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Abstract
Multiple object tracking is a crucial Computer Vision Task. It aims at locating objects of

interest in the image sequences, maintaining their identities, and identifying their trajectories

over time. A large portion of current research focuses on tracking pedestrians, and other types

of objects, that often exhibit predictable behaviours, that allow us, as humans, to track those

objects. Nevertheless, most existing approaches rely solely on simple affinity or appearance

cues to maintain the identities of the tracked objects, ignoring their behaviour. This presents a

challenge when objects of interest are invisible or indistinguishable for a long period of time.

In this thesis, we focus on enhancing the quality of multiple object trackers by learning and

exploiting the long ranging models of object behaviour. Such behaviours come in different forms,

be it a physical model of the ball motion, model of interaction between the ball and the players in

sports or motion patterns of pedestrians or cars, that is specific to a particular scene.

In the first part of the thesis, we begin with the task of tracking the ball and the players in team

sports. We propose a model that tracks both types of objects simultaneously, while respecting the

physical laws of ball motion when in free fall, and interaction constraints that appear when players

are in the possession of the ball. We show that both the presence of the behaviour models and the

simultaneous solution of both tasks aids the performance of tracking, in basketball, volleyball,

and soccer.

In the second part of the thesis, we focus on motion models of pedestrian and car behaviour

that emerge in the outdoor scenes. Such motion models are inherently global, as they determine

where people starting from one location tend to end up much later in time. Imposing such global

constraints while keeping the tracking problem tractable presents a challenge, which is why many

approaches rely on local affinity measures. We formulate a problem of simultaneously tracking

the objects and learning their behaviour patterns. We show that our approach, when applied in

conjunction with a number of state-of-the-art trackers, improves their performance, by forcing

their output to follow the learned motion patterns of the scene.

In the last part of the thesis, we study a new emerging class of models for multiple object tracking,

that appeared recently due to availability of large scale datasets - sequence models for multiple

object tracking. While such models could potentially learn arbitrarily long ranging behaviours,

training them presents several challenges. We propose a training scheme and a loss function
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that allows to significantly improve the quality of training of such models. We demonstrate that

simply using our training scheme and loss allows to learn scoring function for trajectories, which

enables us to outperform state-of-the-art methods on several tracking benchmarks.

Keywords: multi-object tracking, behaviour modelling, tracking, detection, interaction, mixed

integer programming
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Résumé
Le suivi de plusieurs objets est une tâche cruciale de vision par ordinateur. Il vise à localiser

les objets d’intérêt dans les séquences d’images, en maintenant leur identité, et identifier leurs

trajectoires au fil du temps. Une grande partie de la recherche actuelle porte sur le suivi des

piétons et d’autres types d’objets, qui présentent souvent des comportements prévisibles, nous

permettant, en tant qu’êtres humains, de suivre ces objets. Néanmoins, la plupart des approches

existantes reposent uniquement sur de simples indices d’affinité ou d’apparence pour conserver

les identités des objets suivis, en ignorant leur comportement. Cela représente un défi lorsque les

objets d’intérêt sont invisibles ou impossibles à distinguer pendant une longue période.

Dans cette thèse, nous nous concentrons sur l’amélioration de la qualité de plusieurs methodes

de suivi d’objets en apprenant et en exploitant les modèles de longue portée du comportement

des objets. Ces comportements se présentent sous différentes formes, qu’il s’agisse d’un modèle

physique du mouvement du ballon, d’un modèle d’interaction entre le ballon et les joueurs dans

le sport ou des mouvements de piétons ou de voitures spécifiques à une scène donnée.

Dans la première partie de la thèse, nous commençons par la tâche de suivre le ballon et les

joueurs dans les sports d’équipe. Nous proposons un modèle qui suit simultanément les deux

types d’objets, tout en respectant les lois physiques du mouvement de la balle en chute libre, ainsi

que les contraintes d’interaction qui apparaissent lorsque les joueurs sont en possession du ballon.

Nous montrons que la présence des modèles de comportement et la solution simultanée des deux

tâches contribuent à la performance du pistage, au basketball, au volleyball et au football.

Dans la deuxième partie de la thèse, nous nous concentrons sur les modèles de mouvement

du comportement des piétons et des voitures qui émergent dans les scènes en extérieur. De

tels modèles de mouvement sont intrinsèquement globaux, car ils régissent les endroits où les

personnes partant d’un endroit ont tendance à se retrouver beaucoup plus tard. Imposer de telles

contraintes globales tout en gardant le problème de suivi solvable constitue un défi, raison pour

laquelle de nombreuses approches s’appuient sur des mesures d’affinité locales. Nous formulons

un problème de suivi simultané des objets et d’apprentissage de leurs comportements. Nous

montrons que notre approche, lorsqu’elle est appliquée avec un certain nombre de trackers à la

pointe de la technologie, améliore leurs performances en forçant leur sortie à suivre les schémas

de mouvement appris de la scène.
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Résumé

Dans la dernière partie de la thèse, nous étudions une nouvelle classe de modèles émergents pour

le suivi d’objets multiples, apparus récemment en raison de la disponibilité de données à grande

échelle - des modèles de séquence pour le suivi d’objets multiples. Bien que de tels modèles

puissent potentiellement apprendre des comportements arbitrairement longs, l’entrainement de

tels modèles présente plusieurs défis. Nous proposons un programme d’entrainement et une

fonction de coút permettant d’améliorer considérablement la qualité d’entrainement de tels

modèles. Nous démontrons que le simple fait d’utiliser notre programme d’entraînement et de

coút permet d’apprendre la fonction de score pour les trajectoires, ce qui nous permet de surpasser

l’etat de l’art actuel sur plusieurs benchmark de suivi d’objets.

Mots-clés : suivi multi-objet, modélisation du comportement, suivi, détection, interaction, pro-

grammation mixte à nombres entiers
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1 Introduction

Tracking multiple objects is one of the key Computer Vision tasks. It has a long tradition for

applications such as radar tracking, video surveillance and automatic sport statistics. More

recently it has also been a topic of interest for virtual and augmented reality, autonomous

navigation, and human computer interaction.

Multiple Object Tracking (MOT) aims at locating objects of interest, maintaining their identities,

and identifying their trajectories over time. Objects of interest span pedestrians [183] and

vehicles [54], sport players [112], animals [53], and cells [107]. More than 70% of the current

research targets pedestrians [115], due to a number of high-level computer vision tasks related to

people tracking, and commercial potential of the technology. It frequently serves as the basis

required to perform many other tasks such as semantic segmentation, anomaly detection, role

understanding, scene understanding, and many others.

While MOT has progressed much in the recent years to the point where tracking methods now

rival that of humans, in some cases, challenging scenarios remain. They include tracking in

extremely dense crowds, in situations where it is difficult to distinguish between multiple targets

due to their small size or non-distinct appearance, and in the cases when tracked objects are

occluded for really long periods of time, where humans rely on their knowledge of the world,

rather than solely on their vision, to track the objects.

One of the main reasons of frequent tracking failures for such scenarios is the overly local nature

of many tracking methods. They produce trajectories of the objects of interest based on grouping

object detections in a small temporal window, frequently relying on the appearance similarity

and adjacency in space. While this approach is very generic and often works, it overlooks one of

the key properties that governs people: human behaviours, that can be complex and difficult to

predict.

Indeed, it is easy for humans to understand that if some time a basketball ball was in the hands of

one player, and at some other point in the hands of another one, then in between it must have been

passed from one to the other when they were close to each other, even if the ball was never visible
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between these two points in time. This requires understanding the player interactions. We can

also infer how the ball was flying across the net of volleyball court, even if it was too fast for us to

see after it was served - because we know about the laws of physics governing the ball’s motion.

Similarly, if we have observed that pedestrians tend to always turn right at some corner of the

crosswalk, we would expect the next one to do the same, even if we never saw that particular

person because of the passing car or because we shifted our gaze away for a bit. However, we

should also be prepared that once in a while, someone might turn left instead. That is our way of

understanding a particular scene. Examples of such scenarios are depicted in Fig. 1.1.

(a) (b) (c)

Figure 1.1 – Examples of scenarios where tracking requires understanding of human behaviour.

(a) Ball is in possession of the volleyball players and is often not seen for prolonged periods of

time; (b) Small size and large number of people in New York Central station makes it hard to

rely only on visual information for tracking, but layout of the scene helps; (c) Understanding how

humans behave can help track people in this particularly crowded scene, where most people can

not be fully seen

Making inferences such as those described above requires us humans to model long term

behaviours, which are not limited only to what we have directly seen. In this thesis, we tackle

the problem of learning models of long-term behaviours. We first do that for sports players and

the ball in sports games, injecting both physical models and interaction behaviour understanding

when tracking both players and a ball. Next, we expand this by proposing a generic framework

that enables us to use non-Markovian, global constraints for multiple object tracking, without

sacrificing the global optimality of the final solution. Finally, we embed these ideas into a

promising class of models for multiple object tracking that has appeared in the last couple

of years thanks to the appearance of large scale datasets, namely recurrent neural network-

based methods. Such methods could potentially account for arbitrarily long term and complex

behaviours, but are difficult to train well. Two main reasons for that are the mismatch between

the loss function for training and inference, and the mismatch between the data observed during

training and inference. We therefore propose a training method for such models, and a loss

function, that significantly boost their performance, by tackling these two problems.

This dissertation is based on and uses parts of the following papers:

1. A. MAKSAI, X. WANG, P. FUA : What Players Do with the Ball: A physically constrained

interaction modeling. (Proc. of the 2016 IEEE Computer Vision and Pattern Recognition
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Conference).

2. A. MAKSAI, X. WANG, F. FLEURET, P. FUA : Non-Markovian Globally Consistent

Multi-Object Tracking. (Proc. of the 2017 IEEE International Conference on Computer
Vision).

3. A. MAKSAI, P. FUA : Eliminating Exposure Bias and Loss-Evaluation Mismatch in

Multiple Object Tracking. (In review for the 2019 IEEE Computer Vision and Pattern
Recognition Conference).

Additional results are presented from the following paper:

• T. CHAVDAROVA, P. BAQUÉ ,S. BOUQUET, A. MAKSAI, C. JOSE, T. BAGAUT-

DINOV, L. LETTRY, P. FUA, L. VAN GOOL, AND F. FLEURET : WILDTRACK: A

Multi-camera HD Dataset for Dense Unscripted Pedestrian Detection (Proc. of the 2018
IEEE Computer Vision and Pattern Recognition Conference).

Some tracking results and explanatory videos from these papers are available 1,2.

In summary, the contributions of this work are:

• Model for tracking interacting objects under physical constraints. We propose a

model for tracking interacting objects, namely ball and players in sports games. In ball

games, ball is often in possession of a player, and not seen by any cameras. Therefore,

an interaction model is required for robust tracking. When the ball is passed between the

players, it often moves very fast and is also hard to see, but a physical model of its motion

allows for precise tracking in this scenario. Our main contribution is a model that enables

us to combine these two seemingly very different tasks in one single problem, that is solved

jointly. Since switching between two modes of tracking also requires understanding of the

phase of the game that is currently happening, an additional contribution of this work is

estimating the state of the game while tracking. To our knowledge, this is first approach

ever that combines tracking the ball under physical constraints, tracking the players and

their possession of the ball, and state of the game, jointly. We show that it significantly

outperforms methods that solve these tasks independently, on several different sports.

• Method for imposing global non-Markovian constraints on MOT. We address the issue

of effectively imposing global constraints on the trajectory of an individual. While most

current approaches use pairwise affinity measures that ensure correct tracking during a

short time span, imposing global constraints remains difficult optimization-wise. We show

how a traditional network-flow based approach for multiple object tracking can be extended

to enforce such constraints, while keeping optimization computationally feasible.

1https://cvlab.epfl.ch/research/research-surv/research-balltracking/
2https://drive.google.com/open?id=1Udt4Q3UCXNU1ry27j1Vy3w_FC3O-ieBM
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• A joint model for MOT and motion pattern estimation. Using our proposed approach

for imposing global constraints for multiple object tracking, we show how motion patterns

can be used to better track objects in a scene. Our approach simultaneously tracks objects

and determines a behaviour, or motion pattern, that specific object follows. We show

that this synergy between the two tasks improves a number of of state-of-the-art object

trackers by simply modifying their output to agree with the scene motion patterns, that

is, to conform to global constraints of the scene. Additionally, our approach can serve as

a way to extract prevalent motion patterns, given the object tracking results, and detect

anomalous motion.

• A training procedure for MOT that removes biases. In this work, we tackle the problem

of learning sequence-based affinity measures for multiple object tracking. With the appear-

ance of large scale datasets, a number of methods for training sequence-based models has

emerged. However, these methods tend to use ground truth information to predict correct

data association between the detections, which results in exposure bias when during the

actual tracking errors lead to situations never seen in training. Our training procedure

confronts the learning algorithm with its own errors to make sure that all possible scenarios

are observed during training. We also propose a loss function that forces our model to opti-

mize an approximation of the tracking quality metric, removing loss-evaluation mismatch

between training and inference. We show that our proposed method for constructing the

training dataset helps to largely improve the quality of the learned models and allows us to

achieve state-of-the-art tracking results on several challenging tracking benchmarks.

In Chapter 2, we provide background information and necessary preliminaries. Sec. 2.1 describes

frequently used notations, followed by Sec. 2.2 where we provide definitions in context of

multiple object tracking. Sec. 2.3 discusses problem formulation and optimization methods for

multiple object tracking. Commonly used benchmarks for multiple object tracking are discussed

in Sec. 2.4, which describes datasets, and Sec. 2.5, which describes metrics.

In Chapter 3, we describe our model for simultaneously tracking the ball and the players under

physical constraints. We describe our formalization of the problem of simultaneous tracking

of the ball and the players in Sec. 3.3. After that Sec. 3.4 describes how to learn the learnable

parameters of our method, and details of the implementation are given in Sec. 3.5. Results of our

experiments on ball and player tracking in multiple sports are given in Sec. 3.6.

In Chapter 4, we present a non-Markovian model for multiple object tracking, and how we use it

to track pedestrians and cars under constraints of patterns of the scene. Sec. 4.3 provides a formal

description of the joint task of finding the behaviours of the pedestrians and their tracks, and gives

a description of the motion pattern that we use for our work. Sec. 4.4 describes how tracks could

be found assuming that behavioural patterns are known, and vice versa. Sec. 4.5 combines these

two results in a scheme which allows to perform both tasks either given ground truth tracking in

a particular scene, or when no ground truth is available, in a completely unsupervised fashion.

Results are presented in Sec. 4.6.
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In Chapter 5, we discuss a training procedure and loss function that significantly boosts the

performance of sequence-based models for multiple object tracking. We introduce our tracking

approach in Sec. 5.3, which we center around learning good scoring function for trajectories.

After that, we describe our exact form of the loss function, and training procedure, that allows

to improve sequence models. Implementation details and full breakdown of results follow in

Sec. 5.4.

Conclusions and future work follow in chapter 6.
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2 Background

We present in this chapter common notations and definitions used through the thesis. After

that, we provide background on several ways of representing a problem of multiple object

tracking, and corresponding optimization methods. Finally, we describe benchmark datasets

and metrics, commonly used in multiple object tracking. More comprehensive review of tasks,

applications, approaches, datasets and metrics related to multiple object tracking can be found

in [115, 102, 101, 149, 170].

2.1 Notations

MOT Multiple object tracking

MOTA Multiple object tracking accuracy (metric)

IDF1 Identification F1 score (metric)

IoU Intersection over union

N Number of temporal frames in the tracking problem

K Number of possible states for a tracked object

I t Image evidence at time t
X t Location of the tracked object at time t
G Graph in the network flow-based formulation for tracking

V Set of nodes in the tracking graph

E Set of edges in the tracking graph

T Set of transitions in the tracking graph that form trajectories

vi n , vout Source and sink nodes in tracking graph

Table 2.1 – Notations

2.2 Definitions

Here we put the task of multiple object tracking in context of other related tasks and provide

definitions frequently used throughout the thesis.
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Chapter 2. Background

Multiple object tracking (MOT) aims at locating multiple objects of interest, inferring their

trajectories and maintaining their identities in a video sequence. This is in contrast to single
object tracking, where trajectory of only one object needs to be inferred, and therefore identity

switches between multiple objects are not possible.

Trajectory of a tracked object is defined as location of object in multiple frames. In each

frame, object is usually defined by its bounding box. Auxiliary feedback can be provided in a

form of pixel mask of the tracked object (instance-based semantic segmentation) or the locations

of keypoints on the object (pose estimation).

Tracking by detection is performed by first locating the candidate detections of the objects

of interest in each frame separately, and then associating identities to the detections to form the

trajectories of the objects. This is in contrast to tracking by model evolution, or detection-free
tracking, which searches for the candidate detection for each target in each subsequent frame.

While first tracking attempts often relied on tracking by model evolution, recursive nature of such

approaches often results in identity switches and trajectory fragmentations, which are difficult to

recover from.

Batch processing is used to find the tracking given a sequence of frames, with long sequence

possibly broken down into several batches, processed sequentially. This is in contrast to online
processing, which forms trajectories with each new observed frame, allowing for real time

performance, but sacrificing the benefits of observing several frames before making the decision

about tracking. In between the two are methods that rely on near-online processing. Those

methods feature small batches and real-time performance for results that are constantly delayed

by a small amount of time compared to the input sequence of frames.

Single-camera tracking uses a single input source to obtain tracking results. Tracking results

are usually defined in the camera plane. Multiple-camera tracking uses input from multiple,

usually overlapping cameras, which allows to estimate the trajectory of each tracked object in the

world coordinates, either in 2D on the ground plane, or in 3D. Multiple non-overlapping cameras

can be used to track and re-identify objects of interest across multiple cameras.

Static camera tracking assumes the use of stationary camera. This often allows to use proper-

ties of a given fixed scene to aid the tracking. Moving camera tracking is more challenging due

to both motion of the camera and absence of a fixed scene.

Interacting objects tracking assumes tracking several types of objects that may interact in

certain ways, affecting one another, ie. cars and people getting in and out of them, or players, and

8
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ball that they can possess, in a sports game. This is in contrast to a scenario where motions of

different types of objects are assumed to be independent of each other and are tracked separately.

The results presented in this thesis relate to multiple object tracking, with the aim of estimating

trajectories of the tracked objects. All presented methods use the tracking by detection frame-

work and rely on batch processing. Results are presented both for single, multiple overlapping,

and multiple non-overlapping cameras, both static and moving cameras, and both for interacting

and non-interacting objects.

In the next section we present common problem formulations for multiple object tracking, and

optimization techniques used. We focus on methods that use tracking by detection and rely on

batch processing.

2.3 Problem formulation and optimization

Generally, multiple object tracking aims to find sequence of states X1:N of each of the tracked

objects in N consecutive moments in time, that maximize a-posteriori probability given the

observations I1:N . In tracking by detection framework, observations are typically detections D

in each individual frame, and states or the tracked objects are represented by the coordinates of

such detections.

Approaches to multiple object tracking can be roughly divided into two big groups, namely

probabilistic inference and deterministic optimization.

Probabilistic inference approaches rely on various filtering techniques such as (extended) Kalman

filtering [130, 153] or particle filtering [25, 186], and are often coupled together with tracking by

model evolution. They are more frequently used for online tracking, since they require only past

and current observations. Optimization typically consists of two parts, namely prediction part,

which finds the most likely state given a sequence of observations before the current moment

P (Xt |I1:t−1), and update phase, which updates the predictions P (Xt |I1:t ) ∝ P (It |Xt )P (Xt |I1:t−1)

based on the observations of the current moment.

Deterministic optimization methods try to find a sequence of states that maximize the likelihood

by optimizing the value of energy function E(X1:N |I1:N ), which typically factorizes over some

small groups of states and observations. Depending on these factors of the energy function,

several ways to optimize energy function are available.

Arbitrary high-order potentials don’t place any assumptions on the factors of the energy

function. For example, they could span whole width of the trajectory to ensure consistent

appearance throughout the whole trajectory, or have potentials that combine multiple detections

in the same frame to model pairwise exclusion, occlusion or social behaviour. In general, finding

optimal sequence of states is not possible in polynomial time. Therefore, existing solutions either
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rely on solving the problem optimally in a very small time window by using inference with

conditional random fields [36], gradient descent with jumps in the search space to avoid bad local

minima [128, 140], or genetic algorithms [140].

Pairwise potentials allow only factors that connect two observations. These factors typically

model either homogeneity within a single trajectory (such as consistency of appearance of the

object), or pairwise exclusion constraints over a pair of detections within single frame. Having

pairwise potentials allows to represent all observations as a spatio-temporal graph, where

each observation is a node, and each pairwise potential is represented by an edge between

two detections, with weight of the edge corresponding to the value of the factor. Such graph

formulation allows to find the tracking using several approaches from graph theory or operations

research, such as maximum weight independent set / maximum weight clique / maximum weight

multi-cut. These approaches represent each trajectory as a set of nodes, densely connected by

pairwise edges, and look for a solution that maximizes the weights within each trajectory and/or

minimizes the weights in between different trajectories. Such problems can either be solved

optimally in non-polynomial time, or there exist efficient heuristics that allow to find near-optimal

solution quickly, with one of the latest results being a fast approximate multi-cut algorithm

of [161]. Other similar formulations could also be solved by generic integer programming.

Notable differences between the above formulations include the following:

• Maximum weight independent set allows to define potentials for a group of observations

belonging to different objects, effectively differentiating them.

• Maximum weight clique and maximum weight multi-cut approaches allow to define a set

of observations belonging to the same person across multiple frames, thus becoming more

difficult optimization problem as the length of the tracking interval grows, but providing

more robust tracking.

• Maximum weight clique is usually defined for a graph of detections, while multi-cut can

be defined on different types of edges, allowing to track not only people but also their

body parts, connecting different body parts in the same frame and same body parts in the

different frames, for example, as in [161].

Pairwise potentials adjacent in time assumes factors are a functions of two detections, ad-

jacent in time, with potential representing similarity or dissimilarity of two detections. Under

this formulation, it is possible to represent trajectories as units of flow flowing through the edges

of such network, and find the tracking as a solution of a linear program, or maximum-cost

maximum-flow problem, which can be done in polynomial time [196, 17]. Such network G

can be represented by a set of nodes and a set of edges between the nodes. A set of nodes

V = D ∪ {vi n , vout } with vi n and vout being so-called source and sink nodes, which are the
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{ } = D
{ } = Evin

vout

{ }, { } ∈ T ∗
vin

vout

Figure 2.1 – Test

(a) Given a set of detections D, and a set of allowed transitions E , we seek to find: (b) trajectories

of the objects, represented by transitions from T .

starting and ending nodes for any trajectory. A set of edges E ⊂ V 2 defines possible transitions

between the detections, and a choice of such set could be governed by maximum allowed distance

in time between two adjacent detections in one trajectory, appearance similarity, or defined in any

other way. Optimal trajectories, represented by the units of flows through such a network can

then be defined by a set of transitions T ⊂ E . An example is provided in Fig. 2.1.

2.4 Datasets

Over years of research in multiple object tracking, it became a standard practice to compare

tracking approaches on a benchmark set of sequences, reporting the obtained tracking results.

More recently, this practice was further improved by supplying the benchmark sequences with

benchmark set of detections. While comparing methods starting purely from sequences helps

to identify the methods that achieve best tracking overall, it could often be hard to understand,

whether the performance of the method comes from a better detector, or from a better data

association that preserves the identities between frames. Thus, introducing a benchmark set of

detections allows to compare tracking approaches independently of detector, facilitating progress

by the ability to combine best detectors with best tracking approaches.

One of the first and most widely popular datasets is PETS09, a dataset featuring both single

and multiple camera results in the scripted outdoor scene. Other datasets include KITTI [58],

recorded from a camera on a moving car, TUD [4, 5], Towncentre [12], and ETH [46] and

Hotel [140], to name a few. They feature outdoor scenes with both static and moving cameras.

