Time- and Space-Efficient Spatial Data Analytics

These N°9130

Présentée le 1°¢ février 2019

a la Faculté informatique et communications
Laboratoire de systémes et applications de traitement de données massives
Programme doctoral en informatique et communications

pour I'obtention du grade de Docteur é€s Sciences

par

MIRJANA PAVLOVIC

Acceptée sur proposition du jury

Prof. A. Argyraki, présidente du jury
Prof. A. Ailamaki, directrice de thése
Prof. N. Mamoulis, rapporteur

Prof. Y. Theodoridis, rapporteur
Prof. K. Aberer, rapporteur

G\

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Life is and will ever remain

an equation incapable of solution,
but it contains certain known factors.

Nikola Tesla

To my parents, Milka and Branko, my brother Pero,
and my aunt Boba

Acknowledgements

My PhD has been an exciting and challenging journey that would not have been possible
without the help and support of my advisor, colleagues, friends, and family.

First, | would like to thank my advisor, Prof. Anastasia Ailamaki, for believing in me and for her
support and guidance throughout my PhD. Natassa shaped my research skills, always setting
high standards and encouraging me to do my best. Her infectious energy and enthusiasm will
always be an inspiration to me.

I would also like to thank Prof. Thomas Heinis, for all his help, guidance, patience, and advice.
I have worked with Thomas for the biggest part of my PhD and during these years his support
has been invaluable. This thesis would not have been possible without his help.

I want to thank Prof. Yannis Theodoridis, Prof. Nikos Mamoulis, and Prof. Karl Aberer for
devoting their time to serve in my thesis committee and for their insightful feedback, and Prof.
Katerina Argyraki for presiding over my thesis committee.

During my PhD, | was fortunate enough to share the journey with an exceptional group of peo-
ple: Adrian, Angelos, Ben, Cesar, Danica, Darius, Diane, Dimitra, Eleni, Erietta, Erika, Farhan,
Foteini, Giorgos, loannis, Iraklis, Ivo, Lionel, Lu, Manos, Manos, Matt, Miguel, Odysseas,
Panagiotis, Periklis, Pinar, Radu, Raja, Rakesh, Renata, Satya, Sharareh, Stelios, Stella, Tahir,
Utku, and Viktor. They have always been there to help me with their feedback, constructive
discussions or to simply chat over a cup of coffee. There are also several people in DIAS whom
I owe an additional thank you to. Danica has helped me enormously in too many ways she
was there to provide advice, feedback, accommodation, and much more; she is also a great
friend, with whom | shared many memorable moments. Eleni has been much more than my
of cemate afriend, travel and brainstorm companion, who made my EPFL life much more
fun. Giorgos has been my DIAS family in Heidelberg and unof cial of cemate at EPFL, and
has always given me sharp and thoughtful feedback. Manos and Matt have been my "go to"
friends for advice, feedback and chat, and have always made sure to cheer me up. Stelios and
Ivo made the rst year of my PhD easier and less stressful by offering their help and friendship.
Pinar, Renata, Iraklis, Adrian and Farhan are my academic big sisters and brothers, who have
been looking out for me at all times. Finally, Erika and Dimitra have made my life much easier,
by providing answers to all of my administrative questions. Thank you all for your help.

I would also like to thank my friends in Lausanne and back home who have made these years
much more enjoyable. My Serbian friends, Danica, Nata a, Zlatko, Renata, Ivan, Maja, Petar,

Acknowledgements

Milo , Marija, Darko, Aleksandar, Dra en, Peda, Jasmina, Milena, Milo , and Andrej have made
my transition to Switzerland easy, either by helping with accommodation, or by organising
a number of parties, coffees, and trips. Micka®l helped with the translation of my abstract
to French. The DCL lab, Karolos, Matej, Adi, Vasilis, Giorgos, David and Tudor, made lunch
time fun and interesting. Bilja and Laza welcomed me to Lausanne, and ever since then they
have been looking out for me; Bilja has been my companion for trips, parties and discussions,
and Laza has always given me the best advice. Bojana and Marijana made our apartment feel
like home. They have always been there to encourage me and make my day better with their
countless hugs. 1 would also like to thank my family and friends back home for being there for
me, and for adjusting to my busy schedule. | owe a big thank you to Maja and Kristina, whom
I have been fortunate enough to meet in the rst year of my undergraduate studies; ever since
then they have been my friends, my inspiration, and my daily source of positive energy.

Giorgos Chatzopoulos has made these years fun, joyful and easier. He encouraged me to do
more when | doubted myself, made me laugh when | felt sad, and made me see the glass
half full when | saw it half empty. Thank you for being an in nite source of love, support and
positive energy, and for helping me advance in every possible aspect.

Last, but certainly not least, | would like to thank my family, my parents Milka and Branko,
my brother Pero, and my aunt Boba, for supporting me in my every step and for believing in
me, always. They are the ones who made me smile in the times of failures and celebrated the
loudest even the smallest success. Thank you for everything you have done for me and for
your unconditional love and support.

This research has been supported by the European Union Grants 604102 (FP7/2007-2013 HBP)
and 617508 (ERC-2013-CoG ViDa), and the European Union’s Horizon 2020 research and
innovation programme Grants 650003 and 720270.

Lausanne, 30 December 2018 Mirjana Pavlovie

Abstract

Advances in data acquisition technologies and supercomputing for large-scale simulations
have led to an exponential growth in the volume of spatial data. This growth is accompa-
nied by an increase in data complexity, such as spatial density, but also by more varied data
distributions. As data evolves, so do the needs of applications. Recently, we notice a shift
from prede ned to ad-hoc workloads, as a result of the recent data exploration trend among
data-driven applications. At the same time, given the massive volume of data, it has be-
come imperative to use computational and storage resources ef ciently, where ef ciency
requirements typically vary across applications.

In this thesis, we show that traditional spatial data management techniques underperform as
data size and complexity increase: they waste both computational and storage resources. They
are also inef cient in supporting ad-hoc workloads. To achieve time- and space-ef ciency, we
design spatial data management algorithms and storage layouts that leverage and adapt to
data characteristics and workload access patterns. In particular, we revisit the design of spatial
join algorithms, indexing techniques and point cloud data management solutions.

First, we propose data-aware spatial joins that leverage and adapt to dataset characteristics
to avoid wasting computational resources and achieve time-ef ciency on non-uniform data
distributions. GIPSY is designed to ef ciently join two datasets with contrasting densities.
GIPSY uses the sparser dataset to guide the join process and therefore, by leveraging dataset
characteristics, selectively retrieves and joins only the data needed. TRANSFORMERS achieves
robust performance and time-ef ciency on non-uniform data distributions, by adapting to
dataset characteristics. It detects local variations in distributions and adapts the join strategy
and data layout to local dataset characteristics at run-time.

We next introduce incremental indexing approaches that take into account workload access
patterns. This way, they minimize the data-to-insight time and avoid unnecessary prepro-
cessing costs, substantially accelerating the exploratory analysis of spatial data. Incremental
indexes are built as a side-effect of query execution and only for the parts of the data queried.
Space Odyssey is designed for exploratory analyses of multiple spatial datasets that reside
on disk. It takes advantage of workload access patterns to incrementally index the datasets
and optimize accesses to parts frequently queried together. QUASII supports spatial data
exploration in main memory. QUASII reduces the data-to-insight time and curbs the cost

Abstract

of incremental indexing, by gradually and partially sorting the data, while simultaneously
producing a data-oriented hierarchical structure.

Finally, we propose a time- and space-ef cient solution to storing and managing point cloud
data in main memory column-store database management systems. Our approach leverages
point cloud data properties to employ dictionary-based compression in the spatial data
management domain and enhances it with indexing capabilities by using space- lling curves.
The proposed scheme also represents a partitioning strategy. It is a middle ground between
data- and space-oriented partitioning, accounting for the data distribution, while preserving
the simplicity of grid-like structures.

Keywords: data management, database management systems, scienti ¢ data management,
spatial data management, spatial data analytics, data exploration, spatial data compression,
multidimensional data access methods, spatial joins, incremental indexing

R@sumd@

Les avanc@es dans les technologies d’acquisition de donndes et des superordinateurs pour
les simulations grande @chelle ont conduit une croissance exponentielle du volume de
donn@es spatiales. Cette croissance est accompagng@e d’'une augmentation de la complexitd
des donn@es, comme par exemple la densitd spatiale ou des distributions de donndes plus
variges. De plus, nous remarquons une transition du pr@gd@ ni I’ad-hoc, dR latendance
r@dcente de I’exploration dans les applications orient@es donn@es. De manitre similaire, au vu
des volumes massifs de donn@es, il est imp@ratif d’utiliser ef cacement la puissance de calcul
et 'espace disque, og les exigences difftrent selon les applications.

Dans cette thtse, nous d@dmontrons que les techniques de gestion de donn@es traditionnelles
sont peu ef caces avec I'accroissement de la taille et de la complexit@ des donnges : elles
gaspillent de la puissance de calcul et de I’ espace. Elles sont @galement inef caces pour les
charges de donn@es ad-hoc. Pour atteindre un optimum en termes de temps et d’espace, hous
concevons des algorithmes de gestion de donn@es spatiales et des agencements de stockage
qui exploitent et s’adaptent aux caract@ristiques des donn@es et aux schdmas d’accts aux
donn@es. En particulier, nous revoyons la conception des algorithmes de jointure spatiale, les
techniques d’indexage et les solutions de gestions de nuage de donndes.

Nous proposons d’abord des jointures spatiales s’adaptant aux caract@ristiques des jeux
de donn@es. GIPSY calcule ef cacement des jointures entre deux jeux de donn@es ayant des
densitds diffdrentes. Il utilise le jeu de donn@e le plus @pars pour guider le processus de jointure
et rgcuptre et joint uniquement les donn@es utiles. TRANSFORMERS atteint des performances
solides et optimales en termes de temps sur des distribution de donn@es non uniformes, en
s’adaptant aux caract@ristiques du jeu de donng@es. Il ddtecte les variations locales dans les
distributions et adapte durant I'ex@cution la stratdgie de jointure et I'agencement des donn@des
en fonction des caract@ristiques locales du jeu de donndes.

Nous pr@sentons ensuite plusieurs approches d’indexage incrgmental sensibles la charge
de travail. Les index sont construites comme un effet secondaire de I’ex@cution des requtes
et uniqguement pour les donn@es @tant objets de la requte. Space Odyssey est con u pour
I’analyse exploratoire des jeux de donn@es stock@s sur disque. Il exploite les sch@mas d’accts
aux donn@es pour incrgmentalement indexer les jeux de donn@es et optimiser I'accts au
disque. QUASII supporte I'exploration de donnges spatiales en m@moire. 1l rgduit le temps

R@sum@

n@cessaire I’obtention des rdsultats et limite le cof3t de I'indexage incrdmental, en triant pro-
gressivement et partiellement les donn@es, tout en produisant simultan@dment une structure
higrarchique orient@e donngdes.

Finalement, nous proposons une solution optimale en terme de puissance de calcul et d’es-
pace disque pour stocker et g@rer des nuages de donngdes. Notre approche exploite les proprig-
t@s des nuages de donn@es pour utiliser une compression par dictionnaire et I'amg@liore en
ajoutant des capacitds d’indexage utilisant des courbes de remplissage. Le sch@ma proposd
repr@sente @galement une stratdgie de partitionnement. C’est un compromis entre le parti-
tionnement orientd donn@es et celui orientd espace, qui prend en compte la distribution des
donn@es, tout en pr@servant la simplicit? des structures de type grille.

Mots-cl@s : gestion de donn@es, systt mes de gestion de bases de donn@es, gestion de don-
n@des scienti ques, gestion de donngdes spatiales, analyse de donnfes spatiales, exploration de
donn@es, compression de donndes spatiales, m@thodes d’accts aux donn@es multidimension-
nelles, jointures spatiales, indexage incrgmental

Vi

Contents

Acknowledgments i
Abstract (English/Fran ais) iii
Table of Contents vii
List of Figures Xi
List of Tables XV
1 Introduction 1
1.1 DataEvolution. e 1
1.2 DrivingApplications e 2
1.3 Data ManagementChallenges, 3
1.4 Thesis Statement and Contributions o L. 5
1.5 ThesisOrganization i 7

2 Background 9
2.1 Fundamentals of Spatial Analytics 9
2.1.1 Spatial Data Representation. 9

2.1.2 LinearOrderings i 10

2.1.3 Native Spatial Data Organization 11

2.1.4 SpatialQueries 13

2.2 SpatialIndexing 14
221 TraditionalIndexing 14

2.2.2 IncrementalIndexing 15

2.3 SpatialJoins e e 16
2.4 PointCloud Data Management 17

I Data-Aware Spatial Joins 21
3 Joining Spatial Datasets with Contrasting Density 23
3.1 Introduction 23
3.2 Motivation 24
3.2.1 BlueBrainProject. e 25

vii

Contents

viii

3.22 UseCasesS v i i 26
3.2.3 Motivating Experiments 27
3.3 TheGIPSY Approach 28
3.3.1 OVEerVIEW o 28
3.3.2 Indexingthe DenseDataset 29
3.3.3 JoiningtheDatasets 31
3.3.4 VisitingOrder 33
3.35 StartPoint 34
3.4 Experimental Evaluation. 35
341 Setup e 35
3.4.2 Experimental Methodology 35
3.43 CombiningColumns 37
3.4.4 Building Mesocircuits e 39
3.45 NeuroscienceDatasets 41
3.4.6 GIPSY Sensitivity Analysis 42
3.5 Conclusions 44
Adapting to Spatial Datasets Characteristics 45
4.1 Introduction e e e e 45
4.2 Motivation e 47
4.2.1 Motivating Experiment 47
4.2.2 Motivating Application. 49
4.3 TRANSFORMERSOVeErview e e e e e e e e e e e e 49
4.4 TRANSFORMERS INdexing e e i 51
45 TRANSFORMERSIJoIN e e e e 53
4.6 Transformations. e 56
4.6.1 RoleTransformation 56
4.6.2 Datalayout Transformation 57
4.6.3 Transformation Thresholds 59
4.7 Experimental Evaluation 60
4.7.1 ExperimentalSetup 60
4.7.2 Experimental Methodology L. 61
4.7.3 RObUSINESS. 62
4.7.4 Non-uniform Data Distributions 63
475 Uniform Data Distributions 65
4.7.6 NeuroscienceData 66
4.7.7 TRANSFORMERSAnalysis 66
4.8 Conclusions e 68

Contents

Il Workload-Aware Spatial Incremental Indexing 69
5 Disk-Based Incremental Indexing 71
5.1 Introduction 71
5.2 Space Odyssey OVEIVIEW it e e e e e 72
5.3 Incremental Indexing. 73
531 Re nementConcept 74

532 Optimizations e 75

5.4 CombiningDatasets e 75
54.1 MergingPartitions 76

542 DataStruCtures e 76

543 QUEIYING . . o v v o i 77

544 0Openlssues 77

5.5 Experimental Evaluation 78
5,5.1 Experimental Setup 78

5.5.2 Experimental Analysis 79

5.6 CoNnclusions 83

6 In-Memory Incremental Indexing 85
6.1 Introduction 85
6.2 ProblemDe nition e 87
6.3 Motivation 88
6.3.1 CrackingforSpatialData 88

6.3.2 Disk-based Incremental Indexing in Main Memory 89

6.4 QUASIIOVEIVIEW e e 90
6.5 DataStructure & QUEry Processing v v v i i 93
6.5.1 DataStructure 93

6.5.2 Query Processingand IndexRe nement 96

6.6 Experimental Evaluation. 99
6.6.1 Experimental Setup & Methodology 99

6.6.2 Space-oriented PartitioningChallenges 101

6.6.3 IncrementalversusStatic 102

6.6.4 Comparative Analysis 104

6.6.5 Analysisof QUASII 107

6.6.6 UniformWorkload 107

6.6.7 PerformanceTrends 108

6.6.8 ImpactofSelectivity 108

6.7 ConClUSIONS 109
111 Dictionary Compression Tailored for Spatial Data 111
7 Dictionary Compression in Point Cloud Data Management 113
7.1 Introduction 113

Contents

7.2 Background

7.2.1
7.2.2

Dictionary-based Compression.
Space- IlingCurves e

7.3 Space-Filling Curve Dictionary-Based Compression

7.3.1
7.3.2
7.3.3
7.3.4
7.3.5

Preprocessing & Data Structures
QueryExecution
Space Requirements
Impact of Space- llingCurve
SCOPE . . .

