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ABSTRACT
A new method for calibrating optical scanning profilometers is presented. Especially adapted to spherical and aspherical
profile measurements, it shows an increase of accuracy bigger than one order of magnitude for radius of curvature mea-
surements. Calibration of vertical scaling is obtained with a reduction of its uncertainty by a factor larger than 2, which
also demonstrates the advantage of this method for any surface measurements. Using commercially available reference
balls, this method is easily implementable.
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1. INTRODUCTION
Spherical and aspherical surfaces are of great importance in optics. Fabricating high quality surfaces is challenging,
especially at the microscale level. Fabrication process optimization requires continuous feedback and the manufactured
surfaces therefore need to be measured. In particular, the deviation from the target surface has to be quantified in order
to minimize it. In micro-optics, this characterization is usually done with optical scanning profilometers such as confocal
microscopes and coherence scanning interferometers (CSIs). For spherical surfaces, the radius of curvature (ROC) defines
the surface whereas aspherical surfaces additionally require the conic constant κ. Measuring these parameters with high
level of confidence is crucial for process optimization. The level of accuracy which can be obtained is directly linked with
the profilometer calibration. Normally, this calibration is achieved using step standards and periodic structure standards
to calibrate the vertical motion and the magnification, respectively [1]. For state of the art micro-optical applications, the
uncertainties of the standards can be as large as the manufacturing tolerance. To solve this issue, a new calibration method
is proposed. It consists in using a reference ball, whose global ROC is known with very high accuracy. Measuring the
surface of this ball with the optical profilometer at random locations, similarly to what is done in wavefront calibration for
interferometers [2], provides a distribution of local ROCs whose average coincides with high confidence to the certified
ROC of the ball when the profilometer is calibrated. Thereby, the ratio between uncalibrated local ROC distribution and
the certified ROC gives important calibration information. With this approach, the uncertainty of ROC and conic constant
measurements can be reduced to up to one order of magnitude.

2. METHODS
Optical scanning profilometers such as confocal microscopes or CSI record multiple 2D images while scanning along the
vertical direction. This allows the reconstruction of a surface on a certain area defined by the field of view (FOV) of the
microscope objective (MO). The magnification of the objective provides the lateral (x, y) scaling whereas the scanning
actuator - generally a piezo - gives the vertical one. In order to correctly measure the surface, the calibration of the
magnification and of the vertical motion is of central importance. Usually, the determination of the vertical calibration
factor is done by measuring a reference step whereas the measurement of periodic structures gives the lateral calibration
factor. By definition, the vertical calibration factor α is given by z′ = αz, where ′ denotes the uncalibrated z coordinate.
Respectively, the lateral calibration factor β is defined by x′ = βx and y′ = βy.
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Any aspherical surface can be expressed in cartesian coordinates as [3]
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where R is the asphere ROC and r =
√
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An asphere is thus transformed into another asphere. By identification, the uncalibrated ROC is given by

R′ =
β2

α
R
def
= γR. (3)

Likewise, the uncalibrated conic constant κ′ is given by

κ′ =
β2

α2
(κ+ 1)− 1. (4)

The measurement of the uncalibrated ROC provides the ratio between β2 and α, what we call γ. It is the only calibration
factor when measuring the ROC of aspherical surfaces. For a calibrated system, the uncertainty in the ROC measurement
is given by the uncertainty of the calibration factors, which is at least the uncertainty of the certified standards. The values
of u(α) and u(β) are taken from traceable standards provided by national institutes of metrology such as NIST or METAS.
They correspond to the standard uncertainty [4]. This leads to
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= 0.27%. (5)

In the same way, the uncertainty of the conic constant is

u(κ) = 2(1 + κ)
√
u(α)2 + u(β)2, (6)

which is a function of the conic constant itself. For the spherical case, u(κ) = 0.0052.