In, 2015, several sequences from these and a number of other datasets were combined in the

MOT15 [101] benchmark, which became a de-facto standard for evaluating performance on

multiple object tracking algorithms, due to a large variety of scenarios (indoor and outdoor,

moving and static camera), and presence of training-testing sequence pairs which feature same

statistics. This benchmark was further improved by a set of MOT16 [125] sequences, with more

precise annotations and several object categories, and MOT17 [125], which features the same set

of sequences as MOT16, but 3 different detector types, allowing to compare tracking methods
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Name Annotated length, s FPS Trajectories In/outdoor Unscripted

PETS09 [51] 100 7 40 N/Y -

ETH [46] 360 4.16 352 N/Y +

TUD [4, 5] 18 25 31 N/Y +

Hotel [140] 390 2.5 175 N/Y +

Towncentre [12] 180 2.5 246 N/Y +

KITTI [58] 4100 10 — N/Y +

MOT15 [101] 50% of 996 2.5-30 1221 N/Y +

MOT16,MOT17 [125] 50% of 463 14-30 1276 Y/Y +

Station [201] 3900 1.25 12362 Y/N +

DukeMTMC [149] 5100 60 7000+ N/Y +

WILDTRACK [31] 200 of 1800 60 313 Y/N +

PathTrack [123] 10320 14-30 16287 Y/Y +

PoseTrack [3] 550 of 2212 — — Y/Y +

JTA [47] 15360 30 10752 — -

Table 2.2 – Dataset statistics. Length and number of trajectories are summed up for all sequences

of each dataset.

over a large variety of detectors.

In several recent years, introduction of much more large scale datasets allowed using more

data-demanding methods for object tracking. In particular, DukeMTMC [149] dataset features

more than an hour long recordings from 8 cameras in different spots on university campus,

allowing to explore models of particular scenes for better tracking, as well as training across-

camera re-identification models. PathTrack [123] dataset features several hundreds of short

clips in a wide range of scenarios, and has been shown to be a significant aid in training learnable

models for multiple object tracking. Station [201] dataset features almost an hour long recording

from New York central station, with main focus on the group dynamics of the individuals.

WILDTRACK [31] dataset features more than 30 minutes of recordings from 8 overlapping

cameras for the purpose of multi-camera detection and tracking. JTA [47] dataset presents almost

500000 frames in a simulated environment, with annotations for multiple person tracking and

pose estimation. PoseTrack [3] contains more than 500 short clips of multiple people in diverse

settings with annotated human poses. We provide some statistics about the described datasets in

Table 2.2. More detailed overview of datasets is available in [115, 101].

2.5 Metrics

Each of the metrics for multiple object tracking relies on the definition of whether a detection

from a given trajectory reported by the tracker matches certain detection in the ground truth set

of detections. The definition of such match is borrowed from the area of detection: in the image

plane detection reported in the tracker and detection in the ground truth are assumed to match

if their intersection-over-union (IoU) is greater than 0.5. In the ground plane or in the world
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coordinates, detection and ground truth match if the world distance between the two is below 1

meter.

When a detection reported by the tracker is not matched by any ground truth detection, such a

detection is considered to be a false positive (FP) detection. Conversely, when a detection is

present in the ground truth, but not in the tracker output, it is considered to be a false negative

(FN) detection. When two adjacent detections belong to the same trajectory in the ground truth,

but to different trajectories in the tracker output, or vice versa, this situation is typically named

identity switch (ID). Tracker output without false positives, false negatives, and identity switches

is by definition equivalent to the ground truth (up to the precision of matching detections), but

the way different metrics combine these errors are different and described below.

Historically, two of the most frequently used sets of metrics are a set of track quality mea-

sures [177] and a set of CLEAR MOT [18]. Recently, a set of identity-aware metrics has been

proposed in [149] and was quickly adopted into main benchmark datasets. We describe each

of the set of metrics below. Sec. 4.2 presents a concrete example of direct comparison between

metrics from CLEAR MOT and identity-aware set of metrics, outlining why identity-aware

metrics are more suitable for identity-preserving tracking.

Track quality measures Track quality measures identify the percentage of ground truth tra-

jectories, that are mostly tracked, partially tracked, or mostly lost in the tracked output. Each

trajectory in the ground truth, for which at least 80% of its detections are matched to some detec-

tions in the tracks reported by the tracker, is considered mostly tracked. If this number is below

20%, it is considered mostly lost, and partially tracked otherwise. Note that this measure does

not take into account identity switches or false positives, but mostly concentrates on minimizing

false negatives. To incorporate identity switches, this set of metrics is sometimes augmented with

the number of fragmentations (FM) - number of times when one out of two adjacent detections in

the ground truth is matched, and the other is not, or vice versa.

CLEAR MOT set of metrics features multiple object tracking accuracy (MOTA) and mul-

tiple object tracking precision (MOTP), with MOTA typically being a metric, by which most

approaches are compared. MOTA is calculated as

1−

N∑
t=1

F Pt +F Nt + I Dst

N∑
t=1

GTt

,

where GTt is a number detections in the ground truth trajectories in frame t , and N is the total

number of frames. In other words, MOTA ranges from 1 for perfectly recovered set of trajectories,

to arbitrarily small negative number as the number of false negatives increases. MOTA is sensitive
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to false positives, false negatives, and identity switches, but does not differentiate between a

ground truth trajectory, which was identified as two equally long trajectories in the tracker output,

and a ground truth trajectory, which was almost perfectly tracked, with one identity switch in the

last frame. Such insensitivity to identity preservation was the main reason for the introduction of

a set of identity aware metrics, which we describe below.

MOTP is calculated as an average misalignment error between ground truth and reported

detection, for all matched pairs of detections. Misalignment can be defined as average IoU for

tracking in the image plane, and average distance in the world coordinates otherwise. This metric

is not sensitive to false negatives, false positives, or identity switches, and serves as a measure of

localization error.

Identity-aware metrics Identity-aware metrics addresses the shortcoming of MOTA metric

when it comes to identity preservation along the ground truth trajectory. This set of metrics

includes identity-aware precision (IDP), identity-aware recall (IDR), and identity-aware F1

(IDF1), with IDF1 being the metric by which the trackers are ranked. At the basis of this metric

is a computation of matching between ground truth and reported trajectories, that maximizes the

number of matched detections. Once such a matching has been computed, IDP is defined as a

total number of matched detections, normalized by a total number of detections in the ground

truth trajectories, IDR is defined as a total number of matched detections, normalizes by a total

number of detections in the reported trajectories, and IDF1 is twice the total number of the

matched detections, normalized by a total number of detections in ground truth plus reported

trajectories. This metric is sensitive to false positives, false negatives, and identity preservation.

The mathematical definition of this metric follows below:

2∗ IDTP

2∗ IDTP+ IDFP+ IDFN,

where IDTP is the number of detections matched to ground truth after computing the assignment

of reported trajectories to ground truth that maximizes this value, IDFP is the number of false

positives in such an assginment, and IDFN is the number of false negatives in it. As can be seen,

the denominator is actually a total number of detections in both trajectories and ground truth,

because IDTP and IDFP comprise all of detections in the reported trajectories, and IDTP with

IDFN compirse all of detections in the ground truth.
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3 Physically constrained interaction
modelling

Abstract

Tracking the ball is critical for video-based analysis of team sports. However, it is difficult,

especially in low-resolution images, due to the small size of the ball, its speed that creates motion

blur, and its often being occluded by players.

In this chapter, we propose a generic and principled approach to modeling the interaction between

the ball and the players while also imposing appropriate physical constraints on the ball’s

trajectory.

We show that our approach, formulated in terms of a Mixed Integer Program, is more robust

and more accurate than several state-of-the-art approaches on real-life volleyball, basketball, and

soccer sequences.

3.1 Introduction

Tracking the ball accurately is critically important to analyze and understand the action in sports

ranging from tennis to soccer, basketball, volleyball, to name but a few. While commercial

video-based systems exist for the first, automation remains elusive for the others. This is largely

attributable to the interaction between the ball and the players, which often results in the ball

being either hard to detect because someone is handling it or even completely hidden from

view. Furthermore, since the players often kick it or throw it in ways designed to surprise their

opponents, its trajectory is largely unpredictable.

There is a substantial body of literature about dealing with these issues, but almost always

using heuristics that are specific to a particular sport such as soccer [198], volleyball [60], or

basketball [32]. A few more generic approaches explicitly account for the interaction between the

players and the ball [172] while others impose physics-based constraints on ball motion [139].

However, neither of these things alone suffices in difficult cases, such as the one depicted by
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(a) (b) (c)

Figure 3.1 – Importance of simultaneously modeling interactions and imposing physical con-

straints. For most of this 70-frame volleyball sequence depicting the ball crossing the net and

being bumped by a defending player and viewed by 3 cameras, the defending player is on the

ground. As a result, she was not detected by the person detector we use [52] because it only

finds people standing up. Furthermore, while the ball was near the player, it was occluded in

the views of 2 of the 3 cameras, and, therefore, not detected as a 3D object. (a) Tracking the

players and the ball simultaneously without imposing motion constraints as in [172] produces

physically impossible trajectories. (b) Imposing motion constraints but tracking the players and

the ball separately as in [139] does not properly capture the ball and player interaction. (c) Our

approach to both imposing constraints and modeling the interaction gives a better overall result.

The crosses denote the fact that the ball is in the “strike” state until being bumped and in the

“flying” one after that. Transitions between these states can only result from interacting with a

player, which encourages the optimizer to find one in spite of the weak evidence. Best viewed in

color.

Fig. 3.1.

In this chapter, we, therefore, introduce an approach to simultaneously accounting for ball/player

interactions and imposing appropriate physics-based constraints. Our approach is generic and

applicable to many team sports. It involves formulating the ball tracking problem in terms of

a Mixed Integer Program (MIP) in which we account for the motion of both the players and

the ball as well as the fact the ball moves differently and has different visibility properties in

flight, in possession of a player, or while rolling on the ground. We model the ball locations

in R3 and impose first and second-order constraints where appropriate. The resulting MIP

describes the ball behaviour better than previous approaches [172, 139] and yields superior

performance, both in terms of tracking accuracy and robustness to occlusions. Fig. 3.1(c) depicts

the improvement resulting from doing this rather than only modeling the interactions or only

imposing the physics-based constraints.

In short, our contribution is a principled and generic formulation of the ball tracking problem

and related physical constraints in terms of a MIP. We will demonstrate that it outperforms

state-of-the-art approaches [171, 172, 139, 60] in soccer, volleyball, and basketball.
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3.2 Related work

While there are approaches to game understanding, such as [98, 112, 114, 61, 42, 92], which

rely on the structured nature of the data without any explicit reference to the location of the ball,

most others either take advantages of knowing the ball position or would benefit from being able

to [42]. However, while the problem of automated ball tracking can be considered as solved for

some sports such as tennis or golf, it remains difficult for team sports. This is particularly true

when the image resolution is too low to reliably detect the ball in individual frames in spite of

frequent occlusions.

Current approaches to detecting and tracking can be roughly classified as those that build

physically plausible trajectory segments on the basis of sets of consecutive detections and those

that find a more global trajectory by minimizing an objective function. We briefly review both

kinds below.

3.2.1 Fitting Trajectory Segments

Many ball-tracking approaches for soccer [133, 106], basketball [32], and volleyball [33, 60, 29]

start with a set of successive detections that obey a physical model. They then greedily extend

them and terminate growth based on various heuristics. In [147], Canny-like hysteresis is used

to select candidates above a certain confidence level and link them to already hypothesized

trajectories. Very recently, RANSAC has been used to segment ballistic trajectories of basketball

shots towards the basket [139]. These approaches often rely heavily on domain knowledge, such

as audio cues to detect ball hits [33] or model parameters adapted to specific sports [29, 32].

While effective when the initial ball detections are sufficiently reliable, these methods tend to

suffer from their greedy nature when the quality of these detections decreases. We will show this

by comparing our results to those of [60, 139], for which the code is publicly available and have

been shown to be a good representatives of this set of methods.

3.2.2 Global Energy Minimization

One way to increase robustness is to seek the ball trajectory as the minimum of a global objective

function. It often includes high-level semantic knowledge such as players’ locations [202,

198, 171], state of the game based on ball location, velocity and acceleration [198, 202], goal

events [202] or dynamically weighted combination of the features above [155].

In [172, 173], the players and the ball are tracked simultaneously and ball possession is explicitly

modeled. However, the tracking is performed on a discretized grid and without physics-based

constraints, which results in reduced accuracy. It has nevertheless been shown to work well on

soccer and basketball data. We selected it as our baseline to represent this class of methods,

because of its state-of-the-art results and publicly available implementation.
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(a) (b)

Figure 3.2 – Graphical models. (a) Factor graph for ball tracking. At each time instant t , we

consider two latent variables, the ball location X t and state St , along with the observed variable

- available image evidence I t . (b) Ball graph used to formulate the integer program. To each

node i , is associated a location xi , a state si , and a time instant ti . The relationship between the

variables in both graphs is spelled out in Eqs 3.3(d,e).

3.3 Problem Formulation

We consider scenarios where there are several calibrated cameras with overlapping fields of view

capturing a substantial portion of the play area, which means that the apparent size of the ball is

generally small. In this setting, trajectory growing methods do not yield very good results both

because the ball is occluded too often by the players to be detected reliably and because its being

kicked or thrown by them result in abrupt and unpredictable trajectory changes.

To remedy this, we explicitly model the interaction between the ball and the players as well as

the physical constraints the ball obeys when far away from the players. To this end, we first

formulate the ball tracking problem in terms of a maximization of a posteriori probability. We

then reformulate it in terms of an integer program. Finally, by adding various constraints, we

obtain the final problem formulation that is a Mixed Integer Program.

18



3.3. Problem Formulation

P t 3D coordinates of the ball at time t
i , j ,k, l Node indices in the ball or players graph

Vb ,Vp Sets of nodes in ball and player graphs

Eb ,Ep Sets of edges in the ball and player graphs

St State of the tracked object at time t
xi , si , ti Discrete location, state, and time of node i

Sb Special node for the ball at t = 0

f j
i , p j

i Number of balls and players moving from i to j

c j
bi ,c

j
pi Ball and player transition costs from i to j

ΨX ,ΨS ,ΨI Position, state, image evidence potentials

ψ Potential of local image evidence

Dl Max. permissible distance between X t and P t

Dp Max. permissible distance for ball possession

As,c ,B s,c ,C s,c ,F c,s Physics-based constants for state s, axis c
Os,c Constraint-free locations for state s and axis c

F Permissible ball locations and state sequences

Table 3.1 – Notations specific to the problam of ball and player tracking in sports. The rest of the

variables used in this chapter are defined in 2.1.

3.3.1 Graphical Model for Ball Tracking

We model the ball tracking process from one frame to the next in terms of the factor graph

depicted by Fig. 3.2(a). We associate to each instant t ∈ {1 . . . N } three variables X t , St , and I t ,

which respectively represent the 3D ball position, the state of the ball, and the available image

evidence. When the ball is within the capture volume, X t is a 3D vector and St can take values

such as flying or in_possession, which are common to all sports, as well as sport-dependent ones,

such as strike for volleyball or pass for basketball. When the ball is not present, we take X t and

St to be ∞ and not_present respectively. These notations as well as all the others we use in this

chapter are summarized in Table 3.1, which presents notations specific to the tracking of ball and

players in sports. General notation is also available in Table 2.1.

Given the conditional independence assumptions implied by the structure of the factor graph of

Fig. 3.2(a), we can formulate our tracking problem as one of maximizing the function defined by

the product of potentials:

Ψ(X ,S, I ) = 1

Z
ΨI (X 1,S1, I 1)

N∏
t=2

[
ΨX (X t−1,St−1, X t )ΨS (St−1,St )ΨI (X t ,St , I t )

]
(3.1)

expressed in terms of products of the following potential functions:

• ΨI (X t ,St , I t ) encodes the correlation between the ball position, ball state, and the image

evidence.
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• ΨS(St−1,St ) models the temporal smoothness of states across adjacent frames.

• ΨX (X t−1,St−1, X t ) encodes the correlation between the state of the ball and the change of

ball position from one frame to the next one.

• ΨX (X 1,S1, X 2) and ΨS(S1,S2) include priors on the state and position of the ball in the

first frame.

In practice, as will be discussed in Sec. 3.4, the parameters of Ψ functions are learned from

training data. Let F be the set of all possible sequences of ball positions and states. We consider

the log of Eq. 3.1 and drop the constant normalization factor log Z . We, therefore, look for the

most likely sequence of ball positions and states as

(X ∗,S∗) = arg max
(X ,S)∈F

N∑
t=2

[
logΨX (X t−1,St−1, X t )+ (3.2)

logΨS (St−1,St )+ logΨI (X t ,St , I t )
]
+ logΨI (X 1,S1, I 1) .

In the following subsections, we first reformulate this maximization problem as an integer

program and then introduce additional physics-based and in_possession constraints.

3.3.2 Integer Program Formulation

To convert the maximization problem of Eq. 3.2 into an Integer Program (IP), we introduce

the ball graph Gb = (Vb ,Eb) depicted by Fig. 3.2(b). Vb represents its nodes, whose elements

each correspond to a location xi ∈ R3, state si ∈ {1, · · · ,K }, and time index ti ∈ {1, · · · , N }. In

practice, we instantiate as many as there are possible states at every time step for every actual

and potentially missed ball detection. Our approach to hypothesizing such missed detections is

described in Sec. 3.5. Vb also contains an additional node Sb denoting the ball location before

the first frame. Eb represents the edges of Gb and comprises all pairs of nodes corresponding to

consecutive time instants and whose locations are sufficiently close for a transition to be possible.

Let f j
i is the binary indicator of the presence of the ball moving from i to j and c j

bi denote the

corresponding cost. The maximization problem of Eq. 3.2 can be rewritten as

maximize
∑

(i , j )∈Eb

f j
i c j

bi , (3.3)

where

c j
bi = logΨX (xi , si , x j )+ logΨS (si , s j )+ logΨI (x j , s j , I t j ),
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subject to

(a) f j
i ∈ {0,1} ∀(i , j ) ∈ Eb

(b)
∑

(i , j )∈Eb ,t j =1
f j

i = 1

(c)
∑

(i , j )∈Eb

f j
i = ∑

( j ,k)∈Eb

f k
j ∀ j ∈ Vb : 0 < t j < N

(d) X t = ∑
(i , j )∈Eb ,t j =t

f j
i x j ∀t ∈ 1, · · · , N

(e) St = ∑
(i , j )∈Eb ,t j =t

f j
i s j ∀t ∈ 1, · · · , N

(f) (X ,S) ∈ F

We optimize with respect to the f j
i , which can be considered as flow variables. The flow through

the network defines the movement of the ball through the sequence of nodes, each of which

corresponds uniquiely to the a pair of location and state. The constraints ensure that each possible

allowed sequence of nodes in the flow uniquely corresponds to the physically possible sequence

of pairs of ball locations and states. More specifically, the constraints of Eqs.3.3(a-c) ensure that

at every time frame there exists only one position and one state to which the only ball transitions

from the previous frame. The constraints of Eq.3.3(d-e) draw the connection between the flow

variables that operate on edges, and ball locations and states X and S defined on the nodes,

ensuring that the location and state of the ball corresponds to the node through which the flow

goes in the graph. The constraint of Eq.3.3(f) is intended to only allow feasible combinations of

locations and states as described by the set F, which we define below.

3.3.3 Mixed Integer Program Formulation

Some ball states impose first and second order constraints on ball motion, such as zero acceleration

for the freely flying ball or zero vertical velocity and limited negative acceleration for the rolling

ball. Possession implies that the ball must be near the player.

Unfortunately, imposing the second order constraints requires allowing the location of the ball to

be continuous, while the available set of possible ball locations is inherently discrete (discretized

at most with the precision of 1 pixel) and therefore fitting a perfect secord order model, such as

a parabolic motion through these discrete locations is not possible. To alleviate this problem,

we will introduce the set of continuous ball locations which will be near the ball detections, but

perfectly adhere to the physical model that we will intoduce.

In this section, we assume that the players’ trajectories are available in the form of a player
graph Gp = (Vp ,Ep ) similar to the ball graph of Sec. 3.3.2 and whose nodes comprise locations

xi and time indices ti . In practice, we compute it using publicly available code as described in

Sec. 3.5.1.

Given Gp , the physics-based and possession constraints can be imposed by introducing auxiliary

continuous variables and expanding constraint of Eq. 3.3(f), as follows.

21



Chapter 3. Physically constrained interaction modelling

Continuous Variables. The xi represent specific 3D locations where the ball could potentially

be, that is, either actual ball detections or hypothesized ones as will be discussed in Sec. 3.5.2.

Since they cannot be expected to be totally accurate, let the continuous variables P t = (P t
x ,P t

y ,P t
z )

denote the true ball position of at time t . We impose

||P t −X t || ≤ Dl (3.4)

where Dl is a constant that depends on the expected accuracy of the xi . These continuous

variables can then be used to impose ballistic constraints when the ball is in flight or rolling on

the ground as follows.

Second-Order Constraints. For each state s and coordinate c of P , we can formulate a second-

order constraint of the form

As,c (P t
c −2P t−1

c +P t−2
c )+B s,c (P t

c −P t−1
c )+C s,c P t

c −F s,c ≤ K (3−M t
s,c −M t−1

s,c −M t−2
s,c ) , (3.5)

where M t
s,c =

∑
(i , j )∈Eb ,t j =t ,s j =s,x j 
∈Os,c

f j
i ,

K is a large positive constant and Os,c denotes the locations where there are scene elements

with which the ball can collide, such as those near the basketball hoops or close to the ground.

Given the constraints of Eq. 3.3, M t
s,c , M t−1

s,c , and M t−2
s,c must be zero or one. This implies that

right side of the above inequality is either zero if M t
s,c = M t−1

s,c = M t−2
s,c = 1 or a large number

otherwise. In other words, the constraint is only effectively active in the first case, that is, when

the ball consistently is in a given state. When this is the case, (As,c ,B s,c ,C s,c ,F s,c ) model the

corresponding physics. For example, when the ball is in the flying state, we use (1,0,0, −g
f ps2 ) for

the z coordinate to model the parabolic motion of an object subject to the sole force of gravity

whose intensity is g . In the rolling state, we use (1,0,0,0) for both the x and y coordinates to

denote a constant speed motion in the x y plane. In both cases, we neglect the effect of friction.

Note that we turn off these constraints altogether at locations in Os,c .

Possession constraints. While the ball is in possession of a player, we do not impose any

physics-based constraints. Instead, we require the presence of someone nearby. The algorithm

we use for tracking the players [17] is implemented in terms of people flows that we denote as p j
i

on a player graph Gp = (Vp ,Ep ) that plays the same role as the ball graph. The p j
i are taken to be

those that

maximize
∑

(i , j )∈Ep

p j
i c j

pi , (3.6)
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where c j
pi =

logPp (xi |I ti )

1−logPp (xi |I ti )
,

subject to

(a) p j
i ∈ {0,1} ∀(i , j ) ∈ Ep

(b)
∑

i :(i , j )∈Ep

p j
i ≤ 1 ∀ j ∈ Vp \ {vi n}

(c)
∑

(i , j )∈Ep

p j
i = ∑

( j ,k)∈Ep

pk
j ∀ j ∈ Vp \ {vi n , vout } .

Here Pp (xi |I ti ) represents the output of probabilistic people detector at location xi given image

evidence I ti . vi n , vout ∈ Vp are the source and sink nodes that serve as starting and finishing

points for people trajectories, as in [17]. In practice we use the publicly available code of [52] to

compute the probabilities Pp in each grid cell of discretized version of the court.

Given the ball flow variables f j
i and people flow ones p j

i , we express the in_possession constraints

as

∑
(k,l )∈Ep ,tl=t j ,
||x j −xl ||2≤Dp

pl
k ≥ ∑

i :(i , j )∈Eb

f j
i ∀ j : s j ≡ in_possession , (3.7)

where Dp is the maximum possible distance between the player and the ball whelocation n the

player is in control of it, which is sport-specific. We learn whethis value from the training data,

similar to how we learn the maximum whepermissible speed of the ball in each specific state.

