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Résumé

Les oscillateurs harmoniques font partie des objets les plus fondamentaux
décrits par la physique, mais restent malgré tout un sujet de recherche actuel.
Les propriétés topologiques associées aux points exceptionnels qui peuvent
apparaitre lorsque deux modes interagissent ont suscité un grand intérét
récemment. Les oscillateurs harmoniques sont au coeur de nouvelles tech-
nologies quantiques : la longue durée de vie de résonateurs a haut facteur
@ en fait d’excellentes mémoires quantiques; ils sont aussi employés pour
traiter des signaux quantiques de faible bande passante, par exemple dans
les amplificateurs paramétriques Josephson.

Le but de cette these est d’explorer différents régimes fondamentaux de
deux oscillateurs harmoniques couplés en utilisant 'optomécanique comme
support expérimental. Suite au progres constant dans leurs facteurs de qua-
lité, les résonateurs mécaniques et électromagnétiques réalisent des oscil-
lateurs harmoniques quasi-idéaux. Avec une modulation paramétrique du
couplage optomécanique non-linéaire qui les lie, on peut réaliser un cou-
plage linéaire dont la force et la fréquence relative des deux modes peuvent
étre controlés. Ainsi, 'optomécanique constitue une plateforme qui permet
d’étudier un systeme de deux oscillateurs couplés, en réglant précisément
leurs parametres. Les systemes optomécaniques que nous utilisons sont des
circuits supraconducteurs dans lesquels la plaque supérieure d’un condensa-
teur vibre et sert d’élément mécanique. Des circuits multimodes sont réalisés,
dans lesquels deux modes micro-ondes interagissent avec un ou deux modes
mécaniques. Les modes supplémentaires servent soit d’intermédiaires dans la
relation des deux modes principaux, soit d’auxiliaires pour le controle d’un
parametre du systeme.

Trois résultats expérimentaux principaux sont obtenus. Premierement, un
mode micro-onde auxiliaire permet de controler le taux de dissipation effec-



tif d’un oscillateur mécanique. Ce dernier joue alors le role d’un réservoir
thermodynamique pour le mode micro-onde principale avec lequel il inter-
agit. La susceptibilité du mode micro-onde peut étre modifiée, ce qui résulte
en une instabilité analogue a celle du maser et a 'amplification résonante
des signaux micro ondes incidents avec un bruit proche du minimum quan-
tique. Deuxiemement, nous étudions les conditions dans lesquelles la relation
entre deux modes micro-ondes devient non-réciproque, telle que l'informa-
tion est transmise dans une direction mais pas dans 'autre. Les deux modes
interagissent par le biais de deux oscillateurs mécaniques, ce qui permet
une conversion en fréquence entre les deux cavités micro-ondes. La dissi-
pation des modes mécaniques est essentielle pour deux raisons : elle per-
met une phase réciproque nécessaire a l'interférence et permet d’éliminer
les signaux indésirables. Troisiemement, nous réalisons une attraction de ni-
veaux entre un mode micro-onde et un mode mécanique, dans laquelle les
fréquences propres du systeme se rapprochent a cause de l'interaction, au
lieu de s’éloigner comme dans le cas plus usuel de répulsion de niveaux. Le
phénomene est relié de maniere théorique aux points exceptionnels, ce qui
permet une classification générale des différents régimes d’interactions entre
deux modes harmoniques, dont la répulsion et I'attraction de niveaux consti-
tuent deux exemples.

Mots-clés : optomécanique, circuits supraconducteurs micro-ondes, ré-
servoirs quantiques, amplification a la limite quantique, non-réciprocité, at-
traction de niveaux



Abstract

Harmonic oscillators might be one of the most fundamental entities described
by physics. Yet they stay relevant in recent research. The topological prop-
erties associated with exceptional points that can occur when two modes
interact have generated much interest in recent years. Harmonic oscillators
are also at the heart of new quantum technological applications: the long
lifetime of high-Q resonators make them advantageous as quantum memo-
ries, and they are employed for narrowband processing of quantum signals,
as in Josephson parametric amplifiers.

The goal of this thesis is to explore different fundamental regimes of two
coupled harmonic oscillators using cavity optomechanics as the experimen-
tal platform. With consistent progress in attaining ever increasing () fac-
tors, mechanical and electromagnetic resonators realize near-ideal harmonic
oscillators. By parametrically modulating the nonlinear optomechanical in-
teraction between them, an effective linear coupling is achieved, which is
tunable in strength and in the relative frequencies of the two modes. Thus
cavity optomechanics provides a framework with excellent control over sys-
tem parameters for the study of two coupled harmonic modes. The specific
optomechanical implementation employed are superconducting circuits with
the vibrating top plate of a capacitor as the mechanical element. Multimode
optomechanical circuits are realized, with two microwave modes interacting
with one or two mechanical oscillators. The supplementary modes serve ei-
ther as intermediaries in the relation of the two modes of interest, or as
auxiliaries used to control a parameter of the system.

Three main experimental results are achieved. First, an auxiliary mi-
crowave mode allows the engineering of the effective dissipation rate of a
mechanical oscillator. The latter then acts as a reservoir for the main mi-
crowave mode with which it interacts. The microwave mode susceptibility
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can be tuned, resulting in an instability akin to that of a maser and in reso-
nant amplification of incoming microwave signals with an added noise close
to the quantum minimum. Second, we study the conditions for a nonrecipro-
cal interaction between two microwave modes, when the information flows in
one direction but not in the other. The two modes interact through two me-
chanical oscillators, leading to frequency conversion between the two cavities.
Dissipation in the mechanical modes is essential to the scheme in two ways:
it provides a reciprocal phase necessary for the interference and eliminates
the unwanted signals. Third, level attraction between a microwave and a
mechanical mode is demonstrated, where the eigenfrequencies of the system
are drawn closer as the result of interaction, rather distancing themselves as
in the more usual case of level repulsion. The phenomenon is theoretically
connected to exceptional points, and a general classification of the possible
regimes of interaction between two harmonic modes is exposed, including
level repulsion and attraction as special cases.

Keywords: cavity optomechanics, superconducting microwave circuits,
quantum reservoirs, quantum-limited amplification, nonreciprocity, level at-
traction
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Chapter 1

Introduction

Motion in a circle has exerted a strong fascination on the human mind
through the ages. It is most evident in cosmology and the “changing vi-
sion of the universe” (Koestler, 1959). The idea of heavenly bodies that
rotate in circles around a spherical earth can be traced back to the school of
Pythagoras in the 6 century BCE. Their global vision of sciences, imbued
with mysticism, encompassed mathematics, medicine and the arts. The mu-
sical notes produced by the rotation of each cosmic body at various speeds
composed a harmony of the spheres that supposedly only Pythagoras himself
could hear.

Plato, in the 4" century BCE, confirmed the Pythagorean intuition by a
priori reasoning concluding that the universe should have the perfect shape
of a sphere and the perfect motion of a circular trajectory at uniform speed.
Subsequently, his contemporary Aristotle formalized this notion into a dogma
of circular motion that humanity only abandoned two thousand years later.
The spherical earth, immobile in the center of the universe belongs to the
sublunar realm of change and decay. It is surrounded by nine concentric
spheres, increasing in purity and holiness with radius, all moving in circles
around their center. The relative motion of spheres rotating with respect to
each other uniformly (54 spheres in total in the complete Aristotelian model
that result in convoluted trajectories for the nine spheres that carry celestial
objects) could only very roughly account for the actual apparent movements
in the sky. Ptolemy, in 2"! century BCE, discarded the spheres and only
kept the rule of circular motion at the letter. His planets move uniformly in
circles around points that themselves follow a circular orbit around the earth
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(or rather a point slightly away from the earth, named the eccentric). By
varying the radii and relative velocity of those circular motions, complicated
noncircular trajectories on the epicycles can be constructed from circles only.
Through that technique, the strange wandering of the planets could be ap-
proximately accounted for, at least well enough for the needs of time keeping
and navigation at the time. Copernicus in the 16" century, unsatisfied with
the status quo, attempted a new model that placed the sun in the center of
the orbits of all planets (as Philolaus, Heraclides and Aristarchus had done
long before). That model simplified things slightly, but could not escape the
curse of the circular dogma, filled as the Ptolemaic system with complicated
epicycles.

The holiness of circular motion was so well entrenched that it took until
the 17th century for Kepler to finally renounce it and introduce elliptic orbits
instead. Motivated by a mystical urge to decrypt the universe with the lan-
guage of mathematics, he took the very modern step of comparing a model
to precise data. The inevitable conclusion came at great pains to Kepler
who despaired that giving up on the circles and epicycles that had cluttered
astronomy for millenia left him with “only a single cart-full of dung”!, the
ellipse. Such was the strength of the delusion that Galileo, a contempo-
rary who had access to Kepler’s results but believed firmly in Copernicus’s
epicycles, held that matter, left to its own device, would naturally move in
circles. Finally, Descartes found soon afterwards the correct law of inertia,
pronouncing the infinite line as the natural trajectory of matter.

[ will argue that the obsession with circular motion was only misdirected
when applied to astronomy. A circular orbit is indeed only possible for a
body whose initial velocity and distance from the sun are such that the
gravitational force precisely corresponds to the centripetal force required to
bend the trajectory into a circle. Any other initial conditions and the orbit
forms an ellipse. There is however an entity that always travels on a circle
at uniform velocity: the harmonic oscillator in phase space.

The harmonic oscillator is a physical abstraction that represents an ideal
periodic motion in a quadratic potential. Its archetype is a mass bouncing on
a linear spring, as shown in fig. 1.1a. When the mass m departs its equilib-
rium position, a recoil force F'(x) = —kz (with k the spring constant) pulls
it back. The resulting motion is periodic, with z(t) = x¢ sin(wot + ¢), where
the amplitude zy and phase ¢ are determined by the initial condition, and
wo = /k/m is the oscillation frequency (fig. 1.1b). The velocity oscillates
out of phase with the position as v(t) = wyzg cos(wot + ¢) (fig. 1.1b). Rep-

! Letter to Longomontanus, 1605, as quoted by Koestler (1959).
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Figure 1.1: The circular motion of a harmonic oscillator. (a) Archetypical
harmonic oscillator formed by a mass on a spring. (b) Periodic oscillations of
the position z and velocity v of the oscillator. (c¢) Phase space representation
of the circular trajectory on the plane formed by x and v.

resented in the phase space in fig. 1.1c, with x the horizontal axis and v the
vertical one, it follows a circular trajectory at uniform speed. The periodic
oscillation can be interpreted as stemming from a competition between the
kinetic energy %va and the potential spring energy %kxz, with an increase
in velocity when the distance reduces and a decrease in velocity when the
distance increases. Written in terms of the normalized position ¢ = \/k/wg x
and momentum p = \/m/wy v, the total energy E = twy(q? + p*) describes
geometrically a circle on the plane formed by ¢ and p (with a radius of
\/2FE /wp). The quadratic form of the potential is essential to this property.
It is a posteriori clear how doomed the ancient astronomers were, who wres-
tled unknowingly with a gravitational potential of the form —GM /r, failing
to fit circles in the resulting motion.

The harmonic oscillator is perhaps the most fundamental object described
by physics. Beyond mechanical resonators, it models the periodic changes
of any degree of freedom in a quadratic potential: electromagnetic radiation
bouncing back and forth in optical cavities, sound waves resonating as a note
in a musical instrument, or the vibrations of fundamental quantum fields
that constitute the particles of the standard model. Despite its simplicity
(or perhaps because of it), the realization of an actual near-ideal harmonic
oscillator is technically challenging and an engineering goal to this day.

Two practical constraints prevent the implementation of an ideal oscilla-
tor a priori: deviations from the quadratic harmonic potential and damping
of the oscillations due to the environment. The former, known as anhar-
monicities, can be easily remedied. By reducing the oscillation amplitude,
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any higher-order component of the potential beyond the quadratic eventually
becomes negligible. For instance the pendulum, whose nonlinear recoil force
is F'(f) = —mgsin 6, is a harmonic oscillator for small angles 6 for which the
force is approximately linear, with F'(f) ~ —mg#@. In fact, the principal de-
viation of practical oscillators from the ideal originate from their interaction
with the environment. Through friction, a pendulum loses momentum os-
cillation after oscillation and the amplitude of motion continuously reduces
until the pendulum eventually reaches a stop. This loss of energy can be
quantified and defined to occur at a rate x called the energy dissipation rate,
such that after a time At the energy is reduced by a factor e 4t The
quality factor @) = wy/k is a measure of how close to the ideal the oscillator
is: it counts the number of free oscillations before the energy decays to e =27
of its initial value, a number that tends to infinity for the perfect harmonic
oscillator.

The last decades have seen a substantial rise in the () factors of both
mechanical and electromagnetic resonators. The natural decoupling of me-
chanical elements to their environment makes them technologically appealing
as narrowband oscillators, with quartz oscillators ubiquitous in applications
of timekeeping and MEMS devices used for narrowband filtering in telecom-
munication (Lam, 2008). Recently, through new techniques such as soft
clamping and strain engineering, nanomechanical oscillators have been real-
ized with @Q factors of up to nearly 10° (Tsaturyan et al., 2017; Ghadimi et
al., 2018). In parallel, tremendous progress has also been achieved in electro-
magnetic resonators. Optical cavities such as Fabry-Perot etalons are used as
frequency references (Kruk et al., 2005) and to form lasers (Bromberg, 2008).
The nonlinear medium of certain high-¢) microresonators can spawn optical
frequency combs of regularly spaced emission (Kippenberg, Holzwarth, and
Diddams, 2011). In the microwave range, superconducting resonators formed
by 3D cavities or circuits have been realized with high @ factors (Megrant
et al., 2012; Bruno et al., 2015; Romanenko and Schuster, 2017). Both op-
tical (Walther et al., 2006) and microwave (Devoret and Schoelkopf, 2013)
cavities have been exploited to interact with natural and artificial atoms at
the quantum level.

A single harmonic oscillator, while useful as a timekeeper or filter, pre-
dictably beats at the same frequency and lacks interesting dynamics. Two
coupled oscillators however offer a much more colorful panel of associated
phenomena. Cavity optomechanics (Aspelmeyer, Kippenberg, and Mar-
quardt, 2014), or the study of interaction between a mechanical oscillator
and an electromagnetic cavity, realizes a coupling between two near-ideal
harmonic oscillators. Through the optomechanical interaction, mechanical



oscillators have been cooled close to their ground state (Teufel, Donner, et
al., 2011), squeezed light has been produced (Purdy et al., 2013), and the
mechanical motion measured by evading the backaction usually imposed by
quantum mechanics (Mgller et al., 2017), among many other demonstra-
tions. It also sets fundamental limits on the sensitivity of gravitational-wave
detectors (Evans et al., 2015).

The nonlinear optomechanical interaction can be linearized through para-
metric modulation by applying an electromagnetic driving tone to the sys-
tem. The resulting linear coupling is tunable in strength and the relative
frequencies of the two harmonic modes (in a rotating frame) can be varied as
well. Thus, optomechanical systems are highly controllable platforms for the
exploration of the fundamental properties of linearly interacting harmonic
oscillators.

That constitutes the thread of Ariadne that binds together the results
of this thesis. An optomechanical system allows us to explore the wealth of
phenomena arising from a linear coupling between two harmonic modes. The
specific implementation is a microwave optomechanical circuit (Teufel, D. Li,
et al., 2011), where the electromagnetic mode is a superconducting LC' res-
onator and the mechanical element is the vibrating top plate of the capacitor.
More specifically, the possibilities of multimode optomechanical systems are
explored, where two microwave modes interact with one or two mechanical
modes. When considering the interplay between two given oscillators, the
supplementary modes act either as intermediaries in the relation or auxiliary
degrees of freedom that permit the tuning of a system parameter.

In summary, the present thesis is structured as follows. In chapter 2, a
quick overview of the necessary theoretical models is attempted. In chapter 3,
the main features of the experiments are exposed, including short summaries
of the nanofabrication of the devices and the numerical simulation tools used.
In chapter 4, the first main experimental result is presented, concerning the
realization of a reservoir for a microwave cavity using an auxiliary microwave
mode to engineer the dissipation of a mechanical oscillator. In chapter 5, the
second result is discussed, about the possibility to construct a nonreciprocal
pathway between two microwave modes with two mechanical modes serving
as intermediaries. In chapter 6, the third main result is introduced: we de-
scribe theoretically the classes of interaction between two harmonic modes
and demonstrate experimentally level attraction between a microwave and
a mechanical mode. In chapter 7, recent progress is reported on the imple-
mentation of a new experimental tool to achieve higher quantum efficiency
in measurements. In chapter 8, we finally conclude and provide an outlook
for future possible extensions of the work.
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Supporting data and code to the results of this thesis are available on-
line (Bernier, 2018). This includes the files of the design of custom com-
ponents fabricated for the experiment, code used to produce the figures
contained in this thesis, and the measurement scripts used to acquire the
experimental data.



Chapter 2

Theoretical background

In this chapter, we present the different theoretical models that constitute the
backbone of the phenomena studied in this thesis. In section 2.1, we present
a theoretical background for general cavity optomechanics. In section 2.2,
the notion of quantum noise as it applies to amplification and our system is
developed. Finally, in section 2.3, we introduce our specific implementation
of an optomechanical system using superconducting LC' circuits. The aim is
not to provide an exhaustive review of cavity optomechanics, but only the
fundamental theoretical tools required to present the results of this thesis.
We refer the reader interested in a more thorough presentation to the existing
literature (Aspelmeyer, Kippenberg, and Marquardt, 2014; Bowen and G. J.
Milburn, 2015).

2.1 A short review of cavity optomechanics

Here we expose rapidly the fundamental ideas of cavity optomechanics. In
section 2.1.1, the optomechanical interaction is introduced, leading to the
quantum optomechanical Hamiltonian in eq. (2.2). In section 2.1.2, the
Langevin equation for a quantum mode (2.4) is introduced that accounts
for the dissipation in the open system. In sections 2.1.3 and 2.1.4, the non-
linear optomechanical interaction is linearized in the presence of a driving
tone, first in the Langevin formalism, then at the level of the Hamiltonian.
In section 2.1.5, the immediate consequences of the linearized optomechanical
interaction are presented, in the form of a shift in the mechanical frequency
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Figure 2.1: Archetypical optomechanical system. A Fabry-Perot cavity with
an optical mode a has one mirror that is mounted on a spring. Its mechanical
motion, the mode b, modulates the resonance frequency of mode a and in
turn the light in the mode a exerts a force on the oscillator b due to radiation
pressure.

and dissipation rate.

2.1.1 The optomechanical interaction

The defining feature of cavity optomechanics is a specific form for the in-
teraction between two harmonic oscillators. Independently of the nature of
the two modes, the coupling will determine the dynamics and associated
phenomena, whichever system is used for its realization.

Consider two harmonic oscillators with quadratures z1, p1 and xa, po,
and frequencies w; and wy. We define the optomechanical interaction as the
coupling that results from the linear dependence of the frequency of the first
mode on a quadrature of the second mode, such that

W1 (ZEQ) = W10 + GZEQ. (21)

The coupling constant G depends on the choice of normalization for the
quadrature xo and is in general not always clearly defined.

The archetypal example of optomechanical interaction, shown in fig. 2.1 is
an optical Fabry-Perot cavity formed by two parallel mirrors, one of which is
attached to a spring and constitutes a mechanical harmonic oscillator. The
displacement of the mirror changes the length of the optical cavity and thus
its frequency. For small enough oscillation amplitudes, the dependence in
position can be linearized such that eq. (2.1) is obtained. There is however
nothing requiring the first mode to be optical and the second to be mechanical
in nature. Only the structure of the Hamiltonian (as well as the interaction
with the environment in the form of the dissipation rate, as explained in
section 2.1.5) determine the dynamics of the system.
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We note that other types of optomechanical couplings have been studied
as well. In particular, the quadratic optomechanical interaction wq(zy) =
w10+ ng% has been experimentally achieved with membrane-in-the-middle
experiments (Jayich et al., 2008; Thompson et al., 2008; Sankey et al., 2010)
and photonic crystals (Paraiso et al., 2015). Within this thesis, we are only
concerned with the linear kind and we will always mean a coupling of the
form eq. (2.1) by “optomechanical interaction”.

In the language of quantum mechanics, which we will use throughout this
thesis, the two modes are described by the annihilation operators a, l;, such
that the quadratures of the two modes (now promoted to operators) take the
form x; oc a+ a', p; o< i(al — a), vy b+ b, py o z(l;T — l;) They obey the
bosonic canonical commutation relations [, af] = 1 and [b,bT] = 1. In that
language, the Hamiltonian for the system is expressed as

H = hwy (z2)d a4 hwyb'b = hwy gata + hwsb™d + hgo(b + bhafa, (2.2

where gq is called the vacuum optomechanical coupling strength and corre-
sponds to G when the second mode quadrature has the dimensionless nor-
malization z, = b+ bf. We will refer to the last term of eq. (2.2) as the
optomechanical coupling term.

2.1.2 The Langevin formalism

A capital aspect that is not taken into account in the Hamiltonian formalism
is the interaction with the environment. This is not merely a non-ideal
feature of the system implying dissipation and loss, but an essential one.
One of the two modes at least must be accessible through a channel in order
to transfer information to and from the system for any measurement to take
place. We use the quantum Langevin formalism to account for the role of
the environment, and briefly review it here. A thorough exposition can be
found in the appendix E.2 of the review on quantum noise by Clerk et al.
(2010).

The mode of interest, which we will denote by the annihilation operator a,
is assumed to interact with a number of bath modes, of annihilation operators
Cq, through the coupling Hamiltonian

Hya = —ih Y _ [Aafé, — Néla] | (2.3)
q

with A an (a priori complex) coupling strength. In the case of the interaction
with a waveguide channel, the bath modes are standing modes of the waveg-
uide (determined by the boundary conditions, including the cavity itself).
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In the case of internal loss mechanisms, the bath modes are any external
degrees of freedom coupled to the mode of interest that are not described by
the model (such as power radiating away from the cavity).

The equation of motion for each bath mode is first solved exactly, and the
result, that depends both on the initial conditions ¢,(¢ = 0) and on the state
of the mode a(t), is inserted in the equations of motion for a(t). This results
in

d(t) = —Z'CUL()CAL(t) -

a(t) + Vka(t), (2.4)

|3

where the dissipation rate
K =27|\?p (2.5)

depends on the density of states by frequency unit p of the bath modes. The
input mode is identified as the operator

V21p

where w, is the resonance frequency of the mode ¢,. The input mode is a
linear combination of the reservoir modes that can be interpreted as rep-
resenting the incoming flux of quanta arriving at the mode a through the
channel. Note that since p has units of w™!, a;, has units of \/w (such that
al (t)am(t) gives a number of quanta per unit time). Equation (2.4) is called
a quantum Langevin equation.

fin(t) = o= 3 ¢, (0), (26)

The procedure can be done independently for each bath. In particular for
the mode a, which we will identify as the electromagnetic one, a distinction
should be made between the coupling to the waveguide used to probe the
cavity, of rate ke, and all other degrees of freedom that interact with the
cavity, of rate ko (representing internal losses). For the mode I;, identified
with the mechanical motion, no communication exists (in our system), only
losses, at a rate I'y,. The full equations of motion, taking into account both
the interaction of eq. (2.2) and the loss terms from the Langevin treatment,
are

i = —(iwe + g)A —igo(b+ b1)a + /R (t) + VRodo(t), (2.7
A I‘m 7 . DN >
b= —(iQm + 7)6 —igoa'a 4+ /Twbo(t), (2.8)

where K = Kex + Ko and we use the new notation w, = w; o and €, = ws.

Two assumptions used in the derivation of the Langevin equation eq. (2.4)
are worth mentioning. First, a major assumption is that the reservoir modes
can be approximated by an infinite continuum of modes. This is required
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for the reservoir to be Markovian in the sense that it instantly forgets all
information about the mode a. If only a finite number of modes existed, the
information dissipated from a would bounce between them and eventually
be fed back into a. Then the past state of the mode could affect its current
state. In a realistic system, the bath modes (although maybe not infinite)
are themselves interacting with many other degrees of freedom such that all
information about a is diluted and lost, making in practice the continuum of
modes a valid hypothesis.

A second assumption is that all reservoir modes are coupled to the mode
a with the same coupling strength A. This can be justified in a self-consistent
manner. There might be differences between the bath modes, such that the
coupling strength A, effectively has a dependence on the frequency w. How-
ever, we find retrospectively that the mode a is only sensitive to perturbation
in a finite bandwidth x. The assumption is then only that the mode band-
width s (itself due to interaction with the reservoir) is narrow compared to
any variation as a function of frequency of the coupling to the bath modes.

Finally, the quantum Langevin equation eq. (2.4) can be understood as an
example of the fluctuation-dissipation theorem (Callen and Welton, 1951).
Interacting with its reservoir, the mode a is damped. This cannot happen
without fluctuations from the modes of the reservoir in turn driving the sys-
tem through the input mode a;,(t). As we will show in section 2.2.2; the
fluctuations have an effective temperature to which the mode a will equili-
brate.

2.1.3 Linearization in the Langevin picture

The optomechanical interaction (eq. (2.2)) is a nonlinear three-wave-mixing
coupling that is rather weak for most systems. The coupling strength g
is usually much smaller than most other rates in the system (except I'y,
typically). In order to effectively amplify this interaction, an electromagnetic
drive is applied to the cavity a. We outline here how this drive linearizes the
coupling with a much increased coupling strength.

Through the input channel of mode a is introduced a driving tone at the
frequency wq. The input operator can be decomposed as

din(t) = nine_id’e_i‘”dt + (Sdin<t), (29)

where the first term represent a classical flux of n;, quanta per unit time and
the second term da contains the leftover quantum fluctuations. The phase ¢
of the coherent field is left arbitrary. No approximation is made in eq. (2.9);
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the creation operator is just displaced by a term proportional to the identity
operator.

The coherent drive induces coherent oscillations in a and the resulting
field intensity displaces the equilibrium position of the mechanical oscillator
with a radiation-pressure force. The operators for the two modes can be
rewritten with the ansatz solutions

a = \/nce” ™ 4 §a, (2.10)
b = bapiry + 0, (2.11)

where n. is the squared amplitude of coherent oscillations of the cavity field
due to the drive (in units of quanta) and bgg is the new rest position of the
mechanical mode.

We insert egs. (2.10) and (2.11) in the Langevin egs. (2.7) and (2.8) and
solve order by order in the powers of the quantum fluctuations da, 0b.

At zeroth order, the purely classical response of the system to the drive
gives

K .
_iwd V ﬁc = - (iwc + 5) V T_lc - ZgO (bshift + b:hjft) V 'ﬁfc + V Rex nineiwﬁv
(2.12)

0 (z m+2

I'n .
_) bshift — 1goTc (213)

The coupling term in eq. (2.12) makes the equation nonlinear and in general
complicated to solve. It can however usually be neglected, since the field
amplitude is small, such that n.go*/v/Qwm? + I'nm?/4 < \/(wd —w)? + k2/4.
In that case, the equations are solved by

_ VFex€ "0\ /Tin

Ve = — , 2.14
" —i(wg — we) + K£/2 (2.14)
_igoﬁc

_ 2.1
i + T /2 (2.15)

bshift -

Note that taking the nonlinearity of the equations into account results only in
a small renormalization of those results, except for very large amplitudes, for
which it is possible that the system has multiple stable solutions (Marquardt,
Harris, and Girvin, 2006). For convenience of notation, we can assume ¢ such
that n. is real, as a shift in the phase is simply equivalent to a change in the
origin of time.
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At the first order in da, 613, the linear equations of motion for the fields
are

0o = — (iwc’ + g)% — igov/Tice " (0b + 0bT) + \/FexOitin + /Rofio, (2.16)

~

I ~ . . A
b = = (1 + % )0 — igov/Ac(e™ 40! + e'da) + Tubo.  (217)

The static displacement of the mechanical oscillator results in a small shift
in the cavity resonance frequency w.’ = we + go(bshier + blige)-

We arrive at the first important approximation, which is to neglect higher-
order terms in da, 8b and only consider the linear equations of motion. This
is justified when the coherent amplitude 7. is large and dominates over any
other signals in da, whether quantum fluctuations or any other classical signal
or noise.

The time-dependence of egs. (2.16) and (2.17) is removed by going to a
rotating frame. A change of variable is done for the cavity da, with the new
operators given by da’ = dae™dt) §al, = da,e™t, ay = ape™’. The new
equations of motion become (removing an overall factor e=*d* from the first
equation)

Sal = (z’A _ g)éa’ —ig (b + 0bT) + \/Rexddly, + /Rodl, (2.18)
5h— — (mn + %“)56 —ig (8@ + 6a') + /Taabo. (2.19)

We have defined the detuning A = wq — w.” and the linear field-enhanced
optomechanical coupling strength g = gg/ne.

The equations egs. (2.18) and (2.19) involve both creation and annihilation
operators. They belong to a set of 4 linear equations, including the equations
of motion for da’f, dbr. Together, they can be solved by inverting a matrix
to obtain the response of the system da’, b for a certain input da,, ap,
bo. Under certain conditions, a rotating-wave approximation (RWA) can be
made to keep only two equations. The detailed conditions for the RWA are
discussed in appendix A, and we discuss only briefly the approximation in the
following. If a red detuning A < 0 is chosen such that the effective frequency
of the cavity da’ in the rotating frame is close to the mechanical frequency
(A ~ —,), the free oscillations of the two modes (when g = 0) are at a
similar frequency with dd’(t) = €26’ (0), 6b(t) = e~*™*§b. For small enough
coupling strengths g, the frequencies will not be modified. As a result, the
term of eq. (2.18) in 6b' and the one in eq. (2.19) in 6d’" are counter-rotating,
with a relative frequency of 2€2,, with respect to the other terms. They can
be neglected, since they oscillate very fast and cancel out on average. In
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the related case of a blue detuning, with A = €),,,, the opposite terms can
be neglected such that da’ couples only to b, In that case, the cavity da’
effectively has a negative frequency in the rotating frame, as it oscillates at
a slower rate compared with the drive frequency wq in the laboratory frame.
The effective negative frequency is key for the phenomenon of level attraction
discussed in section 6.3.

2.1.4 Linearization in the Hamiltonian picture

Alternatively, it is instructive to study the linearization of the optomechanical
coupling at the level of the Hamiltonian. The ansatz solutions of egs. (2.10)
and (2.11) are inserted in the Hamiltonian eq. (2.2), which can then be
expanded in powers of da, (5?7, order by order.

At zeroth order, there is a constant shift in energy, with no influence on
the dynamics, that can be ignored. At first order, we get the expression

Hyg, = hwe(v/Ace 66" + v/Ree™'6a) + A (Dyie0b + benise 607
+ hgone (b + 6bT) + hgo(benie + b ) (Viice 400" 4 /Ace™dtda). (2.20)
The equations of motion deriving from eq. (2.20) result in egs. (2.12) and (2.13)

when the dissipation and input terms are added. Their solution are the mean-
field responses for \/n. and by, introduced above.

At second order, we find a time-dependent bilinear coupling with
Hong = T/ 8666 + 70001 6b + hig(6b + 0" ) (e7™atdal + e“atsa).  (2.21)

Once again, as a first approximation we neglect higher-order terms. This
Hamiltonian can be made time-independent by rotating the reference frame,

using the interaction picture with respect to the reference Hamiltonian Hy =

hwadatda. All operators O then evolve as Oy(t) = e1t/h0(0)e~H#1t/h with
the effective Hamiltonian Hy = e'#ot/"(H — Hy)e "Hot/" here given by

Hopq1 = —hA8GT 86 + 10,6010 + g (6b + 6b1) (da + dal). (2.22)

The RWA here consists in neglecting terms that do not conserve the number
of excitations resulting in

Hopay ~ —hA8GT 86 + hQw0b'6b + hig(6adbt + 6a'ob), for A ~ —Qy,, (2.23)
Honay ~ —hA6GT 66 + h,0bT8b + hig(6adb + datobt), for A~ Q. (2.24)

The conditions of validity of the RWA are derived in details in appendix A
and are k < 40y, [|A] — Q| < 2Q,,, and g < 2.



2.1 A short review of cavity optomechanics

15

The linearized optomechanical interaction is an example of parametric in-
teraction (Mumford, 1960; Bertet, Harmans, and Mooij, 2006; Tian, Allman,
and Simmonds, 2008), where a parameter of the system is modulated exter-
nally in a way that affects two subsystems and thus couple them together. In
this case, the electromagnetic drive modulates the cavity field. This affects
the mechanical mode, as a the field intensity applies a force to the oscillator,
and the cavity as well, since a mechanical displacement changes the cavity
resonance frequency. The pump tone effectively linearizes the coupling by
bridging the gap in frequency between the electromagnetic and mechanical
harmonic modes.

The linearized system offers an ideal playground to study the interaction
between two harmonic oscillators. Their linear coupling strength can be ad-
justed by varying the intensity of the driving field. The effective relative
frequency of the modes (in the rotating picture) can also be tuned, with the
pump detuning. Even effectively negative frequencies can be achieved for one
of the oscillator. Overall, almost all the parameters in the Hamiltonian for
linearly coupled harmonic oscillators can be tuned experimentally and cho-
sen at will. In the Langevin picture, the interaction with the environment
and the dissipation rates appear fixed to their original values. As detailed
in the following section 2.1.5, the linear coupling in fact results in a change
of the effective dissipation rate for one of the two modes. Generalizing this
notion, a significant result of this thesis, detailed in chapter 4, is an experi-
mental technique to independently tune the dissipation rate of one of the two
oscillator in an independent way. Thus we gain control over almost all the
parameters that determine the dynamics of this two-mode system and can
study the interaction of the two modes in all possible regimes, as explained
in chapter 6.

2.1.5 Optomechanical damping and amplification

The linearized Hamiltonian eq. (2.22) is symmetric for the modes da and .
The drive tone even bridges the frequencies such that the two modes, with
frequency scales orders of magnitude apart in the laboratory frame, have
similar frequencies in the rotating frame Hamiltonian. It is therefore natural
to expect a symmetric effect for both modes. That is not the case however.
The dissipation rates x and I',, enforce a strong hierarchy of time scales,
with k> T'y, for most systems (since the electromagnetic mode frequency is
usually much greater than the mechanical one). The way that the mechanical
and electromagnetic modes are affected by the coupling is therefore quite
different. The cavity mode can be interpreted as constituting a reservoir
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mode for the mechanical oscillator, altering the effective dissipation rate and
resonance frequency of the latter. In chapter 4, we will see how those two
roles can be reversed.

We first consider the linearized interaction in the Langevin picture of
egs. (2.18) and (2.19), for a detuning nearly resonant with the red mechanical
sideband A ~ —Q,,. We consider how the response of the modes to their
inputs day, and by is affected by the interaction. To solve the equations
of motion, which are invariant under time translations, we use the Fourier
transform, defined as

+oo

Olw] = /_ dte“'O(t). (2.25)

o

In section 2.2, where we define the power spectra of the input and output
modes, the use of the Fourier transform is made more precise. Here, the
definition above is sufficient to study the response of the modes as a function
of frequency.

Note that since we consider the mode da in the rotating frame, the fre-
quency w is the relative frequency with respect to the pump frequency wq
when considering the cavity mode da. For the mechanical mode, w is the real
frequency in the laboratory frame. The frequencies are bridged by the drive
field, that upconverts the mechanical signal to electromagnetic frequencies
and downconverts electromagnetic signals to mechanical frequencies. This
means that from the point of view of the mechanical mode, there is a copy
of the cavity mode with which it interacts at a nearby frequency, and recip-
rocally the cavity mode sees a copy of the mechanical mode as well.

In Fourier frequency and using the RWA in the case A ~ —(),,,, we rewrite
egs. (2.18) and (2.19) as

(—z’(w FA)+ g) Safw] = —igdblw] + /Fexdim[w], (2.26)
(—i(w — Q) + %m) 8b[w] = —igdalw] + /Tmdbolw], (2.27)

where the electromagnetic input noise aq is neglected. In the absence of an
optomechanical coupling g, the two modes have the responses

’iex
—i(w+A)+k/2

bl — Vi bo (W] = Xm[w] bo w] (2.29)

5&[&)] - 5din[w] = Xc[w]ddin[wL (228)
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to the external perturbation da,[w] and by[w], where we have defined the
respective susceptibilities y. and x,, for each mode. In amplitude, the sus-
ceptibilities | xc|, |xm|” correspond to Lorentzians of respective widths s and
[',,. Since in general x > I',,, the mechanical mode is sensitive to stimuli
in a much narrower bandwidth than the electromagnetic mode. In compari-
son, the cavity response looks flat in frequency from the point of view of the
mechanical oscillator and equivalent to a continuum of bath modes.

To see the change in the mechanical response due to the optomechanical
interaction, we solve eq. (2.26) with respect to dajw] (neglecting the input
dain|w]) and insert it in eq. (2.27) to obtain

. Fm 92 7 7

(—z(w — Q) + - t ST AT m/2) blw] = /Tmbo|w]. (2.30)
The supplementary third term in the parentheses is proportional the cavity
susceptibility and varies very slowly compared to the bare mechanical re-
sponse. It can be approximated by its value at the mechanical resonance

w = Q. The modified mechanical response becomes
. VTm .
dblw] = TP Feﬁc/QbO[w] (2.31)
with a modified frequency Q' = Qu + Im(g*/(—i(Qm + A) + £/2)) and a
modified effective dissipation rate e = Ty + Re(29%/(—i(Qm + A) + £/2)).
The first effect is called the optical spring effect and is an effective modifica-
tion of the mechanical spring constant due to the optomechanical coupling.
The second effect is the optomechanical damping. The effective dissipation
rate is always increased with respect to the bare rate when A ~ —Q,,. The
cavity acts as a supplementary reservoir that damps the mechanical motion.

On resonance A = —€),,,, the expression becomes

T = T + 4% /k = Tw(1+C) (2.32)

where we have defined the optomechanical cooperativity as C = 4¢?/(kI',).

Since the frequency of the cavity is much larger than the mechanical fre-
quency, its thermal occupancy in terms of quanta is much lower (as explained
in section 2.2). As a result, the mechanical mode sees two thermal baths at
two very different effective temperatures and settles to some average of the
two, in this case to a lower temperature than in the absence of the op-
tomechanical coupling. If the mechanical oscillator is initially at thermal
equilibrium, with an occupancy given by the Bose-Einstein statistics

_ 1
n =
m,th ethm/kBT . 1 )

(2.33)
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in sideband cooling it reduces to (Aspelmeyer, Kippenberg, and Marquardt,
2014, section VII.A)

_ Fomnmin + Fmﬁm th
m = : 2.34
! T+ Lom (234)

where 'y, = CI'y, and n,,;, represents the lowest achievable mechanical oc-
cupancy. This is why driving an optomechanical with a tone detuned close
to the red mechanical sideband (A ~ —(,) is referred to as the sideband
cooling of the mechanical oscillator. In section 3.6.1, we demonstrate such a
measurement.

Similarly, we can compute the effect of the mechanical mode for the cavity
response. We find

2

(—i(w FA)+ g o Qil) . Fm/2) Salw] = \/Rexbimlw].  (2.35)

Here the supplementary term is fast compared to the bare cavity response.
It acts as a resonance within the resonance. The phenomenon is named
optomechanically induced transparency (OMIT) or absorption (OMIA), de-
pending whether it locally increases or decreases the amplitude response of
the cavity mode.

The procedure can be repeated for a blue-detuned pump, with A ~ Q.
In that case, the equations of motion in Fourier frequency can be written as’

<—i(w A+ g) 5 [w] = igoblw] + /Fexdain! [w], (2.36)
(—i(w — Q) + %‘“) Sblw] = —igdalw] + v/Tmbo|w]. (2.37)

Here da has a negative frequency and b couples to da’. Because of the sign
change in the coupling term, the mechanical response is now

. T P A
(—z(w —Qn)+ 2 Siw-A)T /{/2) db[w] = /Tmbo|w]. (2.38)
The optical spring effect is Q," — Qn = —Im{g?/(—i(Qm — A) + £/2)}.

More importantly, the optomechanical damping becomes negative (or anti-
damping) with Teg — Ty = — Re{2¢%/(—i(Qm — A) + £/2)} The effective
dissipation rate is reduced, corresponding to amplification of the mechanical

! Note the notation subtlety between da'[w] = [dte™'sal(t) and [dalw]]l =
[dte=™tsal(t) = da'[~w).
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mode by the cavity. For a critical coupling strength, the mechanical linewidth
reaches I'cg = 0. This is called the optomechanical parametric instability.
Mechanical oscillations are no longer damped and grow until they are stopped
by higher-order nonlinear terms.

