environment. The robot can track a given trajectory
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while exhibiting a compliant behavior toward external perturbations. Indeed, the robot might
deviate from the original trajectory, but in the absence of perturbations, the robot can execute
its task autonomously. Furthermore, without a desired trajectory, the robot follows human
forces acting as a passive follower. Having a dynamical system (as a motion-planner) and
an impedance controller in the control loop allows for a reactive motion planning. This has
been shown by Kronander and Billard (2016) to lead to a reliable passive interaction with the
environment. The robot acts as an active leader that allows for physical interaction with the
human as the follower. As demonstrated in this thesis, by adding adaptive capabilities, the
impedance and admittance can be utilized to reach proactive behavior in physical interactions.

The goal of this thesis is to provide a unified control framework that understands the human co-
worker intention and adapts to it through physical interaction; more specifically, a framework
which addresses intention recognition, task and motion adaptation, and compliant interaction
with humans. In our first endeavor toward intention recognition, in Chapter 3, we study the
human-follower behavior at the kinematic level in a leader-follower setting. We use the Mirror
Game framework proposed by Noy et al. (2011) where one individual leads the task by creating
his/her own desirable motions while the other individual is instructed to follow the leader’s
motion synchronously. Our investigations confirm that the follower proactive behavior can
be explained by an adaptive dynamical system. Therefore, in the follow-up contributions, we
extend this adaptation property to physically interactive robots. More specifically, we extend
the DS-impedance control framework to reach motion and task-adaptation capabilities. In
Chapter 4, we propose a DS formulation that allows the robot to modify its task through trans-
formations such as translation, rotation, and scaling. Through an adaptive mechanism, the
robot captures the human intended motions during the physical interaction and proactively
executes them. In Chapter 5, we propose another DS formulation that encodes for several
tasks with stable and smooth transition properties. Beside versatile motion-generation, this
formulation also allows for intention recognition. Through human-induced motions, the
robot recognizes the human-intended task and proactively executes it. Furthermore, we tackle
another challenge in reaching a robust adaptive behavior for physically interactive robots
with regard to disturbances and unintentional forces. In chapter 6, we offer an algorithm
that distinguishes between intentional and accidental forces; allowing the robot to reject
undesirable disturbances and adapt to intentional inputs. Each contribution is illustrated by
a conceptual graph in Fig. 1.1. Such motion and compliance adaptation allows the robot to
change roles from a stiff leader to a compliant leader, and to a passive or proactive follower;
see Evrard and Kheddar (2009) as pioneer work for role adaptation.

In the following, we present the outline of the thesis along with the contributions. Later in
Section 1.2, we introduce further the approaches taken in this thesis.
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Figure 1.1 — An abstract illustration for the main contribution of each chapter. a) In Chap-
ter 3 we show that an adaptive dynamical system can account for human proactive motion
coordination. b) In Chapter 4, we implement such adaptive behavior where robot modifies
the DS with respect to human interactions. ¢) In Chapter 5, we introduce another adaptive
mechanism where the robot switches between tasks in order to comply with human intended
task. d) In Chapter 6, we introduce a detection and reaction strategy toward human guidance
based on an admittance control approach.

1.1 Main contribution and thesis outline

Here, we present the outline and briefly list the main contribution of this dissertation. Fig. 1.2
summarizes the outline and the main key points of each chapter in relation to one another. In
Chapter 2, we review the state of art and we provide a series of mathematical formulations
used in this thesis. Chapter 3 focuses on non-physical interactions between human subjects
where we mainly focus on understanding and modeling human following capacities. We
confirm that individuals follow a prediction of their leaders’ motions rather than the current
observation. Specifically, we show that using an adaptive dynamical system as the predictive
model can explain the follower’s behavior. Moreover, we show that the capacity to recognize
the leader’s intention improves the tracking behavior.

To put our findings from the human studies in practice, in Chapter 4, we propose an online
motion-adaptation for robotic task using dynamical systems. This method allows a human
user to modify a robotic task encoded by DS through physical interaction. Moreover, in Chap-
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ter 5, we offer a task-adaptation mechanism enabling the robot to switch across dynamical
systems in order to comply to human intentions. We provide rigorous mathematical anal-
ysis and experimental evaluation for our methods in terms of stability, convergence, and
optimality.

In Chapter 6, we introduce a novel algorithm to distinguish between human intentional forces
and accidental disturbances. Moreover, we present and evaluate a DS-based admittance
control with regard to stability, passivity and adaptability toward human intention. The last
chapter provides a brief discussion for limitations and possible future research.

1.1.1 Publications

Main portion of this dissertation has been published in peer-reviewed journals and confer-
ences. The studies on human following behavior presented in Chapter 3 has been published
in Khoramshabhi et al. (2014), Khoramshahi et al. (2016), and Khoramshahi et al. (2015). The
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motion-adaptation method presented in Chapter 4 has been published in Khoramshabhi et al.
(2018). The task-adaptation method in Chapter 5 has been published in Khoramshahi and
Billard (2018). The content of Chapter 6 is under review in a robotic journal at the time of this
writing.

In collaboration with other colleagues, the author shared authorship of several peer-reviewed
publication during his PhD. Tangential to Chapter 3, social motor coordination of schizophre-
nia patients has been studied and published in Cohen et al. (2017b), Stowinski et al. (2017), and
Cohen et al. (2017a). Human perception toward their robotic partners has been presented in
Raffard et al. (2018). Realism and efficacy for robotic facial expressions has been investigated
and published in Raffard et al. (2016). Moreover, compliant in catching flying objects was
explored and published in Salehian et al. (2016).

1.2 Approach

In the section, we detail further on the approach taken in this thesis. The main aspect of our
approach is the usage of state-dependent dynamical systems; to model and understand the
human behavior, to provide compliant behavior, to achieve adaptive motion-planning, and
recognition and reaction to the intentional human-guidance.

1.2.1 Underlying mechanisms in Human following behavior

Inspiration from human studies can be of great value in designing new controllers and al-
gorithms for robots that are aimed to physically interact with us and assist us with our daily
tasks. To understand the underlying mechanisms of human proactive following behavior,
we initially focus on human-human motion coordination. We studied scenarios where one
participant is designated to lead the motion and the other is instructed to synchronize with
the leader. Our data analysis confirms that an adaptive dynamical system can explain the
proactivity in the follower’s behavior. More specifically, by adapting the dynamical system to
the leader’s motions, the follower can predict the leader’s actions. This allows the follower to 1)
compensate for his/her sensory-motori delays, and 2) be a proactive follower; i.e., following
the predicted motions rather than following the delayed observations.

Furthermore, through an avatar-human mirror game experiment, we study the effect of
intention-recognition on motion-planning. In this experiment, an avatar-leader systematically
switches between different tasks. We show that when human-followers are provided with
cues about the leader’s intention, they deliver a better tracking performance. In short, two
main mechanisms are involved for proactive following behavior. First, the adaptive capacity to
modify the task at hand to accommodate for the leader’s modifications. Second, the capacity
to smoothly switch to another task that resembles the leader’s behavior. Inspired by these two
studies, we propose two different formulations for dynamical systems for adaptive motion-
generation in pHRI.
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1.2.2 Compliant interaction using dynamical systems

As humans, we benefit from compliance in our interaction with one another. This compliance
enables us to communicate our intention through motions that we induce to our partners.
Sebanz and Knoblich (2009) suggest that the human follower complies with the actions of
others which allows intention recognition, and subsequently, action coordination. Due to the
follower’s compliant behavior, the leader is able to communicate his/her intention through
interaction-forces (van der Wel et al., 2011; Sawers et al., 2017) and movements (Sartori et al.,
2011). Similarly, compliant behavior, ranging from passive (due to the mechanical design)
to active (due to the control design), is a key requirement for robots to interact with humans
(Billard, 2017). Active compliance has been of particular interest to engineers for achieving
safe and intuitive physical interaction (De Santis et al., 2008). To have a clearer definition of
compliance in this thesis, consider the general control feedback loop depicted in Fig.1.3. In
this hierarchical feedback loop, the robot can exhibit compliant behavior at different levels.
These levels are as follows:

1. Compliance at the force-level: the robot is designed to fulfill a particular motion, how-
ever, it remains compliant toward small perturbations due to the external forces; e.g.,
impedance and admittance control (Hogan, 1988).