Resulting MIP. Using the physics-based constraints of Eq. 3.4 and 3.5 and the possession

constraints of Eq. 3.7 along with the formulation of people tracking from Eq. 3.6 to represent the

feasible set of states F of Eq. 3.3(f) yields the MIP

maximize
∑

(i , j )∈Eb

f j
i c j

bi +
∑

(i , j )∈Ep

p j
i c j

pi

subject to the constraints of Eqs.3.3(a-e), 3.4, 3.5, 3.6(a-c), and 3.7.

(3.8)

In practice, we use the Gurobi [137] solver to perform the optimization. This allows us to solve

the formulated integer program globally optimally. Note that we can either consider the people

flows as given and optimize only on the ball flows or optimize on both simultaneously. We will

show in the results section that the latter is only slightly more expensive but yields improvements

in cases such as the one of Fig. 3.1.

3.4 Learning the Potentials

In this section, we define the potentials introduced in Eq. 3.2 and discuss how their parameters

are learned from training data. They are computed on the nodes of the ball graph Gb and are used

to compute the cost of the edges, according to Eq. 3.3. We discuss its construction in Sec. 3.5.2.

Note that we do a piece-wise training to learn parameters of each potential separately. We do

not perform any end-to-end training, and do not define any weights for the potentials we use in
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the cost of the edges. The main reason for that is that potentials ΨX and ΨS act as strict cutoff,

forbidding transitions between detections that are too far apart, or impossible transitions between

states. As such, there is not need to learn any weights for them, and the main informative part of

the cost function comes from the image evidence potential ΨI , described below.

Image evidence potential ΨI . It models the agreement between location, state, and the image

evidence. We write

ΨI (xi , si , I ) = ψ(xi , si , I )
∏

j∈Vb :t j =t ,
(x j ,s j )
=(xi ,si )

(
1−ψ(x j , s j , I )

)
,

ψ(x, s, I ) = σs (Pb(x|I )Pc (s|x, I )) , (3.9)

σs (y) = 1

1+e−θs0−θs1 y
,

where Pb(x) represents the output of a ball detector for location x, Pc (s|x, I ) the output of

multiclass classifier that predicts the state s given the position and the local image evidence.

ψ(x, s, I ) is close to one when the ball is likely to be located at x in state s with great certainty

based on image evidence only and its value decreases as the uncertainty of either estimates

increases.

In practice, we train a Random Forest classifier [24] to estimate Pc (s|x, I ). As features, it uses the

3D location of the ball. Additionally, when the player trajectories are given, it uses the number

of people in its vicinity as a feature. When simultaneously tracking the players and the ball,

we instead use the integrated outputs of the people detector in the vicinity of the ball. We give

additional details in the appendix.

The parameters θs0,θs1 of the logistic function σs are learned from training data for each state s.

Given the specific ball detector we rely on, we use true and false detections in the training data as

positive and negative examples to perform a logistic regression.

State transition potential ΨS . We define it as the transition probability between states, which

we learn from the training data by counting, that is:

ΨS (si , s j ) = P (St = si |St−1 = s j ) . (3.10)

As noted in Sec. 3.3.1, potential for the first time frame has a special form P (S2 = si |S1 =
s j )P (S1 = s j ), where P (S1 = s j ) is the probability of the ball being in state s j at arbitrary time

instant; it is learned from the training data.
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Location change potential ΨX . It models the transition of the ball between two time instants.

Let Ds denote the maximum speed of the ball when in state s. We write it as

ΨX (xi , si , x j ) = 1(||xi −x||2 ≤ Dsi ) . (3.11)

For the not_present state, we only allow transitions between the node representing the absent

ball and the nodes near the border of the tracking area. For the first frame the potential has an

additional factor of P (X 1 = xi ), ball location prior, which we assume to be uniform inside of the

tracking area.

3.5 Implementation details

Recall from Sections 3.3.2 and 3.3.3, that our algorithm operates on a ball and player graph. We

describe the procedure of building them in Sec. 3.5.1 and Sec. 3.5.2. We provide details of how

we handle different ball states in Sec. 3.5.3, and details of learning the potentials from Sec. 3.4 in

Sec. 3.5.4. In both sections we describe the used detectors, since the output of the ball detections

is used when computing the image evidence potential ΨI , as described earlier in this section,

and the people detector output is used when constructing the cost of transition between people

detections, as described in 3.6.

3.5.1 Player Graph

To detect the players, we first compute a Probability Occupancy Map on a discretized version of

the court or field using the algorithm of [52]. We then follow the promising approach of [172]. We

use the K-Shortest-Path (KSP) [17] algorithm to produce tracklets, which are short trajectories

with high confidence detections. To hypothesize the missed detections, we use the Viterbi

algorithm on the discretized grid to connect the tracklets. Each individual location in a tracklet or

path connecting tracklets becomes a node of the player graph Gp , it is then connected by an edge

to the next location in the tracklet or path.

3.5.2 Ball Graph

To detect the ball, we use a SVM [64] to classify image patches in each camera view based

on Histograms of Oriented Gradients, HSV color histograms, and motion histograms. We then

triangulate these detections to generate candidate 3D locations and perform non-maximum

suppression to remove duplicates. We then aggregate features from all camera view for each

remaining candidate and train a second SVM to only retain the best.

Given these high-confidence detections, we use KSP tracker to produce ball tracklets, as we did

for people. However, we can no longer use the Viterbi algorithm to connect them as the resulting
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Figure 3.3 – An example of ball detections, hypothesized ball locations when it is missed, and

graph construction.

connections may not obey the required physical constraints.

To model the ball states associated to a physical model, we grow the trajectories from each

tracklet based on the physical model, and then join the end points of the tracklets and grown

trajectories, by fitting the physical model. An example of such procedure is shown in Fig. 3.3.

To model the state in_possession, we create a copy of each node and edge in the players graph.

To model the state not_present, we create one node in each time instant and connect it to the

node in the next time instant, and nodes for all other states in the vicinity of the tracking area

border. Finally, we add edges between pairs of nodes with different states, as long as they are in

the vicinity of each other (bold in Fig. 3.2(b)).

3.5.3 Ball states

Here we describe the physical models associated with the different ball states. We use different

states for the ball in different sports. We use some states - flying, in_possession for all sports, and

others only for some. For volleyball we add strike, and for basketball pass. For both soccer and

volleyball we add rolling, and for basketball our sequences did not feature the ball rolling on the

ground. Tab. 3.2 describes the physical constants for all states, introduced in Eq. 3.5. Note that in

all cases we limit the absolute value of acceleration / speed / location of the ball, which means

that we actually have 2 constraints for each row in the table, with exactly opposite coefficients

As,c (P t
c −2P t−1

c +P t−2
c )+B s,c (P t

c −P t−1
c )+C s,c P t

c −F s,c ≤ K (3−M t
s,c −M t−1

s,c −M t−2
s,c ) ,

−As,c (P t
c −2P t−1

c +P t−2
c )−B s,c (P t

c −P t−1
c )−C s,c P t

c +F s,c ≤ K (3−M t
s,c −M t−1

s,c −M t−2
s,c ) .
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They limit the values from above and from below, respectively. Notation used is the same

notation we use in Eq. 3.5. Note that physical models for states flying, strike and pass are

identical. We differentiate between those states using our state classifier.

State(s) s Axis c As,c B s,c C s,c F s,c Explanation

flying, strike,
pass, rolling

X 1 0 0 0 Constant speed in ground plane

flying, strike,
pass, rolling

Y 1 0 0 0 Constant speed in ground plane

flying, strike,
pass

Z 1 0 0
−g

f ps2 Negative g acceleration in vertical

plane

rolling Z 0 0 1 0 Constant height of the ball

flying, pass,
rolling

X ,Y , Z 0 1 0 20000(mm)
f ps Maximum speed limitation

strike X ,Y , Z 0 1 0 35000(mm)
f ps Maximum speed limitation

Table 3.2 – Physical models associated with different states of the ball. g = 9810( mm
s2 ) denotes

the free fall acceleration, f ps denotes frame rate of the video sequence. Coefficients shown

only for constraints that limit from above. Coefficients for limiting from below have the same

magnitude as those in the table but are negative.

States with physical model We compute tracklets by joining detections using the K-Shortest-

Paths algorithm. Then we create trajectories that go through these tracklets, and additional

trajectories that join tracklets and previously built trajectories. The trajectories of the first type

represent hypothesized ball locations where the detector has been unable to find the ball. The

trajectories of the second type represent hypothesized ball locations when the whole trajectory is

missing.

To create ball trajectories that go through the tracklets, we use the following procedure:

1. We start from every pair of consecutive detections in the tracklet. We fit a trajectory that

obeys the physical model and goes through these two points. Note that there is only one

straight line (for rolling) and only one parabola (for flying, strike, pass) that goes through

two given points. Uniqueness of parabola is due to fixed force of gravity.

2. We grow the trajectory. At each next frame, if there is indeed a detection within the distance

Dl of the trajectory, we add it to the trajectory, and recompute the best model fit through

a new set of detections. If there are several detections, we pick the one with the highest

confidence. We continue growing the trajectory until it leaves the tracking area

3. From a set of trajectories, we keep only those that are associated with the maximal set of

detections. In other words, if we have a trajectory with a set of detections, that is a subset

of detections of some other trajectory, we discard the former.
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Dl represents the distance between the detection and continuous location of the ball, as defined

by Eq. 4 of the chapter. We use Dl = 25cm for basketball and volleyball, and Dl = 75cm for

football. The value is larger for football both because the cameras are further away from the

players and because players often spin the ball so that it follows a curved, rather than straight

trajectory. Furthermore, friction can be quite high for the rolling ball, violating the constant

velocity constraint.

To join the tracklets and previously built trajectories, we consider all starting and ending points of

trajectories and tracklets. We link every pair that are at most 4 seconds apart. We have empirically

found that linking those further apart does not improve matters in terms of accuracy, but increases

the computational burden.

In_possession state For the in_possession state, we create a copy of every node and every edge

in the players graph. We associate with each node a detection with the highest confidence at the

distance of Dp from the players possible location. We use Dp = 1m for basketball and volleyball,

and Dp = 2.5m for football. The value is larger for football because players can bounce the ball

further away from themselves when they run with it.

Not_present state For the not_present state, we have one node associated with this state in

each time frame. We connect such node by an edge to the node with not_present state in the next

time frame, as well as to all nodes of all states close to the border of the tracking area. More

formally, we connect it to all nodes that are within distance Dmax , where Dmax is the maximum

distance the ball can travel in any of the states within one frame time. As shown in Tab. 1, we

take Dmax = 35000(mm)
f ps .

Edges between states With the exception of not_present state, discussed above, we follow one

rule for all edges that connect nodes of different states: we join those in the neighbouring frames

which are within Dmax distance of each other.

Post-processing We applied post-processing in the form of smoothing to the results for better

appearance of videos. Reported results are without smoothing. Furthermore, as we show below,

smoothing does not significantly affect tracking accuracy. Smoothing of the following form was

used:

• State smoothing. Ball that left possession of the player and returned within 0.1 seconds is

assumed to have never left.

• State smoothing. Ball that was assigned to possession, but returned to flying withing 0.1

seconds and did not change course, is assumed to have stayed on course during this period.
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• Ground collision smoothing. We assume the ball to be in contact with the ground in the

case of collision if it is below a certain threshold. If there are several such points, we

assume them all to have equal zero height.

As Fig. 3.5, left, shows, tracking accuracy with and without smoothing does not differ much. It

was obtained on Volley-1 dataset, and we saw similar results on all other datasets.

3.5.4 State classifier

Here we describe the state classifier, introduced in Sec. 3.4. For each sport, we learn a multi-class

Random Forest classifier to predict the ball state. We use the 3D ball location and the number of

people around it as features. We use neighbourhoods of sizes 1000mm / 500mm and 2000mm /

2500mm for volleyball / basketball / soccer respectively.

When we are simultaneously tracking the ball and the players, the ground truth positions of the

players are unknown. In this case, we substitute the number of people by the predicted number of

people, which we compute by integrating the Probabilistic Occupancy Map near the ball location.

To improve the performance of the classifier given limited amount of available data we take

advantage of the court symmetry of the field with respect to the 180 degrees rotation around the

center. We treat all data points as if they were located on one side of the field.

Fig. 3.4 presents a partial evaluation of tracking accuracy as a function of the number of frames in

the training data to address the question of whether the training data we use is sufficient. Clearly,

the more the better, but above 1000 frames the further improvement becomes small.

Fig. 3.5, right, depicts the output of our classifier for volleyball data. Near the ground, probability

of having a freely flying ball is low, and most predictions correspond to flying and in_possession.

At 2.5 meters height, predictions are mixed, with flying predictions at the ends of the field, that

correspond to locations from which the players serve the ball. At the height of 3.5m predicted

state is mostly flying, except for a stripe in the middle, where players often strike the ball after the

jump. Possession by players at such height is not likely. Higher than 4 meters classifier predicts

flying for all locations. We have checked that cross-validation classification error was under 7%

for all our datasets.

3.6 Experiments

In this section, we compare our results to those of several state-of-the-art multi-view ball-tracking

algorithms [171, 172, 139], a monocular one [60], as well as two tracking methods that could

easily be adapted for this purpose [195, 17].

We first describe the datasets we use for evaluation purposes. We then briefly introduce the

methods we compare against and finally present our results.
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Figure 3.4 – Tracking accuracy at 25 cm for volleyball and basketball as a function of the number

of training frames. For consistency, we increased the number of training frames for Basket-2 to

1500.

3.6.1 Datasets

We use two volleyball, three basketball, and one soccer sequences, which we detail below.

Basket-1 and Basket-2 comprise a 4000- and a 3000-frame basketball sequences captured

by 6 and 7 cameras, respectively. These synchronized 25-frame-per-second cameras are placed

around the court. We manually annotated each 10th frame of Basket-1 and 500 consecutive

frames of Basket-2 that feature flying ball, passed ball, possessed ball and ball out of play. We

used the Basket-1 annotations to train our classifiers and the Basket-2 ones to evaluate the quality

of our results, and vice versa.

Basket-APIDIS is also a basketball dataset [166] captured by seven unsynchronized 22-frame-

per-second cameras. A pseudo-synchronized 25-frame-per-second version of the dataset is also

available and this is what we use. The dataset is challenging because the camera locations are not

good for ball tracking and lighting conditions are difficult. We use 1500 frames with manually

labeled ball locations provided by [139] to train the ball detector, and Basket-1 sequence to train

the state classifier. We report our results on another 1500 frames that were annotated manually

in [166].

Volley-1 and Volley-2 comprise a 10000- and a 19500-frame volleyball sequences captured

by three synchronized 60-frame-per-second cameras placed at both ends of the court and in the

middle. Detecting the ball is often difficult both because on either side of the court the ball can

be seen by at most two cameras and because, after a strike, the ball moves so fast that it is blurred

in middle camera images. We manually labeled each third frame in 1500-frame segments of both

sequences. As before, we used one for training and the other for evaluation.
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Figure 3.5 – Left:Tracking accuracy curve for results with and without smoothing on Volley-1

dataset. Right: Example of the classifier output on the volleyball data. Input to the classifier is

the 3D location of the ball and the number of people in the vicinity. Picture shows the output of

classifier for different xy-locations of the ball, and different heights. Ground-plane positions of

the players are denoted by little red circles. R,G,B components of the color indicate the output of

the classifier, probability of states flying, in_possession, and strike, respectively.

Soccer-ISSIA is a soccer dataset [45] captured by six synchronized 25-frame-per-second cam-

eras located on both sides of the field. As it is designed for player tracking, the ball is often out

of the field of view when flying. We train on the 1000 frames and report results on another 1000.

In all datasets, the apparent size of the ball is so small that state-of-the-art monocular object

tracker [195] was unable to track the ball reliably for more than several seconds.

3.6.2 Baselines

We use several recent multi-camera ball tracking algorithms as baselines. To ensure a fair

comparison, we ran all publicly available approaches with the same set of detections, which were

produced by the ball detector described in Sec. 3.5.2. We briefly describe these algorithms below.

• InterTrack [172] introduces an Integer Programming approach to tracking two types of

interacting objects, one of which can contain another. Modeling the ball as being “contained”

by the player in possession of it was demonstrated as a potential application. In [173], this

approach is shown to outperform several multi-target tracking approaches [143, 100] for

ball tracking task.

• RANSAC [139] focuses on segmenting ballistic trajectories of the ball and was originally

proposed to track it in the Basket-APIDIS dataset. This approach is shown to outperform

the earlier graph-based filtering technique of [138]. We found that it also performs well
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in our volleyball datasets that feature many ballistic trajectories. For the Soccer-ISSIA

dataset, we modified the code to produce linear rather than ballistic trajectories.

• FoS [171] focuses on modeling the interaction between the ball and the players, assuming

that long passes are already segmented. In the absence of a publicly available code, we use

the numbers reported in the article for Basket-1-2-APIDIS and on Soccer-ISSIA.

• Growth [60] greedily grows the trajectories instantiated from points in consecutive frames.

Heuristics are used to terminate trajectories, extend them and link neighbouring ones. It is

based on the approach of [33] and shown to outperform approaches based on the Hough

transform. Unlike the other approaches, it is monocular and we used as input our 3D

detections reprojected into the camera frame.

To refine our analysis and test the influence of specific element of our approach, we used the

following approaches.

• MaxDetection. To demonstrate the importance of tracking the ball, we give the results

obtained by simply choosing the detection with maximum confidence.

• KSP [17]. To demonstrate the importance of modeling interactions between the ball and

the players, we use the publicly available KSP tracker to track only the ball, while ignoring

the players.

• OUR-No-Physics. To demonstrate the importance of second-order constraints of Eq. 3.5,

we turn them off.

• OUR-Two-States. To demonstrate the impact of keeping track of many ball states, we

assume that the ball can only be in possession and free motion.

3.6.3 Metrics

Our method tracks the ball and estimates its state. We use a different metric for each of these two

tasks.

Tracking accuracy at distance d is defined as the percent of frames in which the location of

the tracked ball is closer than d to the ground truth location.

The curve obtained by varying d is known as the “precision plot” [7]. When the ball is

in_possession, its location is assumed to be that of the player possessing it. If the ball is

reported to be not_present while it really is present, or vice versa, the distance is taken to be

infinite.
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Event accuracy measures how well we estimate the state of the ball. We take an event to be a

maximal sequence of consecutive frames with identical ball states. Two events are said to match

if there are not more than 5 frames during which one occurs and not the other, which we have

empirically found to be enough to account for small offsets in the reported state value, but not

large enough to match events that are actually different. Event accuracy then is a symmetric

measure we obtain by counting recovered events that matched ground truth ones, as well as the

ground truth ones that matched the recovered ones, normalized by dividing it by the number of

events in both sequences.

3.6.4 Comparative Results

We now compare our approach to the baselines in terms of the above metrics. As mentioned

in Sec. 3.3.3, we obtain the players trajectories by first running the code of [52] to compute

the player’s probabilities of presence in each separate fame and then that of [17] to compute

their trajectories. We first report accuracy results when these are treated as being correct, which

amounts to fixing the p j
i in Eq. 3.8, and show that our approach performs well. We then perform

joint optimization, which yields a further improvement. We report the computational efficiency

and all the algorithm parameters below. Our approach requires 3 to 40 seconds for the 500-frame

sequences we tested. Our code is publicly available 1.

Tracking and Event Accuracy. As shown in Fig. 3.6(a-f), OUR complete approach, outper-

forms the others on all 6 datasets. Two other methods that explicitly model the ball/player

interactions, OUR-No-Physics and InterTrack, come next. FoS also accounts for interactions

but does markedly worse for small distances, probably due to the lack of an integrated second

order model.

Volleyball. The differences are particularly visible in the Volleyball datasets that feature both

interactions with the players and ballistic trajectories. Note that OUR-Two-States does consider-

ably worse, which highlights the importance of modeling the different states accurately.

Basketball. The differences are less obvious in the basketball datasets where OUR-No-Physics
and InterTrack, which model the ball/player interactions without imposing global physics-based

constraints, also do well. This reflects the fact that the ball is handled much more than in

volleyball. As a result, our method’s ability to also impose strong physics-based constraints has

less overall impact.

Soccer. On the soccer dataset, the ball is only present in about 75% of the frames and we report

our results on those. Since the ball is almost never seen flying, the two states (in_possession
1http://cvlab.epfl.ch/research/balltracking
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Figure 3.6 – Comparative results for ball tracking. OUR outperforms the other approaches in

terms of ball accuracy, followed by the other methods that also model ball/player interaction,

OUR-No-Physics, InterTrack, and FoS for larger values of d .
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Figure 3.7 – Comparative results for game state estimation. OUR performs best in terms of event

accuracy.

and rolling) suffice, which explains the very similar performance of OUR and OUR-Two-States.

KSP also performs well because in soccer occlusions during interactions are less common than

in other sports. Therefore, handling them delivers less of a benefit.

Our method also does best in terms of event accuracy, among the methods that report the state of

the ball, as shown in Fig. 3.6(g). As can be seen in Fig. 3.8, both the trajectory and the predicted

state are typically correct. Most state assignment errors happen when the ball is briefly assigned

to be in_possession of a player when it actually flies nearby, or when the ball is wrongly assumed

to be in free motion, while is is really in_possession but clearly visible.

Simultaneous tracking of the ball and players. All the results shown above were obtained

by processing sequences of at least 500 frames. In such sequences, the people tracker is very

reliable and makes few mistakes. This contributes to the quality of our results at the cost of an

inevitable delay in producing the results. Since this could be damaging in the live-broadcast

situation, we have experimented with using shorter sequences. We show here that simultaneously

tracking the ball and the players can mitigate the loss of reliability of the people tracker, albeit to

a small extent. MODA or multiple object detection accuracy metric reports average percentage

of players detected in each frame, that match the ground truth, penalized for false and missed

detections.

As shown in Tab. 3.3 for the Volley-1 dataset, we need 200-long frames to get the best people

tracking accuracy when first tracking the people by themselves first, as we did before. As the

number of frames decreases, the people tracker becomes less reliable but performing the tracking

simultaneously yields a small but noticeable improvement both for the ball and the players.

The case of Fig. 3.1 is an example of this. We identified 3 similar cases in 1500 frames of the

volleyball sequence used for the experiment.
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Batch MODA [85],% Tracking acc. @ 25 cm,%

50 94.1 / 93.9 / 0.26 69.2 / 67.2 / 2.03

75 94.5 / 94.2 / 0.31 71.4 / 69.4 / 2.03

100 96.5 / 96.3 / 0.21 72.5 / 71.0 / 1.41

150 97.2 / 97.1 / 0.09 73.8 / 73.0 / 0.82

200 97.3 / 97.4 / 0.00 74.1 / 74.1 / 0.00

Table 3.3 – Tracking the ball given the players’ locations vs. simultaneous tracking of the ball

and players. The three numbers in both columns correspond to simultaneous tracking of the

players and ball / sequential tracking of the players and then the ball / improvement, as function

of the lengths of the sequences.

3.6.5 Computational efficiency

We provide a partial evaluation in Table 3.4. Running on the volleyball and basketball sequences

is faster than on the soccer one, because the ball graph of the soccer sequence is larger than the

others by an order of magnitude due to the spurious detections and higher edge density. More

specifically, Dp , the vicinity in which the ball can be possessed by players, is higher for soccer,

as reported in the appendix. This results in more states for the soccer graph.

Dataset 100 frames 250 frames 500 frames
Volley-1,2 0.2/0.4/1 0.5/1.2/2 3/5.3/15

Basket-1,2 0.1/0.3/0.9 5/9.1/12 8/12/38

Basket-APIDIS 0.2/0.4/0.6 1/2.2/3 7/13.1/25

Soccer-ISSIA 3/4/5 16/38/60 794/1072/1350

Table 3.4 – Min/Average/Max processing time (measured in seconds) on batches of different

lengths on a 2.5Hz Intel Core i7 processor. Results were computed on non-overlapping intervals

covering all test data.

3.7 Conclusion

We have introduced an approach to ball tracking and state estimation in team sports. It uses Mixed

Integer Program that allows to account for second order motion of the ball, interaction of the

ball and the players, and different states that the ball can be in, while ensuring globally optimal

solution. We showed our approach on several real-world sequences from multiple team sports.