2.2 Quantum noise and amplification

The issue of quantum noise, or how to characterize power spectra according
to quantum mechanics, is central to our study of an optomechanical system.
Since in most cases only linear coupling terms dominate, the system is linear
and the equations of motion (2.18) and (2.19) do not differ between the
classical and quantum cases. The only quantum characteristics are due to
the nature of the noise coming from the input operators da;,, ao and bo.
Only when they have quantum attributes, such as limitations due to the
vacuum fluctuations or quantum squeezed quadratures, can the state of the
optomechanical system not be described classically.

We provide here an overview of the indispensable notions of quantum noise
required to understand the results of this thesis. The much more thorough
review by Clerk et al. (2010) might be useful for the reader to dig deeper in the
subject, and was used as the main reference. In particular, their appendix E
analyzes quantum noise for the Langevin equations for a harmonic mode.

First, in section 2.2.1, we elaborate on the quantum properties of the
input mode defined in section 2.1.3 and introduce the output mode. In sec-
tion 2.2.2, the capital notion of spectral densities is introduced, for both
classical and quantum signals, using the Wiener-Khinchin theorem. Finally,
in section 2.2.3, the linear amplifier is exposed and its quantum limits dis-
cussed.

2.2.1 Input and output modes

We recall the definition of the input mode in eq. (2.6) from the treatment of
the Langevin equation for a general mode a of section 2.1.2,

Qi (t “iate (0). (2.39)

1
)=

Note that the density of states in frequency p allows the switch from discrete
modes to a continuum with > g [ p...dw, for the Markovian approx-
imation taken in the following. Similarly, an output operator can be defined
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as
. 1 iwn (—t1) A
%“”:§@$§:eq““%m> (2.40)
q

where t; is a time long compared to all the timescales in the system. The
operator a.. represents the field in the waveguide travelling away from the
mode after interacting with it. It can be shown that the fields obey the
input-output relation (Gardiner and Collett, 1985)

Gous () = @in(t) — \/Fexd(?). (2.41)

This relation can also be obtained independently from the Langevin treat-
ment, through considerations of power conservation and time-reversal sym-
metry (Haus, 1983, Chapter 7).

The operators a;, and aq, represent travelling modes and as such differ
from standard harmonic-oscillators operators. While the reservoir modes ¢,
obey the canonical commutation relations

[éq,éH =5, and [aq,aq/] — 0, (2.42)

the travelling mode operators obey the different commutation relations
(1), 8, ()] = 8t ), (2.43)
o (1), @b (#)| = (¢ = 1), (2.44)

They represent fluxes of quanta and have units of rates. Thanks to the
Markovian approximation of a continuum of bath modes, they have no mem-
ory and commute for different times. The quantum noise has a vanishingly
short correlation time and, as we will see next in section 2.2.2, a white spec-
trum as a result.

We now want to study the noise characteristics of the travelling field
for a given thermal occupancy of the reservoir modes. In the case of the
electromagnetic cavity, the driving field is subtracted from the input mode
to only consider the spectrum due to the bath da;,. If the reservoir modes
are in thermal equilibrium at temperature 7', they have the average number

of quanta
. . _ 1
(E(0)24(0)) = flon = (2.45)

that obeys Bose-Einstein statistics. The corresponding thermal “occupancy”
for the travelling input mode is

(0al, () 6aun(t')) = Aund(t — 1), (2.46)
(Saim(t) 0a] (1)) = (e + 1)3(t — 1), (2.47)
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The input operators ay and by have spectra of an effective noise temperature
as well and obey similar expressions.

The conditions for the Markovian approximation that implies vanishing
correlation time and a white noise spectrum for the input travelling modes
are not very stringent. The modes a and b are only sensitive to noise in the
narrow bandwidth corresponding to their dissipation rates. Even when the
input modes cannot be said to be in thermal equilibrium and emit colored
noise, an effective noise temperature can still be defined at the resonance
frequency. The only requirement is for the noise to be “flat enough” at the
scale of the mode linewidth.

The Markovian approximation and the continuum of modes imply that
the instantaneous rate of photos <5€Li (t)dain(t) > = 0(0) formally diverges.
All white noises have this property; since they have constant power for all
frequencies, that implies an infinite power overall through a type of ultravi-
olet catastrophe. Some kind of regularization with a cutoff frequency must
be done in order to deal with the infinity. One can assume that the infinitely
narrow correlation functions (2.46), (2.47) are only an approximation. In
practice, the correlation time just has to be narrow compared to the band-
width of the detector. The real instantaneous power has a finite value.

2.2.2 The Wiener-Khinchin theorem and the spectral
density

An indispensable quantity in the study of random signals, whether classical
or quantum, is that of the spectral density. It is a measure of the “intensity”
(or power) of the signal at a given frequency w. The Wiener-Khinchin the-
orem allows its definition purely in terms of the auto-correlation function of
the signal. This circumvents all issues of convergence that arise for Fourier
transforms of infinite-time functions and gives a tidy prescription of how to
compute spectral densities in practice.

We want to define the spectral density for the random signal V'(¢), assumed
to be stationary and to have zero average <V > = 0) (Clerk et al., 2010,
Appendix A). With this aim, we define the windowed Fourler transform

T/2
w] te™tV(t 2.48
Vilel = o= / o (0. (2.48)

The spectral density is then defined as

Syvw] = lim ( Vrlw]*) (2.49)
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where the average is taken over the ensemble of the random process. The
normalization by 1/+v/T is important for convergence. Since the signal V(t)
has in general non-zero fluctuations for an infinite time (as it is stationary), it
in effect contains infinite “energy” and its Fourier transform is not necessarily
well-defined. The only assumption here is for V() to have a finite correlation
time 7. Then the integral in eq. (2.48) can be roughly split in segments of
7 that each gives an independent random variable. For a stationary process,
the result is a sum of ~ T'/7 identical uncorrelated random variables. By
the central limit theorem, the variance of the sum scales with /7T /7. The
normalization then ensures that <|VT[w]|2> converges to a finite value for
T — oo.

By construction, the power spectral density is designed such that it gives
the average “power” P in the signal, when integrated over all frequencies

* dw
P = /;OOSVv[w]g (250)
with P defined by
L )
P = lim —/ dt |V(t)|. (2.51)
T—o00 —T/Q

The normalization of the Fourier transform means that the spectral density
can be interpreted as a density in frequency f rather than in pulsation w. For
a constant spectral density Sy, the power in a bandwidth B (in frequency
units) is given by SyyB. Note also that the spectral density is defined
for positive and negative frequencies. In certain contexts and depending on
the convention, a factor 2 must be used to sum over positive and negative
frequencies in a certain bandwidth (the so-called one-sided spectral density).

The Wiener-Khinchin theorem states that the spectral density corresponds
to the Fourier transform of the correlation function, as

Syvw] = /_ N dt e (V (t)V(0)). (2.52)

o0

Note that since the process is stationary, its correlation function is indepen-
dent of time: (V(£)V(0)) = (V(to + 1)V (to)) Vto. In fact, for all intents and
purposes, the Wiener-Khinchin result of eq. (2.52) can be taken as the defini-
tion of the spectral density for V(). As an added advantage compared to the
more physical definition of eq. (2.49), the convergence of the regular Fourier
transform is guaranteed if V(¢) has a finite correlation time and (V (¢)V/(0))
decays sufficiently fast for large ¢. For practical purposes, a supplementary
benefit is that the signal needs only to be recorded for a time comparable
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to the correlation time 7, even if in reality the signal is recorded for much
longer in order to use a time average to approximate the ensemble average.

While V() is classical, we have assumed very little in our definitions. The
only difference between the classical and the quantum cases is that when
V(t) is promoted to a quantum operator, it might no longer commute with
itself when evaluated at different times. For a classical signal, (V(t)V(0)) =
(V(0)V(t)) = (V(—t)V(0)) implies that the spectral density is symmetric
in frequency, with S, [w] = S, [—w]. This does not have to be the case in
the quantum world.

In general, for a non-Hermitian operator /1, the spectral density can be
defined as -
S i alw] = / dt et { A (1) A(0)). (2.53)
A symmetrized spectral density, that mimics the classical case can be defined
as | e
Sitalw] = 5 / dt e™* ((AW)A(()» + <A(O)AT(1§)>> . (2.54)
In what exact sense it resembles the classical case is not evident in the case
of non-Hermitian operator, where the definition does not in fact guaran-
tee a symmetric spectral density S 4 4(w] = Sj4i4[—w] in general. For the
symmetrized spectral density to be symmetric in frequency, the correlation
function should be even with (AT(¢)A(0)) = (AT(—t)A(0)), in which case the
unsymmetrized spectral density function S 4; 4[w| is symmetric as well. As
emphasized in appendix B where the case of heterodyne detection is detailed,
the details of the quantum measurement must be taken into account in order
to use the correct definition of the quantum spectral density.

For the travelling-wave signal da;,(t), with correlation functions given in
eqs. (2.46) and (2.47), the spectral densities are

satsalw] = / dt eth<5&;rn(t)5din(0)> = TN, (2.55)
o atlw] = / dt (5 (0)0a], (1)) = Agn + 1, (2.56)

S lw] = % / Z dt et (<5ajn(t)5am(0)>+<5din(0)5&fn(t)>) (2.57)

D) (Sarsalw] + Sgagar [w]) = un + 9
The noise is white with a flat spectrum independent of frequency. All three

spectral densities are thus symmetric in frequency, if not classical. While
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the spectral densities seem dimensionless, there is in fact an implicit unit.
They are densities in frequencies of the “power” as defined by 5&;5&111, which
has units of a flux of quanta per second. As a result, the number 7y, gives
the number of photons per second in a bandwidth of 1 Hz and the spectral
density has the units of quanta x s~'Hz !

Even for a noise that is not flat in frequency, an effective temperature can
be defined from the imbalance between S,  [w] and S . [w]. Because of

satsa sasat
the commutation relation (2.43), the relation
satsa W] — Shasatlw] = 1 (2.58)

always holds. The effective temperature corresponding to given level of noise
at the frequency w is

hew [k

Twg = . . .
’ In tsré(saf w] = In :sltlﬂ(sa[w]

(2.59)

2.2.3 The linear amplifier and its quantum limits

Linear amplifiers play a central role in the experimental results of this the-
sis. Firstly, they are the only available practical tool to perform quantum
measurements at microwave frequencies. The weak signals carrying quantum
information (or at least close to having only vacuum fluctuations as the back-
ground noise) must be first amplified with minimal added noise before they
are analyzed using standard microwave equipment. Precise calibration of the
added noise of the measurement chain (mostly due to the first amplifier) is
required in order to have an absolute power reference for the signals before
they are amplified. Secondly, part of the results of this thesis, detailed in
section 4.8, is to build and characterize a microwave amplifier that functions
close to the quantum limit of added noise using an optomechanical system.
We therefore expose here the fundamental quantum limits for a linear am-
plifier (Caves, 1982) and how it can be interpreted as performing a quantum
measurement.

We consider a scattering linear amplifier that is phase-preserving, repre-
sented schematically in fig. 2.2. For an input travelling-wave mode ch, the
output field Aot 1S an outgoing wave, proportional to the input with an am-
plification factor v/G. The relation between input and output is given by

~ A

dout(t) = \/Edln(t) + F(t) (260)
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Figure 2.2: Schematic representation of a linear scattering amplifier. The
amplification of power gain G, adds a noise Nqqeq to the signal.

The fluctuations F must be added to the signal for both input and output
operators to obey the canonical commutation relations

[ (8), ()] = 0t = ¢) and [doua(8), ()] = 36— 1), (2.61)

This implies that the fluctuation operator must obey
[F(t), FT(t')] —(1-G)(t—1). (2.62)

The simplest way to satisfy this requirement is for the fluctuations to come
from an idler mode dg,; with

F(t) = VG = 10 (t) and [diuer(t), dfoee(0)] =8 = 1) (2.63)

From this we can derive some constraints on the H}inimal noise that can be
added during amplification. The fluctuation mode dg,; is assumed to contain
thermal noise and obey

(A (Ve (1)) = uced(t — 1) (2.64)

where Nigy is the occupancy of the mode. The output field czout combines
the noise of both the input and the fluctuations with

<d0ut t dout / > - g< AT t Aout(t,)> + (g - <dAﬂuct t dguct(t/>> (265)
<dOUt t > g< 1n t AZUt(t,)> + (g <dﬁuct t dﬂuct )> (266)

The amplifier can be characterized by how it modifies the spectral density
of its output with respect to its input. For the comparison to be on equal
footing, the spectral density of the output field is divided by the power gain
G to get the equivalent signal at the input of the amplifier. It is however not
a priori evident which definition of the spectral density is relevant and the
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exercise is done for the three kinds defined in egs. (2.55) to (2.57), resulting
in

Soutl] G-1 1

dTé fry Sg}rd[(_,(_)] —|— Tﬁﬂuct + 1 — 6 ~ SEJ[W] + ﬁﬁuct + 1, (267)
St w _ -1 .
%H = S5 w] + g—ﬁﬂm ~ S35 W] + Nifuct, (2.68)
SQ?Q[W] Sin g—1_ 1 1 Sin — 1
% = S w] + —g M +5 - % ~ S5 lw] 4 et + 3 (2.69)

The approximation are for the case of large gain G > 1 that is of interest.

The added noise of the amplifier is often defined with the symmetrized
output spectral density (2.69). It is the excess noise compared to the ampli-
fied signal in the output, referred to the input, Nagea = S%[w]/G — S5 J[w].
The added noise is here

MNadded = Toguet + 1/2. (2.70)

The limit of 1/2 for the lowest possible added noise even in the absence of
any thermal excitation in the fluctuations dAﬁuct is a fundamental quantum
limit for a linear phase-preserving amplifier?. It can be directly traced to the
commutation relations (2.62) that the fluctuations F must satisfy. In some
sense, S;?;[w] has an added noise of figyes + 1 and S%ﬁ [w] an added noise of
Nfuct only, averaging to nguer + 1/2 for the symmetrized spectrum.

By comparing the spectral density of the output to the input, the defi-
nition of added noise is hypothetical. It is assumed that a measurement of
the output field is performed such that the unsymmetrized spectral density
corresponds to the outcome of the measurement. This is compared to the
gedanken experiment of performing the exact same measurement on the in-
put signal when the amplifier is removed. When the amplifier is used and
the signal amplified, the spectral density of the input is not experimentally
accessible.

Examining the non-symmetrized output spectral densities in eqgs. (2.55)
and (2.56), we find that the spectral density is in effect symmetric. Using
the relation (2.58), we have that

Soutf ] Soutr,
%H = S5 glw] + uet +1 = %H (2.71)

2 Phase-sensitive amplifiers that amplify only one quadrature from the signal can reach
an arbitrarily low added noise. The cost is for extra noise in the other quadrature.
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in the approximation of large G. The only asymmetry is due to the vacuum
fluctuations of the outgoing field dyy; (from its commutation relations (2.61))
that give the term 1/G in eq. (2.67). It becomes negligible compared to other
sources of noise that have been amplified greatly. The vacuum fluctuations

of dguet are amplified and imprinted on S%%w]. They match exactly the

amplified vacuum fluctuations due to the input mode dy, in S%g [w]. In effect,
the vacuum fluctuations from the input have become classical in the output,
as they were amplified greatly. For a classical signal, the order of the operator
does not matter and the spectral density must be independent of the ordering.

2.3 Optomechanical microwave circuits

The implementation of cavity optomechanics used for the work of this thesis
is through superconducting microwave LC' circuits with vibrating capacitors.
In the following, we present the concepts that are characteristic of this specific
implementation. A few necessary elements of microwave engineering will
be introduced as needed. The textbook of Pozar (2011) serves as a main
reference for the microwave engineering aspects.

In section 2.3.1, we start by introducing LC' resonators and how they
become optomechanical if the capacitance is modulated by a mechanical
oscillator. In section 2.3.2, the model of the transmission line is developed,
that allows the description of the interaction of incoming microwave signals
with the circuit. In section 2.3.3, the interaction of the optomechanical circuit
and the transmission line is described. Finally, in section 2.3.4, the model
for the optomechanical circuit is quantized and the vacuum optomechanical
coupling strength gg is defined for our system.

2.3.1 Optomechanics with LC circuits

We start by introducing the relevant circuit on its own, illustrated in fig. 2.3.
We first describe the microwave mode, and then the mechanical oscillations
of the capacitor plate.

The microwave cavity that serves as the electromagnetic degree of freedom
in the optomechanical system is an LC resonator. In its ideal realization,
a capacitor of capacitance C' is in series with an inductor of inductance L.
The dynamical equation for the voltage of the capacitor (U = %] ) and for
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Figure 2.3: Ideal LC circuit with an inductor in series with a capacitor. The
latter’s capacitance C' is modulated by the displacement x of a mechanical
oscillator.

the voltage of the inductor® (U = —LI) are combined to obtain

. 1
= 2.72
U=-75U. (2.72)

an equation for harmonic oscillations at a resonance frequency w. = 1/v/LC'

Alternatively, the resonance frequency can also be defined as the frequency
at which the equivalent impedance of the circuit?

1

cancels (or has a minimum in the presence of resistance).

The second main role is played by the motional degree of freedom of the
capacitor. The simplest model is to represent one electrode of a parallel-plate
capacitor as a mass m on a spring of constant k, with the equation of motion

k
r=——x 2.74
m ( )
where the position of the plate is taken be x = 0 at rest. That is precisely

the definition of a harmonic oscillator of resonance frequency €2, = \/k/m.

Bringing the two elements together, the motion of the plate modulates
the capacitance that in turns modulates the cavity resonance frequency. The
capacitance becomes position-dependent, with

A
7€d+a:

C()

(2.75)

where € is the (average) dielectric constant between the plates, A their surface
and d their distance when the mechanical oscillator is at rest. For oscillations
of small amplitude, the linear expansion approximation C(z) ~ Cy(1 — z/d)

3 Note the minus sign because of the opposite direction for the current in the inductor.
4The sum of the impedances of a capacitor i/(wC) and an inductor —iwL, since the
two elements are in series in the resonator.
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can be taken. In turn, the change in capacitance implies a modulation in
frequency of the microwave cavity as

1
() = ———— N W+ G 2.76
i) = s g + G (2.76)

with the linear constant G = w./(2d) and the rest cavity frequency w.o =
]_/\/ LCO

That such a simplistic model captures the dynamics of a realistic system
warrants some justifications and caveats. In the physical capacitor that we
use, the plate does not move rigidly constrained by an external linear spring
force. Rather, it deforms into a complicated shape and is subjected to internal
forces from its elastic properties, that can in general be nonlinear.

The first major assumption is that for small enough deformation, the
linear elastic terms dominate. A displacement field u(r,t) can be defined
to describe how each point in the solid goes from its rest position at r to a
deformed position r + u(r,t). If only the linear order is kept for the elastic-
strain properties, the field obeys a quadratic field equation (Sudhir, 2018).
Subject to boundary conditions, this equations has eigensolutions of the form

u(r,t) = z(t)u,(r) with & = —w,x (2.77)

that are the normal modes of the structure. For a given mode labeled by n,
the motion is decomposed into a certain fixed deformation w,(7) and a time-
dependent amplitude z(t) that obeys the equation of motion of a harmonic
oscillator. Note that the units of x and w,, are arbitrary. For instance, x(t)
can be taken to be the position of the highest amplitude point or the average
displacement of the plate, and the deformation w,(r) would be unitless. In
those cases, the motion x(f) maps precisely to the motion of an ideal mass
on a spring examined above.

The next question is how to account for the change in capacitance due
to a specific vibrational mode of a plate of an arbitrary deformation shape.
If the plate is thin and taken to be deformed along the vertical axis only,
such that w(r) = wu,(z,y)Z, the resulting capacitance can be computed as an
integral over the surface of the plate as

B dzdy N z [y, (z,y) dedy
Cla) = e/ T c< z . @)

valid for small amplitude of the mode. The same linear expansion can be
done for each eigenmode. Expanding the resonance frequency similarly, the



30

Theoretical background

expression of eq. (2.76) is recovered, with x now standing for the amplitude
of motion of a given mode, and a generalized coupling constant given by

o We,0 Aeff

where Aoy = [un.(x,y)dzdy is the effective area of the capacitor that is
modified by the motion of the mode. The arbitrariness of the definition
of the coupling constant G becomes clear, as it depends on the choice of
normalization of the decomposition into x and wu,, for each eigenmode, with
no unique objective way to do it. The right way to uniquely characterize the
coupling between the motional and microwave modes is through the quantum
coupling strength gg, introduced in section 2.3.4 where the degrees of freedom
are quantized.

For small enough mode amplitudes z(t), the linear expansion, neglecting
higher-order terms, is in general valid. The only requirement is that the linear
coupling term of mode n, proportional to [ w, . drzdy, does not vanish. This
could be the case for higher-order modes with nodes such that the average
displacement is zero. In conclusion, it is an important feature of cavity
optomechanics, not unique to this implementation, that under broadly valid
assumptions even complicated realistic systems behave close to the canonical
example of the mass on a spring modulating the cavity resonance frequency
linearly. The small lengthscale of displacement guarantees the validity of the
model.

2.3.2 Transmission line theory

At microwave frequencies, the wavelength of electromagnetic waves is small
compared to the length of cables where the signals propagate, and comparable
to the size of circuits. A proper account of wave propagation is therefore
capital. Input signals interrogating the circuit and output signals carrying
the outcome of measurement take a finite time to travel. They can reflect on
certain microwave elements and interfere with themselves.

The waveguide that is used in our case is a microwave transmission line,
composed of two conductors that are layed out parallel to each other. This
can for instance be a coaxial cable or a microstrip line on the chip. They all
follow the same general theory, that we will briefly outline here. For a more
in-depth and exhaustive exposition, the reader is referred to Pozar (2011).

Lumped elements can be used to model the transmission line. The mi-
crowave properties of the line are assumed to be locally equivalent to the
effect of combined individual ideal microwave elements. A small section of
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length Az is shown in fig. 2.4. The voltage V' (z) and current /(z) are com-
pared before and after that section. The length of line is supposed to have
some inductance and resistance, as well as a capacitance with respect to the
second conductor. They are assumed to be proportional to the length, with
an inductance [Az, a resistance rAx and a capacitance cAx. The changes
in voltage and current are given by

ol

V(z+ Az) =V(z) —rAxl(z) — leE@)’ (2.80)

I(x+ Azx) = I(x) — cA:Eaa—[t](x + Ax). (2.81)

Taking the limit of infinitesimal length Ax — 0, we get continuous partial
differential equations linking voltage and current as

ov ol

W (2.82)
ol oUu

They can be combined to obtain a wave equation for the voltage

2 2
oV rca—v — lca—v. (2.84)

It is solved by the ansatz solutions

V(l’, t) — ‘/b-l—ei(ka:—wt) + ‘/O—ei(—ka:—wt)7 (285)
I(z,t) = Ife'ke=wt) 4 [ eil=ha—wt) (2.86)

with forward and backward travelling waves. Inserting this expression in
eq. (2.84), we get the complex dispersion relation

k? = lew? + ircw. (2.87)

In the lossless case r = 0, this gives a phase velocity v, = w/k = Ve for the
waves. The amplitudes of the voltage to current for the travelling waves are
constrained to follow - .
0 0
- = —— =17 2.88
where Z, = 4/l/c is called the characteristic impedance of the line. The
transmission line can be characterized by its phase velocity v, and its char-
acteristic impedance Zj, alternatively to the lumped-element parameters [
and c.
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Figure 2.4: Lumped-element model of the transmission line. A short segment
of length Az is modeled as a resistance and inductance along the line and a
capacitance between the two conductors, all proportional to the length.

On an infinite transmission line with constant impedance Z,, waves keep
travelling indefinitely. Boundary conditions, involving changes of impedance,
cause reflections of the waves. We analyze a few such cases in the following.

First, the simple case of a transmission line of impedance Z, terminated
by a load Z, shown in fig. 2.5a, is analyzed. This boundary condition implies
a certain relation between the incoming wave amplitude V" and the reflected
outgoing wave amplitude V. By definition, the impedance of the load is
the ratio of the total voltage V' to total current I given by

VoWV WY

7= = -
I I+, vy

(2.89)

where the phases of the waves (kx and —kz) are set to be zero at the load.
The reflection coefficient is then
Vo Z-2
Vot Z+Zy

(2.90)

If Z = Z,, the load is said to be matched to the line. There are no reflections
and the wave is perfectly absorbed by the load. The situation is indistin-
guishable from an infinitely long transmission line from the point of view of
the incoming wave. For an open circuit, Z — oo, the total current must be
zero [ = I + I, = 0 implying V;” = V;". The wave is perfectly reflected
with the same phase. For a short circuit, Z = 0, the total voltage is zero
with V;~ = —V;". The wave is perfectly reflected, with a phase-shift of .

Second, we consider how the situation is changed if we set the reference
plane of zero phase a length L of line before the load Z, as shown in fig. 2.5b.
The voltage and current at the load now follow

Vv ‘/O—i-eikL + ‘/b—e—ikL

7 =—=17 A —
Ji 0‘/0+6sz — Ve ikE

(2.91)
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Figure 2.5: Different loads on the line for which the reflection coefficient are
computed. (a) Case of a simple load of impedance Z. (b) Same but preceded
by a length L of transmission line. (c¢) Impedance mismatch between two
transmission lines of characteristic impedances Zy; and Zj .

The reflection coefficient becomes

E _ 672z’kLZ — %o _ Zeq = 20
VoF Z+Zy Zeg+ Zy

(2.92)

where the equivalent impedance at the reference plane Z., was defined, given
by

_ Z +idytan kL
N OZO +iZtankL
The length of line L in general modifies the apparent impedance of the load.
The equivalent impedance rotates on the complex plane, from the bare load
Z when kL = nr to the inverse load Z3§/Z when kL = § +nn. For instance,
a length L = & transforms an open circuit boundary condition to a short
circuit, and conversely. Only the matched load Z = Z;, stays unchanged,
with Z.y = Zy no matter the length L.

Finally, the case of the junction between two transmission lines is con-
sidered, shown in fig. 2.5¢c. An incoming wave of amplitude V;" on a line of
impedance Zj; arrives at the boundary and is split between a reflected com-
ponent of amplitude V;~ and a transmitted component of amplitude V," on
the second line of impedance Zj,. By continuity, the voltages and currents
on the left and right must be the same, with

Zeq (2.93)

VT =1 (2.94)
1 1
—(Vit=V7) = —V,t. 2.95
ZOl( 1 1) Z02 2 ( )
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From this we deduce the transmission and reflected components

Vo 2% (2.96)
Vit Zoa+ Zoy’
Viio | Zop— Zog (2.97)

V_fr B Zo1+ Zoa2

If another wave impinges on the junction from the right, it must obey sim-
ilar equations for its own reflection and transmission to the left. The two
solutions can be added together by linearity. Note the strong similarities
between eq. (2.97) and eq. (2.90). They are not accidental. In fact, since
we consider only right-travelling waves, the same result could have been ob-
tained by assuming the second line terminated by a matched load Z = Z .
As explained above, the length of line of impedance Zj 5 before the load is
irrelevant for the circuit properties, and can be taken to be zero. The same
reflected wave, given by eq. (2.90) would occur. The transmitted wave can
be extracted from this simplified model as well, as the voltage dissipated at
the load, given by V;" + V.

2.3.3 Input and output relations for an inductively
coupled LC circuit

We are now equipped to model the interaction with our LC' cavity with
incoming signals propagating on a transmission line which are inductively
coupled. Before the full problem is tackled, the cavity on its own is once
more considered, with a resistor added to model losses. This allows us to
connect with the language that was used in section 2.1.2 and section 2.2.1 to
describe a generic electromagnetic cavity in the Langevin picture.

In a RLC resonator, a resistor, inductor and capacitor are in series, obey-
ing their respective constitutive equations Vg = RI, Vi = LI, Vo = I /C.
They can be combined together, using the the fact that the total voltage in
the loop must be zero Vi + Vi, + Vo = 0 to obtain the differential equation

for the current

. R. 1
I+ —1+—1=0. 2.
ol gl =0 (2.98)

It can be solved with the ansatz I(t) = Ipe™, giving a quadratic equation for
«, solved by

R R\ 1 R 1
S Y (i O A 2.99
“2= o0 \/(2L) LC "~ 2L T 'Io (2.99)
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where the approximation can be made if R < /L/C, valid when the quality
factor of the resonator is large. On top of the previously identified resonance
frequency w. = 1/ V/LC at which the resonator oscillates, there is an expo-
nential decay of the current, as e~32(R/Dt The energy, which is proportional
to the square of the current, decays at double the rate kg = R/L, which we

identify to the internal energy decay rate introduced in section 2.1.2.

In the experiment, the RLC' circuit couples to the line via a mutual induc-
tance M (as illustrated in fig. 2.6a). Two situations were realized: one where
the line extends beyond the resonator in the so-called “notch configuration”;
the other where the line is short-circuited after the cavity and the resonance
can only be probed in reflection. We model both cases in the following.

First, we analyze the situation of the cavity measured in reflection. We
start by studying how the coupling affects the dynamics of the RLC' circuit
itself. If the resonator is excited with some energy then let to decay, there will
be only outgoing waves on the line. The line can in this case be replaced by
a matched impedance Z; that effectively dissipates the signals (see fig. 2.6d).
The goal is then to model the effect of the line as an effective impedance Zq,,
added to the RLC circuit, as shown in fig. 2.6b. The voltage and current on
the line obey

Ve = —Zoly = —iwM I (2.100)

where the second equality is the constituting equation of the mutual induc-

tance. By expressing I, in terms of I; and inserting the expression of the

induced voltage in the resonator, we find

V I wW2M? w2 M?

Zcoup =2 = _ZwM_2 ~ :

5L I Zy Zy

The interaction to the line results in an increase of the effective resistance

in the RLC' resonator. The extra dissipation corresponds precisely to the
external dissipation rate as

(2.101)

w2 M?
Rex = L7,

(2.102)

in analogy with the argument above. The approximation of evaluating the
impedance at resonance (w — w,) is valid if kex < w., equivalent to requiring
a large quality factor for the external coupling as well for internal losses. Note
that an advantage of inductive coupling is that it exclusively adds resistance
to the circuit and does not change the resonance frequency at all, unlike
coupling the circuit capacitively for instance.

The next step towards the reflection coefficient is to compute the effective
impedance Z,, of the circuit for the transmission line (see fig. 2.6d). The
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Figure 2.6: Lumped-element model of the resonator coupled to the line.
(a) Model for the resonator coupled to the line. The coupling, through
mutual inductance, implies that a current on the line /5 creates a voltage in
the circuit Vi1 and reciprocally a current in the circuit I; creates a voltage
on the line Vjzo. (b) The coupling to the line is modeled as the equivalent
impedance Zeoy, (01 Z,, for the two-sided cavity). (c,d) The resonator can
be modeled as contributing an equivalent impedance Z., on the transmission
line. The transmission line are modeled by their characteristic impedance Zj,
sufficient to take into account outgoing signals. The circuit is shown both
for the two-sided cavity (c) and for the one-sided cavity when one end of the

transmission line is shorted.



2.3 Optomechanical microwave circuits

37

inverse procedure is done compared to computing Z..,, above. First, the
current in the RLC resonator I; due to the induced voltage V) is found to
be

Vigs = — <R —iwL + L) I, = —iwMI,. (2.103)
wC

The effective impedance is given by

Vira w2 M? w2 M?/(2L) * Kex
Zeq = Ji = 1 ~ g - = Zo 1 . .
2 R4i(os —wl) 55 —i(w— we) Emo—z(w—éuc) |
2.104

In the short-circuited case, this equivalent impedance is the load on the
line. The reflection coefficient is given by

Vo Ze—20  3(Ko— FKex) —i(w — we)

Vo' ZeqtZo (ko + Kex) — —i(w —we)

(2.105)

Up to an overall minus sign, this is exactly what is expected from the generic
treatment of a mode with Langevin equation (2.4) and input-output rela-
tion (2.41). The phaseshift of 7 comes from the short-circuit. The input-
output relation should here be Goy = —@in + \/Kex@ rather than eq. (2.41) to
reflect the correct boundary condition.

We now analyze the situation where the line continues after interacting
with the cavity (two-sided cavity). When considering the decay of the signal
in the cavity, outgoing waves propagate in both direction. Both lines can be
modeled by matched loads Zj, with total load given by the two in series as
27 (see fig. 2.6¢). The equivalent impedance in the circuit is here

2 2
n L weeM
coup 2ZO )

(2.106)

twice as small as for a cavity in reflection. Keeping all parameters the same,
the total external dissipation rate &' = Z%,, /L is half what it is in the
case of a short-circuited line. Moreover, this is the sum of the coupling rate
for the transmission line in each direction. The individual channel coupling

rate is K= Kkao" /2.

To find the reflection coefficient, the line on the right, carrying the trans-
mitted wave can be replaced by a matched load Z,. We find

Voo (Zeqt20) =2y _ 1t . (2.107)
Vol (Zeq + Z0) + Zo %(mo + K8 — i(w — we)
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For the transmitted wave, the voltage amplitude of the outgoing wave is
equivalent to the voltage that dissipates in the load Zy. The transmission
coefficient is given by

27y 1
C Zegt+ 2o 14—tk

Ko —12(w—we)

Vi 1 7
VO+_V0+ZO+Zeq

(Vor+vy) (2.108)

2.3.4 Quantization of the microwave and mechanical
modes

So far, we gave a classical analysis of the LC' resonator and how it inter-
acts with the motion of the capacitor plate. In order to recover the results
of the general analysis of sections 2.1 and 2.2 and consider the quantum
implications, the two modes should be quantized. A standard quantization
procedure is done (Le Bellac, 2012), through the definition of a general-
ized coordinate and its conjugated momentum for each mode in a classical
Hamiltonian formalism, which are then promoted to quantum operators sat-
isfying the canonical commutation relations. First the microwave resonator
is analyzed, then the mechanical oscillator and finally the resulting quantum
interaction.

We start with the quantization of the current and charge in the LC res-
onator. The classical Hamiltonian of the system corresponds to the total
energy, that sums the energy in the capacitor and in the inductor as

11 1
HS, = -—0Q%*+ ~LI* 2.1
LC 20@ +2 (2.109)

It should result in the dynamical equation (2.72) that can be expressed as
LI = —%Q, with [ = Q If we take the charge to be the generalized coordi-
nate of the system, then its conjugated momentum must be P = LI. This
produces the correct Hamiltonian equations of motion

. OH
Q= °p I, (2.110)
. OH 1

The quantization procedure amounts simply to promote () and P to op-
erators that satisfy the canonical commutation relation

[Q,P} = ifi. (2.112)
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Renormalized conjugated operators can be defined as Q = L/r?C Q and

P' = {/C/R2L P, such that the Hamiltonian can be written in the symmetric

form 11 11 1
Hig===—0Q*+ -=P? = “hw. (0% + P?). 2.11
o= L@t s = @+ ) 2113

Finally, the annihilation operator a can be defined from the unitless conju-
gated operators as a = \%(Q’ +iP"). By design, it obeys the commutation

relation [, a'] = 1. The Hamiltonian takes its recognizable form

Hpe = hw(afa + 3) (2.114)
introduced in section 2.1. The term %hwc is the energy of the vacuum state
and can in general be omitted as it has no effect on the dynamics.

We now proceed to quantize the mechanical degree of freedom. In sec-
tion 2.3.1, it was shown that quite generally the motion of the capaci-
tor plate can be decomposed into normal modes with displacement fields
u(r,t) = z(t)u,(r) (where n labels the mode). The coordinate z(t) de-
scribes the collective motion of the deformed plate, following the equation of
motion & = —,,?2. The same equations of motion can be derived from the
classical Hamiltonian of a harmonic oscillator

1 1
Hrcxi - §meffj;2 + émefomQxQ' (2115)
Note that the equations of motion are independent of the effective mass mg.
In order for the Hamiltonian H¢ to correspond to the energy of the oscillator,
the effective mass should be such that the first term gives the kinetic energy
of the deformed plate

1 1
U — /d% Sl () = 51'2,0/6137“ () (2.116)
where p is the mass density of the material. The effective mass is identified
as

Meff = p/d3r [u, (1)) (2.117)

The arbitrariness in the definitions of the relative scales of z(t) and w,(7) (as
discussed in section 2.3.1) in turn makes the definition of the effective mass
arbitrary. In particular, it does not have to correspond to the mass of the
oscillating plate or any other physical mass. Rather, it is the mass density p
multiplied by an effective volume, that is weighted by the deformation profile
of the mode u,,.
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Conjugated coordinate ¢ and momentum p are defined as ¢ = x, p = Mg
in order to reproduce the equations of motion

. oHg  p
OH{
p=- aq‘“ = — e’ (2.119)

Quantized versions of the coordinate and momentum, ¢ and p, are defined
as obeying the commutation relation

[4,p] = ih (2.120)

as for the microwave mode. The renormalized unitless operators are defined

to be ¢ = g/mSy,/hand p p = p/v/mSyh. Finally, the annihilation operator
of the mechanical mode b is defined as b = (¢ + ip/)/v/2. The quantum
Hamiltonian is then

A~

1 e 1
H, = 5;191“(@'2 + %) = W (b'h + 5). (2.121)

Of particular interest are the fluctuations in position of the ground state
of the mechanical oscillator, the vacuum state |0) that obeys b|0) = 0. They
can be computed as

h

mefom 2frneff Qm

vo = (G°) = <0\ b+ bH) (b +bh)|0) (2.122)
They are called the zero-point fluctuations of the oscillator. They depend on
the effective mass and therefore on the arbitrary normalization of the motion
x.

Finally, the quantum optomechanical interaction can be reconstructed.
Classically, eq. (2.76) means that a displacement z induces a change in the
cavity frequency of Gx. The corresponding quantum Hamiltonian term is

1
Hown = hGq ( i+ 2) (2.123)

The contribution of 1/2 is similar to a Casimir pressure force, due to the
vacuum fluctuations of the LC resonator. It can be absorbed in a renormal-
ization of the mode = with a slightly displaced rest position.

Using the expression for G from eq. (2.79) and ¢ = $pr(8 + BT), the
optomechanical coupling can be reconstructed as

Hown = higo(b+ bha'a (2.124)
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with the vacuum optomechanical coupling strength

h We Aeff
= — ) 2.12
T =N g 2d A (2.125)

Note that although both A.s and m.g depend on the arbitrary normalization
of z(t) and w, .(x,y), go does not, as any change of normalization is canceled
in the ratio Aeg/+/Mefr-

For the simple case of a plate that moves uniformly with u,. =1 (as a
rigid object attached to a spring), the expression simplifies to

P we
2my, 2d

g8 = (2.126)

where m = phA is the physical mass of the plate. For a more general
displacement profile w, .(x,y), the coupling strength of eq. (2.125) is the
simple expression of eq. (2.126) multiplied by the geometrical factor

S tn = (,y) dedy
\/A Ik u? (z,y) drdy

(2.127)

If the average of an arbitrary function f(x,y) over the surface of the capacitor
is defined as (f) = & [ f(z,y)dzdy, this geometric factor can be rewritten

as () e

The maximum is 1 for a rigid plate where u, ., = <unz> For any other
deformation profile, u, , differs from the average and the factor is reduced.
It can be interpreted as the change in capacitance due to the displacement
normalized by the cost in terms of kinetic energy.







Chapter 3

Design and measurement of op-
tomechanical microwave circuits

In this chapter, we present the experimental background information re-
quired to understand how the results of this thesis were obtained. A generic
equipment configuration valid for most measurements is described here. In
the following chapters, specific setup requirements and techniques are intro-
duced for the relevant experiments.

In section 3.1, we allude to the fabrication process for the optomechanical
circuits. In section 3.2, we explain how simulation has aided the design and
characterization of the circuits. In section 3.3, we delve into the different
pieces of equipment and components that comprise the experimental setup.
In section 3.4, we present the schemes for the noise calibration, both of
the emitted noise of the microwave sources and of the added noise of the
HEMT amplifiers. In section 3.5, the main characterization procedures for
the chip are described. Finally, in section 3.6, we present a few standard
measurements for an optomechanical system.

3.1 Fabrication of the devices

The systems at the heart of the experimental results of this thesis are op-
tomechanical microwave circuits, an example of which is illustrated in fig. 3.1.
Here we present briefly their general structure, as well as a succinct overview
of their fabrication. A much more detailed account of the numerous steps
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Figure 3.1: Photograph and scanning-electron micrograph of the optome-
chanical circuit. The circuit, at the bottom right is shown next to the sharp-
ened tip of a pencil for scale. The inset is a scanning-electron micrograph
that represents a zoom on the vibrating capacitor.

involved in the nanofabrication of the devices can be found in the doctoral
thesis of T6th (2018), who developed a process for their fabrication at the
Center of MicroNanoTechnology at EPFL (CMi), where all the devices for
this thesis were realized.