2. Compliance at the motion-level: the robot is designed to execute a particular task,
however, it allows for variation of motions that still fulfill the task; e.g., the reactive
motion planning using DS and impedance control proposed by Kronander and Billard
(2016).

3. Compliance at the task-level: the robot switches or adapts to a task that complies with
the intention of its human partner; see Bussy et al. (2012a).

Task Motion Force
Human
Decision Motion 4
i > » Controller € Env.
Making Planner

a a

Perceptual input

Figure 1.3 — A generic control design approach to physical human-robot interaction where,
based on a decided task, corresponding motions are generated, and consequently, correspond-
ing forces are applied. Each block takes proper perceptual input into consideration to achieve
a desirable behavior.

As mentioned, having DS and impedance control in the main loop (as proposed by Kronander
and Billard (2016)) naturally provides compliance at the motion-level; i.e., if the robot’s state
is perturbed, the state-dependent DS re-plans the desired motion. This property allows the
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human to temporarily modify the robot’s motions. Nevertheless, such modifications are lost as
the human retreats from the interaction as the DS is not adapted accordingly. An incremental
learning approach has been proposed to accommodate for online demonstrations of the
human user; see Kronander et al. (2015) where the DS is locally modulated (i.e., scaling and
rotation) using Gaussian process. Such methods are efficient in an off-line setting as they
treat the new demonstrations as a batch. However, in an on-line setting, the robot requires
to constantly adapt to changes in the leader’s motion or intention. To overcome this, we
propose a globally modulated DS where rotation, scaling, and translation are possible. Using
a simple adaptation mechanism for modulation parameters, the robot exhibits compliance at
the motion-level; i.e., the robot instantly adapts the target location of a reaching motion or
adapts the polishing patterns on a surface.

Having several homogeneous models encoding for different tasks not only improves the
robot’s versatility (as the robot can execute several tasks) but also allows for task-identification
as the robot can infer the underlying task for a given observed motion. Recently Maeda
et al. (2017b) proposed a probabilistic model that encodes for different tasks and acts as
an inference tool for intention recognition. Nevertheless, such methods are required to
perform motion-generation and intention-recognition simultaneously during the physical
interaction with human. To tackle this limitation, we propose a DS formulation for encoding
several tasks with the possibility of smooth transitions. Moreover, we propose an adaptive
mechanism to recognize the human intention and smoothly switch to the most similar task.
Preserving the passivity properties of the DS-based impedance control, the human user can
physically interact with the robot and demonstrate his/her intentions. In this formulation, the
dynamical systems are used both for motion-generation and intention-recognition resulting
in an intuitive and seamless interaction. This extends the DS compliant capabilities to the
task-level where the robot switches to the human-intended task. We evaluate our adaptive
approaches mathematically and experimentally.

1.2.3 Adaptability in dynamical systems

As mentioned earlier, we employ state-dependent dynamical systems for motion-generation
to perform a specific task. It has been shown by Khansari-Zadeh and Billard (2011b) that
such models can be leaned efficiently from demonstrations. The generated motions using
the learned models are guaranteed to be smooth and stable; i.e., converging to the designated
attractor or limit cycle. Moreover, such models exhibit generalization to the unseen contexts;
i.e., intra/extrapolating the demonstrations over the state-space. Furthermore, Kronander and
Billard (2016) show that having the DS-based motion-generator inside the control loop leads
to reactive motion planning. This enables the impedance-controlled robot to comply with
external forces and re-plan the motion based on the human interactions. In order to extend
the compliance capacities of dynamical system, as introduced in the previous section, we take
an adaptive approach in thesis. However, endowing motion-generators with adaptive capacity
introduces new challenges relevant and crucial to physical human-robot interaction. It is



Chapter 1. Introduction

important to guarantee the performance of the control loop under the variation of the adaptive
parameters. In the following, we introduce these concerns from control theory perspective.

Smoothness: To avoid abrupt and jerky motions that might endanger the safety and the
quality of the interaction, the generated motions are ought to be smooth. In an adaptive
scenario, we need to ensure that the generated trajectories remain smooth in two distinct cases:
1) under arbitrary values for the adaptive parameters and 2) under the time-variation of the
parameters. To preserve the original smoothness of the dynamical system, we limit our global
modulation to diffeomorphisms; see Neumann and Steil (2015) and Perrin and Schlehuber-
Caissier (2016) for similar approaches in using diffeomorphism for motion-generation. In
the case of the task-adaptation, we use a weighted combination of several dynamical systems
where the smoothness is guaranteed under arbitrary variation of the coefficients. Similar
linear combination of primitive dynamics has been used widely in the literature of motion-
generation; see Thoroughman and Shadmehr (2000) and Lim et al. (2005).

Stability: Beside smoothness, it is crucial to guarantee that the generated motions are not
divergent under arbitrary variations of the adaptive parameters. However, such stability
analysis is not straight-forward for the general case; see Daafouz and Bernussou (2001) for
the Lyapunov analysis of a linear system with time-varying parametric uncertainties. Unlike
general cases, it is unnecessary to assume that the parameters are uncertain as they are
governed by the adaptive mechanism. With such consideration, we derive the necessary
conditions for the stability of the motion-generation.

Convergence: Given a human interaction over a time-period, it is desired to observe a
converging behavior for the adaptation parameters; e.g., the parameters asymptotically con-
verge to a fix-point. It is trivial to see that unnecessary fluctuations or diverging behavior
lead to an undesirable motion-generation. In the context of pHRI, we investigate whether 1)
the parameters change properly with respect to the adaptation signal and 2) they converge
to a fixed-point after the human retreats from the interaction. Considering the adaptation
dynamics, the converge is often subjected to the quality of the adaptation signal; i.e., human-
induced error in this thesis. In other word, the human demonstration is required to be rich
enough to lead to a proper adaptation; e.g., in the case of task-adaptation, a switching occurs
if the human demonstration differs from the current task and resembles another. This is
often formulated as persistent excitation condition; see Astrom and Wittenmark (2013) for
mathematical formulations.

Optimality: Furthermore, it is vital to show that the converged parameters are optimal; i.e.,
with respect to a cost function that accounts for some aspects of the interaction. Oftentimes,
the adaptive law is derived from a cost-function such as energy or tracking error. In this
thesis, we relate our adaptation mechanism to cost functions concerned with human-induced
errors; i.e., the difference between the planned velocities by the robot and the demonstrated
velocities by the human-user. In other words, by reducing the human-induced error through
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parameter adaptation, we capture the human-intention allowing the human to retreat from
the interaction.

Passivity: As the human physically interacts with the robot and injects energy, the passiv-
ity of the system becomes crucial. The passivity of DS-based impedance control has been
throughly investigated by Kronander and Billard (2016). Following the same lines, we ensure
the passivity of our control architectures in this thesis; see also Shahriari et al. (2017) for similar
approaches in ensuring the passivity under the parameter adaptation.

Human effort: In the evaluation of our adaptation methods, we consider the human effort
required to demonstrate his/her intention to the robot through the physical interaction. As the
robot is controlled compliantly, the observed stiffness and damping by human influence the
required effort for physical interaction. To decrease this effort, we propose an approach based
on variable-admittance control to lower the stiffness toward human guidance. Therefore, we
develop an algorithm to detect intentional human-guidance forces.

Tracking behavior: To execute a task, it is necessary to track the generated motions by the
DS precisely. This applies when the human is not present in the interaction as the robot
requires to comply with human forces which induces tracking error. Unfortunately, in DS-
based impedance control, both tracking performance and compliant behavior are controlled
using the same impedance gain; i.e., the damping term. High gains favor tracking precision,
and low gains are suitable for human interactions. We show that our proposed DS-based
admittance control with human-guidance detection can be a solution for this case.