7.4 Experimental Evaluation

7.4.1
7.4.2
743
7.4.4
7.4.5
7.4.6
7.4.7
7.4.8
7.4.9

Space Requirements
QueryPerformance
Impactof DataSkew
Impactof Selectivity
Impactof Filtering
Impact of Space- lling Curve: Time-ef ciency
Impact of Space- lling Curve: Space-ef ciency
Time- and Space-ef ciency: Performance Trends
Preprocessing cost

7.4.10 Experimental Summary
7.5 CoONCIUSIONS o

8 Conclusions and Future Directions
8.1 Technologicallmpact.
8.2 Intellectual Impact

Bibliography

Curriculum Vitae

141
141
142

160

161

List of Figures

2.1 Space- lling curves: Z-order and Hilbertcurve. 10

3.1 Schema of a neuron’s morphology modelled with cylinders (left) and a visualiza-

tion of a model microcircuit comprised of thousands of neurons (right). 25
3.2 lllustrationoftheusecases. i it i i 26
3.3 Total execution time as a result of joining uniform datasets of different densities. 27
3.4 GIPSY uses the sparse dataset to walk/crawl through the dense dataset. 29
3.5 Partioning of the dataset with solid lines for the partitions and dashed lines for
theelements MBRS. e 30
3.6 The data structures of GIPSY: summary pages, elements pages and pointers
between them (arrows between summary records). 31
3.7 Starting with partition Q, GIPSY has to recursively visit all neighbors with inter-
secting partition MBRS. 32
3.8 Total execution time as a result of one spatial join, combining columns. 37
3.9 Number of I/0s as a result of one spatial join, combining columns. 38
3.10 Total execution time as a result of repeated join, combining columns. 38
3.11 Total execution time as a result of one spatial join, building mesocircuits. 39
3.12 Number of I/0s (logscale) as a result of one spatial join, building mesocircuits. 40
3.13 Total execution time as a result of repeated join, building mesocircuits. 40
3.14 Total execution time as a result of one spatial join for neuroscience datasets,
combining columns (left) and building mesocircuits (right). 41
3.15 Total execution time as a result of repeated join for neuroscience datasets, com-
bining columns (left) and building mesocircuits (right). 41
3.16 Impact of sort strategies (left) and data distributions (right). 42
3.17 Spatial join time, varying the page size from4KBto64KB. 43
4.1 Join time for datasets with variable relative density. 46
4.2 Illlustration of variations in distribution and density. Each gure shows two
datasets, one with grey elements and the other with blackones. 48
4.3 Neurocience data: axons (left) and dendrites (right). 49
4.4 TRANSFORMERS adapts to dataset characteristics. 51
4.5 The data structures: space node, space descriptor and space unit. 52
4.6 Joining datasets A and B using adaptive exploration. 56

List of Figures

Xii

4.7 The hierarchical organization of TRANSFORMERS. 57
4.8 Role and Data layout transformation. 58
4.9 UniformCluster & DenseCluster (left) and MassiveCluster (right) dataset samples. 62
4.10 Joining datasets with variable relative density. 63
4.11 Execution time breakdown and number of intersection tests for the join phase

onsyntheticdata. 64
4.12 Execution time breakdown and number of intersection tests for the join phase

onneurosciencedata. 66
4.13 Impact of transformations on join performance (left) and transformations thresh-

old sensitivity (right). 67
4.14 Adaptive explorationoverhead. o oo 68

5.1 Space Odyssey: components, data structures and a snapshot of the physical layout. 73

5.2 Incremental indexing strategy (in2D). oL 74
5.3 Query ranges: clustered, datasetids: zipf., 80
5.4 Query ranges: clustered, dataset ids: heavy-hitter. 80
5.5 Query ranges: clustered, dataset ids: self-similar. 80
5.6 Query ranges: uniform, dataset ids: uniform.. 81
5.7 Querytimesforeach queryinasequence. 82
6.1 Overhead introduced when transforming query to the 1D space. 89
6.2 Incremental indexingstrategy. 91
6.3 Index structure after the rst (left) and few more (right) queries. 92

6.4 Anexample of query processing and incremental indexing in QUASII (con gured
with ¢x ~ 4 and ¢y = 2), given ten spatial objects (0p 09) and two range queries

(Qrand gz). . . o 94
6.5 Re nementstep: queryextension. 99
6.6 The impact of space-oriented partitioning., 101
6.7 Convergence of a) one-dimensional, b) space-oriented c) data-oriented based

approaches. 103
6.8 Cumulative time of a) one-dimensional, b) space-oriented c) data-oriented

based approaches. e 103
6.9 Comparative analysis of incremental approaches: convergence. 105
6.10 Comparative analysis of incremental approaches: cumulative time. 106
6.11 Convergence and cumulative time: the rst 500 (a & ¢) and last 100 (b & d) queries.107
6.12 Scalabilityanalysis. 108
6.13 Impactof selectivity. 108

7.1 Anexample of range query execution over a dictionary-based representation of

pointclouddata. 116
7.2 Dictionary space, 2D illustration. 118
7.3 SFC-DBC (data-aware) and SFC-based (space-oriented) partitioning strategy. . 119
7.4 Point cloud data organized according to SFC-DBC Encoding. 120

List of Figures

7.5 The number of SFCcodes examined per query: the best and worst case. 125
7.6 Berlin aerial dataset, space requirements: a) total and b) breakdown. 131
7.7 AHNZ2 dataset: a) space requirements and b) query execution time (3D queries). 131
7.8 Berlin aerial dataset, query execution time: a) 3D and b) 2D range queries. . . 131
7.9 SFC-DBC:executiontime breakdown. 132
7.10 The impact of skew: space requirements and query executiontime. 133
7.11 Theimpactofselectivity. e 134
7.12 Theimpactof Itering. e 134
7.13 The impact of space- lling curve: query execution time for a) 125M and b) 500M
POINTS. . . . 135
7.14 The impact of space- lling curve onspace-ef ciency. 136
7.15 SFC-DBC performance: a) query execution time and b) space requirements. . . 137
7.16 Preprocessing CoSt. 0 i e e 138

Xiii

- List of Tables

4.1 Execution time (hours) for datasets with uniform distribution. 65

XV

i} Introduction

We live in a data-driven era, with the opportunity to revolutionize science and enterprises by ex-
tracting knowledge from massive amounts of data. Data-driven science exemplary showcases
the power of data: scienti ¢ simulations have become a standard practice, complementing
traditional methods for understanding natural phenomena across a number of scienti ¢
disciplines [36, 41, 46, 48, 82]. At the same time, enterprises harness the insights obtained
through data analyses to improve existing services and offer new ones [25, 51, 56, 135].

Asigni cant percentage of the data collected and used has spatial properties, such as geomet-
ric extent and location. Location Based Services (LBS) provide a set of functionalities based on
geographical location, used by users on a daily basis. At the same time, LBS produce massive
amounts of data associated with location. For instance, Uber announced 5 billion rides in
2017 [26], while Foursquare reached 12 billion check-ins [121]. Similarly, models used in
scienti ¢ simulations across a number of domains (e.g., neuroscience, astronomy, and digital
pathology) are typically represented with data that is enriched with spatial extent [41, 46, 82].
With technological advancements, the amount of spatial data will only continue to increase.
Internet of Things (IoT) devices are one example they are projected to reach 20 billion by
2020 [35] and are all equipped with location intelligence.

Spatial data management systems [42, 77, 105] are speci cally designed to manage spatial
data, considering its spatial property (i.e., location and extent) asa rst-class citizen. Recent
trends in data and applications, however, challenge the design of existing solutions. Data
grows exponentially in volume, evolving in complexity alongside. At the same time, a number
of emerging applications introduce new requirements that challenge current solutions.

1.1 Data Evolution

As a result of the recent technological improvement, spatial data has signi cantly evolved in
recent years, increasing in volume and complexity.

Chapter 1. Introduction

Volume. Advances in data acquisition through more powerful supercomputers for simula-
tions, sensors with better resolutions, etc. have caused an exponential growth in the volume
of spatial data generated and collected. For instance, in the Human Brain Project (HBP) [82],
neuroscientists build spatial models of a brain, consisting of millions of three-dimensional
cylinders, where several thousand cylinders together reconstruct the spatial shape of a single
neuron the nal brain model is expected to reach 10! neurons [127]. NASA released 500
TB of satellite earth observation data generated by remote sensing [87], while the Actueel
Hoogtebestand Nederland 2 (AHN2) point cloud data set [88] contains 640 billion points
acquired through airborne and terrestrial scanning. At the same time, people generate mas-
sive amounts of volunteered geographic style information (VGI). This data is acquired either
through community users of services such as OpenStreetMap [94] (a free editable map of the
world, created by volunteers using local knowledge), or unconsciously” mostly through the
use of smart phones (e.g., geo-tagged tweets, Facebook check-ins, etc.).

Complexity. Alongside with volume, spatial data has also increased in complexity [126]. By
improving the precision of instruments and the granularity of the models, we also increase data
density (the number of objects per space unit), non-uniformity (in terms of data distribution),
and irregularity in geometric shapes. This trend is particularly evident in the scienti ¢ domain.
In neuroscience simulations, for instance, a neuron’s morphology is modeled as a sequence of
segments (cylinders) or through a ne-grain mesh representation [126, 127]. Simulations can
be performed at the cellular, sub-cellular or molecular level of detail [46]. Another example
is pathology image analysis, where 3D micro-anatomic objects have complex structures and
often non-uniform data distribution e.g., the tissue affected by a tumor is signi cantly
denser, in terms of its number of cells, compared to healthy regions [5]. The increase in data
complexity is not limited to the scienti ¢ domain though. In OpenStreetMap, for instance, the
densest areas have nearly three orders of magnitude more objects compared to the average [5].

1.2 Driving Applications

Technological advancements have triggered not just growth in data, but also in the number of
emerging applications. These applications take spatial data as input, and often also produce
spatial data as output, adding to the total amount of spatial data produced. Both traditional
and new spatial applications are bene cial to the scienti ¢ and business domains, where a
few examples include: 1) Scienti ¢ Simulations simulations of spatial models have become
a standard practice [6, 41, 41, 82], complementing traditional methods for understanding
natural phenomena across a number of scienti c disciplines, 2) Digital Pathology biomedical
research is enhanced with the 3D exploration of micro-anatomic objects [71, 72, 73], 3) Urban
Planning and Smart Cities aerial scanning, combined with remote sensing technologies,
enable planning and monitoring of the urban development process [1, 23, 31], and 4) Geo-
graphic Information Systems (GIS) systems designed to store and process geographic data
naturally use massive amounts of spatial data and play an important role in natural resource
and disaster management [32, 119], telecommunication and network services [115], and more.

2

1.3. Data Management Challenges

As data volume and complexity increase, such applications become the main means that
enable users to extract useful information from it. As such, these applications have potential
to advance science and enterprises by enabling new discoveries, inspiring new products and
improving existing services. The performance of such applications, and thus their useful-
ness, is determined by their ability to process massive amounts of spatial data ef ciently. By
ef ciently, we refer to processing of data in a time- and space-ef cient manner.

Time-ef ciency. Given the massive volume of data, it has become imperative to use com-
putational resources ef ciently, i.e., to maximize performance and provide timely response.
Applications have always wanted performance, however, as data size and complexity increase,
this has become a critical requirement. For instance, Uber has to process user requests and
provide services, such as dynamic pricing, in near real-time [27]. Urban planning applica-
tions rely on visual analytics systems which are expected to provide interactive response
times [23, 139]. Finally, to advance scienti c discovery, scientists rely on tools that enable fast
processing of massive amounts of spatial data [46, 47, 52, 123, 126].

A number of applications focus on identifying and extracting useful insights from data, having
the "usefulness criteria™ de ned at runtime. Their analysis is data-driven: users do not
know a priory what they are looking for, and determine future steps based on the results of
previous analyses. This new class of applications is described with a newly-coined term data
exploration [7, 15, 52, 55, 126]. Performing data exploration requires extracting knowledge
from data in a timely manner [7, 55, 126]. More speci cally, users need to analyze data the
moment it is available. Otherwise, data could lose some or all of its value which, by the time
they discover it, might have already cost them signi cant time and processing resources.

Space-ef ciency. The increasing amount of stored and managed data demands for space-
ef cient data organization. Being space-ef cient implies reduction in terms of resources
necessary to store and transfer data. The primary motivation for the space-ef ciency require-
ment are the massive amounts of data that both scienti ¢ and enterprise applications have to
store and manage today (Section 1.1). To ensure resilience to errors, this data gets additionally
replicated, increasing the total amount of data necessary to be maintained. Storage resources
are cheap, however, their capacity cannot keep up with the exponential growth of data. There-
fore, to handle this data deluge, we have to reduce space requirements and thus, the overall
cost of systems. Alongside with storage reductions, space-ef cient data organization has also
the potential to improve performance [3, 4, 109, 141].

1.3 Data Management Challenges

To meet the aforementioned requirements and ful 1l their purpose, applications depend on
ef cient spatial analytics data management. Spatial data management has been an important
research direction for more than four decades [33, 42, 77, 105, 112]. Traditionally, processing
algorithms and supporting data structures have been designed speci cally for spatial data
to maximize performance bene ts, taking into consideration its spatial property. Recent

3

Chapter 1. Introduction

technological advancements, however, make this insuf cient and challenge the design of
existing solutions and therefore, their ability to meet time- and space-ef ciency requirements.

Keeping Up with the Data Evolution. Increases in data volume and complexity challenge the
time-ef ciency and scalability of existing solutions. By becoming bigger, data gets also denser
and more non-uniform with respect to data distribution, as discussed in Section 1.1. Due to
the changes in data properties, existing problems, which are common for spatial algorithms
and data structures, get exacerbated, and new ones appear.

For instance, the overlap between nodes in data-oriented structures (i.e., the property of
data-oriented partitioning, but also its challenge [33, 113, 130]) increases alongside with the
increase in density causing signi cant performance penalties [127]. Similarly, given the non-
uniformity property, achieving robust performance with respect to the distribution of data
is important in order to stabilize and optimize performance. The design of traditional data
management solutions, however, is mostly agnostic to evolving data properties, i.e., it does not
accommodate for these properties, incurring signi cant performance penalties [90, 127, 128].
Spatial join, a core operator in spatial analytics [58, 76, 78], is particularly affected by these
changes, given its default high cost compared to the other types of spatial queries [76].

Supporting Ad-hoc Analysis. To conform with the data exploration requirements, we have
to analyze data as soon as it is available, and to extract useful information quickly, in an ad-
hoc manner. Traditional systems do not ful Il these requirements, as they require expensive
preprocessing steps and a priori workload knowledge to meet the expected performance.
Consequently, they signi cantly increase the data-to-insight time. Additionally, they can
potentially waste both computational and storage resources, if the preprocessing cost is not
amortized with the subsequent data analyses.

Addressing the aforementioned challenges, incremental and adaptive data processing forms
the core of ef cient data exploration [52, 55]. To ef ciently identify and extract useful infor-
mation from massive amounts of data in an ad-hoc manner, algorithms and index structures
have to be incremental, and adapt to the changes in data and workload seamlessly. While
incremental and adaptive data processing have been extensively studied in the relational
domain [7, 45, 52, 53, 54, 55], they have been overlooked in the spatial domain, resulting in
a lack of support for data exploration tasks. Traditional spatial data management systems
require indexes to be built before analytical queries can be executed ef ciently. Therefore,
support for incremental indexing is key to ef cient spatial analytics in an ad-hoc environment.

Supporting Emerging Features. The evolving data properties and application requirements
combined demand support for new features. Traditional solutions are not designed according
to the emerging requirements and data properties, and therefore, cannot typically support
new functionality ef ciently such that the data is used to its full potential and the demanding
applications requirements are met. A driving force for new features is usually scienti ¢ discov-
ery, where technological advancements and new use cases (novel methodologies) challenge
the applicability of existing solutions [126, 128]. Business applications are equally relevant,

4

1.4. Thesis Statement and Contributions

as they leverage new data sources to improve existing services or offer new products, where
point cloud data management is a recent example [8, 37, 124, 134].

With the advances in laser and image processing technology, data properties and users expec-
tations in terms of point cloud management have evolved [124, 134], challenging the ef ciency
of traditional le-based solutions. Data has increased signi cantly in size and precision. At
the same time, applications want to use this data to its full potential: combining it with the
other types of data, while using declarative and ad-hoc queries to explore it [8, 124, 134]. As a
consequence, point cloud processing moved toward database management systems that are
expected to provide both time- and space-ef ciency, given the size of data.

1.4 Thesis Statement and Contributions

Spatial data analytics represent a powerful means to extract knowledge from data, however,
due to recent technological advancements, there is a signi cant discrepancy between expecta-
tions (determined by application requirements) and the actual ability of data management
systems. The goal of this dissertation is to help advance spatial data management systems
to reach their full and expected potential, by revisiting the design of traditional spatial data
management systems and advocating for changes that will bridge the gap between the re-
quirements and actual system performance.

Thesis Statement

Traditional spatial data management techniques underperform as the data size and complexity
increase: they waste both computational and storage resources. Time- and space-ef ciency
of analytics is improved if spatial data management algorithms leverage and adapt to data
characteristics and workload access patterns.

We revisit the design of spatial join algorithms, indexing techniques, and point cloud data
management solutions based on the following key insights:

Adapt to Data. Being agnostic to data characteristics and employing static strategies leads
to sub-optimal, non-robust performance when joining datasets with non-uniform distribu-
tions. The key to optimize performance is to be data-aware, that is to adapt the join strategy
and supporting data structures to the underlying data distributions, in order to maximize
performance and avoid wasting computational resources.

Adapt to Workload. Workload-driven incremental index building signi cantly reduces the
data-to-insight time. Indexes are built as a side-effect of query execution, and only for
the parts of data queried, reducing computational and storage requirements. To ensure
ef ciency, incremental indexing should meet the following requirements: minimal data-to-
insight time, ef cient query performance, and low-cost incremental strategy.

Chapter 1. Introduction

Leverage Data Characteristics. Preserving spatial proximity through data organization has
the potential to improve time- and space-ef ciency, as 1) data access patterns are frequently
aligned with spatial proximity, i.e., objects close in space are frequently processed together,
and 2) compression techniques can exploit spatial proximity. To maximize performance, it
is equally important to leverage secondary data characteristics, other than spatial. These
characteristics are typically introduced as a result of technological advancements and
introduce new patterns in data that should be exploited.

Based on these insights, this dissertation makes the following technical contributions:

We present the design and implementation of two disk-based spatial join approaches that
leverage and adapt to dataset characteristics, achieving time-ef ciency on non-uniform
data distributions.

t GIPSY is a spatial join approach designed to ef ciently join two datasets with contrasting
densities. GIPSY uses the sparser dataset to guide the join process and therefore, by
leveraging dataset characteristics, it selectively retrieves and joins only the data needed.
GIPSY relies on data-oriented partitioning to produce ne-grain partitions, while avoiding
overlap-related problems, by employing a crawling strategy.

t TRANSFORMERS achieves robust spatial joins on non-uniform data distributions, by
adapting to dataset characteristics. We rst show that the performance of the state-of-the-
art spatial join approaches deteriorates when faced with variations in the distributions of
data. To achieve robust performance and time-ef ciency, TRANSFORMERS detects local
variations in distributions and adapts the join strategy and data layout to local datasets
characteristics at run-time.