In its simplest realization, the optomechanical microwave circuit imple-
ments a single LC' resonator with a capacitor whose top plate has a vibra-
tional degree of freedom. On a sapphire rectangular chip of 9.6 mm x6.5 mm,
the circuit is deposited as a thin film of aluminium. A central microstrip con-
stitutes a transmission line matched to 50 €2, on which incoming and outgoing
signals can travel. On each side can be placed a number of LC resonators,
that couple inductively to the line.

A single LC resonator is constituted by an inductor and capacitor in
series, forming a loop. In this work, the inductor is a meandering line of
approximately 3 pum in width. In other realizations (Teufel, D. Li, et al.,
2011; Suh et al., 2014), spiraling inductors were used, necessitating an air
bridge to connect the line from the inside to the outside of the spiral.

The most critical and delicate element is the capacitor. Above the bottom
electrode that lies on the sapphire substrate like the rest of the circuit, the
top plate is suspended, with vacuum between the two. It is attached to
the substrate at four clamping points and bends upwards such that the flat
central part is free to vibrate (see SEM image in fig. 3.1). The gap between
the two electrodes should be as small as possible in order to maximize the
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optomechanical coupling strength (see eq. (2.125)). We estimate the gap to
be approximately 40 nm for most working devices (the estimation relies on
simulations, as detailed in section 3.2).

The fabrication of the capacitor compounds several challenges. For one, a
floating structure is especially vulnerable. For instance, the slanted sidewall
from the clamping point to the flat electrode can tear, or under some condi-
tions the whole top plate can collapse and stick permanently to the bottom
plate. Moreover, the design of the resonance frequency of the microwave
circuit depends critically on the rest position of the plate, which is hard to
control. Beyond the constraints on the microwave properties, the top plate
should also have good mechanical properties, such as a stable resonance fre-
quency and low mechanical losses. The local stress in the aluminium film
affects strongly those properties and is hard to be made uniform and repro-
ducible. It depends on the details of the deposition process but can also be
modified by heating, for instance by intentionally annealing the sample after
fabrication.

A schematic representation of the main steps in the fabrication process
is shown in fig. 3.2. The bottom layer of aluminium is first deposited (I)
and patterned (II) to form most of the circuit and the bottom plate. Then
a layer of amorphous silicon is deposited as a sacrificial layer (III) and itself
patterned (IV and V). This forms the protective layer that preserves a gap
with the bottom plate when the second aluminium film is deposited to form
the top plate (VI) and patterned (VII). Both aluminium films are 100 nm
thick. The final crucial step is to etch the sacrificial layer (VIII) that must be
removed in order to release the top plate that eventually floats freely above
the bottom plate.

This final release is one of the most important as well as delicate steps.
This is done with a pulsed vapour XeF, etch. Relatively small openings on
the sides prevent the etching from being uniform and must progress from
the circumference to the center of the electrode. The chemical process is
exothermic and care must be taken for it not to be too fast and damage the
top film by overheating it, since the heat changes the stress in an undesired
way. This might increase the chance for the top plate to collapse or affect the
mechanical properties by making the vibrational mode spatially distorted.
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Figure 3.2: Schematic of the main steps of fabrication of the chips. See main
text for a description of each step. Figure courtesy of L. D. Té6th, reproduced
from Té6th (2018).

3.2 Simulation tools as aides for design and
characterization

Since the aim is to construct devices that realize ideal LC' resonators, the
necessity of simulations tools is not evident and should be motivated. As
was shown in sections 2.3.1 and 2.3.3, only a few constants (L, C' and the
mutual inductance M) are required to know the resonance frequency of the
microwave resonator and how it couples to the waveguide. They can in
principle be estimated purely based on the geometry. Only the resistance of
the circuit R is a priori fabrication-dependent and should be measured.

In fact, the lumped-element model is not always valid for our devices.
Their relatively large size, of several millimeters, amounts to a significant
fraction of the wavelength of microwaves at the frequency of interest (about
3 cm at a frequency of 5 GHz), due the finite velocity of electromagnetic
waves that travel at around half the vacuum velocity ¢ in microwave circuits.
Take for example a loop of wire, which normally has an inductance scaling
with the inscribed area. For large frequencies at which the loop length is
comparable to the wavelength, the effective inductance is reduced. Not all
the wire carries the same current. The changing phase of the travelling wave
implies that the current oscillates along the wire and cancels at nodes every
half wavelength.

Simulations are thus required for larger circuits that cannot be properly
modeled with lumped elements such as individual capacitors and inductors.



3.2 Simulation tools

47

The effective role of each element in the circuit depends critically in practice
on the boundary conditions and surrounding elements. T'wo parts of a circuit
might behave differently when connected to one another compared to on their
own. For this reason, on top of estimations and simulations for the individual
components, it is useful to simulate the circuit as a whole in order to verify
that the model makes sense.

For the work of this thesis, simulations were used mainly to aid the design
of the circuit on the chips. As the nanofabrication of the devices is costly
in terms of labor and time, a new design should ideally be well simulated
before it is implemented. This is unfortunately not entirely feasible. The
actual properties of the circuit depend on details in the fabrication process
that cannot be known perfectly a priori. Namely those are the rest position
of the capacitor plate after release, when cooled at cryogenic temperatures,
and the kinetic inductance of the material.

Superconducting materials have two contributions to their inductance.
The first, “geometric” component relates to the potential energy of the mag-
netic field induced by the currents in the material, which scales with the
inscribed area for a loop. On top of that there is a second, kinetic contri-
bution to the inductance (Cardwell and Ginley, 2003). Since resistance is
virtually absent from superconductors, the Cooper pairs that carry charges
can reach very large velocities to supply a given current. Despite their low
masses, this can make their kinetic energy appreciable and comparable to the
magnetic energy. The kinetic inductance depends on the number of available
charge carriers in the material: the fewer there are, the faster they must
travel to achieve a given current and therefore the larger the kinetic energy
required. This depends heavily on the fabrication as it depends on the exact
cross-section of the material, and the width and thickness of the lines can
vary slightly for different fabrication processes.

Simulations cannot then predict measurements ex nihilo. The two must
work hand in hand. A typical chronology is the following. A new circuit
design is conceived based on approximate estimations of the gap distance and
the kinetic inductance based on earlier experiments. The design is fabricated
multiple times on the same wafer with a range of variation for the topology
of the circuits, with different sizes for the inductors or the capacitors. One
of the fabricated devices is measured and its properties are compared to the
simulation. This allows the correct gap size and kinetic inductance of the
batch to be computed. Finally, the device with the ideal parameters can be
selected in the parameter range and measured.
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anti-symmetric, dark mode at 4.26 GHz symmetric, bright mode at 5.48 GHz
(used as primary mode) (used as auxiliary mode)
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Figure 3.3: Example of a Sonnet simulation. The current density is rep-
resented in a simulation of the full circuit, including its coupling to the
transmission line (labeled feedline). The circuit in question is the hybrid
circuit introduced in section 4.2. Figure reproduced from the supplementary
information of Téth, Bernier, Nunnenkamp, et al. (2017).

3.2.1 Sonnet software

The main simulation tool that we used in the work of this thesis is Sonnet!.
This is a general software to compute the response of microwave circuits
with a flat topology (or constituted of several flat parallel layers). As well
as simulating individual components to design the inductors and capacitors,
it is powerful enough to simulate the circuit in its entirety, even including a
transmission line (as illustrated in fig. 3.3). This makes it a very complete
tool and extremely useful to test the limits of the lumped-element model.

We review schematically how Sonnet functions in the following. A more
thorough exposition of the theory is done in Rautio, J. C. (1986) and Rautio
and Harrington (1987). The box that contains the circuit is modeled as a
vertical waveguide in which several horizontal planes form boundary condi-
tions between different dielectric layers. Sitting on top of a dielectric that
represents the substrate, the circuit is constituted of metal patches on one (or
more) such boundary planes. The patches are conceptually split into a num-
ber of segments. If a current flows into one of the segments, electromagnetic
waves will be emitted in the waveguide, both upwards and downwards, and
will reflect on the boundary conditions to form standing waves. The fields

! https://www.sonnetsoftware.com/
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of these standing waves can be computed analytically and depend linearly
on the current. The goal of the simulation is to find the right current distri-
bution in the circuit that will satisfy all boundary conditions on the sides of
the waveguide. Typically, the whole box is grounded, except for a number
of ports where a voltage can be applied to drive the system. The core of
the computation is to invert the matrix that gives the boundary fields due to
the currents, in order to compute the currents from the boundary conditions.
The equations for the electromagnetic field are solved exactly in the waveg-
uide, in contrast to finite-element methods. The approximation comes from
the segmentation of the circuit and of the boundary conditions. The finer
the meshing, the more accurate the computations will be, but the larger the
matrix to invert becomes. Both the response of the circuit and optionally
the charge and current distribution can be computed for each segment as a
function of the input frequency (as shown in fig. 3.3).

In particular, the resonance frequency w. and the external coupling rate
Kex can be simulated. An example is shown in fig. 3.4, where the resonances
of the sample HYB-20150924-4-24 are simulated. The gds file that is used in
the fabrication of the chip is imported into Sonnet and gives the 2D layout
that is simulated. Missing is the third dimension, namely the gap distance
between the two plates of the drum capacitor. In fig. 3.4a, the resonances are
simulated for various gap distances. Comparing the result with the measured
resonances, the gap in the fabricated chip can be estimated to be approxi-
mately 35 nm. While simulating for individual frequencies take time, Sonnet
offers an option called “adaptive sweep”, where it simulates a few points
and interpolates between them, without recomputing the full matrix. This is
enough to get an estimate of the resonance frequency, but not to extract pre-
cisely the resonance response, needed to obtain the external coupling rate.
In fig. 3.4b and c, the response of the circuit is simulated at a few points
around the resonance frequency, in the case of the dark mode at 4.3 GHz,
for a gap of 35 nm. This takes more time than an adaptive sweep, but gives
the exact shape of the resonance. The simulated data are fitted by a circle
on the complex plane, as detailed in section 3.5.1, to extract the resonance
frequency and linewidth. Note that the simulated resonator is strongly over-
coupled. The internal-losses mechanism are difficult to model. To a first
approximation, the simulation can only model the external coupling rate ey
and has a negligible internal decay rate xy. The simulated external coupling,
of 60 kHz is comparable to the measured value of 42 kHz. For the design
with hybrid modes, described in section 4.2, exact coupling rates are difficult
to predict as they depend strongly on the resonance frequencies of the bare
modes, and therefore on the exact capacitance of the drum capacitor.
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Figure 3.4: Microwave resonances simulated with Sonnet for the sample
HYB-20150924-4-24. (a) Approximate resonance frequencies of the two hy-
brid modes as a function of the capacitor gap size. The horizontal dashed
lines give the resonances measured in the experiment, which correspond to a
gap of about 35 nm. The adaptive sweep is used in Sonnet to find approx-
imate resonance frequencies. (b,c) Fitted response of the dark mode near
4.3 GHz, to extract the precise resonance frequency and the external cou-
pling rate ke, for a simulated gap of 35 nm. The resonance is fitted with a
circle on a complex plane, as explained in section 3.5.1.
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3.3 Experimental setup

We list in the following the equipment and components that are employed
in the experiment. In section 3.3.1, we describe the design and assembly of
the sample holder in which fabricated chips are fixed for measurement. In
section 3.3.2, the mounting and wire bonding of the chip inside the holder
is detailed. In section 3.3.3, the components installed inside the dilution
refrigerator are presented. In section 3.3.4, the equipment that stands outside
the dilution refrigerator at room temperature is described.

3.3.1 Sample holder

The chips that contain the circuits to be studied are mounted inside a sample
holder to perform the measurements. We describe here the design of the
sample holders and how it is assembled.

The sample holder fulfills multiple purposes. On a very pragmatic level,
it provides a structure with SMA connectors that can easily be connected to
the rest of the experimental setup by attaching coaxial cables. Importantly,
it constitutes a grounded shielding that protects the circuit from any stray
radiation. This both reduces the possibility for microwave noise to couple
in the cavities and prevents higher frequency radiation from disturbing the
superconductors, for instance by creating quasiparticles (Barends et al., 2011;
Céreoles et al., 2011). Finally, it forms a large heat reservoir that should be
well thermally coupled to the cryogenic environment such that the circuit is
surrounded by a cold environment and cools down properly.

The sample holder design is shown in fig. 3.5 and the files are available
online (Bernier, 2018). The central compartment, shaped like an “H” holds
the chip. On both sides are rectangular receptacles to place small printed
circuit boards (PCB) that serve as intermediary between the chip and the two
SMA connectors. The connectors are placed on both ends through cylindrical
holes and held in place by screws in threaded holes (M2.5) on the outside.
Next to the PCB receptacles are pads where certain parts of the circuits can
be grounded directly. A lid is designed to close the box, leaving as little
open volume as possible inside. This pushes the resonance frequencies of the
3D cavity modes upwards much beyond the frequencies of the circuit, where
they cannot disturb it. Two vertical holes pass through the box and lid, with
threading in the box (M3). This serves the double purpose of closing the lid
tightly and securely, as well as clamping the sample holder to the breadboard
in the the cryostat to ensure good thermalization (see fig. 3.6).
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Figure 3.5: Photographs of the sample holder. (a) Photograph of the
mounted sample holder with a chip mounted and wire-bonded. A shorted
cap is attached to one port to measure in reflection. (b) Photograph taken
with a microscope, zooming on the wire bonds between the chip and the
PCB transmission line. The soldering of the SMA central pin to the PCB is
visible in the top right.

The sample holders are realized out of a single piece of OFHC (oxygen-
free high conductivity) copper, at the mechanical workshop of the institute
of physics at EPFL2. It is important to use OFHC copper for two reasons.
First, it has a high thermal conductivity even at cryogenic temperatures.
Second, it contains minimal magnetic impurities whose stray magnetic fields
can create vortices in the superconductor. The PCBs are fabricated by the
electronic workshop (ACT) of the electrical engineering institute of EPFL3.
Layers of 18 um of copper are deposited on both sides of a substrate of 0.3 mm
thickness made of FR-4 (a dielectric material that works well at cryogenic
temperatures).

To assemble the sample holders, the PCB must be glued in place and
the SMA connectors soldered to the PCBs. The conductive epoxy Epo-Tek
H20E is used to keep the PCB solidly in place cooldown after cooldown, and
connect its ground plane to the sample holder. First, both the sample holder
receptacle surface and the ground plane of the PCB are cleaned with a fiber
brush to remove the copper oxide layer and guarantee good long-term adhe-
sion. The corners of the PCB can be cut with pliers such that it fits better
the receptacle which has rounded edges. After cutting the PCB, the rough
edges can be smoothed with sand paper. While we would like the wire bonds
between the chip and the PCB to be as short as possible, it is not possible to
fabricate the PCB with a copper transmission line until the edge. One can
cut the end of the PCB with pliers to have the transmission line as close to

’https://iphys.epfl.ch/page-139526-en.html
3https://sti-ateliers.epfl.ch/page-19942.html
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the edge as possible. The mixed epoxy is applied in small quantity and the
pieces assembled. To cure the epoxy, the lowest recommenced temperature
of 80 °C is used, placing the sample holder on a hot plate for at least 90 mn.

The final step to prepare the sample holder is to solder the SMA connector.
We used the model R125.462.001 from Radiall. It is critical to prevent the
flux from covering all the surface of the PCB copper plate when soldering.
One technique is to protect the half of the copper line that is closest to the
chip with a piece of masking tape. The SMA connector is fixed with two
screws and the central pin is soldered to the PCB (see the assembled sample
holder in fig. 3.5). It is advisable to test the sample holder with a multimeter
to check the soldering and ensure that there is no accidental short circuit of
the central pin to the ground. One location to be wary of is between the
dielectric of the SMA connector and the PCB. There can be a gap, where
conductive debris might fall and short the central pin.

With every cooldown of new chips, successive wire bonding to the PCB
line degrades the copper surface. At some point, it becomes difficult to wire
bond successfully close to the edge and minimize the bond length. The PCB
can then be replaced. The connector is unsoldered and removed. Then the
PCB is detached using a blade to break the epoxy. The surface of the sample
holder is cleaned thoroughly with a fiber brush or a piece of sand paper to
remove all traces of the epoxy. Finally a new PCB can be glued in place with
the steps outlined above and the sample holder reassembled.

3.3.2 Mounting and bonding the chip

The chips are glued and wire-bonded to the sample holder to be measured
at cryogenic temperatures. We describe here this procedure.

First, the sample holder is thoroughly cleaned. Residues of glue in the
central compartment are removed with isopropanol and all surfaces to be
glued or wire bonded are brushed to remove the oxide layer. Small debris
are removed using compressed air. The cleaning should be completed at this
stage, since once the chip is glued it is no longer possible to do so in order
not to damage the fragile capacitors.

Silver conductive paint is used to attach the chip to the sample holder.
It must conduct to connect electrically the backside aluminium layer to the
sample holder and form the ground plane. Not too much glue should be
used. The excess overflows on the sides when the chip is gently pressed down
to ensure good contact on the whole surface. It can short-circuit the central
line of the PCB or the chip and accidentally ground them. Before cooling
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down the chip, it is useful to verify with a multimeter if the central line is
accidentally grounded, either with paint or with a fallen wire bond. The
paint used is CMR RS186 (manufactured by RS components). The glue is
left to dry for about an hour at least to ensure the chip is firmly fixed before
it is wire bonded.

The wire bonding is performed with a TPT HB10 machine from the CMi,
with an aluminium wire 33 pum in diameter. Both ends of the central trans-
mission line on the chip are connected to the PCBs with about 10 bonds
each. If the device is measured in reflection, it is also possible to bond one
end of the line to one ground pad of the sample holder next to the PCB.

The sample holder has two ports such that the chip can be measured both
in transmission and in reflection. There are advantages and inconveniences
for both cases. As explained in section 3.5.1, measuring the microwave reso-
nances in transmission is required to calibrate out any impedance mismatch
on the line and extract precisely the internal and external dissipation rates
ko and Keyx. This comes at the cost of a reduced coupling rate compared to a
single-sided cavity (see section 2.3.3). More importantly, it also reduces the
signal to noise for the emissions from the cavity. Outgoing signals divide into
travelling waves in two directions and at best only half of the total signal can
be measured in any single direction. For measurements where the signal-to-
noise ratio is essential (for emission close to the quantum limit), a one-sided
cavity is greatly beneficial and the devices are measured in reflection only.

Altering appropriately the boundary conditions at one end of the central
transmission line of the chip reflects incoming signals and allows single-sided
measurements. Not all reflecting boundary conditions are equivalent. As
shown in section 2.3.2, both open and short-circuited transmission lines are
fully reflective. However, the resonators are coupled inductively to the feed-
line and the coupling strength depends on the amplitude of current locally
on the line. An open boundary condition forms a node in the current which
cancels exactly at the boundary point. Near an open boundary, any inductive
coupling is strongly reduced up to a distance of a quarter wavelength away
where the current has an antinode and the coupling is restored. To achieve
sufficient coupling rates, short-circuited boundaries are beneficial since they
have a maximum of current instead. The distance on the line between the
short circuit and the resonator determines the coupling rate. For consistent
coupling rates, the resonators are placed always at the same position on the
chip.

A short-circuited cap, shown in fig. 3.5a, is connected to the sample holder
to achieve reflective boundary conditions in a non-destructive way. It is
constructed by soldering the central pin of an SMA connector to the outer
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shield to ground it. Optionally, the line can also be grounded to the sample
holder with wire bonds. This gives a shorted boundary condition a few
millimeters closer to the chip.

3.3.3 Inside the dilution refrigerator

The devices are mounted inside a BF-LD250 dilution refrigerator from Blue
Fors. We describe here what components are installed inside. One set of
lines for input and output signals to a sample holder is described. Usually,
two similar sets are installed such that two devices can be measured in a
given cooldown. We review in the following what a typical setup entails and
the rationale behind each component. The actual components used for the
experiments of this thesis deviate slightly and the differences are introduced
in the respective chapters.

In summary, input and output lines are needed for signals to propagate to
and back from the device that is mounted to the plate of the mixing chamber,
the coldest point of the dilution refrigerator. Three lines are needed in fact.
One carries the input signals to the chip. A second carries away the output
signals to be amplified and measured. A third, auxiliary, line can be used to
perform tone cancellation if required. In the following, we first describe the
input lines and how the signal is attenuated to lower the thermal noise, then
how the signals are coupled to the chip at the base plate, finally the output
line and how the outgoing signal is amplified.

One key requirement when interfacing microwave signals from room tem-
perature with devices at cryogenic temperatures is to reduce the intrinsic
thermal noise of the former as to not disturb the latter. At 300 K, the
thermal noise emitted from any load has a symmetrized spectral density of
1250 quanta/s/Hz at 5 GHz (from eq. (2.57)). This corresponds in units of
power to -173.8 dBm/Hz. This level of noise provides a thermal bath much
larger than the cryogenic temperature and would heat the system, prevent-
ing any measurement of weak quantum signals. The noise travelling on the
input line must be reduced with attenuators that are thermalized to a lower
temperature.

An attenuator can be modeled as a beam-splitter that takes a fraction o
of the incoming signal and replaces it with a fraction 1 — « of the noise of
a matched load. This added noise is necessary for the time-evolution to be
unitary and the commutation relations of the travelling mode to be preserved.
This implies

7§;Tt5a[w] =a _jsgfaa[w] +(1-0a) _é?ﬁ(jsa[w] (3.1)
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where the spectral density of the load S’ggfm [w] depends on the temperature

of the attenuator. As explained in section 2.2.3, which definition of the
quantum spectral density to use does not matter, since the amplified signals
are eventually measured classically. The symmetrized spectral density is used
for simplicity.

The aim is to reduce the noise from an equivalent temperature of 300 K to
close to a noise temperature of about 10 mK, the operating temperature at
the mixing-chamber plate. This necessitates multiple stages of attenuation.
In a typical setup, illustrated in fig. 3.6, the input signal is first attenuated by
20 dB at the 3K plate, then another 20 dB are removed by coupling the signal
to the sample holder through a directional coupler (Pasternack PE2204-20
or similar). In between, copper nickel cables (Coax Ltd SC-086/50-SCN-CN
with a silver-plated center conductor) also have an insertion loss of about
6 dB. Normal conductor cables have been found preferable, since large input
power can heat superconducting cables until they become normal, increasing
the insertion loss suddenly by more than 10 dB.

We compute how the input noise spectrum is reduced from the explicit
attenuation on the line, to provide an upper estimate of the noise reaching
the chip. The dissipation in the cables reduces the noise further, but the
amount depends on the exact thermalization of the cables, which is difficult
to estimate. The first 20-dB attenuator at 3 K decreases the noise to 24 +
$ quanta/s/Hz, using eq. (3.1) with o = 0.01. The second attenuation,
with the directional coupler, mixes the attenuated signal with noise travelling
backwards from the isolator (see fig. 3.6), which we assume to be thermalized
at the base temperature of 10 mK. A noise spectrum of 0.24—}—% quanta/s/Hz
then reaches the chip, equivalent to an effective temperature of 147 mK.
Note that the noise can only asymptotically reach the cryogenic temperature
when the attenuation tends to infinity. One must compromise between good
thermalization and how much power to throw away. We settled here for a
comparatively low 40 dB of explicit attenuation, since for most experiments
of this thesis, large power is required to reach a sufficient coupling strength
g.

The cryogenic attenuator (XMA 2082-6418-20 CRYO) at 3 K must be well
thermalized. Otherwise, the load can heat up from absorbing the incoming
signal and noise. We used unfluxed copper braiding (Chemtronics 70-3-25)
tightly wound around the attenuator to thermalize to the 3-K plate by fixing
the other end to it with a screw (see photograph in fig. 3.6).

The question of how to arrange a given amount of attenuation between
the different temperature stages to obtain maximally reduced noise is not
trivial. A priori, placing all the attenuation at the coldest point should
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Figure 3.6: Schematics of the setup inside the dilution refrigerator. Illus-
trative photographs are shown for corresponding key components. In a red
frame, the 20-dB attenuators on the the 3-K plate. In a light-blue frame, the
chip in the sample holder is interfaced with a directional coupler. In a yellow
frame, cryogenic circulators isolate the device from backpropagating noise.
In a green frame, low-pass filter shield the superconducting circuit from high
frequency radiation. In a purple frame, the HEMT amplifiers are insulated
from the line by inner DC blocks.
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provide the lowest noise, since the removed noise is replace by the lowest
possible amount. Technical limitations make this solution not ideal. The
dilution refrigerator has a finite cooling power at the mixing chamber (of the
order of 10 uW). Dissipating all the power there would heat up the whole
plate. The compromise is to remove a large part of the noise at the 3 K
plate where the cooling power is larger. One trick to limit the absorption at
the base plate is to use a directional coupler instead of an attenuator. Since
the four arms of the beam splitters are controlled, this allows the discarded
signal and noise to be redirected to higher temperature stages for dissipation,
while adding noise that is thermalized at base temperature.

We now describe the components mounted on the base plate. Tubular
filters (K&L 6L.250-00089 low-pass up to 12 GHz) are used on all lines (see
photograph in fig. 3.6) to protect from higher frequency noise that can affect
the superconducting circuits by creating quasiparticles. Formable copper
cables (Pasternack PE39415) connect the lines to the components placed
on the breadboard plate. We removed the paint on the backside of the
directional coupler (Pasternack PE2204-20 or similar) with sand paper to
have better thermal contact to the copper plate. The sample holder bottom
thickness was designed for it to be level with the directional coupler, and
connect them with a male-male SMA connector (see photograph in fig. 3.6).
Before attaching the sample holder to the breadboard plate, the two surfaces
that will become in contact are cleaned with a fiber brush to remove the
oxide layer and increase the thermal contact.

The discarded signal from the directional coupler travels upwards on a
line identical to the input line. The power dissipates in the cables and at
the attenuator at 3 K. This line can also be used for tone cancellation of the
microwave pump tones before amplification.

In the output line, cryogenic isolators are used to prevent noise from prop-
agating backwards to the device. Cryogenic circulators (Raditek RADC-4-
8-Cryo with a bandwidth 4-8 GHz) are used with one port terminated by
a cryogenic 20 dB attenuator and a cryogenic 50-{2 matched load (XMA
2001-6112-02). The attenuator is redundant but provides a better surface to
tighten the copper braiding for thermalization (see photograph in fig. 3.6).
Alternatively, cryogenic isolators (Quinstar QCI-075900XMO00 with a band-
width 3-12 GHz) are also used for a larger bandwidth. The sample holder is
typically terminated by a shorted cap to measure in reflection.

Finally, we describe the output lines. The signal to be measured trav-
els upwards on niobium titanium superconducting cables (Coax Ltd SC-
086/50-NbTi-NbTi) to the 3 K plate where it is amplified with a high-
electron-mobility-transistor (HEMT) amplifier. An inner DC block (Paster-
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nack PE8210) thermally decouples the amplifier from the superconducting
lines and prevents the amplifier heat increasing the temperature of the cables
until they are no longer superconducting. Four HEMT models were used all
from Low Noise factory: LNF-LNC4-16A with bandwidth 4-16 GHz, two
units LNF-LNC1-12A with bandwidth 1-12 GHz, and LNF-LNC4-8C with
bandwidth 4-8 GHz with a lower added noise. The amplifiers do dissipate
heat, which should be removed. To that end, they are thermally coupled
to the 3 K plate with copper braids, attached to the HEMT bodies with
screws (see fig. 3.6). The excess length of the DC lines for the power sup-
plies of the amplifiers were attached to the dilution refrigerator posts with
PTFE (“teflon”) tape (Klingerflon BS7786) that is compatible with vacuum
and cryogenic temperatures. Between the 3 K plate and room temperature,
beryllium copper cables (Coax Ltd SC-219/50-B-B) are installed for input
and output lines.

3.3.4 Room-temperature equipment

In this section, we review the microwave components outside the dilution
refrigerator, for a typical experiment (as schematically represented in fig. 3.7).
The two most common measurements are of the linear microwave response
of the system, and of the emitted spectrum. They are done while one or
multiple microwave tones are applied to the system to alter its state.

Many microwave sources are employed in the experiments of this thesis.
They are Rohde & Schwartz SMB 100A, Rohde & Schwartz SMF 100A,
Keysight MXG N5183B, and Rohde & Schwartz SGS 100A. For weak tones,
the sources can be used interchangeably. Only for the strong microwave
pumps needed to attain large coupling strengths ¢ do the noise properties of
the source become relevant. Usually, the measured system is only sensitive to
noise in a given quadrature (for example phase noise in sideband cooling) and
at the specific narrow frequency range that corresponds to the mechanical
sideband frequency (offset from the tone by €2,,). The sources all have various
noise emission that depends on the frequency of the source, the frequency of
noise with respect to the carrier, and on the power setting. We calibrate the
noise level for all the sources (see section 3.4.1) and select the device with
the lowest noise in the relevant bandwidth when the noise is critical.

We filter the signal from the sources in multiple stages. Ideally, the noise
in the sensitive bandwidth should be reduced to the level of the thermal
noise background, although in practice that is not always possible for the
strongest pump powers. First, when we work simultaneously with multiple
microwave resonances of the optomechanical circuit, the far-detuned noise of
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Figure 3.7: Room-temperature equipment that is connected to the ports of
the dilution refrigerator (see fig. 3.6). The microwave sources (here labeled
Pump and Probe) are filtered by band-pass (or high- and low-pass) filters
and combined. For very large pump powers, it is necessary to use a filter
cavity to reduce noise in the sensitive bandwidth. The output port of the
VNA is combined to the signals with a 20-dB directional coupler, before the
signals are sent to the input port. A double DC block prevents ground loops
inside the dilution refrigerator. The output signals go through a double DC
block and an isolator before being amplified. They are measured either by
connecting the line to the input port of the VNA for a response measurement
or by connecting the line to the spectrum analyzer (SA). Optionally, part of
the strong pump power is split off at the input for tone cancellation. Variable
attenuators and phase shifters are used to set its amplitude and phase, in
order to cancel the pump tone after it interacts with the chip.
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the sources is relevant, since the noise of a pump at one frequency can affect
another cavity hundreds of MHz away. Standard filters (such as the band-
pass filter Mini-Circuits VBFZ-5500-S+) easily solve the issue by removing
the noise far from the carrier.

For the noise close to the tone frequency, custom tunable filter cavities
(shown in fig. 3.8) filter out the noise in the critical bandwidth. The cavities,
similar in design to those of Lecocq, Teufel, et al. (2015), are fabricated by
the mechanical workshop out of two blocks of copper. A threading between
the two pieces allows the tuning of the resonance frequency by choosing the
length of the inner 3D cylindrical cavity. A threaded ring can block the
cavity in a specific setting. A female-female SMA connector serves as an
interface to the cavity. Inside, a short length of solder wire (about 2 cm)
is inserted in the connector and serves as a formable antenna that can be
bent to vary the coupling rate of the cavity to the line. The goal is to reach
the critical coupling rate, with equal internal and external dissipation rates.
Then the reflection coefficient dips to zero at the resonance frequency. A
circulator (Pasternack PE8402) turns the single-sided cavity into a notch
filter, which removes noise at the resonance frequency. Varying the length
of the cavity allows the tuning of the filtered frequency over about 1 GHz.
Multiple cavities of different sizes are needed to cover the range of microwave
cavity frequencies in the optomechanical circuits. A cavity linewidth of about
1 MHz close to critical coupling is achieved. A small enough bandwidth is
necessary to reduce the noise ,,/(27) ~ 5 — 10 MHz away from the tone
frequency without absorbing the tone as well.

For a given measurement, the procedure is the following. First the sys-
tem is measured without the filter cavity. The frequency of the relevant
mechanical sideband is measured precisely. Then the filter cavity frequency
is tuned and locked to that frequency, while monitoring its response. For
fastest measurement, the response of the filter cavity is measured with the
VNA. Since the filter cavity can be affected by moving the cables, it is better
to do the final tuning when it is connected to the source it should filter. We
use the source as a probe tone, and measure the amplitude response with the
spectrum analyzer. This allows the precise tuning of the filter cavity in situ,
with no need to change the connected cables afterwards. The coupling rate
can be adjusted by rotating the SMA connector, to change the orientation
of the antenna inside the cavity and its overlap with the mode.

The pump tone can be split in two and one half sent to the auxiliary line
for tone cancellation. A variable attenuator (Pasternack PE7065-7) and a
variable phase shifter (Pasternack PE8246) are tuned in order for the tone
to cancel right after the directional coupler in the dilution refrigerator. Tone
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Figure 3.8: Filter cavity photograph and response. The left panel shows a
photograph of the filter cavity interfaced with a circulator, to be used as a
notch filter. The right panel shows the linear response of the cavity, which
removes noise in a bandwidth of about 1 MHz. Figure reproduced from the
supplementary information of Té6th, Bernier, Nunnenkamp, et al. (2017).

cancellation is necessary for strong pumps that would otherwise saturate the
HEMT partially, causing compression and distortion of the signals. The
directional coupler acts as an asymmetric beam-splitter between the tone-
cancellation signal and the pump reflected on the chip. If the two signals
interfere destructively in the port leaving to the output line, they must in-
terfere constructively in the port travelling backwards on the input line, by
conservation of energy. The strong tone backpropagating on the input line
causes no harm since it is mostly absorbed at the 3 K attenuator. With this

technique, about 30 dB of reduction are achieved for the pump travelling to
the HEMT.

The output port of a vector network analyzer (VNA) (Rohde & Schwartz
ZNB20) is combined with the microwave-source tones through a directional
coupler. This minimizes the insertion loss for the tones, which are sometimes
limited in power, at the cost of a large insertion loss for the VNA probe,
from which only weak powers are required. Finally, a double DC block
(Pasternack PE8212) decouples the lines of the outside and inside of the
dilution refrigerator to prevent ground loops.

The output signals from the dilution refrigerator are measured either with
the VNA, to extract the linear response of the system, or with a spectrum
analyzer (Rohde & Schwartz FSW26), to obtain the spectral density of the
signal. Here as well, a double DC block is used. An isolator (Innowave
1060 1Q-2) prevents the noise of the room-temperature active equipment



3.4 Noise calibrations

63

from travelling back inside the dilution refrigerator. An amplifier (Mini-
circuits ZVA-183-S+) gives the last stage of gain (26 dB) before the cable
is either connected to the VNA or the spectrum analyzer, depending on the
measurement. It is important for the added noise of the last amplifier to
be small compared to the output noise of the HEMT, to ensure that the
whole amplification chain is limited by the HEMT. The cables are room-
temperature are Huber Suhner Sucotest 18 cables, as well as formable cables
(Pasternack PE39415) for smaller lengths.

All the microwave sources as well as the VNA and the spectrum analyzer
are locked to the same reference clock. This ensures that the uncertainty in
the relative frequencies of all tones is minimal, and that the relative phases of
the microwave sources are fixed. The reference clock from the FSW spectrum
analyzer is distributed to all other devices using a low-noise distribution
amplifier (Oscilloquartz OSA 5020).

3.4 Noise calibrations

The experiments of this thesis are restricted to linearized interaction between
harmonic oscillators. As such, the only quantum aspect resides in the limit
of the lowest amount of noise imposed by quantum mechanics. Careful cal-
ibration of the noise sources in the experiment is capital, if any statement
about quantum noise is to be made. Apart from the thermal noise from
room temperature, that need to be dealt with through attenuation at cryo-
genic temperatures (see section 3.3.3), there are two main sources of noise
from active devices in the measurement. The first is the microwave signal
generators, whose tones have phase and amplitude noise. The second is the
added noise of the HEMT in the amplification process. In the following, we
detail how both are calibrated.

3.4.1 Phase and amplitude noise of the sources

The noise of the microwave sources must be taken into account in the ex-
periment. Close to the tone frequency, it can greatly exceed the thermal
level and correspond to a very high effective temperature for the incoming
microwave field. The optomechanical circuit is however not sensitive at all
frequencies. In general, only two frequency ranges are relevant. First are
the resonances of the microwave cavities. If there is a large noise within the
resonance linewidth, the microwave cavity effectively heats up, as it thermal-
izes to an average of its internal and external bath temperatures. Second,
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if microwave pumps are applied to the optomechanical system, there are
frequencies at which the mechanical mode becomes sensitive to incoming
microwave signals. Those correspond precisely to the frequencies of the me-
chanical sidebands of the pump. At those frequencies, the microwave field
beats with the strong pump and results in a force unto the mechanical os-
cillator. Equivalently, the pump can be understood to mediate a frequency
conversion pathway between microwave and mechanical frequencies. The
noise from the mechanical thermal bath is converted to microwave frequen-
cies (as the mechanical sideband) and reciprocally microwave noise at the
same frequency is converted to mechanical motion. In effect, the mechani-
cal mode is sensitive to the effective temperature of the microwave cavity at
those particular frequencies. In practice, we are concerned mainly with the
noise that reaches the mechanical mode. It is sufficient to have the effective
temperature of the microwave cavity low enough locally at the frequency that
corresponds to the mechanical resonance.

Phase and amplitude noise measurement are performed by connecting the
microwave sources to a signal source analyzer (Rohde & Schwartz FSUP).
Alternatively, the spectrum analyzer (Rohde & Schwartz FSW26) can be
used, with the software option for the Phase Noise application. In the Phase
Noise application, the device locks to the tone of the source. It then measures
the noise relative to the carrier frequency and power, in dBc/Hz units (noise
density relative to the power of the carrier). The FSW has an option for
AM noise rejection, that removes amplitude noise to measure only phase
noise. That option is only possible when the device is set to the 1/Q sweep
mode. Otherwise, it is silently ignored. An estimate of the amplitude noise
is obtained by subtracting the phase noise from the total noise.

An example of the noise spectrum of the microwave source Rohde &
Schwartz SMF 100A is shown in fig. 3.9. Phase noise dominates over ampli-
tude noise for most frequencies. In fig. 3.9b, there is a sharp increase of the
noise when the power increases to 0 dBm. That is related to a change in the
internal setting of the device that depends on the exact implementation of
the device and is impossible to predict. Amplitude noise increases for larger
output powers of the device, until it is commensurate with phase noise at
20 dBm.

In practice, the measurement should be performed at the precise carrier
frequency and power needed for the microwave pump in a given experiment,
since the relative noise can change for different internal settings of the source.
When the noise properties are critical, the microwave source with the lowest
noise in the relevant frequency range is picked for that particular experiment.
Even the best performing microwave source has a noise exceeding the thermal
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Figure 3.9: Measured phase and amplitude noise of Rohde & Schwartz SMF
100A. (a) Noise spectrum as a function of frequency offset from the carrier
set at a frequency of 6 GHz and at a power of 10 dBm. (b) Noise spectrum
as a function of the tone power, offset by 10 MHz from the carrier.

level of -174 dBm/Hz at higher powers and a tunable filter is employed to
reduce it as much as possible, as detailed in section 3.3.4.

3.4.2 Calibration of the HEMT

The added noise in the amplification chain to the emission spectrum is im-
portant to know, since it gives an absolute scale to which to compare the
signals. In a microwave measurement setup, the many cables and compo-
nents prevent from estimating precisely the insertion loss on the line a priori.
Even if the characteristics of the individual components are known, their
combination can have reflections and standing waves from slight impedance
mismatches that modify the insertion loss as a function of frequency in a
non-trivial way. Calibrating the added noise of the full chain, as it stands in
the experiment, allows the reconstruction of the absolute power of the signal
as it was emitted at the beginning of the chain. In the following, we give a
model for the gain and added noise in our system, and present the method
used to calibrate the added noise of the HEMT in the signal path.