1.2.4 Admittance control for compliance and tracking decomposition

As mentioned earlier, the impedance gain in DS-based impedance control leaving us with a
trade-off; i.e., high gains lead to higher precision preferable for execution of the task, while
low gains lead to lower stiffness behavior agreeable for the human user. It is clear to see
that a seamless interaction requires both behaviors; i.e., to be a stiff leader and reject the
disturbances and to be compliant toward other intentions. To overcome this, we propose
a novel control architecture to provide proper compliance and motion-control based on
the human guidance. We assume that the robot is controlled in velocity (either using pure
high-gain velocity controller or via velocity-based impedance controller), and position and
force feedback are available. In order to obtain reactive motion planning, we employ our
state-dependent dynamical systems. Using the admittance block, we compute the velocities
resulting from the external forces. In doing so, we allow for a variable admittance ratio. This
controller structure can be seen as an interplay of two separated control loops: one which aims
to provide precise tracking behavior, and another which aims to provide proper compliance
behavior; i.e., to reject the disturbances using lower admittance ratios or to allow for human
interaction using higher ratios.

11
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1.2.5 Recognition of intentional vs. accidental forces

To benefit from variable-admittance control introduced in the previous section, we adapt the
admittance ratio according to the nature of the external forces. Intuitively speaking, accidental
forces need to be rejected (in order to fulfill the task autonomously) while intentional forces
must be incorporated into the robotic behavior; e.g., complying to the human intention
to switch from one task to another. Therefore, the challenge is to distinguish between the
forces intended by human and undesirable disturbances. We use a similar approach to those
proposed in the literature to distinguish between intended and unexpected contacts; see
Haddadin et al. (2008); Berger et al. (2015); Kouris et al. (2018). Following the same line of
thoughts, we rely on the persistency of interaction forces to detect the human guidance. This
shows an analogy to the literature of collision avoidance where 1) high-frequency components
in the haptic channel (e.g., sudden changes in forces) can contribute to a safe interaction with
the environment, and 2) low-frequency components (e.g., persistent forces) can be utilized for
human-guidance detection, role distribution, and human-intention detection.

This eventually brings us a seamless interaction using two robotic behaviors: the leader role
where the robot rejects the external perturbations and focuses on the autonomous execution
of the task, and the follower role where the robot ignores the task and complies to human
intentional forces. An example of such interactions is illustrated in Fig. 1.4 where the robot is
initially executing a reaching task autonomously and maintaining the target position. In doing
so, the robot is a non-compliant/stiff-leader so as to reach a desirable tracking performance
and rejecting the undesirable disturbances. Detecting human guidance, the robot becomes
compliant in selective directions, allowing the human to modify only locally its motion. As
such, the robot appears as a compliant leader, as it still carries on with the initial task. If
the human guidance persists, the robot increases its compliance until it becomes a passive-
follower. This allows the human to take over the leadership of the task which subsequently
allows the human to demonstrate a desired behavior to the robot. Next, the robot starts to
follow a prediction of the human intention which renders the robot as a proactive-follower.
The human, accepting the robot’s prediction and proactivity, retreats from the interaction
allowing the robot to become autonomous (stiff-leader) and to focus on tracking behavior.

12
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Figure 1.4 — An illustration of human robot collaboration where the robot reacts intelligently to
external perturbation. In the first scenario, the robot rejects the undesirable disturbances for
a better tracking performance; i.e., to maintain the drilling point and to avoid damaging the
object and the tool. In the second scenario, the robot detects and complies with the human
guidance; i.e., the robot becomes compliant and passive where the human can easily move
the tool and demonstrate his/her intention. Moreover, the robot recognizes the intention and
moves to the next drilling point to perform the task autonomously.
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4 Background and related work

As introduced in the previous chapter, the goal of this thesis is to endow physically collabora-
tive robots with proactive behavior toward their human coworkers. This chapter provides a
review on the state-of-the-art and technical preliminaries necessary to establish and define
fundamental concepts for the solutions proposed in the following chapters of this thesis.
The literature on human-robot interaction is interdisciplinary and ranges from engineering
and computer science to neuroscience, cognitive science, and other social sciences and hu-
manities (psychology, ethics, and philosophy). This literature is strongly inspired by the ways
humans interact with one another, especially non-verbally. In this thesis, we focus in particular
on the motion coordination and control aspects of human-robot interactions. We primarily
concentrate on related works which helps us with the design of proactive robotic behavior;
i.e., recognizing the human intention, predicting the future actions, and providing assistance.

Interaction between a human and a robot includes several mechanisms responsible for deci-
sion making, motion-planning and control; both on human and robot-side. Understanding
the mechanisms involved in the human-side and exploiting recent advancements in robotic
and control are of particular importance to this thesis. For such mechanism, consider the
generic model for physical human-robot interaction (pHRI) illustrated in Fig. 2.1. In this
figure, the human and the robot are jointly acting on the environment to bring about their
desired changes. The human acts based on a mental state; i.e., the desired goal or task which
is determined by the “internal drives” or affected by the intention of others. The action coordi-
nation mechanism plans and applies the proper actions. To better coordinate, the forward
model enables the human to predict the future state and actions of other. On right-side of
the figure, the robotic behavior is primarily governed by the task which is concerned with
safety, assistance and the intentions of the human partner. In a feedforward manner, the task
translates into motions and consequently into forces that are applied to the environment.
However, in a feedback fashion, each block is affected by the sensory inputs and recognized
intentions of the human partner. The following sections of this chapter are dedicated to
provide reviews on related work specific to each component of this schema. More specifically,
the related work is organized as follows:
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Figure 2.1 — A generic model for physical human-robot interaction. The human-side of the
model is adopted from Oztop et al. (2005). In Section 2.1, we review the related works on
human mechanisms involved for interaction and coordination with others. In Section 2.2, we
review the literature of pHRI related to mechanisms and concepts illustrated on the robot-side
of the model.

¢ Human-side: In Section 2.1, we summarize the works dedicated to a better understand-
ing of human capacities for motion coordination. These studies are mostly concerned
with human-human interactions. This body of work is related in particular to the dy-
namical system model for human following behavior that we introduce in Chapter 3
and later use in Chapter 4.

¢ Robot-side: In Section 2.2, we present methods for compliant and proactive human-
robot interactions. We review in particular methods for control, motion planning,
prediction, and intention recognition which are related to the robotic implementations
in Chapters 4, 5, and 6.

In each part, we situate our approach, presented in Section 1.2, in relation to the state-of-the-
art. Finally, in Section 2.3, we present the technical preliminaries necessary for analyses and
designs presented in proceeding chapters.

2.1 Inspirations from human proactive following behavior

Social motor coordination has received much interest in the recent years as a central part of
social interaction; see Schmidt et al. (2011) as a review. It refers to our ability to coordinate our
movements with other individuals to perform a task in the context of a joint action as opposed
to an individual action. Sebanz et al. (2006) define a joint action as “any form of social inter-
action whereby two or more individuals coordinate their actions in space and time to bring
about a change in the environment”. Moreover, the cognitive and socio-psychological aspects
of such coordination have been studied thoroughly; see Sebanz et al. (2006) and Knoblich et al.
(2011). Interpersonal coordination provides an important foundation for social interaction.
For instance, Hove and Risen (2009) show that the degree of interactional synchrony of bodily
movements of co-actors during social interaction is a significant predictor of subsequent
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affiliation ratings and cooperation between individuals. Performing tasks with others often
requires recognizing what they intend, predicting their next actions, and adapting one’s behav-
ior accordingly. To better understand the mechanisms at the basis of joint action, cognitive
and neural scientists have mostly studied the underlying processes separately, including those
responsible for joint attention (Tomasello, 1995), action observation/prediction (van Schie
et al., 2008; Sebanz and Knoblich, 2009), action coordination (Marsh et al., 2009), synchrony
(Valdesolo et al., 2010), and task sharing (Sebanz et al., 2005). Supported by a vast literature
on psychology and neuroscience, Sebanz et al. (2006), Vesper et al. (2010) and Vesper et al.
(2017) proposed architectures in which these mechanisms enable individuals to coordinate
with others. In the following, we review such mechanisms in relation to the work developed in
this thesis.

» Task-sharing: In an interaction, individuals require to have a representation of the task.
Tasks are often identified by their end-goal and a set of possible actions. A goal is a
specific state of the environment and actions are the means by which the environment
can be changed; e.g., motions and forces. To coordinate efficiently, it is important for an
individual in an interaction to infer the others’ intended goals. For instance, we convey
our intentions to other using gaze (Kourtis et al. (2014) and Brennan et al. (2008)).