To achieve timely response and thus provide tools for ef cient spatial data exploration, we
design and develop two incremental indexing techniques. Both approaches take advantage
of workload access patterns to signi cantly reduce data-to-insight time and achieve query
performance comparable to traditional indexing approaches.

t Space Odyssey is designed for exploratory analyses of multiple spatial datasets that reside
on disk. Without any prior information, Space Odyssey incrementally indexes the datasets
and optimizes accesses to parts of the datasets frequently queried together, adapting their
data layout on disk to the workload access patterns.

t QUASII is a query-aware spatial incremental index, designed for exploratory analyses
of spatial data in main memory. It reduces data-to-insight time and curbs the cost of
incremental indexing by gradually and partially sorting the data, while simultaneously
producing a data-oriented hierarchical structure. In addition to QUASII, we also demon-
strate the challenges of adapting and using existing incremental approaches (designed to
incrementally index relational data) in the spatial domain.

To accommodate for the recent requirements and adjust to evolving data properties, we
present the design and implementation of a time- and space-ef cient solution to storing and
managing point cloud data in main memory column-store DBMS. We leverage point cloud

1.5. Thesis Organization

data properties, i.e., the frequent repetition of values for the x, y, and z coordinates across
point cloud entries, to employ dictionary-based compression in the spatial domain and
thus achieve space-ef ciency. To optimize for time-ef ciency, we enhance dictionary-based
compression with spatial indexing capabilities. More precisely, we integrate a space- lling
curve order into the dictionary-based model, without requiring additional storage resources.

1.5 Thesis Organization
The rest of this thesis is organized as follows:
Chapter 2 presents related work and background information on the topics of this thesis.

Part | presents data-aware spatial joins, i.e., we introduce two spatial join approaches that
leverage and adapt to dataset characteristics to achieve time-ef ciency. Chapter 3 introduces
GIPSY [99], a spatial join approach designed to ef ciently join two datasets with contrasting
densities. GIPSY uses the sparser dataset to navigate the join process and therefore, by lever-
aging dataset characteristics, it selectively retrieves and joins only the data needed. Chapter 4
presents TRANSFORMERS [100], a spatial join approach that achieves robust performance
and time-ef ciency on non-uniform data distributions by adapting to dataset characteristics.
TRANSFORMERS detects local variations in distributions and adapts the join strategy and
data layout to local datasets characteristics at run-time.

Incremental indexing enables timely response and saves both computational and storage
resources by building an index as side-effect of query execution and indexing only the parts
of the data queried. While incremental indexing has been extensively studied in relational
domain, it has not been addressed in spatial data management. Part Il introduces two query-
aware incremental indexing approaches designed for exploratory analyses of spatial data.
Chapter 5 presents Space Odyssey [101], designed for exploratory analyses of multiple spatial
datasets that reside on disk. Space Odyssey takes advantage of workload access patterns to in-
crementally index the datasets and optimize the access to datasets frequently queried together.
Chapter 6 introduces QUASII [103], a query-aware spatial incremental index, designed for
exploratory analyses of spatial data in main memory. To reduce data-to-insight time and curb
the cost of incremental indexing, QUASII relies on a partial sorting strategy and data-oriented
hierarchical structure.

Part Il presents a time- and space-ef cient solution to storing and managing point cloud data
in main memory column-store DBMS, motivated with the recent requirements and evolving
data properties in point cloud data management. Our approach [102] (Chapter 7) leverages
point cloud data properties to employ dictionary-based compression in spatial domain and
enhances it with indexing capabilities to achieve both time- and space-ef ciency.

In Chapter 8 we summarize the thesis and discuss future work directions.

4 Background

In this chapter, we present a brief overview of topics that are related to this thesis, including
a survey of related work. We begin by describing the key concepts in spatial data manage-
ment. We then discuss traditional spatial access methods, designed for ef cient querying of
spatial data. We continue by giving an overview of the state-of-the-art in terms of spatial join
techniques. Finally, we provide background on point cloud data management.

2.1 Fundamentals of Spatial Analytics

Spatial data management has been an important research direction for more than four
decades [33, 42, 77, 105, 112]. Processing algorithms and supporting data structures have
been designed speci cally for spatial data, considering its spatial property as a rst-class
citizen. Two major properties that distinguish spatial from one-dimensional data and make
its management challenging are: 1) a complex structure, and 2) its lack of total order. In the
following we discuss in more detail these challenges and their implications [33, 77, 105]. We
also address the general design behind spatial algorithms and supporting data structures and
outline the common type of spatial queries.

2.1.1 Spatial Data Representation

The term spatial object has a broad sense it can represent a point, line, polygon, spherical
object, cube and more. Overall, we can categorize spatial objects into two categories: points
and extended objects. A point is represented with its location in a two- or higher-dimensional
space. Extended objects, such as lines, regions/polygons, or volumetric data (in 3D space),
are also identi ed with a geometric extent that represents the geometric shape of the object.
Therefore, a spatial object can represent a single point or a polygon de ned by hundreds or
thousands of points. Consequently, it is challenging to store, index, and process spatial data
ef ciently given its complex structure and varying size.

Chapter 2. Background

Figure 2.1 Space- lling curves: Z-order and Hilbert curve.

To address the aforementioned challenge, spatial data is typically processed in two steps:

Itering, followed by re nement [19, 33, 58]. In the Itering phase, algorithms work with
approximations of the spatial objects. These approximations have signi cantly simpler struc-
tures than the actual objects, and therefore they primarily minimize the computational cost.
The goal of the Itering phase is to maximize the amount of data that can be processed using
just the approximation geometry. This phase results in a candidate set a list of objects that
satisfy the spatial predicate given the approximation geometry. Finally, the re nement phase
examines the actual objects from the candidate set to remove any false positives detected due
to the use of approximation.

A typical object approximation is a minimum bounding rectangle (MBR) or a minimum
bounding box (MBB), depending whether they represent 2D or 3D data. A MBB of an object is
the smallest box that encloses the complete geometry of an object and it has iso-oriented sides.
It is the most frequently used approximation because of its simple structure that minimizes
computational and storage requirements. One of the issues associated with the approximation
structures is the problem of dead space - a portion of space that is marked with the object’s
approximation, but not occupied by the object. Several techniques [16, 17] have been designed
to minimize dead space in an object’s approximation and consequently improve the Itering
stage. However, the overall bene t of these techniques might not be signi cant if they resultin
more complex structure that increases the storage requirements, the cost of pre-processing
and the intersection tests.

2.1.2 Linear Orderings

One of the major challenges encountered when managing spatial data is the lack of a total
order among spatial objects that preserves spatial proximity. More precisely, there is no total
order that guarantees that any pair of objects which are close in the higher-dimensional space
will also be close in the total order. Consequently, algorithms that use data sorting at their core
cannot be directly employed for spatial data processing.

10

2.1. Fundamentals of Spatial Analytics

One way to introduce a notion of total order among spatial objects is by means of space- lling
curves, such as the Z-order [96], the Hilbert curve [59], and the Gray-code curve [28]. A space-

lling curve imposes a total, 1D order by visiting all the partitions in a D-dimensional grid
exactly once, as illustrated in the Figure 2.1. The order in which the partitions are visited
de nes their 1D codes and the order in 1D space. The granularity of the grid de nes whether
each object or group of objects will be assigned with a unique 1D code.

Given that it introduces the notion of total order, a space- lling curve also maps data to a
one-dimensional domain, as it assigns 1D codes to spatial objects. Given such a mapping of
spatial data, existing 1D access methods and algorithms can be used to manage spatial data.
For instance, a B-Tree [11] can be used by transforming both data and queries in a 1D domain.

It is important to note that the dimension reduction can introduce performance penalties.
First, given that there is no natural total order among multi-dimensional objects, space- lling
curves preserve spatial proximity up to different extents depending on the employed ordering
schema. Therefore, when mapping spatial data, it is crucial to consider space- lling curves
that are effective in preserving spatial proximity [29, 59, 86], such as the Hilbert curve [59] and
the Z-order [96]. Second, in order to achieve ef ciency, the corresponding mapping schemes
have to be adjusted not to introduce overheads with the transformation to 1D space. One
example is range query mapping if a simple mapping is considered, the transformed 1D
range can be signi cantly larger than the original multi-dimensional range. Techniques that
partition the curve into multiple sub-intervals, each of which is fully contained in the original
range [132], address this issue.

2.1.3 Native Spatial Data Organization

Space- lling curves introduce the notion of total order, and consequently enable the use
of 1D access methods and algorithms in spatial data management. While the dimension
reduction provides simplicity, it also reduces the level of information and does not offer the
same exibility as the native, multi-dimensional domain. Therefore, a number of algorithms
and data structures have been designed speci cally for spatial data. One of their main design
goals is to organize data such that spatial proximity is preserved. Preserving spatial proximity
is important, as it has the potential to improve time- and space-ef ciency, given that 1) data
access patterns are frequently aligned with spatial proximity (i.e., objects close in space are
frequently processed together), and 2) compression techniques can exploit spatial proximity.

Considering the type of data partitioning (i.e., data organization) they employ, spatial algo-
rithms and supporting data structures can be divided in two categories approaches based
on space- and data-oriented partitioning. The partitioning technique determines the bene ts,
but also the drawbacks for the corresponding family of approaches.

Space-oriented Partitioning. Space-oriented partitioning is done by partitioning the space
containing the data, regardless of the spatial distribution of the objects [57, 65, 98, 111]. The

11

Chapter 2. Background

produced partitions are disjoint, i.e., they do not overlap. Consequently, space-oriented
partitioning entails a low-cost pre-processing step when it comes to identifying the partitions
that contain the data of interests, as it typically employs a D-dimensional hash function.

While space-oriented partitioning provides simplicity, it also limits the ability to adjust to
the data distribution. More precisely, it does not provide explicit control over the number
of elements assigned per partition and therefore, it can exhibit dif culties when handling
skew. However, the major drawback of space-oriented partitioning is related to the handling
of volumetric objects!. Given that the produced partitions do not overlap, a volumetric object
can intersect with several partitions. To address this ambiguity, partitioning approaches use a
multiple assignment or a multiple matching strategy.

The multiple assignment strategy assigns a copy of the object (or a reference) to each partition
the object intersects with [89, 98]. Doing so has the advantage that, given a point query, we can
uniquely identify a partition that the query overlaps with or follow a single path while traversing
a hierarchical data structure. Replicating objects, however, has several disadvantages: 1) results
may be detected twice and deduplication is required or on-line duplicate removal [22], 2) the
same object can be considered multiple times for the corresponding predicate check, 3) more
data has to be stored and transferred, and 4) the grid con guration becomes more challenging
as increasing the number of partitions also increases the replication rate.

The multiple matching strategy avoids replication of objects and assigns each object only to
one partition it intersects with [9, 65]. The corresponding data structure is equivalent to a
hierarchy of space-oriented structures of increasing granularity. To partition the data, each
object is assigned to the lowest level in the hierarchy, where it only overlaps with one partition.
While this approach to partitioning avoids replication, it requires the inspection of multiple
grids (that share a border).

Considering that the major drawback of space-oriented partitioning is related to the handling
of volumetric objects, this type of data partitioning is mostly used to organize points, as they
do not encounter similar issues. More precisely, while a volumetric object spans multiple
disjoint partitions, a point is assigned to exactly one partition.

Data-oriented Partitioning. The data-oriented strategy partitions the data taking into consid-
eration its spatial distribution [12, 18, 43, 74]. The produced partitions consequently adjust to
the data distribution, and control space utilization by limiting the number of objects assigned
per partition. Adjusting to the data distribution is important, as it improves 1) handling skew in
the data, and 2) data Itering capabilities for instance, in the spatial join process we can use
the partitions of one data set to build an index on the other dataset and/or to prune irrelevant
elements. The control of space utilization is particularly useful for disk-based approaches, as
it allows packinga xed number of elements per partition.

1 we work with 3D data and therefore, refer to objects with spatial extent as volumetric objects.

12

2.1. Fundamentals of Spatial Analytics

The main design characteristics of data-oriented partitioning are that 1) an object is assigned to
just one partition, and 2) partitions can overlap. Assigning an object to one partition eliminates
problems related to multiple assignment and multiple matching strategies. Consequently,
data-oriented partitioning is preferable when it comes to managing volumetric objects.

However, assigning an object to just one partition in a data-oriented manner has also its
drawbacks, as it results in overlaps among partitions that can degrade performance. More
precisely, given a point query, we cannot uniquely identify the partition that the query overlaps
with or follow a single path while traversing a hierarchical data structure. To address the
problem of overlap, several approaches partition the data by producing non-overlapping
regions. However, to be able to achieve so, they allow object replication and consequently

encounter similar problems to space-oriented partitioning approaches.

2.1.4 Spatial Queries

A number of approaches have been designed to address ef cient spatial query execution. In

the following we outline the common query types used for spatial data analyses.

Range Query. A range query is the most common type of spatial query. Given a dataset A, a
spatial region r (or a reference object 0), and a predicate |, it retrieves all the objects from
the dataset A that satisfy the spatial predicate with respect to the region r (or a reference
object 0) [33, 77]. The spatial predicate can be de ned with any spatial relationship between
objects, such as intersection, enclosure, or containment. The region can be explicitly de ned
(typically as an iso-oriented region), or inferred based on the reference object. For instance,
by using a range query we can inspect the properties of a spatial model given a speci ¢
region in the space, or nd all hotels within 500 meters from a user’s current location.
Nearest Neighbor Query. Given a dataset A and an object o, a nearest neighbor query
returns all the objects from dataset A that have the minimum distance from the object o.
Formallyde ned, NNQ(0o) " {a2A:8a'2A,dist(a,0) = dist(a’,0)}[33, 77]. One variant
of the nearest neighbor query is the k-nearest neighbor query that returns the k nearest
neighbors. For instance, nding the 5 restaurants closest to a user’s location.

Spatial Join Query. Given two datasets of spatial objects A and B, and a predicate , a
spatial join query returns the pairs of objects that satisfy the spatial predicate. Formally,
A ./ BT {(a,b):a2Ab2B,a b}. Theef cient execution of spatial join queries is
important in many different applications. In scienti c applications, for example, spatial
joins are used to determine the location of synapses in brain models, in medical imaging
to determine the proximity of cells, and in geographical information systems spatial joins

detect collisions between geographical features like houses, roads, etc.

13

Chapter 2. Background

2.2 Spatial Indexing

Research in indexing spatial data has produced numerous approaches for the fast and scalable
querying of spatial datasets [33]. We rst discuss the traditional approach to indexing, where
an index is built as part of pre-processing. We then introduce the concept of incremental
indexing and related approaches.

2.2.1 Traditional Indexing

We brie y review traditional spatial indexing approaches that we group into two classes
according to the division introduced in Section 2.1.3. Each class inherits the bene t and
drawbacks characteristic of the corresponding family of approaches. We do not distinguish
between methods for points and volumetric objects. The approaches that are designed for
points can be adopted to handle volumetric objects using the query extension technique [122].
The basic concept is to represent a volumetric object by its center, and use a query enlarged by
the size of the biggest object [122]. However, as discussed in Section 2.1.3, approaches based
on space-oriented partitioning are typically used to manage point data, while data-oriented
partitioning is a preferable choice for volumetric objects.

Space-oriented Indexing. A typical representative of approaches based on space-oriented
partitioning is the uniform grid that partitions the space uniformly into partitions of equal
size [114, 116], employing the multiple assignment strategy. Similarly, the Quadtree [111] and
its variant for 3D space, the Octree [57], recursively divide space into four/eight partitions of
equal size to build a hierarchy of partitions.

Further approaches, for example the grid le [89], use a non-uniform grid to better accommo-
date skew in the data (and to optimize for disk accesses). The downside is a more complex
query execution, due to cells of different sizes and locations. The two level grid le [49] ad-
dresses the issue by introducing an additional level with a coarser grid. Still, the overhead of
testing a query against multiple cells can be substantial. Further work improves on the space
utilization by adding a second grid [50]. BLOCK [92] is a recent in-memory index designed to
reduce the number of intersection tests by adjusting the granularity of the grid to the spatial
properties of the query. To achieve this, it creates a set of grids of different granularity, and
splits each query across the available grids.

Aspace- lling curve [28, 59, 96] uses space-oriented partitioning at its core. More precisely,
the corresponding curve is constructed by ordering the cells of a uniform grid. Given that
the space- lling curve transforms spatial data from a multi- to a one-dimensional domain,
existing 1D access methods, such as the B-Tree [11], can be used for querying.

Data-oriented Indexing. The R-Tree [43], arguably the most important data-oriented spatial
index, is a multi-dimensional generalization of the B-Tree, which recursively encloses objects
in MBRs. The basic R-Tree de nition faces the problems of overlap and dead space, both

14

2.2. Spatial Indexing

detrimental to query execution performance [43, 127]. Multiple approaches have been devised
to address the issue. The R*-Tree [12], for example, uses an improved version of the node split
algorithm and reinsertion of objects, while the R+-Tree [113] tries to avoid overlap through the
duplication of MBRs. A priori knowledge of the entire dataset may help to reduce the above
problems of the R-Tree by packing spatially close objects on the same disk page. The Hilbert
R-Tree [61] achieves this using the Hilbert curve, Sort-Tile-Recursive (STR) [70] recursively
sorts objects in all dimensions to do so, while Top-down Greedy Split (TGS) [34] recursively
splits the data set into partitions, minimizing the area on each level.

Adaptive index structures [125] are designed to optimize disk-access for data-oriented indexes
(including the R-Tree index), based on the query workload. The core idea is to rearrange the
index nodes in response to queries, so that they can be accessed sequentially on disk. While
most of the R-Tree-based indexes are designed for disks, the CR-Tree [64] optimizes R-Trees
for main memory access. The CR-Tree is a cache-conscious version of R-Tree. To reduce the
number of cache misses in R-Tree, CR-Tree proposes a MBR compression scheme that reduces
the index size and enables the alignment of the nodes to the cache lines.

The KD-Tree [13] is a binary search tree that recursively divides space, using an iso-oriented
hyperplane to divide the space into two parts at every step. The adaptive KD-tree [14] extends
the initial KD-Tree design. It takes into account data distribution by splitting the space into
two partitions, such that each partition contains approximately the same number of points.
While the KD-Tree is designed for points, the SKD-tree [93] or spatial KD-Tree is designed for
volumetric objects.

