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ABSTRACT: The Minnesota family of exchange-correlation
(xc) functionals are among the most popular, accurate, and
abundantly used functionals available to date. However, their
use in plane-wave based f irst-principles MD has been limited by
their sparse availability. Here, we present an implementation of
the M05, M06, and M11 families of xc functionals within a plane
wave/pseudopotential framework allowing for a comprehensive
analysis of their basis set dependence. While it has been
reported that in Gaussian bases some members of the
Minnesota family only converge slowly to the basis set limit,1

we show that converged energies can be conveniently obtained
from plane waves if sufficiently dense integration meshes are
used. Based on the HC7/11 database, we assess the influence of
basis set type on the calculation of reaction enthalpies and show that complete basis set values obtained in plane waves may
occasionally differ notably from their atom-centered counterparts. We provide an analysis of the origin of these differences and
discuss implications on practical usage.

1. INTRODUCTION

Density functional theory (DFT)2 in its Kohn−Sham (KS)
formulation3 is one of the fundamental pillars of modern-day
computational chemistry. Large systems of several hundreds of
atoms can presently be treated. This is vital for the description
of condensed matter systems with f irst-principles molecular
dynamics (MD) simulations, in which thermodynamic proper-
ties can be obtained as time-averages at finite temperature.
Even larger systems can be routinely treated using mixed
quantum mechanics/molecular mechanics (QM/MM)4 ap-
proaches and with computational power ever increasing, the
time scales that can be sampled are growing continuously, thus
decreasing the statistical error. Powerful enhanced sampling
methods have helped to reduce the time scales that have to be
simulated, and at present, the error due to the sampling can
become smaller than the error of the underlying potential
energy surface (PES). The accuracy of the underlying
exchange-correlation (xc) functional therefore becomes an
increasingly dominant factor. The reliability of the underlying
PES will not only be influenced by the choice of functional but
also by the basis set used to expand the density. Some
functionals may be particularly sensitive to the choice and size
of basis.1,5,6 A plane wave expansion offers the intrinsic
advantage of convergence control via a single parameter, the
cutoff energy Ecut. A plane wave description is therefore ideally
suited whenever a highly flexible, delocalized basis set is
needed in order to obtain converged PES.

If KS-DFT has become abundantly used, then this is not at
least due to the vast effort, persistence, and creativity that have
been invested in the development of approximate forms for the
unknown xc functional. This fundamental problem can be
approached in many different ways.7,8 In some philosophies,
functionals that contain as few free parameters as possible are
generally preferred; the free parameters of such functionals are
obtained from physical constraints and limits.9 In another
school of thought, a design that is directly fit to
thermochemical data is considered nothing but an extension
of basic physical constraints to the chemical world.10,11 Such
an approach may be taken even further by obtaining free
parameters not from atomic data but by resorting to larger
databases of thermochemical and structural data.12,13 Even if
the foundations of the different approaches to the problem
may not be the same, they have ultimately been guided by the
very same goal of improved accuracy and reliability.
A very prominent example of the latter philosophy is given

by the widely used family of the Minnesota functionals,12−19

which have been developed by the Truhlar group. Many
prominent functionals have been derived to offer one single
functional that is as versatile as possible. Instead, the
Minnesota philosophy aims to find the best possible perform-
ance for a given functional model and for a certain range of
systems. Based on a given functional form, the free parameters
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are optimized according to different constraints: Certain parts
of a test set may or may not be included in a given fit, and the
functional form may or may not include an exact exchange
contribution. Therefore, for every new generation of the
Minnesota functionals, different variants have been developed,
each with specific advantages in a certain regime but sharing a
basic functional form. This approach has proven to be highly
successful for many chemical problems.13,20 Even though the
early members of the Minnesota family, the M0514,15 and
M0612,16,17,21 group of functionals, have since been superseded
by more accurate models, the M06 family is still vastly popular
in computational chemistry, as shown in Figure 1 by the rate of
citations per year for the seminal M06 paper.

Along with the advent of empirically optimized functionals,
several databases have been created which can be used both for
the fitting of free parameters in functional development as well
as for performance assessment.7,13,22,23 The HC7/11 database
(Figure 2), for instance, gathers difficult hydrocarbon reaction
enthalpies,12,22−24 including a set of particularly challenging
isodesmic reactions. Truhlar and co-workers have shown that
all functionals of the M06 family (i.e., M06-2X, M06-HF, M06-

L, and the parent M06 itself) outperform the other
contemporary xc functionals, including the still very popular
B3LYP;25,26 and similar trends were found for other data
sets.13,20

In the case of the CT7/04 set of charge-transfer dimers,22

the performance of the Minnesota functionals was either
superior (M06-2X, M06-HF, M05) or at least on par (M06)
with the best non-Minnesota xc functionals considered in the
study12,23 (B97-3).27

Despite such an encouraging performance, the underlying
approach has also been met with scepticism.1,8 It has been
argued that a fit that is not based on physical limits may
deteriorate the formal qualities of a functional (however, all the
Minnesota functionals are constrained to fulfill the UEG limit).
Mardirossian et al.1 have shown that in an atom-centered basis
of Gaussian functions, the energetics of some members of the
Minnesota functional family converge remarkably slowly and
may at first appear not to converge at all. By analyzing the
inhomogeneity correction factors of the slowly converging
functionals, they have shown that slow convergence correlates
with either large correction factors for certain limits of the
working function or with the occurrence of positive energy
densities. The slow convergence of certain Minnesota
functionals is also reflected in a high sensitivity toward basis-
set superposition errors (BSSE).1 Since the Minnesota
functionals have been fit employing a specific basis set, the
reference results can often only be obtained for the same (or a
very similar) basis; while changing the “balance” of the basis
set, or even approaching the basis set limit, may also change
the energetics by up to a few kcal mol−1. However, in many
practical applications, functional/basis set combinations are
benchmarked against accurate reference data13 and then used
in that specific configuration. In these cases, a given functional/
basis set combination may be found to be accurate, even
though the basis set limit values might show larger deviations
with respect to the reference data than the combination
adopted. From a theoretical point of view, however, the
possibility of reaching convergence systematically and assessing
the performance of a functional with a fully converged basis set
is certainly desirable, in particular concerning the trans-
ferability of the results.
The study by Mardirossian et al. was conducted by

expanding the density in atom-centered Gaussian functions.
Inspired by the concept of overlapping atomic orbitals, atom-
centered functions, and in particular Gaussians, are probably

Figure 1. Citations per year for the seminal M06 paper12 (source:
webofknowledge). As of July 2018, the paper has accumulated a total
of 10545 citations, making it the most cited of the Minnesota papers.

Figure 2. HC7/11 set of difficult hydrocarbon reactions.12
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the most prominent choice of a basis set. However, the
electron density may as well be expanded in other functional
forms that need not necessarily be localized in space.
Delocalized bases such as plane waves offer particular
advantages beyond a simple control of convergence: Neither
do Pulay forces occur,28 nor are basis-set superposition effects
of any concern. This comes at the price of having to pseudise29

the effect of the core electrons; but the error due to this
procedure has been shown to be negligible for the vast
majority of chemically relevant properties of main group
elements.6,29 These features make plane waves not only
intrinsically suitable for f irst-principles molecular dynamics but
also for the calculation of quantities that are sensitive to basis-
set superposition or that require multiple long-range functions.
In a plane wave basis, the convergence of some property is
monitored by increasing the cutoff energy of the highest-
frequency reciprocal space vector. This makes plane waves
ideally suited for the assessment of xc functional convergence,
since the basis can be systematically increased until the basis
set limit is attained. These features enable systematic
convergence studies of xc functionals that may be difficult to
converge in atom-centered bases.
Despite their popularity, availability of the Minnesota

functionals in plane wave codes is scarce, being mostly limited
to the (semi)local declinations of the functionals.30,31 Here, we
present a comprehensive numerical analysis of an implementa-
tion of the M05, M06, M08, and M11 members of the
Minnesota family in a plane wave/pseudopotential framework.
Our implementation in the CPMD code makes Minnesota
functionals available for routine plane wave calculations
without the computational overhead (up to 20%) due to
external libraries.
The text is organized as follows: First, we give a short