* Role-Assignment: Knowing the task, the individual can take on different roles. For
example, one individual can be responsible for early part of the motion while the rest
is performed by the other; see Reed et al. (2006b). Negotiations over such roles or
distribution of task-load can be perform through the interaction as it is reviewed in later
sections. We also exhibit the ability to continuously adapt our roles between leader and
follower as suggested by Konvalinka et al. (2010). Furthermore, dyads can reach a state
where both parties follow and lead at the same time; see Sebanz et al. (2006).

» Task-monitoring: This process monitors if the actions are taken as planned and to what
extent the goal of the task is achieved. Monitoring is crucial to detect deviations from
the intended goal so that partners can quickly react and adapt. Furthermore, large
deviations from a task can serve as an indicator when the intended goal changes.

* Action-observation: For a successful interaction, it is necessary for an individual to
observe the actions of his/her partner. Action observation enables us not only to predict
the future actions but also to recognize the intended task/goal of our partners. We often
communicate our intention through subtle kinematics changes (Sartori et al., 2009,
2011) or through the haptic channel (Takagi et al., 2017).

* Action-prediction Knowing what our partners will do allows for precise temporal co-
ordination (Vesper et al., 2010) and proactive coordination (Pickering and Clark, 2014).
Several internal forward models were proposed to explain the human capability to
predict other’s actions. In the following sections, we review these works in further de-
tails. Recognizing other’s intentions and goals facilitates action-prediction. Sebanz
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and Knoblich (2009) argues that this mechanism can be just a by-product of prediction
about others’ goal.

¢ Action-coordination Knowing the intended task and its representation along with the
current state and prediction of our partner’s action, we adjust our actions in time and
space to get closer to the final goal. Moreover, we choose actions that are

— Assistive: actions that result in a lower effort, and to a greater extent, a lower need
for coordination.

— Predictable: actions that are less variable and easier to predict for others.

— Expressive: actions that express new intentions or other changes in the interaction.

Vesper et al. (2010) refer to these aspects as coordination smoothers and explain that
synchrony can serve as a smoother. Moreover, human dyads control their compliance
for stability of the interaction (Ganesh et al., 2014). Proper compliant behavior and
haptic communication allow the partners to negotiate their roles and goals (Melendez-
Calderon, 2012; Takagi et al., 2017; van der Wel et al., 2011).

Inspired by these mechanisms, we take a dynamical system approach toward physical human-
robot interaction (pHRI). Robotic tasks in pHRI can be encoded using dynamical systems
which allows for task-monitoring, intention recognition, and task switching. Through adap-
tation in dynamical systems, the robot can predict human actions and reach a proactive
behavior. Finally, through DS-based compliant control, the robot coordinates its action in an
assistive manner.

2.1.1 Intention recognition

We mentioned previously that an efficient interaction requires a model for the task; see Sebanz
and Knoblich (2009). Using such a model, the individual can predict the motions of their
partners and act proactively. Nevertheless, in a realistic multi-task/goal scenario, it is crucial
to infer the intended task/goal of others. Our ability to infer the intention of others from
contextual information is fascinating. To name a few, we rely on gaze cues, gestures, facial
expressions, kinematics, and haptics. In the following, we provide a brief review for those
mechanisms.

An essential contextual cue that humans exploit for intention recognition is the gaze behavior.
The ability to follow another’s gaze is central to the joint action (Volcic and Lappe, 2009)
via its roles in joint attention (D’Entremont et al., 1997) and action observation (Flanagan
and Johansson, 2003). The cooperative eye hypothesis (Tomasello et al., 2007) suggests that
the visual characteristics of human eyes, such as the shape and color of the sclera, iris, and
pupil, evolved to make it easier to follow others’ gaze directions. According to this hypothesis,
evolution enhances cooperative social interactions by providing a new social function; i.e.,
using gaze as a means to share our intentions. A growing number of studies have investigated
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the use of gaze as a form of non-verbal communication in a variety of social interactions;
e.g., to complement speech (Kendon, 1967), and as a mechanism to orient others’ attention
(Frischen et al., 2007). The ability to orient and follow other’s gaze-direction enables joint
attention (Emery et al., 1997), which plays an important role in our social cognition (Tomasello,
1995). Recent neurological studies have revealed that some visual cells are sensitive to gaze
direction (Perrett et al., 1985); these cells overlap with neural pathways representing facial
expression (Engell and Haxby, 2007). Moreover, eye contact modulates the activation of the
social brain (Senju and Johnson, 2009). This suggests that the ability to generate gaze patterns
and respond to gaze as a means of conveying intentions recruits common neural substrates
(Itier and Batty, 2009; Bavelas et al., 2002). It has also been reported that gaze behavior is crucial
for joint action (Sebanz et al., 2006; Sebanz and Knoblich, 2009). Orienting the gaze at the right
location at the right time improves coordination with other individuals. Furthermore, gaze
direction is necessary in establishing a closed-loop dyadic interaction, which enables a better
coordination in joint actions (Volcic and Lappe, 2009). In Chapter 4, we use simulated gaze
cues of an avatar in a leader-follower setting to study the human gesture following behavior. In
this approach, we investigate how intention recognition affects motion coordination. Through
quantitative assessments, we show that the human ability to proactively coordinate with a
leader relies on the recognition of the intended task.

Intentions can be recognized by observing other’s actions in terms of movement. In an early
work, Johansson (1973) propose a method to study the perception of bodily movements where
they use point-lights to represent important joints of a moving person. They show that 10 to 12
points are adequate to evoke the impression of a human walking, running, or dancing. Follow-
up studies show that even gender (Richardson and Johnston, 2005), emotion (Atkinson et al.,
2004), and identity (Loula et al., 2005) of the actor can be inferred from such low-dimensional
kinematic data. Furthermore, in joint-action scenarios where two agents are represented by
light-points, observers can recognize the task and predict the actions; see Manera et al. (2010)
and Manera et al. (2011b). The underlying neural mechanism for this capacity is controversial,
as two main hypotheses are competing. One group of researchers argue that observed actions
are simulated by the motor cortex (more specifically by the mirror-neuron system) to infer the
intention; see Fogassi et al. (2005). Others (Brass et al., 2007) explain intention-recognition via
areas outside the motor cortex which are often considered as responsible for theory of mind
and mentalization; i.e., the capacity to infer the latent mental state of others. Ansuini et al.
(2014) and De Lange et al. (2008) argue that the two views are intertwined, and intentions
become visible — as opposed to latent — in the kinematic behavior.

Individual can facilitate the interaction by predicting and communicating their intention using
the kinematics behavior. Sartori et al. (2009) show that individuals change their kinematics
when they intend to communicate their intention in a simple reaching task. Becchio et al.
(2008) also demonstrate that acting socially or individually affect the kinematics. Sartori
etal. (2011) and Manera et al. (2011a) show that subjects can distinguish between different
intentions behind a reaching motion; namely, to cooperate, to compete, or to perform an
action individually. Frith and Frith (2006) postulate that, at the most basic level, we can
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predict how a movement will finish. Therefore, we can infer the intended end-goal of an
observed movement. Wolpert et al. (2003) argue that such early prediction about other’s
intention are tested as the motion progress. Becchio et al. (2012) and Lewkowicz et al. (2013)
go one step further and propose that early intention recognition affects the motion planning
in joint actions. In Chapter 5, we take a similar approach to intention recognition in pHRI. The
robot relies on kinematics information provided by the human-user. By simulating different
dynamical systems, each encoding for a specific task, the robot forms a prediction for the
human-intended task. Such predictions are immediately reflected in the motion-planning
allowing for intention communication and convergence to the intended task.

2.1.2 Action prediction and the role of internal predictive models

As mentioned, action prediction plays a crucial part in the ability to be proactive. Predicting
what others are going to do next allows individuals to adjust their actions accordingly. One
line of research has been dedicated to internal forward models to explain such prediction
capabilities. Internal models, as proposed by Prinz (1997), allow an individual to predict
the consequences of his/her own actions. Wolpert et al. (2003) proposed an approach in
which the internal models are used for motion control purposes. In their model, both self-
action production and others-action understanding are explained by the same mechanism.
Therefore, such internal models (which were initially proposed to predict the consequence
of one’s own action) were used for action understanding. Townsend et al. (2017) proposed
a computational model where internal models are used to infer the intention of other from
their movements. Sebanz and Knoblich (2009) argue that individuals in an interaction also
acquire a forward model for the joint performance. They further explain that, in presence
of such joint models, the error during the interaction can be processed efficiently; i.e., they
can help distinguishing between errors occurring at the level of the task and at the level of
individual motions.