2.2.2 Incremental Indexing

Traditional systems require indexes to be built before analytic queries can be executed ef -
ciently. More precisely, they require suf cientidle time for an index to be build before any kind
of analyses can be performed. Modern, data-driven applications, however, do not conform to
these requirements. Their goal is to analyze data as soon as it is available, i.e., to minimize
data-to-insight time.

The concept of incremental indexing addresses this challenge: to reduce data-to-insight time,
an index is built as a side-effect of query execution and only for the parts of the data queried.
To the best of our knowledge, no incremental strategy has been proposed for spatial indexing.
Nevertheless, there has been considerable interest in incremental data processing within
relational databases. We thus brie y describe approaches used by relational database systems.

Incremental indexing techniques have been extensively studied in database cracking [45,
53, 54] and adaptive merging [38, 39]. Both categories of techniques distribute the cost of
sorting across the queries. The former partially sorts keys in an in-memory relation, essentially
performing quicksort. The latter, adaptive merging, takes the idea further and devises an

15

Chapter 2. Background

incremental, external sort to make use of external memory as well. Similarly, incremental
approaches can be used to index time-series [140].

Driven by the same goal, novel systems have been proposed that bypass the data pre-
processing step and execute queries on raw data les. Instead, auxiliary data structures
are built incrementally so that the most popular data subsets are serviced at the speeds of
fully loaded/indexed data. For example, NoDB [7], RAW [62], and ViDa [63] incrementally
build positional maps to track the position of frequently accessed data elds. This enables
these systemsto jump to previously queried data regions and potentially reduce the costs
of tokenizing and parsing raw data sources. Following the same paradigm, Slalom [91], an
in-situ query engine, provides on-the- y partitioning and indexing schemes based on the
information collected by lightweight monitoring.

2.3 Spatial Joins

Spatial join is one of the fundamental operators in spatial analytics [58, 76, 80, 131]. Given two
datasets of spatial objects, a pairwise spatial join nds the pairs of objects that satisfy the spatial
predicate. The predicate can be de ned with any spatial relationship between objects, such as
intersection, enclosure, or distance where intersection/overlap is the most commonly used.
Given its importance, a number of algorithms have been developed to perform spatial joins,
where the majority is designed for disk. Following the division introduced in Section 2.1.3, we
categorize the approaches according to the use of space- or data-partitioning strategies.

Space-oriented Partitioning. We organize join methods based on space-oriented partitioning
into two groups according to the use of a multiple assignment or multiple matching strategy.

PBSM [98], the partition based spatial-merge join, partitions the space uniformly into cells of
equal size, employing the multiple assignment strategy. In the rst phase, each element of
both datasets is assigned/replicated to all cells it overlaps with. In the second phase, PBSM
iterates over all cells ¢ 2 C and tests all elements of dataset A in ¢ against all elements of dataset
B inc to nd pairwise intersections.

The size separation spatial join (S3) [65] uses a hierarchy of equi-width grids of increasing
granularity. Each element of both datasets is assigned to the lowest level in the hierarchy
where it only overlaps with one cell. To perform the join, S3 iterates over each cell ¢ in the
hierarchy and joins it with all cells that cover ¢ on a higher level, following the concepts of the
multiple matching strategy.

The scalable sweeping-based spatial join [9], a representative of the multiple matching strategy;,
partitions the space into n strips of equal width in one dimension and assigns each element
e of both datasets to the strip where e is fully contained. In each of the n strips it uses a
plane-sweep approach to determine all intersections between elements of datasets A and B.

16

2.4. Point Cloud Data Management

Elements intersecting with several strips (e.g., from strip i to strip k) are assigned to set Sj.
When swiping strip j all sets Sjx with j © n ~ k are also joined.

Data-oriented Partitioning. We organize joins based on data-oriented partitioning into three
categories, depending on whether they require an index on none, one, or both datasets.

The synchronized R-Tree traversal [18] synchronously traverses the R-Trees [43] Ra and Rg
built based on datasets A and B. Starting at the root nodes of Ry and Rg, the approach
traverses the trees top down and, if two nodes na 2 R and ng 2 Rg on the same level intersect,
recursively tests their children. On the bottom level, the spatial elements are tested for
intersection. Optimization techniques, such as search space restriction, or sorting based on
the plane sweep strategy [18], can be used to reduce the cost of intersection tests.

While the synchronized R-Tree traversal requires both datasets to be indexed, the indexed
nested loop join [24] only requires an index | o on dataset A. It iterates over dataset B and
queries I 5 for each element b 2 B with b as the query. The query results are all intersections of
b in A. Given the considerable cost of a query, this approach is only ef cientincase A" "B.

Several approaches take advantage of existing indexes by using seed-style strategies. The
seeded tree approach [74] assumes the existence of an R-Tree index | o built based on dataset
A. It uses | o as a template to build a second R-Tree index Ig based on dataset B. Both indexes
are joined with the synchronous R-Tree traversal [18] approach. As Ig is built based on I 5, the
bounding boxes are aligned leading to less overlap and the synchronous join therefore has to
compare fewer bounding boxes. The slot index spatial join [79] uses the existing R-Tree index
I o as partitioned data, i.e., to de ne a set of partitions or slots. The slots are used to partition
the non-indexed dataset B, applying simultaneously data Itering the objects that do not
intersect with any slot are Itered. In the nal phase, the corresponding partitions are joined.

The spatial hash join [75] similarly applies the seed-style strategy, however, it does not assume
the existence of indexes. It uses sampling to hash dataset A into a prede ned number of
buckets. The produced buckets are then used as a seed to partition dataset B. While the seed
strategy enables data lItering, it also produces partitions that might not be reused given that
parts of dataset B are Itered out.

2.4 Point Cloud Data Management

Point cloud data is a useful source of information for natural resource management, urban
planning, architecture and more. It represents a set of 3D points used to model an object or
area, exploiting a number of properties such as x, y, and z coordinates, angle of scan, and color.
We rst give a general overview of existing point cloud management systems, following up
with compression and indexing capabilities of current systems.

General. File-based solutions (e.g., LAStools [108]) represent a traditional approach to point
cloud data management: points are stored in lesin aprede ned formatand processed by

17

Chapter 2. Background

application-speci c algorithms. While le-based solutions have been widely used, as point
cloud data increases in size and popularity, it becomes more challenging for them to meet
recent data management requirements. First, le-based solutions have limited functionality
in terms of declarative power and multi-user support [134]. Second, they face scalability
problems with respect to the increasing number of les to process and their size [8, 134].
A recent benchmark [134] proposes a hybrid solution to address the scalability problem,
employing a DBMS to manage the meta-data of a le-based solution.

Research in this area has recently shifted towards DBMS as many of the data management
challenges encountered with the increasing point cloud data size, have already been addressed
in DBMS solutions. Current DBMSs support point cloud data management in the form of
extensions and speci c data types, distinguishing between the blocks and at table models.
The blocks model groups spatially collocated points into blocks, preserving spatial proximity.
Although the blocks organization offers basic compression capabilities, it also requires blocks
to be unpacked when executing queries. This introduces overhead when executing high
selectivity queries [134]. On the other hand, the at model uses the straightforward approach
of storing one point per row, which provides simplicity, however, it requires signi cant storage
resources [134]. A recent benchmark [134] evaluates the performance of these models, experi-
menting with various systems, including both le-based solutions and DBMSs. More precisely,
the blocks storage model was tested through Oracle and PostgreSQL (their point cloud exten-
sions [95, 106]), while the at model was used in MonetDB, but also in Oracle and PostgreSQL.
The workload (mostly selection queries) was de ned based on users requirements [124].

Recent work [8, 67, 134] illustrates the potential of column-store DBMSs to meet point cloud
data management requirements. The MonetDB demo [8] showcases the declarative power
of DBMS when managing point cloud data, enriched with semantics from different data
sources. On the other hand, the approaches proposed in [67] focus on improving the existing
algorithms for spatial selections and joins on modern hardware in the context of point cloud
data management.

Compression. The blocks model offers basic compression capabilities as the points within
a block have a common base. For instance, PostgreSQL and LAS represent the point cloud
entries within each block as integers with a scale and offset value. An alternative option in
PostgreSQL is dimensional compression where each dimension is separately compressed
using algorithms such as run-length encoding. In [84], the authors propose a compression
scheme for the at storage model in MonetDB. Morton-replacedXY [84] compresses data by
representing a point with a z coordinate and Morton code that replaces the x and y coordinates.

Indexing. Both le-based solutions and DBMSs (based on the blocks model) by default
organize data to preserve spatial proximity information and thus optimize query execution.
This has been mostly done by using space- lling curves, such as the Hilbert curve [59] and the
Z-order [96]. To further optimize performance, they use index structures such as R-Tree [43],
octree [57], quadtree [111] etc. The at model does not preserve spatial data properties by

18

2.4. Point Cloud Data Management

default, as it stores the x, y, and z coordinates independently. Therefore, one option is to treat
data as non-spatial and thus use indexes not tailored to spatial data, such as the B+-Tree [134].
The alternative is to organize data to preserve spatial proximity information, which has been
explored both in MonetDB [84] and PostreSQL [134] by using the Morton order.

The majority of the proposed solutions are traditional spatial index structures built in addition
to the data model. Therefore, they require additional space resources which can introduce
signi cant overhead, particularly for solutions based on the at storage model [134]. An excep-
tion is the previously introduced Morton-replacedXY approach [84]. However, although the
proposed solution integrates the Morton order into the at model, it still requires signi cant
space resources, as Morton codes and z values are stored per point cloud entry.

19

Part |

Data-Aware Spatial Joins

%] Joining Spatial Datasets with Contrast-
Ing Density

Many scienti c and geographical applications rely on the ef cient execution of spatial joins.
Past research has produced several ef cient spatial join approaches, however, the problem of
ef ciently joining two datasets with contrasting density, i.e., with the same spatial extent but
with a wildly different number of spatial elements, has so far been overlooked. State-of-the-art
data-oriented join approaches (e.g., based on the R-Tree) suffer from degraded performance
due to overlap, whereas space-oriented approaches excessively read data from disk.

In this chapter we present GIPSY?, a spatial join approach designed to ef ciently join two
datasets with contrasting densities. GIPSY uses the sparser dataset to guide the join process
and therefore, it selectively retrieves and joins only the data needed. GIPSY relies on data-
oriented partitioning to produce ne-grain partitions. At the same time, it avoids the problems
associated with the overlap in the tree structure of the approaches based on data-oriented
partitioning. Instead of traversing a tree structure top down, GIPSY traverses the data itself
using a crawling approach. GIPSY is particularly ef cient when joining a dense dataset with
several sparse datasets.

3.1 Introduction

An increasing number of scienti c or GIS applications depend on the ef cient execution of
spatial join operations. In geographical applications, for example, spatial joins are executed to
determine the intersection or proximity between geographical features [133], i.e., landmarks,
roads, etc. Medical imaging applications need an ef cient spatial join to determine the
proximity between cancerous cells [136] and in neuroscience the join is performed to nd the
intersection of neuron branches [90].

Many ef cient approaches for disk-based spatial joins [18, 98] have been developed in the
past. Unfortunately none of them can ef ciently and scalably join two spatial datasets of
substantially different density, i.e., of similar spatial extent but with a vastly different number

1 GIpsy originally appeared in [99].

23

Chapter 3. Joining Spatial Datasets with Contrasting Density

of spatial elements. Doing so, however, is important for several applications: it is needed to
ef ciently add a small number of roads or few elements to GIS datasets, to add the branches
of one neuron to a spatial model of the neocortex and many other applications. The ef ciency
of the join is pivotal as it is oftentimes executed repeatedly to join several sparse datasets with
one dense dataset.

To de ne the problem more formally, our goal is to develop an approach for repeated spatial
joins of sparse datasets with one dense dataset. Given several sparse datasets A; and a dense
dataset B where A; ~ ~ B (i.e., their spatial extent is similar, but the number of elements
differ), the approach nds all pairs of spatial elements ax 2 Aj and b 2B so that ax and b
intersect. While any previously developed method [58] can be used to join a dataset A; (with
few elements) and B (with a massive number of elements), the state of the artis inef cient, as
we will show with motivating experiments.

With the sparse datasets A; repeatedly joined with the dense dataset B, building an index
on B or on all A;j and B will speed up the join operation. The fundamental problem of
existing approaches, however, is that with a very small Aj, only a small subset of B needs to be
retrieved (and tested against A;). Existing approaches based on space-oriented partitioning
(e.g., PBSM [98]) create coarse-grained partitions and consequently the entire dataset B needs
to be read for a join, leading to excessive disk accesses. Approaches based on data-oriented
partitioning allow for a more ne-grained partitioning of the data, but require hierarchical
trees (e.g., the synchronized R-Tree [18], indexed nested loop on the R-Tree [24]) to access
the data and thus suffer from well documented problems like overlap and dead space, also
resulting in excessive disk accesses.

We propose GIPSY, a novel approach that uses ne-grained data-oriented partitioning and
thereby enables the join to read from B only the small subset needed. It avoids the overlap
inherent in data-oriented partitioning by using an ef cient crawling technique [97, 127]
which is also used for range queries on spatial data. With this novel combination of crawling
with data-oriented partitioning, GIPSY achieves a 2 to 18£ speedup compared to the fastest
approaches like the indexed nested loop [24] and PBSM [98] when joining several A; with B.

The remainder of this chapter is structured as follows. We rst motivate our work with an
example application from neuroscience in Section 3.2. With an initial set of measurements we
also demonstrate the shortcomings of the state of the art. In Section 3.3, we then explain our
approach, GIPSY, and evaluate it in Section 3.4. We conclude in Section 3.5.

3.2 Motivation

GIPSY is motivated by the data management challenges the neuroscientists we collaborate
with in the context of the Blue Brain Project (BBP [81]) face. We rst describe the BBP, the
spatial join challenges faced in it and then motivate the need for a new approach with an
experimental analysis.

24

3.2. Motivation

3.2.1 Blue Brain Project

In order to simulate and understand the brain, the neuroscientists in the BBP build the most
detailed and biorealistic models with data acquired in anatomical research on the cortex of
the rat brain. They have started to build small models of the elementary building block of
the rat neocortex, a neocortical column of about 10,000 neurons. The structurally accurate
microcircuits (or models) are built on massively parallel systems (currently the BlueGene/P
with 16K cores). A visualization of a small microcircuit of a few thousand neurons is shown in
Figure 3.1 (right).

The process of building the models starts with analyzing the neurons in the real rat brain tissue
in the wet lab, measuring their electrophysiological properties as well as their morphology,
i.e., their shape. As Figure 3.1 (left) shows, the morphology of a neuron is approximated with
cylinders modelling the dendrite and axon branches in three dimensions.

To build a small scale model, several hundred or thousand neuron morphologies are put to-
gether in a spatial model. Before the model can be simulated, synapses (the places where elec-
tric impulses can leap over between different neurons) need to be placed. Prior research [66]
has shown that an accurate model can be built by placing the synapses where the branches (or
the cylinders representing them) of different neurons intersect. More precisely, synapses are
placed where a cylinder representing an axon branch and a cylinder representing a dendrite
branch intersect. The process of placing synapses thus equals to a spatial join of the axon and
dendrite cylinders of the neurons.

Figure 3.1 Schema of a neuron’s morphology modelled with cylinders (left) and a visualization
of a model microcircuit comprised of thousands of neurons (right).

The models currently built and simulated in the BBP contain up to 500,000 neurons with the
goal to increase the size of the models many times to rst simulate the brain of the rat and
ultimately the human brain with »10 neurons. More importantly, the circuits will become
more detailed by modelling neurons (e.g., synapses and neurotransmitter) at the subcellular
level and therefore packing orders of magnitude more spatial elements in the same space.
Given that the spatial join is at the core of the model building its ef ciency is pivotal.

25

Chapter 3. Joining Spatial Datasets with Contrasting Density

(a) Combining Columns (b) Mesocircuits

Figure 3.2 lllustration of the use cases.

3.2.2 Use Cases

Currently the BlueGene/P is used to perform the spatial join on a model. The model is
partitioned and loaded into the 16K cores of it and each core will perform the spatial join and
then report the result. Because the memory is limited to 1GB per core, the biggest model that
can be built is a column, the smallest building block of the brain featuring about 10 million
neurons. To attain the ultimate goal of simulating the entire brain, bigger models need to be
built. The only way of doing so is to combine, on the disk of a single machine (or in a cluster),
several columns into one big model, either by (1) combining several columns into one model
or (2) connecting two columns with long ranging branches.

Combining Columns. Using the BlueGene/P to build the models limits the size of the biggest
model to the size of the supercomputer’s main memory, i.e., 10 million neurons or a column.
To build bigger models, several columns need to be combined and hence the columns need
to be spatially joined with each other. To speed up the join, only the branches (cylinders)
penetrating the neighboring column are used for the join. Figure 3.2 (left) illustrates how
columns C1 and C2 (view from top) are combined: only the few neuron branches (black lines)
from C2 penetrating the neighboring column C1 (black lines inside C1) need to be joined with
the neurons in C1 (gray lines in C1). All neurons and branches are modelled with thousands
cylinders each. Therefore, the sparse dataset (the cylinders making up the black lines from C2
inside C1) containing several hundred thousand cylinders is joined with the dense dataset
(the cylinders representing the gray lines of C1) having several hundred million cylinders.

Building Mesocircuits. In this use case one or few neuron branches are added to one or
several columns. The added branches model the growth of mid-range bers, i.e., model how
branches penetrate a column. Also, in this case, the added branches interact with the neurons

26

3.2. Motivation

Figure 3.3 Total execution time as a result of joining uniform datasets of different densities.

in the column, making the detection of touches between incoming branches and the rest
of the circuit via a spatial join necessary. The number of cylinders added to the column in
this case is typically several thousand. The sparse dataset is thus much smaller than in the
previous use case, while the dense dataset contains a similar number of cylinders. Figure 3.2
(right) shows how the branches (dashed lines) are added to the neurons of the two columns
(hexagons) to connect them.