In future, we would like to extend this approach to more complex tasks of activity recognition

and event detection. For this purpose, we can treat events as another kind of objects that can be

tracked through time, and use interactions between events and other objects to define their state.
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4 Non-Markovian globally consistent
multi-object tracking

Abstract

Many state-of-the-art approaches to multi-object tracking rely on detecting them in each frame

independently, grouping detections into short but reliable trajectory segments, and then further

grouping them into full trajectories. This grouping typically relies on imposing local smoothness

constraints but almost never on enforcing more global ones on the trajectories.

In this chapter, we propose a non-Markovian approach to imposing global consistency by using

behavioral patterns to guide the tracking algorithm. When used in conjunction with state-of-

the-art tracking algorithms, this further increases their already good performance on multiple

challenging datasets. We show significant improvements both in supervised settings where ground

truth is available and behavioral patterns can be learned from it, and in completely unsupervised

settings.

4.1 Introduction

Multiple Object Tracking (MOT) has a long tradition for applications such as radar tracking [23].

These early approaches gradually made their way into vision community for object tracking

purposes. They initially relied on Gating, Kalman Filtering [22, 129, 74, 181, 119] and later on

Particle Filtering [59, 159, 134, 88, 184, 124, 26]. Because of their recursive nature, when used to

track objects in crowded scenes, they are prone to identity switches and trajectory fragmentations,

which are difficult to recover from.

With the recent improvements of object detectors [43, 11], the Tracking-by-Detection paradigm [4]

has now become the preferred way to address MOT. In most state-of-the-art approaches [160,

36, 125, 180], this involves detecting objects in each frame independently, grouping detections

into short but reliable trajectory segments, or tracklets, and then further grouping those into full

trajectories.
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Figure 4.1 – Top two boxes. At training time, our procedure alternates between learning global

patterns (on the right) from trajectories (on the left) and improving the trajectories on the basis

of these patterns. These two actions are shown by a solid and dashed line between the two top

boxes. When the initial trajectories come from annotated ground truth data, the patterns are

simply learned without further iterations. Bottom two boxes. At run time, the learned patterns

(from the top right box) are used to improve trajectories produced by state-of-the-art algorithms

(from the bottom left box). Obtained results are shown in the bottom right box.

While effective, existing tracklet-based approaches tend to only impose local smoothness con-

straints on the trajectories. These are Markovian in nature as opposed to being global ones that

stem from behavioral patterns. For example, a person entering a building via a particular door can

be expected to head to a specific set of rooms. Similarly, a pedestrian emerging on the street from

a shop will often turn left or right to follow the sidewalk. Such patterns are of course not absolutes

because people sometimes do the unexpected but they should nevertheless inform the tracking

algorithms. We know of no existing technique that imposes this kind of global non-Markovian

constraints in a globally optimal fashion.

Our first contribution is an energy function that relates behavioral patterns to trajectories assigned

to them. We use it to infer global patterns and to guide a multi-target tracking algorithm in a

non-Markovian fashion.

Our second contribution is an unsupervised training scheme. Given input trajectories from any

source, it iterates between learning patterns that maximize our energy function, and improving

the trajectories by linking the detections that were the part of the original ones in a potentially

different way so as to maximize the same energy. When the original trajectories come from

annotated ground truth data, the patterns are simply learned for them without further iterations.

The top row of Fig. 4.1 depicts this process. At run-time, previously learned patterns are used

to improve the trajectories produced by the original algorithm or any other, as depicted by the

bottom row of Fig. 4.1. We show that this approach consistently improves performance on

multiple challenging datasets by 7% and 5% on average in supervised and unsupervised fashion

respectively. This is mostly attributable to the reduction in identity switches between objects

following different patterns. Our code is made publicly available 1.

1https://github.com/maksay/ptrack_cpp
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4.2 Related Work

We briefly review data association and behavioral modeling techniques and refer the interested

reader to [170, 109] for more details. We also discuss the metrics we use for MOT evaluation

and their sensitivity to identity switches.

4.2.1 MOT as Data Association

Finding the right trajectories linking the detections, or data association, has been formalized

using various models. For real-time performance, data association often relies either on matching

locally between existing tracks and new targets [48, 105, 8, 36, 127] or on filtering techniques or

using model evolution approaches [132, 152]. The resulting algorithms are fast but often perform

less well than batch optimization methods, which use a sequence of frames to associate the data

optimally over a whole set of frames, rather than greedily in each following frame.

Batch optimization can be formulated as a shortest path problem [17, 143], network flow prob-

lem [196], generic linear programming [78], integer or quadratic programming [104, 27, 167,

148, 40, 191, 122]. A common way to reduce the computational burden is to group reliable

detections into short trajectory fragments known as tracklets and then reason on these tracklets

instead of individual detections [82, 158, 110, 97, 15].

However, whether or not tracklets are used, making the optimization problem tractable when

looking for a global optimum limits the class of possible objective functions. They are usually

restricted to functions that can be defined on edges or edge pairs in a graph whose nodes are

individual detections or tracklets. In other words, such objective functions can be used only to

impose relatively local constraints. To impose global constraints, the objective functions have to

involve multiple objects and long time spans. They are optimized using gradient descent with

exploratory jumps [128], inference with a dynamic graphical model [36], or iterative groupings

of shorter tracklets into longer trajectories [96, 56, 6]. However, this comes at the cost of losing

any guarantee of global optimality.

By contrast, our approach is designed for batch optimization and finding the global optimum,

while using an objective function that is rich enough to express the relation between global

trajectories and non-linear motion patterns. The method of [37] advocates the same philosophy

but for the very different activity recognition task.

4.2.2 Using Behavioral Models

A number of works incorporate human behavioral models into tracking algorithms to increase

their reliability. For example, the approaches of [141, 1] model collision avoidance behavior to

improve tracking, the one of [187] uses behavioral model to predict near future target locations,

and the one of [144] encodes local velocities into the affinity matrix of tracklets. These approaches
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Figure 4.2 – (a) Given a set of high-confidence detections D, and a set of allowed transitions

E , we seek to find: (b) trajectories of the objects, represented by transitions from T ; (c) a set of

behavioural patterns P , which define where objects behaving in a particular way are likely to be

found; an assignment A of each individual detection to a pattern, specifying which pattern did

the object in this detection follow.

boost the performance but only account for very local interactions, instead of global behaviors

that influence the whole trajectory.

Many approaches to inferring various forms of global patterns have been proposed over the

years [146, 84, 120, 142, 192, 70, 174, 28, 91, 108, 57, ?]. However, the approaches of [16], [2], [94],

and [10] are the only ones we know of that attempt to use these global patterns to guide the track-

ing. The method of [16] is predicated on the idea that behavioral maps describing a distribution

over possible individual movements can be learned and plugged into the tracking algorithm to

improve it. However, even though the maps are global, they are only used to constrain the motion

locally without enforcing behavioral consistency over the whole trajectory. In [10], an E-M-based

algorithm is used to model the scene as a Gaussian mixture that represents the expected size and

speed of an object at any given location. While the model can detect global motion anomalies

and improve object detection, the motion pattern information is not used to improve the tracking

explicitly. In [94], modeling the optical flow helps to detect anomalies but only when the crowd is

dense enough. In [2], global behavioral patterns are learned as vector fields on the floor. However,

when used for tracking in high-density crowds, they are converted to to local Markovian transition

probabilities, thereby loosing their global nature.

Vehicle motion is more structured than the human kind and behavioral models often take into

account speed limits or states of the traffic lights [200, 85, 62, 77, 163]. Nevertheless, they retain

enough similarities with human motion that we can represent patterns in the same way for both.

4.2.3 Quantifying Identity Switches

In this chapter, we aim for globally consistent tracking by preventing identity switches along

reconstructed trajectories, for example when trajectories of different objects are merged into one

or when a single trajectory is fragmented into many. We therefore need an appropriate metric to

gauge the performance of our algorithms. Here, using Fig. 4.3 we provide a concrete example
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Figure 4.3 – Effect of identity switches on the tracking metrics. The thick lines represent ground-

truth trajectories and the thin dotted ones recovered trajectories. The trajectory fragments that

count positively are shown in green and those that count negatively in red. The formulas at

the top of the figure depict graphically how the MOTA and IDF1 scores are computed. Top:

Three ground-truth trajectories, with the bottom two crossing in the middle. The four recovered

trajectories feature an identity switch where the two real trajectories intersect, missed detections

resulting in a fragmented trajectory and therefore another identity switch at the top, and false

detections at the bottom left. When using MOTA, the identity switches incur a penalty but

only very locally, resulting in a relatively high score. By contrast, IDF1 penalizes the recovered

trajectories over the whole trajectory fragment assigned to the wrong identity, resulting in a

much lower score. Bottom: The last two thirds of the recovered trajectory are fragmented into

individual detections that are not linked. MOTA counts each one as an identity switch, resulting

in a negative score, while IDF1 reports a more intuitive value of 0.3.

of why the IDF1 metric is a better tool for our tast than the set of CLEAR MOT metrics. We

have previously introduced both in Sec. 2.5. In Section 4.6.4, we report results both in terms of

MOTA and IDF1, to highlight the drop in identity switches our method brings about.

4.3 Formulation

In this section, we formalize the problem of discovering and using behavioral patterns to impose

global constraints on a multi-object tracking algorithm. In the following sections we will use it to

estimate trajectories given the patterns and to discover the patterns given ground-truth trajectories.

43



Chapter 4. Non-Markovian globally consistent multi-object tracking

4.3.1 Detection Graph

Given a set of high-confidence detections D = {1, . . . ,L} in consecutive images of a video sequence,

let V =D∪ {vi n , vout }, where vi n and vout denote possible trajectory start and end points and

each node v ∈D is associated with a set of features that encode location, appearance, or other

important properties of a detection. Let E ⊂ V 2 be the set of possible transitions between the

detections. G = (V ,E ) can then be treated as a detection graph of which the desired trajectories

are subgraphs. As depicted by Fig. 4.2, let

• P ⊂ E be a set of edges defining objects’ trajectories.

• P be a set of K patterns, each defining an area where objects behaving in a specific way are

likely to be found, plus an empty pattern 
 used to describe unusual behaviors. Formally

speaking, patterns are functions that associate to a trajectory made of an arbitrary number

of edges a score that denotes how likely it is to correspond to that specific pattern, as

discussed in Section 4.3.3. In our particular implementation, patterns will be defined by

a centerline and width, and we will assume that people following the pattern should go

along the centerline within the distance defined by the width - Fig. 4.4 should provide some

intuition before we define it more formally in Sec. 4.3.3.

• A be a set of assignments of individual detections in D into patterns, that is, a mapping

A : D → {1, . . . ,K }.

Each trajectory t ∈ T must go through detections via allowable transitions, begin at vi n , and end

at vout . Here we abuse the notation t ∈ T to express that all edges (vi n , t1), (t1, t2), · · · , (t|t |, vout )
from trajectory t = (t1, · · · , t|t |) belong to T . Furthermore, since we only consider high-confidence

detections, each one must belong to exactly one trajectory. In practice, this means that potential

false positives end up being assigned to the empty behavior 
 and can be removed as a post-

processing step. Whether to do this or not is governed by a binary indicator Re that is learned.

In other words, the edges in T must be such that for each detection there is exactly one selected

edge coming in and one going out, which we can write as

∀ j ∈D,∃!i ∈ V ,k ∈ V : (i , j ) ∈ T ∧ ( j ,k) ∈ T . (4.1)

∃! denotes the expression "exists and exists only one" in the expression above. Since all detections

that are grouped into the same trajectory must be assigned to the same pattern, we must have

∀(i , j ) ∈ T : (i ∈D∧ j ∈D) ⇒ A(i ) = A( j ) . (4.2)

In our implementation, each pattern p ∈ P\
 is defined by a trajectory that serves as a centerline

and a width, as depicted by Fig. 4.2(c) and 4.4. However, the optimization schemes we will

describe in Sections 4.4.1 and 4.4.2 do not depend on this specific representation and can be

replaced by any other.
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4.3.2 Building the Graph

To build the graph we use trajectories produced by another algorithm, as input. We want to

improve these trajectories, therefore we build a graph so that we can obtain new trajectories and

recover from identity switches, fragmentations, and incorrectly merged input trajectories.

We take the set of detections along these input trajectories to be our high-confidence detections

D and therefore the nodes of our graph. We take the edges E to be pairs of nodes that are either

i) consecutive in the original trajectories, ii) within ground plane distance D1 of each other in

successive frames, iii) the endings and beginnings of input trajectories within distance D2 and

within Dt frames, iv) or whose first node is vi n or second node is vout .

4.3.3 Objective Function

Our goal is to find the most likely trajectories formed by transitions in T ∗, patterns P∗, and

mapping linking one to the other A∗, given the image information and any a priori knowledge we

have. In particular, given a set of patterns P∗, we look for the best set of trajectories that match

these patterns. Conversely, given a set of known trajectories T ∗, we learn a set of patterns, as

discussed in Section 4.4.

To formulate these searches in terms of an optimization problem, we introduce an objective

function C (T,P, A) that reflects how likely it is to observe the objects moving along the trajectories

defined by T , each one corresponding to a pattern from P = {p1 · · · , pK } given the assignment

A. Ideally, C should be the proportion of trajectories that correctly follow the assigned patterns.

To compute it in practice, we take our inspiration from the MOTA and IDF1 scores described

in Section 4.2.3. They are written in terms of ratios of the lengths of trajectory fragments that

follow the ground truth to total trajectory lengths. We therefore take our objective function to be

a similar ratio, but instead of ground truth trajectories we use patterns. More formally:

C (T,P, A) =
∑

t∈T
M(t , p A(t1))

∑
t∈T

N (t , p A(t1))
, (4.3)

N (t , p) = n(vi n , t1, p)+n(t|t |, vout , p)+ ∑
1≤ j≤|t |−1

n(t j , t j+1, p),

M(t , p) = m(vi n , t1, p)+m(t|t |, vout , p)+∑
1≤ j≤|t |−1

m(t j , t j+1, p),

where n(i , j , p) is the sum of the total length of edge (i , j ) and of the length of the corresponding

pattern centerline, while m(i , j , p) is the sum of lengths of aligned parts of the pattern and the

edge. Fig. 4.4 illustrates this computation and we give the mathematical definitions of m and n

in the appendix.
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wp
cp

{

i

j

pi

pj

n(i, j, p) = +

m(i, j, p) = + {

Figure 4.4 – For a pattern p defined by centerline cp , shown as a thick black line, with width wp ,

and an edge (i , j ), we compute functions n(i , j , p) and m(i , j , p) introduced in Section 4.3.3 and

shown in green and blue, respectively, as follows: n(i , j , p) is the total length of the edge and the

corresponding length of the pattern centerline, measured between the points pi and p j , which

are the points on the centerline closest to i and j . If both i and j are within the pattern width

wp from the centerline, we take m(i , j , p) to be the sum of two terms: the length in the pattern

along the edge, that is, the distance between pi and p j , plus the length in the edge along the

pattern, that is, the length of the projection of (pi , p j ) onto the line connecting i and j . Otherwise

m(i , j , p) = 0 to penalize the deviation from the pattern.

As a result, N (t , p) is the sum of the lengths of trajectory and assigned pattern while M(t , p)

measures the length of parts of trajectory and pattern that are aligned with each other. Note that

the definition of Eq. (4.3) is very close to that of the metric IDF1 introduced in Sec. 4.2.3. It is

largest when each person follows a single pattern for as long as possible. This penalizes identity

switches because the trajectories that are erroneously merged, fragmented, or jump between

objects are unlikely to follow any specific pattern.

Conceptually, we define functions m and n so that, for any trajectory t and pattern p, the value of

n(t , p) = n(vi n , t1)+n(t|t |, vout )+ ∑
j∈{1,...,|t |−1}

n(t j , t j+1) approximates the sum of the total lengths

of both pattern and trajectory, while m(t , p) = m(vi n , t1)+m(t|t |, vout )+ ∑
j∈{1,...,|t |−1}

m(t j , t j+1)

approximates the overlap length between pattern and trajectory, as illustrated by Fig. 4.4.

The key properties of the defined function are: i) It scores the whole trajectory and even set of

trajectories, rather than each independent transition, freeing us from a Markovian assumption of

people movement; ii) It closely resembles the metrics such as MOTA and IDF1 used to evaluate

the quality of people tracking, which are also fractions with the number of matched objects in

numerator and total number of objects in denominator; iii) As we will see in Sec. 4.4, it can be

optimized efficiently. We define m and n more precisely in the appendix.

In Eq. (4.3), we did not explicitly account for the fact that the first vertex i of some edges can be
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the special entrance vertex, which is not assigned to any behavior. When this happens we simply

use the pattern assigned to the second vertex j . From now on, we will replace A(i ) by A(i , j ) to

denote this behavior. We also adapt the definitions of m and n accordingly to properly handle

those special edges.

4.4 Computing Trajectories and Patterns

In this section, we describe how we use the objective function C of Eq. (4.3) to compute

trajectories given patterns and patterns given trajectories. The resulting procedures will be the

building blocks of our complete MOT algorithm, as described in Section 4.5.

4.4.1 Trajectories

Let us assume that we are given a precomputed set of patterns P∗, then we look for trajectories

and corresponding assignment as

T ∗, A∗ = argmax
T,A

C (T,P∗, A) . (4.4)

To solve this problem, we treat the motion of objects through the detection graph G introduced in

Section 4.3.1 as a flow. Let op
i j ∈ {0,1} be the number of objects transitioning from node i to j in

a trajectory T assigned to pattern p ∈ P∗. It relates to P∗ and T according to:

op
i j = �(((i , j ) ∈ T )∧ (P∗

A(i , j ) = p)) . (4.5)

Using these new binary variables, we reformulate constraints (4.1) and (4.2) as

∀i ∈D∪O
∑

(i , j )∈E ,p∈P∗
op

i j = 1 ,

∀ j ∈D, p ∈ P∗ ∑
(i , j )∈E

op
i j = ∑

( j ,k)∈E

op
j k . (4.6)

This lets us rewrite our cost function as

C (T,P∗, A) =

∑
(i , j )∈T,p∈P∗

m(i , j , p)op
i j

∑
(i , j )∈T,p∈P∗

n(i , j , p)op
i j

, (4.7)

which we maximize with respect to the flow variables op
i j subject to the two constraints of

Eq. (4.6). This is an integer-fractional program, which could be transformed into a Linear

Program [30]. However, solving it would produce non-integer values that would need to be

rounded. To avoid this we propose a scheme based on the following observation: Maximizing
a(x)
b(x) with respect to x when b(x) is always positive can be achieved by finding the largest α such

that an x satisfying a(x)−αb(x) ≥ 0 can be found. Furthermore, α can be found by binary search.
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We therefore take a to be the numerator or Eq. (4.7), b its denominator, and x the vector of op
i j

variables. In practice, given a specific value of α, we do this by running a Integer Linear Program

solver [137] until it finds a feasible solution. When α reaches its maximum possible value, that

feasible solution is also the optimal one.

During binary search, we fix a particular value of α, and check whether the problem constrained

by (4.6) and the following has a feasible point:

∑
(i , j )∈T,p∈P∗

(m(i , j , p)−αn(i , j , p))op
i j ≥ 0 (4.8)

If a feasible point exists, we pick a value of α to be the lower bound of the best α, for which

the problem is feasible, otherwise we pick it as an upper bound. We start with the upper bound

of 1 and lower bound of 0, and pick α as an average between the upper and the lower bound

(dichotomy). We repeat this process 10 times, allowing us to find the correct value of α with the

margin of 2−10, and therefore also finding the values of T and A resulting in the optimal cost

function value with the same margin.

4.4.2 Patterns

In the previous section, we assumed the patterns known and used them to compute trajectories.

Here, we reverse the roles. Let us assume we are given a set of trajectories T ∗. We learn the

patterns and corresponding assignments as

P∗, A∗ = argmax
P,A

C (T ∗,P, A) ,

subject to P ⊂P , |P | ≤αp ,
∑

p∈P
M(p) ≤αc , (4.9)

where αc ,αp are thresholds and M : P → R+. The purpose of the additional constraints is to

limit both the number of patterns being used by αp and their spatial extent by αc , to prevent

over-fitting. In our implementation, we take M(p) = lp wp , where lp is the length of the pattern

centerline and wp is its width. P is a set of all admissible patterns, which we construct by

combining all possible ground-truth trajectories as centerlines with each width from a predefined

set of possible pattern widths.

To solve the problem of Eq. (4.9), we look for an assignment between our known ground

truth trajectories T ∗ and all possible patterns P and retain only patterns associated to at least

one trajectory. To this end, we introduce auxiliary variables at p describing the assignment

A∗ : T ∗ → P , and variables bp denoting if at least one trajectory is matched to pattern p.
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Formally, this can be written as

at p ∈ {0,1} ,∀t ∈ T ∗, p ∈P ,

bp ∈ {0,1} ,∀p ∈P ,∑
p∈P

at p = 1 ,∀t ∈ T ∗ ,

at p ≤ bp ,∀t ∈ T ∗, p ∈P . (4.10)

Given that C is defined as the fraction from Eq. (4.3), we use an optimization scheme similar to

the one described at the end of Sec. 4.4.1, where we perform binary search to find the optimal

value of α such that there exists a feasible solution for constraints of Eq. (4.10) as well as:

∑
t∈T ∗

∑
p∈P

(m(t , p)−αn(t , p))at p ≥ 0 ,

∑
p∈P

bp ≤αp ,
∑

p∈P

bp M(p) ≤αc . (4.11)

In practice, we do five iterations of binary search, and we obtain the right value of α with precision

of 2−5. To create a set of all possible patterns P we combine the set of all possible trajectories in

the current batch (taking only those that start after the beginning of the batch and end before the

end of the batch to make sure they represent full patterns of movement) with a set of possible

lengths.

4.5 Non-Markovian Multiple Object Tracking

Given that we can learn patterns from a set trajectories, we can now enforce long-range behavioral

patterns when linking a set of detections. This is in contrast to approaches enforcing local

smoothness constraints, that is, Markovian.

If annotated ground-truth trajectories T ∗ are available, we use them to learn the patterns as

described in Sec. 4.4.2. Then, at test time, we use the linking procedure of Sec. 4.4.1.

If no such training data is available, we can run an E-M-style procedure, very similar to the Baum-

Welch algorithm [76]: We start from a set of trajectories computed using a standard algorithm, use

them to compute a set of patterns, then use the set of patterns to improve trajectories, and iterate.

In practice, this yields results that are very similar to the supervised case in terms of accuracy but

much slower because we have to run through many iterations. This alternate optimization is the

key to making the computation tractable and making its components replaceable.

More specifically, each iteration of our unsupervised approach involves i) finding a set of patterns

P i given a set of trajectories T i−1, ii) finding a set of trajectories T i given a set of patterns P i , as

described in Sec. 4.4.2 and 4.4.1.
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In practice, for a fixed maximum number of patterns αc , this scheme converges after few iterations.

Since the optimal αc is unknown a priori, we start with a small αc , perform 5 iterations, increase

αc , and repeat until we reach a predefined maximum number of patterns. To select the best

trajectories without reference to ground truth, we define

	IDF1(T i ) = 1

2
(C (T i

1 ,P i
2, AT i

1→P i
2
)+C (T i

2 ,P i
1, AT i

2→P i
1
)) ,

where T i
1 and T i

2 are time-disjoint subsets of T i , P i
1 and P i

2 are patterns learned from T i
1 and T i

2 .

AT i
1→P i

2
and AT i

2→P i
1

are such assignments of trajectories to the patterns learned on another subset

that maximize 	IDF1(T i ).

In effect, 	IDF1 is a valid proxy for IDF1 due to the many similarities between our cost function

and IDF1 outlined in Sec. 4.3.3. In the end, we select the trajectories that maximize 	IDF1. Using

such cross-validation to pick the best solution in E-M models is justified in [68].

4.6 Evaluation

In this section, we demonstrate the effectiveness of our approach on several datasets, using both

simple and sophisticated approaches to produce the initial trajectories, which we then improve as

discussed in Section 4.5.