overview of the functional forms of the M05, M06, M08, and
M11 families, followed by a brief description of the plane-wave
specific details of our implementation. We then provide a
comprehensive assessment of the basis set convergence in
plane waves, which will be discussed at the example of the HF
dimer. This member of the CT7/04 database had also been
used by Mardirossian et al. in their convergence analysis in
Gaussian bases,7 making a direct comparison to their results
possible. Particular emphasis will be put on the functionals that
Mardirossian et al. have identified as slowly converging. We
will then show that using standard ratios between density and
orbital cutoff values, for a certain subset of the functionals
considered here, no systematic convergence is reached in a
plane wave basis and that it is possible to systematically resolve
this convergence issue by increasing the ratio between density
and wave function cutoff. By including this additional
parameter in the convergence analysis, the energetics of all
functionals can be analyzed straightforwardly in a plane wave
setup. Based on the possibility of obtaining converged
energetics, we will then compare the influence of basis set
type on the reaction enthalpies of hydrocarbons at the example
of the HC7/11 database. Values will be compared between our
plane wave implementation, two Gaussian basis sets commonly
employed with the Minnesota family (aug-cc-pVTZ32 and 6-
311+G(2df,2p))33 as well as two polarized Slater bases (TZ2P
and ATZ2P).34 Slater functions exhibit an exact r−1 decay,
which makes it possible to assess the effects of long-range
decay and basis set delocalization separately. This analysis will
reveal that the range-separated functionals M11 and M11-L are
particularly sensitive to the choice of basis and that converged

energy differences obtained from plane waves or Slater
functions may differ from their Gaussian equivalents, stressing
the importance of a fully flexible basis. We will then see that
results for M06-2X and M06-HF can deviate significantly from
the values obtained in both Gaussian and Slater bases. We will
show that these deviations can be tracked down by analyzing
the exchange energy density ϵx(r), illustrating that the
analytical form of the M06 family can lead to particular
electron density differences between plane waves and Gaussian
functions. Finally, we will provide a short discussion of the
implication of our findings on the run time of plane wave
calculations using the Minnesota family and suggest
approaches to reduce the computational overhead.

2. THEORY
2.1. The Minnesota Functionals in a Nutshell. The first

generation of the Minnesota family comprises the meta-hybrid
functionals M0514 and M05-2X,15 as well as their direct
successors M06,12 M06-2X,12 M06-HF,17 and the fully
(semi)local meta-GGA M06-L.16 The semilocal terms will
therefore depend on the spin-density ρσ, its gradient |∇ρσ|, and
the spin-kinetic energy density, τσ = ∑i

occ|∇ψi
(σ)|2, calculated

over all occupied generalized Kohn−Sham spin−orbitals ψi
(σ).

For notational simplicity, the implicit dependence of these
functions on the Cartesian coordinates ∈ r 3 will be omitted.
In their most general form, the expressions for exchange and
correlation energy for the M05 and M06 family read

∫∑α α ρ ρ ω= + − ϵ [ [ ∇ ]

+ ]
σ

σ σ σ σ σ

σ σ


E E F f

h x z

(1 ) , ( )

( , )x

x
M05/6
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x,
PBE

3

(1)

∫
∫∑

= ϵ [ + ]

+ ϵ [ + ]

αβ αβ αβ αβ αβ αβ αβ
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


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g x z D x z h x z

( , ) ( , )

( , ) ( , ) ( , )

c
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UEG
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3

3 (2)

where ϵx and ϵc denote the exchange and correlation energy
density of the uniform electron gas (UEG), respectively. The
exchange enhancement factor is a linear combination of the
gradient-dependent PBE exchange9 term Fx,σ

PBE[ρσ,∇ρσ],
weighted by a parametrized function f(ωσ) (which, through
ωσ, depends on ρσ and τσ) and a reparametrization of the
VS9835 correction term, hx(xσ,zσ) (which, through xσ and zσ,
depends in itself on ρ, |∇ρ|, and τ). The form of f(ωσ) is
common to all Minnesota functionals and reads

∑ω ω=σ σ
=

f a( )
i

m

i
i

0 (3)

where the {ai} are empirically determined weights and

ω =
−
+σ σ

σ

σ
t

t
t

( )
( 1)
( 1) (4)

ρ τ π
ρ
τ

=σ σ σ
σ

σ
t ( , )

3
10

(6 )2 2/3
5/3

(5)

The correlation functional is based on the Stoll ansatz;36 the
correlation energy of the uniform electron gas is corrected by a
linear combination of the kinetic-energy density dependent
self-interaction correction factor Dσ(xσ, zσ) on one hand, and
the VS98 correlation integrand hσσ(xσ, zσ) on the other hand.
Whereas the free parameters in the latter are reoptimized,
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Dσ(xσ, zσ) is weighted by a parametrized expression of the
form:

∑ γ
γ

=
+σσ σ σ σσ
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σσ σ=

i
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jjjjjj
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{
zzzzzzg x z c
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i

0

( )
2

2
(6)

In all functionals of the M05 family, the terms due to VS98 are
naught; the constants in the parametrized functions differ for
all functionals. A detailed description of the assembly of the
functionals and the parametrized functions f(ωσ), hx(xσ, zσ),
gσσ(xσ, zσ), as well as the terms in Dσ(xσ, zσ) and hσσ(xσ, zσ) are
given in the Supporting Information, along with a description
of some notational intricacies.
The subsequent generation of functionals, M0821 and

M11,18,19 are again based on a linear combination of existing
GGA enhancement factors. Contrary to their predecessors,
definitions based on the spin-unpolarized density ρ = ρα + ρβ
are used throughout. The meta-hybrids of the M08 family,
M08-SO and M08-HX, are constructed according to Ex

M08 =
αEHFX + (1 − α)Ex,loc

M08/11, and the semilocal term alone reads

∫ ω ρ ρ ω ρ ρ= ϵ [ [ ∇ ] + [ ∇ ]]


E f F f F( ) , ( ) ,x,loc
M08/11

x
LDA

1 x
PBE

2 x
RPBE

3

(7)

where Fx
PBE and Fx

RPBE are the PBE and RPBE37 exchange
enhancement factors, respectively. For the M08 functionals,
the τ-dependent weights f i(ω) are defined analogously to the
M05 and M06 family. A generalization to spin is trivial using
the spin-scaling relations. The form of the f i(ω) is also used for
the correlation functional, where the Stoll ansatz is abandoned
in favor of the expression:

∫ ρ ρ ζ ω ρ ρ ζ ω= [ + ∇ ]


E e f H t f( , ) ( ) ( , , , ) ( )c
M08

C
LSDA

3
PBE

43

(8)

We have introduced the function ζ = (ρα − ρβ)/ρ for the spin
polarization, eC

LSDA is the (spin-dependent) correlation energy
per unit density in the Perdew−Wang form,38 and HPBE is the
PBE correction to the correlation energy.
The M11 generation introduces range-separated ex-

change39−41 by suitably modifying the M08 functional form:
Ex
M11 = Ex,SR

M11 + Ex,LR
M11. In the range-separated meta-hybrid M11,

Ex,LR
M11 is obtained from an exact exchange integral employing a

long-range Coulomb operator Ŵ of the form ŴLR =∑i ∑i≠j [α
+ β erf(μrij)]/rij with three range-separation parameters α, β,
and μ. In the case of the fully (semi)local dual-range functional
M11, Ex,LR

M11 is treated with the functional form of Ex,loc
M08/11 by

using a suitable generalization of the form ϵx
LR = ϵx

LDA (1−G(ρ,
α, β, μ)), with the local short-range attenuation function G(ρ,
α, β, μ).41 In both M11 and M11-L, the short-range part itself
is treated analogously to Ex,LR

M11[ρ], with ex
SR replaced by the

short-range form ϵx
SR = ϵx

LDA G(ρ, α, β, μ).41

2.2. Expanding the Electron Density in Plane Waves.
At the Γ-point, the (real) Kohn−Sham orbitals can be
expanded in a plane wave basis of the form:29

∑ψ ψ=
=

·er G( ) ( )i i
i

G

G
G r

0

max

(9)

where r,G are real and reciprocal space vectors, respectively,
and the {ψi(G)} are the (Fourier) expansion coefficients of an
orbital indexed by i. The length of the expansion is given by
the highest-frequency G-vector Gmax and is usually indicated
with respect to its energy, the cutoff energy Ecut. In a

discretized Cartesian basis, the ψi(r) and ψi(G) are mutual
Fourier transforms. It is therefore straightforward to switch
between representations at an N N( (log )) scaling using fast
Fourier transforms (FFT). This is of particular advantage for
the computation of the Coulomb potential: Since the
Coulomb operator is diagonal in reciprocal space,
Φ = πG( )

G
4

2 , the corresponding potential is easily obtained

from the reciprocal space density ρ(G). The density itself is
most conveniently constructed in real space:

∑ρ ψ= | |fr r( ) ( )
i

i i
2

(10)

where f i are occupation numbers and ρ(G) is obtained via a
FFT. However, due to the square in eq 10, the spectrum of the
function ρ will extend to higher-frequency G-vectors than the
initial ψ. This requires for a second cutoff energy to be
introduced, Ecut

ρ , with a value of 4 being analytically sufficient
to guarantee correspondence between ψ and ρ. The ratio
between Ecut

ρ and Ecut is commonly referred to as the dual:

ξ =
ρE

E
cut

cut (11)

Choosing a value of ξ larger than the default value of r results
in real-space representations of ρ which is Fourier-interpolated
with respect to the default grid. This makes it possible to
arbitrarily increase the resolution of the mesh without
introducing higher-frequency components in the description
of ψ, therefore minimizing numerical noise.