3.2.3 Motivating Experiments

What is common among the aforementioned use cases is that two datasets of entirely different
density, i.e., number of elements in the same space, are spatially joined. We illustrate the
shortcomings of the current approaches when joining datasets with contrasting density in
experimental analyses. We join a sparse dataset containing 800’000 elements with increasingly
dense datasets containing between 50 and 450 million elements. We increase the density of
the dense dataset to emulate increasingly detailed models (more elements in the same space).
The experimental setup is described in more detail in Section 3.4.1.

We consider the partition based spatial-merge join (PBSM [98]), the synchronized R-Tree
traversal (R-TREE [18]) and the indexed nested loop (INL [24]) approaches. The results of the
join are shown in Figure 3.3. We distinguish between three phases: (1) Preprocessing, the time
to index (or partition the data in case of PBSM), (2) I/0 Time, the time to read partitions into
memory, and (3) In-memory Join Time, time to join the partitions in memory.

The major problem for the data-oriented approaches, INL and R-TREE, is overlap between
nodes in data structures [43], which increases alongside the increase in density. Overlap

27

Chapter 3. Joining Spatial Datasets with Contrasting Density

leads to an increase in the number of I/0s and consequently, in the number of unnecessary
comparisons (intersection tests). In the case of R-TREE, the overlap problem is more evident
and affects primarily the in-memory join (it also affects 1/0, but not to the same extent as
the OS caches disk pages). The R-TREE approach is affected by overlap in the two R-Trees.
Overlap at higher levels in each tree means that more R-Tree nodes overlap between the trees.
Consequently, their children are compared pairwise, leading to a considerably bigger number
of comparisons, which ultimately results in an increase of the in-memory join time.

The space-oriented approach, PBSM, on the other hand, suffers from the coarse-grain parti-
tioning and random reads. Con guring PBSM is dif cult: using a coarse-grain con guration
produces bigger partitions and consequently, it signi cantly increases the number of unneces-
sary comparisons. On the other hand, using avery ne-grain con guration leads to excessive
object replication increasing the number of comparisons and the amount of data stored
and transferred. The con guration used (25° partitions) in the experiment is identi ed with a
parameter sweep. However, even though this con guration provides the best performance in
terms of the total execution time, the produced granularity is not suf cientto Iteraconsid-
erable amount of data from the dense dataset. In addition, being based on space-oriented
partitioning, disk accesses to read the partitions, are mostly slow random reads, resulting in
substantial 1/0 time.

3.3 The GIPSY Approach

With GIPSY we want to overcome the problems of approaches based on data-oriented as well
as space-oriented partitioning. As outlined previously, space-oriented approaches cannot
partition the dense dataset ne-grained enough so that the join can only retrieve the data
needed from disk. Partitioning more ne-grained results in small partitions, therefore more
replication and consequently a slower join. The approaches based on data-oriented partition-
ing, on the other hand, suffer from overlap resulting in unnecessary pages retrieved from disk
followed by unnecessary comparisons.

3.3.1 Overview

The novelty of GIPSY lies in avoiding the coarse-grained partitioning of space-oriented ap-
proaches by using the ne-grained data-oriented partitioning. At the same time, it avoids
the problems associated with the overlap in the tree structure of data-oriented approaches.
Instead of traversing a tree structure top down, GIPSY cleverly traverses the data itself using a
crawling approach [97, 127].

More precisely, GIPSY indexes the dense dataset and takes the elements of the sparse dataset
and visits them one after the other by walking between them using the index on the dense
dataset. Once it arrives at the location of a particular element e of the sparse dataset, it uses
crawling to detect all elements of the dense dataset that intersect with e and then walks to the

28

3.3. The GIPSY Approach

el 8

Dataset B

- |

Dataset A

i

-

{
V" \.!

Figure 3.4 GIPSY uses the sparse dataset to walk/crawl through the dense dataset.

next element. Using an index on the dense dataset and traversing it directed by the elements of
the sparse dataset makes the join particularly ef cient for the repeated join of a dense dataset
with multiple sparse ones. Figure 3.4 illustrates how GIPSY uses the sparse dataset to direct
walking in the dense dataset.

To enable GIPSY’s novel approach of combining data-oriented partitioning with crawling to
execute a spatial join, we need an ef cient method to partition the dataset data-oriented, and
to add & store the information needed for walking/crawling. Additionally, we need an effective
method to nd a start element for the walk as well as an order in which the elements of the
sparse dataset can be visited with minimal distance between them.

In the following we discuss the methods, algorithms and data structures needed.

3.3.2 Indexing the Dense Dataset

Unlike mesh datasets indexed with DLS [97], the datasets we use (spatial datasets in general)
do not have any inherent connectivity information like mesh edges. In GIPSY, we therefore

rst partition the dataset and then store information needed for crawling in additional data
structures, similar to other crawling approaches [127].

Partitioning the Dense Dataset. To partition the dense dataset we use an approach similar
to sort-tile-recursive (STR) [70], a method initially designed for bulkloading R-Trees. While
we are not interested in the R-Tree it produces, its approach to data-oriented partitioning is
useful so that spatially close elements can be stored on the same disk page, thereby preserving
spatial locality. Similar to STR, GIPSY rst sorts the dense dataset on the x-dimension of the
element center and partitions the elements along this dimension. All resulting partitions are

29

Chapter 3. Joining Spatial Datasets with Contrasting Density

ik 1y
<> 1
- : L--» : .:
L _: 1 & » 1
L _ .
I)
[
I I L ¢! i
Ut > P N -1
Le _1 Iy,

Figure 3.5 Partioning of the dataset with solid lines for the partitions and dashed lines for the
elements MBRs.

sorted on the y-dimension and partitioned again. Finally, the resulting partitions are also
sorted on the z-dimension and partitioned, producing the nal partitions.

Figure 3.5 illustrates the partitioning. The solid lines represent the partition MBRs (minimum
bounding rectangle), whereas the dashed lines represent the elements MBRs that wrap more
tightly the actual spatial elements. By choosing the size of the partitions at every step of
the partitioning process, we can precisely determine the size of the nal partitions. This
(a) ensures that a partition ts on a disk page and (b) gives us a parameter to control the
granularity of the partitioning. In GIPSY, the size of the partitions is always chosen so that it

ts on a disk page, i.e., of size 4K or a multiple. GIPSY stores the elements in each partition
together on a disk page called elements page.

Crawling Information. In order for GIPSY to work, we need to determine and store the
information that enables walking/crawling. The relevant information are the partitions and
their neighborhood relation, i.e., what partition neighbors other partitions.

Storing the Crawling Information: For each partition we store the minimum bounding rectan-
gle (MBR) of the elements and the partition. The elements MBR is the minimum bounding
box containing all elements on a page whereas the partition MBR is the minimum bounding
rectangle of the partition. Most importantly, we also need to store the neighbors of each
partition. We store all information in summary records: each record summarizes a partition p
and stores a pointer to the elements page of p, p’s partition MBR, p’s elements MBR, as well as
the neighbors of p (the partitions intersecting with p or touching p).

Determining the Crawling Information: The information of the partitions follows directly from
the partitioning process. We determine the neighbors by performing a spatial self-join on the
partition MBRs. This computes, for each partition p, what partitions n neighbor (touch or
intersect) p. Any spatial join method can be used for the self join. Nevertheless, in GIPSY we
use PBSM because we identi ed it as the quickest method to perform a one-off spatial join
when both datasets have similar density.

30

3.3. The GIPSY Approach

WP UWP DZUW (EéTET}VIDU\MK)(E-YX

WPUWP DZU™yw sy wP DZU WESISI}V|D ZU E [PZ JE-YX
WPUWP DZ

WPUWP DZUW GE3]3]}v[p 2 LY x
WPUWP DS owe DZUWEé]é])vDZ$@¢5@§%}
WPUWP DT o we DZUWCEé]é])vDZPageS)GE-YX
wpuwp of WPUWP DZUW ES§]8]}v|D ZU E]PZ JE-YX
WP UWP DZUW GE3]3]}v|D ZU E JPZ }E-YX

ElementsPages

Figure 3.6 The data structures of GIPSY: summary pages, elements pages and pointers
between them (arrows between summary records).

As Figure 3.6 shows, all summary records are stored on disk pages called summary pages.
We store as many summary records on a summary page as possible. When retrieving a
summary record, it is likely that neighboring ones (spatially close ones) will also be retrieved
and preserving spatial locality will thus improve performance. As a consequence, we use the
Hilbert space lling curve [59], calculate the Hilbert value of each summary record (of the
center of its partition MBR) and store on the same summary page summary records with
consecutive Hilbert values. On the summary pages we do not store the partition identi erasa
neighbor but instead store the identi er of the summary page it is stored. Such an approach
simpli es and speeds up the join process as no mapping (correlating the summary page
identi er with the disk page identi er) needs to be queried repeatedly.

3.3.3 Joining the Datasets

To nally join the datasets, GIPSY takes a sparse dataset A;j (without indexing it) and iterates
over all its elements a 2 A;. It uses the start summary record at the beginning of the join and
walks in the dense dataset to nd the spatial location of the rst element a; of the sparse
dataset. For that matter it uses a directed walk: it recursively reads all neighboring summary
records and picks the one closest to a; (smallest distance of the elements MBR to a;). As
Algorithm 1 illustrates with pseudocode, this process is repeated until a summary record
intersecting with ay is found. If no neighbor record closer to a; can be found and the elements
MBR of the closest record still does not intersect with a;, then a; does not intersect with any
element from B.

Once an intersection record, a summary record of which the elements MBR intersects with
the element a, is found the directed walk ends and the crawl phase starts. The goal of
the crawl phase is to nd all elements of the dense dataset intersecting with a;. Starting
with the intersection record, the crawl phase, similarly to the walk phase, recursively visits
all neighbors until no more element intersecting with a; can be found. More precisely, it
starts with the intersection record and recursively retrieves all summary pages that contain
referenced neighbor records. If the elements MBR of a summary record intersects with a;,

31

Chapter 3. Joining Spatial Datasets with Contrasting Density

2| Query| 7

o= R Le®)

Q | LS
m__1R

Figure 3.7 Starting with partition Q, GIPSY has to recursively visit all neighbors with inter-
secting partition MBRs.

Algorithm 1: Directed Walk
Input: startR: start crawl record

ai: spatial element of sparse dataset A;
Output: closestR: closest summary record to a;

closestR =startR;

while (distance(closestR.eIMBR,ax) "0 AND Ichekgettingaway()) do
records =read all neighbor records of closestR;

foreach summary record r 2records do

ifdistance(r.elMBR,ayx) ~ distance(closestR.elMBR,ak) then
| closestR =r;

end
end

end
return closestR

then the elements page is retrieved and all elements are tested for intersection. If the partition
MBR of a summary record does not intersect, then the neighbors are not visited and hence the
crawl phase ends when no more crawl record with a partition MBR intersecting with a; can
be found. Algorithm 2 illustrates the crawl phase with pseudocode. If no summary record of
which the elements MBR intersects with a; can be found, then a; does not intersect with any
element and we walk to the next elementin A.

The algorithm also illustrates why GIPSY needs to store and use both, the partition and
elements MBRs. The elements MBR is needed in the join process to determine whether
or not to retrieve an elements page (if the query intersects with the elements MBR). The
partition MBR, on the other hand, is needed to guarantee correctness: given a partition (and
its summary record) Q, even if the elements MBR of Q’s neighbor R does not intersect with
the query, R’s neighbor S elements MBR might. Consequently GIPSY cannot stop visiting R’s
neighbors only because its elements MBR does not intersect with the query, but only if the
partition MBR does not intersect, as Figure 3.7 illustrates.

32

3.3. The GIPSY Approach

Algorithm 2: Crawl Algorithm
Input: intersectionR: crawl record with page MBR intersecting with a 2 A;;
range: MBR of spatial element a 2 A;
Output: result: spatial elements
Data: squeue: summary record queue
visitedqueue: already visited elements queue

enqueue intersectionR into squeue

while squeue® ; do
dequeue summary record s from squeue

if s.elementsMBR intersects with range then
retrieve elements page ep referenced in s

foreach element 2 p do

if element MBR intersects range then
| putelementintoresult

end
end

end

if s.partitionMBR intersects with range then
foreach neighbor ins do

if neighbor isnotinvisitedqueue then
| enqueue neighbor summary record in squeue

end
end

end
end
return result

As the pseudocode in Algorithm 3 shows (using Algorithm 1 as directedWalk and Algorithm 2 as
crawl), after nding all elements of the dense dataset that intersect with a;, the same process,
i.e., directed walk and then crawling, is repeated to nd the intersections of the following
elements ay until all elements of A; intersecting with elements of the dense dataset B are
identi ed.

3.3.4 Visiting Order

The order in which the elements of the sparse dataset are visited has an impact on the distance
walked and consequently also on the execution time of the join. While walking a longer
distance and retrieving more summary pages does not automatically need to translate into
more time needed to access the disk (due to caching of the OS), walking longer will, however,
means more time is spent on comparing summary records to elements of the sparse dataset.

An ideal visiting order minimizes the overall distance walked, similar to the travelling salesman

33

Chapter 3. Joining Spatial Datasets with Contrasting Density

Algorithm 3: GIPSY Join
Input: elements: array of spatial elements A;
startR: summary record from where to start join
Output: elements: set of elements A; intersecting with element from B
Data: intersectionR: summary record holding the current intersection record
intersectingE: elements 2 B intersecting with an elementinA;

intersectionR =startR;

foreachelementa 2elements do

intersectionR ~ directedWalk(a,intersectionR);
intersectingE ™ crawl(intersectionR);
add all intersectingE toelements;

end
return elements

problem (TSP). Unfortunately, the TSP is NP-hard and we have to resort to heuristics to nd
an order that approximates the optimal order in reasonable time. We have implemented
several strategies to sort the sparse dataset and evaluate them in the experimental section in
Section 3.4.

3.3.5 StartPoint

To visit the elements of the sparse dataset, GIPSY needs to start at a particular summary record
of the dense dataset and walk through it. GIPSY could start with a random (or chosen by some
heuristic) summary record, use a directed walk to the closest summary record of a; (the rst
element of the sparse dataset) and then start the join process. This method, however, depends
on the randomly chosen summary record as well as the sparse dataset and may thus involve
an infeasibly long walk.

To reduce the distance between the start point and the rst element of the sparse dataset, we
index all summary records of the dense dataset. Any spatial index could be used to index the
dense dataset so thata rst summary record close to an element of the sparse dataset can be
retrieved. To avoid the issue of overlap and also to speed up the process of building the index
we refrain from using an R-TREE or related spatial indexes. Instead we calculate the Hilbert
value of each summary record (the Hilbert value of the center of the elements MBR) and index
them with a B+-Tree.

To ndthe summary record to start from, we execute the range queries (the Hilbert values
of the sparse dataset elements) on the B+-Tree in order to nd the rstintersection, i.e., the
summary record with the closest Hilbert value to one of the elements of the sparse dataset.
This summary record does not necessarily contain the rst element of the sparse dataset but
will be spatially close to it and GIPSY will walk to it and start the traversal there.

34

3.4. Experimental Evaluation

The B+-Tree can also be reused in case of an extremely sparse dataset: instead of an infeasibly
long walk between two elements a; and aj—; of the sparse dataset, it may be more ef cientto
use the B+-Tree instead to nd a summary record close to aj—;. In our experiments, however,
we have not encountered a dataset where using the B+-Tree repeatedly improves performance.

3.4 Experimental Evaluation

In this section we describe the experimental setup & methodology, compare GIPSY against
state-of-the-art spatial join approaches and analyze its performance.

3.4.1 Setup

Hardware. The experiments are run on a Red Hat 6.3 machine, with 2 quad-coe AMD Opteron
CPUs at 2700 MHz, with 4 GB RAM and 4 SAS disks of 300GB (10000 RPM) capacity as storage.
We use one of the disks for the experiments, i.e., no RAID con guration is used.

Software. All algorithms are implemented single-threaded in C++ for a fair comparison.

Setting. We compare the indexed nested loop join (INL), synchronized R-Tree traversal (R-
TREE), partition based spatial-merged join (PBSM) and our approach GIPSY. R-TREE and
PBSM use the plane sweep algorithm as the in-memory join.

Due to the absence of appropriate heuristics, we set the parameters of related approaches
optimally after a parameter sweep. In case of PBSM we found the con guration with 253
partitions to be the most ef cient. This con guration provides the best trade-off between
the number of elements needed to be compared by the plane sweep algorithm and the
number of elements replicated, deduplicated, additionally written/read to/from disk. INL
and R-TREE have shown the best performance with a fanout of 135. The disk page size in all
experiments is 8 KB. Experimental conditions assume a cold le system cache, i.e., after the
preprocessing/indexing step OS caches and disk buffers are all cleared.

3.4.2 Experimental Methodology

We use two different types of datasets in the experiments: (1) to control the dataset charac-
teristics (number, size and distribution of elements) and demonstrate general applicability
we use synthetic datasets and (2) to demonstrate the impact on our use cases we also use
neuroscience datasets.

Synthetic Datasets. We create synthetic datasets by distributing spatial boxes in a space of
1000 space units in each dimension of the three-dimensional space. The length of each side of
each box is determined by a uniform random distribution between 0 and 1. Spatial elements
are distributed in space depending on the data distribution.

35

Chapter 3. Joining Spatial Datasets with Contrasting Density

We use three different data distributions - uniform, normal (,, =0, =220) and clustered, and
always join datasets of the same distribution. For the clustered dataset, we choose uniformly
randomly centers of the clusters in the three-dimensional space and place between 500 to
1000 spatial elements around the cluster center using a normal distribution (,, =0, =220).
The number of spatial elements in the datasets is between 10K and 450M. The corresponding
size on the disk is between 468KB and 20GB.