In the remainder of this section, we first describe the datasets and the tracking algorithms we rely

on to build the initial graphs. We then discuss the experimental protocol. Finally, we present our

experimental results.

4.6.1 Datasets

We use DukeMTMC [149], Towncentre [101, 12], Station [201], MOT16 [125], ETH and

Hotel [140] datasets for people tracking. We use a part of Rene [81] for vehicle-tracking, featur-

ing 30 annotated seconds with 27 trajectories. Additional results are reported on WILDTRACK
dataset [31] in the appendix.

Textual description of the datasets is as follows:

DukeMTMC. A dataset [149] with 8 cameras recording movements of people on various places

of Duke university campus at 60fps, containing more than an hour of recordings.

Towncentre. A sequence from the 2DMOT2015 benchmark [101]: a lively street where people

walk in different directions.

ETH and Hotel. Sequences from the BIWI Walking Pedestrians dataset [140] that were originally

used to model social behavior. In these datasets, using image and appearance information for

tracking is difficult, due to recordings with an almost vertical viewing angle and low visibility in
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the ETH.

Station. A one hour-long recording of Grand Central station in New York with several thousands

of annotated pedestrian tracks [201]. It was originally used for trajectory prediction in crowds.

MOT16. Sequences from the MOT Challenge 2016 [125]. We used MOT16-01 to evaluate the

supervised approach because it features training and testing data recorded at the same place. By

contrast, MOT16-08 does not and we used it to evaluate the unsupervised approach. Unfortunately,

the other sequences are unsuitable for our current implementation because they involve either

a moving camera, meaning there is no fixed scene to learn the patterns from, or only very few

trajectories traversing the scene for training purposes.

Rene. A five-minute long sequence of traffic at a street junction [81]. Since only 30 seconds

of it are annotated, we ran only the unsupervised approach on the whole sequence and used the

annotated frames for evaluation purposes.

WILDTRACK [31]. It contains a sequence recorded by 7 cameras with overlapping fields of

view and features a denser crowd than the others. The training and testing sequences are relatively

short, but allows to use our method to compare to KSP baseline. Results are reported in Tab. A.8

in appendix.

Dataset statistics are shown in Table 2.2. These datasets share several characteristics that make

them well suited to test our approach in challenging conditions. First, they feature real-life

behaviors as opposed to random and unrealistic motions acquired in lab settings. Second, many of

them feature frame rate below 5 frames per second, which is representative of outdoor surveillance

setups but makes tracking more difficult.

4.6.2 Baselines

As discussed in Section 4.3.2, we use as input to our system trajectories produced by recent MOT

algorithms. In Section 4.6.4, we will show that imposing our pattern constraints systematically

results in an improvement over the numerous baselines listed below.

On various datasets we compare to the following approaches: two highest-ranking approaches of

MOT15 [101] with publicly available implementation at the time of writing, namely MDP [180]

and SORT [20]; ECCV 2016 MOT Challenge winner DM [160, 161]; various other MOT15
top scoring methods [36, 157, 168, 87, 185, 89, 169, 189] to which we will refer by the name

that appears in the official scoreboard [101]. Finally, we use RNN [127] and KSP [17] as simple

baselines that do not use appearance information, and compare with BIPCC [149] as a baseline

provided for DukeMTMC dataset.

Textual description of the methods is as follows:
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MDP [180] formulates MOT as learning Markov Decision Process (MDP) policy and relies on

reinforcement learning to do so. At the time of writing, this was the highest-ranking approach on

the 2DMOT2015 [101] benchmark with a publicly available implementation.

SORT [20] is a real-time Kalman filter-based MOT approach. At the time of writing, this

was the second highest-ranking approach on 2DMOT2015 benchmark with a publicly available

implementation.

RNN [127] uses recurrent neural networks to predict the motion of people and perform MOT

in real time. It does not require any appearance information, but only the bounding boxes

coordinates. In our experiments, it outperformed all other methods that do not use appearance

information.

KSP [17] is a simple approach to MOT that formulates the MOT problem as finding K Shortest

Paths in spatio-temporal graph, without using appearance information.

DM [160, 161] decomposes the tracking graph into subgraphs and relies on strong matching

models. It won the ECCV 2016 Multiple Object Tracking challenge.

BIPCC [149] solves binary integer problem of optimally grouping observations into clusters

of detections of similar appearances, and delivers results with moderate recall, but very high

precision with few identity switches.

Top scoring methods from the MOT15 benchmark on the Towncentre dataset rely on a people

detector that is not always publicly available. We therefore used their output to build the detection

graph, and report their results only on Towncentre. For all others, the available code accepts

a set of detections as input. To compute them, we used the publicly available POM algorithm

of [52] to produce probabilities of presence in various ground locations and we kept those with

probability greater than 0.5. This proved effective on all our datasets. For comparison purposes,

we also tried using SVMs trained on HOG features [39] and deformable part models [50]. While

their performance was roughly similarly to that of POM on Towncentre, it was much worse

when the people are far away or seen from above. For cars, we used background subtraction

followed by blob detection.

4.6.3 Experimental Protocol

The data is split one minute long validation and test sequences, and the rest is used for training.

Results are averaged for all test intervals which we select in a leave-one-out fashion. We follow

52



4.6. Evaluation

Figure 4.5 – IDF1 and MOTA scores for various methods on the Towncentre dataset. Our

approach almost always improves IDF1. We provide the actual numbers in appendix.

this protocol for most of the sequences since the shortest sequence is only 3 minutes long. Two

exceptions are DukeMTMC, in which we trained and validated using provided training data,

and evaluated on the whole test sets of 10 and 25 minutes in batch mode to show the ability of

our approach to handle long sequences, and Rene, in which we had 30 seconds of annotated

data. Training data trajectories were used to learn the patterns of Section 4.4.2. Validation

data trajectories were used to optimize values of the hyperparameters D1, D2, Dt , Re , αc , αp

introduced in Sections 4.4.1, 4.4.2, using coordinate ascent.

For the sake of fairness, we trained MDP and RNN, the trainable baselines of Section 4.6.2,

similarly and using the same data. However, for RNN we obtained better results using the

provided model, pre-trained on the 2DMOT2015 training data, and we report these results.

Since for some approaches we only had results in the form of bounding boxes and had to estimate

the ground plane location based on that, this resulted in large errors further away from the camera.

For this reason, we evaluated MOTA and IDF1 assuming that a match happens when the reported

location is at most at 3 meters from the ground truth location. We also provide results for the

traditional 1 meter distance in the appendix and they are similar in terms of method ordering. For
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Figure 4.6 – IDF1(left) and MOTA(right) scores on the Rene dataset.

(a) (b) (c) (d) (e) (f)

Figure 4.7 – Examples of learned patterns, denoted by their centerline in white, with some

erroneous trajectories found by various baselines in red. White bounding boxes for people

following the trajectories are shown. Improved trajectories found by our approach in green. Area

in blue shown pattern widths, helping understand to which patterns trajectories are assigned.

(a) Towncentre dataset, EAMTT [157] merges trajectories going in opposite directions, but (b)
correct pattern assignment helps to fix that; (c) Using only affinity information, KSP is prone

to multiple identity switches of cars going in different directions; (d) Our approach correctly

recovers all trajectories, including one with the turn; (e) On Station dataset our approach recovers

mostly correct trajectories, but trajectories of two different people in the lower left corner going

in the same general direction are merged; (f) ETH dataset, due to low visibility using flow and

feature point tracking is hard, and MDP fragments a single trajectory into two, but our approach

fixes that (not shown). Best viewed in color.

the Station and Rene datasets, we did not have the information about the true size of the floor

area, as we only estimated the homography between the image and ground plane. That is why we

used a distance that is 10% of the size of the tracking area.

For the same reason, for all datasets except Station and Rene, our set of possible widths of

patterns is {0.5, 1, 3, 5, 7, 9, 11, 13, 15, 17}, while for the Station and Rene datasets we use

{0.05, 0.1, 0.2, 0.3, 0.4, 0.5} of the tracking area.

4.6.4 Results

IDF1 and MOTA. Here we report summarized results for multiple approaches and datasets.

Comparison on DukeMTMC and MOT16 is also available on MOTChallenge benchmark [101].
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(a) (b) (c)

Figure 4.8 – Example of unsupervised optimization. (a) Four people are tracked using KSP.

Trajectories are shown as solid black lines, bounding boxes are white. Tracks feature several

identity switches. (b) First, alternating scheme finds a single pattern, in white, that explains as

many trajectories as possible - that is the leftmost trajectory. Given this pattern, next step is the

tracking. Trajectories in blue are the ones assigned to this pattern, trajectories in red are assigned

to no pattern. One identity switch is fixed. (c) After several iterations, we look for the best two

patterns. Rightmost trajectory is picked as the second pattern. Fitting trajectories to the best two

patterns allows to fix the remaining fragmented trajectory. Trajectories assigned to the second

pattern in green.

(a) (b)

Figure 4.9 – Examples of learned patterns on DukeMTMC dataset shown in green. (a) Some

sequences contain highly non-linear patterns with turns, and our method successfully recovers

them. An example of trajectory assigned to no pattern is shown in red. (b) A sequence with high

number of patterns - each pattern goes in both directions. In such cases our model can incorrectly

split an unexpected trajectory into two parts, each of which follows one pattern.

For DukeMTMC dataset, our supervised approach achieves +1.1% IDF1 on all Easy sequences

combined, with improvements on 7 out of 8 sequences up to 3.7%, and one drop of 0.5%.

It achieves +0.5% IDF1 on all Hard sequences combined, with improvements on 7 out of 8

sequences up to 8%, and one drop of 0.2%. The unsupervised approach achieves +0.9% IDF1 on

all "trainval-mini" sequences combined, with improvements on 7 out of 8 sequences up to 4.2%,

and one drop of 0.1%. Improvements are shown with respect to [149]. Examples of learned
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Approach ΔIDF1
s ΔIDF1

u ΔMOTAs ΔMOTAu

KSP 0.16 0.15 -0.01 -0.01

MDP 0.05 0.02 0.03 -0.01

RNN 0.04 0.03 0.00 -0.02

SORT 0.04 0.02 0.06 0.00

Table 4.1 – IDF1 and MOTA improvement, delivered by our approach, averaged over all datasets.

The 2nd and 4th columns correspond to the supervised case, the 3rd and 5th to the unsupervised

one. Since IDF1 scores range from 0 to 1, these represent significant improvements.

patterns are shown in Fig. 4.9.

Fig. 4.5 shows results of methods with published results on the Towncentre sequence. For the 4

methods for which there is a publicly available implementation— KSP, MDP, RNN, SORT—

we computed trajectories on various datasets and evaluated the improvement brought by our

approach. These results are reported in Table 4.1 for people and Fig. 4.6 for cars.

As shown in Fig. 4.5, our supervised method improves all the tracking results in IDF1 terms

on Towncentre except one that remains unchanged. The same can be said of the unsupervised

version of our method except for one that it degrades by 0.01. Recall that IDF1 ranges from 0 to

1. A 0.01 improvement is therefore equivalent to a 1% improvement and our algorithm delivers a

significant performance increase. Similarly, Fig. 4.6 depicts original and improved car-tracking

results on Rene, but only in the unsupervised case owing to the short length of the manually

annotated sequence, which we needed for evaluation purposes.

In Tab. 4.1, we average improvement in people-tracking results brought by our approach for

four baselines. We observe a consistent improvement in IDF1 terms in both the supervised and

unsupervised cases. As could be expected, the improvement is much less clear in MOTA terms

because our method modifies the set of input detections minimally while MOTA is more sensitive

to the detection quality than to identity switches. Fig. 4.7 depicts some of the results.

Finally, we used the output of DM on the two MOT16 sequences as input to the supervised and

unsupervised versions of our algorithm, as discussed above. We obtained a 37% and 25% drop

in identity switches, 4% and 1% drop in number of fragmented trajectories, and 0.1% and 4%

increase in MOTA, compared to the published results. Unfortunately, MOT’16 benchmark does

not provide the IDF1 numbers which is why we don’t report them for DM.

Non-linear learned motion patterns. To evaluate the importance of learning generic patterns

such as ours as opposed to simpler ones, or an even simpler smoothness constraint, we introduce

two more baselines. In the first, we take patterns to be straight lines crossing the scene in

every possible direction. This is still non-Markovian as it forces trajectories to cross the scene

completely, starting at one border and going to another. In the second, we find a set of trajectories

through our tracking graph that minimizes the second order difference between triplets of
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consecutive locations, forcing trajectories to be locally smooth. This is Markovian in nature

and does not require trajectories to cross the scene. In the first case, average improvement for

all methods drops to (0.11, 0.02, 0.03, 0.02) from (0.16, 0.05, 0.04, and 0.04) as reported in

Table 2 of this chapter. In the second case, we observe a steeper drop to (0.07, 0.02, 0.01, 0.00).

The difference in results is largest on Station dataset where non-linear non-Markovian patterns

prevent trajectories from being terminated in stationary crowds, and on the Hotel dataset where it

is difficult to differentiate between trajectories that traverse the scene and that end in the middle

of the scene, entering the hotel. The detailed breakdown is given in Table 4.2.

Note that while using straight line patterns frees us from the learning step, it does not deliver

much of a benefit in terms of optimization speed. As shown in the example of Figure 4.10, there

are only four learned patterns, but if we define straight line patterns traversing the scene, their

number is not known beforehand. This results in a trade-off, where picking too few patterns gives

bad tracking results, while having too many of them slows the optimization scheme because of

the number of possible patterns trajectories can follow.

Method Learned patterns (OUR) Straight line patterns Markovian smoothness term

Approach Town ETH Hotel Station Town ETH Hotel Station Town ETH Hotel Station
KSP 0.28 0.17 0.11 0.10 0.19 0.12 0.07 0.05 0.13 0.07 0.04 0.03

MDP 0.07 0.03 0.10 -0.01 0.06 0.02 0.02 -0.02 0.06 0.02 0.02 -0.02

RNN 0.11 0.03 0.00 0.00 0.10 0.02 0.00 0.00 0.05 0.01 -0.01 -0.01

SORT 0.10 0.00 0.06 0.00 0.06 0.00 0.03 0.00 0.04 0.00 -0.01 -0.03

Table 4.2 – IDF1 improvement for each method and dataset for our method with learned patterns

(left), for our method with patterns replaced by a pencil of lines, which still forces trajectories

to start and end at the borders of the tracking area (middle), and for a method where transition

cost is based on the local smoothness term, second order difference between coordinates of 3

consecutive detections in a trajectory (right). We abbreviate Towncentre dataset as Town.

Evaluation on Ground Truth Detections. For all baselines that accept a list of detections as

input, and for which the code is available, we reran the same experiment using the ground truth

detections instead of those computed by the POM algorithm [52] as before. This is a way to

evaluate the performance of the linking procedure independently of that of the detections, and can

be viewed as an evaluation of this component of our system. It reflects the theoretical maximum

that can be reached by all the approaches we compare, including our own. From Table 4.3 we

observe that our approach performs very well in such setting.

Computational burden. We also assessed the influence of various terms on our method’s

runtime. All people tracking results reported in Figs. 4.5, 4.6 and Tab. 4.1 ran at an average speed

of 0.906 fps for the supervised case on a 4 core 2.5Hz machine. The unsupervised computation is

much slower, requiring hours for dataset of containing several hundred trajectories. However, this

remains practical, as it can be run overnight, and once the patterns have been learned, the system
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(a) (b) (c)

Figure 4.10 – (a) Examples of learned patterns on Towncentre dataset. Note that there are only

two prevalent directions in which people move. Patterns shown in white. (b) Pencil of lines

representing straight line patterns traversing the scene in all directions. Patterns shown in white.

(c) Example of an error made when we are using straight line patterns. Two real trajectories (in

green) are incorrectly merged via false detections, producing a trajectory (in red) that closely

follows one of the patterns (in white). However, in reality this pattern does not exist, but we used

it because we didn’t have a learning component. Note, that produced trajectory still starts at the

boundary of the image and traverses the scene completely. Even without the learning procedure,

our patterns force this. If we replace this non-Markovian constraint by a local smoothness term,

errors are numerous, with many trajectories split in the middle.

Metric IDF1 MOTA
Approach MDP RNN SORT KSP OUR MDP RNN SORT KSP OUR
Town 0.87 0.65 0.88 0.55 0.93 0.87 0.85 0.90 0.87 0.98
ETH 0.89 0.65 0.93 0.59 0.92 0.85 0.73 0.85 0.70 0.94
Hotel 0.85 0.70 0.88 0.60 0.94 0.84 0.78 0.82 0.74 0.97
Station 0.68 0.40 0.72 0.45 0.70 0.75 0.68 0.70 0.80 0.77

Table 4.3 – IDF1 (left) and MOTA (right) evaluation results using ground detections. Best score

for each dataset and metric in bold.Towncentre abbreviated as Town.

can run in the supervised mode that can be sped up limiting the density of the graph through

parameter D1 and/or decreasing the number of binary search iterations. Using 5 instead of 10

didn’t affect the IDF1 by more than 1% in our experiments.

Dataset Towncentre ETH Hotel Station Station
Frames 150 227 268 75 75

Trajectories 85 67 47 100 193

Patterns 7 5 4 26 26

Detections 2487 894 1019 1960 3724

Variables 70k 17k 18k 191k 450k

Time, s 26 4 4 160 >3600

Table 4.4 – Optimization problem size and run time of our approach for processing a typical one

min batch from each dataset.

As shown in Fig. 4.11, the optimization time depends mostly on the number of possible tran-
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(a) (b) (c)

(d) (e) (f)

Figure 4.11 – The running time and the number of variables of the optimization for tracking are

approximately:

• linear with respect to the number of frames in the batch (a),

• linear with respect to the number of patterns (b),

• superlinear with respect to the maximum distance at which we join the detections in the

neighbouring frames D1, as it directly affects the density of the tracking graph (c),

• almost independent from the maximum distance in space D2 and it time Dt at which we

join the endings and beginning of the input trajectories D2, as it has almost no effect on the

density of the tracking graph (d), (e),

• the running time and the number of variables of the optimization for learning patterns grows

quadratically with the number of input trajectories, as each of them is both a trajectory that

needs to be assigned to a pattern, and a possible centerline of a pattern (f)

sitions between people, which is controlled by D1. The time for learning the patterns grows

approximately quadratically. The number of variables in our optimization problem grows linearly

with the length of the batch and number of patterns, and superlinearly with the number of people

per frame (as the number of possible connections between people). As shown by Tab. 4.4, for not

too crowded datasets without large number of patterns our approach is able to process a minute

of input frames under a minute. Pattern fitting scales quadratically with the number of given

ground-truth trajectories and runs in less than 10 minutes for all datasets except Station. All

results above were computed on datasets ETH, Hotel, Towncentre, Station, since they shared

same experimental protocol. For DukeMTMC dataset we ran evaluation for the whole length

of sequence in the batch mode. For the sake of completeness, we also measured the running
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time. We processed around 300k * 8 frames in a total of 7853s, ranging from 654s to 1820s per

sequence. This was achieved thanks to two reasons. Firstly, since the input tracks are already

good, optimal value of hyperparameter D1 was found to be 0, which enables our approach to

merge or split trajectories, but not to intertwine them by splitting and then merging differently

This further reduced the density of the graph. To speed up the approach, we added edges between

trajectories not every frame, but every 0.5s, since identity switches are unlikely to happen more

often.

4.7 Conclusion
In this work we have proposed an approach to tracking multiple objects under global, non-

Markovian behavioral constraints. It allows us to estimate global motion patterns using input

trajectories, either annotated ground truth or ones from any sources, to guide tracking and improve

upon a wide range of state-of-the-art approaches.

Our optimization scheme is generic and allows for a wide range of definitions for the patterns,

beyond the ones we have used here. In the future, we plan to work with more complex patterns,

account for appearance, and handle correlations between objects’ behavior.
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5 Eliminating exposure bias and loss-
evaluation mismatch in MOT

Abstract

Identity Switching remains one of the main difficulties Multiple Object Tracking (MOT) algo-

rithms have to deal with. Recently, many approaches started using sequence models to solve this

problem. In this chapter, we introduce a new training procedure for sequence learning scenario

that confronts the algorithm to its own mistakes while explicitly attempting to minimize the

number of switches.

We propose an iterative scheme of building a rich training set and using it to learn a scoring

function that is an explicit proxy for the target tracking metric, IDF1. Using only simple geometric

features, our approach outperforms state-of-the-art in appearance-less tracking. Combining it

with appearance features allows us to achieve state-of-the-art results on several MOT benchmarks.

5.1 Introduction

A common concern in many Multi Object Tracking (MOT) approaches is to prevent identity

switching, the erroneous merging of trajectories corresponding to different targets into a single

one. This is difficult in crowded scenes, especially when the appearance of the individual target

objects is not distinctive enough. Many recent approaches rely on tracklets—short trajectory

segments—rather than individual detections, to keep track of the target objects. Tracklets can be

merged into longer trajectories, which can be split again when an identity switch occurs.

State-of-the-art approaches often started relying on deep networks that can evaluate a whole

tracklet, rather than simply compute an affinity measure between two detections, mostly using

various RNN architectures. These approaches require training the networks and suffer from

one or both of two well-known problems Exposure bias and loss-evaluation mismatch [145].

Our aim is to overcome them so that we can train our networks better and thus achieve superior

performance.
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Figure 5.1 – Keeping track in a difficult situation. Top row: Because of the occlusion created

by the passing car, a tracker can easily return a trajectory that includes several identity switches.

The corresponding bounding boxes are shown on the right. Bottom row: Our algorithm not only

eliminates identity switches but also regresses to a set of much tighter bounding boxes. Note that

these results are obtained without use of any appearance information.

• Loss-evaluation mismatch. It occurs when training by optimizing during a metric poorly

aligned with the actual desired performance during inference, such as when using a

classification loss to create trajectories optimal for a tracking-specific metric, such as

MOTA [18] or IDF1 [149]. To eliminate it, we introduce an original way to score tracklets

that is an explicit proxy for the IDF1 metric and can be computed without the ground truth.

We use it to identify how confidently the person is tracked, predict tighter bounding box

locations, and estimate how far the real trajectory extends beyond the observed tracklet.

• Exposure bias. It stems from the model not being exposed to its own errors during training

and results in very different sampling behaviors during training and inference/tracking. We

remove this bias by introducing a much more exhaustive, yet computationally feasible,

approach to exploiting the training data while training the model than in earlier approaches.

To this end, during training, we do not limit ourselves to only using tracklets made of

detections of one or two people as in [127, 117, 156]. Instead, we consider any grouping

of tracklets produced by the tracking algorithm to be a potential trajectory but prevent a

combinatorial explosion by controlling the number of tracklets that start from any given

location. This yields a much richer training dataset, solves the exposure bias problem, and

enables our algorithm to handle confusing situations in which a tracking algorithm may

easily switch from one person to the next or miss someone altogether. Fig. 5.1 depicts

one such case. Note that predicting correct trajectory was possible without the use of any

appearance information in the depicted scenario.

Our contribution is therefore a solution to these two problems. By integrating it into an algorithm

that only uses very simple features—-bounding boxes, detector confidence—we outperform

state-of-the-art algorithms that do not use appearance features. By also taking advantage of

appearance-based features, we similarly outperform those that do. Taking together, this results

demonstrate the effectiveness of our training procedure.

The rest of this chapter is organized as follows: Sec. 5.2 contains an overview of the related work

on the topics of general MOT, tracking with longer sequences, and combating loss-evaluation
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mismatch and exposure bias. In Sec. 5.3 we first describe our tracking approach, which is a

variation of the multiple hypothesis tracking, which we center around learning efficient scoring

function for tracklets. We then describe the exact form of our scoring function, which combats

loss-evaluation mismatch, and our procedure for training it, that tackles exposure bias. Results

and implementation details follow in Sec. 5.4.

5.2 Related work

Multiple Object Tracking (MOT) has a long tradition, going back many years for applications

such as radar tracking [23]. With the recent improvements of object detectors, the tracking-

by-detection paradigm [4] has become a de facto standard and has proven effective for many

applications such as surveillance or sports player tracking. It involves first detecting the target

objects in individual frames, associating these detections into short but reliable trajectories known

as tracklets, and then concatenating these tracklets into longer trajectories. They can then be

used to solve tasks such as social scene understanding [1, 9], future location prediction [103], or

human dynamic modeling [55].