2.3. Range-Separated and Screened Exchange in
Plane Waves. In plane waves, the exact exchange of the
Kohn−Sham determinant is usually calculated in reciprocal
space from42

∑ ∑ ∑ρ ρ[ ] = − Φ | |E G G
1
2

( ) ( )
i

N

j

N

ij
G

G

x
0 2

b b max

(12)

where Φ(G) denotes the reciprocal space (i.e., Fourier series)
representation of a (generic) Coulomb operator Ŵ and
ρ ψ ψ= [ * ]G r r( ) ( ) ( )ij i j are the Fourier transforms of pair

densities constructed from Nb occupied Kohn−Sham orbitals.
In a fully periodic setup and within a discrete representation of
G, Ex

0[ρ] exhibits an (integrable) divergence at G = 0. Φ(G)
therefore needs to be appropriately modified.43,44 For the
conventional Coulomb operator ̂ = ∑W ij r

1

ij
, based on an

initial procedure by Gygi and Baldereschi,43 Broqvist et al.44

have suggested to write

π

χ
Φ = Ω

≠

=

l
m
ooooo

n
oooo

G G
G

G
( )

1 4
for 0

(0) for 0

2

(13)

where Ω denotes the supercell volume and the screening
function χ(0) is obtained as the limγ→0 from

∑χ γ
πγ

π= −
Ω

γ−
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑG
( )

1 4 e

G

G

2

2

(14)

It is straightforward to show that for a Coulomb attenuated

operator ̂ =
α β μ+

W
r

rlr
erf( )ij

ij
, we have that6
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π α β
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Our implementation of the range-separated Minnesota family
members make use of eq 15, a derivation of which is available
in the literature.6,44 An in-depth discussion of the effect of a
screened term at G = 0 has been provided in refs 43, 44, and 6,
with results of plane wave/pseudopotential calculations
providing good agreement with atom-centered, nonperiodic
basis sets.

3. COMPUTATIONAL DETAILS

Plane wave calculations were carried out using the CPMD
code.45 Hard Goedecker−Teter−Hutter (GTH)46 pseudopo-
tentials have been used in order to ensure maximum
transferability. Hartree−Fock exchange energies,47 where not
otherwise stated, were obtained using a constant, default ξ = 4,
whereas ξ used in the calculation of τ, ∇ρ, ρ, and the xc energy
were set to different values. These are reported in the Results
and Discussion, along with orbital cutoff energies Ecut. The
Poisson equations of the periodic images were decoupled using
the algorithm by Martyna and Tuckerman.48 The ortho-
rhombic supercell for the HF dimer spanned 20 × 15 × 10 Å3,
whereas the supercells for the reactions of the HC7/11
database were cubic of dimension 303 Å3. In order to rule out
basis set convergence issues for the M06-2X functional for
reactions 1 and 2, reaction energies were also calculated in a

203 Å3 supercell, using a cutoff energy of 275 Ry and ξ = 12 for
both local and Hartree−Fock contributions.
Calculations employing a Slater basis were performed using

the ADF49−51 program package and the TZ2P and ATZ2P
basis sets,34 adding diffuse fitting functions for the RI
calculations and eliminating linearly dependent basis functions
using a threshold of 10−4. The xc energy and potentials were
calculated using libxc52 on a very fine Becke grid53 (“excellent
quality” in ADF jargon). Calculations using Gaussian basis sets
were carried out using the Gaussian1654 suite of programs, a
tight convergence criterion on the Kohn−Sham orbitals and a
superfine integration grid.

4. RESULTS AND DISCUSSION

4.1. Total Energy of a HF Dimer. In the following, we will
provide an analysis of the convergence of the M05 to M11
families of functionals in a plane wave basis. First, we will
consider the conventional case at fixed ξ = 4 and increasing
Ecut. We will then perform the same analysis at increasing
values of ξ in order to assess the effect of a denser mesh.

4.1.1. Convergence in Plane Waves. The convergence
behavior of the functionals considered here with respect to the
energy cutoff Ecut and using a standard ξ = 4 is illustrated in
Figure 3 with an example of the binding energy of an HF
dimer. A reference value for every functional, obtained at a
cutoff of 300 Ry and ξ = 12, is illustrated as a straight line.
Figure 3a shows the convergence of the PBE and TPSS55 xc

functionals, which will serve as an example for standard
generalized gradient approximation (GGA) and meta-general-
ized gradient approximation (MGGA) functionals, respec-
tively. Even at the lowest cutoff energy considered here, 125

Figure 3. Convergence of the binding energy ΔE of a HF dimer, grouped according to functionals, with respect to cutoff energy Ecut and ξ.
Converged binding energy values are illustrated with a line.
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Ry, the energy is converged to less than 0.3 kcal mol−1, which
is already within chemical accuracy. Values at 225 Ry are
essentially converged in a sub 0.1 kcal mol−1 regime. In both
cases, the energies at lower cutoff values are an upper bound to
the reference value. The situation is fundamentally different for
the Minnesota functionals studied here. In Figure 3b, the
oldest members of the group, M05 and M05-2X, are shown. In
both cases, the reference energy can only be reached at a cutoff
value of 300 Ry, with deviations at 125 Ry reaching the 3 kcal
mol−1 range. In both cases, the unconverged energies do not
serve as an upper bound for the converged values. A similar
behavior is observed in Figure 3c for the M06-L functional,
although the maximum deviation is less than 1.5 kcal mol−1.
The spread of the values is much lower for M06, where
deviations <0.3 kcal mol−1 are reached at 200 Ry.
The situation improves for M06-HF in panel 3d, where

deviations only narrowly exceed 1 kcal mol−1 and lie within a
0.3 kcal mol−1 range from 225 Ry onward. Values for M06-2X,
on the other hand, are most erratic and vary by up to almost 3
kcal mol−1 for certain cutoff values. For the two members of
the M08 family shown in Figure 3e, both M08-SO and M08-
HX converge around 225 Ry, even though deviations at 125 Ry
are larger than for the M06 family. Deviations are again larger
for M11 and M11-L shown in Figure 3f, with maximum
deviations of 2 kcal mol−1, second only to the M05 family.
When discussing the basis set convergence in a Gaussian

basis, several authors have stressed the importance of a fine
integration grid1,56,57 in order to obtain accurate values for
most Minnesota functionals (however, Mardirossian et al. have
shown that the size of the integration grid may not necessarily
constitute the principal cause of slow convergence with respect
to the basis set size1). In plane waves, while an increase in
cutoff energy Ecut implies a finer mesh on which the xc energy
is evaluated, the high frequency components in reciprocal
space may also introduce further noise. A finer integration grid
can be obtained by increasing the value of ξ. Performing the
convergence analysis at higher values of the dual ξ therefore
allows one to assess the influence of grid granularity on the
energy convergence.
Figure 3 shows a clear improvement of the convergence

behavior of the Minnesota functionals for higher values of ξ.
For the reference functionals in Figure 3a, the influence of an
increased mesh is far below chemical accuracy. Even for the
more sensitive TPSS functional, deviations between different
values of ξ do not exceed 0.2 kcal mol−1. For both PBE and
TPSS, convergence within a sub 0.1 kcal mol−1 interval can be
reached at 175 Ry when using ξ ≥ 8. Values obtained using ξ
of 8 and 12 are virtually indistinguishable for both functionals.
The convergence behavior of the Minnesota functionals in
Figure 3b−f substantially improves upon increasing ζ. For both
ξ of 8 and 12, all energies except M06-HF, M06-2X, and M11-
L lie within the a < 0.3 kcal mol−1 interval starting from 150 to
175 Ry and are close to within a sub 0.1 kcal mol−1 range from
200 Ry on. The convergence behavior is therefore very similar
to the PBE and TPSS functionals indicating that it is not the
high-frequency components in the wave function expansion
that are needed for accurate energetics but rather a very fine
mesh for the density. These observations are in line with the
common requirement imposed on the integration grid for
Minnesota functionals in atom-centered bases. Increasing ξ
further from 8 to 12 results in changes of energetics that are
negligible. The remaining outliers are M06-2X, M06-HF, and
M06-L. For M06-HF, values for ξ of 8 or 12 remain within a