First, we model the measurement chain and what is the added noise,
as represented schematically in fig. 3.10b. The signal of interest, of power
P, is emitted from the device in the sample holder. That constitutes the
reference point where we want to know the power of the signal. It is then
attenuated by a fraction «, due to all the components and cables on its way
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Figure 3.10: Scheme for the calibration of the HEMT amplifiers. (a) Exper-
imental setup to calibrate the HEMT. A cryogenic matched load is attached
to the output lines at the base plate. The temperature of the whole plate
is tuned to control the temperature of the matched load and inject a known
amount of Johnson noise in the HEMT amplifier. (b) Model of the amplifi-
cation chain in a normal experiment, including the insertion loss o between
the device and the HEMT. (c¢) Model for the calibration method. The in-
sertion loss « is not accounted for with this method and must be estimated
independently.
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to the HEMT. The HEMT amplifier adds a noise N ggyvr, then amplifies
both signal and noise by the power gain Gugyr. The signal travels finally to
the spectrum analyzer where it is measured, with a gain Ggrr that includes
both room-temperature amplification and all the insertion loss along the line.
The measured power is

Pmeas - gRT gHEMT (Q/Ps + (1 - OZ)NT +NHEMT) . (32)

The insertion loss before the HEMT contributes a noise Np, due to the
effective temperature of the dissipative part of the attenuation. Ideally, the
amplification and added noise at room-temperature after the HEMT should
add a noise negligible compared to the amplified HEMT noise GumrN aEMT-
There is no need to suppose this however. Any extra noise can be absorbed
in a slightly increased effective Nyggyr, which is taken into account in the
calibration. The complete added noise with respect to the reference point at

the device is
11—«

1
Nadded = ENHEMT + Nr. (3.3)

The first term is the HEMT noise that is effectively increased by the insertion
loss, since the signal-to-noise ratio decreases as a result. The second term,
the thermal noise due to the temperature of the dissipative component of
the attenuation, is normally much smaller than the HEMT noise (with an
effective temperature of ~ 100 mK compared to ~ 4 K for the HEMT).
While it can usually be neglected, in principle it can also be calibrated as
part of the added noise.

Ideally, the full added noise M,g4eq can be calibrated. A perfect calibration
scheme consists in replacing the device by a tunable source of noise N known
on an absolute scale. The measured output noise is then

Pieat ™ = GrrGuemra (N + Madded) - (3.4)

Two measurements of the output noise for two different known levels of the
noise N suffice to calibrate both the added noise and the absolute gain of
the full measurement chain Guain = GrrGarmra. The tunable noise source
must affect neither the HEMT performance nor the effective temperature of
the attenuation before the HEMT.

We present now the implemented calibration scheme and how it deviates
from the ideal case. The setup is illustrated in fig. 3.10a. The noise source is
a cryogenic matched load (XMA 2001-6112-02) fixed to the mixing-chamber
plate for thermalization. That implies that the insertion loss between the
device and the plate is not taken into account in the calibration. Different
noise temperatures are reached by stabilizing the base plate temperature
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to different levels. The mixture of helium 3 and 4 in the dilution cycle is
first collected, then a small proportion is reinjected and circulated to help
stabilize the temperature. Using a heater at the base plate, the temperature
can be swept from about 0.8 K to 10 K in a controllable manner. As a
consequence, the leftover attenuation between the base plate and the HEMT
(coming mainly from cable losses) is heated as well as the matched load.
One cannot then assume that its temperature is constant. In our model,
shown in fig. 3.10c, we neglect this contribution to the insertion loss. That
is equivalent to assuming that the dissipative elements in the insertion loss
thermalizes to the same temperature as the matched load. The measured
noise is

P = GrrGuemt (N7 + Nuewmr) = GrrGuemtA (T 4 Taemr) - (3.5)

The noises N7 and N gpvr are large enough to be classical and proportional
to a corresponding effective temperature through a proportionality constant
A. For each frequency point, the measured noise can be fitted as a linear
function of T' (an example is shown in fig. 3.11a). Its intercept with the
x-axis corresponds to —Typmr. In effect, the added noise of the HEMT is
compared to the Johnson noise at different temperatures. The calibrated
thermometer at the base plate provides the absolute scale that anchors the

calibration. An example of the noise temperature as a function of frequency
is given for the HEMT amplifier LNF-LNC1-12A in fig. 3.11b.

Since it is not calibrated, the insertion loss o must be independently es-
timated to properly account for the effective added noise Myggeq. The main
contribution comes from the cables, directional coupler and the cryogenic iso-
lators between the sample holder and the mixing-chamber plate. In the case
of two Quinstar isolators, their insertion loss was measured to be 1.6 dB at
77 K. The components were immersed in liquid nitrogen and their insertion
loss measured with the VNA. The insertion loss of these components at base
temperature should be lower (since the resistivity of normal metals increase
with temperature), and this estimate provides an upper-limit for the added
noise. However, the relevant attenuation includes the cables and connections
between the base plate and the HEMT, that is not completely taken into
account in our calibration scheme.

3.5 Characterization of the chip

The first step for a newly cooled device is to subject it to a set of character-
ization routines and extract important experimental parameters. First, the
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Figure 3.11: Example measurement for the calibration of the HEMT model
LNF-LNC1-12A. (a) For each frequency (here 4.13 GHz) the output noise as
a function of temperature is fitted, to extract the added noise temperature
of the HEMT from the z-axis intercept. (b) Calibrated noise temperature as
a function of frequency. Figure adapted from the supplementary information
of Téth, Bernier, Nunnenkamp, et al. (2017).

microwave resonances of the chip are probed and fitted. Then, we look for
mechanical modes associated to the various microwave cavities. A few mea-
surements are done on the mechanical oscillator to deduce its resonance fre-
quency, its dissipation rate and the vacuum optomechanical coupling strength
go- In the following, we detail the relevant characterization procedures and
the theoretical models that support them. In appendix C, the measured pa-
rameters of the different samples used for the experimental results of this
thesis are listed.

3.5.1 Fitting microwave resonances with circles

When measuring the linear response of the chip with the VNA, the microwave
resonances of the circuit are evidenced by sharp dips in amplitude and fast
variation in phase. From the response in transmission Sy = V;7/V;" or in
reflection Sy; =V /V;" (see definitions in section 2.3.3), should be extracted
the parameters of the cavity: the resonance frequency w,, the full dissipation
rate £ and the internal and external rates kg, kex. The resonance frequency
in particular must be known precisely, as it determines the detuning A of
the microwave pumps applied to the optomechanical system. The dissipation
rates are required in the characterization of go (see section 3.5.2).

In the ideal case, the response (given by eq. (2.105) for a one-sided cavity
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and by eq. (2.108) for a two-sided cavity in transmission) gives a Lorentzian
dip in amplitude, of width x and centered on the resonance frequency w..
From the depth, the ratio ko/kex can be deduced as well. In the actual
experiment, the response is altered in two respects. First, attenuation and
delay along the line imply that the ideal response is overall multiplied by a
complex number of unknown modulus and phase. Renormalizing properly
the response solves this issue and it can still be fitted by a Lorentzian. Sec-
ondly, there exist in general slight impedance mismatches along the line that
cause reflections near the cavity on the transmission line of the chip. These
result in interferences which modify the resonance shape into a Fano func-
tion (Fano, 1961) rather than a Lorentzian dip in amplitude. Fortunately, the
effect of the impedance mismatch can be modeled and the correct parameters
still be extracted.

The solution comes from considering both complex components of Sy, and
S11 at once rather than fitting individually their amplitude and phase. The
response of a harmonic mode forms a circle when represented on the complex
plane, as a function of frequency w. This is one more link between harmonic
oscillators and circles. The effect of impedance mismatch amounts to a rota-
tion and a change of diameter of this circle, but the parameters can still be
extracted in general (Khalil et al., 2012; Megrant et al., 2012; Deng, Otto,
and Lupascu, 2013). An example of how the Fano resonance forms a circle
in the complex plane is shown in fig. 3.12. The transmission response of a
two-sided cavity (“notch” configuration) is particularly beneficial as it allows
the precise characterization of both kg and ke, as well as k and w. (Probst
et al., 2015). For practical reasons, we often measure in reflection only, which
makes the parameters harder to estimate (Stevens, 2017). In practice, the
complex functions S5, and Si; are fitted by circles, using code adapted from
Probst et al. (2015).

In the following, we give a theoretical description of how resonances form
circles on the complex plane. First, the two-sided cavity measured in trans-
mission is analyzed. All the parameters can conveniently be extracted in
that case. Second, the one-sided cavity measured in reflection is exposed.
While the resonance frequency w. and the full dissipation rate x can still be
fitted, it is not clear whether the internal and external dissipation rates can
be known in general. In both cases, the ideal case is contrasted with what
happens in the presence of impedance mismatch.

Before specific models are explored, we start by analyzing how a circle on
the complex plane can be constructed. Consider the function

S(z) = —— (3.6)
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Figure 3.12: Example of fitting a circle to the complex response Si;. The
very asymmetric Fano response in amplitude (a) corresponds to a perfect cir-
cle when both amplitude and phase are considered as a complex response (b).
The data corresponds to the matching color curve in fig. 4.5b. Figure repro-
duced from the supplementary information of Téth, Bernier, Nunnenkamp,
et al. (2017).

with x a real parameter. To understand that this function describes a circle
on the complex plane, one can rewrite it as

(1 1 l—l—z'x) 1 1 11—z
- — =X =5 +5 X

S(z) = 1tiz 2 1+izx) 2 1+ iz (3.7

N = DN =

(1 + 67i2arctan(:r)).

From this, one deduces that S(x) describes a circle of radius 1/2 centered
on the point 1/2. Far from resonance (|z| > 1), S(z) ~ 0 and on resonance
(x =0), S(0) = 1. The aim in the following will be to rewrite the different
expressions for the responses in the form of eq. (3.6) in order to identify the
circle.

In the fitting algorithm, the position and size of the circle is first deter-
mined. Then the function of the angle with respect to the center of the
circle 2 arctan(x) is deduced. By fitting this function, one can extract both
the angular velocity as a function of the frequency w, and the frequency
that corresponds to z = 0, the point at which the angle changes the fastest.
The first general gives information about the dissipation rate, and the latter
usually corresponds to the resonance frequency.
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Two-sided cavities

We start with the ideal case of the two-sided cavity. The expression for Sy,
already derived in eq. (2.108), can be rearranged as

1 .
o—iw—w) kb1
Sop = 2 =1—— . 3.8
2 1k —i(w— we) k1l—i2(w—w)/k (38)

It forms a circle of radius k& k, that starts at Sy; = 1 for w — F00 and gives
So1 = 1 — K&/ Kk at resonance w = w.. For kgy= K, the coupling is critical and
the circle crosses the origin. The angular velocity corresponds to the total
dissipation rate x and the fastest point (z = 0) to the resonance frequency
We-

The inverse of the response function S,;' gives information about the
resonance as well. It is expressed as

Kex 1

Syt =1+ (3.9)

Ko 1 —i2(w — wo) /Ko

The circle also starts at 1 but lies away from the origin. The fastest point is
also at resonance, but the angular velocity now corresponds to the internal
dissipation rate kq.

An impedance mismatch can be modeled as an additional impedance AZ
in series with Z.,, the equivalent impedance of the resonator coupled to the
line (derived in eq. (2.104)), as shown in fig. 3.13a. Note that in the model it
does not matter whether the impedance mismatch physically occurs before
or after the resonator, or even spread at different location. It is always equiv-
alent to a modification of the impedance in series with Z.,. We first consider
the modification of the dynamics of the resonator due to AZ. Following a
method similar to what was used in section 2.3.3, we compute the equivalent
impedance in the RLC' circuit due to the coupling to the transmission line,
to be

2072 20712
on W M W M ot (3.10)
O 270+ AZ 270+ AZ]

where ¢ is the complex phase of 1/(2Zy + AZ). Here Z2 . can be complex,

coup
since there can in general be a reactance component to AZ. In the absence

of an impedance mismatch AZ, when Z  is purely real, it increases the

bare dissipation rate kg by an amount xg, For a complex Z;loup, its imaginary
component will modify the resonance frequency of the resonator w,. as well.
In the high-@) limit which we consider, the external coupling rate is small

compared to the frequency and the change in frequency must be small. We
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therefore neglect any higher order nonlinear effect coming from the frequency
dependence of eq. (3.10) and substitute w — w.. The total impedance in the
RLC resonator is given by

Ziw = R—ilw+ —— + 20

wC P
~ Lig —iL(w — we) + Zioup (3.11)

= L(ko + R%%) — iL(w — @),

The resonance frequency has shifted according to?

w2 M?

we + IRz + AZ] Sin ¢ = w, + key' sin¢g. (3.12)

1 3
(I)él = We + z Im{Zéloup} —

The total external coupling rate is

w2 M?

1 .
~n,tot. — _I Zn —
K L I'Il{ coup} L|QZ() +Az|

ex

COS ¢ = Koy COS . (3.13)

For convenience of notation, we have introduced

w2 M?

e 14
L|2Zy + AZ] (3:-14)

Nk __
Rex =

The total external coupling rate £2%'" includes the power emitted in both
transmission lines (dissipated in each Z, in the model), as well as what is
dissipated in the resistive part of AZ (which can be thought of as an extra
contribution to the internal losses). The coupling rate for each individual

channel is given by

~ 1

wC2M2Z0 .k ZO
Ry = = Reg ——————.
* L|2Zy+ AZ| 12Zy + AZ]

(3.15)

Note that in the present context, the resonator resonance frequency is
defined as the frequency at which the imaginary component of 7, vanishes.

4 There is an apparent paradox in this shift of frequency. In eq. (3.11), the ex-
pression is expanded around w = w,. keeping only the first order w — w.. If the other
valid solution w = —w, is taken instead, then the change in frequency seems opposite:
O = —we + %Im{Zéloup} instead of W = —w. — %Im{Zé‘oup} to be consistent with the
derived expression. One must remember that complex impedances are defined in the
Fourier frequency domain. The change of sign in frequency w — —w must be accompa-
nied by a conjugation of the complex phase of all impedances, such that ¢ — —¢ and
Im{Zél up} — 711’I1{Zél up}'

(o] {0}
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Figure 3.13: Model for impedance mismatch. The impedance mismatch is
modeled as adding a potentially complex impedance AZ in series with the
equivalent impedance of the resonator Z, to the ideal model shown in fig. 2.6,
both in the case of a two-sided cavity (a) and a one-sided cavity (b).

It corresponds to the minimal absolute impedance |Z,.s| where an input ex-
citation elicits the largest response. That is the relevant resonance frequency
in the optomechanical interaction. The mechanical mode is only “aware” of
the actual frequency where the microwave circuit has a resonance @y, not of
the bare frequency w. at which the circuit would resonate in the alternative
situation where the impedance mismatch is absent.

With the impedance mismatch AZ, the response becomes

S’ o 2Z0 . 2Z0 /{0/2 - Z(UJ - wc)
T2+ Zeg + AZ T 225+ AZ ko + rie?) — i(w — w)
. : (3.16)
Keste

T R An T 20— o) (o + R

The original circle of eq. (3.8) is transformed. Its diameter is increased and
the circle is rotated by an angle ¢, keeping the point 1 fixed. This rotation is
deforming the origin Lorentzian function for the amplitude to an asymmetric
Fano function. On the complex plane however, the circle stays a circle. The
fastest rotation still occurs at the resonance frequency, now w2, and the
angular velocity gives the total dissipation rate kK = ko + R£%.. Conveniently,
any overall change of the amplitude and phase in the measurement chain can
be normalized away by requiring that Sy; — 1 off resonance as w — 4o0.

The inverse response is now expressed as

~ AZ KD eid 1
A= 14+ =) (1+= . 1
Sa1 ( + 2Z0) ( + Ko 1—i2(w— wc)/l'io) (3.17)

Here the apparent resonance frequency when the angle rotates the fastest
is the bare one w,, not taking into account AZ. The angular velocity di-
rectly gives the internal dissipation rate xy without any further calculation
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required. Fitting this expression is especially useful in the context of opti-
mizing the internal quality factor of the microwave resonator when it should
be determined precisely (Probst et al., 2015).

One-sided cavities
We turn to one-sided cavities measured in reflection. The reflection coefficient
in the ideal case, already given in eq. (2.105), can be expressed as

2Kex 1
Kk 1—i2(w—w)/k

Sip=-1+ (3.18)
Because of the short-circuit boundary condition, the reflection coefficient is
—1 away from resonance. The resonance is a circle of radius 2k, /K, going
towards the origin. At critical coupling kex = Ko, the diameter is 1 and
the circle crosses the origin. For an overcoupled cavity kex > Ko, the circle
encompasses the origin. The fastest point is at resonance w, and the angular
velocity gives the total dissipation rate x.

The inverse response is computed to be

2K ex 1
Ko — Kex 1 — 12(w — we) /(Ko — Kex)

Sit=-1- (3.19)
The circle still starts from —1, but stands to the left or the right depending
on whether the cavity is under- (kex < Kg) or over-coupled (Kex > ko). It
also rotates one direction or the other, depending on the the case, with a
angular velocity that corresponds to kg — Kex. In the limit of critical coupling
Kex = Ko, the circle asymptotically becomes a vertical line: it starts at —1
for w — —o0, then goes to —1 + 700 as w — 07; then it jumps to —1 — ico
for w — 0" and finishes back at —1 for w — oo.

An impedance mismatch is also equivalent to adding AZ in series with
the resonator equivalent impedance Z,, as shown in fig. 3.13b. As in the
case of the two-sided cavity, it does not matter in the model where the
impedance mismatch occurs physically, whether before the cavity or near
the short circuit.

We start by analyzing the impact of AZ on the dynamics of the RLC
resonator. The equivalent impedance of the rest of the circuit is
wrM? w2 M?
oup — et (&
P+ AZ | Zo+ AZ)

Z, i¢ (3.20)

where ¢ refers now to the complex phase of 1/(Zy + AZ). Following the
same argument as above, the resonance frequency and the total external
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dissipation rate become

We = We + Ky SIN O, (3.21)
RO = kY cos ¢ (3.22)
with
. wC2M2

== 3.23
/iex L’ZO—FAZ‘ ( )

The coupling rate 7, includes both the power emitted back in the trans-

mission line and what is dissipated in the resistive component of AZ. The
coupling rate for the transmission line is

Zy
~ex = ~ex . 3.24
flex = Rex)o 70+ AZ] (3:24)
The reflection response with the impedance mismatch is
g (Zeq + AZ) — Zy
1=

Zeqg + AZ) + Z

(Zeq )+ % (3.25)

Z() —AZ QZ() K 6i¢ 1

ex

T L+ AZ | Zo—AZ R 1-i2w-—an)/R

where £ = Ko+ FKey 1S the total dissipation rate. The overall factor comes from
the modification of the reflection boundary condition due to the impedance
mismatch AZ. As a consequence, the circle is not simply rotated by an angle
¢ as in the case of the two-sided cavity. It becomes more difficult to extract
ko and Rey, from the diameter of the circle, as it now depends on AZ in a
complicated way. Fortunately, the rotation around the circle still gives the
correct resonance frequency w! and the total dissipation rate .

The inverse response can be expressed as
. Zot+AZ { 27y k! el 1

T T2 —AZ | T 7= AZ o — e 1 — 20w —0) /(R0 — o)
(3.26)

St

The apparent resonance frequency

w2 M?
o = w. — 1 S 2
We = We m{L(ZO—AZ)} (3.27)

is shifted in the wrong direction by a different amount compared to the
physical resonance frequency w;. The apparent dissipation rate, deduced
from the angular velocity,

w2 M?

1z —AZ) (3.28)

Ko — Rex = Ko — Re
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does not seem to correspond to any physical quantity either.

In conclusion, there is a cost to measuring the chip only in reflection.
Not all the parameters can be extracted exactly in the most general case,
unlike for transmission in a two-sided cavity. They can only be estimated
approximately (Stevens, 2017). Nevertheless, the resonance frequency @2
and the total dissipation rate k can still be easily extracted from the fitting
a circle to Sy (similarly to Sy, for the two-sided cavity). In practice, we
only need to estimate ko in order to calibrate precisely go and in some
cases to fit the model. The most important parameter to know exactly is
wg. It is required to set correctly the detunings of the microwave pumps that
determine the linearized optomechanical coupling. As was shown above, that
is always possible, regardless of the impedance mismatch.

3.5.2 Measurement of g

The vacuum optomechanical coupling strength gy (eq. (2.125)) is a measure
of how strongly the two quantum harmonic oscillators are coupled together.
Unlike the coupling strength G in units of frequency shift per unit length
(eq. (2.79)), go is uniquely defined and can be used without ambiguity to
compare different systems. In most cases of interest, a good performance
indicator is the vacuum cooperativity Co = 4go*/(kIy). For given microwave
and mechanical quality factors, a higher value for gy enables stronger linear
coupling strengths ¢ to achieve better quantum control of the system. It is
therefore important to correctly calibrate gg to be able to gauge the relative
strengths of different designs for optomechanical systems.

In the following, we explain our method to calibrate gy using the mechan-
ical sideband and a reference calibration tone. The theoretical model is first
exposed, including the required assumptions. Then the measurement scheme
is presented.

Theoretical model

A relatively weak microwave pump tone is set on resonance (A = 0), pro-
ducing two mechanical sidebands. They are equivalent and we will consider
the measurement of the upper sideband (w = §2y,) for the purpose of the cal-
culations. The noise emission in the sidebands corresponds mainly to noise
originating from the mechanical thermal bath. If we suppose the mode well
thermalized at a given temperature, the absolute scale of this noise as it is
emitted is known up to the rate go. With a weak calibration tone that travels
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along the pump tone, the unknown attenuation and gain of the measurement
chain can be factored out to calibrate gy.

The Langevin equations (egs. (2.18) and (2.18)) with a pump of detuning
A = 0 in the Fourier domain are

(—zw—l— )5@[] ig(
( iw -+ >5a[] +ig (56[@%6*@]), (3.30)

(—i(u} — Q) + %m) Sblw] = —ig (daw] + da'[w]) + v/ Tmbolw], (3.31)

5blw] + obt [w]) , (3.29)

(—i(w + Q) + %n) bt [w] = +ig (dafw] + da'[w]) + VImbh[w].  (3.32)

We are interested in the mechanical noise emission, that is dominated by the
mechanical bath noise BO. The microwave thermal baths are assumed to be
close to the ground state and negligible compared to the classical mechanical
thermal noise. We assume also that the pump power, while relatively weak
to disturb the system as little as possible, is still large enough compared to
the vacuum fluctuations to linearize the interaction with a linear coupling
strength g. For A = 0, the two modes have very different frequencies in the
rotating frame and it is not possible to take the RWA; the four equations for
dafw], dat[w], 6bjw] and dbt[w] must be considered.

In the absence of microwave noise, dafw] + da'[w] = 0 (from the sum of
egs. (3.29) and (3.30)) and the mechanical motion is only due to its thermal
noise with

7 V Ijnl V Ijn1

— 3 bt pi
dblw] = =)+ Fm/QbO[w] and 0b [w]r_z,(w o)+ Fm/2bo[w].
(3.33)
The output microwave field daoui[w] = —y/Rex0a|w] carries the mechanical
signal as
il — 9V ( bolw] b [w]
o —iw+ k)2 \ —i(w — Q) + Fm/2 —i(w+ Q) + T /2

(3.34)
The white noise from by is filtered by two Lorentzians centered at w = £€),,,
resulting in two mechanical sidebands. Considering the upper sideband at
w = +€)y,, the Bg term in eq. (3.34) can be neglected due to the Lorentzian
suppression, supposing €, > I';, (valid for a high mechanical @) factor). The
symmetrized output spectrum can then be expressed as

¢ Fex N (T)

Sout [] = w2 + (k)2)2 (W — Q)2 + (T /2)2

6aT5a

(3.35)
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where we inserted the expression for the thermal noise spectrum S‘Sﬁ) =
N th(T) + 1/2 & 1 0 (T), with ny, ,(7) the Bose-Einstein thermal occu-
pancy of the mechanical mode at temperature T'. There are two Lorentzian
functions with widths of vastly different scales. The narrow mechanical side-
band of linewidth I',, has an amplitude that depends on the state density of
the microwave mode at w = €),,. Since k > I',,, we neglect the slow variation
of the cavity profile and substitute w — €2y, in the first factor of eq. (3.35)
from hereon. The total power in the sideband gives a measure of the rate of

the anti-Stokes scattering process

dw Sout g2f€ex —
Dscar = / %S(;d’r(sd[w] = mnm,th(T) (336)

Alternatively, the same expression can be derived using Fermi’s golden rule
for the scattering rate at first order.

The coupling strength g = gov/n. depends on the strength of the pump
tone, measured in the equivalent mean photon number as

 Kex Dy

e = (/2)2 e

(3.37)

for a pump power P, reaching the cavity on resonance. The power in the
sideband (in units of W) can be expressed as

(Fex/K)?  we + Oy
Q2+ (k/2)? We
——

~1

PSB - h(wc + Qm)rscat - 4go2ﬁn1,th(T)

P,. (3.38)

The powers P, and Psg are as measured respectively right before and right
after interacting with the cavity and are inaccessible in the experiment. The
pump power at the microwave source P7', is attenuated by an insertion loss
a before it reaches the cavity. The sideband emission as measured Pgy™ is
amplified with an overall gain G. In order to calibrate out these unknown
variables, a weak calibration tone is introduced, that follows an identical path
as the pump tone. It is tuned near the sideband at w ~ Q.. We suppose
that it is subjected to the same insertion loss «, being only a few MHz away
in frequency. The measured sideband and calibration powers are

meas PSB STC
Pgg™ = GPsp = Q?Oépp ) (3.39)

p

e — Ga Py (3.40)

cal.*
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Figure 3.14: Calibration of gg. (a) Mechanical sideband power as a function
of the temperature of the mixing chamber plate. For large temperature, the
mechanical thermal noise is proportional to temperature, implying it is well
thermalized. The emitted power is given in units of n,, by using the fit
at larger temperatures and assuming thermalization using a classical linear
expression for the noise. (b) Measured sideband and calibration tone power
for the calibration of gy. Figure adapted from the supplementary information
of Téth, Bernier, Nunnenkamp, et al. (2017).

Taking the ratio of egs. (3.39) and (3.40), o and G are eliminated and we
finally obtain an expression for the vacuum coupling strength

) 1 Qm2 + (/42/2)2 psre PSHllBeas

cal.

- 4ﬁm,th (T) (/{ex//{,)Q Psrc Pmeas

9o (3.41)

cal.

We have assumed that the calibration tone does not interact with the cav-
ity. That is only valid in the sideband resolved limit €, > k. Otherwise,
a correction should be included to take into account the fraction of the cal-
ibration tone power that is absorbed by the cavity. This fraction is given
by the relative amplitude in a linear response measurement of the cavity at
the frequency of interest compared to the background level. Note that ke
in the derivation above refers to the external coupling rate for an individual
channel. In the case of a two-sided cavity, it corresponds to half the total
external coupling rate ke,™*%.

Experiment

An important assumption in the calibration of gy is that the mechanical
mode is thermalized to a known temperature. That is not the case at base
temperature in the dilution refrigerator. We have measured the mode to be
at an effective temperature of about 50 mK when the mixing-chamber plate
is at the base temperature of 10 mK (see fig. 3.14a) For this reason, the
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temperature is elevated to about 200 mK to perform the gy measurements,
where it is safe to assume the mode to be well thermalized. We are careful to
use the same cable type of the same length to connect the microwave sources
for the pump and calibration tones to a combiner before the signals are sent
into the dilution refrigerator. We present the spectrum from a typical g
measurement in fig. 3.14b.

3.6 Routine optomechanical measurements

We describe in the following a few standard measurements that are commonly
done on an optomechanical system. In section 3.6.1, sideband damping and
cooling of the mechanical mode is demonstrated. In section 3.6.2, the modi-
fication of the susceptibility of the microwave mode through the interaction
with the mechanical mode is shown, called OMIT or OMIA depending on
the parameters.

3.6.1 Sideband cooling

When a driving tone is applied to the red sideband (A = —€Q,,), the me-
chanical mode is damped and cooled, as explained in section 2.1.5. We
measure the spectra of the mechanical sideband on resonance, as a pump
tone is swept in power. The resonator with a resonance at 5.3 GHz of the
sample HYB-20150924-4-17 was measured. The result is shown in fig. 3.15a.
The linewidth of the mechanical sideband, that corresponds to the effective
mechanical dissipation rate ['.g increases linearly with power, as shown in
fig. 3.15d. This increase in damping of the mechanical motion results in a
reduction of its average energy, since the thermal bath constituted by the
microwave mode is effectively at a much lower temperature than the internal
thermal mechanical bath. While the mechanical sideband power does not de-
crease with cooling power, the sideband spectrum normalized by the pump
power is proportional to the displacement spectrum and gives a measure of
the effective temperature of the mechanical oscillator.

The deduced mechanical mean occupancy ny, is shown in fig. 3.15e. To
normalize the data properly, they are anchored to the thermal occupancy of
the mechanical oscillator in the absence of cooling, at the effective temper-
ature of 50 mK. This is above the base temperature of the mixing chamber
(at about 10 mK), as the mechanical mode is not perfectly thermalized (see
fig. 3.14a). The theoretical curve is a fit of the expression in eq. (2.34) to
the data. In this example, the mechanical occupancy is reduced to about
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Figure 3.15: Sideband cooling of the mechanical mode. (a) Spectra of the
mechanical sideband on resonance for increasing power of a pump tone on the
red sideband (A ~ —,,). (b) Scheme for the experiment in the frequency
domain. A pump tone is place red-detuned from the microwave cavity reso-
nance w, by the mechanical frequency €2,,, and its blue modulated sideband
is measured on resonance. (c¢) Individual spectra corresponding to the pow-
ers 0, 10, 15, 20 dBm in (a) (increasing powers from yellow to dark red).
(d) Fitted linewidth of the Lorentzian sidebands in (a), corresponding to the
effective mechanical dissipation rate I'eg = ', (1 4+ C). (e) Mean mechanical
occupancy ny, as a function of pump power. The integrated power in the
sideband divided by the pump power is proportional to the occupancy. The
data is normalized by anchoring the extrapolation at low pump powers to
the mechanical thermal occupancy at the estimated equilibrium temperature
of 50 mK.
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6.7 quanta, corresponding to an effective temperature of 3 mK. The cali-
bration is subject to many systematic issues, which imply potentially large
error in the mean occupancy at large cooling rates. Alternative calibration
techniques, such as using the added noise of the HEMT as an absolute power
reference (see section 4.8) or using sideband asymmetry for thermometry
(see section 7.3) can give a more precise estimation of the effective mechani-
cal temperature.

3.6.2 Optomechanically induced transparency and ab-
sorption

When a driving tone is applied near the red or blue mechanical sideband
of the microwave resonance, the two modes interact, with nearly the same
frequency in a rotating frame. The microwave susceptibility is modified ac-
cording to eq. (2.35) for a red-detuned pump tone. An example measurement
is shown in fig. 3.16. The response in amplitude of fig. 3.16a, shows a quick
variation in the middle of the cavity resonance. This corresponds to a copy
of the mechanical susceptibility, that is translated to microwave frequencies
through the parametric interaction. On the complex plane (fig. 3.16b), it cor-
responds to two circles, one for each resonance. A circle with the angle mov-
ing slowly with respect to the frequency describes the microwave resonance
(see section 3.5.1). Within this circle, a second circle with an angle changing
faster with frequency corresponds to the mechanical resonance. For a pump
on the red sideband (A = ), the two circles rotate in the same direction,
with the mechanical circle inscribed in the microwave one. In fig. 3.16¢, the
mechanical feature of OMIT is shown on the complex plane for three different
driving tone powers. For low powers, the mechanical-resonance circle starts
with a small radius, that increases with the pump power until it reaches the
same size as the microwave resonance circle. The speed of the angle around
the circle correspond to the effective mechanical dissipation rate I'.g that
also increases with power. The resonator with a resonance at 6.43 GHz of
the sample AY _old_moreH-20180516-1-21 was used for the results shown.

In fig. 3.17, OMIT transmission amplitudes are shown for a sweep of the
pump power. The effective mechanical dissipation rate I'eg grows linearly
with the power until it reaches a significant fraction of the microwave dissipa-
tion rate s (fig. 3.17b). This corresponds to the onset of the strong-coupling
regime (Groblacher et al., 2009; Teufel, D. Li, et al., 2011; Verhagen et al.,
2012). Such a strong damping rate is a necessary condition for the engineer-
ing of a mechanical dissipative reservoir, as detailed in chapter 4. The bright
resonance at 5.48 GHz of the sample HYB-20150924-4-24 is used for these
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Figure 3.16: Measurement of OMIT/OMIA with a red-detuned pump tone.
(a) Response of the microwave cavity in amplitude, with a narrow feature that
corresponds to the mechanical resonance. Both the microwave resonance and
the narrow mechanical feature have a Fano shape, such that the distinction
between OMIT and OMIA (transparency or absorption) has little meaning in
this case. (b) Same response shown on the complex plane. The mechanical
feature of OMIT/OMIA with a red-detuned pump tone corresponds to a
circle within the circle of the mechanical resonance. (¢) OMIT/OMIA feature
for increasing powers (light to dark green). The circle of the mechanical
resonance increases in size with power until it has the same radius as the
circle of the microwave resonance.
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Figure 3.17: OMIT power sweep to the onset of strong coupling. (a) Trans-
mission amplitude of the microwave cavity while a pump tone on the red
sideband (A = —£,) is swept in power. (b) Fitted mechanical effective
linewidths I'eg extracted from the traces of the panel (a). (c,d,e) Traces
corresponding to the line cuts of matching colors in the panel (a).

data.






Chapter 4

A dissipative quantum reservoir
for microwaves using a mechan-
ical oscillator

We explain here how a mechanical oscillator can be turned into a dissipative
reservoir for a microwave cavity. This chapter is adapted from the text of
two previous publications (T6th, Bernier, Nunnenkamp, et al., 2017; Téth,
Bernier, Feofanov, et al., 2018). In section 4.1, we introduce the experi-
ment. In section 4.2, we explain how the circuit was designed with hybridized
microwave modes in order to obtain the required dissipation rates. In sec-
tion 4.3, we give details on the realization of the circuit. In section 4.4, we
show how the interaction with the mechanical reservoir results in a modifi-
cation of the parameters of the microwave cavity similarly to how the me-
chanical mode is modified through the usual optomechanical interaction (see
section 2.1.5). In section 4.5, we explain the same mechanism in terms of
dynamical backaction as originally introduced by Braginsky. In section 4.6,
we give the experimental results of the modified microwave susceptibility. In
section 4.7, we show how microwave amplification can result from the inter-
action with the mechanical reservoir, leading to an instability akin to that of
a maser. In section 4.8, we measure the performance of the amplifier, which
works close to the quantum limit in terms of added noise. In section 4.9, in-
jection locking of the masing tone is demonstrated. Finally, in section 4.10,
we conclude.
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4.1 Introduction

Dissipation can significantly affect the quantum behavior of a system and
even completely suppress it (Caldeira and Leggett, 1981). However, if care-
fully constructed, dissipation can relax the system of interest to a desired tar-
get quantum state. This pioneering insight was originally theoretically con-
ceived and studied in the context of trapped ions (Poyatos, Cirac, and Zoller,
1996), experimentally first realized with trapped atomic ensembles (Krauter
et al., 2011) and later with trapped ions (Barreiro et al., 2011; Lin et al.,
2013; Kienzler et al., 2015). Moreover, reservoir engineering has recently also
been realized in the context of circuit QED (Murch et al., 2012; Shankar et
al., 2013; Leghtas et al., 2015). In these experiments the optical or microwave
field provides a dissipative reservoir to the quantum systems. In cavity op-
tomechanics (Aspelmeyer, Kippenberg, and Marquardt, 2014), in which a
mechanical oscillator and electromagnetic degree of freedom are parametri-
cally coupled, analogous ideas have been developed and reservoir engineering
for the preparation of squeezed mechanical states has been theoretically pro-
posed (Kronwald, Marquardt, and Clerk, 2013; Woolley and Clerk, 2014)
and recently demonstrated (Wollman et al., 2015; Pirkkalainen, Damskégg,
et al., 2015; Lecocq, Clark, et al., 2015). As in the atomic physics case,
the electromagnetic field acts as the engineered environment of the quantum
system of interest.

In contrast, recent theoretical work (Wang and Clerk, 2013; Metelmann
and Clerk, 2014; Nunnenkamp et al., 2014; Kronwald, Marquardt, and Clerk,
2014; Metelmann and Clerk, 2015) has considered the opposite scenario
where the mechanical degree of freedom is employed to provide a cold dissi-
pative bath for light. This engineered bath can then be employed to achieve
desirable quantum states of light or to modify the optical field properties. For
example, such a dissipative reservoir for light can be exploited for amplifica-
tion (Metelmann and Clerk, 2014; Nunnenkamp et al., 2014), entanglement
generation (Wang and Clerk, 2013) or dissipative squeezing of electromag-
netic modes (Kronwald, Marquardt, and Clerk, 2014). Moreover, it provides
an ingredient to realize nonreciprocal devices (Metelmann and Clerk, 2015)
such as isolators, circulators or directional microwave amplifiers. For a suffi-
ciently cold mechanical reservoir, nonreciprocal devices implemented in this
manner can operate in the quantum regime, with minimal added noise.

Here we engineer a mechanical oscillator into a quantum reservoir for mi-
crowave light. This is achieved in a microwave optomechanical system (Teufel,
D. Li, et al., 2011) by engineering the mechanical dissipation rate to exceed
that of the electromagnetic mode. This regime allows the demonstration of
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dynamical backaction (V. Braginsky and A. Manukin, 1977) on microwave
light, and the control of a microwave mode by tuning its coupling to the reser-
voir. Backaction amplification leads to stimulated emission of microwaves
and maser action using the mechanical oscillator as the gain medium. Below
the masing threshold, we implement a large-gain phase-preserving amplifier
that operates with added noise 0.87 quanta (or a factor 2) above the quantum
limit. Critically, this demonstrates that the mechanical reservoir for light can
function as a useful quantum resource.

4.2 Dark and bright modes

We utilize a scheme in which two microwave modes are coupled to the same
mechanical oscillator (Nunnenkamp et al., 2014). One (auxiliary) electro-
magnetic mode is used to damp the oscillator via optomechanical sideband
cooling (Teufel, Harlow, et al., 2008; Schliesser, Riviere, et al., 2008) and
engineer it into a cold bath for the other (primary) electromagnetic mode
(fig. 4.1a). A key ingredient for the scheme is an optomechanical cooling rate
from the auxiliary mode that greatly exceeds the electromagnetic decay rate
of the primary microwave mode, necessitating vastly different decay rates for
the employed microwave cavities. This is challenging to achieve with pre-
viously realized dual-mode circuits (Lecocq, Clark, et al., 2015), since any
parasitic coupling between the two modes opens a decay channel, equilibrat-
ing their decay in energy. Here, we address this challenge by engineering
hybridized modes with inherently dissimilar decay rates arising from inter-
ference in the output channel (cf. fig. 4.1b, c).

Specifically, we design an electromechanical circuit using two LC res-
onators both coupled inductively to a common feedline, one of which has
a mechanically compliant vacuum-gap capacitor (Cicak et al., 2010) cou-
pling mechanical vibrations to the microwave mode. The two resonators
are strongly coupled through sharing a common inductor (cf. fig. 4.1b). In
terms of the annihilation operators a; and as of the bare modes, the resulting
interaction Hamiltonian is given by

Hy = hJ(alag + abay) + higoalay (b + 0F), (4.1)

where b designates the annihilation operator for the mechanical mode, J the
intermode coupling strength, and gy the vacuum electromechanical coupling
strength to the first mode (% is the reduced Planck’s constant). The symmet-
ric and antisymmetric superpositions of the bare modes a5, = \%(dl + as)
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Figure 4.1: Realization of a mechanical reservoir for a microwave cavity in
circuit optomechanics. (a) Schematic representation of a multi-mode elec-
tromechanical system in which a microwave mode with energy decay rate k
is coupled to an engineered mechanical mode acting as a dissipative reservoir
with an effective energy decay rate I'ey much greater than x. (b) Circuit
realization of the electromechanical system. Two lumped-element LC cir-
cuits — one containing a mechanically compliant capacitor — with matching
resonance frequencies are inductively coupled and show normal-mode split-
ting, forming dark and bright modes (respectively used as the primary and
auxiliary modes) to achieve Kau > k. (¢) Visual representation of the mode
structure and the resulting asymmetric dissipation rates, originating from the
interference in the output coupling. (d) Optomechanical sideband cooling the
mechanical mode with the auxiliary, bright mode realizes a cold, dissipative
mechanical reservoir for the primary, dark mode. Figure reproduced from
T6th, Bernier, Nunnenkamp, et al. (2017).
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diagonalize the Hamiltonian. In terms of these hybridized modes the inter-
action Hamiltonian is given by

Hiw = hJ (ala, — ala,) + B (ala, + ala,) (b +b"). (4.2)
If the bare modes are degenerate, the eigenmodes have an energy difference
of 2hJ (fig. 4.1¢) and are now, as a result of the interaction, both coupled
to the micromechanical oscillator (Dobrindt, Wilson-Rae, and Kippenberg,
2008) with half the bare vacuum electromechanical coupling strength gp.
We consider here the limit of a coupling large compared to the mechanical
resonance frequency, J > €),,, implying that we can neglect the cross terms
of the form ala, (b + b'), which are not resonant.