Several other studies (Wolpert et al., 1998; Krakauer and Mazzoni, 2011) have suggested that
the main role of a forward internal model might be to overcome time delays from decision
making, perception and action. Furthermore, results from Foulkes and Miall (2000) and Miall
and Jackson (2006) also suggest the presence of a delay component in the internal process for
motion generation. Moreover, they provide estimations for this sensory delay and its effect on
motion-coordination. Smith predictor (Smith, 1959) is one such mechanism which maintains
an internal model of the dynamics combined with an estimate of sensory delay. Haken et al.
(1985) uses such delay to explain the fact that in their finger-tapping experiments, anti-phase
motion falls into synchronized motion after a certain frequency. Haken et al. (1985) study was
limited to individual-action settings where the subject is required to coordinate between left
and right index fingers. However, in the last decade, such phenomena are studied in joint-
action as well. Thus, the idea of synchrony as solution to compensate for delays is extended to
joint-action scenarios. For instance, Naeem et al. (2012) show phase and frequency locking
behaviors even in the absence of visual feedback. They suggest that individuals acquire a
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model for the interaction which enables them for such synchronous behavior.

In summary, this literature pinpoints that human proactive behavior requires prediction
capacities which entail internal forward models. A long-standing goal in pHRI is to endow
robots with similar prediction capacities as to reach robotic proactive behavior. Therefore,
a relevant approach is to draw inspiration from human and develop predictive models for
physically collaborating robots. In this thesis, we take this approach by leveraging state-
dependent DS. Thus, to reach robotic proactivity, we tackle the two following challenges.
First, we investigate whether state-dependent DS can account for such internal forward
models. More precisely, whether human proactive behavior can be explained by an adaptive
DS. Second, we employ an adaptive state-dependent DS both as the motion-planner and the
forward internal model for robotic proactivity toward human-users.

In Chapter 3, we investigate the first problem. We take the established delayed-internal-
model hypothesis and we use tools from adaptive control and dynamical systems to realize
our interaction model. Our model is consistent with the hypothesis that the adaptation in
motor behavior is a direct result of updates in the internal model; see Krakauer and Mazzoni
(2011). In other words, in a leader-follower setting, the follower incrementally builds a model
of the leader’s motion and executes its own motion by using forward prediction based on the
internal model; i.e., proactive following behavior. Chapter 4, we tackle the second challenge.
We implement an adaptive DS for a robotic arm to reach proactivity in interaction with a
human-user; i.e., the robot gradually adapts the DS based on the human motion. Therefore,
instead of passively following the human motions, the robot execute the generated motions
based on the adapted DS.

Finally, motivated by the view developed in Wolpert et al. (2003) that action production and
action observation are performed by the same mechanism, we propose a unified dynamical
system approach for both motion generation and task identification in Chapter 5. In this case,
the observed actions of the human is interpreted using the same dynamical system as for
motion planning. As proposed by Sebanz and Knoblich (2009), the interaction errors between
arobot and a human are interpreted based on the dynamical model representing the task;
i.e., small errors are treated as tracking error and covered by the compliant control, and large
errors are considered as a change in the human intention and compensated by the adaptation
mechanism.

2.1.3 Physical interaction and the role of haptic and compliant behavior

Many coordination tasks require the individuals to be physically coupled to each other. In
such condition, each partner perceives the forces exerted by the others. It has been shown that
tasks can be completed faster when two humans physically interacts; see Reed et al. (2004) and
Reed et al. (2006a) for reaching and Gentry et al. (2005) for periodic tasks. Moreover, Sallnéds
and Zhai (2003) show that error rate decreases for virtual hand-overs when haptic feedback
is present. Similarly, Groten et al. (2010) show that tracking performance for a carrying task
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improves when haptic feedback is provided to the partners. Moreover, the desired forces can
be tracked more precisely as investigated by Masumoto and Inui (2013). Several other works
argue that such advantage are not always present and might be affected by other aspect of the
interaction. For instance, Takagi et al. (2016) demonstrate that the force reproduction accuracy
is strongly biased by facing the partner. Takagi et al. (2018) also reveal that the performance
is affected by both the coupling stiffness and the partners’ individual skills. Furthermore,
Skewes et al. (2015) suggest that the overall performance is affected by adaptability of the
partner; i.e., humans coordinate better with adaptive but irregular partners than predictable
but non-responsive partners indicating that adaptability is more important than predictability.

Forces applied by partners are not always in agreement. Madan et al. (2015) categorize them
into 1) harmonious, 2) conflicting, and 3) passive behavior. One reason for conflicting forces
is to reject disturbances as proposed by Reed et al. (2005) and Reed and Peshkin (2008).
Melendez-Calderon et al. (2015) show that dyad increase their oppositional forces when they
are faced with perturbations. However, beside using this haptic feedback to control the final
desired force and reject disturbances, individuals might use this modality for other purposes.
van der Wel et al. (2011) suggest that dyads amplify their forces to generate a haptic information
channel where they can communicate their intentions. More specifically, Sawers et al. (2017)
and Takagi et al. (2017) demonstrate that individuals communicate their movement goals
through forces. Chauvigné et al. (2017) also argue that the follower in interaction infers
the intended motions based on the forces applied by the leader. Furthermore, Ranasinghe
et al. (2015) show that, beside goals and motions, the individual communicate their level
of confidence by modulating their impedance. For instance, a passive behavior can be an
indicator that the follower is not confident in his/her prediction about the leader intention.

Several studies indicate that haptic channel is also used to negotiate over roles and strategies.
For example, Oguz et al. (2010); Stefanov et al. (2009) demonstrate that partners use conflicting
forces to negotiate over the roles. Likewise, Groten et al. (2009) show that dyads negotiate over
a fair distribution of the required effort. Using the notion of game theory, Braun et al. (2009)
also argue that individuals agree upon their roles and task distribution through force exertion;
i.e., to reach a Nash equilibrium. It has been shown by Ganesh et al. (2014) that individuals
adapt their behavior toward each other when physical interaction is mutually beneficial. For
instance, the partner with lower-force variability produces stronger forces for better force
tracking performance as investigated by Masumoto and Inui (2015). Moreover, Reed et al.
(2006a) demonstrate that dyads develop a strategy where one contributes to acceleration and
the other to deceleration of a carried object. In a similar work, Reed et al. (2006b) show that
dyads develop a temporal strategy where one performs the early parts of the motion and the
other the late parts. They discuss that such strategies reduce the variability and make the
partners more predictable to each other.

Recent development in robotic platform enable the researchers to investigate human arm
impedance properties; see Mussa-Ivaldi et al. (1985); Shadmehr and Mussa-Ivaldi (1994);
Burdet et al. (2001). Ikeura and Inooka (1995) demonstrate that human behavior can be
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represented by an impedance model where the damping parameter is variable; i.e., low for
slow movement and high for fast movements. Todorov and Jordan (2002) and Franklin et al.
(2008) show that in interaction with a passive environment, humans apply forces in order to
minimize a combination of tracking error and effort. This naturally leads to an impedance
control, as proposed by Burdet et al. (2014) and Yang et al. (2011). Wang et al. (2008) use a
human haptic model to implement an impedance controller. Jarrassé et al. (2012) extend this
framework to multi-agents settings where individuals share the cost and agree upon a fair
task-distribution. Therefore, human physical interaction is often regarded as two parts: 1) an
adaptive planner that generates reference trajectories and set-points 2) a compliant controller
(such as impedance) that generates proper forces to track the reference trajectories while
allowing for perturbations.

In summary, we benefit from compliant behavior in our physical interaction with others. The
compliance enables action perception, intention recognition, and adaptation in humans.
For instance, due to the follower’s compliant behavior, the leader is able to communicate
his/her intention through interaction-forces and movements. Moreover, the human follower
complies with the actions of others (i.e., compliance at the motion and force-level) which allows
intention recognition and subsequently action coordination (i.e., compliance at the task-level).
In consistency with the literature, in Chapter 4 and 5, we propose compliant controllers
with adaptive motion-planner. More specifically, we show that DS-based impedance control
along with adaptive dynamical system is efficient in recognizing the intention of a human-
user through the physical interactions. In Chapter 6, we take a similar approach to the
reviewed works indicating that individuals communicate and infer each other’s goal through
interaction forces. Thus, to distinguish between intentional and accidental forces, we simulate
the intended movement behind a perceived external force. Observing a persistent simulated
movement, the robot complies to the external forces.