0.3 kcal mol−1 range. For cutoff energies lower than 200 Ry,
results obtained from ξ = 8 deviate visibly from those obtained
at ξ = 12. The only other example of this behavior is M11-L,
which overall behaves very similarly to M06-HF for higher
values of ξ and is therefore slightly less well-behaved than
many of the earlier-generation Minnesota functionals studied
here. Still, due to the narrow spread of the energies once a
higher ξ is used, this is not expected to result in practical
problems. The least well-behaved outlier is M06-2X, where
binding energies abruptly change at 275 Ry. Only from this
value onward do the energies remain within a very narrow
range and appear to be properly converged. We have verified
the stability of the M06-2X results by increasing the value of ξ
= 20, which did not alter the convergence behavior, nor did it
have any significant influence on the binding energies. It
therefore appears that, in addition to a suitably fine integration
grid, M06-2X needs an increased amount of high-frequency
components in the wave function expansion in order to
account for the binding of the HF dimer.
For practical applications, energy differences can therefore

be converged straightforwardly, provided that the value of ξ is
increased above the standard of 4. For chemical accuracy, a
value of 8 has proven sufficient for the system considered here.
This makes it possible to obtain reference values for the
Minnesota functionals in a fully nonlocal basis, enabling studies
free of basis-set superposition errors and independent of the
balance of basis functions and integration grids employed. In
the case of M06-2X, at least for the weakly bound HF dimer
studied here, particular attention has to be paid to the choice
of integration grid and cutoff.
The substantial improvement of convergence behavior when

increasing ξ from 4 to 8 illustrates yet once more the need for a
dense enough mesh. Our observations suggest that the cutoff
of the basis set is as straightforwardly controlled as it is the case
of conventional functionals (with the exception of M06-2X,
which requires particular attention). Instead, for a basis of a
given size, it is the integration mesh of the xc term that is the
most crucial ingredient. This is an unconventional observation
in a plane wave basis, since commonly and as reported here for
PBE and TPSS, convergence is reached straightforwardly by
increasing the energy of the highest-frequency plane wave in
the expansion at a default ξ = 4. However, this exceptional
behavior of the Minnesota functionals is in line with the
requirements for very dense integration grids that are
recommended in Gaussian bases.56 In contrast to commonly
employed Gaussian bases and the observations by Mardir-
ossian et al. we can rule out any influence of the balance of the
exponents of the basis set on the final result, implying that for a
given pseudopotential and given an appropriately dense mesh,
the convergence behavior of the Minnesota functionals does
not differ from that of other meta-GGA functionals. The
flexibility of a plane-wave based description therefore makes it
possible to obtain truly converged energetics, which can serve
as reference values for calculations carried out in other (atom-
centered) basis sets.

4.1.2. Comparison to Atom-Centered Bases. Among the
functionals studied, M05, M06-2X, M06-HF and, to a lesser
extent, the M08 and M11 families are the most sensitive to
changes in cutoff energies. Both M06-HF and M11-L are
functionals that Mardirossian et al. have identified as
particularly slowly convergent with respect to the Gaussian
basis set size, unlike the M05 family and M06-2X, which were
found to be comparably well-behaved. However, the
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convergence of M05 and M05-2X substantially improves once
ξ is increased resulting in a well-behaved approach to the
converged limit (which has also been documented in an atom-
centered basis of Gaussian functions at the example of a
sufficiently fine integration grid). M06-L, however, appears to
be much more well-behaved in plane waves than what was
reported for a Gaussian basis.
Table 1 provides more insight into the basis-set sensitivity of

the Minnesota family of functionals. Values of the HF dimer
binding energy are reported for all three choices of dual
considered here (4,8,12). The converged values from plane
waves at ξ = 12 are compared to values obtained from the
commonly used and popular aug-cc-pVTZ and 6-311+
+G(2df,2p) basis sets as well as the complete Gaussian basis
set of ref 1 as a reference. In order to exclude possible effects
due to the unphysical long-range decay and cusp behavior of
Gaussian functions, results for a larger Slater basis set (TZ2P)
and an augmented Slater basis (ATZ2P) are also given.
For both members of the M05 family, results across all bases

agree well, with a maximum deviation of 0.26 kcal mol−1

between the converged plane wave result and the complete
basis set limit obtained from Gaussian functions. Results
obtained in a Slater basis do not deviate by more than 0.04 kcal
mol−1 from aug-cc-pVTZ and the limit value from ref 7;
changes upon inclusion of an augmentation function are lower
than 0.04 kcal mol−1. However, the binding energy obtained
with 6-311++G(2df,2p), which is similar to the basis
commonly used to benchmark the database that contains the
HF dimer, deviates by about 0.4 kcal mol−1 from the reference
value in the case of M05. As reported by Mardirossian et al.,
changes between the complete basis and aug-cc-pVTZ are
negligible. For M05 and M05-2X, the overall agreement
between the different bases is well within chemical accuracy.
The deviations are larger for some members of the M06

family. For the parent M06 itself, plane wave binding energies
using ξ = 12 exceed the reference value by 0.44 kcal mol−1.
The values obtained in a Slater basis are by about 0.20 kcal
mol−1 lower than the reference value and are again insensitive
to the addition of augmentation functions. Results from 6 to
311++G(2df,2p) are closer to plane wave values than to the
converged value in a Gaussian basis. For M06-2X, the
agreement between plane waves, both Slater bases, aug-cc-

pVTZ, and the value from a complete Gaussian basis show
excellent agreement, with a deviation of ≤0.10 kcal mol−1. The
largest error with respect to the limit occurs again for 6-311+
+G(2df,2p), with a difference of 0.25 kcal mol−1. Given the
rather erratic convergence behavior of this functional, these are
encouraging results, indicating that once the requirements on
grid and cutoff are met, the plane wave implementation
accurately reproduces results from atom-centered bases. In the
case of M06-HF, converged plane wave values differ by 0.34
kcal mol−1 from the reference, which is smaller than the
deviation that occurs for aug-cc-pVTZ (0.53 kcal mol−1). The
value for 6-311++G(2df,2p) is closer to the limit, while both
augmented and nonaugmented Slater bases give deviations of
up to 0.81 kcal mol−1. The situation is improved for the
completely local M06-L, where the deviation between the
converged plane wave value and the limit in a Gaussian basis is
0.22 kcal mol−1. The value for aug-cc-pVTZ is slightly closer
(error of 0.13 kcal mol−1), whereas the two Slater bases and 6-
311++G(2df,2p) are closest to the value of the limit.
The situation is similar for the more recent M08 and M11

families. For M08-HX, the converged plane wave result differs
by only 0.16 kcal mol−1, which is smaller than the deviations of
aug-cc-pVTZ and 6-311++G(2df,2p) (0.20 and 0.40 kcal
mol−1, respectively). The binding energies obtained using
TZ2P and ATZ2P show only a negligible deviation of ≤0.10
kcal mol−1. Plane wave deviations are largest for M11, where
the converged plane wave binding energy differs by 0.51 kcal
mol−1 from the reference value. It should however be noted
that this value is comparable to the deviations observed for
Slater bases in the case of M06-HF and for 6-311++G(2df,2p)
in the case of M06. Values obtained within a Slater basis and
aug-cc-pVTZ are again closer to the reference (deviations of
maximum 0.11 kcal mol−1), while 6-311++G(2df,2p) is again
the least accurate Gaussian basis, with an error of 0.40 kcal
mol−1. Errors for the local M11-L are much lower for plane
waves, with a deviation of 0.09 kcal mol−1 between converged
values. The error in a Slater basis is about 0.32 kcal mol−1 for
the augmented basis, but it is only 0.16 kcal mol−1 for TZ2P.
M11-L is the only functional for which the influence of
augmentation functions in a Slater basis exceeds the 0.10 kcal
mol−1 regime. The largest deviation between aug-cc-pVTZ, 6-