Neuroscience Datasets. To evaluate GIPSY on real data we use a small part of the rat brain
model represented with 450 million cylinders as elements. We take from this model a contigu-
ous subset with a volume of 285 ,,m? and approximate the cylinders with minimum bounding
boxes. In the spatial join process, axons are represented by one dataset, dendrites by the other,
and the detected intersections represent synapses. The number of elements in the datasets is
between 10K to 250M. The corresponding size on the disk is between 468KB and 11GB.

Approach. Spatial joins typically involve two steps: Itering followed by re nement. The lIter-
ing step nds pairs of spatial elements whose approximations intersect with each other, while
the re nement step detects the intersection between the actual shape of the elements. Consid-
ering these two steps are independent in terms of their implementation and the re nement
step is application speci c, we focus on the Itering step.

In all experiments we x the size of dataset A (sparse dataset) and gradually increase the size
of dataset B (dense dataset). We increase the density of the dense dataset to emulate the
increasingly detailed models the neuroscientists build. To build more biorealistic models, they
increase the number of elements in the same space, i.e., they increase the density, leading to
growing overlaps in indexes based on data-oriented partitioning.

In all experiments we measure the total execution time and the number of 1/0 operations
during the spatial join process. The total execution time is measured for two different scenarios,
for a one-time operation (joining dataset A with B) and for a repeated spatial join operation
(joining several datasets A; with one B).

We break the total execution time in preprocessing time, 1/0 time and in-memory join time.
The preprocessing time is the time necessary to build the initial data structures (PBSM: parti-
tion creation, element assignment; R-Tree based approaches: index building; GIPSY: space
partitioning, neighborhood information introduction, B+-Tree building). The I/0 time is time
spent on data loading during the join process and the in-memory join time is the time needed
to join data in memory, i.e., comparing the spatial elements and related operations.

In the case of the repeated spatial join, we reuse the index (partitions for PBSM, tree for R-
TREE and INL) created during the rst spatial join process. The total execution time for these
experiments thus contains the preprocessing time only once.

36

3.4. Experimental Evaluation

Figure 3.8 Total execution time as a result of one spatial join, combining columns.

3.4.3 Combining Columns

One-time Join. We evaluate GIPSY on synthetic data with two sets of experiments, both
inspired by the two neuroscience use cases described in Section 3.2.2. This set of experiments
is designed according to the combining columns use case. More precisely, in the following
experiments we x the size of dataset A to 800K elements and join it once with datasets B of
increasing size from 50M to 450M, in steps of 100M. All datasets have a uniform distribution.
Figure 3.8 shows the total execution time broken down into preprocessing time, 1/0 time,
and in-memory join time. In this experiment GIPSY outperforms all other algorithms and its
improvement over PBSM, the fastest state-of-the-art approach, is between 16% - 25%.

The performance of state-of-the-art data-oriented approaches, i.e., R-tree based approaches,
is degraded due to overlap. In the case of R-TREE, the overlap problem is more evident and
affects primarily the in-memory join (it also affects 1/0, but this is not obvious because the OS
caches disk pages). The R-TREE approach is affected by overlap in the two R-Trees. Overlap
at higher levels in each tree means that more R-Tree nodes overlap between the trees and
consequently their children are compared pairwise, leading to a considerably bigger number
of comparisons which ultimately results in an increase of the in-memory join time.

INL essentially repeatedly executes a small range query on the R-Tree for every elementin A.
The in-memory join time hence does not grow considerably with increasing overlap, because
every inner node of the R-Tree retrieved during query execution only has to be compared
against the range query (unlike R-TREE where due to overlap all children of overlapping nodes
need to be compared with each other). Overlap in INL, however, means that more nodes and
thus disk pages need to be read (in a tree without overlap, a range query can be executed by
accessing as many nodes as the tree is high).

37

Chapter 3. Joining Spatial Datasets with Contrasting Density

Figure 3.9 Number of 1/0s as a result of one spatial join, combining columns.

Figure 3.10 Total execution time as a result of repeated join, combining columns.

PBSM has a low cost partitioning strategy since it is based on simple, space-oriented par-
titioning. Likewise, as opposed to data-oriented partitioning, it does not invest additional
processing resources to ensure sequential access to data during the join phase. Overall, PBSM
is the fastest state-of-the-art approach, but being based on a space-oriented partitioning, it
has to retrieve most of the data. In addition, disk accesses to read the partitions are mostly
slow random reads. The 1/0 time of PBSM consequently makes up most of the execution time.

In comparison to other algorithms, GIPSY spends signi cantly less time on the in-memory
join (i.e., performing comparisons) and 1/0 operations. On average, 60% of the total execution
time is spent on the preprocessing step.

In the remaining experiments we primarily compare GIPSY with PBSM, the fastest state-of-the-
art approach. As the previous experiments show, the main problem of PBSM is unnecessary
data retrieval when joining datasets of different densities. In the next experiment, we therefore
measure the unique disk pages read during the spatial join when we increase the density of the
dense dataset B. As Figure 3.9 shows, with increasing density of B, also the 1/0 ratio between
PBSM and GIPSY increases. For instance, in the case of joining uniform datasets of 800K with

38

3.4. Experimental Evaluation

Figure 3.11 Total execution time as a result of one spatial join, building mesocircuits.

450M elements, PBSM needs to read 2.71x more unique disk pages than GIPSY. GIPSY reduces
the data read from disk by using ne-grain data-oriented partitioning.

Repeated Joins. In the next experiment we join 10 different sparse datasets of 800K elements
with the same dense dataset containing 450M spatial elements. The total execution time is the
sum of all spatial joins and includes the time for building the index on the dense dataset B
just once (created during the rst spatial join and reused thereafter). As Figure 3.10 shows, for
repeated joins, after 10 spatial joins, GIPSY already outperforms PBSM by a factor of 2.62.

3.4.4 Building Mesocircuits

One-time Join. Inspired by the building mesocircuits use case described in Section 3.2.2, in
this set of experiments we join one (or several) very sparse datasets with a dense dataset. We
use the same experimental methodology as in the previous set of experiments. However, we
decrease the size of the sparse dataset by a factor of 800, i.e., it contains 10K spatial elements.

The results of these experiments are shown in Figure 3.11. Compared to the previous exper-
iments, only INL differs in relative performance, as its execution is slower compared to the
R-TREE. The relative performance of the R-Tree-based approaches, however, has improved
and if we take into account index reuse, i.e., we do not consider the preprocessing time, PBSM
is now slower than the rest of the algorithms.

R-Tree-based approaches perform better than PBSM (in the case of index reuse) because they
are essentially a compromise between (data-oriented) ne-grain partitioning and the overlap
problem. Given that one of the datasets is signi cantly sparser, R-TREE is not affected by
the overlap to the same extent. Similarly, the number of R-Tree traversals decreases for INL.

39

Chapter 3. Joining Spatial Datasets with Contrasting Density

Figure 3.12 Number of 1/0s (logscale) as a result of one spatial join, building mesocircuits.

Figure 3.13 Total execution time as a result of repeated join, building mesocircuits.

Consequently, the in-memory join phase is signi cantly reduced for R-TREE and INL. PBSM,
on the other hand, still needs to retrieve all of the dense dataset. Figure 3.12 illustrates the
total number of 1/0 operations (logscale) executed during the join process of PBSM and GIPSY
(without considering the preprocessing phase).

Based on the total execution time, GIPSY achieves the best results with an average improve-
ment of 2x compared to R-TREE. However, during a single spatial join GIPSY spends on
average 90% of total execution time in the preprocessing phase building the index. Not consid-
ering the preproceessing phase, i.e., if the index is reused for repeated joins, GIPSY achieves a
total speedup up to 17.95x compared to R-TREE.

Repeated Joins. The experimental results comparing GIPSY with R-TREE when repeatedly
joining datasets are shown in Figure 3.13. We join 10 different sparse datasets, each containing
10K spatial elements with one dense dataset of 450M elements. The total execution time is
the sum of all previous spatial joins and includes the time necessary for the preprocessing
step only once. When joining all 10 sparse datasets with the dense dataset, GIPSY attains a
speedup compared to the synchronized R-Tree traversal of 6.78x. The total execution time, in
the case of GIPSY, appears to bea atline, as it increases minimally with each spatial join.

40

3.4. Experimental Evaluation

Figure 3.14 Total execution time as a result of one spatial join for neuroscience datasets,
combining columns (left) and building mesocircuits (right).

Figure 3.15 Total execution time as a result of repeated join for neuroscience datasets,
combining columns (left) and building mesocircuits (right).

3.4.5 Neuroscience Datasets

As a litmus test and to demonstrate the usefulness of GIPSY for the neuroscientists, we also
test its performance on neuroscience datasets. We use a similar methodology as before and
set the size of sparse dataset A to 450K spatial elements (dendrites) for the combining columns
use case and to 10K for the building mesocircuits use case. The dense dataset B is increased
from 50M to 250M (axons).

Figure 3.14 shows the results of one-time spatial join for both use cases. The R-TREE approach
is signi cantly slower than in the previous experiments, as data distribution increases the
overlap in both R-Trees. We additionally measure the number of inner node 1/0s and notice
asigni cantincrease compared to the spatial join performed on the uniform datasets. The
increase in the inner node 1/0s goes from 2.34x (for the dataset of 50M elements) to 3.27x (for
the dataset of 250M elements), which is a good indication of increased overlap.

In the case of the repeated spatial join, we compare GISPY to the second best approaches, i.e.,
PBSM (for the combining columns use case) and to INL (for the mesocircuit use case). The
results in Figure 3.15 show a speedup of 3.5x compared to PBSM, and of 2x compared to INL.

41

Chapter 3. Joining Spatial Datasets with Contrasting Density

Figure 3.16 Impact of sort strategies (left) and data distributions (right).

3.4.6 GIPSY Sensitivity Analysis

In the following we analyze the impact of the sorting strategy, page size and data distribution
on the performance of GIPSY.

Impact of Visiting Order. In the walking phase, GIPSY walks through the dense dataset
directed by the elements of the sparse dataset. The order in which the elements of the sparse
dataset are visited should ensure that the overall distance is as small as possible. Otherwise,
the number of I/0s and comparisons can increase signi cantly.

In the following, we evaluate the impact of different visiting strategies on the performance of
GIPSY. We execute a spatial join between a sparse dataset with 800K spatial elements and a
dense dataset with 100M elements. Both datasets have uniform distributions. We compare
four different sort strategies on the sparse dataset: none (use dataset as it is), a nested loop sort,
X-axis sort and Hilbert sort. The X-axis sort sorts the elements based on their x-coordinate,
while the Hilbert sort sorts based on the Hilbert value [59] of the center of the element. The
nested loop sort compares all elements pairwise and visits them in the order of minimal
pairwise distance. In each step we exclude the elements for which we have already found the
minimum distance from further consideration.

The results of this experiment are shown in Figure 3.16, where we divide the total execution
time into sort and join time. Due to the long sort execution time, we exclude the nested loop
sort from the experiment. The time necessary to sort the sparse dataset in case of X-axis and
Hilbert sort is negligible. GIPSY’s performance is degraded by a factor of 4.8x when not using
any sort strategy and 2.4x when sorting on the x-dimension only. Finally, join based on Hilbert
sort has the best performance.

Impact of Data Distribution. In the following experiments we measure the impact of data
distribution on GIPSY by running the experiments from Section 3.4.3 on datasets with uniform,
clustered and Gaussian distribution. Figure 3.16 illustrates the spatial join time. To analyze
different stages in GIPSY, we breakdown its total execution time into: Seeding - time necessary
to obtain start point, Walking - walk time and Crawling - the crawling phase.

42

3.4. Experimental Evaluation

Figure 3.17 Spatial join time, varying the page size from 4KB to 64 KB.

The overall spatial join time does not vary signi cantly for the three different distributions.
GIPSY takes slightly more time for joining clustered data, followed by Gaussian and uniform
data. As Figure 3.16 shows, GIPSY spends signi cantly less time on the directed walk compared
to the crawling phase. This was the initial assumption for developing GIPSY - we rely on spatial
element proximity and ensure a walk as small as possible, by following a particular visiting
order. The crawling phase, on the other hand, depends heavily on the average number of
neighbors (the denser the dataset is, the more neighbors we have to examine). The time
needed to nd astart pointis insigni cantin all cases.

Impact of Page Size. To measure the impact of page size on GIPSY performance, we execute
the experiments from Section 3.4.3 (combining columns use case), varying the size of page
from 4KB to 64KB.

Figure 3.17 shows the result of the experiment. GIPSY’s join time is divided into: walking 1/0 -
time spent on retrieving neighborhood information in the walking phase, walking - walking
related operations (e.g., distance calculations), crawling 1/0 - time spent on I/O operations
during crawling phase, and crawling - crawling related operations (e.g., overlap detection).

A change in the page size is a trade-off. Increasing the page size, on the one hand, leads
to fewer neighbors per summary record and fewer random reads. At the same time, one
node contains more data, i.e., more summary records that need to be examined. Because the
element pages contain more elements, their page/partitions MBRs increase, and consequently
we have more unnecessary comparisons. The results of the join between datasets with 800K
and 450M elements for page sizes of 4KB and 64KB con rm our expectation: when using the
bigger page size, 1/0 time decreases, while the time spent on crawling and walking related
operations increases. In our experiments, the best performance for dense datasets is obtained
for a page size of 32KB.

43

Chapter 3. Joining Spatial Datasets with Contrasting Density

3.5 Conclusions

In this chapter we identify the problem of joining datasets of contrasting density, i.e., joining
several sparse datasets with a dense dataset. State-of-the-art approaches do not join these
datasets ef ciently. Data-oriented approaches suffer from overlap resulting in excessive reads
from disk and unnecessary comparisons. Space-oriented approaches cannot partition the
datasets ne-grained enough and typically the entire dataset has to be read from disk, although
only a small part is necessary.

The novelty of GIPSY, the approach we develop to tackle the challenge, lies in the ef cient
combination of crawling with data-oriented partitioning to join spatial datasets. GIPSY indexes
the dense dataset with a data-oriented approach and avoids overlap through crawling: the
sparse datasets are used to crawl through the index of the dense dataset. Only small parts of
the dense dataset needed for the join are retrieved.

In our experiments we show the effectiveness of GIPSY, as it outperforms state-of-the-art
disk-based spatial join algorithms between a factor of 2 & 18, when not considering the cost
of preprocessing. Itis particularly ef cient when joining a dense dataset with several sparse
datasets. We have tested GIPSY on neuroscience, but also on synthetic datasets, demonstrating
that it can be ef ciently used on spatial datasets from other domains/applications as well.

44

%4 Adapting to Spatial Datasets Charac-
teristics

Spatial joins are becoming increasingly ubiquitous in many applications, particularly in the
scienti ¢ domain. While several approaches have been proposed for joining spatial datasets,
each of them has a strength for a particular type of density ratio among the joined datasets.
More generally, no single proposed method can ef ciently join two spatial datasets in a robust
manner with respect to their data distributions. Some approaches do well for datasets with
contrasting densities while others do better with similar densities. None of them does well
when the datasets have locally divergent data distributions.

In this chapter we present TRANSFORMERS?, an ef cient and robust spatial join approach
that is indifferent to such variations of distribution among the joined data. TRANSFORMERS
achieves this feat by departing from the state-of-the-art through adapting the join strategy
and data layout to local density variations among the joined data. It employs a join method
based on data-oriented partitioning when joining areas of substantially different local densi-
ties, whereas it uses big partitions (as in space-oriented partitioning) when the densities are
similar, while seamlessly switching among these two strategies at runtime. We experimentally
demonstrate that TRANSFORMERS outperforms state-of-the-art approaches by a factor of
between 2 and 8.

4.1 Introduction

In many different applications, the ef cient execution of spatial joins becomes increasingly
important. In scienti ¢ applications, for example, spatial joins are used to determine the
location of synapses in brain models [82], in medical imaging to determine proximity of cells
and in geographical information systems spatial joins detect collisions between geographical
features like houses, roads, etc.

Given the importance of the application, several methods have been developed to perform
disk-based spatial joins [18, 98]. Methods developed in the past can ef ciently join two or more

1 TRANSFORMERS originally appeared in [100].

45

Chapter 4. Adapting to Spatial Datasets Characteristics

10

—+—PSBM 1x

Q

§ GIPSY

uy RTREE

2 = . Targeted

Q

3 1

_Co, 10x 100 1000x
X

(]

E \.\ A X

c

S e = Sre———a

0.1

#Elements irdatasets
Dataset A
[J >
200K 100M 200M
Dataset B

} |
200M 100M 200K

Figure 4.1 Join time for datasets with variable relative density.

disk-based spatial datasets of uniform distribution of element locations. They are, however,
inadequate when joining two spatial datasets, each with a skewed distribution of element
location [99]. Formally, the goal is to develop a robust and ef cient method to spatially join
two disk-based datasets, each with a non-uniform distribution of element location, i.e., with
locally varying densities. More precisely, each dataset D can have areas d; with a considerable
difference in density such that 8i, j withi & j jd;jj = = jdjj or jd;j " jdjj along with areas of
similar density, jdjj ... jdjj. When joining such datasets A and B we have to ef ciently join
areas a; 2 A and b; 2 B with similar spatial extent and location regardless of their density.

As we show with an experiment in Figure 4.1, no previously proposed approach achieves to
join all combinations of density ratios of a; and bj, e.g., jajj ... jbij, jajj = = jbijjorjbij = = jaij,
in a robust manner. In this experiment we join different combinations of datasets A and B and
measure the join time. More precisely, we steadily increase the density of dataset A (starting
from 200K spatial elements) and decrease it for B (starting from 200M) and measure the
execution time for joining each combination. The two datasets represent areas with different
or similar density. The numbers above the curve indicate the ratio of density between the
datasets; a more detailed explanation is given in Section 4.2.1.

As the experimental results in Figure 4.1 show, none of the existing approaches performs best
in every situation. Approaches based on space-oriented partitioning (e.g., PBSM [98]) do well
when joining datasets of similar density while data-oriented partitioning approaches (e.g.,
based on the R-Tree [18, 24] and particularly GIPSY [99] (Chapter 3)) are more ef cient when
joining datasets with contrasting density. None of the existing approaches joins the datasets
(or areas) with robust performance across different density ratios.