If only spherical surfaces are considered, the conic constant is set to 0 and is no longer a parameter. The ROC of the
best sphere fit is thus different from the ROC of the best asphere fit, as well as their uncertainties. In a certain way, the
uncertainty of the conic constant is added to the best sphere fit ROC uncertainty. In this case, it depends on the ROC and
on the FOV. Figure 1 shows the ROC uncertainty which has to be added when going from aspherical to spherical surfaces.
Combinations of ROC and FOV are taken to be physically measurable in reflection by the profilometer. This uncertainty
becomes larger when ROC ∼ FOV. However, spherical microlenses fulfilling this condition have a large amount of spherical
aberration and should not be designed without a conic constant. The maximal uncertainty of the ROC becomes 0.28% in
the worse case.
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Figure 1: Uncertainty of ROC when performing a best sphere fit on an aspherical surface, u(κ) = 0.0052.

Proc. of SPIE Vol. 10692  1069207-2
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 2/4/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



700.5 701

4* 100

50

0
699 699.5 700

ROC (µm)

Usually, allowed tolerances on microlenses ROC can reach ±1.5%, which is about 6 times the derived standard un-
certainty. This is problematic since a large part of the tolerance is taken away by the characterization and little tolerance
remains for the fabrication process. This invariably decreases the production yield. To overcome this limitation, the use of
a reference ball to obtain the calibration factor γ is proposed. The certified ROC uncertainty of such a ball is in the order
of 0.007%, which is 40 times less than the uncertainty derived for ROC measurements. However, this certified uncertainty
cannot be directly applied to ROC measurements which are defined only on the FOV area of the MO. These local ROCs
are indeed different from the global ROC since the ball is not perfect. However, simulations allow to link local ROCs
measured with optical scanning profilometer to the global ROC to benefit from the small uncertainty of the global ROC of
the ball.

3. SIMULATIONS
The idea is to simulate a non-ideal reference ball which corresponds to the real one and to simulate ROC measurements by
optical profilometers at different locations on it. The comparison between the local ROC distribution and the global ROC
allows an accurate determination of the calibration factor γ.

The real ball is represented by adding a sum of orthogonal polynomials to the perfect ball. In spherical coordinates, the
surface of a real ball can be written [5] as

ρ(θ, φ) = R0 +
∑
l

∑
m

al,mYl,m(θ, φ) (7)

with Yl,m the spherical harmonics and al,m their corresponding coefficients. The key step is to choose the unknown
coefficients al,m to represent the real ball accurately. The simulated ball must give similar values in comparison with the
real ball for two quantities. The first one is the sphericity error which is defined as the peak-to-valley value of the deviation
from the best fit sphere. The second one is the local ROC distribution which is obtained experimentally from the real ball.
To fulfill these conditions, the function

al,m = a0(l,m)e−(l+|m|)/N (8)

is used. The coefficients a0(l,m) and N are free parameters.

Local ROC measurements are simulated to correspond to measurements performed with the profilometer. This means
randomly selecting a reduced area of the size of the FOV, and fitting Eq. 1 to obtain the ROC at this location. Figure 2 shows
the local ROC distribution for 1000 simulated surface measurements at different locations of a simulated ball. Global ROC
= 700µm, the amplitudes a0(l,m) are random numbers equally distributed between 0 and 0.025µm and N is equal to 22.
The sphericity error is 100 nm. The average of this distribution is 700.002µm and the standard deviation is 0.25µm. This
shows that for almost perfect balls, the average of the local ROC distribution coincides with a high accuracy to the global
ROC. This thus links local ROC measurements at random locations to the global certified ROC.

Figure 2: Distribution of simulated local ROC measurements on a sphere with ROC = 700µm and a sphericity error of
100 nm.
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4. CALIBRATION EXAMPLE
As an example, a ruby ball with a global ROC of 700µm is used to obtain the calibration factor γ for the 50x MO of a
CSI. So far, the repeatability of the profilometer has not been considered. Indeed, the repeatability of the tool makes one
measurement of a local ROC a random variable. The measured local ROCs distribution is consequently the convolution of
the repeatability distribution and the local ROCs distribution. In order to take into account this effect, the repeatability of
the tool is characterized by measuring one local ROC 50 times in a row. Results are presented in Fig. 3.