Table 1. HF Dimer Binding Energy Calculated for the M05, M06, M08, and M11 Families of Minnesota Functionals in
Different Basis Setsa

plane waves Slater functions Gaussian functions

functional ξ = 4 ξ = 8 ξ = 12 TZ2P ATZ2P aug-cc-pVTZ 6-311++G(2df,2p) limit

M05 −5.02 −5.00 −5.03 −4.98 −4.95 −4.99 −5.36 −4.96
M05-2X −5.36 −5.25 −5.30 −5.12 −5.08 −5.06 −5.18 −5.04

M06 −4.74 −4.84 −4.88 −4.20 −4.24 −4.40 −4.71 −4.44
M06-2X −4.87 −4.90 −4.94 −4.90 −4.88 −4.95 −5.13 −4.87
M06-HF −5.18 −4.86 −4.90 −4.43 −4.48 −4.71 −5.01 −5.24
M06-L −4.15 −4.32 −4.37 −4.49 −4.52 −4.46 −4.55 −4.59

M08-HX −4.71 −4.54 −4.58 −4.69 −4.70 −4.94 −5.14 −4.74

M11 −3.94 −3.88 −3.94 −4.45 −4.53 −4.58 −4.87 −4.47
M11-L −3.97 −3.38 −3.50 −3.57 −3.73 −3.86 −4.10 −3.41

aResults for aug-cc-pVTZ and a customized complete Gaussian basis (Limit) are reproduced from ref 1. Plane waves results were obtained at a
wavefunction cutoff of 300 Ry. Atom-centered results are not Counterpoise corrected, in agreement with common procedures used in functional
benchmarking and fitting.
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311++G(2df,2p) and the reference value are also observed for
M11-L, ranging from 0.45 to 0.69 kcal mol−1.
Overall, for all of the functionals but M06-HF, M11, and

M11-L, the results between plane waves, Slater bases, and
different Gaussian bases show excellent agreement. The largest
deviation is observed in the nonaugmented Slater basis for
M06-HF, even though it is still smaller than chemical accuracy
(1.0 kcal mol−1). The maximum deviation observed in a
Gaussian basis occurs for M11-L/6-311++G(2df,2p), exceed-
ing 0.60 kcal mol−1. Errors of about 0.50 kcal mol−1 can be
observed for all bases but not necessarily for the same
functional. Maximum deviations in plane waves are reached for
M11, whereas the maximum deviation for aug-cc-pVTZ occurs
for M11-L. These results highlight the importance of
benchmarking the results not only when changing the type
of basis, plane waves, Slater, Gaussians, but even when
changing from one kind of Gaussian basis (aug-cc-pVTZ) to
another (6-311++G(2df,2p)). This can be of particular
importance when comparing to results from large benchmark-
ing databases, where sometimes very specific basis sets are
used. The deviations observed so far suggest that, for the
Minnesota family of functionals, basis-set effects may exceed
half a kcal mol−1. While it is encouraging that these errors are
still smaller than chemical accuracy, they can possibly affect the
average performance of a functional and conclusions based on
benchmarks that cannot be carried out sufficiently close to the
basis set limit should bear this source of error in mind. In view
of common practice, a careful assessment of basis-set related
errors will be of particular importance if a study makes use of a
basis set different than the benchmark basis set.
Our plane-wave implementation offers the possibility of

smoothly reaching a converged value, as exemplified in the
usually small changes of binding energies when increasing ξ
from 8 to 12. The residual differences between the converged
values obtained from the custom Gaussian basis by
Mardirossian et al. and our converged plane wave results
suggest that the flexibility due to the fully delocalized plane
waves leaves room for an improved description of the basis-set
limit.
4.2. Implications for Reaction Enthalpies of the HC7/

11 Database. Given the popularity and success of the
Minnesota functionals in the description of organic mole-
cules,13,23 we now consider their performance for a particularly
difficult set of thermochemical data: the reaction enthalpies of
the HC7/11 database.22,24 In particular for reactions 1 and 2,
the introduction of the M06 family constituted a significant
improvement over its predecessor, M05.
In order to assess the influence of the choice of basis on the

overall performance of the functionals, we have calculated
reaction enthalpies at 0 K for the HC7/11 database of
hydrocarbon reactions in a plane wave basis, aug-cc-pVTZ, and
the ATZ2P Slater basis for M05 as well as the complete M06
and M11 families. While the standard plane wave setup was a
30 Å3 box with Ecut = 125 Ry and ξ = 8, values for M06, M06-
2X, and M06-HF were also calculated in a 20 Å3 box with Ecut
= 275 Ry and ξ = 12. These values, however, differ by less than
0.5 kcal mol−1 from those at Ecut = 125 and are therefore not
reported.
4.2.1. The M05 Family. The values for the related M05 and

M06 families are given in Table 2. For M05, all values show
excellent agreement between plane waves and the atom
centered bases. The deviations with respect to the Slater
basis range from a minimum of 0.05 kcal mol−1 for reaction 6

to 0.68 kcal mol−1 for reaction 4 and from 0.30 kcal mol−1 for
reaction 2 to 2.62 kcal mol−1 for reaction 6 (which is still in the
subpercent regime) for aug-cc-pVTZ. However, reactions 5
and 6 show the largest spread over all bases, with results
differing by about 0.22 kcal mol−1 between 6-311++G(2df,2p)
and aug-cc-pVTZ for reaction 5 and reaction 6 even showing
the best agreement between Slater bases and plane waves

Table 2. Reaction Enthalpies for the Members of the HC7/
11 Database Computed Using the M05, M06, M06-2x, M06-
HF, and M06-L xc Functional in Plane Waves (125 Ry, ξ =
8), an Augmented Slater basis (ATZ2P), and the Commonly
Used Gaussian aug-cc-pVTZ Basisa

system ξ = 8 ATZ2P
aug-cc-
pVTZ reference

M05
1 E22-E1 28.59 28.36 29.89 30.17
2 E31-E1 35.60 35.46 37.30 37.68

E31-E22 7.01 7.10 7.41 7.51
3 octane isomerization 7.73 7.64 7.05 7.14
4 reaction a 5.12 5.84 5.58 5.49
5 reaction b 0.16 0.45 1.22 1.00
6 reaction c 191.17 191.12 188.55 190.75
7 reaction d 125.11 124.81 123.61 124.99

M06
1 E22-E1 20.96 18.46 19.65 19.26
2 E31-E1 27.05 24.98 26.61 26.11

E31-E22 6.09 6.52 6.96 6.85
3 octane isomerization 2.24 2.20 2.89 3.00
4 reaction a 7.32 7.48 7.77 7.89
5 reaction b 13.20 13.37 14.52 14.78
6 reaction c 190.81 192.12 196.69 198.49
7 reaction d 124.46 125.56 129.04 130.08

M06-L
1 E22-E1 15.71 16.45 17.59 16.28
2 E31-E1 18.04 19.71 21.50 19.91

E31-E22 2.33 3.26 3.91 3.63
3 octane isomerization 0.25 0.61 0.99 1.23
4 reaction a 5.70 6.07 6.08 6.23
5 reaction b 8.78 9.68 10.07 10.51
6 reaction c 179.41 185.29 191.53 190.41
7 reaction d 115.98 120.44 124.85 124.01

M06-2X
1 E22-E1 20.18 15.77 16.51 16.30
2 E31-E1 28.39 23.78 23.94 23.65

E31-E22 8.21 8.01 7.43 7.35
3 octane isomerization 1.34 1.44 1.76 2.11
4 reaction a 7.58 7.55 7.71 7.98
5 reaction b 12.65 12.70 13.28 14.02
6 reaction c 203.77 198.24 198.46 198.36
7 reaction d 133.81 129.60 129.64 129.44