In this chapter we thus introduce TRANSFORMERS, a novel disk-based join approach that
handles this robustness problem with respect to local density variations and targets to achieve
performance as is shown in Figure 4.1 (Targeted). For all areas aj 2 A and b; 2 B, TRANSFORM-
ERS decides locally which area is dense and which is sparse and adapts the join strategy as

46

4.2. Motivation

well as the data layout accordingly. With its adaptive join strategy, TRANSFORMERS achieves
amore robust join performance across different density ratios and outperforms previous work
by a factor of between 2 and 8.

Our contributions are as follows:

We show that static strategies in the join phase lead to sub-optimal, non-robust perfor-
mance when joining datasets with non-uniform distributions.

We develop TRANSFORMERS, a novel approach that detects local variations in distribu-
tions and adapts its strategy and the data layout on the y accordingly.

We demonstrate robustness as well as substantial performance improvements achieved
with TRANSFORMERS on scienti ¢ and synthetic datasets.

The remainder of this chapter is organized as follows. In Section 4.2 we motivate TRANSFORM-
ERS with an initial set of measurements con rming our assumptions. We give an overview
of our approach in Section 4.3 and then discuss in detail the indexing process in Section 4.4,
the join process in Section 4.5 as well as transformations in Section 4.6. In Section 4.7 we
demonstrate the performance of TRANSFORMERS and draw conclusions in Section 4.8.

4.2 Motivation

Spatial joins have become a crucial operation across different scienti ¢ and business applica-
tions. Frequently the two datasets to be joined have a considerably different density and data
distribution. For example, while dataset A has a uniform distribution and density, the join
performance may be affected by the local variation in distribution and density of dataset B.

In Figure 4.2 we illustrate several examples of local variations in distribution and density.
Uniform (left) illustrates two datasets with similar distribution and density throughout the
area they cover. In case of contrasting density (middle) both datasets have similar distribution,
however, skew is introduced through the different number of elements in the datasets. The
datasets in contrasting distribution (right), on the other hand, have a similar number of ele-
ments but a different distribution. In the latter two cases, contrasting density and contrasting
distribution, a join between two datasets will join areas with considerably different densities.
As we illustrate with the following experiments, skew due to these variations in density leads
to signi cant overhead, i.e., unnecessary processing.

4.2.1 Motivating Experiment

We illustrate the shortcoming of the state of the art with experiments where we join datasets
with contrasting densities. To achieve an approximation of joining two disk-based datasets
that differ signi cantly in local densities, we join nine pairs of datasets with uniform data
distribution whose density ratio (jaj/jbj) varies between 102 and 1000 (numbers shown above
the curves in Figure 4.1). To obtain nine pairs of datasets with contrasting densities, we

47

Chapter 4. Adapting to Spatial Datasets Characteristics

k¥ 2

L
malln| W
=..‘ U I

e

uniform contrastingdensity contrasting distribution

Figure 4.2 Illlustration of variations in distribution and density. Each gure shows two
datasets, one with grey elements and the other with black ones.

increase the density of one dataset (starting from 200K elements) and decrease it for the other

(starting from 200M) in consecutive steps.

We measure the execution time (without taking into account the indexing phase) for the join
for the fastest and most broadly used disk-based spatial join methods, i.e., PBSM [98], the
Synchronized R-Tree (R-Tree [18]) and GIPSY [99]. We use the best con guration for each
approach, e.g., the number of partitions/tiles for PBSM, page size and fanout for the R-Tree.

The results are shown in Figure 4.1.

When joining a sparse area aj 2 A with a dense area b; 2 B, only a very small subset needs to
be retrieved from b; (and tested against a;). Approaches based on space-oriented partitioning
like PBSM [98], however, read considerably more data than is required from b; and thus also
require more comparisons. Due to coarse-grained partitioning inherent in these methods,
almost all of bj is read for the join, leading to excessive disk accesses and comparisons (points
1000x, 100x, 50x). Space-oriented partitioning methods, on the other hand, are ef cientwhen

joining areas of similar density (point 1x).

Data-oriented partitioning approaches (based on the R-Tree [43] or others, e.g., the synchro-
nized R-Tree [18]) use avery ne-grained partitioning that enables them to retrieve data very
selectively. As Figure 4.1 shows, doing so proves ef cient on contrasting densities but their
inherent problem of structural overlap leads them to read and test more data than necessary,
making them comparatively slow when joining similar densities. GIPSY (Chapter 3) minimizes
the impact of overlap by using the sparse dataset to selectively retrieve the data needed from
the dense dataset, relying on connectivity information instead of a hierarchical tree traversal.
By doing so, GIPSY ef ciently executes a join between a sparse and a dense dataset; however, it
isinef cientwhen joining datasets of similar density. The problem of GIPSY is that it, like other

approaches, uses a static strategy and does not consider the characteristics of the datasets.

48

4.3. TRANSFORMERS Overview

Figure 4.3 Neurocience data: axons (left) and dendrites (right).

4.2.2 Motivating Application

To better understand the brain and develop new drugs for brain related diseases, the scientists
in the Human Brain Project [82] build small-scale spatial models of the rat brain for brain
simulations. The spatial models they design are based on millions of three-dimensional
cylinders where several thousand cylinders together reconstruct the spatial shape of one
neuron. To determine the locations of synapses they perform a disk-based spatial join between
two types of neurons (or their corresponding cylinders), axons and dendrites. Wherever an
axon intersects with a dendrite, a synapse is placed [66]. The amounts of data involved in the
join make it necessary for the join to be based on disk.

Figure 4.3 shows the two datasets the scientists join. Axon cylinders represent 60% and
dendrites 40% of the combined dataset of 250 million cylinders that model the neurons. As
the illustration shows, the datasets differ signi cantly in data distribution: they have similar
spatial extent but the axons are predominantly located at the top of the dataset. When joining
theses datasets, areas of contrasting as well as similar density need to be joined ef ciently,
making an adaptive strategy key.

4.3 TRANSFORMERS Overview

As we demonstrate with the motivation experiment, each existing approach is ef cientin
joining a particular combination of dataset densities but none can join all combinations
of data densities ef ciently. The reason lies in their design: current approaches either use
data-oriented partitioning (ef cient for contrasting densities) or space-oriented partitioning
(ef cient for similar densities) but cannot take into account the variations of distributions and
cannot adapt their join strategy.

We consequently design and use at the core of TRANSFORMERS adaptive exploration that
robustly adapts the join strategy as well as the data layout at runtime. The join strategy is
adapted by using the locally sparser data to guide the join, i.e., TRANSFORMERS uses the
locally sparser data to selectively retrieve from the locally denser data only the elements
needed, thereby ensuring that as little data as possible is retrieved and that as few elements
as possible are tested for intersection. In case dataset A is locally sparser than dataset B,

49

Chapter 4. Adapting to Spatial Datasets Characteristics

TRANSFORMERS will use the area in A to guide the join. If the roles are switched, i.e., the area
in B is locally sparser, it uses B as a guide. Additionally, if the contrast in density is substantial,
TRANSFORMERS splits a locally sparse area in A into ner-grained units so that each unit
only needs to be joined with a small, ne-grained subset of the area in the locally denser
dataset. Adapting the join strategy to the local characteristics of both datasets ensures a robust
performance.

More precisely, to perform a join given two indexed datasets, TRANSFORMERS randomly picks
one dataset A and uses it as the guide while the other is used as the follower. The areasa 2 A
of the guide are visited one after the other while the connectivity information in the follower is
used to navigate through it and to move to the corresponding location in the follower. The
area a used for navigation is called pivot. Once TRANSFORMERS arrives at the location of a
pivot a, it uses crawling based on the connectivity information [97, 127] to detect all spatial
elements of the follower that intersect with pivot a, and then continues exploration towards a
neighboring area in the guide dataset.

TRANSFORMERS adapts its strategy at runtime by switching the guide and follower: if a very
sparse area is joined with a dense one, it uses the sparse area as a guide and the dense dataset
as follower. Switching the roles of the datasets at runtime ensures that we can always use
the locally sparser dataset to retrieve as little data as possible from the locally denser dataset,
thereby robustly curbing the amount of data read and the number of comparisons.

Crucially, TRANSFORMERS also adapts the data layout on the vy: if the areas compared
from both datasets have a very different number of elements, it adapts the data structure
and splits the sparse pivot area into ner-grained units and joins them individually with the
dense follower, retrieving only exactly the data needed. If, on the other hand, the two datasets’
density is locally similar, it groups spatial elements into larger groups and joins them as a
batch, thereby curbing the overhead that would result from very ne-grained partitioning,
i.e., repetitive reads and comparisons. Adapting the data layout reduces the data read (and
unnecessary comparisons) and thereby levels uctuations in the join time resulting in a more
robust execution time of the join.

While TRANSFORMERS borrows elements from previous approaches, i.e., data-oriented
partitioning from the R-Tree, crawling from GIPSY and joining big partitions from space-
oriented partitioning approaches, the departure from the state of the art lies in its ability to
adapt (a) its strategy, and (b) the data layout on the vy, thereby accomplishing robustness as
well as substantially improved performance.

Figure 4.4 illustrates how TRANSFORMERS adapts strategy and data structures to the charac-
teristics of the datasets while performing the join; it starts with one of the datasets and uses
the connectivity information to move through the dataset. Once it arrives at the position of a
pivot where the follower is sparser than the guide, it switches their roles, so it joins the locally
sparse with the dense area (Transform 1 in Figure 4.4). When it detects areas of similar local
density in guide and follower it uses a coarse-grained layout (Transform 2 in Figure 4.4).

50

4.4. TRANSFORMERS Indexing

Figure 4.4 TRANSFORMERS adapts to dataset characteristics.

Clearly, instead of adapting the join strategy at runtime, we could also adapt the partitioning
of datasets A as well as B and use a static join strategy. The partitioning of dataset A, however,
depends on the partitioning of dataset B (and vice versa) and so the adapted partitioning
can only be used to join two speci c, predetermined datasets. Adapting the join strategy,
on the other hand, does not depend on a particular combination and therefore enables
TRANSFORMERS to reuse partitioned datasets, amortizing the overhead over several joins.

4.4 TRANSFORMERS Indexing

To enable the adaptive exploration TRANSFORMERS requires (a) both datasets to be par-
titioned and (b) connectivity information between partitions. To overcome the issues of
space-oriented partitioning, TRANSFORMERS rst uses ne grained data-oriented partition-
ing on both datasets. To enable the adaptive exploration, it further computes connectivity
information between partitions, i.e., it stores for each partition a list of adjacent partitions.

Partitioning. TRANSFORMERS uses a data-oriented partitioning approach similar to STR [70]
to partition the datasets. It rst sorts the dataset on the x-dimension of the element center
and partitions the elements along this dimension. All resulting partitions are then sorted
on the y-dimension and partitioned again. The resulting partitions are sorted on the z-axis,
partitioned and each partition is stored on a disk page.

The aforementioned approach for data-oriented partitioning preserves spatial locality, i.e.,
spatially close elements are stored on the same disk page. Likewise, by choosing the size of
the partitions at every step of the partitioning process, we can precisely determine the size of
the nal partitions. This (a) ensures that a partition can ton a disk page (4K or a multiple
thereof) and (b) gives us a parameter to control the granularity of the partitioning.

51

Chapter 4. Adapting to Spatial Datasets Characteristics

Figure 4.5 The data structures: space node, space descriptor and space unit.

Data Organization. TRANSFORMERS produces two types of partitions; it rst applies the
partitioning algorithm on spatial elements producing space units and second, it groups the
space units into space nodes using the same partitioning algorithm. The indexing phase thus
produces a three-level hierarchical organization where level zero consists of space nodes,
level one corresponds to the space units and level two to the individual spatial elements as
illustrated in Figure 4.5 (left).

TRANSFORMERS stores the spatial elements on disk as space units: elements that belong to
the same space unit are stored on the same disk page. It also stores meta information about
each space unit in a space descriptor. A space descriptor summarizes a space unitsu, i.e., it
stores a pointer to the corresponding disk page, su’s partition MBB and su's page MBB. The
page MBB is the minimum bounding box containing all elements in a space unit (and thus on
a disk page), whereas the partition MBB encloses the partition. Storing both, the page and
the partition MBB, is necessary to ensure the correctness of the join process. Without the
partition MBB there may be gaps between two neighboring pages MBBs (and thus the space
units) in one dataset and TRANSFORMERS cannot navigate between them to explore and join
the pages with the pages of the second dataset.

Finally, we group the neighboring space unit descriptors into space nodes that consequently
store metadata information about the groups of partitions. A space node is also described
with a space descriptor, i.e., the node’s MBB that covers all its partitions and the neighbors of a
space node. Figure 4.5 illustrates the data structures.

Connectivity. TRANSFORMERS computes the connectivity information by performing a
spatial self-join on the space node MBBs, resulting in a list of all overlapping or adjacent nodes
per space node. Any spatial join approach can be used for the self join. We use PBSM primarily
because of its ef ciency in the building phase. To decrease the amount of metadata necessary
to be stored, a space unit inherits this neighborhood information from its parent space node.

52

4.5. TRANSFORMERS Join

Algorithm 4: Adaptive Walk Algorithm

Input: startFr: start descriptor in follower dataset
pivot: space node/unit/element

Output: clFr: closest space descriptor to pivot

clFr =startFr
enqueue startFr into f queue

while fqueue® ; do

dequeue follower record fr from f queue
dist “ distance(fr.partitionMBB, pivot)

ifdist 7 intersection then
| returnfr

end

ifdist ~ distance(clFr.partitionMBB,pivot) then
| clFr="fr

end
if fqueue ™ ; AND !isMoving Away(clFr) then
| enqueue clFr’s neighbors that have not been checked in f queue
end
end
return nolntersection

4.5 TRANSFORMERS Join

Given two indexed datasets, TRANSFORMERS starts an adaptive exploration to detect inter-
secting pairs of spatial elements. It visits the elements of the locally sparser guide dataset, one
after the other, navigating or walking between them using the connectivity information in the
locally denser follower dataset. Once it arrives at the location of a particular guide element
p, it crawls the neighborhood area to detect all elements of the follower that intersect with p
using a in-memory join. Depending on the data layout used at this stage, an element p can
represent either a space node, a space unit or a spatial element. TRANSFORMERS adjusts the
data layout and the roles before the crawling step, to zoom into the area of interest.

Adaptive Walk. TRANSFORMERS rst randomly assigns the roles of guide and follower to the
datasets and then chooses a rst pivot element, p, in the guide dataset. To determine what
elements of the follower intersect with p, it needsto nd a start space descriptor of the follower
dataset as close as possible to p. It then uses the connectivity information to explore, i.e.,
recursively read all neighboring space descriptors and pick the one closest to p. Exploration is
repeated until a space descriptor intersecting with p is found. If no neighbor descriptor closer
to p can be found (the adaptive walk is moving away from p) and the partition MBB of the
closest descriptors still does not intersect with p, then p does not intersect with any element
of follower. The process is illustrated in Algorithm 4.

53

Chapter 4. Adapting to Spatial Datasets Characteristics

To initially nd a start space descriptor as close as possible to p (to reduce the exploration
overhead), we index the Hilbert value of the center point of all space nodes in a dataset with a
B+-Tree. We use B+-Trees instead of an R-Tree (or similar indexes) to avoid the issue of overlap
and also to speed up building the index. To nd the descriptor, TRANSFORMERS formulates
arange query based on the Hilbert values of the centers of two neighboring space nodes; it
only uses the B+-Tree to nd the starting point of the exploration. Alternatively, the rst space
node of the follower dataset can be used.

Adaptive Crawling. The crawl phase starts once an intersection record is found, i.e., a follower
space descriptor whose partition MBB intersects with p. The goal of the crawl phase is
to provide a candidate set for the nal phase of the adaptive exploration process, that is,
retrieving and testing actual spatial elements for intersection. Starting with the intersection
record, similarly to the previous walk phase, the crawl phase recursively visits all neighbors
until no more elements intersecting with p can be found. More precisely, it starts with the
intersection record and recursively retrieves all linked neighbor records. If a space descriptor’s
page MBB intersects with p, then its space unit page is included in the candidate set. On the
other hand, the neighbors of a space descriptor are visited, if and only if, not only its page
MBB, but also its partition MBB intersects with p. The crawl phase thus ends when no more
crawl records with a partition MBB intersecting with p can be found. Then TRANSFORMERS
moves to the next element in the guide dataset.

In-memory Join. Once TRANSFORMERS processes an entire space node, it joins the detected
follower’s candidate set with the pivots that belong to the processed space node. It partitions
space in a uniform grid and assigns the elements, belonging to the pivots, to the cells they
overlap with. Finally, it probes the grid with the elements from the candidate set to nd pairs
of intersecting elements [129]. When TRANSFORMERS uses the node level as data layout
it additionally Iters elements before the in-memory join. It joins the page MBBs from the
guide’s and follower’s candidate set to Iter out space units that do not intersect with each
other, thereby reducing the data read and compared.

The pseudocode of the adaptive exploration is shown in Algorithm 5. TRANSFORMERS
is nished only once all the elements from one dataset are checked for intersection. The
condition isChecked varies depending on the current level, i.e., for the node level we check
if one dataset is fully traversed and for the unit/object level if all the elements belonging to
the enclosing node/unit are checked for intersection. If at the end of the initial pass both
datasets have unexamined elements the adaptive exploration process restarts taking as a
guide the dataset with fewer unexamined elements. The process continues until one dataset
is fully traversed, guaranteeing that all intersections are found. TRANSFORMERS collects
information about all elements in the dataset during the indexing phase (space node ids).
It reuses this information as a to-do list during the join process to track checked elements.
Depending on the current layout, we mark a space node as checked if the node itself is checked
for intersection or all elements that constitute the node are checked.