2.1.4 The mirror game as a framework to study human motion coordination

Despite the fundamental finding of the previous studies on human motion control, they are
limited to single human setting; i.e., a single subject coordinating its action with an external
signal such as an audio beat. Joint activities have been rarely studied, mainly due to the lack
of an experimental paradigm. Noy et al. (2011) adapted the mirror-game - a fundamental
practice in improvisational theater - as an experimental system for studying joint interactions
between two subjects. In this game, two or more players imitate each others’ motions with
or without a designated leader. In their first study, two players imitate each other’s motions
along one-dimensional parallel tracks (Noy et al., 2011). Therefore, the dynamics of the two
players can be investigated quantitatively through their kinematic recordings. Using this setup,
they showed that players exhibit moments of “togetherness” by generating complex, smooth,
synchronized motions without a designated leader.

After its debut in 2011, the Mirror Game has been widely used in the literature. Zhai et al. (2014)
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used this setup to design interactive virtual players for rehabilitation purposes. Gueugnon et al.
(2016) studied the acquisition of socio-motor improvisation. Slowinski et al. (2014) pointed out
the kinematic characteristics of the players. By comparing position and velocity distributions
of the motions, they showed that individuals move differently; i.e. with a specific motion
signature. Affiliation and attachment between individuals in relation to social interaction
using the mirror game was studied by Levy-Tzedek et al. (2017) and Feniger-Schaal and Lotan
(2017). Togetherness and other physiological markers in this game were investigated by Noy
et al. (2015) and Hart et al. (2014). Stowinski et al. (2017) and Cohen et al. (2017b) utilized
this framework to study motion-coordination in Schizophrenia and pin-point some of its
biomarkers. Himberg et al. (2018) examined the relationship between subjective sense of
connectedness in groups and motion synchronization in the mirror game.

The efficacy and simplicity of the mirror game in quantification of human interactions make it
a suitable tool for the first part of this thesis; i.e., investigation of proactive motion coordination
in humans. Thus, we selected this tool to investigate human following behavior in the context
of non-physical interactions. In Chapter 3, we use the mirror game setup in two studies. In the
first study, we develop a mathematical model that can explain the follower’s proactive behavior
in the context of a human leader-human follower interaction. In the second study, we explore
the effect of intention recognition on motion coordination in a mirror game between a human
follower and an avatar leader.

Finally, it is crucial to note that any physical interaction imposes a set of constraints on the
motion of each partner which we discussed in the previous subsection. Nevertheless, in the
mirror game setup used in Chapter 3, the motion of both the leader and follower are free
from any physical coupling/constraints. The motivation behind this choice is twofold. First,
the focus of this chapter is to investigate the follower’s prediction capacity (at the motion-
level) facing a leader who can create complex motions that are not limited to point-to-point
movements. Second, the offered models and frameworks in the literature (often derived
from theories on human arm movements such as the minimum jerk model) are limited to
point-to-point movements (with known initial and final positions) and do not scale to dyadic
interactions where the leader’s motions are unconstrained and unknown.

2.1.5 Avatars as programmable leaders for human-followers

We are currently witnessing a growing number of applications for humanoid robots, androids,
and computer simulated avatars in the context of social interactions; see Meadows (2007),
Ishiguro (2007), and Sakamoto et al. (2007). For instance, Sakamoto et al. (2007) suggest
that in telecommunication, androids can elicit a strong feeling of presence in the operator.
Furthermore, to enhance the social interaction with such artificial agents, researchers have
tried to improve both the visual and behavioral aspects of android and avatars; see Minato et al.
(2004). Among others, gaze behavior is an effective element to enhance social interactions
(Minato et al., 2005, 2006). By using an appropriate gaze behavior, a robot can establish the
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Figure 2.2 — Two subjects playing the mirror game in a leader-follower setup.

participants’ roles in a conversational setting and increase the sense of affiliation among the
individuals (Mutlu et al., 2009, 2012). Robotic gaze aversion (i.e., the intentional redirection
away from the face of the human partner in the interaction) is also perceived by humans as
intentional and thoughtful, which can effectively shape the interaction (Andrist et al., 2014).
Garau et al. (2001) and Garau et al. (2003) have also investigated different gaze behaviors in
avatars where inferred (from voice) gaze behavior enhanced the behavioral realism. It has also
been shown that the duration of a gaze cue, in a social interaction setting, plays a significant
role on the level of co-presence (Bente et al., 2007). Previous studies have shown that, during
verbal communication, active gaze behavior improves avatar liveliness and human-similarity;
see Garau et al. (2003), Bente et al. (2007), and Bailenson et al. (2006). For example, gaze
dynamics (shifts, aversion, and fixation) can influence the sense of affiliation (Mason et al.,
2005). In another study, human gaze has been tracked to orient the avatar gaze in order to
create eye-contact leading to the sense of awareness of others’ gazes in virtual interaction
settings (Steptoe et al., 2008). Moreover, responsive gaze behavior from an avatar can elicit in
a human partner the feeling of being looked at (Yoshikawa et al., 2006). Despite numerous
studies on the realism of avatars (MacDorman et al., 2009; Mori et al., 2012), and the realism of
simulated gazes in virtual environments (Garau et al., 2003), little is known about the effects
of avatar gazes in social motor coordination. In particular, it is unclear whether in joint action
settings, avatars can effectively simulate natural gaze behavior, and whether human partners
can benefit from it.

Similarity is believed to be an important factor for affiliation/attraction (Byrne, 1961; Lydon
et al., 1988). Thus, it would be interesting to see if the same principle can be applied to the
avatar-robot (or human-robot) interaction, where a different aspect of similarity — gaze cues
in our case — can boost affiliation. To increase realism in animated avatars, several models
of gaze have been proposed; see Ramaiah et al. (2013) as an example where the avatar head
moves between poses according to the desired gaze behavior. To create human-inspired
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interactions, the avatar gaze has been programmed to be reactive to the human gaze that is
tracked with wearable devices (Kipp and Gebhard, 2008) or cameras (Fu et al., 2008). Moreover,
as the avatar’s hand was used for the mirror game, models suggested for human eye-hand
coordination can be helpful in increasing behavioral similarity between avatars and humans.
However, such proposed models in the literature are highly task-dependent; see Liesker et al.
(2009) for search, Bowman et al. (2009) for sequential target contact, Coen-Cagli et al. (2009)
for drawing, and Lazzari et al. (2009) for rhythmical pointing tasks. Therefore, in Chapter 3,
to keep the analysis simple, robust, and interpretable, we limit our gaze-hand model to a
simple delay of 500ms. This model is indeed in line with previous findings in Volcic and
Lappe (2009) and Khoramshahi et al. (2014). The results of Chapter 3 confirm that gaze cues
preceding hand movements help the human partner with the action-prediction process which
consequently improves the coordination. Furthermore, and tangential to the mainline of this
thesis, in Appendix A, we show that such gaze behavior also helps the human partner with the
perception of human-likeness. This shows that similarity-affiliation effect persists in the case
of motor coordination with an avatar utilizing simple gaze behavior.

2.2 Intention recognition through physical human-interaction

The applications of pHRI are multifarious: carrying and installing heavy objects (Kim et al.,
2017a; Lee et al., 2007), hand-over (Strabala et al., 2013), cooperative manipulation and
manufacturing (Peternel et al., 2014; Cherubini et al., 2016), and assistive tele-operation
(Peternel et al., 2017a). While the field of pHRI is rapidly expanding, the role of most robots in
the interaction falls into two extreme cases:

1) Passive followers (PF): whereby reducing the interaction forces and spatial error (i.e., compli-
ance at the force-level), the robot provides a passive following behavior. This approach has the
advantage that the human can lead the task (i.e., decide on the desired trajectory), however,
the robot cannot provide power/effort in the direction of the uncertainties (i.e., due to the
human intentions). Carrying heavy loads in collaboration with human (Bussy et al., 2012b) is
the rudimentary example where the robot only provides support in the direction of gravity but
fails to assist in the human-intended direction of movement where it even increases the total
mass.