M06-HF
1 E22-E1 21.38 13.30 13.98 14.36
2 E31-E1 32.52 22.78 23.22 23.90

E31-E22 11.14 9.48 9.24 9.54
3 octane isomerization 1.34 2.22 3.85 3.62
4 reaction a 7.32 7.97 8.66 8.86
5 reaction b 12.30 14.10 16.79 16.92
6 reaction c 214.00 201.76 202.74 201.17
7 reaction d 139.92 131.26 131.99 130.61

aReference values correspond to 6-311+G(2df,2p), which is the
recommended basis for benchmarking in Ref 12.
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among all the test set. The difference between plane waves and
the Slater basis is only about 0.29 kcal mol−1 for reaction 5 and
therefore much lower than the deviation between Slater basis
and aug-cc-pVTZ (0.77 kcal mol−1). Overall, best agreement is
reached between the Slater basis and plane waves, with
deviation between Slater bases or plane waves and Gaussian
bases being slightly larger. However, deviations between aug-
cc-pVTZ and 6-311++G(2df,2p) can be equally sizable for
systems 6 and 7. Finally it should be noted that for reactions 1
and 2, the spread is about equal between all the bases
considered here. Overall, the reaction enthalpies obtained from
the different bases agree very well, making the results
reproducible across different approaches.
4.2.2. The M06 Family. The average agreement is slightly

inferior for the M06 family. With respect to M05, the spread of
the values increases substantially between all the atom-
centered bases. While the deviations remain in a subpercent
or sub kcal mol−1 range for reactions 3 and 4, they can be
larger for the remaining reactions. Slater basis results for
reactions 1, 2, and 7 differ between 1 and 4 kcal mol−1 from
Gaussian results, which themselves exhibit a significant spread
of up to ≈2 kcal mol−1 for reaction 7.
For reactions 3−5, M06 shows outstanding agreement

between plane wave basis and Slater results, with a minimum
deviation of 0.04 kcal mol−1 and a maximum deviation of 0.17
kcal mol−1. Deviations between plane waves and the Gaussian
bases correspond to those observed between ATZ2P and
Gaussian functions. The agreement for reactions 1,2, 6, and 7
is less homogeneous, ranging from 1.5 to 2.07 kcal mol−1. The
relative errors for reactions 6 and 7, however, do not exceed
2% with respect to a Slater basis. For reactions 1 and 2, plane
wave and Slater basis values show a comparable absolute
deviation with respect to the Gaussian bases but are of
opposite sign.
Plane wave results for the local M06-L are again closest to

those obtained in a Slater basis but consistently lower. In spite
of a good overall agreement, deviations between ATZ2P and
plane waves can occasionally exceed 1 kcal mol−1. For the
isomerization reactions 1 and 2, values show excellent
agreement between the Slater ATZ2P and the Gaussian
reference basis, whereas the differences between both plane
waves and aug-cc-pVTZ with respect to ATZ2P are
comparable but of opposite sign. In both cases, the spread of
values slightly exceeds chemical accuracy with respect to the
reference value. Similarly, the octane isomerization 3 exhibits a
large spread, with the value from ATZ2P again lying in
between plane waves and aug-cc-pVTZ. In this case, notably,
relative errors are large, with the plane wave, Slater basis, and
aug-cc-pVTZ values being roughly one, two, and three-quarters
of the value obtained in the reference basis. However, due to
the small magnitude of the reaction enthalpy, the errors stay
below chemical accuracy. Best agreement is reached for
reaction 4, with a deviation of 0.37 kcal mol−1 between
ATZ2P and plane waves and 0.16 kcal mol−1 between ATZ2P
and the reference basis. The spread is again larger for reactions
5, 6, and 7, but the difference between plane waves/ATZ2P
and aug-cc-pVTZ/ATZ2P remain either within the sub-kcal
mol−1 range (reaction 5) or lie within 5% of the reference
value. In all three cases, the deviations are again of very similar
absolute values but of opposite sign.
M06-2X exhibits a behavior largely reminiscent of M06.

Enthalpies for reactions 3−5 agree well between plane waves
and ATZ2P, while the deviations for reactions 1, 2, 6, and 7

roughly double with respect to M06, although they still exhibit
similar trends. M06-HF shows the worst agreement among the
M06 family, with deviations up to 1 order of magnitude larger
than for M06 itself. For reactions 3−5, however, deviations
with respect to a Slater basis remain comparable to those
between the Slater basis and the Gaussian reference basis. In
general, for the hybrids of the M06 family, the maximum
deviation with respect to atom-centered bases increases with
the percentage of exact exchange.
Overall, for M05, M06, and M06-L, the enthalpies obtained

in plane waves show excellent agreement with the values
obtained in an augmented Slater basis. Deviations with respect
to Gaussian bases may be somewhat larger, with changes
between Slater functions and plane waves often being
comparable to a change from Slater functions to Gaussians.
For M06-2X and M06-HF, the most important deviations are
observed for reactions 1 and 2. Absolute errors are larger for
reactions 6 and 7, but due to the large magnitude of the
enthalpy, relative errors remain much lower than for 1 and 2.
However, the enthalpy of the conversion of reactant E22 to
product E31, which is not listed as an official database entry,
reveals good agreement between the basis sets for all the
functionals; for this system, only M06-HF shows a value that
exceeds chemical accuracy. This observation indicates that the
problem might be linked to reactant E1. The source of this
considerable deviations for reactions 1 and 2 will therefore be
examined further on in the text.

4.2.3. The M11 Family. The basis-set dependence of the
enthalpies obtained from M11 is comparably uniform for all
reactions. For the isomerizations 1 and 2, the values from the
reference Gaussian basis (6-311+G(2df,2p)) lie between the
values from ATZ2P/aug-cc-pVTZ and plane wave results,
respectively, with deviations ranging from −0.9 to +0.9 kcal
mol−1 with respect to the reference. For the octane
isomerization 3, plane wave results deviate by about 0.5−1.0
kcal mol−1 from results obtained using Gaussians, whereas the
difference between Slater and Gaussian bases exceeds chemical
accuracy, ranging from 1.1 to 1.5 kcal mol−1. For reactions 4
and 5, plane waves and ATZ2P show excellent agreement,
whereas the values from aug-cc-pVTZ and the Gaussian
reference basis lie up to 2 kcal mol−1 higher. Interestingly, the
situation is different for reactions 6 and 7, where plane waves
and aug-cc-pVTZ agree well; the ATZP and 6-311+G(2df,2p)
results are up to 4 kcal mol−1 higher in energy (which
corresponds to a 5% range).
Energetics vary more considerably in the case of M11-L, in

analogy with the slow basis set convergence documented in ref
1 and the trends observed in the present work for the HF
dimer. For the isomerizations, the enthalpies span a range of
over 4 kcal mol−1; ATZ2P values are the lowest, plane wave
values the largest, aug-cc-pVTZ and 6-311+G(2df,2p) lie in
between and differ themselves by almost 2 kcal mol−1. For
reactions 3−5, all atom-centered bases agree well, with plane
wave results deviating by more than 1 kcal mol−1 with respect
to the closest Gaussian value. Reactions 6 and 7 show again
good agreement within about 1 kcal mol−1 between plane
waves and Slater functions, whereas the enthalpies obtained for
aug-cc-pVTZ and the reference basis are between 2−3 kcal
mol−1 higher. These results highlight the possible high
sensitivity of range-separated density functionals to the
underlying basis set.
Given the large spread of enthalpies obtained in atom-

centered bases, plane wave results still agree well with the other
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basis sets. Consistent with ref 1, we find that M11-L is more
sensitive to basis set effects than its hybrid equivalent, M11.
This sensitivity is reflected in a considerable change of reaction
enthalpies when changing the type of basis function. While
similar trends hold for M11, they are exacerbated for M11-L.
M11-L therefore appears to be exceptionally sensitive to the
underlying functional form of the basis, which may be due to
its dual-range functional form: Similar trends were observed for
certain systems when comparing excited states obtained from
range-separated functionals in plane waves and Gaussians.6

Like for the M06 family, plane waves therefore allow for new
insights on converged energetics to be obtained. In view of the
improved accuracy of M11 over M06, the fact that converged
quantities are readily available from plane waves is particularly
favorable.
4.2.4. Summary. Overall, results obtained from plane waves

and Slater bases show satisfactory agreement with Gaussian
bases, even if there appears to be no systematic trend linking
plane wave, Slater, and Gaussian basis results among all of the
functionals and systems. While the spread between the results
may be considerable for a given reaction, the deviations
between the different bases are rather evenly spread for many
of the functionals considered here (M05, M06, M06-L, M11,
M11-L). Large relative deviations are only observed for the
isomerization reactions 1 and 2. Often, where larger deviations
can be observed, Slater basis results lie between plane wave and
aug-cc-pVTZ values. In many cases, the deviations of plane
waves and aug-cc-pVTZ with respect to the Slater basis are of
comparable absolute value but are of opposite sign. In the case
of M11, which has a different functional form, values from the
Gaussian reference basis lie between those obtained in plane
waves and those obtained with Slater functions, which may be
attributed to effects due to range-separation. The only
significant absolute deviations between plane waves and
atom-centered bases occur for M06-2X, M06-HX, and M11-
L, which, with the exception of M06-2X, have both been
identified as difficult to converge in Gaussian bases by
Mardirossian et al.1 M06-L, on the other hand, appears to be
more well-behaved in plane waves than in Gaussians, exhibiting
the lowest deviations within the M06 family along with M06
itself. In the case of M11-L, deviations are larger than for M11
but comparable to the differences observed within different
atom-centered bases. This indicates that the functional simply
calls for a very flexible basis. M05, M06, and M06-L show the
best overall agreement across all bases considered here.
Our results show that a plane wave description can add

valuable information on the convergence and basis set limit of
reaction enthalpies. In particular, where energetics differ
considerably between Slater functions and Gaussian basis
sets, the fully delocalized plane wave basis allows for a more
flexible description and a convenient approach to the basis set
limit.
4.3. Energy Density and Exact Exchange Analysis for

the M06 Family. For the hybrid functionals of the M06
family, agreement between plane wave and atom-centered basis
results for the isomerizations 1 and 2 noticeably deteriorates
with increasing Hartree−Fock exchange contribution. From
M06 over M06-2X to M06-HF, the maximum errors increase
from 2 over 5 to 14 kcal mol−1. In contrast, the conversion of
E31 to E22 is much more accurately described by all the
functionals, with a maximum error of about 1.5 kcal mol−1 for
M06-HF. The problem therefore appears to be related to the
description of reactant E1.