Critically, the new eigenmodes have dissimilar decay rates and form a
bright (strongly coupled) and a dark (weakly coupled) mode resulting from
interference of the bare-mode external coupling rates x{*, x5 to the output
channel. Physically, one can understand the difference by considering the
topology of current flow in the modes (see fig. 4.1b). The symmetric mode
has current flowing in the same direction in both resonators, causing their
external magnetic flux to create currents that add up, leading to an increased
coupling rate to the feedline. The antisymmetric mode has current flowing in
opposite directions in the two resonators, causing the external magnetic flux
to create currents that cancel out, leading to a suppression in the external
coupling to the feedline (see fig. 4.1b, c¢). The density of current in each
mode, computed through simulation, is shown in fig. 3.3.

Since the dissipation rates are proportional to the square of the coupling
strength to the transmission-channel modes (see eq. (2.5)), we obtain the
following expressions for the dissipation rates. The coupling strength for the
symmetric, bright mode interfere constructively, leading to an external en-
ergy decay rate to the output feedline of k& = (/KT + /k5)?. Whereas,
for the antisymmetric, dark mode, the interference is destructive, leading to
a decreased external coupling rate k™ = 1(\/&F — /&5¥)?. For bare cou-
pling rates similar in magnitude (k{* ~ k5¥), this enforces the coupling-rate
hierarchy k¥ < k$* necessary to achieve a dissipative mechanical reservoir
with the present scheme (Nunnenkamp et al., 2014). In the remaining of the
chapter, we refer to the dark mode as the primary mode and the bright mode
as the auxiliary mode, with respective resonance frequencies w. and w,,, and
energy decay rates k and K, (fig. 4.1).

A former, unsuccessful design is illustrated in fig. 4.2. Two independent
LC circuits interact with the same mechanical oscillator by each sharing one
half of the central capacitor, which has a vibrating top plate and a split
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Figure 4.2: Unsuccessful design to obtain asymmetrically coupled microwave
modes. (a) Optical microscope image of a fabricated chip. Two LC' res-
onators are coupled to the same mechanical modes by sharing a capacitor
with a split bottom plate. By design, the mode that is further from the trans-
mission line is meant to have a lower inductive coupling rate. (b) Simulated
charge density at the frequency of resonance of the top mode. The bottom
part of the circuit, that is not resonant, acts as a capacitive coupling to the
transmission line, increasing the total coupling rate.

bottom plate. An optical micrograph of a fabricated sample is shown in
fig. 4.2a. By design, the microwave cavity placed further from the central
transmission line should have a lower inductive coupling than the other cav-
ity. In fact, capacitive coupling compensates for the difference in inductive
coupling, such that the total external coupling rate of each cavity is simi-
lar. Numerical simulation with Sonnet (see section 3.2.1) confirms this. The
charge density is computed at the resonance frequency of the top mode and
shown in fig. 4.2b. There are significant charge fluctuations in the bottom
part of the circuit, which is nonresonant and acts as a capacitive finger to
the transmission line. The circuit with dark and bright modes is designed
to correct those shortcomings. The hybridized modes have currents flowing
in the entire circuit for each resonance, such that there is no idle part of the
circuit that can act as a capacitance to the transmission line, leaving only
inductive coupling.
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4.3 Realization of a mechanical reservoir

We realize the electromechanical circuit experimentally by fabricating two
lumped-element LC circuits coupled to each other via a common inductor,
made from thin-film aluminium on a sapphire substrate. The sample is HY B-
20150924-4-24. The primary and auxiliary modes respectively have resonance
frequencies (wWe, Waux) = 27 X (4.26,5.48) GHz and total energy decay rates
(K, Kaux) = 2m x (118,4478) kHz, (thus, Kau/k = 38). This clear hierarchy
in the energy relaxation rates indeed originates from the vastly dissimilar
engineered external coupling to the feedline, with k., = 27 x 42 kHz ~
1% of k&.. The mechanical resonator is a parallel-plate capacitor with a
suspended top electrode, having a resonance frequency of the fundamental
flexural mode Q,, = 27 x 5.33 MHz and a decay rate [', = 27 x 30 Hz.
This mechanical mode couples to both the primary and auxiliary modes
with a vacuum electromechanical coupling strength gy = go/2 = 27w x 60 Hz.
The characterization of the coupling strength g is described in section 3.5.2.
Importantly, the resolved sideband regime is still attained for both microwave
modes, with €, > Kaux > K.

Figure 4.3a, b show respectively an optical image of the fabricated circuit
and a scanning electron micrograph of the drum-type capacitor. The simpli-
fied measurement setup is shown in fig. 4.3c. In brief, the device is mounted
on the base plate of a dilution refrigerator and cooled to a base temperature
of ca. 10 mK. The microwave input lines are heavily attenuated to suppress
residual thermal noise and, in addition, filter cavities are employed to remove
unwanted frequency noise from the applied tones (see section 3.3.4). After
amplification with a commercial high-electron-mobility transistor (HEMT)
amplifier mounted on the 3 K plate, the signal is measured with a spectrum
analyzer or a vector network analyzer.

To prepare a cold, dissipative mechanical bath we follow the approach
outlined by Nunnenkamp et al. (2014) and use optomechanical sideband cool-
ing (Teufel, Harlow, et al., 2008; Schliesser, Riviere, et al., 2008) to engineer
the dissipation of the mechanical oscillator. We proceed by pumping the aux-
iliary mode on the lower motional sideband (fig. 4.1d). We strongly damp the
mechanical oscillator to an effective energy decay rate I'eg ~ 27 x 500 kHz
(corresponding to a mean intra-cavity photon number of 7, & 1.5 x 10%),
while still remaining in the weak-coupling regime for the auxiliary mode.
Examples of OMIT curves taken in such a regime are shown in fig. 3.17.
Thereby, we realize a dissipative mechanical reservoir for the primary, high-
Q mode, since 'y > k. The effective temperature of this reservoir and its
utility as a quantum resource are studied below in the following.
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Figure 4.3: Device, experimental setup, and characterization of the elec-
tromechanical circuit (a) Inverted-colour optical micrograph of the circuit
consisting of two coupled LC resonators, one having a mechanically compliant
capacitor. Dark blue regions show aluminium and grey regions that are the
exposed sapphire substrate. (b) False-colour scanning electron micrograph
of the mechanically compliant drum capacitor. (c¢) Simplified schematics of
the measurement setup with the circuit. The input lines are filtered and
attenuated at various stages before reaching the device mounted in a dilu-
tion refrigerator. Both the coherent response and the spectral emission can
be measured. (d) Linear response measurement of the device revealing the
symmetric (bright, used as the auxiliary) and anti-symmetric (dark, used
as the primary) microwave modes. Figure reproduced from Téth, Bernier,
Nunnenkamp, et al. (2017).
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4.4 Tuning a mode using a reservoir

We first study the modified microwave cavity susceptibility resulting from
interaction with the mechanical reservoir. The engineered bath provided by
the mechanical resonator modifies the response of the electromagnetic mode
when a microwave tone is applied (Nunnenkamp et al., 2014). With a pump
detuned by A from the primary microwave cavity resonance, the frequency
and the decay rate of the mode shift by

Owom = ReX and Koy = —2Im 2. (4.3)

The self-energy ¥ is defined as

! 1
) B
Y= g <Feff/2 +Z(A + Qm) Feff/2 +Z(A _ Qm)) ) (44)

where g = go\/Tic is the effective electromechanical coupling strength en-
hanced by the mean intracavity photon number of the primary mode n..
This effect can be viewed as radiation-pressure dynamical backaction (V.
Braginsky, A. Manukin, and Tikhonov, 1970; Kippenberg, Rokhsari, et al.,
2005; Schliesser, Riviere, et al., 2008) onto the microwave mode, an interpre-
tation further elaborated in section 4.5.

The change in susceptibility leads to a change in the reflection from
the microwave cavity (defined as Gout(w) = S11(w)ain(w), where iy out(w)
are Fourier-domain operators associated with the input and output fields,
cf. fig. 4.1b). The response becomes

Ko + Kom — Kex — 12(w — W)

Sn(w) = (4.5)

. )
Ko + Kom + Kex — 12(w — W)

where kg is the internal loss of the primary mode and w. = w. + dwon, the
modified resonance frequency.

4.5 Interpretation as dynamical backaction

In this section, we discuss the interaction between the microwave cavity and
its mechanical dissipative reservoir in the framework of dynamical backaction.
4.5.1 Origin of the concept of dynamical backaction

More than 50 years ago, the seminal work of Braginsky (Braginski and A. B.
Manukin, 1967; V. Braginsky, A. Manukin, and Tikhonov, 1970) introduced
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the notion of radiation pressure dynamical backaction. While a mechani-
cal oscillator coupled parametrically to an electromagnetic mode enables the
measurement of mechanical motion with high precision, as required in partic-
ular for gravitational wave detectors, radiation pressure poses a limitation.
As the cavity field adjusts to the oscillator motion, the radiation pressure
force it generates acts as a feedback force which can acquire an out-of-phase
component due to the finite cavity delay and modify the mechanical damping
rate. This dynamical backaction limits the circulating power in Fabry-Perot
interferometers, due the parametric oscillatory instability, in which amplifica-
tion compensates for the intrinsic mechanical losses, leading to regenerative
oscillations of the mechanical end mirror.

The radiation-pressure parametric instability, as proposed by Braginsky (V. B.

Braginsky, Strigin, and Vyatchanin, 2001) was first observed in toroid micro-
resonators in 2005 (Kippenberg, Rokhsari, et al., 2005), and gives rise to a
rich nonlinear dynamics (Marquardt, Harris, and Girvin, 2006). Soon there-
after, dynamical backaction cooling, an effect Braginsky predicted (V. B.
Braginsky and Vyatchanin, 2002) to occur for red-detuned laser excita-
tion, was demonstrated (Gigan et al., 2006; Arcizet et al., 2006; Schliesser,
Del’'Haye, et al., 2006). While the parametric instability was first analyzed
for a single electromagnetic mode coupled to a mechanical oscillator, the ef-
fect can also occur for multimode systems in which modes are spaced by the
mechanical frequencies (Kells and D’Ambrosio, 2002), a scenario in which
the parametric oscillator stability in advanced LIGO at the Livingston ob-
servatory (Evans et al., 2015) was observed.

Although undesirable in the context of LIGO, the ability to amplify and
cool mechanical motion using dynamical backaction is at the heart of the
advances in cavity opto- and electromechanics over the past decade (As-
pelmeyer, Kippenberg, and Marquardt, 2014) that have enabled mechanical
systems to be controlled at the quantum level. Dynamical backaction control
over mechanical oscillators has enabled the cooling of micro- and nanome-
chanical oscillators to unprecedentedly low entropy states (Verhagen et al.,
2012; Teufel, Donner, et al., 2011; Chan et al., 2011), and thereby opened
a path to study optomechanical quantum effects ranging from optomechan-
ical squeezing, mechanical squeezed states, sideband asymmetry, to entan-
glement of mechanical motion with microwaves (Safavi-Naeini, Groblacher,
et al., 2013; Purdy et al., 2013; Sudhir et al., 2017; Nielsen et al., 2017,
Wollman et al., 2015; Palomaki et al., 2013; Pirkkalainen, Damskagg, et al.,
2015; Lecocq, Clark, et al., 2015; Riedinger et al., 2016).

It is interesting to highlight the role of dissipation in dynamical backaction.
Indeed dissipation determines the resulting modification of the mechanical
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Figure 4.4: The role of dissipation in dynamical backaction. (a) An electro-
magnetic mode (with resonant frequency w. and energy dissipation rate k) is
coupled to a mechanical oscillator (with resonant frequency €2, and energy
dissipation rate I',,) through the optomechanical interaction, in which the for-
mer exerts radiation pressure force, while the latter modulates the resonant
frequency of the cavity. In standard optomechanical systems, the dissipa-
tion rates satisfy the hierarchy x > I',, and this interaction can be viewed
as a feedback mechanism acting on the mechanical oscillator. This modifies
the oscillator’s damping rate, in a process coined as “dynamical backaction”
by Braginsky. (b) In the scenario where the optical mode is coupled to a
mechanical oscillator whose dissipation rate dominates over that of the opti-
cal mode, the role of the modes is reversed. The mechanical mode provides
the feedback mechanism (dynamical backaction) for the optical mode, there-
fore modifying the microwave mode’s resonance frequency and damping rate.
Figure reproduced from T6th, Bernier, Feofanov, et al. (2018).
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and optical susceptibility due to the optomechanical interaction. In almost
all optomechanical systems ranging from gravitational wave observatories
to nano-optomechanical systems, the electromagnetic dissipation dominates
over the mechanical one, leading to the above mentioned optomechanical
phenomena. In contrast, if the mechanical oscillator is more dissipative than
the electromagnetic mode, the roles are reversed (Nunnenkamp et al., 2014).
In this situation!, the dynamical backaction that occurs for detuned laser ex-
citation causes a feedback force that is applied to the electromagnetic mode,
resulting in amplification or damping. This electromagnetic dynamical back-
action leads to a parametric oscillatory instability that corresponds to the
action of a maser (the stimulated emission of microwaves).

4.5.2 Modeling dynamical backaction

We start by reformulating Braginsky’s original derivation of dynamical back-
action (Braginski and A. B. Manukin, 1967; V. B. Braginsky, Strigin, and Vy-
atchanin, 2001) for the case of a blue-detuned pump, in a way that showcases
how the process is reversed in the case of an opposite dissipation hierarchy.
Consider an electromagnetic mode with frequency w. and energy dissipation
rate xk coupled, via the standard optomechanical coupling, to a mechanical
mode with resonant frequency €2, and energy dissipation rate I'y,,. While
Braginsky considered the limit €2, < k to derive the delayed feedback force
experienced by the mechanical oscillator due to the electromagnetic field,
we consider here the sideband-resolved regime, €, > x (Marquardt, J. P.
Chen, et al., 2007; Wilson-Rae et al., 2007; Schliesser, Riviere, et al., 2008),
relevant to our experiment. We consider the equations of motion parametri-
cally coupling the mechanical oscillator to the electromagnetic cavity. These
(for simplicity classical and linearized) equations can be written in a rotating
frame for the phasors of the two modes; in the case of a pump driving the
system on the upper motional sideband at a detuning A = €1, they are
given by the coupled-modes equations

a*(t) = —ga*(t) +igh(t) = —ga*(t) —iF,(t) (4.6)
b(t) = —Fme(t) _iga*(t) = —Fzmb(t) i), (47)

where b(t) = (VmQumaz(t) + iy/1/mQup(t))/V/2 describes the state of the
mechanical mode of mass m, a(t) is the phasor for the electromagnetic mode

Tt is still assumed that the mechanical dissipation occurs on a timescale that is long
compared to the mechanical oscillator period, or equivalently that the mechanical quality
factor still exceeds unity.
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and g = go|ap|? is the vacuum optomechanical coupling strength gy enhanced
by the field ag of the blue-detuned pump. In the rotating frame, the variables
describe the slowly changing amplitude and phase of the rapidly oscillating
field and oscillator, at w. and €2,. Each of the two harmonic oscillators
is subject to a “force” (denoted by F,(t) and Fy(t)) proportional to the
state of the other harmonic oscillator, establishing a feedback mechanism:
cavity intensity fluctuations create a radiation pressure force acting on the
mechanical oscillator, while mechanical displacement modulates the cavity
resonance frequency. The symmetry of the relationship is broken by the
different scales of the dissipation rates.

Braginsky originally considered the case where electromagnetic dissipa-
tion dominates (k > I'y,). This is natural in most systems as the quality
factors are commensurate for the electromagnetic and mechanical modes,
while there is a large (many orders of magnitude) separation of scales in
their respective frequencies. In this limit, the electromagnetic field envelope
almost instantly adapts to the mechanical displacement (a*(¢) ~ 0) and be-
comes proportional to it such that a*(t) = i(2g/k)b(t). The field then exerts
a force on the mechanical oscillator proportional to the state of the latter,
given by Fy(t) = —i(2¢%/k)b(t). Therefore, the interaction can be viewed as
a feedback loop. The factor —¢ represents a delay of a quarter period for the
feedback force acting on the mechanical oscillator. This delay means that
the force, acting in quadrature, increases the amplitude of the phasor, equiv-
alent to a decrease in mechanical damping or gain. If the pump detuning
A does not fall exactly on the sideband, the delay is not exactly ¢ and the
force has an in-phase component, modifying the frequency of the mechanical
oscillator (this effective change of the mechanical spring constant is called
the optical spring effect). The amplification process can be understood as
a positive feedback that measures the state of the mechanical oscillator and
returns it with a delay as a force: a dynamical backaction (see fig. 4.4a). For
sufficiently high coupling strength g, this leads to a parametric oscillatory
instability, that causes regenerative oscillations of the mechanical oscillator,
and thus limits the maximal circulating power for a gravitational wave de-
tector (V. B. Braginsky, Strigin, and Vyatchanin, 2001).

Here, we study the converse process, where the mechanical dissipation
rate dominates (I'y, > k). The envelope of mechanical oscillations nearly
instantly adjusts to the state of the electromagnetic field (b(t) ~ 0) and
is proportional to it such that b(t) = —i(2g/I'y)a*(t). The field is then
subject to an in-quadrature “force” proportional to its own state F,(t) =
i(|kpBal/2)a*(t) where kppa = —4g*/Ty, = —kC, introducing the multipho-
ton cooperativity C = 4¢*/(kI'y,). Similarly to above, the force has a delay
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+1 of a quarter period and increases the amplitude of electromagnetic oscil-
lations, compensating for damping by an amount given by kpga, such that
the effective energy decay rate of the cavity is Kk + kpga. A change in detun-
ing A would again slightly modify this delay and create components of the
in-phase force component, changing the speed of oscillations, and displac-
ing the resonance frequency of the cavity. This is equivalent to a feedback
loop for the electromagnetic mode (see fig. 4.4b), and implies that the me-
chanical oscillator is responsible for dynamical backaction on the microwave
cavity. As above, the positive feedback can lead to a parametric instability.
For kpga = —k, the anti-damping caused by this feedback exactly com-
pensates for the losses (both intrinsic and external) of the electromagnetic
mode, and the cavity develops self-sustained oscillations: it acts as a maser.
The intrinsic optomechanical nonlinearity sets the maximum amplitudes of
the oscillations (Nunnenkamp et al., 2014) and the dynamics is no longer
captured by the linearized eqs. (4.6) and (4.7).

4.6 Controllable microwave susceptibility

The engineered reservoir therefore supplies a way to tailor the susceptibility
of the primary electromagnetic mode, which we can directly probe using a
coherent response measurement.

We fix the detuning to either motional sideband of the primary mode
(A = FQ,,), and measure Si;(w) while the power is varied. For this choice
of detuning, we have dwo, = 0 (neglecting a term oc I'eg? /Q,,) and the change
in the microwave decay rate simplifies to

Rom = ic"f’ (48)

directly proportional to the cooperativity C = 4¢*/(kleg). Figure 4.5a, b
show the linear response for a tone on the lower and upper sideband for vari-
ous pump powers. The width of the resonance, corresponding to the effective
cavity decay rate, increases (for A = —Q,) or decreases (for A = +Q,,)
linearly with C. The depth of reflection on resonance |S;;(w.)|? varies sig-
nificantly to reflect this change (fig. 4.5¢). The effective internal loss of the
cavity ko + Kom can be tuned on demand by changing the coupling to the
dissipative reservoir via the pump tone. While the microwave cavity is ini-
tially undercoupled (kex < Ko), pumping on the upper sideband reduces the
effective internal loss and increases the depth on resonance until the cavity
becomes critically coupled (the effective internal loss matches the external
coupling, kg + Kom = Kex). Increasing the power further, the cavity becomes
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Figure 4.5: Dynamical backaction on the microwave mode using an engi-
neered mechanical reservoir. (a,b) Modification of the susceptibility of the
microwave cavity when a pump tone is placed on the lower and upper mo-
tional sideband of the primary mode, for various values of the multiphoton
cooperativities (C = 1 corresponds to a mean intracavity photon number of
ne &~ 5x10%). The slight frequency shift of the peak center is due to the finite
sideband resolution parameter of the auxiliary mode (Qy,/Kaux). (¢) Depth
of the resonance as a function of the effective internal losses kg + Kom, With
a pump tone on the lower (A = —,, red squares) and upper sideband
(A = +Qy,, blue circles), and a theoretical fit. (d,e) Using a fixed pump
power, the detuning A of the pump tone is swept and the change in the
microwave resonance frequency and decay rate is recorded. The theoretical
fit corresponds to eq. (4.3), showing good agreement with the experimental
data. Figure adapted from Téth, Bernier, Nunnenkamp, et al. (2017).
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overcoupled (Ko + Kom < Kex) and resonant reflection increases again. When
Ko + Kom becomes negative, there is a net internal gain: the absorptive fea-
ture in the cavity reflection becomes a peak, indicating amplification of the
reflected microwave signal. By pumping on the lower sideband (A = —£,,),
extra damping is introduced and the resonance becomes increasingly under-
coupled. The mechanical mode provides a dissipative bath for the microwave
resonator, down-converting the cavity photons to the pump. In fig. 4.5¢ we
plot the resonant reflection and observe good agreement with the expected
dependence according to eq. (4.5). For the data corresponding to the pump
tuned to the lower motional sideband (A = —(2,,), the depth of the resonance
is systematically lower than expected, due to a decrease in the intrinsic mi-
crowave cavity loss in the presence of a strong pump (Megrant et al., 2012).

In fig. 4.5d, e, we keep the pump power constant and sweep the detuning
A to measure the change in the microwave resonance frequency and damping
rate. For the frequency shift dw,y,, intrinsic non-linearities redshift the reso-
nance frequency in an asymmetric fashion, providing a different background
for the red and blue sidebands. The effect agrees well with the prediction
from eq. (4.3) when the two sidebands are fitted independently with different
constant offsets. We note that the modification of the resonance frequency as
a function of detuning has the opposite parity compared to the better known
case of the optical spring effect (Aspelmeyer, Kippenberg, and Marquardt,
2014).

4.7 Maser action and amplification

In the following, we demonstrate the cold nature of the dissipative mechanical
reservoir by studying the noise properties of the system. To this end, we fix
the microwave drive to the upper sideband (A = 4€,,) and study the regime
where the pump introduces net gain in the microwave cavity (kg + Kom < 0).
We use a different device, HYB-20160524-1-12, for this analysis with opti-
mized properties: higher coupling strengths of gy = 27 x (106,79) Hz re-
spectively for the primary and auxiliary modes, and an overcoupled primary
mode (Kex/k = 0.76). In fig. 4.6a, the emitted noise spectra of the microwave
cavity are shown for different pump powers. The measured power spectrum
is rescaled to the symmetrized cavity output field spectrum (Clerk et al.,
2010) S,q(w) in units of photons per second per unit bandwidth (see def-
inition in section 2.2.2), using the noise temperature of the HEMT as an
absolute noise reference (see section 3.4.2). To confirm the calibration, we
use the mechanical sideband spectrum obtained from the measurement of
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Figure 4.6: Amplified vacuum fluctuations and parametric instability of the
microwave mode (masing). (a) Noise spectrum of the cavity emission as a
function of the power of a pump on the upper motional sideband. The spec-
trum is measured in quanta using the HEMT amplifier for calibration. Above
a certain threshold power P, the microwave mode undergoes self-sustained
oscillations, characteristic of a maser. The vertical axis is normalized by the
pump power at the instability threshold P, equivalent to the cooperativity
C = P/P,, below threshold. (b) Two examples of emission from the mi-
crowave mode at the input of the HEMT, below and above threshold (line
cuts of (a)), as well as a reference measurement of the background without
the pump (dark blue). The inset shows the emission linewidth narrowing
below threshold. In this regime, noise emission is composed of amplified vac-
uum and thermal fluctuations, described by eq. (4.9). Figure adapted from
T6th, Bernier, Nunnenkamp, et al. (2017).
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go (see section 3.5.2) to locally compare the known sideband power to the
background noise that corresponds to the HEMT added noise. This provides
an independent calibration of the HEMT noise, which in this case was found
to agree within 1.4 dB.

As the blue-detuned pump compensates for the losses, the width of the
emitted noise spectrum, corresponding to the cavity linewidth ke = (1—C)k,
decreases linearly with the pump power towards zero (at unity cooperativity
C = 1), as shown in the inset of fig. 4.6b. In this below-threshold regime,
the peak photon flux spectral density emitted from the cavity increases with
power, as the vacuum noise and the residual thermal microwave noise (con-
sisting in both a finite residual occupancy 7, of the dissipative mechanical
reservoir and a finite thermal microwave occupancy of the cavity fic,,) are
amplified according to

Sunlw) = n (Kex — Keft)s 4+ Ch(Tun + ) + Ko(Tlcay + 3)
aa ex (H;ff )2 + (w _ WC)Q

(4.9)

where the thermal input noise is neglected and only the amplified noise is
considered. We analyze the noise properties of the device in detail below
when considering amplification and added noise. We find the residual thermal
occupancy of the dissipative reservoir to be n, = 0.66, when neglecting n¢ay .
Equation (4.9) then implies that 60% of the emitted noise from the cavity is
amplified vacuum fluctuations, when C — 1.

For C = 1 and greater pump powers, the microwave mode undergoes
self-sustained oscillations. This regime leads to a parametric instability and
stimulated emission of microwave photons into the microwave cavity, analog
a maser. The salient features of the instability are a transition from sub-
to above-threshold masing, as well as linewidth narrowing. These observa-
tions are analogues to the radiation-pressure-induced parametric instability
of a mechanical mode in the normal optomechanical regime (k> I'},,) (Kip-
penberg, Rokhsari, et al., 2005; Marquardt, Harris, and Girvin, 2006; V.
Braginsky and A. Manukin, 1977; Grudinin et al., 2010). In the experi-
ments a clear threshold behavior, characteristic of masing, is demonstrated
when the emitted noise abruptly increases in strength at C = 1 (fig. 4.6b).
Such masing in superconducting circuits has previously been demonstrated
using a single artificial atom (Astafiev et al., 2007). Due to the large photon
population generated by masing, nonlinearities of the cavities red-shift the
frequency of emission. This clearly distinguishes masing from the mechanical
parametric instability (also called phonon lasing) (Grudinin et al., 2010) in
the normal optomechanical regime. In the latter case, the emission does not
follow the cavity but has a constant detuning of —{),, with respect to the
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Figure 4.7: Interaction between modes of positive and negative energy as
population inversion. In the rotating frame, the microwave and mechanical
modes have a negative and a positive energy, and their energy levels can
be represented on two inverted parabolas. Through the interaction, the two
modes can exchange an excitation that moves the state up the energy ladder
on the left and down the energy ladder on the right. This process can be
repeated infinitely, leading to amplification and the masing instability.

pump.

In a usual maser, the microwave mode is amplified by interacting with a
two-level system in a state of population inversion. The amplification mecha-
nism here can be interpreted similarly. When a blue-detuned drive is applied
to the system, the microwave mode has a negative energy in the rotating
frame, where the Hamiltonian is time-independent (see eq. (2.22)). The two
modes can be represented as in fig. 4.7 with energy levels in two parabolas,
inverted with respect to each other. The first mode can always gain energy
by exchanging an excitation with the second mode, which can always be low-
ered in energy. The two ladders of energy levels, one of them can be infinitely
climbed up and the other down, lead to amplification of the oscillations in
the modes and eventually to the masing instability. The downward parabola
is an analog of the inverted population of a two-level system. In the latter,
the energy can always be lowered by swapping excitations with the maser
mode, since the system is instantly pumped back to the state of population
inversion.

Below the masing threshold, the microwave mode coupled to the dissi-
pative bath acts as a phase-insensitive parametric amplifier (Caves, 1982;
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Nunnenkamp et al., 2014) for incoming signals. For kg + kom < 0, there is
a net internal gain and the susceptibility Si;(w) develops a peak, such that
reflection is larger than input for signals within the resonance bandwidth
(in-band). The power gain of the amplifier is defined as the resonance peak
height above the background, given by

(25 — 1) + ¢’

G(we) = |S11(we)|* = 1-_¢C

(4.10)

The bandwidth of the amplifier is the linewidth of the microwave resonance,
given by keg = (1 — C)k. In order to measure the gain, bandwidth and
noise properties of the amplifier, we inject, in addition to the pump tone
on the upper sideband (A = +€,,), a weak signal tone (swept in frequency
around the cavity resonance) and measure the reflected signal as a function
of the pump tone power. With increasing pump power, a narrowing of the
cavity bandwidth (fig. 4.8a) is observed, as well as an increase in the power
of the reflected signal (i.e. gain). By fitting the reflected power, the gain
and bandwidth as a function of cooperativity are extracted, and found to
be in good agreement with the theoretical predictions given by eq. (4.10)
(fig. 4.8b). The observed gain exceeds 42 dB.

4.8 Near-quantum-limited amplification

Next, we study the added noise of the dissipative amplification process. The
added noise N, referred to the input of the amplifier, is given by the noise
output of eq. (4.9) subtracting the input noise and dividing by the gain G(w.).
On resonance, it is found to be

AC (Kex/K) (T + %) + 4(Kexko/K?) (Meay + %)

N(we) = €11 2 : (4.11)

which, in the high gain limit (C — 1), simplifies to N (w.) = (ko/Kex)(Tcay +
) 4 (K/Kex) (7t + ). This quantity can be measured by recording the im-
provement of the signal-to-noise ratio (SNR) of amplification in and out of the
bandwidth of our device. This directly compares the noise performance of our
device with the commercial HEMT amplifier, which is used as a calibrated
noise source (the noise temperature of the HEMT is measured separately at
we and found to be 3.95 4 0.02 K, corresponding to Ngpymr = 20.0 £ 0.1
quanta (see section 3.4.2). In fig. 4.8¢, the gain of the device is compared to

the noise output of the chain, normalized to the HEMT noise background.
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Figure 4.8: Near-quantum-limited phase-preserving amplification. (a) Linear
response of the cavity, with increasing powers of the pump on the upper
sideband from red to blue. (b) Power gain (triangles) and bandwidth (circles)
of the amplifier extracted from a fit of the linear response, as a function of
the cooperativity of the pump on the upper sideband. The colored points
correspond to the curves in (a). (c¢) Relative gain and noise of the amplifier,
sharing the same baseline. The difference from noise to gain corresponds
to over 12 dB of apparent signal-to-noise ratio improvement of our device
over the HEMT, from which the insertion loss between the HEMT and the
device (measured separately to be 1.6 dB) must be subtracted to infer the
real improvement. (d) Added noise of the amplification referred to the input,
expressed in quanta. The total added noise in the high-gain limit amounts
to 1.68 4 0.02 quanta. This is only 0.87 quanta above the device quantum
limit npqr, defined in eq. (4.12). Figure reproduced from Téth, Bernier,
Nunnenkamp, et al. (2017).
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This calibration is corroborated by a second, independent calibration tech-
nique, which uses the scattered power in the motional sideband in conjunction
with the knowledge of the intracavity photon number and go. The relative
gain of the signal exceeds the relative noise by over 12 dB. From this apparent
SNR improvement, one must subtract the insertion loss of the components
between the device and the HEMT, measured independently at 77 K to be
1.6 dB. (cf. section 3.4.2). The analysis reveals therefore that the optome-
chanical amplifier provides more than 10 dB of improvement over the SNR
of the HEMT.

The inferred added noise on resonance is shown as a function of gain in
fig. 4.8d. In the high-gain limit, it is a constant value of N(w.) = 1.68 +
0.02 quanta per second per unit bandwidth (with the uncertainty given by
statistical fluctuations). Using eq. (4.11) and assuming fic,, = 0, the effective
occupancy of the dissipative reservoir is found to be n,, = 0.66. However, the
strong cooling pump increases the temperature of the cavity thermal bath
to an occupancy e, = 1.03, obtained by measuring the emitted thermal
noise of the microwave cavity. Taking the residual cavity thermal noise into
account, the estimate for the mechanical occupancy is reduced to n,, = 0.41.
This demonstrates that the dissipative mechanical reservoir constitutes a
quantum resource.

The calibration of the added noise of the amplifier provides a convenient
way to measure the occupancy of the cooled mechanical oscillator. The
near-quantum limited fluctuations of the mechanical motion are amplified
by a large gain and can be measured with a large SNR (see fig. 4.8¢). Only
the regime considered, with the mechanical oscillator serving as a reservoir
for the microwave cavity, with a much larger dissipation allows this. In a
sense, the amplification is not sufficient to compensate the large cooling rate
of the mechanical oscillator provided by the auxiliary cavity, such that the
cooled mechanical fluctuations are amplified without heating the oscillator.

We note that even in the case when all the thermal noise sources are
reduced to zero (neg = neay = 0), the added noise of the amplifier is

1 Ko

= — 4.12
NpQL 5 + P ( )

which we call the device quantum limit and deviates from 1/2 due to the
finite internal dissipation rate kq. For the present system the device quantum
limit amounts to 0.81 quanta for the coupling ratio of ke/k = 0.76, which
is only 0.87 quanta below the added noise we measure. It is interesting to
compare the present amplifier scheme, relying on a dissipative reservoir, to
the microwave parametric amplifiers used in circuit QED. In the latter case,
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typically both idler and signal are resonant with one or more microwave
cavities (Bergeal et al., 2010; Eichler et al., 2014; Castellanos-Beltran, Irwin,
et al., 2008). As the gain increases, this leads to a simultaneous increase in
both the signal and idler mode population. In contrast, while the present
amplifier scheme uses a parametric interaction as well, the large dissipation
rate for the (mechanical) idler mode only leads to the generation of a signal
photon (microwave field), suppressing the idler; the situation is akin to a
Raman-type interaction found in nonlinear optics (Bloembergen, 1996).

4.9 Injection locking of the maser tone

We now demonstrate the locking of our maser with a weak injected tone.
This is performed on the same sample HYB-20160524-1-12, as before, that
was kept at the elevated temperature of 200 mK to increase the mechanical
stability. The sample parameters have shifted slightly and it has resonance
frequencies w, = 27 x 4.08 GHz and w,,« = 27 x 5.19 GHz, and a mechanical
resonance frequency 2, = 27 x 6.5 MHz.

Injection locking is a synchronization phenomenon for lasers and ma-
sers (Siegman, 1986), and has been demonstrated in many systems, including
recently in a trapped-ion phonon laser (Kniinz et al., 2010), a quantum cas-
cade laser (St-Jean et al., 2014), a quantum-dots maser (Liu et al., 2015)
as well as an AC Josephson junction maser (Cassidy et al., 2017). A weak
tone of frequency wiyj close to the maser emission frequency wpas competes
for gain with it in a way that effectively couples the two oscillations and per-
mits synchronization. The phenomenon is generally described by the Adler
equation (Adler, 1946)

d 1
d_gtb -+ (winj — wmas) = —§Awinj sin <¢) (413)
which models the dynamics of the relative phase ¢ of the two oscillations. If

the injected tone falls within a locking range of width

AWinj = 2Kex \/ aPinj/Pmas (414)

centered around the masing frequency wp,.s, the two tones lock and the phase
difference ¢ becomes constant. This range depends on the ratio between the
injected tone power P, attenuated by factor o at the input of the cavity,
and the maser emission power P,.. Outside this range, the Adler equa-
tion predicts that the maser frequency is pulled towards the injected tone
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Figure 4.9: Injection locking of a maser based on dynamical backaction
(a) Output spectrum of the maser, as the power P,; of an injected tone
detuned 5 kHz to the red is increased. The power is measured at the output
of the corresponding microwave source. Above a threshold power of about
-30 dBm, the maser locks to the tone, considerably suppressing the noise and
eliminating the frequency jitter present in the free-running case. The intrin-
sic nonlinearity results in distortion sidebands from the two tones beating
below threshold. (b) Spectra corresponding to cuts of A along the dashed
lines, below and above the locking threshold. (c¢) Output spectrum of the
maser as the frequency wi,; of a weak tone of constant power P,; = —40
dBm is swept across the free-running maser frequency wpa.s. The locking
range Awiyj, wherein the two oscillations are frequency locked, is highlighted.
(d) The locking range Awy,; as a function of the injected tone power P;. A
fit on the logarithmic scale gives a slope of 0.51, confirming the expected
scaling Awipj o \/?ru . The inset depicts the actual limiting points of the
locking range as a function of tone power F,,;, illustrating the Arnold tongue
of the system. Figure adapted from Téth, Bernier, Feofanov, et al. (2018).
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and that distortion sidebands appear due to beating of the two tones and
the intrinsic nonlinearity (Adler, 1946). We first study this phenomenon by
placing the injected tone 5 kHz away from the maser and monitoring the out-
put spectrum while the injected power P,; is varied (fig. 4.9a). The maser
emission is pulled towards the injected tone and finally locks at an injected
power threshold corresponding to about -30 dBm. As the two tones become
comparable in strength, distortion sidebands from the beating increase in am-
plitude. In the locked region, the noise surrounding the peak is considerably
suppressed compared to the free-running case and the frequency jitter (orig-
inating from frequency instability of the cavity and the mechanical mode)
is eliminated (fig. 4.9b). We proceed to measure the locking range Awiy;,
by fixing the injected power P,; and sweeping its frequency wi,; across the
maser frequency (fig. 4.9c). When the frequency difference is below Awyy;, the
two tones lock. The noise around the peak is suppressed and the frequency
jitter of the maser ceases. Repeating the measurement at different injected
powers Py, the locking range is shown to obey the expected scaling law
Awinj < v/ Py (fig. 4.9d). Finally, the limit points of locking are shown in an
inset as a function of power, drawing the so-called Arnold tongue (Pikovsky,
Rosenblum, and Kurths, 2003). The asymmetric shape is due to drift of the
masing frequency wy,s during the measurement, which does not affect the
locking range Awiy;.

4.10 Conclusions

In summary, we have implemented and studied a new regime of circuit elec-
tromechanics by coupling an electromagnetic cavity mode to an engineered
cold dissipative reservoir formed by a mechanical oscillator. The usual roles
of the two modes are reversed, allowing for dynamical backaction on the mi-
crowave mode using the mechanical reservoir. We demonstrate the control of
the internal losses of the cavity in the form of backaction-induced amplifica-
tion, damping, and masing of the microwave field. By performing microwave
amplification close to the quantum limit, we show that the mechanical reser-
voir functions as a useful quantum resource.

The near-quantum-limited amplification with a mechanical reservoir ex-
tends the available quantum information manipulation toolkit, adding to the
existing devices based on Josephson junctions (Bergeal et al., 2010; Eich-
ler et al., 2014; Castellanos-Beltran, Irwin, et al., 2008; Sliwa et al., 2015).
While the present amplifier is not frequency-tunable, recent advances in cir-
cuit electromechanics have demonstrated such functionality (Andrews, Reed,
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et al., 2015). The observed reservoir-mediated microwave damping may al-
low to remove residual thermal occupancy from the microwave cavity, akin to
cooling schemes developed in circuit QED (Grajcar et al., 2008). Moreover,
the control over internal dissipation enables all-electromechanical tuning of
the coupling of the microwave resonator to the feedline, offering the potential
for an electromechanical reconfigurable network (Kerckhoff, Andrews, et al.,
2013). While the present scheme employs a single pump tone, dual tone
pumping would lead to the preparation of squeezed states of the microwave
cavity (Kronwald, Marquardt, and Clerk, 2014). Viewed more broadly, the
realization of a cold mechanical reservoir for microwave light provides a cen-
tral ingredient for novel electromechanical devices. Indeed, the circuit can be
extended to multiple microwave resonators coupled to a shared mechanical
reservoir and implement the dissipative cavity-cavity interactions that are at
the heart of recent schemes to entangle microwave photons (Wang and Clerk,
2013) and, combined with coherent interactions, to perform nonreciprocal
microwave transmission (Metelmann and Clerk, 2015). Such nonreciprocal
devices can be of use for the rapidly expanding field of circuit QED (Wallraff
et al., 2004; Devoret and Schoelkopf, 2013).