2) Active leaders (AL): where the robot executes a pre-defined task while allowing for safe inter-
actions with environment and tolerating for small perturbations; i.e., achieving compliance at
motion and force-level as proposed by Kronander and Billard (2016)), this approach has the
advantage of minimizing the human effort. Nonetheless, if the robot is pre-programmed to
accomplish only one task, any human efforts to perform a different task (in the course of the
interaction) will be rejected.

Evrard and Kheddar (2009) and Li et al. (2015) proposed different control architectures that
explicitly modulate the role of the robot (between follower and leader). However, one could
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aim for approaches that benefit from the advantages of both PF and AL. For example, the
robot passively follows the human guidance initially and predicts the future desired motions
by recognizing the underlying task. Then, the robot takes over the leadership by executing the
recognized task. This capacity to act upon predicted motions results in a proactive behavior
toward human leadership. To achieve this, many predictive models for human behavior have
been proposed. For instance, Petric et al. (2016) proposed to use Fitts’ law to predict human
movements. As another case, Leica et al. (2017) suggested a model based on mechanical-
impedance that predicts human motions based on the interaction forces. Other approaches
were suggested to learn the dynamics of the collaboration (including control and prediction
dynamics) (Rozo et al., 2013; Ghadirzadeh et al., 2016). Moreover, most of the approaches in
the literature tackle the prediction problem in the framework of impedance control. In the
next section, we review the related literature on impedance control as we use this approach
throughout this thesis. Moreover, to reach proactive and adaptive behavior we address the
prediction capabilities at three different levels:

* Motion-level: In Chapter 4, we adapt the robotic motion (generated by DS) to those
demonstrated by a human user; i.e., the robot complies to the intended motions.

e Task-level: In Chapter 5, through physical interaction, we recognize the intended task of
a human-user; i.e., the robot complies to the intended tasks.

 Force-level: In Chapter 6, using admittance control and processing the external forces,
we distinguish between intentional and accidental forces; i.e., the robot complies to
intentional forces.

Regarding our approach toward proactivity in pHRI, in the following, we review the related liter-
ature for impedance control, DS-based motion planning, motion-adaptation, task-adaptation,
and human-guidance detection.

2.2.1 Compliant control: from passive-follower to compliant-leader

A conservative approach toward pHRI is to ensure a passive interaction; e.g., the kinetic
energy of the robot dissipates over time. The control strategies proposed by Hogan (1988)
provide straightforward formulations (impedance and admittance) for such passive and
compliant interactions. We review the technical details of impedance and admittance control
in Section 2.3. In its simple form, the robot renders a mass-spring-damper behavior around a
reference trajectory; e.g., a set-point with zero-velocity. Having proper parameters (i.e., inertia,
damping and stiffness matrix), one can achieve passive interaction with the environment.
Considering only the damping part allows the robot to passively follow the external forces;
i.e., passive-follower. This is useful for transportation tasks (especially for mobile platforms as
in Kang et al. (2010)) or manipulation tasks where a different and more suitable inertia and
damping is rendered for the human user as in Duchaine and Gosselin (2007). However, this
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way, the robotic behavior is limited to a passive-follower where the robot appears as a static
mass-damper or a mass-spring-damper.

Based on the advancement of variable impedance control (Vanderborght et al., 2013), many
approaches aim for the dynamic optimization of impedance parameters to achieve a desir-
able compliant behavior during human-robot interaction (Duchaine and Gosselin, 2007).
Duchaine and Gosselin (2007) show that varying the compliant behavior can improve the
interaction from the user point-of view. To go further and achieve a human-like compliant
behavior, Ganesh et al. (2010) proposed an adaptation method based on human motor behav-
ior which was shown to be effective in human-robot interaction settings by Gribovskaya et al.
(2011).

Instead of a set-point, the robot can exhibit the compliance behavior around a reference
trajectory; i.e., a compliant-leader in the interaction. This trajectory can be pre-computed
(Ferraguti et al., 2013), or can be generated reactively depending on the state of the robot
(Kronander and Billard, 2016). Beside the optimization of the impedance parameters, other
approaches aim to achieve a desirable behavior by optimization of the impedance set-points;
see Maeda et al. (2001) and Corteville et al. (2007). To be effective, this approach requires
motion estimation and planning under human-induced uncertainties which is tackled in the
literature by means of optimal and adaptive control (Medina et al., 2012; Li et al., 2016, 2017),
machine learning techniques (Calinon et al., 2014; Medina et al., 2011), and more specifically
reinforcement learning (Modares et al., 2016). These works, to some extent, rely only on a
local anticipation of human motions which, nevertheless, lowers the human effort (Evrard
and Kheddar, 2009) and increases transparency (Jarrassé et al., 2008). Regarding this literature,
human-intention recognition is only addressed at the motion and force-level (see Fig.1.3).
However, the proactivity of robotic systems can tremendously benefit from adaptation at the
task-level where the robot adapts its task to those intended by the human-user. In Chapter 5,
we contribute to this literature by recognizing and adapting to the human-intended task.

In Chapter 6, we explore the advantages of admittance control for pHRI application; i.e., the
robot senses the interaction forces and responds with proper velocities. This controller is
widely used in the literature of pHRI: collaborative assembly (Cherubini et al., 2016), insertion
tasks (Mol et al., 2016). By responding to human forces, the robot can provide a simple fol-
lowing behavior as in Duchaine and Gosselin (2007). Moreover, human trajectory estimation
can provide proactive following behavior (Jlassi et al., 2014). Duchaine and Gosselin (2009)
and Ranatunga et al. (2017) proposed a method to adapt to human stiffness as to generate
cooperative movements. Admittance control is also suitable for whole body control of robots
such as arm-based platform (Dietrich et al., 2012). Hashtrudi-Zaad and Salcudean (2001) argue
that performances of this controller depend on the stiffness of the environment and propose a
method to switch an impedance controller to have the accuracy of admittance control in free
motion with the robustness of the impedance controller. Campeau-Lecours et al. (2016) also
argue that admittance control is suitable to perceive the environment and human intentions
and to respond accordingly. They mention that the behavior is acceptable if the reference
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trajectories are highly dynamics. Moreover, the performance of impedance controller in terms
of tracking performance and compliant behavior is contradictory; i.e., high impedance gains
result in precise tracking performance but stiff behavior toward the environment whereas
low gains provide compliant interaction but poor tracking performance. However, in admit-
tance control, the tracking performance (often provided by high-gain velocity controller) and
compliant behavior (controlled by the admittance block) are decoupled and work in parallel.
Therefore, admittance control provides a simple solution toward compliant leader behavior:
the resulted velocities from the external force can be simply added to task-specific velocities.
This idea is used in Corteville et al. (2007) and Shahriari et al. (2017). In Chapter 6, we use the
same approach to combine task-specific motion planning with proper compliant behavior.

2.2.2 Reactive motion planning using dynamical systems

To endow robots with leader behavior, we employ state-dependent dynamical systems as
motion generators. Such DS can be learned through human demonstrations and provide stable
and convergent trajectories (Khansari-Zadeh and Billard, 2011b). The state-dependency of DS
provides a reactive behavior; i.e., the external perturbations to the state result in a different
desired velocity. Moreover, considering the storage-function related to the DS leads to simpler
design of passive interaction with the environment while performing a task (Kronander and
Billard, 2016). Furthermore, DS provides a strong framework for adaptive motion generation.
To do so, the dynamics can be modulated based on a external signals; e.g., Gribovskaya
et al. (2011) use external forces to perform a collaborative task, Sommer et al. (2017) use
contact information to avoid obstacle, Medina et al. (2016) use the load-share to obtain a fluid
hand-over, and Khoramshahi et al. (2018) use tracking error to refine a DS based on human
guidance. DS provide a computationally light motion planning which allows for smooth
transient behaviors. However, tracking a trajectory potentially undermines the passivity of the
system. Energy tank-based controllers were employed to relax the conservative condition on
the passivity (Ferraguti et al., 2015; Schindlbeck and Haddadin, 2015; Kronander and Billard,
2016); i.e., the robot can be temporally active and injects energy into the environment while,
on average-over-time, stays passive. Generating motion using dynamical systems with their
corresponding storage functions (as proposed by Kronander and Billard (2016)) allows us
to investigate and control the passivity of the whole system easier. Same approach is used
by Shahriari et al. (2017) to include the energy due to the motion planning using Dynamic
Movement primitives. The literature of robotic compliant control clearly shows the efficacy
of the proposed methods to generate a “single” desired behavior (e.g., compliant leader,
passive or proactive follower). However, it falls short from providing robots with intelligence
mechanism for detecting the proper behavior and switching mechanisms that are proved to
be safe and stable.