We first consider the effect of exact exchange. The pure
Hartree−Fock enthalpy for reaction 1 calculated using the
same plane wave setup as used in Table 2 is −10.29 kcal mol−1,
whereas the corresponding value obtained using an atom-
centered aug-cc-pVTZ basis is −12.30 kcal mol−1. While this
difference is not negligible, it is well within the spread of values
that could be observed for several systems and functionals,
even among the two Gaussian basis sets. Therefore, the exact
exchange contribution cannot alone account for all of the
sizable differences between plane wave and Gaussian values
that were obtained using M06-2X and M06-HF.
In order to assess the possible influence of pseudising the

core electrons, it appears pertinent to analyze the exchange and
correlation energy densities ϵx(r) and ϵc(r), i.e., the integrands
of the xc functional

∫ ρ= +E K Kr r r rd ( )( ( ) ( ))xc
4/3

x c (16)

∫= ϵ + ϵr r rd ( ) ( )x c (17)

for reactant and product of reaction 2 and all of the functionals
of the M06 family. Table 4 lists values for ϵ summed over the
nuclear core region, i.e., regions of real space that lie at points
rcore within the cutoff radius rc of the pseudopotentials
employed for a nucleus α at nuclear coordinate R:

∫∑= − ϵ + ϵ
α

αE r R r rd( )( ( ) ( ))r
r

xc
( )

0
x c

c
c

(18)

Table 4 shows that irrespective of the differences between
plane wave and atom-centered results in Table 3, the changes

of the contribution to ϵxc due to the core are below 1%.
Similarly, the magnitude of the energy density itself is no
indicator of the deviation that is to be expected with respect to
all-electron calculations. It is however notable that the
exchange-correlation contribution from M06-HF takes on an

Table 3. Reaction Enthalpies for the Members of the HC7/
11 Database Computed Using the M11 and M11-L xc
Functional in Plane Waves (125 Ry, ξ = 8), an Augmented
Slater Basis (ATZ2P), aug-cc-pVTZ, and the Reference
Basis (6-311+G(2df,2p))

system ξ = 8 ATZ2P
aug-cc-
pVTZ reference

M11
1 E22-E1 21.67 20.14 20.19 20.83
2 E31-E1 29.48 28.09 27.59 28.94
3 octane isomerization 3.52 3.00 4.10 4.52
4 reaction a 6.60 6.94 7.38 7.47
5 reaction b 13.40 13.35 15.16 15.68
6 reaction c 193.15 196.20 193.97 198.68
7 reaction d 125.61 128.15 126.46 129.52

M11-L
1 E22-E1 19.99 14.60 17.12 15.91
2 E31-E1 26.52 21.12 24.26 22.80
3 octane isomerization 0.01 1.29 1.27 1.14
4 reaction a 6.51 8.26 8.17 7.88
5 reaction b 9.69 13.60 13.56 12.82
6 reaction c 195.12 194.15 197.70 198.55
7 reaction d 126.83 126.52 129.47 129.74
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(unphysical1) positive value which counterbalances the 100%
exact exchange employed in this functional.
In order to assess the effect of pseudisation further, Figure 4

shows the electron density along with the energy density ϵ for
a cut through one of the C−H bonds of the reaction product
E31. Both exchange and correlation energy densities are
smooth outside the core region rc for both M06 and M06-L.
Within rc, they can oscillate considerably, which is due to a
local maximum in τ(r) that occurs on top of the carbon
nucleus (given that τ(r) can be viewed as a probe for chemical
bonds, one might refer to this as a misdiagnosed chemical
bond). Since the oscillations are limited to the pseudised
region, no transferability issues are to be expected, which is
further illustrated by the values in Table 4. M06-2X and M06-

HF, however, show turning points in ϵxc even outside rc. In
particular, ϵxc exhibits a steplike pattern when approaching the
cusps of the density, whereas the correlation functional is
smoother and more well-behaved. It appears that while the
parametrization of M06-2X and M06-HF can be beneficial for
weak and long-range interactions, it results in unphysical
phenomena when combined with pseudised nuclear cusps.
Due to the high flexibility of the plane wave basis, these effects
may become particularly prominent. While our results suggests
that in many cases these effects do not considerably influence
energy differences due to error compensation, this is not
necessarily the case for reactions involving reactant E1.
A final quantification of the numerical behavior of the M06

family in a pseudopotential framework can be obtained by

Table 4. Values for Ex
(rc), Ec

(rc), and Their Sum, Exc
(rc) around the Nuclear Core Regiona

reactant (E1) product (E31)

functional Ex
(rc) [a.u.] Ec

(rc) [a.u.] Exc
(rc) [a.u.] Ex

(rc) [a.u.] Ec
(rc) [a.u.] Exc

(rc) [a.u.]

M05 −0.2420 −0.0028 −0.2438 −0.2406 −0.0027 −0.2432
M06 −0.1431 −0.0589 −0.2020 −0.1443 −0.0576 −0.2019
M06-L −0.2537 −0.0208 −0.2735 −0.2532 −0.0199 −0.2732
M06-2X −0.1354 −0.0194 −0.1547 −0.1353 −0.0187 −0.1540
M06-HF +0.0130 −0.0596 −0.0466 +0.0137 −0.0587 −0.0450

aRegions within the pseudopotential cutoff radius rc, for reaction 2.

Figure 4. Zoom on the values of the energy density ϵ(r) for exchange x, correlation c, and exchange-correlation xc for the M06, M06-L, M06-2X,
and M06-HF functional at the example of a cut through a carbon−hydrogen bond of product E31 of reaction 2. The electron density is displayed
on the secondary y axis.
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comparing the integrated ϵxc between reactant and product,
where we define

∫∑= − ϵ + ϵ
α

δ

α

+
E r R r rd( )( ( ) ( ))

r

r r

xc
spher

x c
c

c

(19)

as the integral of ϵxc(r) around nuclei α, starting from the
pseudopotential cutoff radius rc, outside of which the pseudo-
orbitals are identical to their all-electron counterparts, and
integrating up to an upper bound rmax = rc + δr. Here, we have
chosen the upper bound such that 2δr + rc

α + rc
β < dαβ to ensure

that there is no double counting between nuclei α and β
separated by a bond of length dαβ. We then plot the ratio of
change of Exc

spher between reactants and products, ΔExc
spher, and

the total change in exchange-correlation energy, ΔExc, as a
function of rmax, in Figure 5. The same data is also provided for
the exchange-only contribution. For comparison, the values for
M05 are given, too.