Chapter 5

Nonreciprocity in microwave op-
tomechanical circuits

We describe here a scheme to perform nonreciprocal frequency conversion
with a multimode microwave optomechanical circuit. This chapter is adapted
from the text of two previous publications (Bernier, Téth, Koottandavida,
et al., 2017; Bernier, Té6th, Feofanov, et al., 2018b). In section 5.1, we intro-
duce nonreciprocity in the context of cavity optomechanics. In section 5.2,
we develop an intuitive picture of how to achieve nonreciprocal transmission,
using the gyrator as a conceptual starting block. In section 5.3, we present
the scheme to implement an isolator using a multimode optomechanical mi-
crowave circuit. In section 5.4, our experimental results are detailed. In
section 5.5, the optomechanical circulator is introduced as a possible exten-
sion of this working, necessitating an additional microwave cavity. Finally,
in section 5.6, we conclude and give an outlook for optomechanical nonre-
ciprocity.

5.1 Introduction

Nonreciprocal devices, such as isolators, circulators, and directional ampli-
fiers, exhibit altered transmission characteristics if the input and output
channels are interchanged. They are essential to several applications in sig-
nal processing and communication, as they protect devices from interfering
signals (Pozar, 2011). At the heart of any such device lies an element break-
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ing Lorentz reciprocal symmetry for electromagnetic sources (Feynman, 1988;
Jalas et al., 2013). Such elements have included ferrite materials (Auld, 1959;
Milano, Saunders, and Davis, 1960; Fay and Comstock, 1965), magneto-
optical materials (Aplet and Carson, 1964; Shirasaki and Asama, 1982; Sato
et al., 1999; Bi et al., 2011), optical nonlinearities (Manipatruni, Robinson,
and Lipson, 2009; L. Fan et al., 2012; Guo et al., 2016), temporal modu-
lation (Anderson and Newcomb, 1965; Z. Yu and S. Fan, 2009; Lira et al.,
2012; Kang, Butsch, and Russell, 2011; Estep et al., 2014; Peng, Ozdemir,
Lei, et al., 2014), chiral atomic states (Scheucher et al., 2016), and physical
rotation (Fleury et al., 2014).

Typically, a commercial nonreciprocal microwave apparatus exploits fer-
rite materials and magnetic fields, which leads to a propagation-direction-
dependent phase shift for different field polarizations. A significant draw-
back of such devices is that they are ill-suited for sensitive superconducting
circuits, since their strong magnetic fields are disruptive and require heavy
shielding. In recent years, the major advances in quantum superconducting
circuits (Devoret and Schoelkopf, 2013), that require isolation from noise
emanating from readout electronics, have led to a significant interest in non-
reciprocal devices operating at the microwave frequencies that dispense with
magnetic fields and can be integrated on-chip.

As an alternative to ferrite-based nonreciprocal technologies, several ap-
proaches have been pursued towards nonreciprocal microwave chip-scale de-
vices. Firstly, the modulation in time of the parametric couplings between
modes of a network can simulate rotation about an axis, creating an artificial
magnetic field (Anderson and Newcomb, 1965; Estep et al., 2014; Kerckhoff,
Lalumiere, et al., 2015; Ranzani and Aumentado, 2014) rendering the system
nonreciprocal with respect to the ports. Secondly, phase matching of a para-
metric interaction can lead to nonreciprocity, since the signal only interacts
with the pump when copropagating with it and not in the opposite direc-
tion. This causes travelling-wave amplification to be directional (Ranzani
and Aumentado, 2014; White et al., 2015; Macklin et al., 2015; Hua et al.,
2016).

Phase-matching-induced nonreciprocity can also occur in optomechanical
systems (Aspelmeyer, Kippenberg, and Marquardt, 2014; Bowen and G. J.
Milburn, 2015), where parity considerations for the interacting spatial modes
apply (Hafezi and Rabl, 2012; Shen et al., 2016; Ruesink et al., 2016). Fi-
nally, interference in parametrically coupled multi-mode systems can be used.
In these systems nonreciprocity arises due to interference between multiple
coupling pathways along with dissipation in ancillary modes (Ranzani and
Aumentado, 2015). Dissipation is a key resource there to break reciprocity, as
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it forms a flow of energy always leaving the system, even as input and output
are interchanged. It has therefore been viewed as a kind of reservoir engi-
neering (Metelmann and Clerk, 2015). Following this approach, nonreciproc-
ity has recently been demonstrated in Josephson-junctions-based microwave
circuits (Sliwa et al., 2015; Lecocq, Ranzani, et al., 2017) and in a photonic-
crystal-based optomechanical circuit (Fang, Luo, et al., 2017). These re-
alisations and theoretical proposals to achieve nonreciprocity in multi-mode
systems rely on a direct, coherent coupling between the electromagnetic input
and output modes.

5.2 Gyrators and nonreciprocity

Here we explain the origin of nonreciprocity in optomechanical systems by
using the gyrator-based isolator as a conceptual starting point.

5.2.1 The gyrator-based isolator

Any linear quadrature-preserving two-port device can be described by its
scattering matrix S, linking the incoming modes a@;;, to the outgoing modes

di,out by
CAll out Sll 512 CAll in Nl
) = ) + A s 5 1
(aZ,out) (521 522) (G/Q,in) (NQ) (5.1)
where N; represent added noise from the device. A starting definition for non-

reciprocity is that a device is nonreciprocal when Sy; # S12. This corresponds
to a change in scattering when input and output modes are interchanged.

In order to develop an intuitive picture for nonreciprocity, we introduce the
gyrator as a canonical nonreciprocal element. The gyrator is a 2-port device
which provides a nonreciprocal phase shift (Pozar, 2011), as illustrated in
fig. 4.1a. In one direction, it imparts a phase shift of 7, while in the other
direction it leaves the signal unchanged. The scattering matrix of a lossless,
matched gyrator is given by Sgyr = (% §). Recently, new implementations of
microwave gyrators relying on the non-commutativity of frequency and time
translations (Rosenthal et al., 2017) have been demonstrated with Josephson
junctions (Abdo, Brink, and Chow, 2017; Chapman et al., 2017). The gyrator
is in itself is not commonly used in technological applications, but rather as
a fundamental nonreciprocal building block to construct other nonreciprocal
devices.
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Figure 5.1: Gyrator and optomechanical coupling. (a) The gyrator is a
canonical nonreciprocal component. It is a two-port device, which adds a
7 phase shift when a wave is traveling one way but no phase shift in the
reverse direction. (b) A simple multimode optomechanical system consists of
two electromagnetic modes coupled to the same mechanical oscillator. Due to
the two microwave drive tones which linearize the optomechanical coupling,
the conversion from a; to as formally imparts a nonreciprocal phase shift,
similarly to the gyrator. In the case of frequency conversion, this phase shift
between tones at different frequencies is not measureable, as it depends on
the reference frame. Figure reproduced from Bernier, Téth, Feofanov, et al.
(2018b).

An isolator is a useful nonreciprocal device that can be assembled from
a gyrator and additional reciprocal elements (Pozar, 2011), as illustrated in
fig. 5.2a. A beam splitter divides a signal in two; one part goes through a
gyrator while the other propagates with no phase shift. Recombining the
signals with a second beam splitter results in a 4-port device that interferes
the signal nonreciprocally. For a signal injected in port 1, the recombined
signal after the second beam splitter interferes destructively in port 4, but
constructively in port 2. In contrast, a signal injected from port 2, reaches
port 3 instead of port 1, since one arm of the signal is in this case subjected
to a 7 shift. Overall, the device is a four-port circulator that redirects each
port to the next. To obtain a two-port isolator, two of the four ports are
terminated by matched loads to absorb the unwanted signal. The scattering

matrix for the remaining two ports is that of an ideal isolator, Sis = ().

The gyrator-based scheme helps to summarize three sufficient ingredients
to realize an isolator. Firstly, an element breaks reciprocity by inducing a
nonreciprocal phase shift. Secondly, an additional path is introduced for
signals to interfere such that the scattering matrix becomes asymmetric in
the amplitude with |Sg| # |Si2|. Finally, dissipation is required for an
isolator, since its scattering matrix between the two ports is non-unitary
and some signals must necessarily be redirected to an external degree of
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freedom. The gyrator-based isolator provides a framework to understand
how nonreciprocity arises in microwave optomechanical implementations.

5.2.2 Nonreciprocity in optomechanical systems

Microwave optomechanical schemes for nonreciprocity rely on scattering be-
tween coupled modes (Ranzani and Aumentado, 2014; Ranzani and Aumen-
tado, 2015). As a first step towards optomechanical isolators, we introduce
optomechanical frequency conversion (Lecocq, Clark, et al., 2016) and how
it relates to the gyrator.

The simplest optomechanical scheme to couple two electromagnetic modes
a1 and dy is that both interact through a mechanical oscillator b (fig. 4.1b).
The optomechanical coupling terms figy; ala; (b + bt) (i = 1,2), where gy ; is
the vacuum coupling rate of a; and 13, can be linearized using two applied
tones, detuned by A; with respect to each cavity resonance (Aspelmeyer,
Kippenberg, and Marquardt, 2014). In a frame rotating at the pump fre-
quencies, keeping only the linear terms and taking the rotating-wave approx-
imation, the effective Hamiltonian becomes (Aspelmeyer, Kippenberg, and
Marquardt, 2014)

H = —hAalay — hAsalas + hQmbTh
+ higy (ewlaliﬁ + e—i%{z}) + Tigs (e"%ziﬁ v e—i@a;z}) . (5.2)

where (2, is the mechanical frequency, g; = go i/ is the coupling rate en-
hanced by the photon number n.; due to the pump field, and ¢; is the phase
of each pump field. For the resonant case A; = Ay = —€,,, the frequency
conversion between the two modes through mechanical motion is charac-
terized by the scattering matrix elements (in the middle of the conversion
frequency window) (Safavi-Naeini and Painter, 2011)

24/C1Cy

Gy — V12
T4 C +6

e1792) and Sy = S, (5.3)

where k; is the energy decay rate of mode a;, and C; = 4¢?/(k;I'wm) is the
cooperativity with [}, the energy decay rate of the mechanical oscillator (for
simplicity, the cavities are assumed to be overcoupled).

While eq. (5.3) apparently fulfills the condition Sg; # Si2 for nonreciproc-
ity, the situation is more subtle when the two modes are at different frequen-
cies in the laboratory frame. The time-dependence for the two modes can
be written explicitly to understand where the issue lies. The first incoming
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Figure 5.2: Gyrator-cased isolator compared to optomechanical multimode
schemes. (a) An isolator can be built by combining the gyrator with other
reciprocal elements. By combining the gyrator with two beam splitters and a
transmission line, a four-port circulator is realized. Dissipation (provided by
line terminations) eliminates the unwanted ports. (b) Three-mode optome-
chanical isolator in which two electromagnetic modes have a direct coher-
ent J-coupling, and interact through a shared mechanical mode. (c) Four-
mode optomechanical isolator, in which two electromagnetic modes interact
through to different mechanical modes. (d) In the scheme (b), frequency
conversion through the J coupling (light blue) and through the mechanical
modes (green) interfere differently in the forward and backward direction
when combined. (e) In the scheme (c), the frequency conversion through
each mechanical mode (green curves) are offset in frequency to interfere in
a nonreciprocal manner. Figure reproduced from Bernier, T6th, Feofanov,
et al. (2018b).
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mode Gy i, (t) = e A} converts to dgou(t) = Sare 2" A; and reciprocally
the other mode ag;,(t) = e7™2' Ay converts to Gy ou;(t) = Si2e ™' Ay, where
w; are the mode angular frequencies and A; are constant amplitudes. If a
new origin of time ¢ is chosen, the fields transform as a}(t) = e ™“i"0a,(t),
equivalent to a frequency-dependent phase shift for each mode. In this new
reference frame, the scattering matrix transforms as S, = Sy e~ “2~“1% and

1o = Sppetilz=wnto  For different frequencies w; # ws, there always exists a
to for which the phases of S5, and S}, are the same. A nonreciprocal phase
shift is therefore unphysical for frequency conversion, as the phase depends on
the chosen reference frame. For this reason, Ranzani and Aumentado (Ran-
zani and Aumentado, 2015) pose the stricter requirement |Sis| # |Sa1| for
nonreciprocity in coupled-modes systems. The pump tones that linearize the
optomechanical coupling break reciprocity, as they are held fixed when input
and output are interchanged and impose a fixed phase ¢; — ¢o for the cou-
pling. Nevertheless, there is always a frame with a different origin of time in
which the two pumps have the same phase and ¢} — ¢, = 0. In that frame,
the symmetry between the two ports is apparently restored.

While a frame change to a new origin of time turns a phase-nonreciprocal
system reciprocal for coupled-mode systems, it simultaneously turns recip-
rocal systems phase-nonreciprocal. With (wy — wi)ty = 7/2, the gyra-
tor scattering matrix transforms from Sy, = (% §) to S, = e™/2(1)
while the transmission line scattering matrix transforms from Sy = (9}) to

= e™2( O 1), In effect, gyrators and transmission lines are mapped to
each other. Importantly, the combination of a gyrator and a transmission line
is preserved. The isolator of fig. 5.2a is built precisely like this, combining a
gyrator and a transmission line. The frequency-converting equivalent is an
isolator regardless of the chosen time frame. Note that the frame-dependent
nonreciprocal phase resembles the gauge symmetry of electromagnetism that
can realize the Aharonov-Bohm effect when a loop is created (Fang, Z. Yu,
and S. Fan, 2012; Fang, Z. Yu, and S. Fan, 2013; Tzuang et al., 2014). To
build an optomechanical isolator, one method is therefore to realize two paths
between a; and as, one similar to a gyrator and the other to a transmission

line, which can be done following one of two proposed schemes.

The first scheme, shown in fig. 4.3b, combines an optomechanical link
between two electromagnetic modes a; and a, and a direct coherent cou-
pling of strength J. The interaction term of the latter, given by H.,, =
hJ (ewdld; + e’wdicb) induces by itself conversion between the two modes as

2V CO. -1 2\/ CO. - —
ﬁzew and Sy = Aze i

Sy =
o 1 + Ccoh 1 + Ccoh

(5.4)
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where Ceop = 4J2/(k1k2). Compared to eq. (5.3), there is an intrinsic recip-
rocal phase shift of i = ¢”™/2. By choosing the phases ¢; = ¢y and 0 = 7/2,
the optomechanical link realizes a reciprocal transmission line while the co-
herent link breaks the symmetry and realizes a gyrator. The combination,
with matching coupling rates, functions as an isolator between the modes a,
and as. One cannot tell which of the optomechanical or direct link breaks
reciprocity, as it depends on the chosen frame. Nonetheless, there is a frame-
invariant phase ¢ = ¢; — ¢ + 6 that globally characterizes the broken sym-
metry and can be seen as a synthetic magnetic flux(Peano, Brendel, et al.,
2015; Fang, Luo, et al., 2017).

The second scheme to realize isolation, shown in fig. 4.3¢, uses two op-
tomechanical conversion links with two different mechanical modes. From
eq. (5.3), one cannot realize the scattering matrices of a gyrator and a trans-
mission line with the same reciprocal phase factor. Dissipation of the mechan-
ical modes is the key to tune the overall reciprocal phase factor of conversion.
By detuning the two mechanical modes in frequency, the mechanical suscep-
tibilities induce different phases. Advantageously over the first scheme, no
direct coherent coupling must be engineered and the modes a; and as do not
need to have the same frequency.

The first scheme (fig. 4.3b) derives from a proposal by Metelmann and
Clerk (Metelmann and Clerk, 2015), who describe the optomechanical link as
an effective dissipative interaction between the modes a; and a. It is equiv-
alent to a non-Hermitian Hamiltonian term Hay = —ihDgs (€992 a,a) +
e*i(m*‘z’?)di&g) with Tgis = 2¢192/Tm. With suitable parameters, the total
interaction H.,, + Hgis can be made unidirectional, with for instance a term
proportional to &1&2 but not &1&; We note that while resonant modes are
considered here, parametric interactions can implement a direct coherent J-
coupling even between modes at different frequencies. The second scheme
(fig. 4.3c) can be understood in the same framework, as each detuned me-
chanical conversion link is equivalent to an effective interaction between the
modes a; and a, with both a coherent and a dissipative component. The
total effective interaction can be made unidirectional when the total direct
coherent component matches the total dissipative component and they in-
terfere.

Both methods to achieve nonreciprocal isolation can be decomposed in
terms of the three ingredients identified in the gyrator-based isolator. At the
heart is the breaking of reciprocity that occurs through the time-dependent
drives applied to the system that impart a complex phase to the interac-
tion. Then a loop constituted by two arms allow the unwanted signal to
be canceled in the backward direction through destructive interference while
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preserving it in the forward direction. The mechanical dissipative baths are
used to eliminate the backward signal. As a consequence, the nonreciprocal
bandwidth (where Sy; and Sj, differ) is limited by the mechanical dissipation
rates, as illustrated in fig. 4.3d and e. Dissipation plays a double role here,
since it also gives the different reciprocal phase shift in each arms necessary
to implement both a gyrator and a transmission line.

In the following, we present an experimental implementation of the second
method described above, using a multimode microwave optomechanical cir-
cuit. In parallel to our work, similar systems were realized elsewhere (G. A.
Peterson et al., 2017; Barzanjeh et al., 2017). The first method was real-
ized in the optical domain(Fang, Luo, et al., 2017) using two mechanical
oscillators coherently coupled to implement the optomechanical pathway.

5.3 Optomechanical isolator

We describe here a scheme to attain reconfigurable nonreciprocal transmis-
sion without a need for any direct coherent coupling between input and
output modes, using purely optomechanical interactions (Aspelmeyer, Kip-
penberg, and Marquardt, 2014; Bowen and G. J. Milburn, 2015). This
scheme neither requires cavity-cavity interactions nor phonon-phonon cou-
pling, which are necessary for the recently demonstrated optomechanical
nonreciprocity in the optical domain (Fang, Luo, et al., 2017). Two paths
of transmission between the microwave modes are established, through two
distinct mechanical modes. Interference between those paths with differ-
ing phases forms the basis of the nonreciprocal process (X.-W. Xu et al.,
2016; Tian and Z. Li, 2016). In fact, due to the finite quality factor of the
intermediary mechanical modes, both conversion paths between the electro-
magnetic modes are partly dissipative in nature. Nonreciprocity is in this
case only possible by breaking the symmetry between the two dissipative
coupling pathways. We describe the mechanism in detail below.

5.3.1 Theoretical model

We theoretically model our system to reveal how nonreciprocity arises. We
consider two microwave modes (described by their annihilation operators aj,
@) having resonance frequencies w1, we 2 and dissipation rates k1, kg, which
are coupled to two mechanical modes (described by the annihilation opera-
tors 131, 132) having resonance frequencies €1;, {2y and dissipation rates I'y, 1,
Iy 2 (fig. 5.3a). The radiation-pressure-type optomechanical interaction has
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Figure 5.3: Scheme for a multimode optomechanical isolator. (a) Two mi-
crowave modes a; and as are coupled via two mechanical modes l;l and 132
through optomechanical frequency conversion (as given by the coupling con-
stants g1, 921, 912, g22). Nonreciprocity results from the interference between
the two optomechanical (conversion) pathways g¢i1, go1 and g¢i2, gao, in the
presence of a suitably chosen phase difference ¢ between the coupling con-
stants as well as the deliberate introduction of an asymmetry in the path-
ways. (b,c) The symmetry between the pathways can be broken by off-
setting the optomechanical transmission windows through each mechanical
mode (dashed lines in dark and light green) by a frequency difference 29,
resulting in different |Sy;| and |Si2| (solid lines). Each single pathway, in the
absence of the other mode, is described by eq. (5.6). In the forward direction
(b), the two paths interfere constructively, allowing transmission and a finite
scattering matrix element S5; on resonance with the first microwave cavity.
In contrast, in the backward direction (c), the paths interfere destructively,
such that Sio ~ 0 on resonance, thereby isolating the first microwave cav-
ity from the second. The isolation bandwidth is determined by the intrinsic
dissipation rate of the mechanical modes. Figure reproduced from Bernier,
Téth, Koottandavida, et al. (2017).
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the form! gojjdg&i(l;j + 5;) (Aspelmeyer, Kippenberg, and Marquardt, 2014;
Bowen and G. J. Milburn, 2015), where go;; designates the vacuum optome-
chanical coupling strength of the i*" microwave mode to the j** mechanical
mode. Four microwave tones are applied, close to each of the two lower side-
bands of the two microwave modes, with detunings of A1 = Ay = -0y — 9
and Ajg = Agy = —Qy + 0 (fig. 5.4c). We linearise the Hamiltonian, neglect
counter-rotating terms, and write it in a rotating frame with respect to the
mode frequencies as

H = —6blby 4 0 b5by + gui(arbl + alby) + gor(asbl + alby)
+ 912(&18£ + CALJ{ZA)Q) + gzz(eid)&zgg + e_iqj&;i?g) (55)

where a; and l;j are redefined to be the quantum fluctuations around the
linearised mean fields. Here g;; = goj,/ni; are the field-enhanced optome-
chanical coupling strengths, where n;; is the contribution to the mean intra-
cavity photon number due to the drive tone with detuning A;;. Although in
principle each coupling is complex, without loss of generality we can take all
to be real except the one between ay and by with a complex phase ¢.

We start by considering frequency conversion through a single mechanical
mode. Neglecting the noise terms, the field exiting the cavity as is given by
a2 0ut = 52101 ,in + S2202 in, Which defines the scattering matrix S;;. For a
single mechanical pathway, setting g1 = goo = 0 and § = 0, the scattering
matrix between input and output mode becomes

521 (M) _ \//{ex,lﬁex,Q \/61162111111,1 |

r .
l‘fl’{Q % —w

(5.6)

where Keyx 1, Kex,2 denote the external coupling rates of the microwave modes
to the feedline, and the (multiphoton) cooperativity for each mode pair is
defined as Cy; = 4g3;/(kiT'm;). Conversion occurs within the modified me-
chanical response over an increased bandwidth I'eg; = Iy (14 C11 + Ca1).
This scenario, where a mechanical oscillator mediates frequency conversion
between electromagnetic modes, has recently been demonstrated (Lecocq,
Clark, et al., 2016) with a microwave optomechanical circuit (Teufel, D. Li,
et al., 2011), and moreover used to create a bidirectional link between a
microwave and an optical mode (Andrews, R. W. Peterson, et al., 2014).
Optimal conversion, limited by internal losses in the microwave cavities,
reaches at resonance |Sy [, = “2722 in the limit of large cooperativi-
ties C11 = 621 > 1.

'When written in units where h = 1.
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We next describe nonreciprocal transmission of the full system with both
mechanical modes. We consider the ratio of transmission amplitudes given
by

Si2(w) _ g11X1 (W) ga1 + graxz(w)gaze
Sor(w)  guxa(w)gar + graxz(w)gase ™

(5.7)

with the mechanical susceptibilities defined as x;'(w) = [y /2 — i (0 + w)
and x5 '(w) = [m2/2 + i (6 —w). Conversion is nonreciprocal if the above
expression has an magnitude that differs from 1 (Ranzani and Aumentado,
2014; Ranzani and Aumentado, 2015). If Sy; and Sis differ only by a phase,
a change of time frame removes the apparent asymmetry, as explained in
section 5.2.2. Upon a change in the conversion direction, the phase ¢ of the
coherent coupling (between the microwave and mechanical mode) is conju-
gated, while the complex phase associated with the response of the dissipative
mechanical modes remains unchanged. Physically, scattering from 1 — 2 is
related to scattering from 2 — 1 via time-reversal, which conjugates phases
due to coherent evolution of the system. Dissipation is untouched by such an
operation and thus remains invariant. Indeed, the mechanical dissipation is
an essential ingredient for the nonreciprocity to arise in this system, but not
sufficient on its own. In fact, if we align the frequency conversion windows
corresponding to the two mechanical modes by setting 6 = 0, the system
becomes reciprocal on resonance (w = 0), since there is no longer any phase
difference between numerator and denominator. This situation corresponds
to two symmetric pathways resulting from purely dissipative couplings; they
can interfere only in a reciprocal way.

Optimal conditions

We study the conditions for isolation, when the backward transmission Sis
vanishes while the forward transmission S,; is non-zero. A finite offset 20 be-
tween the mechanical conversion windows causes an intrinsic phase shift for
signals on resonance (w = 0) between the two mechanical pathways, as they
fall either on the red or the blue side of each mechanical resonance. The cou-
pling phase ¢ is then adjusted to suppress propagation in the backward direc-
tion Sio (fig. 5.3¢), by canceling the two terms in the numerator of eq. (5.7).
In general, there is always a frequency w for which the two mechanical path-
ways have the same conversion amplitude, |g11x1(w)ga1| = |g12X2(w)gaz|, such
that the phase ¢ can be tuned to cancel transmission in one direction. Specifi-
cally, for two mechanical modes with identical decay rates (I'y, 1 = [ = ')
and symmetric couplings (g11921 = g12922), we find that transmission from
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ports 2 to 1 vanishes on resonance if

Iy )

— = tan —. 5.8

25 — M3 (5:8)
The corresponding terms of the denominator have a different relative phase,
and the signal adds constructively in the forward direction (fig. 5.3b). The
device thus acts as an isolator from a; to as, realised without relying on the
Josephson nonlinearity (Sliwa et al., 2015; Lecocq, Ranzani, et al., 2017).

We now describe the conditions to minimise insertion loss of the isolator in
the forward direction. Still considering the symmetric case, the cooperativity
is set to be the same for all modes (C;; = C). For a given separation ,
transmission on resonance (w = 0) in the transmitting direction has the

maximum X
Rex,1Rex 2
Soy|? = emlresz g 5.9
|91 [ ax Py ( 2C> (5.9)

for a cooperativity C = 1/2 + 262 /T',%. As in the case for a single mechani-
cal pathway in eq. (5.6), for a large cooperativity the isolator can reach an
insertion loss only limited by the internal losses of the microwave cavities.

The unusual and essential role of dissipation in this nonreciprocal scheme
is also apparent in the analysis of the bandwidth of the isolation. Although
the frequency conversion through a single mechanical mode has a bandwidth
Lefrj (see eq. (5.6)), increased from the bare mechanical dissipation rate I'y,
by the optomechanical damping of the pumps on the lower sidebands, the
nonreciprocal bandwidth is set by the intrinsic mechanical damping rates.
Examination of eq. (5.7) reveals that nonreciprocity originates from the in-
terference of two mechanical susceptibilities of widths I'y, ;. One can conclude
that the intrinsic mechanical dissipation, which takes energy out of the sys-
tem regardless of the transmission direction, is an essential ingredient for the
nonreciprocal behaviour reported here, as discussed previously (Ranzani and
Aumentado, 2015; Metelmann and Clerk, 2015). In contrast, optomechanical
damping works symmetrically between input and output modes. By increas-
ing the coupling strengths, using higher pump powers, the overall conversion
bandwidth increases, while the nonreciprocal bandwidth stays unchanged.

5.4 Experimental results

We experimentally realise this nonreciprocal scheme using a superconducting
circuit optomechanical system in which the mechanical motion is capacitively
coupled to a multi-mode microwave circuit (Teufel, D. Li, et al., 2011). The
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Figure 5.4: Implementation of a superconducting microwave circuit optome-
chanical device for nonreciprocity. (a) A superconducting circuit featuring
two electromagnetic modes in the microwave domain is capacitively coupled
to a mechanical element (a vacuum-gap capacitor, dashed rectangle) and in-
ductively coupled to a microstrip feedline. The end of the feedline is grounded
and the circuit is measured in reflection. (b) Scanning electron micrograph
of the drum-head-type vacuum gap capacitor (dashed rectangle in (a)) with
a gap distance below 50 nm, made from aluminium on a sapphire substrate.
The scale bar indicates 2 pym. (c) Frequency domain schematic of the mi-
crowave pump setup to achieve nonreciprocal mode conversion. Microwave
pumps (red bars) are placed at the lower motional sidebands - correspond-
ing to the two mechanical modes - of both microwave resonances (dashed
purple lines). The pumps are detuned from the exact sideband condition
by +§ = 27 x 18 kHz, creating two optomechanically induced transparency
windows detuned by 20 from the microwave resonance frequencies (denoted
by w1 and we;, vertical dashed line). The phase ¢, of one the pumps
is tuned. The propagation of an incoming signal (with frequency ws; or
ws2, solid grey bar) in the forward and backward direction depends on this
phase and nonreciprocal microwave transmission can be achieved. (d) Finite-
element simulation of the displacement of the fundamental (0, 1) and second
order radially symmetric (0,2) mechanical modes (with respective measured
resonance frequencies /27 = 6.5 MHz and Q,/27 = 10.9 MHz), which
are exploited as intermediary dissipative modes to achieve nonreciprocal mi-
crowave conversion. Figure reproduced from Bernier, Téth, Koottandavida,
et al. (2017).
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sample is HYB-20160524-1-12. The circuit, schematically shown in fig. 5.4a,
supports two electromagnetic modes with resonance frequencies (wc,l, wcg) =
21 x (4.1,5.2) GHz and energy decay rates (ki, ke) = 27 x (0.2,3.4) MHz,
both of them coupled to the same vacuum-gap capacitor. We utilise the fun-
damental and second order radially symmetric (0,2) modes of the capacitor’s
mechanically compliant top plate (Cicak et al., 2010) (see fig. 5.4b, d) with
respective resonance frequencies (€24, 2) = 27 x (6.5,10.9) MHz, intrinsic
energy decay rates (I'y1,I'm2) = 27 x (30,10) Hz and optomechanical vac-
uum coupling strengths (go11,go12) = 27 x (91,12) Hz (with go11 =~ go21
and go12 = go22, as the two microwave cavities are symmetrically coupled
to the mechanical modes). The device is placed at the mixing chamber of a
dilution refrigerator at 200 mK and all four incoming pump tones are heavily
filtered and attenuated to eliminate Johnson and phase noise. We establish
a parametric coupling between the two electromagnetic and the two mechan-
ical modes by introducing four microwave pumps with frequencies slightly
detuned from the lower motional sidebands of the resonances, as shown in
fig. 5.4c and as discussed above.

5.4.1 Transmission measurements

Certain calibrations are required in order to measure the scattering coeffi-
cients for a frequency conversion experiment. The diagram of the measure-
ment chain is shown in fig. 5.5. The complication arises from the fact that
there is an unknown attenuation on the input line a(w) and an overall mea-
surement gain after the device G(w) that are both frequency dependent. We
describe here the model for a measurement of frequency conversion from w;
to we. A tone at frequency w; and power P¥¢(w) is sent to the device.
After an attenuation o(wi), it is converted to wy with a power coefficient
|S51]%, then amplified by a gain G(w,) before it is measured to have a power

P2 (w,y). The scattering coefficient is given by

1 Pmeas (w2 )

out

Soi |2 = .
Sl = oGl Prclen)

(5.10)

The constants a(w;) and G(wy) must be calibrated through some auxiliary
measurements. We rely on the calibration of the HEMT amplifier that is the
dominating source of added noise (see section 3.4.2) as an absolute scale for
power at the device level.

To estimate the attenuation o (w), we employ a calibration tone and com-
pare the signal strength to the noise background. We assume that the HEMT
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Figure 5.5: Diagram of the measurement chain for frequency conversion. The
incoming signal at w; is first attenuated by «(w;). It is then converted to
the frequency wo by the optomechanical isolator. Finally, it is combined with
the HEMT added noise N'gpumt(w2) and amplified by an overall gain G(ws)
before it is measured.

added noise Nygyr(w) is the dominating source of added noise in the mea-
surement chain. That means that the SNR of a calibration tone of power

P (w) against the noise background is the same at the level of the device

and at the end of the measurement chain. The same overall gain G(w) am-
plifies both the calibration tone after the device (of power a(w)Psf (w)) and

cal.

the HEMT added noise Nypyvr(w) that constitutes the noise background.
They are given by
Pmeas<w) a(w>Psrc (Cd)

N _ cal. — cal. A1
S Rcal. (CU) N meas (w) NHEMT (Cd) (5 )

where N™$(w) is the measured level of the noise background. The attenu-

ation is therefore
a(w) = Pégfas(w)NHEMi(W)
P (w)  Nmeas(w)

cal.

(5.12)

where all quantities and known and measured. In practice, the calibration
tone is set outside the cavity resonance, to avoid absorption by the cavity. It
is assumed that the attenuation « varies little with frequency over a frequency
range in the order of the cavities linewidths 4 o.

The calibration of G(w) only requires the measurement of the noise back-
ground. Since we assume that the HEMT added noise dominates, the mea-
sured background N™%(w) is the HEMT noise amplified by the overall gain
G(w), such that

Nmeas (w>
G(w)=—"""=.
) Nuevr(w)

To measure ]521|2, we use a weak probing tone at frequency w; + 9 that is
measured at we 4§ with a spectrum analyzer. This gives the measured power

of the converted signal P (wy+0) as a function of an input power P3¢ (w; +

(5.13)
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9). From eq. (5.10), and the calibration of a(w;) and G(wsy), we deduce
the scattering coefficient |Sy|*. The frequency offset § is spanned to cover
the frequency dependence of transmission in the optomechanically mediated
frequency conversion. Conversely, to measure |512|2, the same procedure is
done with the probing tone set at wy + ¢ and the converted tone measured
at wy + 0.

Frequency conversion in both directions, |Sy; (w)[?* and |Sia(w)|?, are mea-
sured and compared in fig. 5.6a-c. The powers of the four pumps are chosen
such that the associated individual cooperativities are given by Cy; = 520,
Co1 = 450, C1o = 1350 and Cyy = 1280. The detuning from the lower mo-
tional sidebands is set to 6 = 27 x 18 kHz. By pumping both cavities on the
lower sideband associated with the same mechanical mode, a signal injected
on resonance with one of the cavities is converted in frequency to the other
cavity. This process can add negligible noise when operating with a suffi-
ciently high cooperativity, as demonstrated recently (Lecocq, Clark, et al.,
2016). In the experiment, the four driving tones are all phase-locked and the
phase of one tone ¢, is varied continuously from — to 7. The pump phase
is linked to the coupling phase ¢ by a constant offset, in our case ¢, =~ ¢+ .
Between the two transmission peaks corresponding to each mechanical mode,
a region of nonreciprocity develops, depending on the relative phase ¢y,.

The amount of nonreciprocity that occurs in this process is quantified and
measured by the ratio of forward to backward conversion |Sy;/S1s|?. Fig-
ure 5.6d shows this quantity as a function of probe detuning and the relative
pump phase. Isolation of more than 20 dB is demonstrated in each direction
in a reconfigurable manner. The direction of isolation can be switched by
taking ¢, — —¢p, as expected from eq. (5.8).

The ideal theoretical model, which takes into account I'y,; # 'y, 9, pre-
dicts that the bandwidth of the region of nonreciprocity is commensurate
with the arithmetic average of the bare mechanical dissipation rates, which
is ~ 27w x 20 Hz. However, given the significantly larger coupling strength
of the fundamental mechanical mode compared to the second-order mode,
and that k/(2; 5 is not negligible, the pump detuned by €5 — § from the mi-
crowave mode a, introduces considerable damping for the fundamental mode.
This cross-damping, measured separately to be Pffifss) ~ 27 x 20 kHz at the
relevant pump powers, widens the effective bandwidth of nonreciprocal be-
haviour by over two orders of magnitude and effectively cools the mechanical
oscillator. It also acts as a loss in the frequency conversion process and thus
effectively lowers the cooperativities to (C11,Ca1) = (0.78,0.68). This lowered
cooperativity accounts for the overall ~10 dB loss in the forward direction.
This limitation can be overcome in a future design by increasing the sideband
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Figure 5.6: Experimental demonstration of nonreciprocity. (a-c) Power trans-
mission between modes 1 and 2 as a function of probe detuning, shown in
both directions for pump phases ¢, = —0.87, 0, 0.87 radians (respectively (a),
(b) and (c)). Isolation of more than 20 dB in the forward (c) and backward
(a) directions is demonstrated, as well as reciprocal behaviour (b). (d) The
ratio of transmission |Sy;/S12]?, representing a measure of nonreciprocity, is
shown as a function of pump phase ¢, and probe detuning. Two regions
of nonreciprocity develop, with isolation in each direction. (e) Theoretical
ratio of transmission from eq. (5.7), calculated with independently estimated
experimental parameters. The theoretical model includes effectively lowered
cooperativities for the mechanical mode by due to cross-damping (optome-
chanical damping of the lower frequency mechanical mode by the pump on
the sideband of the higher frequency mechanical mode) acting as an extra loss
channel. Figure adapted from Bernier, Téth, Koottandavida, et al. (2017).
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resolution with decreased r; or using the fundamental modes of two distinct
mechanical elements with similar coupling strengths. To compare the exper-
iment to theory we use a model that takes into account the cross-damping
and an increased effective mechanical dissipation of the fundamental mode.
The model is compared to the experimental data in fig. 5.6e, showing good
qualitative agreement.

5.4.2 Noise measurements

From a technological standpoint, it does not suffice for an isolator to have the
required transmission properties. Since its purpose is to protect the input
from any noise propagating in the backward direction, the isolator’s own
noise emission is relevant. We therefore return to the theoretical description
and derive the noise properties expected from the device, in the limit of
overcoupled cavities (Kex; = K;).

In the forward direction on resonance, the emitted noise amounts to
Niw(0) = 1/2 + (i1 + N 2) /(4C), (5.14)

where 7, j is the thermal occupation of each mechanical mode. In the limit of
a large cooperativity (implying a low insertion loss), the added noise becomes
negligible in the forward direction.

More relevant for the purpose of using an isolator to protect sensitive
quantum apparatus is the noise emitted in the backward direction, given by

Npw(0) = 1/2 + (A1 + fim2) /2. (5.15)

Here the noise is directly commensurate with the occupation of the mechanics
which can be of hundreds of quanta even at cryogenic millikelvin tempera-
tures, due to the low mechanical frequencies. This is a direct consequence of
isolation through absorption, since it prevents fluctuations from either cavity
to emerge in the backward direction. In order to preserve the commutation
relations of the bosonic output modes, the fluctuations have to originate
from the mechanical modes. A practical low-noise design therefore requires
a scheme to externally cool the mechanical modes, for instance via sideband
cooling using an additional auxiliary microwave mode.

The origin of this noise asymmetry can be understood as noise interfer-
ence. The thermal fluctuations of one mechanical oscillator are converted to
microwave noise in each cavity through two paths, illustrated in fig. 5.7a, d:
a direct (orange) and an indirect (yellow) link. Each pathway, on its own and



132

Nonreciprocity with optomechanics

- (b2) —_—12
(a) N (b) Ny (c) 10
T
& Zw
S 210
)\ ]
2 U
£ 0 5 : :
s w = —100 0 100
21 Frequency detuning (kHz)
——)
(b) —~ 102

@ 4 E 10"
c
/1N S
> S
” &. 10 ' '
w = —100 0 100
2 Frequency detuning (kHz)

Figure 5.7: Asymmetric noise emission of the nonreciprocal circuit. The noise
emission is mainly due to mechanical thermal noise, that is converted through
two paths to the microwave modes. The resulting interference creates a dif-
ferent noise pattern in the forward (a-c) and the backward (d-f) directions
when the circuit is tuned as an isolator from mode a; to as. (a,d) The two
possible paths for the noise are shown for each mechanical mode. For 132, the
direct path (orange) and the indirect path going through mode b; (yellow)
are highlighted (the corresponding paths for b, are shown in grey). (b,e) Each
path on its own would result in a wide noise spectrum that is equally divided
between the two microwave cavities (dashed yellow and orange lines). When
both paths are available however, the noise interferes differently in each di-
rection (solid lines). In the backward direction (e), a sharp interference peak
appears, of a much larger amplitude than the broad base. The theoretical
curves (on an arbitrary logarithmic scale) are shown for the symmetric case
(F'm1 = T'm2) and for the single mode 52. Note that for the mode l;l, the
shape of the asymmetric peak in the backward noise would be the mirror
image. (c,f) Measured output spectra of modes as (c) and a; (f), calibrated
to show the photon flux leaving the circuit. Because cross-damping provides
extra cooling for the mode 131, the thermal noise of by is expected to dominate.
Figure reproduced from Bernier, T6th, Koottandavida, et al. (2017).
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with the same coupling strength, would result in symmetric noise that de-
creases in magnitude with increasing cooperativity. When both are present,
however, the noise interferes with itself differently in each direction. In the
forward direction, the noise interferes destructively (fig. 5.7b) leading to low
added noise, but in the backward direction a sharp interference peak arises
(fig. 5.7e) with finite noise in the nonreciprocal bandwidth even in the high-
cooperativity limit. In an intuitive picture, the circuit acts as a circulator
that routes noise from the output port to the mechanical thermal bath and
in turn the mechanical noise to the input port, similarly to the gyrator-based
isolator of fig. 5.2a.