Taking advantage of state-dependency of such dynamical systems, we are able to propose three
different adaptive strategies in this thesis. In Chapter 4, by adapting DS parameter, encoding
for geometrical transformation, the robot complies to human demonstrated motions. In this
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case, the robot acts as an adaptive leader. In Chapter 5, we propose an adaptive mechanism
to switch smoothly from one DS to another, each encoding for a different task, to comply to
human interactions. During such adaptation, the robot acts as an proactive follower where, as
it complies to human forces, it forms prediction about human-intended task. In Chapter 6,
DS-based admittance control allows for transition between leader and follower behavior. In
presence of human-guidances, the robot acts a proactive follower whereas, in the absence of
such guidances, it acts as a leader with proper tracking performance and disturbance rejection
capabilities.

2.2.3 Motion-adaptation based on physical human-interaction

As mentioned before, the impedance parameters (e.g., inertia, damping, and stiffness) al-
low for adaptation methods to achieve various control objectives: to adapt to human forces
(Abu-Dakka et al., 2015), human compliant behavior (Ganesh et al., 2010), or human intended
set-point (Corteville et al., 2007). While these approaches are very effective to locally and
temporally adapt to the human physical-interactions, they are limited in adaptation to hu-
man intention with regard to the underlying task. On the other hand, incremental learning
approaches focus on the learning of a task as a whole through several interactions with the
environment or the human user; see Abi-Farraj et al. (2017), Maeda et al. (2017a), and Lee and
Ott (2010). Several techniques can be envisioned to accommodate the new experiences. For
instance reinforcement learning can be used to learn the dynamics of physical interaction with
human Ghadirzadeh et al. (2016), or learn to stay in contact with a surface properly (Hazara
and Kyrki, 2016). In Jlassi et al. (2014), optimal control is used to improve the trajectories for
heavy load-carrying with a human. These methods can learn from small corrections made
by the human during each interaction in order to achieve their goal; see Sauser et al. (2012).
These demonstrations can take place through physical interaction with the robot; see Cho
and Jo (2013), Ewerton et al. (2016), Tykal et al. (2016), and Lee and Ott (2011) for kinesthetic
teaching. However, the fact that in most current approaches the learning and execution phases
are disjoint and defined by the human supervisor limits reaching a seamless interaction.

The interaction can be more effective if the robot learns proper motion regarding different
human intentions and during the execution phase, the robot only adapts to the proper already-
learned motion based on human interaction. Simple robotic tasks, such as polishing and
pick-and-place, can be improved by adapting to the intention of the human user. For example,
adapting to the human desired forces can improve the quality of a polishing task as shown by
Kabir et al. (2017), Oba et al. (2016), and Schindlbeck and Haddadin (2015). This task can be
improved further by adapting to the human desired patterns. In another example, adaptive
behavior was provided for pick-and-place task where the target locations were determined
using visual guidance (Quintero et al., 2015) or natural language (Schulz, 2017). In Kastritsi
et al. (2018), use varying stiffness to reshape the movement primitives. In Chapter 4, we
propose adaptive motion planning for such tasks based on the physical interactions. To do so,
we employ parameterized dynamical systems (DS) which show flexibility toward numerous
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possible human-intentions. For instance, in Peternel et al. (2017b); Gams et al. (2014) the
parameters of a time-dependent DS are adapted to achieve a desired force during human-
robot interaction. However, an adaptive time-dependent DS captures only the temporal aspect
of the input signal (e.g., phase lags and offsets). In Chapter 4, to capture the spatial aspect
of the human intention (e.g., where to polish or pick/place), we employ state-dependent
dynamical systems (Khansari-Zadeh and Billard, 2011b). By treating the human as a state-
dependent reference model (with the intended parameters), we propose and analyze our
adaptive mechanism in Chapter 4.

2.2.4 Intention-recognition and task-adaptation

The amount of previous efforts addressing adaptation at a task level is sparse. Bussy et al.
(2012a) employed a velocity threshold to trigger a new task (e.g., switching from “stop” to
“walk” while carrying an object). As reported, such hard switching results in abrupt movements
which are required to be filtered to reach human-like motions. Pistillo et al. (2011) proposed
another framework (based on dynamical systems) where the robot switches between tasks if it
is pushed by its human-user to different areas of its workspace. Although this approach leads
to a reliable and smooth transition between tasks, such human-intention recognition strategy
(i.e., based on the location of the robot in the workspace) is not efficient; e.g., each task needs a
considerable volume of the workspace to be functional, and the robot cannot switch between
different tasks in the same area of the workspace. Moreover, there has been recent interesting
methods to encode several tasks in one model Ewerton et al. (2015); Calinon et al. (2014); Lee
et al. (2015), and disjointly, several works to recognize and learn the intention of the human
Aarno and Kragic (2008); Bandyopadhyay et al. (2012); Wang et al. (2018); Ravichandar and
Dani (2015). Only recently, Maeda et al. (2017b) and Tanwani and Calinon (2017) proposed
probabilistic models that not only encode for different tasks, but also act as an inference
tool for intention recognition. Furthermore, in another recent work, Noohi and Zefran (2017)
proposed a interaction model that allows for intention-recognition based on interaction forces.
However, they do not address the online and physical interaction between the human and
the robot. The goal of Chapter 5 is to address these issues and provide a smooth transition
between tasks with an efficient human-intention recognition strategy that allows for seamless
physical interaction between a human and a robot.

2.2.5 Human-guidance recognition

Human-guidance is a central topic in collaborative robots. The human can supervise the
robot task and through his/her guidances modifies the task. Nevertheless, for a robust collab-
oration, it is crucial for the robot to distinguish between human-guidances and other possible
disturbances. Human-guidance can be given through several modalities and contextual infor-
mation such as vision, natural-language processing, etc. However, in this thesis, we focus on
the haptic channel, namely relying on the external forces sensed by the robot, as literature
presented in Section 2.1.3 emphasizes the central role of the haptic channel in performing

31



Chapter 2. Background and related work

physical joint actions. Benefiting from human-guidances in collaborative robots imposes two
challenges. First, it is essential for the robot to distinguish between human-guidances and
other undesirable interaction forces. Second, a reaction strategy which ensures the stability
and performance of the system is crucial. Among solutions proposed in the literature, admit-
tance control is suitable to detect and react to human guidances while performing a task. This
controller can provide the proper behavior by filtering/modifying measured forces. This is not
the case in impedance control where the input is a displacement. The literature of collision
detection exploits this fact. The robot rejects small external forces and delivers a satisfactory
tracking behavior. It only reacts to forces detected as collision. Detection algorithms rely
on the assumption that collisions result in a fast rate of change in different quantities such
as input power (De Luca et al., 2006), generalized momentum (He et al., 2015) and external
forces (Haddadin et al., 2008; Cho et al., 2012). The collision is detected if the magnitude of
such signals surpasses a certain threshold. This threshold can be adapted over time based
on the evolution of the force signal as proposed in Makarov et al. (2014). More elaborated
methods use the difference between real and nominal dynamics (Landi et al., 2017). Kouris
et al. (2018) suggest to use frequency domain approaches to distinguish unexpected collisions
from voluntary contact during human-robot collaborations. Interestingly, they conclude that
admittance control provides the fastest reaction behavior. Reaction strategies are also of
interest to our work where the robot switches from active to passive mode; as in Li et al. (2018)
where the robot switches from position control to a passive torque-control upon collision with
a human user. In contrast, we use a unified control architecture (i.e., DS-based admittance
controller with human-guidance detection) which allows us to smoothly switch back and forth
between active and passive modes.

Even though detection of human-leadership is s