While grouping individual detections into trajectories it is difficult to guarantee that a single
individual is associated to each trajectory, that is, that there are no identity switches.

Many approaches rely on appearance [65, 99, 193, 199, 35, 111, 150], motion [41], or social

cues [69, 140]. They are mostly used to associate pairs of detections, and only account for

very short-term correlations. However, since people trajectories are often predictable over

many frames once a few have been seen, superior performance could be obtained by modeling

behavior over longer time periods [73, 93, 121]. Increasing availability of annotated training

data and benchmarks, such as MOT15, MOT16, MOT17 [101, 125], DukeMTMC [149],

PathTrack [123], and WILDTRACK [31] now makes it possible to learn the data association

models required to leverage this knowledge. Since this is what our method does, we briefly

review here a few state-of-the-art approaches to achieving this goal.

5.2.1 Modeling Longer Sequences

The work of [136, 135] is one of the first recent approaches to modeling long trajectories using a

recurrent neural network. The algorithm estimates ground-plane occupancy, but does not perform

explicit data association. Starting with [127], which presented an approach to performing data

association without using appearance features by predicting the future location of the target,

several MOT approaches have included sequence models to make data association more robust for

the purpose of people re-identification [156, 117], learning better social models [1], forecasting

future locations [103, 179] or joint detection, tracking, and activity recognition [9].

These models are usually trained on sample trajectories that perfectly match a single person’s

trajectory or only marginally deviate from that, making them vulnerable to exposure bias. Fur-
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thermore, the loss function is usually designed primarily for localization or identification rather

then fidelity to a ground truth trajectory, which introduces a loss-evaluation mismatch with the

metric, usually IDF1 [149] or MOTA [18], which reflect more reliably the desirable behavior of

the algorithm.

Most recent state-of-the-art approaches that use sequence models rely on one of two optimization

techniques: either some form of hierarchical clustering for data association [162, 199, 149, 113,

66, 86], or on multiple hypothesis tracking [190, 90, 34]. The main difference between the two

lies in that the latter allow conflicting set of hypotheses to be present before the final solution

is presented, while the former usually contains valid groups of observations that don’t share

common hypotheses. We describe in more details and compare against these and some other

state-of-the-art methods in 5.4 section.

Most similar to our approach is [90], which uses a combination of multiple hypothesis tracker and

a sequence model for scoring, but performs training with a different loss function and training

procedure, which uses mostly ground truth information, and is more subject to exposure bias.

Another important comparison is with that of [127], which trains a sequence model for data

association simply from geometric features, and is therefore perfect for comparison with our

approach, when using only geometric cues.

5.2.2 Reducing Bias and Loss-Evaluation Mismatch

Since exposure bias and loss-evaluation mismatch are also a problem in Natural Language

Processing (NLP) [165] and in particular machine translation [178], several methods have been

proposed in these fields to reduce it [145, 13]. Most of them, however, operate under the

assumption that output sequences can comprise any character from a predefined set. As a result,

they typically rely on a beam-search procedure, which itself frequently uses a language model to

produce a diverse set of candidates that contains the correct one. More generally, techniques that

allow training models making discrete decisions such as policy gradient [176], straight-through

estimation [14], and Gumbel-softmax [75] can be seen as methods to reduce exposure bias.

Unfortunately, in the case of MOT, the detections form a spatio-temporal graph in which many

nearly identical trajectories can be built, which can easily overwhelm standard beam-search

techniques: when limiting oneself to only the top scoring candidates to prevent a combinatorial

explosion, it can easily happen that only a set of very similar but spurious trajectories will be

considered and the real one ignored. This failure mode has been addressed in the context of

single-object tracking and future location prediction in [71, 118] with a tracking policy learned

by reinforcement learning and in [38] by introducing a spatio-temporal attention mechanism over

a batch of images, thus ensuring that within the batch there is no exposure bias. Instead, the

algorithm relies on historical positive samples from already obtained tracks, thus re-introducing it.

For MOT, a reinforcement learning-based approach has been proposed [180] to decide whether

to create new tracklets or terminate old ones. This is also addressed in [156] but the learning of
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sequence models is done independently and is still subject to exposure bias. Approach of [121]

attempts to explicitly optimize for the IDF1 metric. It does so by refining the output of other

tracking methods. This reduces the loss-evaluation mismatch but the sequence scoring model is

hard-coded rather than learned and we will show that learning it yields better results.

5.3 Method

In this section, we formalize our approach to tracking, describe the scoring function it requires,

and a way to generate training data and train a model to learn such a function.

5.3.1 Tracking Formalization

Let us consider a video sequence made of N frames, in which we run a people detection algorithm

on each frame individually. This yields a set D of people detections dn ∈�4, where n = 1, . . . , N is

the frame number, and the four elements of dn are the coordinates of the corresponding bounding

box in the image. We represent a tracklet T as a 4×N matrix of the form [d1,d2, . . . ,dN ]. In

practice, tracklets only rarely span the whole sequence. We handle this by setting the dn to zero

for frames in which the person’s location is unknown. The first non-zero column of a tracklet is

therefore its start and the last its end. Two tracklets T1 and T2 can be merged into a single one T

if there are no frames, in which both tracklets have known detections that differ from each other.

Let us further assume we have defined a “feature” function Φ :�4×N →�F×N that assigns a

feature vector of dimension F to each column of a tracklet, and from which we can estimate a

scoring function S(Φ(T)) that is maximized when the tracklet represents perfectly a single person’s

trajectory and approximates the IDF score of the tracklet when S is properly trained. Tracking

can then be understood as building the set of non-overlapping tracklets T j that maximizes the

objective function

∑
j

S(Φ(T j )) . (5.1)

5.3.2 Tracking

Our approach to tracking is a variation of multiple hypothesis tracker [89]. We iteratively merge

tracklets to create longer candidate trajectories that include the real ones while suppressing many

candidates to avoid a combinatorial explosion. We then select an optimal subset greedily. We

consider two trajectories to be overlapping if the total number of pixels shared by bounding boxes

of the two tracklets, normalized by the minimum of the sum of areas of bounding boxes in each

of them, is above a threshold CI oU . We also eliminate tracklets that are either shorter than N -

the length of the batch, or whose score is below another threshold Cscor e . CI oU and Cscor e are

hyper-parameters that we estimate on a validation set. In short, the two key steps of our approach
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are:

1. Generating the set of candidate trajectories. It must be rich enough to include all the

true trajectories, yet remain small enough to prevent combinatorial explosion.

2. Scoring the candidates to select the right ones. The scoring function S from Eq. 5.1

must be learned carefully so that it assigns low scores to the wide range of bad candidate

trajectories that can be generated, and high scores to the true trajectories.

Finally, given such a set of tracklets of various lengths, we want to select a compatible subset

that maximizes our objective function. To this end we select a subset of hypotheses with the best

possible sum of scores, subject to a non-overlapping constraint. We do this greedily, starting

with the highest scoring trajectories. As discussed in the ablation study, we also tried a more

sophisticated approach that casts it as an integer program solved optimally, and the results are

similar.

5.3.3 Generating Candidate Trajectories

In this section, we assume that the scoring function S has been learned and we discuss its use to

generate the candidate trajectories among which the final ones can be selected to maximize the

objective function of Eq. 5.1. We will discuss the learning of S in Sec. 5.3.4.

Given the initial set of detections D, we generate an initial tracklet set by linearly interpolating

between pairs of detections in different frames. In other words, for each pair (dn1 ,dn2 ) ∈ D,

with n1 < n2, we take T to be [d1, · · · ,dN ], with dn = (n−n1)dn2+(n2−n)dn1
(n2−n1) if n1 ≤ n ≤ n2 and 0

otherwise. We then iterate the following two steps for n = 2, . . . , N :

1. Growing: merge all pairs of tracklets that span at most n frames and can be merged.

2. Pruning: among all pairs of tracklets that we have merged (T1,T2) keep only one pair for

each T1, one with the highest score S(Φ(·)).

This process keeps the number of hypotheses linear with respect to the number of detections. Yet,

it retains a candidate for every possible detection. This prevents the algorithm from losing people

and terminating trajectories too early even if mistakes are made early in the pruning process. We

give an example in Fig. 5.3. In ablation study, we compare this heuristic to several others and

show that it is effective at preventing combinatorial explosion without losing valid hypotheses.

5.3.4 Defining the Scoring Function

The algorithm described above relies on the scoring function S(Φ(·)) both to prune the set of

tracklets while it is being built (to keep their number in check) and to select the final subset of
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Figure 5.2 – Tracklet features are passed through an embedding layer and then processed using a

bi-directional LSTM. Its outputs are used to predict the IoU with ground truth bounding boxes

i ou, presence of a person in a scene l ab, and regress bounding box shift to obtain ground truth

bounding boxes s f t .

Figure 5.3 – Candidate tracklets starting from two different bounding boxes in blue and ending

with bounding boxes in white. In this case, during pruning phase the best ones, shown in green,

are assigned the highest score and retained, and all others are eliminated.
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trajectories. Since our goal is to build tracklets that describe the trajectory of a single person as

well as possible, we try to optimize them in terms of IDF1 metric. Alternative metric is MOTA
but IDF1 has been shown to be more sensitive to the identity switches [149]).

Ideally, S should return S(Φ(T)) ≈ IDF(T,G) for every tracklet T and the corresponding ground

truth trajectory G. Unfortunately, at inference time, G is unknown by definition. To overcome

this difficulty, recall from [149] that IDF for tracklet T = [d1, . . . ,dn] and ground truth trajectory

G = [
g1, . . . ,gn

]
is defined as

IDF1(T,G) =
2× ∑

n:dn 
=0,gn 
=0
�(I oU (dn ,gn) > 0.5)

|{n : dn 
= 0}|+ |{n : gn 
= 0}| , (5.2)

where I oU is the intersection over union of the bounding boxes. To approximate it without

knowing G, we write

S(Φ(T)) =
2× ∑

n:dn 
=0,l abn>0.5
i oun

|{n : dn 
= 0}|+ |{n : l abn > 0.5}| , (5.3)

assuming that our network (Fig. 5.2 has been trained to regress from T to

• i oun : the prediction of intersection over union of the dn and gn boxes;

• l abn : the prediction of whether the ground truth trajectory exists in frame n.

We also train our network to predict s f tn , the necessary change to bounding box dn to produce

the ground truth bounding box gn . It is not used to compute S, but can be used during inference

to improve the observed bounding boxes for better alignment with the ground truth.

To train the network to predict the l abn , i oun , and s f tn values introduced above, we define a

loss function L that is the sum of errors between predictions and ground truth:

L(T ,G ) =
N∑

n=1
Ll ab(dn ,gn)+ ∑

n:dn 
=0
Li ou(dn ,gn)

+ ∑
n:dn 
=0

Ls f t (dn ,gn), (5.4)

Ll ab(dn ,gn) = ||l abn −�(gn 
= 0)||2,

Li ou(dn ,gn) = ||i oun − I oU (dn ,gn)||2,

Ls f t (dn ,gn) = 1− I oU (dn + s f tn ,gn),

where dn + s f tn denotes shifting the bounding box dn by s f tn . In practice, we train the network

consisting of a fully connected embedding layer, followed by a bi-directional LSTM units, and

three fully connected output heads predicting objects of interest on every step. Network is

depicted by Fig. 5.2 and is used to predict separately i oun , l abn , and s f tn , which we found

more effective than regressing to the IDF1 directly. In the appendix, we discuss this in more

details.
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5.3.5 Training Procedure

The key to avoiding exposure bias while training the network to predict S(Φ(·)) is to supply a rich

training set. To this end, we alternate between the following two steps:

1. Run the hypothesis generation algorithm of Sec. 5.3.2 with current network weights when

evaluating the scoring function S;

2. Add newly observed tracklets to the training set and perform a single epoch of training.

We are not only learning a scoring function. In effect, we are also improving the quality of the

final tracking result: while the tracking procedure makes discrete choices about which hypotheses

to pick or discard, which is non-differentiable, we nevertheless steer the tracking procedure

towards always selecting the best choice by training the model on all candidates considered

during tracking. In other words, our approach makes discrete choices during training, and updates

the parameters based on all hypotheses that could have been selected, which is similar in spirit to

using a straight-through estimator [14].

While ideologically simple, this training procedure requires a number of tweaks for optimal

performance. We describe them below and study their effect in the ablation study.

Stopping criteria We start the process with random network weights and stop it when the

training set size increases by less than 5% after iterating the process 10 times. We then fully train

the model on the whole resulting training set. This process can be understood as a slow traverse

of the search space. It starts with an untrained model that selects random hypotheses. Then, as

the training progresses, new hypotheses are added and help the network both to differentiate

between good and bad alternatives and to pick the best ones with increasing confidence.

Exploration with probabilistic merges While during inference in the pruning stage we always

grow each tracklet by merging it with some other tracklet that provides the best score, to make a

more diverse training data, during training we merged tracklet probabilistically with probability

proportional to softmax of the score of the merged result multiplied by a weight coefficient. We

annealed the weight coefficient during training, so that in the beginning the best pair is always

merged, and later more variability is introduced.

Balancing the dataset One potential difficulty is that this procedure may result in an unbal-

anced training set in terms of the IDF1 values which we want to regress. We address this issue by

splitting the dataset into 10 groups by IDF1 value ([0.0;0.1), [0.1;0.2), · · · , [0.9,1.0]), selecting all

samples from the smallest group, and then the same number from each other group. This allows

us to perform hard-mining: we select h ∗K samples at random and retain the K that contribute

most to the loss.
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Adjusting for batch processing We describe how our method could be run in batch mode in

Sec. 5.4. Since our approach is trained on detections in a particular interval, without looking into

previous detections, it could theoretically be subject to exposure bias during inference. However,

one of the appearance features we use (discussed in Sec. 5.4) is a representative appearance of

the ground truth trajectory matching to current detections, should there exist such a trajectory.

This effectively works as a proxy to the batch processing. We have also tried actually running our

approach in batch mode, and then use hypotheses obtained in the middle of the batch processing

as the training data, but this reduces the amount of available training data, and has resulted in

reduced performance.

5.4 Results

Here we present datasets, baselines we compare to, our results, and ablation study summary.

5.4.1 Datasets

We used the following publicly available datasets to benchmark our approach:

DukeMTMC [149]. It contains 8 sequences, with 50 minutes of training data, and testing

sequences of 10 and 25 minutes with hidden ground truth for each camera, at 60fps.

MOT17 [125]. It contains 7 training-testing sequence pairs with similar statistics and hidden

ground truth for test sequences, spanning 785 trajectories and both static and moving cameras.

Having 3 variants of detections allows to evaluate the quality of the tracking method while

ensuring it does not overfit to a particular detector.

MOT15 [101]. It contains 11 training and 11 testing sequences, with moving and stationary

cameras in various settings. Ground truth for testing is hidden, and for each testing sequence

there is a sequence with approximately similar statistics in the training data.

To showcase that the strength of our training procedure and loss, we performed two evaluations,

one with appearance features, and one without. We evaluated on DukeMTMC and MOT17
datasets our model with appearance features, and on DukeMTMC and MOT15 datasets without

appearance features. That allowed our model with appearance to compare to the latest state-of-

the-art approaches, and our model without appearance to compare to other baselines that do not

use appearance on MOT15 dataset. We also performed ablation study on the training data of

DukeMTMC dataset, since it is abundant, and the MOTChallenge benchmark that we used does

not allow multiple submissions for a purpose of ablation study.
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5.4.2 Implementation Details

Batch processing In Sec. 5.3.2 we describe how to obtain tracking results for a particular batch

of length N . In practice, we process the whole input sequence in batches, each time shifting

the batch by 1
3 of its length. To ensure consistency with the previous batch, we never suppress

hypotheses that must be present (from the previous batch) during the suppression phase, and

in when picking the final solution, we make sure to pick at least one candidate that includes

each sequence coming from the previous batch. We used batch of length 3s for training, having

observed similar to [156] that this is enough for proper learning. During inference, we observed

that our model is able to generalize beyond 3s, and having longer batches can be beneficial, which

is what we used for some datasets.

Features We show results of our method with two sets of features, one that uses no appearance

information, and another that does. This allows us to show that performance of our approach

comes from the strength of our training procedure, rather than from having a better appearance or

re-identification model. We discuss the effect of different feature types on the tracking quality

lower in this section.

Appearance-less features We use simple features that can be computed from the detections

without further reference to the images:

• Bounding box coordinates and confidence (∈�5)

• Bounding box shift with respect to previous and next detection in the tracklet (∈�8)

• Whether or not the detection was interpolated by the procedure of Sec. 5.3.3 (∈ mathbbmR1)

• A description of the surrounding in social terms ∈�3∗M . It comprises offsets to the M

nearest detections and their respective confidence values. All values are expressed relative

to image size for better generalization.

Appearance-based features We use the re-identification model of [67]. To this end, we

provide following additional features in our appearance-based model:

• Appearance vector for each bounding box (∈�128)

• Euclidian distance from appearance in the bounding box to the appearance that best

represents trajectory so far before the current batch, if one is available (∈�1). To pick

the appearance that best represents trajectory so far, we computed euclidian distances

between each pair of appearances in the trajectory, and picked one with the smallest sum

of distances to all others.
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• Crowd density feature - distance from the center of current bounding box to the center

of nearest 1st, 5th, and 20th detection in the current frame (∈�3). As we discuss in the

ablation study, that feature allowed made impact on the behaviour of our model with

appearance in very dense crowd scenarios.

Training and hyperparameters For all datasets and sequences, we set both thresholds CI oU

and Cscor e of Sec. 5.3.2 to 0.6 and the hard-mining parameter h of Sec. 5.3.5 to 3. We trained

with sequences of length 3 seconds, with input image fps rate ranging from 30 to 2.5 depending

on the dataset. For DukeMTMC, we selected a validation set of 15’000 frames for each camera,

pre-trained the model on data from all cameras simultaneously, and performed a final training on

the training data for each individual sequence.

We have trained the model with Adam with the fixed learning rate of 0.001. Our embedding layer

consists of a fully connected layer, followed by a batch normalization layer. Size of the hidden

state of LSTM were 300. Thanks to abundance of training data, we used fps of 3 for DukeMTMC
dataset. For MOT15 and MOT17 datasets, we trained the model with the maximum frequency

every sequence allowed, to increase the amount of training data. During inference, we used

batches of length 6s. We used the bounding box shift regression only in combination with the

DPM [49] detector, as for other types of detectors it did not prove useful. Nevertheless, we kept

Ls f t as a part of a loss function. We plan to make our implementation (in Python and using

Tensorflow) publicly available upon acceptance of the paper.

For each MOT15 sequence group (KITTI, ADL, etc.), we trained on all sequences excluding the

group, using them for validation purposes, and ran inference on the test sequences from the same

group. For MOT17, we used PathTrack for pre-training of the model, and training sequences

for validation. We trained re-identification network on CUHK03 dataset.

To make sure that network makes good use of both geometric and appearance features, we first

do pre-training with each type separately, and then do training from scratch, while initializing the

embedding layer with the weights obtained by pre-training.

5.4.3 Baselines

We first describe baseline approaches that do not use appearance, to showcase the strength of our

training procedure with our method that uses only geometric features. We then describe baseline

and state-of-the-art approaches that use appearance model, with which we compare on public

benchmarks of DukeMTMC and MOT17 datasets. For fair comparison, we compare to methods

that use publicly available set of detections, same as we do.

• RNN [127] relies on a recurrent neural network to perform online data association. This

method is similar to ours in spirit because it uses RNN for tracking in a straightforward

way. However it is trained using a different loss function and approach to create the training
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data.

• LP2D [101] is the highest-scoring appearance-less original baseline presented with MOT15.

Like KSP, it formulates tracking in terms of solving a linear program.

• PTRACK [121] is an approach to improve results of other methods by refining the trajec-

tories they produce, to maximize an approximation of the IDF1 metric. The approximation

is hand-designed, and not learned as in our approach.

• SORT [20, 131] combines Kalman filtering with a Hungarian algorithm and currently is

the fastest one on the MOT15 dataset.

• MHT [190] perform multiple hypothesis tracking, aided, among others, by pose features

extracted from convolution pose machines [175].

• CDSC [162] uses domination set clustering to perform both within- and across-camera

tracking. It employs image features from ResNet-50 [63] pre-trained on ImageNet.

• REID [199] performs hierarchical clustering of tracklets, and leverages the re-identification

model of [197] pre-trained on 7 different datasets.

• BIPCC [149] optimally groups observations into clusters of detections of similar appear-

ance, by solving a binary integer problem. This is a baseline appearance method for

DukeMTMC dataset.

• DMAN [83] uses dual attention networks to generate attention that focuses on the relevant

image part, as well as relevant temporal fragment, to perform data association.

• JCC [86] formulates a joint problem of multiple object tracking and motion segmentation

as a joint co-clustering problem, which is solved by local search to jointly group pixels and

bounding boxes, to produce tracking and segmentation.

• MOTDT17 [113] performs a hierarchical data association, grouping detections based on

the learned re-identification metric, and exploiting geometric features and Kalman filter in

case of failure of the former.

• MHTBLSTM [90] is very similar to our approach both in using the multiple hypothesis

tracker, and using of sequence model to score the data association. Nevertheless, it is

trained only on sequences using ground truth sequence combined with at most one false

positive, and possibly some missed detections.

• EDMT17 [34] solved tracking problem as a multiple hypothesis tracker. Both growing and

pruning phase utilizes learned detection-detection and detection-scene association model,

which allows to better score detections and hypotheses.

• FWT [66] solves a binary quadratic problem to optimally group detections from separately

run head and body detectors.
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Method IDF1 MOTA IDs IDF1 MOTA IDs

Sequence easy hard

OURS 84.0 79.2 169 76.8 65.4 267
MHT 80.3 78.3 406 63.5 59.6 1468

REID 79.2 68.8 449 71.6 60.9 572

CDSC 77.0 70.9 693 65.5 59.6 1637

OURS-geom 76.5 69.3 426 65.5 59.1 972

PTRACK 71.2 59.3 290 65.0 54.4 661

BIPCC 70.1 59.4 300 64.5 54.6 652

Table 5.1 – Benchmark results on DukeMTMC dataset.

Method IDF1 MOTA IDs

OURS-geom 27.1 22.2 700
RNN 17.1 19.0 1490

SORT 26.8 21.7 1231

LP2D —- 19.8 1649

Table 5.2 – Benchmark results on MOT15 dataset.

We will show that we outperform the methods in the first class and, given enough training data,

do almost on par with those in the second, even though we use far less image information. This is

a testament to the power of our training approach.

5.4.4 Comparative Performance

In Tab. 5.3, we compare our approach that uses appearance to state-of-the-art methods using

appearance, on MOT17 dataset. Our approach is best both in terms of IDF1 metric, and the

number of identity switches. It does not feature the best MOTA score, which is not surprising

since our loss function optimizes the proxy to IDF1. Furthermore, we see that the best published

Method IDF1 MOTA IDs

OURS 57.2 44.2 1529
DMAN 55.7 48.2 2194

JCC 54.5 51.2 1802

MOTDT17 52.7 50.9 2474

MHTBLSTM 51.9 47.5 2069

EDMT17 51.3 50.0 2264

FWT 47.6 51.3 2648

Table 5.3 – Benchmark results on MOT17 dataset.
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Figure 5.4 – Bounding boxes and the last 6 seconds of tracking, denoted by lines, in dense crowd on

DukeMTMC dataset.

approach in terms of MOTA actually performs worst in terms of IDF1 on this dataset.

In Tab. 5.1, we present both the results of our approach that uses appearance, and the one,

which does not, on DukeMTMC dataset. Our approach with appearance performs best both in

Hard and Easy set of sequences in terms of IDF1, MOTA, and the number of identity switches.

Furthermore, compared to other top scoring methods that use re-identification networks pre-

trained on outside dataset, our network uses exclusively training data from DukeMTMC dataset.