We demonstrate experimentally the noise asymmetry by detecting the
output spectra at each microwave mode while the device isolates the mode
a; from as by more than 25 dB (fig. 5.7c, f). The measurement is done at
the elevated temperature of 200 mK to help stabilize the mechanical mode
emission and increase the overall noise visibility. The cooperativities are

here set to (Cy1,Ca1,C12,Ca2) = (20.0,14.2,106,89) with a cross-damping

Fl(ﬁffss) ~ 21 % 2.6 kHz, in order to optimise the circuit for a lower insertion

loss and increase the noise visibility. As there is additional cooling from the
off-resonant pump on mode by, we expect noise from by to dominate.

5.5 Optomechanical circulator

There exists a way to circumvent the mechanical noise entirely: by introduc-
ing one extra microwave mode a3, we can realise a circulator, where instead of
mechanical fluctuations, fluctuations from the third microwave mode emerge
in the backward direction. The scheme is illustrated in fig. 5.8a. As before,
the two mechanical modes are used to create two interfering pathways, now
between the three microwave cavities. Since there are now two independent
loops, two phases matter; we choose the phases associated to the couplings
g11 and g9; and set them respectively to ¢ = 27/3 and ¢ = —27/3. With
the mechanical detunings set to d; = \/75((3 + %)Fmﬂ-, the system then be-
comes a circulator that routes the input of port a; to a», as to az and as
to ay. Critically and in contrast to the isolator, counter-propagating sig-
nals are not dissipated in the mechanical oscillators, but directed to another
port, with two advantages. First, the bandwidth of nonreciprocity is not
limited to the mechanical dissipation rate, but instead increases with C until
it reaches the ultimate limit given by the cavity linewidth (see fig. 5.8b, ¢).
Second, the mechanical noise emission is symmetrically spread between the
three modes, and over the wide conversion bandwidth (see fig. 5.8d, e). In
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Figure 5.8: Proposal for a microwave optomechanical circulator. (a) Scheme
for a circulator with three microwave cavities and two mechanical modes.
The circuit involves two independent loops, with two phases ¢; and ¢,
that can be tuned with the phases respectively associated with go; and gi;.
(b,c) Theoretical transmission in the circulating direction (counter-clockwise,
in red) and the opposite direction (clockwise, in blue), for the cooperativities

= 100 (b) and C = 1000 (c). The isolation bandwidth scales with C and
is only limited by the microwave energy decay rates. Experimentally real-
istic parameters are chosen with overcoupled cavities of energy decay rates
K1 = Ky = K3 = 21 x 200 kHz and T'y,; = I'yy2 = 27 x 100 Hz. (d,e) Noise
emission spectra for the same two cooperativities (C = 100 (d) and C = 1000
(e)), for the mechanical occupancies fuy, 1 = fim 2 = 800. Note that for the
circulator the noise is symmetric for all the cavities, and that it decreases
with increasing cooperativity. Figure reproduced from Bernier, Téth, Koot-
tandavida, et al. (2017).



5.6 Outlook

135

the large cooperativity limit, the nonreciprocal process becomes quantum
limited, irrespective of the temperature of the mechanical thermal baths.

5.6 Outlook

In conclusion, we described and experimentally demonstrated a new scheme
for reconfigurable nonreciprocal transmission in the microwave domain using
a superconducting optomechanical circuit. This scheme is based purely on
optomechanical couplings, thus it alleviates the need for coherent microwave
cavity-cavity (or direct phonon-phonon) interactions, and significantly facil-
itates the experimental realisation, in contrast to recently used approaches
of optomechanical nonreciprocity in the optical domain (Fang, Luo, et al.,
2017).

An intuitive picture built on the gyrator helps to explain the origin of
nonreciprocity in the system. It arises due to interference in the two me-
chanical modes, which mediate the microwave cavity-cavity coupling. This
interference also manifests itself in the asymmetric noise output of the circuit.
Moreover, an additional microwave mode would enable quantum-limited mi-
crowave circulators on-chip with large bandwidth, limited only by the energy
decay rate of the microwave modes.

The isolator scheme can be readily extended to implement quantum-
limited phase-preserving and phase-sensitive directional amplifiers (Malz et
al., 2018), as illustrated in fig. 5.9. Swapping two blue-detuned pump tones
for two of the red-detuned pump tones in fig. 5.4c transforms the isolator
into a directional phase-preserving amplifier (fig. 5.9a,b). With two addi-
tional red-detuned pump tones, the amplification becomes phase-sensitive
(fig. 5.9¢,d). While the added noise in the forward direction can be quantum-
limited for large cooperativities, the back-propagating noise is not. As in the
case of the isolator discussed in section 5.4.2, noise commensurate with the
large mechanical thermal fluctuations is emitted backwards. An additional
auxiliary microwave mode could be used to cool the mechanical motion and
make the directional amplifiers compatible with sensitive quantum devices.

Finally, the presented scheme can be generalised to an array, and thus form
a platform to study topological phases of light and sound (Peano, Brendel, et
al., 2015) or topologically protected chiral amplifying states (Peano, Houde,
et al., 2016) in arrays of electromechanical circuits, without requiring cavity-
cavity or phonon-phonon mode hopping interactions.
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Figure 5.9: Schemes for directional amplification with an optomechanical
circuit. (a,b) Using two blue-detuned and two red-detuned pump tones,
the system of fig. 5.3a can be used as a phase-preserving directional ampli-
fier. (c,d) With two additional red-detuned pump tones, the amplification is
phase-sensitive. The amplification in both cases becomes quantum-limited in
its added noise for large coupling rates. The noise emitted in the backwards
direction is however limited by the mechanical thermal fluctuations. Figure
adapted from Malz et al. (2018).



Chapter 6

Level attraction in a microwave
optomechanical circuit

We here introduce the concept of level attraction and explain how it can be
studied with a microwave optomechanical circuit. This chapter is adapted
from the text of a previous publication (Bernier, T6th, Feofanov, et al.,
2018a). In section 6.1, we introduce level attraction. In section 6.2, we give
a theoretical exposition of the phenomenon and how it is linked to exceptional
points. In section 6.3, we demonstrate level attraction experimentally in a
multimode optomechanical circuit. Finally, in section 6.4, we conclude and
provide an outlook.

6.1 Introduction

Level repulsion of two coupled modes with an energy crossing has applications
ranging from solid state theory (Ashcroft and Mermin, 1976) to quantum
chemistry (Atkins and Paula, 2009). While deceptively simple, it underpins
more exotic phenomena. With the introduction of dissipation or gain, an ex-
ceptional point (Heiss, 2012) appears that is topologically non-trivial (Dem-
bowski et al., 2001; Uzdin, A. Mailybaev, and Moiseyev, 2011; T. J. Mil-
burn et al., 2015). The special case of two modes with equal dissipation
and gain rates is an example of parity-time symmetry (Bender, 2005; Ben-
der, Berntson, et al., 2013). The spontaneous breaking of that symmetry is
marked by the exceptional point. In recent years, exceptional points gathered
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significant interest and they were demonstrated in a variety of systems includ-
ing active microwave circuits (Stehmann, Heiss, and Scholtz, 2004; Schindler
et al., 2011; Assawaworrarit, X. Yu, and S. Fan, 2017), lasers (Brandstetter
et al., 2014; Peng, Ozdemir, S. Rotter, et al., 2014) and optical microres-
onators (Bender, Gianfreda, et al., 2013; Peng, Ozdemir, Lei, et al., 2014;
W. Chen et al., 2017). In particular, the topological transfer of energy be-
tween states by circling an exceptional point has been demonstrated with a
microwave cavity (Dembowski et al., 2001), a microwave waveguide (Doppler
et al., 2016), as well as an optomechanical system (H. Xu et al., 2016; Jing
et al., 2014).

Strikingly, if one mode has negative energy, the energy levels of two in-
teracting modes do not repel, but attract instead (Bernier, Dalla Torre, and
Demler, 2014; Eleuch and I. Rotter, 2014; Seyranian, Kirillov, and A. A.
Mailybaev, 2005). The Hamiltonian leads to hybridized modes of complex
eigenfrequencies, one of which is unstable. As in level repulsion, an excep-
tional point marks the transition between the regimes of real and complex
frequencies. In the process, the real components of the frequencies become
identical in a way that is reminiscent of the synchronization of driven oscil-
lators (Pikovsky, Rosenblum, and Kurths, 2003).

Negative-energy modes (equivalent to harmonic oscillators with negative
mass) have been studied in schemes to evade quantum measurement backac-
tion (Tsang and Caves, 2012; K. Zhang, Meystre, and W. Zhang, 2013; Polzik
and Hammerer, 2015). Such a scheme was recently demonstrated with an
atomic spin ensemble, prepared in its maximal-energy spin state in a mag-
netic field (Mgller et al., 2017). Spin flips decrease the energy and correspond
to excitations of a harmonic oscillator with a negative mass. Alternatively,
the negative-energy mode can be effectively realized in a frame rotating faster
than the mode itself (Woolley and Clerk, 2013; Ockeloen-Korppi et al., 2016).

In cavity optomechanics (Aspelmeyer, Kippenberg, and Marquardt, 2014),
a blue-detuned pump tone induces a time-dependent interaction between
the electromagnetic mode and the mechanical oscillator. In a frame rotat-
ing at the pump frequency, the Hamiltonian is time-independent, and the
electromagnetic mode appears to have negative energy. While level repul-
sion was demonstrated in the strong coupling regime of cavity optomechan-
ics (Groblacher et al., 2009; Teufel, D. Li, et al., 2011; Verhagen et al., 2012),
level attraction has so far not been observed.

Here we construct a general theoretical framework for level attraction
and demonstrate the phenomenon in a microwave optomechanical circuit us-
ing engineered dissipation. First in section 6.2, it is shown how a coherent
coupling between modes of positive and negative energy gives rise to level
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Figure 6.1: Level repulsion and attraction. Two modes, whose bare frequen-
cies depend on a parameter A, have a level crossing (dotted lines). A coherent
coupling in general lifts the degeneracy. (a) In the more usual case, level re-
pulsion, the coupling opens a gap between the frequencies of the hybridized
eigenmodes @ (blue solid lines) and the eigenfrequencies bend away from
each other. (b) In contrast, if one of the modes has negative energy, level
attraction occurs. The real components of the eigenfrequencies @ (blue solid
lines) bend towards each other and converge. They meet at two exceptional
points, where the curves have kinks. A gap opens in the imaginary compo-
nents of the frequencies (orange dashed lines). The mode with a negative
imaginary component to the frequency is unstable and grows exponentially.
Figure reproduced from Bernier, Téth, Feofanov, et al. (2018a).
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attraction. The role of dissipation is discussed and explains the difficulty in
observing level attraction in such systems, as the dissipation rates of the two
modes must be similar. The symmetry between level repulsion and attrac-
tion is explicited in section 6.2.1. And an intuitive way to classify different
types of exceptional points in two-modes system is developed in section 6.2.2,
with level repulsion and attraction as special cases. In section 6.3, both level
attraction and repulsion are demonstrated experimentally in the same mi-
crowave optomechanical circuit, where the mechanical dissipation rate can
be engineered to match the microwave one.

6.2 Theoretical exposition of level attraction

We start with a general theoretical model of a positive-energy mode coher-
ently coupled to a negative-energy one. The two modes, of annihilation
operators a and b and coherently coupled with strength ¢, are described by
the Hamiltonian

H = —Hhwi(Nata + hws(\)bTh + hg (aé + aTi)f) (6.1)

where the two positive frequencies w; and ws vary with respect to an external
parameter A. The linear coupling chosen here is quite general: if we assume
the modes close in frequency, other linear terms dTI;, ab! can be neglected in
the rotating wave approximation (valid only if the frequencies wy » dominate
over the dissipation rates for an open system, see appendix A). The coupling
rate g is chosen to be real, as any complex phase can be absorbed in a
redefinition of a or b.

In the Heisenberg picture, this leads to the equations of motion

-G 6 e

where we drop the explicit A dependence. We note that the uncoupled, bare
modes evolve as a(t) = e®a(0) and bf () = b (0) with a positive phase.
The hybridized eigenmodes of the system are found by diagonalizing the
matrix in eq. (6.2), and have eigenfrequencies

w1 +w wp — w 2
D1 = 12 2+ (%) — g2 (6.3)

The negative sign in front of ¢2 is the only difference with the eigenfrequencies
for the case of level repulsion (when a has positive energy) but dramatically
impacts on the resulting dynamics.
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Figure 6.2: The effect of dissipation on level attraction. Two modes, a and
b cross in frequency (the mode a having negative energy), with respective
dissipation rates x and I'. The real component of the frequency is the solid
blue line and the imaginary component the dashed orange line. (a) While
a finite average dissipation rate simply translates the imaginary components
of the frequency, a difference in the two rates (k # I') affects qualitatively
level attraction. The kinks and the exceptional points disappear and the
picture is overall smoothed out. (b) When the dissipation rates differ sig-
nificantly, no trace of level attraction is visible anymore. In both cases, one
of the hybridized mode becomes unstable if the imaginary component of its
frequency turns negative. Figure reproduced from Bernier, T6th, Feofanov,
et al. (2018a).

In fig. 6.1, level attraction is compared to level repulsion, with two strik-
ing features. First, instead of avoiding each other, the eigenfrequencies pull
towards one another. Second, when they meet at 4g° = (w; — wo)?, the fre-
quencies acquire positive and negative imaginary parts, causing exponential
decay and growth. The hybridized mode with a negative imaginary compo-
nent grows exponentially and is therefore unstable.

The transition between the regimes of real and complex eigenfrequencies
is marked by exceptional points, which can be understood by studying the
matrix of eq. (6.2). Decomposed in terms of Pauli matrices' and omitting the
term proportional to the identity, it can be expressed as %(wl —Wy)0, — 1goy,.

! The Pauli matrices are defined as o, = (), o0y = (9 3%) and 0. = (§ ).
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In contrast with level repulsion for which the interaction term would be go,,
the Hermitian Pauli matrix is here multiplied by an imaginary coefficient. If
the first term has a larger amplitude, the eigenfrequencies are real, while they
are complex if the second term dominates. When the two Pauli matrices have
coefficients of the same amplitude, the matrix is proportional to o, —ic,. At
this point, the two eigenvectors coalesce and a single eigenvector with a single
cigenvalue subsists: it is an exceptional point (Heiss, 2012). More generally
for all two-mode systems, any point for which the dynamics is determined
by a matrix proportional to o, +i0s, with o # 3, is an exceptional point. In
the section 6.2.2, we develop this decomposition and construct an intuitive
classification of the various realizations of exceptional points.

Level attraction arises whenever the coupling term consists of a Pauli ma-
trix with an imaginary coefficient. In fact, coupled oscillators of positive
and negative energy are only one way to achieve this. An alternative relies
on linking the two modes with a coupling that cannot be derived from a
Hamiltonian, such as a dissipative interaction through one or multiple in-
termediary modes (Metelmann and Clerk, 2014). The mode hybridization
observed between positive-energy oscillators with dissipative (H. Xu et al.,
2016; Khanbekyan et al., 2015) and non-conservative (Gloppe et al., 2014)
interactions can be interpreted as level attraction.

While level attraction of two linearly coupled modes displays intriguing
similarities with the synchronization of driven oscillators, important differ-
ences exist. As in synchronization, the real components of the frequencies
“lock” over a frequency range that increases with the coupling rate g, form-
ing the equivalent of an Arnold tongue (Pikovsky, Rosenblum, and Kurths,
2003). The physical process differs however. In synchronization, one starts
with two oscillators that are driven nonlinearly to their limit-cycles, then a
coupling is introduced that locks their frequencies and their phases (Weiss,
Kronwald, and Marquardt, 2016). In level attraction by contrast, the fre-
quencies of the two modes attract through linear dynamics until they become
identical. The state of the two hybridized modes remain independent and
their phases can be set arbitrarily.

To understand why level attraction is in practice less common than level
repulsion, the role of dissipation should be studied. We open the system and
include in our treatment the energy dissipation rates x and I' respectively for
the modes a and b. They can be introduced as positive imaginary components
of the bare frequencies in the equations of motion. The results of eq. (6.2) and
(6.3) can be extended by replacing wy with w; +ir/2 and wy with wy +i/2.
In fig. 6.2, we compare the resulting eigenfrequencies. If the dissipation rates
are equal (k = I'), the level structure of fig. 6.1b is reproduced with the
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imaginary components translated to a finite average. However, in the case of
even slightly mismatched dissipation rates x 2 I' (fig. 6.2a), the exceptional
points and the kinks in the frequencies disappear. For increasingly dissimilar
rates K > ' (fig. 6.2b), the level-attraction picture progressively disappears
until the modes seem to cross without interacting. Therefore, only in a
system where dissipation rates can be tuned to closely match each other is
level attraction observable.

6.2.1 Symmetry of level repulsion and attraction

To understand better the relation between level repulsion and attraction, we
explicitly derive here a minimal model for each. We show that a symmetry
relation links the two cases; they are images of each other under the exchange
of frequency and dissipation rates.

First, we review level repulsion. Two modes of positive energy (with
annihilation operators @ and b, and respective frequencies wy and ws) interact,
as described by the Hamiltonian

Hip = hwiata + huwsb'h + hg (aiﬂ + aTzS) (6.4)

with g the linear coupling strength. The equation of motion in the Heisenberg

picture is given by
d (fa\ . (w g a
7)== 2)6) 6

To solve the system in terms of eigenmodes, the matrix is diagonalized. The
eigenfrequencies are given by

2
N w1 + w W] — W
wfgz—lz 2j:\/(—12 2) + g2 (6.6)

The model is extended to describe modes with dissipation by adding imagi-
nary components to the bare frequencies, substituting wy; — w; — il'; /2 and
wo — wy —il's/2. Note that a negative sign is required to obtain decaying ex-
ponentials. For ease of notation, we define wy = (w1 +ws)/2, I'g = (I'1+1'2)/2,
Aw = wy; — wy, and AI' =Ty — I's. The eigenfrequencies can now be written

as
r Aw —iAT /27
N =wo—ig' \/(W#Z/> + g2, (6.7)
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The frequency of oscillation of the eigenmodes is given by the real component
of &J{‘PQ‘ and the dissipation rate by twice its imaginary component (with a
minus sign).

We now consider level attraction. One (and only one) mode has negative
energy such that the system is described by the Hamiltonian

Ay = ~heyala + husblh + hg (ab -+ a'bt) (6.8)

The equations of motion are given by

a\ . f(wr —g)\ (a
() =5 ) G) 0
with eigenfrequencies

2
oty =2 ;”"2 = \/(”1 . WQ) - g% (6.10)

The only difference with eq. (6.6) is the sign in front of g, which can result
in a complex eigenvalue, meaning an instability for the system.

[t might be unintuitive that the Hermitian Hamiltonian in eq. (6.8) leads
to complex eigenfrequencies and unstable dynamics. In fact, in an infinite-
dimensional Hilbert space, an operator must be compact as well as Hermitian
to guarantee the existence of real eigenvalues (Le Bellac, 2012), which is not
the case here. We also note that only when the eigenfrequencies are real can
the eigenoperators be interpreted as Bogolyubov modes (Fetter, Walecka,
and Physics, 2003). When the eigenfrequencies are complex, the required
commutation relations cannot be satisfied.

In order to include dissipation, we substitute again w; — wy + iI'1/2 and
we — wy +il'9/2. Note that the opposite sign for the imaginary compo-
nent is required here to obtain decaying exponentials. The eigenfrequencies
including dissipation become

r Aw +iAT/2\?
@igzwoﬂé’i\/(%/) — g2 (6.11)

There is a symmetry between eq. (6.7) and eq. (6.11). They are equivalent
under the transformation w’ = I'/2 and I = 2w, if eq. (6.11) is multiplied

by a factor —i:
I Aw' —iAT"/2)?
oy = wp— i \/<%/> + g2 (6.12)
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We conclude that level attraction and repulsion are equivalent to each other
through the exchange of frequency and dissipation rates (within a factor
of 2). In fig. 6.3, this symmetry is highlighted by contrasting equivalent
situations for both level repulsion and level attraction Hamiltonians. In
fig. 6.3a-d, the curves for the real and imaginary parts of the eigenfrequencies
are interchanged when going from the left column (level repulsion) to the
right (level attraction). Figure 6.3e-f can be compared with fig. 6.1, where the
characteristic shape of level attraction is here seen for the dissipation rates of
the level-repulsion Hamiltonian and vice versa. In general, for level repulsion,
when a coupling is introduced the frequencies repel, while the dissipation rates
attract. The exact opposite is true for level attraction: a coupling makes the
dissipation rates repel and the frequencies attract.

6.2.2 Classification of exceptional points

We describe here how to classify exceptional points of 2 X 2 matrices using
Pauli matrices. The classification is then used to sort recent experimental
demonstrations of exceptional points.

In general, the equations of motion for a 2-modes system can be written

in the form . .
d (dy dy
(Y Y=m1I" 6.13
"t (d2> (dQ) (6:13)

where dl, dy are operators for the two modes and M is a 2 X 2 matrix.
The eigenmodes of the system and their eigenfrequencies correspond to the
eigenvectors and eigenvalues of M. If for some parameter values, M only
has a single eigenvector and a single eigenvalue, this is called an exceptional
point.

The matrix M can always be decomposed in terms of the Pauli matrices,
defined as

01 0 —2 1 0
ax:<1 O)’Jy:<i 0>,andazz(0 _1), (6.14)

in the form
M = a()]l + a10, + 20y, + aso, (615)

with 1 the identity matrix and a; complex numbers. The eigenvalues of M
are now easily expressed as

A1 = ag = \/a? + a3 + a3. (6.16)
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Figure 6.3: Comparison of the real (solid blue lines) and imaginary (dashed
orange lines) components of the eigenfrequencies @ for the level-repulsion
Hamiltonian I;TLR (left column) and the level-attraction Hamiltonian ]:ILA
(right column). (a,b) The transition through an exceptional point, as a
function of the coupling strength g. For level repulsion (a), the modes are
originally degenerate (Aw = 0), while for level attraction (b) they originally
have matching dissipation rates (AI' = 0). (c,d) Same as (a,b) with a slight
nondegeneracy (Aw # 0 for level repulsion (¢) and AT # 0 for level attrac-
tion (d)), such that the exceptional point is avoided. (e,f) The difference in
dissipation rates Al is varied, for degenerate modes Aw = 0. For level repul-
sion (e), the imaginary component of the frequency attract and converge in a
region where a gap opens in the real components of the frequency. For level
attraction (f), the real component is unchanged while the dissipation rates
have an avoided crossing. Figure reproduced from Bernier, Téth, Feofanov,
et al. (2018a).
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Note that the first term in eq. (6.15), proportional to the identity, only
shifts the eigenvalues by a constant and has no effect on the eigenvectors.
Anytime that the matrix M can be written as a multiple of o, +i0s (o # )
(omitting the identity), there is only one eigenvalue and this is an exceptional
point (Steeb and Hardy, 2014). We can use this decomposition to classify
examples of exceptional points.

(I) The most common case is the level repulsion of two (positive-energy)
modes of degenerate frequencies due to a coherent coupling. Many experi-
mentally demonstrated exceptional points fall in this category (Dembowski
et al., 2001; Schindler et al., 2011; Bender, Gianfreda, et al., 2013; Brandstet-
ter et al., 2014; Peng, Ozdemir, Lei, et al., 2014; Peng, Ozdemir, S. Rotter,
et al., 2014; Doppler et al., 2016; Assawaworrarit, X. Yu, and S. Fan, 2017).
The two modes are d; = a and dy = I;, in our previous notation. The matrix
M can be written as

M = (wo —1 &) 1— igaz + go,. (6.17)
2 4

For a low coupling rate g, M is diagonal with a gap for dissipation rates. For
a large g, the last term dominates such that the eigenmodes are eigenvectors
of o,: g opens a gap in frequency, while the dissipation rates are evenly
distributed between the modes. The transition between the regimes is marked
by an exceptional point at g = Al'/4.

(IT) Here, we consider the case of level attraction between modes of nega-
tive and positive energies and matching dissipation rates. The operators are
dl =q and d2 = b in our notation. The matrix M can be written as

—-M = (wo + @%) 1+ %az —1g0y,. (6.18)
For a low coupling g, there is a gap in frequency, while for a large coupling, the
o, term opens a gap in dissipation rates and the frequencies are identical. An
exceptional point marks the transition at g = Aw/2. Note that the coherent
coupling corresponds to a term with an imaginary coefficient for a system
with one mode of negative energy.

(III) Level attraction of two modes can be realized in any system in which
the coupling term has an imaginary component. In particular, dissipative
interactions (Metelmann and Clerk, 2014) represent an alternative way to
the one presented in this article. Two modes are coupled by both interacting
with a third oscillator. When the third mode is eliminated, the effective
interaction between the two modes is expressed by the matrix M as

I, A
M = ( ; 2ff> 1+ Twaz ~+ 194is0 (6.19)
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where for simplification the effective dissipation rate I'eg of the two coupled
modes is taken to be approximately equal. The effective interaction between
the two modes has an imaginary coefficient and they have an increased effec-
tive dissipation rate I'eg due to the dissipative interaction as well. Similarly
to the previous case, by increasing the coupling gq;s the original gap in fre-
quency is closed and a difference in dissipation rates is created. In contrast
however, ['s¢ grows proportionally with ggis, such that the gap in dissipa-
tion rates does not result in an instability. The mode hybridization between
modes of positive energy coupled with dissipative interactions can be inter-
preted as level attraction.

Examples of this type of exceptional points were realized experimentally.
In the experiment of H. Xu et al. (2016), two mechanical oscillators are
effectively coupled by both interacting with the same optical cavity. In the
experiment of Khanbekyan et al. (2015), two modes of an optical resonator
interact through multiple quantum dots. In the experiment of Gloppe et
al. (2014), two modes of a nanowire interact through the non-conservative
force of an optical field, which although not dissipative in nature, cannot be
derived from a Hamiltonian in a similar way.

(IV) Finally, yet another way to implement an exceptional point was re-
alized in the experiment of W. Chen et al. (2017). The clockwise and coun-
terclockwise modes of a whispering-gallery-mode resonator (of degenerate
frequencies and dissipation rates) interact through two Rayleigh scatterers.
This results in a combination of coherent and dissipative interaction that can
be described by

r
M = (wo - @70) 1+ GeonOg + 19aisTy- (6.20)

As the coupling g.n and ggs are varied, the relative phases of the bare
modes that compose the hybrid eigenmodes change. When the two cou-
pling strengths match (geon = gais), the two eigenmodes coalesce and there is
an exceptional point. Interestingly, this corresponds to a point of maximal
nonreciprocity, with one bare mode coupled to the second but not the other
way around (Metelmann and Clerk, 2015).

6.3 Optomechanical level attraction

Cavity optomechanics provides an ideal setting to study level attraction and
compare it to level repulsion. We now take a to represent an electromagnetic
mode and b a mechanical oscillator, coupled through the optomechanical in-
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teraction hgodT&(13+l;T), where go is the vacuum optomechanical coupling (As-
pelmeyer, Kippenberg, and Marquardt, 2014). With a blue-detuned pump
tone applied to the system, the three-wave-mixing coupling is linearized and
the Hamiltonian reduces to the form of eq. (6.1)

H = —hAdta + hQubth + hg (ai) + a%*) , (6.21)

where A is the detuning of the pump tone, €2, the mechanical mode fre-
quency and g = ggy/nc the linear coupling enhanced by the mean cavity
photon number n. due to the pump tone. As above, we neglect counter-
rotating terms and assume the detuning A to be close to €2,,. Critically, the
Hamiltonian is expressed in a frame rotating at the pump frequency in order
to be time-independent. Hence, for a blue detuning A > 0, the cavity mode
effectively has a negative energy, since the photons have a negative relative
frequency with respect to the pump.

In this context, the well-known parametric instability of optomechan-
ics (Aspelmeyer, Kippenberg, and Marquardt, 2014) can be interpreted as
resulting from the physics of level attraction. The instability stems from the
negative imaginary component that develops in the eigenfrequencies of the
equations of motion, above the critical coupling gei = V&I /2.

For level attraction to be observable, the magnitudes of x and I'" should
be close. For usual experimental parameters, however, the electromagnetic
decay rate k is much larger than the mechanical rate I', and no attraction
can in practice be observed for the mechanical and electromagnetic modes.

6.3.1 Experimental results

In our experiment, the effective mechanical energy decay rate 'y is artifi-
cially increased to match s using sideband cooling with an auxiliary mode.
We use a superconducting electromechanical circuit (Teufel, D. Li, et al.,
2011) containing two microwave LC modes interacting with the vibrational
mode of a vacuum-gap capacitor (represented schematically in fig. 6.4a and
shown in fig. 6.4b). The design, which is described in section 4.2, uses two
hybridized electromagnetic modes of the circuit to ensure that one has a
much larger external coupling rate to the microwave feedline than the other.
The more dissipative, auxiliary mode @,y is used to perform sideband cool-
ing of the mechanical oscillator with a red-detuned pump tone. This damps
the oscillator and increases its effective dissipation rate to I'eg ~ k. Mean-
while, the less dissipative, primary mode a undergoes level attraction with
the damped mechanical oscillator.
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Figure 6.4: Engineering dissipation in a multimode optomechanical circuit.
In order to observe level attraction, the dissipation rate I';,, of the mechanical
mode b must be increased to match k, the much larger dissipation rate of
the primary electromagnetic mode a. To that end, an auxiliary mode @, is
used for sideband cooling. (a) Schematic of the microwave optomechanical
circuit, coupled inductively to a microwave feedline and measured in reflec-
tion. The two hybridized modes of the circuit a and a.,y interact with the
motion of the top membrane of a shared capacitor, the mechanical oscillator
b (in green). (b) Photograph of the circuit and scanning-electron micrograph
of the vacuum-gap capacitor. (c¢) Diagram of the three interacting modes.
(d) Frequency domain representation of the level-attraction experiment. A
microwave pump tone (vertical red line), red-detuned by the mechanical fre-
quency 2y, with respect to the auxiliary mode resonance w,,y (grey peak) is
used for sideband cooling. Level attraction of the modes a and b is achieved
by sweeping the detuning A of a pump tone (vertical blue line) near the blue
sideband of the primary mode resonance w, (blue peak). For level repulsion,
the pump tone is instead swept near the red sideband. Figure reproduced
from Bernier, T6th, Feofanov, et al. (2018a).
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In the experiment, the device is placed inside a dilution refrigerator and
cooled to the base temperature, below 50 mK, at which the circuit is su-
perconducting and its internal Q-factor is enhanced. The sample is HYB-
20160524-1-12. The two microwave modes a and a,., have respective res-
onance frequencies w. = 27 x 4.11 GHz and w,. = 27 x 5.22 GHz, and
dissipation rates k = 27 x 110 kHz and K, = 27 x 1.8 MHz. They inter-
act with the fundamental vibrational mode of the top plate of the vacuum-
gap capacitor, that has a frequency Q, = 27 x 6.3 MHz. By placing
a pump tone red-detuned by 2, from the auxiliary mode resonance (see
fig. 6.4d), the mechanical oscillator is damped. The mechanical dissipation
rate [',,, originally below 27 x 100 Hz, is tuned to an effective dissipation
rate I'eg = k£ = 27 x 110 kHz.

Level repulsion and attraction of the primary microwave mode and the
damped mechanical oscillator are both measured. As a pump tone is tuned
to the blue or red sideband of the primary microwave mode (the former
case is illustrated in fig. 6.4d), the weak probe tone of a vector network
analyser is applied near the resonance of the microwave cavity to obtain its
linear response. Due to the hybridization of the modes, the response carries
information about both microwave and mechanical modes. For both red and
blue detunings, the same pump power is set to obtain a coupling strength
g ~ 27 x200 kHz corresponding to a mean cavity photon number n, ~ 4x10°.

The known case of level repulsion is obtained with a red-detuned tone
(fig. 6.5a). As the bare effective mechanical mode frequency comes near the
microwave resonance, the two modes hybridize; their eigenfrequencies bend
away from each other with a gap of 2g.

With a blue-detuned tone, level attraction occurs instead. The response,
shown in fig. 6.5b, displays the characteristic level structure of fig. 6.1b. The
resonance frequencies of the modes attract and converge to the points where
the bare frequencies of the modes differ by +2¢g. In order for the level at-
traction to be clearly visible, the coupling rate g is set to dominate over the
dissipation rates k and I'eg. It therefore exceeds the critical coupling gei¢, re-
sulting in parametric instability. One of the modes grows exponentially until
the conditions of the validity of eq. (6.21) are no longer fulfilled. Namely, the
fluctuating field is no more negligible compared to the mean cavity photon
number n.. The original nonlinear optomechanical interaction constrain the
system to a limit-cycle with a modified cavity resonance frequency (Mar-
quardt, Harris, and Girvin, 2006), the description of which lies beyond the
scope of this article. Data is omitted for clarity in the unstable region.

In fig. 6.6a,c, two individual responses from fig. 6.5 are shown for specific
detunings of the pump tone. The two resonances take the form of two dips
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Figure 6.5: Experimental demonstration of level repulsion and attraction in
a microwave optomechanical circuit. Amplitude response of the system as
the detuning A of the pump tone is varied, when the effective dissipation
rate of the mechanical mode b matches that of the microwave mode @. In
the laboratory frame, A determines the effective frequency of the mechanical
oscillator, that is swept across the microwave resonance. (a) When the pump
tone is swept in frequency across the red sideband of the microwave mode,
the two resonances bend away from each other. (b) If the pump tone is swept
across the blue sideband instead, the resonances pull towards each other and
converge near two exceptional points. Data is omitted for clarity where the
system becomes unstable and one hybridized mode grows exponentially until
the conditions of validity of eq. (6.21) are no longer fulfilled (parametric
instability). Figure adapted from Bernier, T6th, Feofanov, et al. (2018a).



6.4 Outlook

153

in amplitude in the case of level repulsion, while the feature corresponding to
the mechanical resonance takes the form of a peak in amplitude in the case
of level attraction. Represented on the complex plane, the resonances form
circles. In level repulsion (fig. 6.6b), the two circles are circumscribed. The
radii of the circles correspond to how the two hybridized modes are coupled
to the measurement channel. With a resonant pump tone A = €, the
two modes are coupled the same and the two circles have the same radius.
This is a direct analog of OMIT with a red-detuned drive as described in
section 3.6.2. For level attraction (fig. 6.6d) however, the circle corresponding
to the mechanical lies outside the circle of the microwave resonance.

6.4 Outlook

In summary, level attraction was experimentally demonstrated using a dual-
mode electromechanical circuit. Although related to the well-studied para-
metric instability of optomechanics, the vastly different dissipation rates for
the mechanical and electromagnetic modes prevented its observation until
now. Level attraction, similarly to level repulsion in open systems, gives rise
to exceptional points. In both cases, the real part of the frequencies converge
and a gap opens in the imaginary part (or vice versa) precisely at the excep-
tional point. In future work, the exceptional points of level attraction could
be harnessed to demonstrate topological phenomena by circling such a point
in a two-dimensional parameter space (Dembowski et al., 2001; H. Xu et al.,
2016; Doppler et al., 2016). Since the exceptional point only exists when the
dissipation rates of the two modes match exactly, the tunable mechanical
damping rate I'eg can be used as one parameter in such an experiment, with
the tunable coupling rate g as the second.
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Figure 6.6: Amplitude and complex responses for level repulsion and attrac-
tion. (a,b) Level-repulsion response corresponding to the data of fig. 6.5a for
a pump detuning A + Q,, = —27 x 180 kHz, shown in amplitude (a) and on
the complex plane (b). (c,d) Level-attraction response corresponding to the
data of fig. 6.5b for a pump detuning A — Q,, = —27 x 630 kHz, shown in
amplitude (¢) and on the complex plane (d).



Chapter 7

Outlook on high-efficiency opto-
mechanical measurements with
a traveling-wave parametric am-
plifier

In this chapter, we introduce the use of a traveling wave parametric amplifier
(TWPA), developed in a collaboration between the group of Prof. Siddiqi at
UC Berkeley and the Lincoln Laboratory at the Massachusetts Institute of
Technology. After an introduction in section 7.1, its installation and function
are detailed in section 7.2. In section 7.3, we present a demonstration of an
optomechanical measurement previously unattainable in our experiment. As
an outlook, we present in section 7.4 ongoing efforts to precisely calibrate
the added noise of the device and ideas for future experiments relying on
high-efficiency detection.

7.1 Introduction

The amplifier plays the central role in quantum measurements at microwave
frequencies. Since there exists no detector for microwave photons, gain is
required for the signals to be be measured classically. As such, the amplifica-
tion process itself can be thought of as the quantum measurement, as argued
in section 2.2.3. In appendix B, amplification is compared to the equivalent
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detection process at optical frequencies. The added noise of the amplifier
corresponds to an equivalent quantum efficiency

1

flea Nadded + 5 (1)
In the case of HEMT amplifiers, the efficiency typically is nggmr ~ 0.05. It is
as if 95 % of the signals of interest is discarded before measurement, resulting
in a much reduced signal-to-noise ratio compared to the ideal case. Long
averages are needed to resolve weak signals and certain experiments cannot
be performed since the noise is too large. The great potential improvement
in SNR motivates us to investigate more recent technologies that provides
amplification much closer to the quantum limit in terms of added noise.

Josephson parametric amplifiers (Castellanos-Beltran and Lehnert, 2007;
Bergeal et al., 2010; Hatridge et al., 2011) can provide an added noise close
to the quantum limit. They rely on a microwave cavity that is enhanced
by the nonlinearity provided by Josephson junctions. With a driving tone,
this nonlinearity results in a reduced effective dissipation rate for the cavity
and gain. The resonance at the heart of the mechanism limits the amplifi-
cation to a bandwidth near the resonance frequency. While the frequency
can be tuned, with a magnetic flux for instance (Castellanos-Beltran and
Lehnert, 2007), there remains strong limitations in terms of the bandwidth,
which is limited to the range of MHz due to the finite linewidth of the cavity.
To remedy this, Macklin et al. (2015) dispense with the cavity and form a
metamaterial transmission line with a long chain of Josephson junctions. By
sending a driving tone copropagating with the signal on the line, the interac-
tion through the nonlinearity results in amplification with a very low added
noise and a bandwidth in the order of GHz. The device is called a Josephson
traveling-wave parametric amplifier. One such device was provided to us by
the Lincoln Laboratory at the Massachusetts Institute of Technology.

7.2 Installing and operating the TWPA

We present here how the typical experimental setup introduced in section 3.3
is adapted to incorporate the TWPA. The new setup is shown schematically
and in photograph in fig. 7.1. The TWPA is placed on the breadboard at
the base plate, right after the sample holder. By precaution, one of the two
isolators is placed before it, to absorb any strong tones that might backscatter
towards the optomechanical circuit. The backward gain of the TWPA should
ideally be 0 dB, but if the pump tone used to drive it is reflected somewhere
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Figure 7.1: Setup for the TWPA. (a) Schematics of the modification of the
setup inside the dilution refrigerator to incorporate the TWPA. (b) Photo-
graph of the relevant components, with the ports labeled.

along the line, there can potentially be non-zero backward gain. The rest of
the components that sit inside the dilution refrigerator is not affected. The
auxiliary port has the added function to send in the driving tone for the
TWPA, as well as to be used for tone cancellation as previously.

The large sensitivity of the TWPA has the disadvantage that even rela-
tively weak coherent tones in the input signals can saturate the amplification
process, causing distortion. The tone cancellation strategy used previously
(detailed in section 3.3.4) that provides up to 30 dB of cancellation proved
insufficient. Instead, an improved approach, illustrated in fig. 7.1, was im-
plemented that can reliably cancel tones by over 70 dB, in an automated
way. We use digitally controlled tunable attenuators (Vaunix LDA-602EH,
with steps of 0.1 dB) and phase shifters (Vaunix LPS-802, with steps of 1
degree). With a set of one phase shifter and one attenuator, a tone can be
tuned in amplitude and phase precisely enough to cancel a copy of itself by
35 dB. Two stages of tone cancellation are used to achieve about 70 dB of
cancellation overall. The microwave tone used to drive the system is first
split. One half is sent to the input port, after some attenuation. The other
half goes through the tone cancellation circuit. It is again split in two, this
time with a directional coupler. Each part goes through a stepped attenua-
tor and a phase shifter before being recombined. The microwave tone that
drives the TWPA joins the tone cancellation signal and they both are sent
in the auxiliary port. The digitally controlled devices enables the tone can-
cellation procedure to be fully automatized through a programmed script.
One disadvantage compared to the previously used devices is that they have
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Figure 7.2: Scheme for tone cancellation. The TWPA requires efficient tone
cancellation for the strong optomechanical pump tones used. Through two
stages of tone cancellation with one variable attenuator and phase shifter
each, tone cancellation of 70 dB is achieved. Some attenuation is required
for the pump tone to match the large insertion loss of the tone cancellation
circuit.

a large insertion loss (about 10 dB at a minimum for the attenuator). Some
attenuation must be introduced on the input line to equilibrate the two arms.
That implies a reduction to the maximal power that can be applied on chip.