Figure 3: Distribution of ROC measurements of the same surface: µ = 698.29µm and σ = 0.15µm.

The distribution is centered at 698.29µm and has a standard deviation of 0.15µm. By modeling this distribution with
a Gaussian distribution, it is possible to perform the deconvolution in order to get the real local ROCs distribution.

The local ROCs distribution is then obtained by measuring the local ROC at 50 randomly chosen locations. The
distribution of the local ROCs is presented in Fig. 4.

Figure 4: Distribution of local ROC measurements at different locations: µ = 698.27µm and σ = 0.33µm.

The distribution is centered at 698.27µm and has a standard deviation of 0.33µm. From Eq. 3, the factor γ is given by

γ =
R′

R
=

698.27

700
= 0.9975. (9)

The uncertainty of this coefficient is obtained by simulation. The standard deviation of this distribution as well as the
certified value sphericity error, 100 nm, are used to set the coefficient in Eq. 8. The maximal amplitude a0 is set to 0.025
and N to 22. By simulating 100 times the 50 local ROCs practical measurements, the distribution of the average of the
local ROCs is obtained, see Fig. 5. The uncertainty to take the average of the 50 local ROCs measurements as the value of
the global ROC is taken to be the standard deviation, i.e. 0.05µm.
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Figure 5: Distribution of the average of 50 local ROCs measurements at different locations: µ = 700.002µm and σ =
0.05µm.

The uncertainty of the γ coefficient is finally given by the addition of the uncertainty of the certified global ROCRgwith
the uncertainty of the average value of local ROC distribution Rm. Precisely,

u(γ)

γ
=

√(
u(Rg)
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+
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)2

= 0.01%, (10)

which is 27 times better than with the traditional standards, see Eq. 5. From Eq. 3 this is also the uncertainty on ROC.
It is worth noting that this uncertainty, mainly statistical, can be reduced if the number of measurements is increased. The
uncertainty of κ is also reduced to 0.0015 as well as the uncertainty which arises from fitting a spherical surface on an
aspherical surface, see Fig. 6. The maximal uncertainty of best sphere fit ROC becomes 0.022% (vs 0.28%) which is still
an improvement bigger than one order of magnitude.
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Figure 6: Uncertainty on ROC when performing a best sphere fit on an aspherical surface, u(κ) = 0.0015.

5. APPLICATION TO STANDARD CALIBRATION
By obtaining the factor γ with the local ROC measurements, there are now three ways to obtain the two coefficients α and β
necessary for the calibration: the step and periodic structure standards and the reference ball. In summary, the uncertainties
of the different coefficients are

u(α)

α
= 0.25%,

u(β)

β
= 0.075%, and

u(γ)

γ
= 0.01%. (11)
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Thus this suggests using the ball measurements instead of the step standard to obtain α. In this case, the uncertainty
becomes, using Eq. 3,

u(α)

α
=

√(
u(γ)

γ

)2

+ 2

(
u(β)

β

)2

= 0.11%, (12)

which increases the accuracy by a factor of 2.27. This demonstrates that this method is also well suited to calibrate an
optical scanning profilometer regardless of the application.

6. CONCLUSION
A new calibration method for optical scanning profilometers is presented. It uses a reference ball whose global ROC is
known with a high accuracy of 0.007%. Measuring multiple local ROCs at random locations allows to benefit of this small
uncertainty. With this approach, ROCs of aspherical and spherical surfaces are determined with a gain in accuracy over
one order of magnitude. It also increases by a factor of more than 2 the vertical calibration confidence, decreasing the
uncertainty from 0.25% to 0.11%. This calibration method is thus believed to improve the characterization of spherical
and aspherical microsurfaces and therefore, the quality of microelements such as microlenses.
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