On Easy set of sequences, our approach also outperforms [79], which we did not present in the

table since it uses a private set of detections, rather than a public one. Our approach that does not

use appearance also fares surprisingly well, outperforming appearance-based baseline of [149],

as well as an improvement on the top of it using learned scene patterns of [122]. This shows that

the strength of our method comes from the training procedure and loss, rather than from a learned

appearance model.

Results from Tab. 5.2 further strengthen this claim. We compare our approach without appearance

to other methods that do not use appearance. Our main comparison is with RNN, which also uses

an RNN to perform data association. Despite the fact that RNN uses external data to pre-train

their model, and we use only the MOT15 training data, our approach is able to outperform it

with a large margin. Another interesting comparison is with SORT, which performs nearly as

good as our approach. We additionally run this approach on the validation data we used for

DukeMTMC. This resulted in a MOTA score of 49.9 and IDF1 one of 24.9, whereas our method

reaches 70.0 and 74.6 on the same data. In other words, because there is much more training

data in DukeMTMC than MOT15 and because our method, unlike SORT, can take advantage

of it, the gap in performance is much larger on the former than the latter. These results, and a full

breakdown for other benchmarks, is available in appendix. Some qualitative results are available

in Fig. 5.5 and Fig. 5.4.

5.4.5 Ablation study

The last 15’000 frames of training sequences of DukeMTMC were used for an ablation study. We

varied the three main components of our solution (without appearance) to show their importance
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Figure 5.5 – Bounding boxes and last 6 seconds of tracking, denoted by lines, in two sequences

of the MOT17 dataset.

for the final tracking accuracy: data composition, scoring function, and training procedure.

Creating a fixed training set by considering tracklets with at most one identity switch as in [156]

or [117] decreased performance. Pruning hypotheses based on their scores or total count like [190]

resulted in either a computational explosion or reduced performance. Computing loss on the

prediction of S(Φ(T )), trying to regress IDF value directly, not regressing bounding box shifts, or

using a standard classification loss as in [156] were equally counter-productive. Not balancing

the training set, not using hard-mining, not pre-training the network also adversely affected the

results. Selecting the final solution using an Integer Program instead of a greedy algorithm,

pre-training model with each type of features separately, or training a deeper network had no

significant effect. We detail those changes, and effect of various feature groups, below.

Training dataset generation First 2 columns of Tab. 5.4 show the changes in the training

dataset generation procedure: using random tracklets between all pairs of detections, or tracklets

obtained by combining two ground truth trajectories; adding not all observed tracklets to the

training data, but only those selected into final solution; doing pruning based on the reported

score of the tracklet or keeping a fixed number of tracklets with highest scores. Fixing the training

set or augmenting it only with tracklets selected into solution yields simply a smaller and less

diverse training data, which had a detrimental effect on the results of tracking. Pruning by score

did not allow us to train any reasonable model, because of the computational explosion of the
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Δ Training IDF Δ Dataset IDF Δ Loss IDF
Dataset: all pairs 71.5 Loss on IDF 69.5 -hardmining 72.1

Dataset: mix of two 70.7 Regressing IDF 63.4 -balanced dataset 69.9

Selected only 63.6 -bbox regression 72.4 batch 6 72.6

Prunning by score —- -bbox loss 66.3 IP solution 73.8

Prunning by count 54.2 classification 41.8 pretraining 71.9

Table 5.4 – Ablation study. Left, middle and right columns show possible changes in dataset

creation procedure, loss function, and training procedure, as well as respective values of IDF
metric with respect to reference solution (IDF 74.6). Details about each change are given in

Sec. 5.4.5.

trajectories with very similar scores, that were all taken into training data. Pruning by count

proved ineffective for the same reason - training data contained many very similar trajectories.

Tracklet scoring function Middle 2 columns of Tab. 5.4 examine the changes in the scoring

function: computing loss function on the value of ||I DF (D,T )−S(Φ(D))||2, or trying to regress

the value of IDF1 directly, without splitting the task into accounting for false positives or false

negatives; Not modifying the input detections based on the regression of bounding box shifts, and

simply removing Ls f t from the loss function; Posing task as a classification task, where tracklet

belongs to the positive class iff all detections overlap with some ground truth trajectory with IoU

of at least 0.5. We observed that putting loss on the value of IDF1 did not give any improvement

and resulted in small decrease, probably due to the fact that multiple loss components acted

as regularizers. Trying to regress IDF1 directly gave even worse results, probably because

understanding the behaviour of IDF1 function is much harder than understanding behaviour of

false positives and false negatives, which we regress through l ab and i ou. Most interesting

is the fact that even when we don’t modify the input bounding boxes (which, of course, yield

improvement, especially in the cases of occlusions, as shown in the table) but simply have Ls f t as

part of the loss function, that improves the results, acting as a regularizer. Posing a classification

task doesn’t result in a very good trained model due to many overlapping sequences, some of

which have IoU greater than 0.5 in every frame, and some don’t, and it is hard for the model to

distinguish between the two. One change that could have possibly improved the model and that

has not been tested is finetuning the loss on IDF1 after training the model with our loss.

Training protocol Last two columns of Tab. 5.4 examine changes to the training protocol: not

using hard-mining and not balancing the dataset, using various lengths of batches N in inference,

and pre-training the network on data from all cameras. We have observed that our model trained

on batches on length 6, can generalize to batch lengths of 12 and 15, but observed saturation in

the tracking quality beyond that. Other changes, such as having more layers, pre-training the

network for each feature type separately or input dropout, did not have significant effect, probably

due to very simple features. We also did not observe significant difference between solving the
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IP problem of selecting optimal set of tracklets subject to non-overlapping constraint compared

to using a greedy solution because greedy solution frequently found optimal or nearly optimal

solutions, while also being faster.

Feature groups We also performed an evaluation of how different features affect the quality of

the solution. Since it is hard to evaluate all possible combinations of features, we describe their

effect qualitatively below.

• Appearance features We have found that among 3 appearance features (appearance of

the current bounding box, appearance distance to representative bounding box of the

trajectory so far, crowd density around the detection) the appearance distance had the

biggest effect. In its absence, appearance of the bounding box was also able to work to

a certain effect, but with worse results. Effect of crowd density feature was only visible

in crowded scenarios, where our merging procedure preferred to merge detections that

are further apart in time, but more similar, compared to less crowded scenarios, where it

preferred to merge detections based more on the spatial vicinity. We used the distances to

the 1st, 5th, 20th closest bounding box as density feature, and introducing more distances

didn’t have any significant effect.

• Social features Having social features, namely description of the 3 closest bounding boxes,

helps our appearance-less model to preserve identities in the absence of visual information,

improving IDF1 from 67.5 to 74.6. Introducing more closest bounding boxes did not

improve performance in any meaningful way.

• Probabilistic merging had a profound effect on the ability of network to fuse appearance-

based and geometry-based features together in our experiments. Without it, picking only

the best candidate, resulted in a model that performed merges mostly either based on the

appearance information (largely ignoring spatial vicinity), or based on the spatial vicinity

and motion information (largely ignoring appearance information).

Other notes We chose not to apply any weight factors to the components of the loss function

because its components could be seen as identifying the false positive (when l ab should be zero)

and false negative (when i ou < 0.5) errors, and since we wanted to weigh the two equally, we did

not use any weight factors to Ll ab , Ls f t , Li ou .

Additionally, while it may seem logical to use Li ou to predict the IoU between the modified

bounding box dn + s f tt and the ground truth bounding box gn , in practice that makes it harder to

train the network as if finds an easy solution of regressing empty bounding boxes, which never

intersect with the ground truth, thus always making a perfect prediction of Li ou . Instead, we use

the network during inference in the autocontext mode: we predict the bounding boxes, update

the input tracklet with them, and then regress the intersection over union of the new tracklet to

compute the value of S.
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Figure 5.6 – Inference speed, fps, and resulting IDF1 when we do additional prunning of the

hypotheses by the score during inference. Curves are shown for batch lengths 12 and 6. We can

reach 30fps without virtually any sacrifice in the quality of the results.

5.4.6 Computational effort

Adding a cutoff on sequence scores in the pruning step of Sec. 5.3.3 allows our python imple-

mentation to perform inference at 30fps, at the cost of a very small decrease in performance.

Furthermore, most computation occurs in the growing and pruning phases, which could be

drastically sped up by re-implementing them in C++ [131].

Computational effort required for our method could be split into 3 groups:

• Dataset generation. This requires running the model for several epochs, and keeping all of

the training data in memory simultaneously. We have observed that the size of available

memory could be a limiting factor for the training procedure, and part of the training data

could be saved to disk and restored on each step of the dataset generation. In practice, the

process of dataset generation for all datasets took several hours and produced datasets up

to 1.5×107 samples (DukeMTMC, Camera 6), but had to be only performed once. In

practice, we have observed that the process of generating dataset oscillates between a slow

growth of the dataset when the model is training, combined with sudden jumps where the

model discovers new set of possible hypotheses thanks to learning the observed set well

enough. This process is repeated several times before saturation, during which growth goes

below 5% in 10 epochs, which is when we finish the dataset generation procedure.

• Model training. This simply trains the model over already generated data, and we have

observed that with our simple features 20-30 epochs are usually enough to reach best

performance on the validation data, and took under one hour.

• Inference. The most computationally heavy part of the inference is not scoring the tra-

jectories with the learned model, but rather the process of generating possible candidates,
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and merging them. While we could not replace our pruning procedure with cutting off

hypotheses based on their score for the purpose of dataset generation, having already

trained the model, we used this as an optimization to speed up the inference. As shown

in Fig. 5.6, by additionally pruning all hypotheses with scores below certain cutoff ,we

speed up the growing and merging procedure without significant sacrifices in the quality of

obtained results, reaching 30 fps.

5.5 Conclusion

We have introduced a training procedure that significantly boosts the performance of sequence

models by iteratively building a rich training set. We showed that our full model is able to

outperform state-of-the-art approaches on several challenging benchmarks. Our model used

only with geometry features outperforms methods relying on the same kind of simple features

and are on par with methods using much more sophisticated appearance-based features. This

could prove extremely useful to solve problems in which appearance is hard to use, such as

cell or animal tracking [127]. We also introduced a sophisticated regression model for target

tracking metric IDF and showed that using it helps both in training and in tracking. Our data

association procedure could also be extended to take more advanced appearance features, such as

pose information, into account, which we plan to do in future work.
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6.1 Summary

In Chapter 3, we presented a model for tracking the ball and the players in volleyball, basketball,

and football. Our model accounts for the interaction between the ball and the players, allowing

to track the invisible ball while it is possessed by the player. It also accounts for the physical

model of the ball motion, allowing to track the ball more precisely while it is in the free fall.

To differentiate, which model constraints should be imposed when, our problem formulation

also requires to detect the state of the game. We show that simultaneously solving such three

tasks, tracking the ball, the players, and estimating game state, brings better performance than

individual tracking, across multiple sports.

In Chapter 4, we explored the idea of learning behaviours from the data, when we presented

an approach to imposing global, non-Markovian constraints on multiple object tracking, while

keeping the tracking problem tractable. As an example of such constraints, we proposed simple

motion patterns for pedestrian and car movement, that govern how such objects are likely to enter

the scene, traverse it, and exit it. We formulated a joint task of tracking and estimating motion

patterns, and showed, how each subtask could be solved: how tracking could be performed given

the motion patterns, and how the motion patterns could be estimated given the tracking. We

then combined these two approaches in an unsupervised scheme, which iterates between finding

the trajectories, and learning the motion patterns. Our experiments showed that such a scheme

improves the tracking quality of a number of state-of-the-art trackers.

In Chapter 5, we investigated how learned behaviours could be implicitly incorporated into

tracking by learning the sequence models for data association. We discussed that traditionally

learning such models is associated with two problems, loss-evaluation mismatch and exposure

bias, that hinder the quality of the training. We proposed a training scheme which confronts the

model to its own mistakes, to eliminate the exposure bias, and proposed a loss which works as a

direct proxy to a tracking metric, reducing the loss-evaluation mismatch. By combining a model

trained with our loss and training scheme with a simple multiple hypothesis training framework,
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we were able to obtain state-of-the-art results on several tracking benchmarks. Performed

ablation study and comparison to a simpler version of the model without appearance information

confirmed that our results are a direct consequence of our training scheme and loss, rather than

an implication of using a particular appearance model.

6.2 Future work

6.2.1 Future location prediction

One of the benefits of sequence-based models for tracking is the fact that they can be used as

generative models to predict future locations of the tracked objects. Combined with relevant

benchmarks such as Stanford Drone Dataset [151], this has led to introduction of many approaches

that jointly predict motion of multiple targets in pedestrian scenes [156, 182, 1, 118], in traffic

scenes [103, 21], and for multiple object tracking with multiple target types [164].

6.2.2 Role understanding

First two of our described approaches relied on the explicit consistency of object behaviour, while

the last one relied on learning it implicitly, by learning sequence models. Recently, a number

of works used sequence models together with explicit consistency of the object behaviour by

performing tracking jointly with role understanding [9, 19]. Given presence of the large-scale

datasets, combining explicitly defined human activity labels with its learnable representation

should impose activity label consistency and implicitly improve the tracking quality.

6.2.3 Tracking with segmentation/pose estimation

While our work concentrates on long term dependencies in people tracking because short

appearance-based interactions can often fail in crowded scenes, the quality of tracking can

still be significantly improved by incorporating other short term signals, such as pose consistency

of semantic segmentation consistency. Thanks to abundance of data and models for such tasks,

it is now becoming possible to jointly perform tracking together with such tasks [126, 80, 72].

However, they usually rely on multiple pre-trained models, which are fused together, rather than

models that are trained together to perform such tasks, which possibly limits their performance.

Models such as [116] can potentially alleviate such problems.

6.2.4 Reducing exposure bias

Our approach to reducing exposure bias relies on confronting algorithm with its own mistakes,

but optimizes the approximation of the tracking metric, which can be obtained on every step

of the tracking approach. Another possible approach in this direction relies on the recent
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advances in deep reinforcement learning to optimize exactly the tracking metric. This, however,

comes with the drawback that it requires to run algorithm on the sequence completely before

obtaining the feedback in terms of the tracking metric, which is why many approaches rely on

it to optimize the hyperparameters of trackers [1, 44]. In single object tracking, reinforcement

learning have recently achieved state-of-the-art results [71, 188, 194]. This topic has been mostly

unexplored in multiple object tracking, with the exclusion of [154], which only uses geometric

features. Therefore, an important future work direction is the combination of state-of-the-art

tracking approaches with reinforcement learning techniques, which could significantly improve

performance by tackling exposure bias and loss-evaluation mismatch.

6.2.5 Better data association

In the recent years, the progress in multiple object tracking has been largely driven by better visual

models and/or larger datasets. For example, pre-training pairwise data association potentials on

PathTrack [123] dataset has been shown to improve the quality of tracking without any changes

to the algorithm [36], while approaches using better detections and better trained re-identification

model also achieve best results on DukeMTMC dataset [150]. These methods have frequently

been combined with very simple data association techniques such as Hungarian algorithm [95]

for online tracking, as well as simple network flow based models, hierarchical data association,

or multiple hypothesis trackers for batch processing. However, advances in data association

techniques are also paramount for getting best tracking quality. [161] could be seen as one of

such recent results.
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A An appendix

A.1 Cost function definition from Chapter 4

These functions are used to score the edges of a trajectory to compute how likely is it that a

particular trajectory follows a particular pattern. As stated in Sec. 4.3.3:

C (T,P, A) =
∑

t∈T
M(t , p A(t1))

∑
t∈T

N (t , p A(t1))
, (A.1)

N (t , p) = n(vi n , t1, p)+n(t|t |, vout , p)+ ∑
1≤ j≤|t |−1

n(t j , t j+1, p), (A.2)

M(t , p) = m(vi n , t1, p)+m(t|t |, vout , p)+∑
1≤ j≤|t |−1

m(t j , t j+1, p), (A.3)

where T is a set of edges of all trajectories, A is the assignment between a trajectory and a pattern,

and P is a set of patterns. As shown in (2) and (3), to score a trajectory we score all its edges plus

the edges from vi n , the node denoting the beginnings of the trajectories, and the ones to vout , the

node denoting the ends of trajectories. As mentioned in chapter 3, we want N (t , p) to reflect the

full length of the trajectory and the pattern, and M(t , p) to reflect the total length of the aligned

trajectory and the pattern. In what follows, we provide definitions of n and m in all cases.

In Table A.1, we show how to compute n and m for edges that link two detections and follow

some pattern. For n we take the pattern length to be positive or negative depending on whether

the projection of the edge to the pattern is positive or negative. For m, we penalize edges far

from the pattern and edges going in the direction opposite to the pattern, in two different ways,

which gives rise to the three cases shown in the table. In Table A.2, we show how to compute

n when one of the nodes is vi n or vout , denoting the start or the end of a trajectory. A special

case arises when a node is in the first or the last frame of an input batch, and a trajectory going

through it does not need to follow the pattern completely. This results in a total of two cases
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A

B

C

PB

PC

D

PA

PD

0 + | |+ | |+ | |+ | |
|AB|+ |BC|+ |CD|+ |cP | ≈ 0.8

wp

cp

m(A,B, p) +m(B,C, p) +m(C,D, p)

n(A,B, p) + n(B,C, p) + n(C,D, p)
=

Figure A.1 – Example of computing the cost function C for three consecutive edges (A,B), (B ,C ),
(C ,D). Dotted line around the pattern centerline cp shows the area within the distance wp to the

pattern. The denominator contains the total length of the edges plus the total length of the pattern,

while the numerator contains the parts aligned with each other (in green and blue). The edge

(A,B) is not counted as aligned, because A is further from the pattern than its width wp .

we show in the table. In Table A.3, we show the two cases when we assign the transition to no

pattern 
, one case when we assign a normal edge joining two detections, and the other when we

assign edge from vi n or to vout , indicating the beginning or the edge of the trajectory.
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Case Explanation Figure
Normal edge

aligned with the

pattern: B and C
are within distance

wp to the pattern

centerline, PB is

earlier on the curve

cp that PC .

For the edge (B ,C ), we

find the nearest neigh-

bor of the two end-

points on the pattern,

namely PB and PC . For-

mally, we have PB =
argmin

x∈cp
||B − x||. Then

we project PB and PC

orthogonally back onto

(B ,C ). This guaran-

tees that m(B ,C , p) ≤
n(B ,C , p) with equal-

ity when (B ,C ) and

(PB ,PC ) are two paral-

lel segments of equal

length, and also penal-

izes deviations from the

pattern in direction.

C

PB

PC

wp

cp

B

n(B,C, p) = |BC|+
�

PBPC

m(B,C, p) = |B1C1|+ |PBPC |

B1

C1

Normal edge

aligned with the

pattern: B and C
are further away

than wp from the

pattern centerline,

PB is earlier on the

curve cp that PC .

n(B ,C , p) is calculated

in the same way as

done in the previous

case. To penalize de-

viations from the pat-

tern in distance, we take

m(B ,C , p) = 0

C

PB

PC

wp

cp
B

n(B,C, p) = |BC|+
�

PBPC

m(B,C, p) = 0

Normal edge not

aligned with the

pattern: PB is later

on the curve cp that

PC .

To keep our rule about

N being the sum of

lengths of pattern and

trajectory, we need to

subtract the length of arc

from PB to PC , as it is

pointing in the direction

opposite to the pattern.

To penalize this behav-

ior, we take m(B ,C , p)
to be −|PB PC |, multi-

plied by 1+ ε. In prac-

tice, we use ε= 1.

C

PB

PC

wp

cp

B
B1

C1

n(B,C, p) = |BC|−
�

PBPC

m(B,C, p) = −|PBPC | × (1 + ε)

Table A.1 – Table describing full definitions of n and m in normal cases, when edges between

two detections align with a pattern. They all follow naturally from the rule about N being the

sum of length of trajectory and the pattern, and M being the sum of aligned lengths.
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Case Explanation Figure
Edge from the

source to a normal

node / from a

normal node to the

sink

To keep our rule about

N being the sum of

lengths of pattern and

trajectory, we need to

add the length from the

beginning of the pat-

tern to the point clos-

est to the node on the

centerline / from the

point closest to the node

on the centerline to

the end of the pattern.

Since we didn’t observe

any parts of trajectory

aligned with these parts,

we take m = 0.

B

II
wp

cp
PB

PI n(I, B, p) =
�

PIPB

m(I, B, p) = 0

C

O

PO

PC

n(C,O, p) =
�

PCPO

m(C,O, p) = 0

Edge from the

source to a normal

node in the first

frame of the batch

/ from a normal

node in the last

frame of the batch

to the sink

We assume that our tra-

jectories follow the path

completely. However,

this might be not true,

which we observe from

the middle, that is, the

ones that begin in the

first frame of the batch

or end in the last frame.

In that case we don’t

need to add the part of

the pattern before / af-

ter the current point clos-

est to the node, which is

why we take n = m = 0.

B

II
wp

cp
PB

m(I, B, p) = 0

C

t = 0

A
t < 0

n(I, B, p) = 0

C

O

PO

PC

t = maxT

t > m
D

n(C,O, p) = 0

m(C,O, p) = 0

Table A.2 – Table describing full definitions of n and m in corner cases when one of the edges go

through I ≡ vi n or O ≡ vout , indicating the beginning or the end of a trajectory. They all follow

naturally from the rule about N being the sum of length of trajectory and the pattern, and M
being the sum of aligned lengths.
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Case Explanation Figure
Normal edge

aligned to no

pattern

To keep our rule about

N being the sum of

lengths, we take n to be

just the length of the tra-

jectory, since we assume

the length of empty pat-

tern to be zero. We pe-

nalize such assignment

by a fixed constant ε
,

taking m to be n multi-

plied by such constant.

In practice, we keep

ε
 = 0.3 when training

from ground truth, or

ε
 =−3 otherwise.

C

B
∅

n(B,C, p) = |BC|
m(B,C, p) = |BC| × (1 + ε∅)

Edge from the

source I ≡ vi n / to

the sink O ≡ vout ,

aligned to no

pattern

To keep our rule about

N , we take both n =
m = 0.

B ∅
II

O

n(I, B, p) = n(B,O, p) = 0

m(I, B, p) = m(B,O, p) = 0

Table A.3 – Table describing full definitions of n and m in corner cases when there is no pattern.

They all follow naturally from the rule about N being the sum of length of trajectory and the

pattern, and M being the sum of aligned lengths.
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A.2 Additional results for Chapter 4

Here we provide the full results of all the methods on all the datasets, after the textual description

of datasets and baselines. Tables A.4, A.5 are the full versions of Table 4.1 of chapter 4.

Table A.6 reports details on Duke dataset in details, as reported on the MOTChallenge website.

In Tables A.4, A.5, we compare the original output of the method with the improvements brought

by our approach in both supervised and unsupervised manner, denoted "-i" and "-o", respectively.

In Table A.7, we compare the methods when using the ground truth set of detections as input.

As in chapter 4, we report the results for the matching distances of 3m (0.1 of the tracking area

for the Station and Rene datasets), and for IDF1 metric we also show results for 1m to indicate

that the ranking of the methods does not change, but the improvement brought by our methods is

less visible due to reconstruction errors when we estimate the 3D position of the person from the

bounding box. This fact is especially highlighted by the Table A.7, where difference in the metric

computed for distances of 3m. and 1m. is especially large.

Specifically, We report the IDF1, identity level precision and recall IDPR and IDRC defined

in [149], as well as MOTA, precision and recall PR and RC, and the number of mostly tracked

MT, partially tracked PT and mostly lost trajectories ML defined in [18].

Our evaluation of DukeMTMC dataset is available on MOTChallenge website under the name

PT_BIPCC, and comparison on MOT16 under the name PT_JMC.

Readers may note that often we observe an increase in the number of mostly lost trajectories and

drop in recall. One of our optimization parameters controls whether or not to remove trajectories

assigned to no pattern during post-processing. Removals reduce the number of false positives,

but may discard tracks for some partially tracked people, which don’t follow any pattern. This

increases the ML and lowers the recall, as observed by the reviewer. This happens in large part

because both contrast and visibility are low, resulting in poor detection quality, for example on

ETH dataset.