For the latter, all functionals exhibit negative values for the
ratio ΔEx

spher/ΔEx. This implies that the change of ϵx spherically
integrated from rc to rmax around each nucleus is opposite in
sign to the overall change of the exchange-correlation energy.
This behavior is consistent for all functionals of the M06
family. However, for M06-2X, the ratio increases much slower
and reaches lower values, whereas it increases more sharply
than for M06-HF. M05, M06, and M06-L show an almost
identical behavior. For δr ≥ 0.7, the ratio decreases by almost 1

order of magnitude, indicating that there must be considerable
areas where Δex(r) > 0, which will compensate for the negative
values at δr < 0.7, thus leading to a lower absolute value of the
integral. Note that δr ≈ 0.7 is close to the center of a C−C or
C−H bond. For the overall exchange-correlation energy, those
trends are even more pronounced. While M06 and M06-L
behave almost identically, and M05 very similarly, the ratio is
consistently lower in magnitude for M06-2X and reaches
positive values for M06-HF. Given that the components of Exc
close to the nuclei counterbalance the overall change in Exc,
this can provide a rationale as for why the predicted reaction
enthalpy increases in the series M06 → M06-2X → M06-HF.
For M06-2X and M06-HF, the overall contribution close to the
nuclei is considerably lower than for the other functionals
(which is also illustrated by the values in Table 4 and the CH
bond in Figure 4), the functionals therefore lack some
counterbalancing element. A flexible basis such as plane
waves may amplify this tendency, resulting in an over-
estimation of the energy of the isomerization. The different
energetics of the Hartree−Fock exchange between all-electron
bases and the plane wave/pseudopotential framework can
further amplify this behavior.
Figure 6 shows the influence of different basis functions on

the electron density at the example of reactant E1. Shown are
electron density differences between a converged plane wave
density and its analogue obtained using the aug-cc-pVTZ basis
for M06 and M06-HF as well as the electron density contour
with the same isovalue. In plane waves, for both functionals,
the electron density is depleted around the nuclei due to
pseudisation, but due to a tight cutoff radius rc, those regions
are not visible in Figure 6. It can be seen from Figure 6a,c that
for M06, residual changes in the electron density occur along σ
bonds. Their shape is a distinctive result of the higher flexibility
in plane waves, leading to small changes of the electron density
along bonds. These effects are expected to be highly
transferable and to be compensated when comparing different
systems. In contrast, Figure 6b,c shows that for M06-HF, plane
waves show increased density along all bonds, whereas aug-cc-
pVTZ yields more density further away from the nuclei. As can
be seen from Figure 6a,b, this behavior is amplified around the
cyclopropane structure in the case of M06-HF. The large
change of enthalpy between plane waves and atom-centered
bases correlates with a less localized density difference on E1,
in particular around the cyclopropane rings. Other reactions,
where agreement between M06-2X, M06-HF, and the atom-
centered bases is much better, appear to be far less sensitive to
those density differences; in particular, the enthalpies of the
“difficult” isodesmic reactions singled out by Grimme24 are
rather equally predicted by all functionals.

Figure 5. Values for the ratio of change in energy around the nuclei,
ΔEspher, and the total change in energy, ΔE, for exchange only x as
well as exchange-correlation xc for the M05, M06, M06-L, M06-2X,
and M06-HF functional for the isomerization reaction 2.

Figure 6. Isosurface (0.0035 au) of the electron density (gray) and the electron density difference between a plane wave setup and aug-cc-pVTZ for
compound E1. Regions depicted in red show more density in aug-cc-pVTZ, regions in turquoise have more density in a plane wave basis. Panels a
and c show densities for M06 and panels b and d for M06-HF.
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The differences with respect to atom-centered functions are
due to the highly flexible nature of plane waves and can be
amplified by the varying exact exchange energies predicted in
different bases. The features shown in Figures 5 and 6 are a
result of the functional form and parametrization of the
Minnesota functionals and may only manifest themselves in a
highly flexible, delocalized basis such as plane waves.
Plane waves therefore offer a new perspective on the

problem of functional convergence. Our results have illustrated
that considerable differences with respect to atom-centered
systems might occur for some specific functionals and in some
particular cases. This is particularly important if results from
benchmarks carried out in one basis are to be expected to be
transferable to another basis. If the energetics differ
considerably between bases, this is reflected in differences in
the electron density around the bonding regions and by the
ratio of the integral ΔExc

spher/ΔExc. Instead, the influence of
core-pseudisation has been shown to only negligibly contribute
to the energy difference between all-electron and plane wave/
pseudopotential calculations.

5. COMPUTATIONAL OVERHEAD
Figure 7 shows the increase in computational time for one
DIIS step using a fixed number of 384 CPU cores as a function

of the wavefunction cutoff. While the scaling of the local
quantities computed in plane wave codes is in principle linear
with an increase in cutoff, here, for certain cutoffs, real space
meshes may not be uniformly distributed over processors,
resulting in a computational overhead.29 In the example of the
M06-L functional, it is easily seen that the increase in runtime
is proportional to the ratio between ξ used in the calculation
and the baseline using ξ = 4. Since for any meta-GGA, the
computational bottleneck is given by the 3D FFTs, an increase
in ξ is directly reflected in the run time. The same holds for the
hybrid functional M06, although typical load-balancing issues
may occur, leading to a nonlinear increase in execution time.
This is especially prominent at cutoff energies above 250 Ry
and is more pronounced for higher values of ξ. Since the
Hartree−Fock exchange potential does not have to be

calculated on the density grid, an increase in ξ does not affect
the run time in a nonlinear manner. Because of the small
number of orbitals in the HF dimer, the overhead due to the
computation of the exact exchange integrals is modest (about
2.5). The run time of the hybrid-meta GGA in an isolated
system and a plane wave basis can further be decreased by
resorting to recently proposed density scaling algorithms.58

As ξ = 8 has been found to be sufficient for both the HC7/
11 database and the HF dimer, the computational overhead of
the Minnesota functionals with respect to standard (hybrid)
meta-GGA is therefore a factor of 2. However, the lower
orbital cutoff value that can be adopted in combination with a
large value of ξ (with respect to the standard choice of ξ = 4,
cf. Figure 3) allows for larger time steps in Car−Parrinello
(CP) molecular dynamics, circumventing integration problems
for the electronic degrees of freedom associated with high-
frequency components in the orbital expansion itself.29

6. CONCLUSIONS
We have presented a comprehensive analysis of the
convergence behavior of the M05−M11 families in a plane
wave basis, providing a complete basis set description within a
pseudopotential framework. We could demonstrate that given
a sufficiently fine integration grid, energy differences for a HF
dimer converge rapidly for most functionals with the exception
of M06-2X, which requires a particularly high cutoff energy.
Results between atom-centered Gaussian and Slater bases
agree favorably with those obtained in plane waves. Residual
differences were attributed to the high flexibility of the plane
wave basis.
In the example of reaction enthalpies of the HC7/11

database, we could subsequently show that for M05, M06,
M06-L, M11, and M11-L, there is good agreement between
values obtained in plane waves and those obtained from an
augmented Slater basis, whereas deviations with respect to
augmented Gaussian-type bases may be larger and can exceed
chemical accuracy. For the M06-HF and M06-2X functionals,
which both include a large percentage of exact exchange, we
found that in the case of two isomerizations involving species
E1, E22, and E31, changes with respect to atom-centered basis
sets can be notable. We have shown that these differences
cannot be attributed to core pseudisation. Instead, the
difference between exact exchange calculated in a plane wave
basis and its atom-centered equivalent can partially account for
the differences. Most importantly, sizable deviations between
plane waves and atom-centered bases correlate with the ratio
between the spherically integrated energy density around the
nuclei and the overall exchange-correlation energy, which we
have further illustrated in the example of electron density
difference maps. For both M06-2X and M06-HF, this ratio has
a higher value than in the case of the more well-behaved M06,
M06-L, and M05, which all show a more uniform behavior. In
particular, for M06, changes in electron density between plane
waves and aug-cc-pVTZ were shown to be localized close to
the nuclei and σ bonds, whereas the electron density
differences for M06-HF are substantially more pronounced
in regions far from the nuclear core. For the more recent M11
and M11-L, an unusual sensitivity with respect to the kind of
basis functions was observed, which was reflected in
considerable differences between results obtained with Slater
functions and their Gaussian equivalents. We have attributed
this to the underlying range-separation, for which the highly
flexible plane waves offer a more versatile and complete

Figure 7. Time per DIIS step for the HF dimer using the M06 and
M06-L xc functionals at different cutoff energies and using different
values of ξ. All calculations were carried out in a 20 Å × 15 Å × 10 Å
box using 384 processors.
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description. These functionals are the most accurate
considered in this study and, contrary to Gaussian bases, do
not pose convergence problems when used in a plane wave/
pseudopotential framework. Finally, it was shown that the need
for a finer integration mesh introduces an overhead of a factor
of 2, independent of the inclusion of exact exchange.
Hence, with this plane wave implementation, it becomes

possible to obtain values at the complete basis set limit for the
M05, M06, M08, and M11 families. While residual changes
with respect to converged Gaussian basis set calculations are
small for most systems, they can be sizable for specific
reactions described using M06-2X, M06-HF, or M11-L. While
these features may remain hidden in a Gaussian basis, they will
only surface once functions with an exact asymptotic decay
(such as Slater functions) or a fully flexible and delocalized
basis (such as plane waves) are used.
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