The linear response of the TWPA shows a dispersive feature near 6 GHz,
at which absorption occurs. When a strong microwave tone is applied to the
red of this feature, any other signal co-propagating is amplified in a wide
band, from about 4 to 8 GHz. The driving tone is swept both in frequency
and power to find an optimal operating point, with large and regular gain over
the bandwidth of interest. While the absolute gain and added noise are not
immediately accessible, they can easily be compared to that of the HEMT on
its own by turning the pump tone off. The comparison of the linear response
gives a measure of the relative gain provided by the TWPA. By comparing
the SNR of a weak calibration tone at a particular frequency in the same
conditions, the effective added noise of the TWPA can be measured relatively
to that of the HEMT. Although that is not a very precise calibration, this
provides an idea whether the TWPA is operated in good conditions. There
are parameters for the pump tone for which the gain appears high, but the
added noise is large as well, defeating the purpose.

7.3 Detailed balance in sideband cooling

The TWPA offers the combined characteristics of nearly quantum-limited
added noise over very large bandwidths. As a demonstration case of how
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this can be an advantage for optomechanical measurements, we present here
preliminary results on the measurement of both mechanical sidebands of the
pump tone in a sideband-cooling experiment. The cooling power can be
thought of as due to the imbalance between Stokes and anti-Stokes scatter-
ing of a pump tone applied to the system. The former adds energy to the
mechanical oscillator while the latter subtracts from it. For a red-detuned
pump tone, the anti-Stokes process dominates and the mechanical mode cools
down. For large enough pump powers however, the system reaches stationary
conditions with a detailed balance in which the two processes equilibrate. For
sideband-resolved optomechanical systems, the lower sideband is very weak
and hard to measure. We demonstrate the use of the TWPA by measuring
both sidebands at once. In the following, we first introduce the theoretical
model for the sideband cooling, and then the experimental results.

7.3.1 Theoretical model

For a pump tone at a detuning A, the Stokes and anti-Stokes processes haves
rates that respectively correspond to A™ (71, + 1) for the red sideband and
A~ iy, for the blue sideband (Aspelmeyer, Kippenberg, and Marquardt, 2014,
section VII.A), where i, is the average phonon occupancy and the rates are
given by

Rex

(k/2)2 4+ (A + Q)2

A =4 d A" =g frex .
g o T R22 + (A — Q)

(7.2)

The situation is illustrated in fig. 7.3a. The occupancy n,, is found by solving
the stationary solution of the birth-death process and given by

o A+ + ﬁm,thrm

M = S o (7.3)
This results in total average rates for the Sidebands
AT (A™ + (A + D)
I‘red - A _ A+ + Fm ) (74)
A7 (AT + i tn ')
Dhle = ’ , :
blu A _ A+ + Fm (7 5)

which are measured in quanta per second.

The sidebands are spread over a certain bandwidth in frequency domain,
with a density Isg(w) = e/ (27) /((w —wo)? + (T /2)?). This is normalized
such that [ Isp(w)dw = 1. To obtain the spectral density, measured in quanta
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per second per Hz, a different normalization must be used. The spectra of
the sidebands are given by Sied/biue(f) = Ired/biue X 2 X Isg(27f) to get the
correct normalization. What we are interested in is the maximum rate in the
middle of the Lorentzian. Those rates are given by

red (A_ — At +Fm)2 Feff ) (76)
max  AAT (AT F g aln) 44T Ay
Sblue - (A_ — A+ + Pm)Q - Feﬁ . (77)

Both are measured in quanta per second per Hz. The same spectra can be
computed from the Langevin equations. The noise due to the mechanical
bath and from the input electromagnetic field must be combined, as the
latter (giving rise to backaction noise) becomes relevant for large cooling
powers. The asymmetry between the two sidebands, that are proportional
to N, and ny,, + 1 can be traced to the interference of the electromagnetic
vacuum noise (Sudhir et al., 2017; Sudhir, 2018).

The sideband spectrum signals are to be compared to the noise back-
ground. Tt is constituted of vacuum fluctuations (0.5 quanta per second per
Hz) plus the added noise from the TWPA (a minimum of 0.5 quanta per
second per Hz). This means the SNR is given by

SNRyeq = -2 SNRype = 0 7.8
¢ % + Madded . % + Madded (7:8)

The derived results imply a priori that the effective mechanical occu-
pancy ng, can be extracted from the ratio of SNR of the two sidebands
SNR;ed/SNRype if the ratio AT /A~ is known, without any knowledge of the
TWPA added noise M,ggeq Tequired. Then using the knowledge of 7, the
added noise Mqqeq can be retrospectively deduced from the absolute SNR.
This relies on the assumption that both sidebands are amplified in the same
way through the TWPA. As we shall see, it is not verified in practice and
the measurement cannot be made in a fully self-calibrated manner.

7.3.2 Preliminary experimental results

The experiment is performed by applying a pump tone detuned to the red of
the cavity resonance of an optomechanical circuit. The two sidebands, ampli-
fied by the TWPA, are measured with a spectrum analyzer for various pump
powers. At each power, the tone cancellation parameters are optimized, to
cancel the pump tone by about 70 dB before the TWPA.
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Figure 7.3: Sideband asymmetry experiment with the TWPA. (a) Schematic
of the experiment in the frequency domain. A red-detuned pump tone is
applied to the cavity to perform sideband cooling. The two resulting me-
chanical sidebands are measured. (b) Mechanical occupancy n.,, deduced
from the asymmetry of the two sidebands. (c) Calibrated absolute power of
the noise background for the red (red dots) and blue (blue dots) sidebands.
Knowing 71,,,, the total noise background, including the added noise Nyqgeq 18
deduced from the absolute SNR of each sideband. (d) Quantum efficiency of
the TWPA for each sideband, deduced from the added noise M, qded-
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The original aim was for a fully self-calibrated experiment, relying on the
assumption that the added noise of the TWPA is the same at the frequencies
of both sidebands. However, we find this not to be the case. For low cooling
powers (corresponding to a large mechanical occupancy ny,), the ratio of SNR
of the two sidebands SNRyue/SNR,eq should be given by A=/AT. The latter
depends only on the detuning A, the dissipation rate x and the mechani-
cal frequency €),,, and can be computed independently. The measured ratio
SNRpue/SNR,eq exceeds the computed ratio A~ /AT (which would imply a
negative mechanical occupancy in the model). We suppose that it is due
to a difference in added noise at the frequencies of the two sidebands, that
increases the measured ratio compared to the model. By supposing a differ-
ence in added noise of 1.6 dB, the experimental data correspond to what is
expected. We present those here as preliminary results. Further calibrations
are necessary to confirm that such a difference in added noise exists and is
indeed what causes the discrepancy.

The results are shown in fig. 7.3. The sample is HY B-20150924-4-17, using
the microwave resonator at 5.3 GHz. We find that the mechanical oscillator
is cooled to n, & 0.5 quanta, from the measured ratio SNRye/SNRyeq (see
fig. 7.3b). Then, the mechanical occupancy is used in turn to transform
the SNR into a measure of the background noise with an absolute scale (see
fig. 7.3c). We assume that the apparent drop in the noise for larger cooling
powers is due to classical heating from the pump tone noise that is not taken
into account in the model and increases the SNR ratio. The background
noise of approximately 2 quanta correspond to an added noise of 1.5 quanta
and a quantum efficiency of 0.5 (see fig. 7.3d).

An example of the two measured sidebands is shown in fig. 7.4. The use-
fulness of the TWPA for such a measurement is demonstrated by comparing
the result when switching the TWPA pump tone off. The SNR of the side-
bands, in particular the red-detuned one, is reduced dramatically when only
the HEMT amplifier is used to amplify them.

7.4 Precise noise calibration

The TWPA promises tremendous improvement in measurement efficiency,
boosting SNR, reducing measurement time and allowing very weak signals
to be detected. Nevertheless, to unleash its full potential, a scheme for the
precise calibration of the added noise must be implemented. The method
used to calibrate the HEMT amplifiers, introduced in section 3.4.2, cannot
be used, since it relies on changing the temperature of the whole mixing-
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Figure 7.4: Comparison of the sideband measurement with the TWPA turned
on and off. The two sidebands of a pump detuned to the red of a microwave
cavity are measured while the pump tone that drives the TWPA is on (green)
and off (blue). In the latter case, the SNR is limited by the added noise of
the HEMT amplifier. Figure courtesy of Alexey Feofanov.

chamber plate and that would affect the performance of the TWPA. In the
following, we introduce the ongoing effort to calibrate the TWPA with a
locally heated matched load.

As explained in section 3.4.2, at the heart of any added-noise calibra-
tion lies a calibrated noise reference, that provides an absolute power scale
compared to which the amplifier performance can be gauged. A cryogenic
matched load (XMA 2001-6112-02) at a known temperature is used for this
purpose. The temperature of the load is tuned with a heater and measured
with a thermometer. The required equipment configuration is illustrated in
fig. 7.5. A holder made of OFHC copper was designed and fabricated by the
workshop of the institute of physics at EPFL (shown in fig. 7.5b, the files
are available online (Bernier, 2018)). The thermometer (Lakeshore Cernox
CU-HT) is clamped to it with a bolt that is screwed in a threaded hole. The
heater (Lakeshore HTR-50) is inserted in a cylindrical hole of the holder and
fixed with varnish. The holder surrounds the cylindrical matched load and
can be tightened around it with a bolt to guarantee good thermal contact.
New DC lines are installed inside the dilution refrigerator. A twisted pair
connects the heater to a control box (Lakeshore 370 AC resistance bridge),
and is used to send a current and increase the temperature. The resistance of
the thermometer is measured with a 4-wire method, using the same control
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Figure 7.5: Setup for the calibration of the TWPA. (a) Schematic of the
setup. The matched load replaces the sample holder on the base plate. It is
fixed in an OFHC copper holder, with a thermometer and a heater. DC lines
are required to supply the current for the heater and measure the resistance
of the thermometer. (b) Photograph of the load in the holder, installed in
the dilution refrigerator (photograph courtesy of Nick Sauerwein).

box.

In a first preliminary measurement, the thermometer is fixed to the base
plate. Using data acquired during the cooldown and warmup of the dilu-
tion refrigerator, the resistance of the thermometer is calibrated against the
existing mixing-chamber thermometer.

In the main measurement, the load (fixed in the OFHC-copper holder)
replaces the sample holder on the breadboard of the base plate. The added
noise can then be calibrated exactly at the reference plane of the chip, taking
into account any insertion loss between the sample holder and the TWPA,
as well as any added noise of the rest of the measurement line, as explained
in section 3.4.2. The aim is to measure the added noise of the TWPA in this
situation and use this calibration for subsequent experiments.

Unlike the HEMT amplifiers, the performance of the TWPA is not con-
stant. It depends critically on the pump tone that drives the amplification
process. We do not suppose that the gain and added noise are always the
same at the same nominal power and frequency of the pump tone. Any slight
variation along the line, any reflections due to an impedance mismatch will
change the power slightly and affect the result. Therefore, we need a way to
translate the calibration result to a later time when the added noise might
have changed. For this purpose, we plan to use a calibration tone that prop-
agates alongside the TWPA pump tone. The SNR of such a tone gives a
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local relative measure of the added noise. The calibration with the heater
anchors it on an absolute scale. For a given configuration of the TWPA, both
the added noise M,qqeq[w] and the SNR of the calibration tone SNR, [w] are
recorded as a function of frequency w. In an actual experiment, where a chip
supplants the heated load, the SNR of a calibration is measured at equal
power and frequency. If the path of the calibration tone is in all points iden-
tical, any modification of the SNR can be attributed to a change in added
noise of the TWPA. The correct added noise can then be deduced from the
calibration.

The precise calibration of the TWPA, still an ongoing effort, will refine
this powerful tool for high efficiency measurements. Without an absolute
scale given by the added noise of the TWPA | it is difficult to extract any in-
formation from the measured signals, even if the SNR is improved compared
to the HEMT. The sideband asymmetry measurements of section 7.3 can be
revisited to confirm the results and analyze the low mechanical occupancy
achieved with sideband cooling more carefully. As a further step, there are
plans to measure the ponderomotive squeezing (Purdy et al., 2013) in the
microwave domain. That requires an accurate knowledge of the level of quan-
tum noise to ensure that the squeezing is indeed of the vacuum fluctuations.
In general, this new measurement technique constitutes a colossal improve-
ment in the quantum efficiency previously achieved in our experiments and
will improve measurement throughout microwave circuit optomechanics.






Chapter 8

Conclusions and outlook

We first summarize the results of this thesis in section 8.1, and proceed to
describe future possible directions for the work in section 8.2.

8.1 Summary of the results

Microwave optomechanical circuits constitute a powerful framework in which
to study the linear interactions of harmonic oscillators, down to their quan-
tum fluctuations. The linearization of the optomechanical coupling with a
driving tone effectively renders the coupling rate and the relative frequen-
cies of the two modes (in the rotating frame) tunable (see section 2.1.4). In
chapter 4, we have shown how the relative dissipation rates can be controlled
as well, giving access to the full parameter space of two coupled modes.
We demonstrate this capability by reversing the usual hierarchy of dissipa-
tion rates of optomechanical systems, with a mechanical dissipation rate that
dominates over the electromagnetic one. The mechanical oscillator thus plays
the role of a reservoir, allowing the microwave cavity properties to be altered.
The microwave mode can be turned into a maser and amplify signals with
nearly quantum-limited added noise, demonstrating that the mechanical os-
cillator acts as a useful quantum resource.

The next step in our study is to ask the fundamental question of how the
relation between two oscillators can be made nonreciprocal. How can the
symmetry be broken such that one oscillator receives information from the
second but not the other way around? In chapter 5, we demonstrate such a



168

Conclusions and outlook

unidirectional interaction between two microwave cavity modes interacting
through two intermediary mechanical modes. The employed method relies
on two key requirements that are naturally provided through the optome-
chanical interaction. First, the symmetry is broken by applying a complex
phase to the interaction, which corresponds to the phase of the driving tone
that linearizes the coupling between the electromagnetic and the mechanical
mode. Second, the dissipative nature of the mechanical oscillators, which
act as links between the two microwave modes, is required to absorb the
information in one direction.

The study of linear interactions between two harmonic modes culminates
in chapter 6 with a classification of the types of possible coupling situations,
through the lens of the different ways an exceptional point can be realized.
In particular, the well-known case of level repulsion is contrasted with level
attraction. Both are demonstrated in the same microwave optomechanical
circuit, arising respectively when the driving tone linearizing the optome-
chanical interaction is red and blue detuned. The dissipation engineering
technique introduced in chapter 4 is essential, as the dissipation rates of the
two modes must be made equal for level attraction to occur.

Finally, ongoing efforts for a new measurement scheme are presented in
chapter 7. The travelling-wave parametric amplifier can provide a greatly
improved quantum efficiency in measurements over a wide bandwidth.

8.2 Outstanding challenges and outlook

The different main results of this thesis represent research direction that could
be further explored in the future. The mechanical reservoir demonstrated in
chapter 4 can be used for more than amplification and masing. For instance,
by using two pump tones to couple the microwave mode to it, it can be
used to engineer a squeezed ground state for the microwaves (Kronwald,
Marquardt, and Clerk, 2013). The demonstrated optomechanical isolator of
chapter 5 can readily be turned into a directional amplifier (Malz et al., 2018),
and with the addition of a third microwave mode into a circulator (Bernier,
Té6th, Koottandavida, et al., 2017; Barzanjeh et al., 2017). The topological
properties of the exceptional points of the level attraction demonstrated in
chapter 6 could be demonstrated by encircling one in parameter space (H.
Xu et al., 2016; Jing et al., 2014). The high-efficiency measurements in a
large bandwidth with a TWPA shown in chapter 7 could be used to measure
ponderomotive squeezing (Purdy et al., 2013) and to cool the mechanical
oscillator to its ground state using feedback (Wilson et al., 2015; Rossi et al.,
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2018). In the longer term however, another direction might prove especially
fruitful for this optomechanical platform.

The optomechanical interaction can be realized in a variety of systems
and one might ponder on the particular merits of microwave optomechanical
circuits. In the author’s opinion, the implementation as a circuit precisely
constitutes its main quality. Any circuit shape is as easy (or complicated)
to fabricate as any other. The complexity of function is only limited by
the design. That makes microwave circuits especially versatile. They can
be hybridized with other systems, for instance integrating superconducting
qubits on the same device (O’Connell et al., 2010; Lecocq, Teufel, et al.,
2015; Pirkkalainen, Cho, et al., 2015). The direction followed in the work
of this thesis has been the integration of multiple optomechanical systems
together: multimode cavity optomechanics with up to two electromagnetic
and two mechanical modes.

There are challenges to extend the number of modes further, though.
First, it has proven difficult to design a circuit with more microwave modes
in a simple way (Stevens, 2017). New microwave engineering ideas are needed
for scalable designs that can accommodate an arbitrary number of modes.
The second challenge concerns the structure of the mechanical element itself.
The suspended capacitor has not had any substantial change in its design
since its first demonstration in 2011 (Teufel, Donner, et al., 2011). It suffers
from a few weaknesses that should be remedied in the future. The precise
shape of its bulging membrane, clamped to the substrate on the sides, varies
substantially from one capacitor to the next. That hinders the design of
microwave resonances since the average gap should be precisely known at
cryogenic temperatures to know the resulting capacitance. The mechanical
properties of the membrane vary as well as they depend on local stress which
cannot be finely controlled.

One idea is to give the vibrating membrane a level geometry with a flat
surface. It could be clamped to each side of a “trench” dug out in the
substrate, with the second capacitor plate at the bottom, as illustrated in
fig. 8.1. The gap that determines the capacitance would then be precisely
known and the stress in the film could be more homogeneous and engineered
for better mechanical performance. From there, the film could be patterned
to improve the quality factor using the techniques of soft clamping and strain
engineering (Tsaturyan et al., 2017; Ghadimi et al., 2018).

With the capability to make reliable multimode optomechanical circuits, a
first step would be to implement a circuit with three microwave modes inter-
acting with two mechanical modes and realize a circulator (see section 5.5).
For more general systems with n microwave modes and m mechanical modes,
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Figure 8.1: Proposal for a new geometry for the capacitor. A “trench” is dug
in the substrate (in purple) over which the vibrating capacitor membrane is
stretched (in gray). Figure courtesy of Amir Youssefi.

an optomechanical lattice can be built. This would form a complex nonlinear
medium for which topological phases have been predicted (Peano, Brendel,
et al., 2015; Peano, Houde, et al., 2016).



Appendix A

The rotating wave approximation

The importance of the rotating wave approximation (RWA) in optomechanics
(as well as more generally in quantum optics) justifies to carefully examine
under what conditions it is valid. We start from the time-independent Hamil-
tonian of eq. (2.22). Only the case A ~ —(),, is examined for simplicity. The
twin case A & (), follows an almost identical argument.

In the rotating frame, a cavity mode da interacts with the mechanical
oscillator b with an almost-resonant drive of detuning A = —€,,, — 9, with
the Hamiltonian

H = h(Qu + 8)6a"a + h,6bT6b + hg(5b + 6b%) (6a + da'). (A.1)

In a new rotating frame with respect to the rest Hamiltonian Ho = A(Shy, +
5)6&T5d + R, 6b16b, only the time-dependent interaction remains in the in-
teraction picture with

H/ — hg(dl;e_igmt + (SZ;Teith)(5&6_7:(Ql“+5)t + 5&TBZ(QII)+6)t)

= hg(6adbte™ + §al5be™ 4 dadbe Pttt L 551 bt el (2 hm+oty (-2

The effect of the first two slowly oscillating terms should be compared to
the last two that have fast oscillations. Let At be a time short compared to
1/6, but large compared to 1/(2€2, + J). During that time, the state evolves
due to the slow terms with a change of the order g At. In the same time,
the fast terms oscillate many times in a way that cancels their effect; their
contribution is limited to the fraction of the last period not compensated by
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Figure A.1: Comparison of cases when the RWA is valid or not. The
case without dissipation is considered with two modes evolving according
to eq. (A.1), with a detuning 6 = €2,,,/1000. The average population of one
mode for the classical evolution is shown in the exact solution (orange solid
line) and in the RWA (purple solid line). (a) Evolution for a coupling rate
g = 0.05Q,,. The RWA is valid and the two lines agree on average. (b) Evo-
lution for a coupling rate g = 0.25€,,. The RWA is not valid anymore and
the oscillations due to the counter-rotating terms have a contribution that
does not cancel out on average.

previous cycles, with a change of the order of g/(2,, + 0). The fast terms
can therefore be neglected if § < 2€),,.

We note that although the comparison between the fast and slow terms
does not involve g, the argument relies on the fact At is a short time scale
such that g At < 1. This implies the supplementary condition of a small
coupling rate g < 2. If this last condition does not hold, then even
though the fast terms effects cancel out on average, they can still contribute
significantly to the state evolution and the approximation to neglect them is
not justified. In fig. A.1, the two case are compared.

The condition § < 2€2,,, would be sufficient for the RWA if the Hamiltonian
eq. (A.1) were all that dictates the time evolution. In fact, the interaction
with the environment plays a role and the dissipation rates x, I'y,, must be
taken into account. We write the Langevin equations (forgetting here the
input modes to concentrate on the internal dynamics) as

§al = —igoh T/t _ o571 i20m+0)"Tm /2t (A.3)
5'3/ — g8 eI g 5a/t (—120m A8 —r/2)t. (A.4)
where we have used the change of variables 6’ = /254, i/ = eTm/2t§h to

place dissipation and oscillation dynamics on the same footing. The condi-
tion § < 2Q, is no longer in itself sufficient to neglect the rapidly oscillating
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terms. If the dissipation rate x is large, the fast and slow terms both de-
cay similarly in a short timescale, preventing any cancellation due to the
oscillations. To recover the previous condition, we assume k < 4€),,, a con-
dition known as the sideband resolution, when the mechanical sidebands with
respect to cavity resonance fall well outside of the cavity linewidth. The con-
dition I'y, < 4€),,, similarly required, is generally true as it is equivalent to
a large quality factor for the mechanical oscillator.

In summary, we have shown three conditions under which the RWA is
valid. First, there is the condition of sideband resolution k < 4€2,,; second,
the condition of resonant drive ||A] — Q| < 2€,; third, the derivation is
only valid for a small enough coupling rate, when g < 2€),,,.






Appendix B

Quantum heterodyne detection
as an amplification process

Although the fields of circuit QED and quantum optics study similar phe-
nomena, in practice there is often a dissonance in the language used to de-
scribe the experiments, that creates unnecessary confusion. A major source
of the schism lies in the measurement processes that use different mecha-
nisms, since there exist no sensitive photodetectors working at microwave
frequencies. Nevertheless, there is a strong formal analogy between the use
of a low-noise microwave amplifier and the detection schemes used at optical
frequencies. In this appendix, we present an overview of the heterodyne de-
tection that is commonly used in quantum optics and how it relates to the
quantum measurements of continuous signals in general. We then present the
similarities with the phase-preserving amplifier introduced in section 2.2.3
and try to bridge the gap in the language used to describe the two. We
follow the treatment of the subject by Sudhir (2018).

In appendix B.1, the formal requirement for a quantum continuous mea-
surement are presented in order to link it to the definition of the quantum
spectral density. In appendix B.2, the spectral density of the signal is derived
for the direct photodetection of an optical field with a strong mean-field com-
ponent. In appendix B.3, the spectral density for the heterodyne detection
is derived. In appendix B.4, we compare the case of heterodyne detection
in quantum optics to the scattering amplifier used in circuit QED and show
how they are equivalent.
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B.1 Quantum measurements and spectral den-
sities

A key question in the quantum measurement of continuous signals is how
the classical random signal that is the outcome of measurement relates to
the quantum observable, or how the classical spectral density relates to the
different definitions of the quantum spectral density (egs. (2.53) and (2.54)).

We consider a Hermitian time-dependent observable X (t) to be mea-
sured. Subtracting the average value, the quantum fluctuations of X (t) are
0X(t) = X(t) — (X(t)). The process is assumed to be stationary, with the

quantum probabilities associated with X (¢) independent of time. We re-
strict ourselves to a class of operators called continuous observables defined
by Sudhir (2018, section 2.1.2) to obey

[5)2(75),5)2(7:')] — 0. (B.1)

Thanks to this absence of memory, the measurement of 6X at time ¢ has
no influence on the result of a second measurement at time t’. All the ob-
servables 6X (t) indexed by t form a set of commuting observables that can
be thought to obey a many-variable probability distribution, mimicking a
classical stochastic process.

A new alternative set of observables is given by the windowed Fourier
transforms of § X (1),

T/2
5 X 7w -7 / et X (1 (B.2)

T/2

now indexed by w. Note that although the operators are not Hermitian,
they can be written in the form X7 [w] = A+ iB with A and B commuting
Hermitian operators. Due to eq. (B.1), they also form a set of commuting
observables that can be measured independently without disturbing each
other. The variance in their measurement is given by

Var (5X[w]> VarA + VarB = < {5XT ](5XT }>—>35X5X[]

T—o0
(B.3)
The quantum symmetrized spectrum density is precisely the variance of the
observables 6 X7 [w]. This makes the connection to the classical signal cor-
responding to the measurement straightforward. The fluctuations in the
random classical signal are given by the the quantum variance (B.3) such
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that the classical spectral density is given by the quantum spectral density
S;xsx|w]. Note that there is some arbitrariness in picking the symmetrized
spectrum here, as it is equal to the unsymmetrized definition since all oper-

ators commute with each other.

B.2 Direct photodetection: measuring the am-
plitude quadrature

Before diving into the full details of the heterodyne detection, we first con-
sider the direct photo-detection of a travelling wave containing a large classi-
cal amplitude, with a(t) = ae~™'+da(t). The first step is to go to a rotating
frame in order to keep only the slow changes in the field, da'(t) = e™“='da(t)
to get a(t) = (a+ da'(t))e ™' (the prime is henceforth dropped for ease of
notation). The detector measures the flux of photons

n(t) = 6a' (t)oa(t) = a® +a (da(t) + da'(t)) + da’(t)sa(t) (B.4)

where the mean-field amplitude a is assumed to be real. For a large amplitude
a, only the terms linear in 8a, da' are kept and the third term is neglected.
The photon flux gives a measure of the amplitude quadrature of the field
op = %(5& + 6a'). The photon flux fluctuations 67 = 7 — <ﬁ> obeys

[07(t), 60 ()] = 2a[op(t), 5p(t')] = a ([da(t), oa' ()] + [6a'(2), da(t)]) =0
(B.5)
and constitutes a continuous observable. The photocurrent I(t), the classical
signal that corresponds to the measured photon flux, has the spectral density

S]][W] = QdQSgﬁgp[W] (B6)

(the proportionality constant between the photon flux and the photocurrent
is taken to be 1 here for simplicity). The quantum fluctuations of Jp are
amplified by the amplitude a to form a classical signal I(t).

While the treatment above takes the photo-detector to be ideal, a realistic
photo-detector loses part of the signal, which then cannot be measured. We

1 While formally we have that <5dT(t)5d(t)> = 0(0) — oo from eq. (2.46), this is only
due to the formalism used to describe the white noise spectrum. In reality, the zero-time
correlation due to the quantum fluctuations must be finite and the short-time correlations
spread over a time very short compared to the bandwidth of the detector, as mentioned in
section 2.2.1. Neglecting the term da'(t)da(t) is thus justified and avoids having to deal
with the infinities.
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model it as an unequal beam-splitter (characterized by the real parameter 1)
that combines the signal a with that of another port a (assumed to be in
the vacuum state) in a new field

Gaet(t) = /n(a+da(t)) + /1 — nag (B.7)

that is detected by an ideal photo-detector. The photon flux reaching the
detector is now

frae(t) = ma® + ma (Sa(t) + 00t (1)) +2¢/n(T — n)a (ao(t) + al(®))  (B.S)

that combines the amplitude quadratures of both input 0p and vacuum port
0po. In that case, the photocurrent spectrum is

S11{w] = Ssigesiae W] = 2070 Sspsplw] + 2n(1 — 0)a*Spop, [w]. (B.9)

If the quantum fluctuations of the field da are decomposed into signal and
vacuum fluctuations dp = dps + 0Pyac, the result can be re-expressed as

Sirlw] = 277251283p5ﬁ[w] + 2na’ (Usvac [w] + (1 — 77)82;3[“]) (B.10)

opop
_ 1

The vacuum port replaces the part of the vacuum noise of the signal that
is removed by the finite efficiency 7, such that it is as if the loss affects the
signal only and not the quantum noise. In the ideal case n = 1, no extra noise
must be added to the system. The process (analog to a homodyne detection)
corresponds to the case of phase-sensitive amplification, which can amplify
a single quadrature without any noise.

In practice, there are other sources of classical noise in the detection pro-
cess that give a contribution to Sj;[w]. By increasing the amplitude a, they
can be made negligible compared to the (amplified) vacuum fluctuations and
the detection is said to be “shot-noise limited”.

In the rotating frame, only the slow changes of the field da(t) are taken
into account, by canceling the rapid oscillations at frequency ws. This means
that the spectrum at frequency w in the measured signal I(¢), which is pro-
portional to the spectrum of the slow-varying field, actually corresponds to
changes of the optical field at the frequency ws 4+ w in the laboratory frame.
There is process of “mixing down” in which the signal at optical frequencies
are brought down to much lower frequencies by combining it with a local
oscillator (here given by the signal itself).
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B.3 Optical heterodyne detection

We are now ready to investigate the heterodyne detection of an optical field.
The signal of interest that carries information near a carrier frequency wy
is combined with a strong local oscillator at frequency ws + A through a
balanced beam-splitter. The fields in the two output arms of the beam-
splitter are given by

faeea(t) = —= (a+ 6a(t)) e + 2 (ago + dago(t)) e (B.11)

et,i \/§ \/5

where v = 1 for the port labeled with i = 1 and v = —1 for the port labeled
with ¢ = 2. The corresponding photon fluxes are

1 2 2

. . v .
TNdet,i(t) = —a + ?aLo + a(éa( )+ 5aT(t)> + Lo <5aLo(t) + 5aTLO(t)>
v —i i v i . —i

+5a <(5aLo() A4 sal (e At) + S0 (5a<) At 4 sat(t)e At).

(B.12)

Of interest is only the last term, that measures the fluctuations of the signal
0a amplified by the local oscillator amplitude apo. Balanced heterodyne
detection gets rid of most other terms. It consists in measuring both outputs
with two detectors and subtracting the two resulting photocurrents, to obtain

[het (t) = ﬁdet,l(t) — ﬁdet,2(t)
=a ((5dLO (t)e*iAt + (5&£O (t)eiAt) + dro <(5d(t) it + sat (t)efmt)_
(B.13)

For a sufficiently strong local oscillator ay,o > a, the first term can be ne-
glected?. The heterodyne photocurrent I,.; measures a rotating quadrature
6G7® = (6ae™® + §aTe?®) /\/2 with A(t) = At. The quadrature rotates in
phase space and alternates between the phase and amplitude quadratures at
a rate given by the detuning A. The operator obeys

500,60 0] = s~ )sinAE - 1) =0 (B14)

ensuring that it is a continuous observable, despite the fact that amplitude
and phase quadrature do not in general commute with each other.

2 This also assumes that the classical noise associated with the local oscillator in dar.o
on top of the vacuum fluctuations is not too strong.
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The correlations of the heterodyne photocurrents are

a?iuhet(t)[het(f'» =(oal (t)sa(t')ye AU~ + (sa(t)sal () )e' =)

+ (da(t)sa(t’))e ) 1 (saT (t)sal (1) e AEH,
(B.15)

The last two terms are not stationary; they depend on t + ¢’ rather than
t —t'. They are cyclostationary noise: a stationary process that is period-
ically oscillating in time, here with a phase oscillating at a frequency 2A.
Fortunately, in most practical cases, the frequency 2A is large compared to
the frequency of the signal of interest. They can then be neglected and the
process becomes stationary again (in the relevant bandwidth). It is then
possible to define the spectral density of the photocurrent as

S]ﬁt [w] = aio /°° dt (<5dT(t)5d(0)>e—z‘(w—A)t + <5d(t)5&T(0)>e_i(“’+A)t)
= 10 (Ssatsalw — Al + Ssasatlw + Al).
(B.16)

The classical photocurrent spectrum is proportional to the unsymmetrized
quantum spectrum Sg;ts;, shifted in frequency. The quantum information,
that was encoded in the asymmetry between positive and negative frequencies
in Sy,15,Ew] is transcribed classically at the positive frequencies Sp[A £ w]
(for |w| < |A|). For the spectrum to be overall classical and symmetric
for negative frequencies, the conjugated term S;,5,+ that presents the same
information at negative frequencies is necessary. This conjugated term has
the effect to increase the noise background at positive frequencies.

A classical interpretation of the heterodyne scheme may help shed some
more light for the interpretation of the conjugated term. The local oscillator
beats at a frequency A with the signal around wg, but equally with whichever
field lies symmetrically on the other side, at ws +2A (see fig. B.1). The term
Ssasatlw + A], detuned by 2A with respect to Syzis.lw — AJ, represents pre-
cisely that alternative input port. Classically, that port can have zero field
such that the contribution of Sg,s,t[w + A] at positive frequencies vanishes.
Quantum mechanically however, there exists a minimum amount of distur-
bance due to vacuum fluctuations. The spectrum Sy, s, [w + A] (evaluated at
positive frequencies) can then be interpreted as representing the vacuum fluc-
tuations of the input field at the symmetric heterodyne port at ws+2A. This
gives a white noise of 1 as the minimum contribution from the vacuum fluctu-
ations and limits the performance of the heterodyne measurement. Precisely
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Figure B.1: Scheme for heterodyne detection. The signal at w, beats with
the local oscillator at ws + A. The vacuum noise on the other side beats as
well with the LO and can be understood as the source of the increased noise
background in the heterodyne signal.

the same was observed in the case of the linear amplifier in section 2.2.3: the
minimum added noise is the amount necessary to symmetrize the white noise
due to vacuum fluctuations between Sy;t5, and Sy;sat-

For a realistic detection process with a finite quantum efficiency 7, the
same steps can be taken as from eq. (B.6) to eq. (B.9). The photocurrent
becomes

Sl = o (n(Sutsalss = Al + Syl + A1) + (1=m))  (B1)

where the vacuum port fluctuations have been introduced. If we assume that
only the vacuum fluctuations of the conjugated term Sy,5,t[w + A] play a
role for positive frequencies, the expression finally simplifies to

S}ﬁt [W] = néio (778&1*5@[“ - A] + 1)~ (B-18)

Compared to eq. (B.10), the white noise background has gone from 1/2 to 1.
This is because a single quadrature (amplitude) was measured in the case of
direct photodetection, while heterodyne detection measures both quadratures
at once, with the penalty of a lower signal-to-noise ratio.

B.4 Comparison between heterodyne detec-
tion and phase-preserving amplification

Strong similarities exist between the heterodyne detection and the phase-
preserving amplifier considered in section 2.2.3. We rewrite eq. (B.18) as
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1 1
———SW] = Syatsalw — A] + — B.19
ngaio 11 [ ] JaTéa[ ] n ( )
for positive frequencies. Comparing it to eq. (2.67), we can identify G =
n*a? o and ngue + 1 = 1/n. The heterodyne detection can be interpreted as
linear amplification with a power gain ai (reduced by inefficiencies) and an

added noise L
dded = — — —. B.20

Fully quantum efficient detection corresponds to ng, = 0 and hence to an
added noise (as defined for the symmetrized spectrum) of Nqgeqd = 1/2.

In heterodyne detection, the nonlinearity of the photodetector (that mea-
sures the field intensity rather than its amplitude) is required to mix the
signal and local oscillator. By contrast, the amplifier amplifies a combina-
tion of signal and idler modes independently of the measurement. Despite
the differences, precisely the same constraints in terms of added noise apply
to them, since they both amplify the two quadratures of the field at the same
time.

There is an equivalence between the notion of thermal added noise in
amplification and quantum inefficiency in heterodyne detection. At optical
frequencies, the fields can be assumed to be in the vacuum state even at room
temperature. For this reason, the added noise is always assumed to be given
by vacuum fluctuations. A non-ideal quantum efficiency for the detector loses
signal while keeping the noise to the level of vacuum fluctuations, effectively
resulting in higher added noise in exactly the same way as a finite thermal
occupancy implies for microwave amplification. The difference is in a way
down to model preferences. In either case, the same fundamental quantum
limits must be respected. One could have as well assumed the vacuum port
to have a finite effective temperature in modeling the heterodyne detection,
or introduced a quantum efficiency for the microwave amplifiers. They are
equivalent in the end.

Similarly, although we do not go through the details here, homodyne de-
tection of a single quadrature corresponds to the phase-sensitive amplifier.
Since only one quadrature is amplified, no minimum amount of added noise
is required by quantum mechanics, as the noise from the idler port can effec-
tively be directed to the unmeasured quadrature.



Appendix C

Samples used in the experiment

We give a list here of the different fabricated chips that were used in the ex-
periments within this thesis. The layout is given, as well as measured param-
eters. Because the latters can change over time (especially after warm-up and
cool-down cycles), only representative values are shown. For that reason, the
parameters given in the chapters corresponding to the experiments can differ
slightly. On a single chip, there are typically multiple microwave resonators,
with and without associated mechanical modes. For the hybrid circuit where
two microwave modes interact with a common mechanical mode, the two
values of gq are given separately only when they differ significantly.
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Table C.1: HYB-20150924-4-24

H¥B-28158924-4-24 C(C=217um

24

Planar resonator
Microwave properties

we/2m K/2m Kex /2T Ko/2m
3.0 GHz 97 kHz 17 kHz 79 kHz

Single optomechanical resonator
Microwave properties

we/2m K/2m Kex /2T Ko/2m
5.59 GHz 104 kHz 11 kHz 94 kHz

Mechanical properties
O /27 Chw/27 go/2m
4.5 MHz 60 Hz 53 Hz

Hybrid optomechanical resonators
Microwave properties

we/2m K/2m Kex /2T Ko/2m

4.26 GHz 118 kHz 42 kHz 76 kHz
5.48 GHz 4.48 MHz 4.23 MHz 245 kHz

Mechanical properties
Qu/2m Tw/27 go/2m
5.33 MHz 30 Hz 60 Hz
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Table C.2: HYB-20160524-1-12

H¥B-28168524-1-12 C=214um

I % 1

]
il

12

Planar resonator
Microwave properties

we/2m K/2m Kex /2T Ko/2m
3.05 GHz 97 kHz 17 kHz 79 kHz

Single optomechanical resonator
Microwave properties

we/2m K/2m Kex /2T Ko/2m
5.09 GHz 104 kHz 11 kHz 94 kHz

Mechanical properties

QO /2w [y/2m go/2m
4.5 MHz 60 Hz 53 Hz

Hybrid optomechanical resonators
Microwave properties

we/2m K/2m Kex /2T Ko/2m

4.13 GHz 197 kHz 150 kHz 47 kHz
5.24 GHz 3.32 MHz 3.07 MHz 250 kHz

Mechanical properties

O /27 Iy /27 go/2m

6.35 MHz 100 Hz 106, 79 Hz
10.9 MHz 10 Hz 12 Hz
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Table C.3: HYB-20150924-4-17

H¥B-28158924-4-17 C=273um

% -
i v il

17

Planar resonator
Microwave properties

we/2m K/2m
3.05 GHz 204 kHz

Hybrid optomechanical resonators
Microwave properties

we/2m K/2m

3.95 GHz 331 kHz
5.33 GHz 5.3 MHz

Mechanical properties
O /27 Cw/27 go/2m
8.82 MHz 200 Hz 109 Hz
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Table C.4: AY _old_moreH-20180516-1-21
AY_old_moreH-28188516-1-21

S
W

21

Planar resonator
Microwave properties

we/2m K/2m
3.14 GHz 285 kHz

Hybrid optomechanical resonator
Microwave properties

we/2m K/2m

4.48 GHz 927 kHz
6.433 GHz 331 kHz

Mechanical properties

O /27 /27 go/2m
6.15 MHz 20 Hz 0, 194 Hz

Single optomechanical resonator
Microwave properties

we/2m K/2m
7.64 GHz 200 kHz

Mechanical properties

O /27 /27 go/2m
5.62 MHz
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