Finally, additional results of evaluation on WILDTRACK datasets are presented in Tab. A.8.
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Method Dataset IDF1 IDPR IDRC MOTA PR RC MT PT ML

EAMTT Town 0.72 (0.59) 0.76 0.68 0.73 0.92 0.82 158 68 20

EAMTT-i Town 0.80 (0.63) 0.84 0.76 0.73 0.91 0.82 165 59 22

EAMTT-o Town 0.82 (0.65) 0.83 0.80 0.74 0.89 0.86 182 44 20

JointMC Town 0.75 (0.63) 0.90 0.65 0.64 0.95 0.68 128 54 64

JointMC-i Town 0.77 (0.64) 0.91 0.66 0.64 0.95 0.68 129 52 65

JointMC-o Town 0.76 (0.62) 0.88 0.67 0.65 0.93 0.71 138 50 58

MHT_DAM Town 0.56 (0.45) 0.82 0.42 0.40 0.90 0.46 55 98 93

MHT_DAM-i Town 0.56 (0.45) 0.83 0.42 0.40 0.90 0.46 59 90 97

MHT_DAM-o Town 0.57 (0.45) 0.81 0.44 0.42 0.89 0.48 63 94 89

NOMT Town 0.71 (0.62) 0.83 0.63 0.65 0.94 0.71 122 76 48

NOMT-i Town 0.76 (0.65) 0.87 0.68 0.66 0.93 0.72 135 61 50

NOMT-o Town 0.75 (0.63) 0.83 0.68 0.66 0.91 0.75 144 59 43

SCEA Town 0.56 (0.43) 0.83 0.42 0.40 0.90 0.46 56 95 95

SCEA-i Town 0.58 (0.45) 0.87 0.44 0.44 0.95 0.47 62 89 95

SCEA-o Town 0.58 (0.43) 0.80 0.45 0.43 0.89 0.50 65 94 87

TDAM Town 0.60 (0.48) 0.71 0.52 0.39 0.78 0.56 70 112 64

TDAM-i Town 0.60 (0.48) 0.73 0.51 0.41 0.80 0.56 69 110 67

TDAM-o Town 0.59 (0.45) 0.67 0.54 0.37 0.74 0.60 82 108 56

TSML_CDE Town 0.68 (0.58) 0.75 0.63 0.72 0.95 0.79 143 79 24

TSML_CDE-i Town 0.76 (0.62) 0.84 0.70 0.73 0.95 0.79 150 68 28

TSML_CDE-o Town 0.78 (0.62) 0.82 0.74 0.74 0.92 0.83 161 68 17

CNNTCM Town 0.58 (0.46) 0.79 0.46 0.45 0.90 0.53 63 110 73

CNNTCM-i Town 0.61 (0.46) 0.80 0.49 0.48 0.90 0.55 73 96 77

CNNTCM-o Town 0.62 (0.46) 0.77 0.52 0.48 0.87 0.59 85 95 66

KSP Town 0.41 (0.26) 0.47 0.36 0.64 0.93 0.73 107 105 34

KSP-i Town 0.69 (0.42) 0.78 0.61 0.65 0.93 0.73 118 91 37

KSP-o Town 0.69 (0.42) 0.76 0.63 0.64 0.91 0.75 122 88 36

MDP Town 0.59 (0.45) 0.65 0.55 0.50 0.81 0.68 103 97 46

MDP-i Town 0.66 (0.49) 0.72 0.61 0.54 0.83 0.71 116 82 48

MDP-o Town 0.63 (0.45) 0.66 0.61 0.50 0.79 0.73 113 94 39

RNN Town 0.48 (0.30) 0.52 0.45 0.60 0.88 0.77 122 103 21

RNN-i Town 0.59 (0.36) 0.65 0.55 0.61 0.90 0.76 125 98 23

RNN-o Town 0.53 (0.34) 0.57 0.50 0.59 0.89 0.77 125 99 22

SORT Town 0.62 (0.46) 0.81 0.50 0.57 0.98 0.61 49 152 45

SORT-i Town 0.72 (0.47) 0.85 0.62 0.64 0.95 0.69 96 109 41

SORT-o Town 0.65 (0.46) 0.83 0.60 0.60 0.90 0.65 174 58 14

Table A.4 – Full results for all methods on the Towncentre dataset (abbreviated as Town), when

using our detections as input and using the results of state-of-the-art trackers as input. Number in

brackets in IDF1 column indicates result for the distance of 1 m.
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Method Sequence IDF1 IDPR IDRC MOTA MOTP MT ML IDs Frags

BIPCC Easy-1 57.3 91.2 41.8 43.0 79.0 24 46 39 75

BIPCC-i Easy-1 57.8 91.9 42.2 42.9 79.0 24 46 41 75

BIPCC Easy-2 68.2 69.3 67.1 44.8 78.2 133 38 60 184

BIPCC-i Easy-2 69.2 70.4 68.0 44.7 78.2 133 39 52 172

BIPCC Easy-3 60.3 78.9 48.8 57.8 77.5 52 22 16 36

BIPCC-i Easy-3 59.8 78.2 48.4 57.8 77.5 52 22 19 36

BIPCC Easy-4 73.5 88.7 62.8 63.2 80.2 36 18 7 20

BIPCC-i Easy-4 76.0 91.7 64.9 63.2 80.2 36 18 9 20

BIPCC Easy-5 73.2 83.0 65.4 72.8 80.4 107 17 54 139

BIPCC-i Easy-5 73.3 83.0 65.6 72.6 80.4 107 17 46 132

BIPCC Easy-6 77.2 87.5 69.1 73.4 80.2 142 27 55 127

BIPCC-i Easy-6 80.9 91.7 72.4 73.4 80.2 142 27 58 127

BIPCC Easy-7 80.5 93.6 70.6 71.4 74.7 69 13 23 86

BIPCC-i Easy-7 80.5 93.6 70.6 71.4 74.7 69 13 23 86

BIPCC Easy-8 72.4 92.2 59.6 60.7 76.7 102 53 46 134

BIPCC-i Easy-8 72.7 92.2 60.0 60.9 76.6 103 52 42 135

BIPCC Hard-1 52.7 92.5 36.8 37.8 78.1 6 34 55 103

BIPCC-i Hard-1 52.5 91.9 36.7 37.4 78.1 6 35 61 106

BIPCC Hard-2 60.6 65.7 56.1 47.3 76.5 68 12 194 298

BIPCC-i Hard-2 61.0 66.0 56.7 46.6 76.5 66 12 194 291

BIPCC Hard-3 62.7 96.1 46.5 46.7 77.9 24 4 6 12

BIPCC-i Hard-3 62.7 96.1 46.5 46.7 77.9 24 4 6 12

BIPCC Hard-4 84.3 86.0 82.7 85.3 81.5 21 0 1 9

BIPCC-i Hard-4 92.3 93.6 91.0 85.5 81.4 21 0 2 9

BIPCC Hard-5 81.9 90.1 75.1 78.3 80.7 57 2 13 37

BIPCC-i Hard-5 81.9 90.1 75.1 78.3 80.7 57 2 13 37

BIPCC Hard-6 64.1 81.7 52.7 59.4 76.7 85 23 225 369

BIPCC-i Hard-6 64.7 82.4 53.3 59.4 76.7 85 23 230 369

BIPCC Hard-7 59.6 81.2 47.1 50.8 73.3 43 23 148 218

BIPCC-i Hard-7 59.8 81.4 47.2 50.6 73.3 42 23 145 203

BIPCC Hard-8 82.4 94.9 72.8 73.0 75.9 34 5 10 27

BIPCC-i Hard-8 82.4 94.9 72.8 73.0 75.9 34 5 10 27

Table A.6 – Full results of comparison on DukeMTMC dataset, compared to results of BIPCC.
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Method Dataset IDF1 IDPR IDRC MOTA PR RC MT PT ML

KSP Town 0.56 (0.47) 0.55 0.57 0.87 0.93 0.97 226 8 12

MDP Town 0.87 (0.84) 0.92 0.82 0.87 0.99 0.89 184 38 24

RNN Town 0.65 (0.57) 0.65 0.65 0.85 0.95 0.95 222 19 5

SORT Town 0.88 (0.85) 0.93 0.84 0.90 1.00 0.90 203 34 9

OUR Town 0.97 (0.92) 0.97 0.97 0.98 1.00 1.00 245 1 0

KSP ETH 0.59 (0.12) 0.58 0.60 0.70 0.87 0.89 287 56 9

MDP ETH 0.89 (0.18) 0.91 0.87 0.85 0.95 0.91 300 42 10

RNN ETH 0.65 (0.16) 0.64 0.65 0.73 0.89 0.90 289 62 1

SORT ETH 0.93 (0.20) 0.98 0.88 0.85 0.97 0.87 307 31 14

OUR ETH 0.92 (0.19) 0.92 0.92 0.94 0.98 0.98 347 5 0

KSP Hotel 0.60 (0.21) 0.61 0.58 0.74 0.90 0.86 217 69 30

MDP Hotel 0.85 (0.33) 0.87 0.83 0.84 0.95 0.90 249 37 30

RNN Hotel 0.70 (0.28) 0.69 0.71 0.78 0.91 0.94 284 29 3

SORT Hotel 0.88 (0.36) 0.97 0.81 0.82 0.99 0.83 191 107 18

OUR Hotel 0.94 (0.38) 0.94 0.94 0.97 1.00 1.00 314 1 1

KSP Station 0.45 0.44 0.45 0.80 0.93 0.95 10957 832 573

MDP Station 0.75 0.70 0.80 0.68 0.81 0.93 464 67 51

RNN Station 0.40 0.39 0.40 0.68 0.90 0.94 10870 1244 248

SORT Station 0.72 0.85 0.63 0.70 1.00 0.74 4968 6481 913

OUR Station 0.70 0.62 0.62 0.77 0.99 0.99 579 3 0

Table A.7 – Full results for all combinations of methods and datasets, when using our set of

ground truth detections. Number in brackets in IDF1 column indicates result for the distance of 1

m.

Method IDF1 IDP IDR MT PT ML FP FN IDs FM MOTA MOTP

KSP 73.2 83.8 65.0 49 79 43 1,095 7,503 85 92 69.6 61.5

KSP+ptrack 78.4 84.4 73.1 72 74 25 2,007 5,830 103 95 72.2 60.3

Table A.8 – Benchmark tracking results on the WILDTRACK dataset.
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Measure Better Perfect Description

MOTA higher 100 Multiple Object Tracking Accuracy [18]. This measure combines

three error sources: false positives, missed targets and identity

switches.

MOTP higher 100 Multiple Object Tracking Precision [18]. The misalignment be-

tween the annotated and the predicted bounding boxes.

IDF1 higher 100 IDF [149]. The ratio of correctly identified detections over the

average number of ground-truth and computed detections.

FAF lower 0 The average number of false alarms per frame.

MT higher 100 Mostly tracked targets. The ratio of ground-truth trajectories that

are covered by a track hypothesis for at least 80% of their respective

life span.

ML lower 0 Mostly lost targets. The ratio of ground-truth trajectories that are

covered by a track hypothesis for at most 20% of their respective

life span.

FP lower 0 The total number of false positives.

FN lower 0 The total number of false negatives (missed targets).

ID Sw. lower 0 The total number of identity switches.

Frag. lower 0 The total number of times a trajectory is fragmented (i.e. inter-

rupted during tracking).

Hz higher Inf. Processing speed (in frames per second excluding the detector) on

the benchmark.

Table A.9 – Metrics description.

A.3 Additional results for Chapter 5

Here we present metric description in Tab. A.9 and full results for all benchmarks in Tab. A.10,

A.11, A.12, A.14. Legend information and results for DukeMTMC dataset and MOT15

benchmarks were collected from the benchmark website https://motchallenge.net/ on the 6th of

May, 2018 for our appearance-less methods, and on the 31st of October, 2018, for appearance-

based methods.. Our tracker results are available there under the name SAS and SAS_full for

DukeMTMC benchmark, SAS_MOT15 for MOT15 benchmark, and SAS_MOT17 for MOT17

benchmark.

We also report results of our comparison to SORT on the validation data we used for DukeMTMC

dataset int Tab. A.13 - 15000 last frames before testing data in each camera view. We tuned the

parameters of the method (max_age, min_hits, detection quality cutoff) on the same data we used

for training for ablation study, using grid search.
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Method IDF1 IDP IDR MOTA MOTP FAF MT ML FP FN ID Sw. Frag.

OURS 84.0 89.4 79.2 76.0 76.0 0.09 950 72 66,783 186,974 169 1256

MHT 80.3 87.3 74.4 78.3 78.4 0.05 914 72 35,580 193,253 406 1,116

REID 79.2 89.9 70.7 68.8 77.9 0.07 726 143 52,408 277,762 449 1,060

CDSC 77.0 87.6 68.6 70.9 75.8 0.05 740 110 38,655 268,398 693 4,717

OURS-geom 76.5 83.9 70.3 69.3 74.8 0.10 813 89 76,059 248,224 426 2,081

PTRACK 71.2 84.8 61.4 59.3 78.7 0.09 666 234 68,634 361,589 290 783

BIPCC 70.1 83.6 60.4 59.4 78.7 0.09 665 234 68,147 361,672 300 801

Table A.10 – Full benchmark results on Easy set of sequences of DukeMTMC dataset.

Method IDF1 IDP IDR MOTA MOTP FAF MT ML FP FN ID Sw. Frag.

OURS 76.8 89.3 67.4 65.4 75.3 0.12 450 87 35,596 210,639 267 977

REID 71.6 85.3 61.7 60.9 76.8 0.14 375 104 40,732 237,974 572 993

OURS-geom 65.5 79.3 55.8 59.1 74.0 0.14 379 102 39,576 251,256 972 1,855

CDSC 65.5 81.4 54.7 59.6 75.4 0.09 348 99 26,643 260,073 1,637 5,024

PTRACK 65.0 81.8 54.0 54.4 77.1 0.14 335 104 40,978 283,704 661 1,054

BIPCC 64.5 81.2 53.5 54.6 77.1 0.14 338 103 39,599 283,376 652 1,073

MHT 63.5 73.9 55.6 59.6 76.7 0.19 400 80 55,038 231,527 1,468 1,801

Table A.11 – Full benchmark results on Hard set of sequences of DukeMTMC dataset.

Method MOTA IDF1 MT ML FP FN ID Sw. Frag. Hz Hardware

OURS-geom 22.2 27.2 3.1 61.6 5,591 41,531 700 1,240 8.9 2.5 GHz CPU

SORT 21.7 26.8 3.7 49.1 8,422 38,454 1,231 2,005 1,112.1 1.8 GHz CPU

LP2D 19.8 — 6.7 41.2 11,580 36,045 1,649 1,712 112.1 2.6Hz 16 CPU

RNN 19.0 17.1 5.5 45.6 11,578 36,706 1,490 2,081 165.2 3GHz, CPU

Table A.12 – Full benchmark results on MOT15 dataset.

Method Cam1 Cam2 Cam3 Cam4 Cam5 Cam6 Cam7 Cam8 Overall

OURS 82.1/76.8 70.9/67.7 88.5/84.0 70.9/63.0 58.9/49.9 88.5/81.6 71.4/71.6 66.0/66.4 74.6/70.1

SORT 23.7/37.8 27.7/51.2 26.5/53.0 25.7/40.5 28.6/68.0 23.0/54.9 27.6/56.8 16.4/37.0 24.9/49.9

Table A.13 – Comparison to SORT method on the validation data for DukeMTMC dataset,

IDF/MOTA.

Method MOTA IDF1 MT% ML% FP FN IDs Frag Hz

OURS 44.2 57.2 16.1 44.3 29,473 283,611 1,529 2,644 4.8

DMAN 48.2 55.7 19.3 38.3 26,218 263,608 2,194 5,378 0.3

JCC 51.2 54.5 20.9 37.0 25,937 247,822 1,802 2,984 1.8

MOTDT17 50.9 52.7 17.5 35.7 24,069 250,768 2,474 5,317 18.3

MHTBLSTM 47.5 51.9 18.2 41.7 25,981 268,042 2,069 3,124 1.9

EDMT17 50.0 51.3 21.6 36.3 32,279 247,297 2,264 3,260 0.6

FWT 51.3 47.6 21.4 35.2 24,101 247,921 2,648 4,279 0.2

Table A.14 – Full benchmark results on MOT17 dataset.

96



Bibliography

[1] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-fei, and S. Savarese. Social

LSTM: Human Trajectory Prediction in Crowded Spaces. In Conference on Computer
Vision and Pattern Recognition, 2014.

[2] S. Ali and M. Shah. Floor Fields for Tracking in High Density Crowd Scenes. In European
Conference on Computer Vision, 2008.

[3] M. Andriluka, U. Iqbal, A. Milan, E. Insafutdinov, L. Pishchulin, J .Gall, and B. Schiele.

Posetrack: A benchmark for human pose estimation and tracking. In Conference on
Computer Vision and Pattern Recognition, 2018.

[4] M. Andriluka, S. Roth, and B. Schiele. People-Tracking-By-Detection and People-

Detection-By-Tracking. In CVPR, June 2008.

[5] M. Andriluka, S. Roth, and B. Schiele. Monocular 3D Pose Estimation and Tracking by

Detection. In Conference on Computer Vision and Pattern Recognition, 2010.

[6] A. Andriyenko, K. Schindler, and S. Roth. Discrete-Continuous Optimization for Multi-

Target Tracking. In Conference on Computer Vision and Pattern Recognition, pages

1926–1933, June 2012.

[7] B. Babenko, M.H. Yang, and S. Belongie. Robust Object Tracking with Online Multiple

Instance Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence,

33(8):1619–1632, 2011.

[8] S.-H. Bae and K.-J. Yoon. Robust Online Multi-Object Tracking Based on Tracklet

Confidence and Online Discriminative Appearance Learning. In Conference on Computer
Vision and Pattern Recognition, 2014.

[9] T. Bagautdinov, A. Alahi, F. Fleuret, P. Fua, and S. Savarese. Social Scene Understanding:

End-To-End Multi-Person Action Localization and Collective Activity Recognition. In

Conference on Computer Vision and Pattern Recognition, 2017.

[10] A. Basharat, A. Gritai, and M. Shah. Learning Object Motion Patterns for Anomaly

Detection and Improved Object Detection. In Conference on Computer Vision and Pattern
Recognition, 2008.

97



Bibliography

[11] R. Benenson, O. Mohamed, J. Hosang, and B. Schiele. Ten Years of Pedestrian Detection,

What Have We Learned? In European Conference on Computer Vision, pages 613–627,

2014.

[12] B. Benfold and I. Reid. Guiding visual surveillance by tracking human attention. In

Conference on Computer Vision and Pattern Recognition, 2011.

[13] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer. Scheduled sampling for sequence

prediction with recurrent neural networks. In Advances in Neural Information Processing
Systems, 2015.

[14] Y. Bengio, N. Léonard, and A. Courville. Estimating or Propagating Gradients through

Stochastic Neurons for Conditional Computation. arXiv preprint arXiv:1308.3432, 2013.

[15] H. BenShitrit, J. Berclaz, F. Fleuret, and P. Fua. Multi-Commodity Network Flow for Track-

ing Multiple People. IEEE Transactions on Pattern Analysis and Machine Intelligence,

36(8):1614–1627, 2014.

[16] J. Berclaz, F. Fleuret, and P. Fua. Multi-Camera Tracking and Atypical Motion Detection

with Behavioral Maps. In European Conference on Computer Vision, October 2008.

[17] J. Berclaz, F. Fleuret, E. Türetken, and P. Fua. Multiple Object Tracking Using K-Shortest

Paths Optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence,

33(11):1806–1819, 2011.

[18] K. Bernardin and R. Stiefelhagen. Evaluating Multiple Object Tracking Performance: the

Clear Mot Metrics. EURASIP Journal on Image and Video Processing, 2008, 2008.

[19] G. Bertasius, H. S. Park Soo, X. Y. Stella, and J. Shi. Am i a baller? basketball performance

assessment from first-person videos. In International Conference on Computer Vision,

2017.

[20] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft. Simple Online and Realtime Tracking.

In International Conference on Image Processing, 2016.

[21] A. Bhattacharyya, M. Fritz, and B. Schiele. Long-term on-board prediction of people in

traffic scenes under uncertainty. In Conference on Computer Vision and Pattern Recogni-
tion, 2018.

[22] J. Black, T.J. Ellis, and P. Rosin. Multi-View Image Surveillance and Tracking. In IEEE
Workshop on Motion and Video Computing, 2002.

[23] S.S. Blackman. Multiple-Target Tracking with Radar Applications. Artech House, 1986.

[24] L. Breiman. Random Forests. Machine Learning, 2001.

[25] M.D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and L.Van Gool. Robust

Tracking-By-Detection Using a Detector Confidence Particle Filter. In International
Conference on Computer Vision, pages 1515–1522, 2009.

98



Bibliography

[26] M.D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and L. Van Gool. Online Multi-

Person Tracking-By-Detection from a Single Uncalibrated Camera. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2010.

[27] W. Brendel, M. Amer, and S. Todorovic. Multiobject Tracking as Maximum Weight

Independent Set. In Conference on Computer Vision and Pattern Recognition, 2011.

[28] S. Calderara, U. Heinemann, A. Prati, R. Cucchiara, and N. Tishby. Detecting Anomalies

in People’s Trajectories Using Spectral Graph Analysis. Computer Vision and Image
Understanding, 2011.

[29] B. Chakraborty and S. Meher. A Real-Time Trajectory-Based Ball Detection-And-Tracking

Framework for Basketball Video. Journal of Optics, 42(2):156–170, 2013.

[30] A. Charnes and W. Cooper. Programming with Linear Fractional Functionals. Naval
Research logistics quarterly, 1962.

[31] T. Chavdarova, P. Baqué, S. Bouquet, A. Maksai, C. Jose, L. Lettry, P. Fua, L. Van Gool,

and F. Fleuret. The Wildtrack Multi-Camera Person Dataset. In Conference on Computer
Vision and Pattern Recognition, 2018.

[32] H.-T. Chen, M.-C. Tien, Y-W. Chen, W-J. Tsai, and S-Y. Lee. Physics-Based Ball Tracking

and 3D Trajectory Reconstruction with Applications to Shooting Location Estimation in

Basketball Video. Journal of Visual Communication and Image Representation, 20:204–

216, 2009.

[33] H.-T. .-S. Chen and S.-Y. Lee. Physics-Based Ball Tracking in Volleyball Videos with Its

Applications to Set Type Recognition and Action Detection. In International Conference
on Acoustics, Speech, and Signal Processing, 2007.

[34] J. Chen, H. Sheng, Y. Zhang, and Z. Xiong. Enhancing detection model for multiple hy-

pothesis tracking. In Conference on Computer Vision and Pattern Recognition Workshops,

2017.

[35] L. Chen, H. Ai, C. Shang, Z. Zhuang, and B. Bai. Online multi-object tracking with

convolutional neural networks. In International Conference on Image Processing, 2017.

[36] W. Choi. Near-Online Multi-Target Tracking with Aggregated Local Flow Descriptor. In

International Conference on Computer Vision, 2015.

[37] W. Choi and S. Savarese. A Unified Framework for Multi-Target Tracking and Collective

Activity Recognition. In European Conference on Computer Vision, 2012.

[38] Q. Chu, W. Ouyang, H. Li, X. Wang, B. Liu, and N. Yu. Online Multi-Object Tracking

Using CNN-based Single Object Tracker with Spatial-Temporal Attention Mechanism. In

International Conference on Computer Vision, 2017.

99



Bibliography

[39] N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. In

Conference on Computer Vision and Pattern Recognition, pages 886–893, 2005.

[40] A. Dehghan, S. Modiri Assari, and M. Shah. Gmmcp Tracker: Globally Optimal Gener-

alized Maximum Multi Clique Problem for Multiple Object Tracking. In Conference on
Computer Vision and Pattern Recognition, 2015.

[41] C. Dicle, O. I Camps, and M. Sznaier. The way they move: Tracking multiple targets with

similar appearance. In International Conference on Computer Vision, 2013.
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