54

4.5. TRANSFORMERS Join

Algorithm 5: Adaptive Exploration Algorithm
Input: level: current data layout
Output: intersections: result pairs

or candidateSet: input for the batch join
Data: p: space node/unit/element

while lisChecked() do

p ~ loadCurrentPivot()
intersect — adaptiveWalk(p,startRecord)

ifintersect — nolntersection then
| continue

end

switch applyTransformation(p) do

case NoTransformation do

| adaptiveCrawling(intersect,candidateSet)
case RoleTransformation do

| switchGuideFollower() &continue

case LayoutTransformation do
switchLayout()

adaptiveExploration(level++)

end

iflevel 7~ Node then
join(p,candidateSet,intersections)

removeFromToDolList(p)
end
end
returnintersections/candidateSet

Figure 4.6 illustrates how TRANSFORMERS uses the elements of the guide dataset to direct
walking in the follower (for simplicity only space nodes and units are used). In this example,
both datasets are grouped into partitions of three elements. TRANSFORMERS initially uses a
coarse-grained layout (space nodes) and randomly chooses guide and follower dataset, e.g., A
and B respectively. In adaptiveWalk it immediately detects an intersection between al and b1
and thus, before checking the actual elements for intersection and performing unnecessary
reads and comparisons, it checks if it is necessary to applyTransformation. Considering that
area bl is signi cantly sparser compared to the same area in dataset A, TRANSFORMERS
switches roles and adjusts the data layout: dataset B becomes the guide and space node b1 is
split into space units, Itering out six partitions from dataset A. Once adaptiveCrawling and
join are done, TRANSFORMERS resets the data layout to space node, keeps the dataset B as

guide and uses b2 as next pivot, leading to additional transformations.

55

Chapter 4. Adapting to Spatial Datasets Characteristics

Figure 4.6 Joining datasets A and B using adaptive exploration.

4.6 Transformations

Crucially, when TRANSFORMERS moves to a new pivot p in the guide dataset, it adapts its
strategy by adjusting the roles of guide and follower and adapts the layout.

4.6.1 Role Transformation

When joining two datasets with skewed distribution the join approach needs to adapt to the
data. The roles of pivot, guide and follower de ne the con guration of TRANSFORMERS; a
proper combination of roles accelerates the join and makes its performance more robust
compared to static approaches.

TRANSFORMERS thus adapts the roles of pivot, guide and follower at runtime based on the two
datasets’ density ratio. Considering that both datasets rely on the same indexing strategy and
thus have the same number of elements in the corresponding space units/nodes, a signi cant
difference in volume of space units/nodes indicates that one area is sparser than the other.
TRANSFORMERS thus uses the volumes enclosed by the elements (space node/unit) of the
guide V4 and follower V¢ datasets, at the location of the pivot in both datasets, to compute the
ratio Vy/Vs. If the ratio is smaller than a threshold t it rst switches the roles, i.e., the guide
becomes the follower and the follower the guide, and then also changes the pivot (picks the
element in the new guide closest to the old pivot). By adapting the roles, TRANSFORMERS
ensures that it can always use the sparser dataset as guide and thus only retrieves the data
needed from the denser dataset. This decision is followed by data layout transformation.

56

4.6. Transformations

4.6.2 DatalLayout Transformation

TRANSFORMERS also adapts the data layout at runtime to further reduce data read and
comparisons performed. It initially designates a space node as the rst pivot, i.e., it uses a
coarse-grained data layout in both datasets. During the join process it may split the space
node into ner-grained data structures, as a coarse-grained data layout is not a good strategy
for adaptive exploration when joining areas of divergent densities. That is, in case the pivot
is sparser than the corresponding area in the follower, it moves the pivot down to a level of
granularity which allows for better Itering in both datasets. At runtime, TRANSFORMERS
tests the ratio V4 /V; between the datasets and changes the data layout if it is above threshold
t. This decision is potentially preceded by a role switch between a guide and follower dataset if
we detect a locally sparser area in the follower.

TRANSFORMERS moves seamlessly between three data layouts, prede ned/produced during
the indexing phase, that correspond to different levels of hierarchy as shown in Figure 4.7. It
initially uses a coarse-grained data layout in both datasets and therefore performs adaptive
exploration on level 0. In case of local density difference, it moves to a ner granularity by
splitting space nodes into space units and thus performs adaptive exploration on level 1, in
both datasets. Furthermore, if it detects substantial local density difference on a space unit
level, it switches to the nest-grained data layout: it splits a space unit into its spatial elements,
thus using a spatial element as pivot (level 2) while using the space unit as a level of granularity
for the follower (level 1). TRANSFORMERS does not split the follower to object granularity as
keeping track of connectivity information at this level causes signi cant overhead. Crucial for
the data layout transformation is to transform pivot to ner granularity. We also transform the
follower, when possible, to allow for better data Itering and skew detection. TRANSFORMERS
decides what the data structure element e is, i.e., space node, space unit or element, based on
the pivot. The same data structure is used until the end of the exploration phase, i.e., until a
new pivot is chosen.

Figure 4.7 The hierarchical organization of TRANSFORMERS.

The number of levels TRANSFORMERS uses and their granularity is primarily driven by its
design for use on disk. To optimize access on disk, we align data structures for disk and ensure
they are page-aligned. Two levels are given: Level 2 is given by the single elements which
cannot be further split as they are the smallest spatial primitive used. A second level is de ned
by the actual storage structure on disk: to optimize access to disk, we pack as many elements

57

Chapter 4. Adapting to Spatial Datasets Characteristics

into a space unitas can ton adisk page giving us level 1. Finally, we add a third level (level
0) that summarizes several space units on level 1 into space nodes. Level 0 is again designed
page aligned, i.e., as many level 1 space units as can be summarized and stored on a disk page
are combined into level 0 nodes.

TRANSFORMERS can introduce more levels between the existing ones or use more levels
to recursively summarize level 0 (e.g., level -1 etc.). The former, introducing levels between
existing ones, however, is inef cient as the resulting data structures would no longer be page-
aligned, therefore retrieving unnecessary data (or half empty pages). Recursively summarizing
level 0 leads to space nodes on higher levels which have a considerable spatial extent that
soon makes the spatial extent of higher levels nodes indistinguishable from space-oriented
partitioning (thereby also inheriting the same performance issues).

Figure 4.8 Role and Data layout transformation.

Figure 4.8 illustrates the result of the partitioning where all space nodes contain two space
units. For the sake of simplicity we do not illustrate spatial elements. Dataset A represents a
densely populated area that ts 12 space nodes in the same space while B is sparsely populated
containing one space node. According to the default adaptive exploration strategy, the space
node al will be used as a pivot to check the corresponding area (space node bl) of the dataset
B. Without data layout transformation, the next pivot would be a2 and eventually we would
load and test all space units/elements in al-al2 against bl. This is unnecessary considering
that b1 overlaps only with al and al2. A better exploration strategy in this case is to execute
the exploration directed by the space units in the sparse area. TRANSFORMERS therefore
switches the roles and splits the pivot, moving to a ner granularity. It then uses dataset B as a
guide and a spatial unit as pivot. By doing so it decreases the number of disk accesses and
comparisons of spatial elements. At the same time, the overhead in the number of metadata

58

4.6. Transformations

comparisons is increased. Metadata comparisons, however, are not expensive as we will show
in the experiments.

4.6.3 Transformation Thresholds

Setting the thresholds for transformations is important for TRANSFORMERS’ performance. In
particular, we need to determine the thresholds for changing the data layout, from space node
to space unit and from space units to single spatial elements, and the threshold for the role
transformation.

Data Transformations Threshold. The rst threshold we need to determine is when TRANS-
FORMERS has to switch from a coarse-grained granularity (space node) to a ner-grained
granularity (space unit). As described in Section 4.6.1, we compare the corresponding volumes
in the guide and follower datasets and if the ratio exceeds a threshold ts, (V¢/Vs , tsy) we split
(transform data layouts). To determine the threshold ts,, we rstde ne the costand bene t
of the splitting operation.

Equation 4.1 de nes the additional cost as the adaptive exploration (splitting means more
elements to traverse), i.e., the number of new space units (nSU), after splitting a space node,
times the cost of traversal and exploration (T ge).

NSU £ T e (4.1)

The average bene t of splitting, on the other hand, is essentially time saved by reading fewer
space units (nSU £Tj,) and testing fewer spatial elements for intersection (NSU £nSO£Tomp,
where nSO is the number of spatial elements in a space unit). How many space units do not
need to be considered is dif cult to de ne a priori. The ratio Vy/V; corresponds to the
maximum number of space units that can be Itered out. We adjust this value using the
parameter c¢; = (0,1), determined at runtime based on the actual percentage of Itered
elements. Equation 4.2 formalizes the bene t of splitting.

Vv
V—9£cf.t£nsu £(Tio NSO £Tcomp) (4.2)
f

Clearly, if the bene texceeds the cost, then we should split the space (Equation 4.3). Equa-
tion 4.4 therefore de nes the corresponding threshold tsy. Tae, Tio and Tcomp are all parame-
ters that heavily depend on the hardware of the system and are therefore best determined at
runtime. TRANSFORMERS initially uses the default threshold values (Section 4.7.7) that are
updated after the rst transformation.
] Tae Vg
Vi 7 crit£(Tio NSOE£Tcomp) Vi

- tsu (4.3)

T
tsu ™ —= (4.4)
Ciit£(Tio NSOE£Tcomp)

59

Chapter 4. Adapting to Spatial Datasets Characteristics

Role Transformations Threshold. The data layout transformation is potentially preceded by
a role switch between the guide and the follower dataset if we detect that a locally sparser area
belongs to the follower dataset, that is:

Vi Vg _ 1 Vg . -1

V_g > su1\/_f°avv_f°tsuRolevtsuRole E (4.5)
Finest-grained Data Transformations Threshold. Once we are on a space unit level we can
additionally adapt the data layout if we detect extreme skew , i.e., a considerable V¢/V ratio.
Similarly to deciding whether to split a space node into a space unit, we need to decide if
we split a space unit into single spatial elements. The reasoning behind cost and bene tis
the same, except that we need to adjust the cost of adaptive exploration by using nSO (the
number of spatial elements in a space unit) instead of nSU, as illustrated in Equation 4.6 and
Equation 4.7.

NSO £Tae (4.6)

Vv
V—g£cf|t£nSU £(Tio NSO E£Tcomp) (4.7)
f

The threshold tg, for deciding on splitting further thus is the ratio between the new cost and
new bene t(Equation 4.8).

NSO £ Tge
NSU £c¢ it £(Tio NSOE£Tcomp)

(4.8)

tSO

4.7 Experimental Evaluation

In this section we describe the experimental setup & methodology, compare TRANSFORMERS

against state-of-the-art spatial join approaches and then analyze its performance. To study

the impact of different dataset characteristics on the performance of TRANSFORMERS we use

synthetic datasets where we control the number, size and distribution of the elements. As a
nal test we use neuroscience datasets to compare performance on a real workload.

4.7.1 Experimental Setup

Hardware. We run the experiments on Red Hat 6.3 machines equipped with 2 quad CPUs
AMD Opteron, 64-bit @ 2700 MHz, 32 GB RAM and 4 SAS disks of 300GB (10000 RPM) capacity
as storage. We use one of the disks for the experiments, i.e., no RAID con guration is used.

Software. All algorithms are implemented single-threaded in C++ for a fair comparison.

Setting. We experimentally compare TRANSFORMERS against the latest or most broadly used
spatial joins, i.e., the Partition Based Spatial Merged Join (PBSM), the Synchronized R-Tree
Traversal (R-TREE), and GIPSY. Like the approaches we compare it with and driven by our

60

4.7. Experimental Evaluation

motivating application, TRANSFORMERS is designed to join two static spatial datasets and
we do not compare it to self-joins or trajectory joins. PBSM and TRANSFORMERS use the
grid hash join [129] as the in-memory join algorithm, while R-TREE uses the plane sweep. R-
TREE is based on R-Trees bulkloaded using the STR approach [70]. While more sophisticated
approaches can outperform STR for certain dataset characteristics (e.g., TGS [34] and PR-
Tree [10]), they incur considerable overhead for partitioning the data. In practice STR balances
the overhead of partitioning the data and the size of MBBs (and thus the overlap) well.

Given the absence of heuristics, we set the con guration of all approaches other than TRANS-
FORMERS for the best performance identi ed with a parameter sweep. For PBSM the con gu-
rations with 102 (uniform and clustered distribution) and 20° (neuroscience data) partitions
balances the number of elements needed to be compared by the grid hash join algorithm and
the number of elements replicated, deduplicated, additionally written/read to/from disk best,
and therefore executes the fastest. The synchronized R-Tree approach (R-TREE) uses a fanout
of 135 (based on disk page size). The parameters of TRANSFORMERS are set according to
Section 4.6.3.

We set the disk page size to 8KB for all approaches. For all experiments we assume cold system
caches and we therefore clear OS caches and disk buffers before each experiment.

4.7.2 Experimental Methodology

Synthetic Datasets. We create synthetic datasets by distributing spatial boxes in a space of
1000 units in each dimension of a three-dimensional space. The length of each side of each box
is determined uniform randomly between 0 and 1. The spatial elements are distributed using
a particular data distribution. We use two basic data distributions - clustered and uniform.

We use three different types of clustered datasets which differ in number and size of the clusters.
For the DenseCluster we produce on average 700 densely populated clusters. UniformCluster
datasets contain 100 clusters whose elements are distributed in a wide area resulting in
a nearly uniform distribution while MassiveCluster datasets contain 5 densely populated
clusters each with a xed number (100K) of uniformly distributed elements. DenseCluster and
UniformCluster use a normal distribution (,, =500, =220) to determine the centers of the
clusters. Figure 4.9 illustrates the datasets.

The number of spatial elements in the datasets ranges between 100M and 1300M (50M-650M
per dataset) resulting in a size on disk between 4.6GB and 58.2GB.

Neuroscience Datasets. To evaluate TRANSFORMERS on real data we use a small part of the
rat brain model represented with 450 million cylinders as elements. We take from this model a
contiguous subset with a volume of 285 ,,m? and approximate the cylinders with minimum
bounding boxes. In the spatial join process axons are represented by one dataset, dendrites
by another and the detected intersections represent the synapses. The number of spatial

61

Chapter 4. Adapting to Spatial Datasets Characteristics

Figure 4.9 UniformCluster & DenseCluster (left) and MassiveCluster (right) dataset samples.

elements joined ranges between 100M to 500M (50M-250M per dataset). The size on disk
ranges from 5GB to 16GB.

Approach. Spatial joins typically involve two steps: Itering followed by re nement. The

Itering step nds pairs of spatial elements whose approximations (MBBs) intersect with
each other, while the re nement step detects the intersection between the actual shape of
the elements. Considering these two steps are independent in terms of their implementation
and the re nement step is application speci c, we focus on the Itering like most spatial join
methods [58] and like other evaluations we do not account for the re nement step.

We rst perform comparative analysis, i.e., we evaluate the performance of TRANSFORMERS
and compare it with other approaches (PBSM, R-TREE, GIPSY) in four sets of experiments.
More precisely, we rst expand the motivation experiment with TRANSFORMERS demonstrat-
ing its robustness on uniform datasets. We then evaluate the performance of spatial joins on
datasets with non-uniform data distributions, on uniform distributions and nally demon-
strate TRANSFORMERS bene ts on real neuroscience data. For the latter experiments we
measure the time to index, a breakdown of the join time and the major factor of the join time,
the number of intersection tests between spatial elements. We also perform the sensitivity
analyses of TRANSFORMERS, i,e., we analyse the impact of transformations and quantify the
overhead of adaptive exploration.

4.7.3 Robustness

This set of experiments illustrates TRANSFORMERS’ robustness with respect to varying relative
density. Figure 4.10 illustrates the performance of TRANSFORMERS when performing the
set of experiments from Section 4.2.1. The results of the join, excluding the index building
time, are shown in Figure 4.10. The values above the curves indicate the density ratio of the
datasets. TRANSFORMERS outperforms GIPSY when joining datasets with the highest density
ratio (point 1000x) with a speedup of 5, while its speedup over PBSM is 6.7 when joining two
dense datasets (point 1x). Its average speedup over the R-TREE is 10.

TRANSFORMERS combines different levels of granularity and switches to the nest level
only when the walking overhead is low. GIPSY’s performance, on the other hand, suffers
from the overhead of the directed walk on the spatial element level, which is its only level
of granularity. By being able to combine coarse (space node) and ne-grained granularity
(space unit), TRANSFORMERS compares less data than PBSM. The performance of PBSM

62

4.7. Experimental Evaluation

Figure 4.10 Joining datasets with variable relative density.

is also signi cantly affected by random reads: PBSM writes pages to disk arbitrarily while
indexing (when the number of elements buffered for a cell exceeds the disk page size) leading
to random reads when retrieving elements in a cell.

This experiment exemplary demonstrates the robustness of TRANSFORMERS: by adapting
to dataset characteristics at runtime (changing role and data layout), the join algorithm can
compensate for extremely contrasting dataset densities.

4.7.4 Non-uniform Data Distributions

In the following set of experiments we compare and analyse TRANSFORMERS’ performance on
datasets with non-uniform distribution. We join synthetic datasets with clustered distribution:
one dataset corresponding to DenseCluster and one to UniformCluster. We increase the
size of the datasets from 350M to 650M elements, in steps of 100M and measure join and
indexing time. Due to the long execution time when joining densely populated datasets, we
exclude GIPSY from all these experiments and R-TREE when joining the biggest datasets
(650M elements).

Indexing. The index building time is the time necessary to build the initial data structures.
For PBSM this process involves creating partitions and assigning elements to them and for
TRANSFORMERS partitioning the data, organizing metadata information and introducing
connectivity information. Similarly to TRANSFORMERS, R-TREE has to partition the space
and additionally build all levels of the hierarchy.

Figure 4.11 shows the results of measuring the indexing time. The results illustrate the dif-
ference between indexes based on space- and data-oriented partitioning very well. As a
space-oriented approach, PBSM only needs to assign each element to the cells of a uniform

63

Chapter 4. Adapting to Spatial Datasets Characteristics

Figure 4.11 Execution time breakdown and number of intersection tests for the join phase
on synthetic data.

grid they overlap with. PBSM consequently outperforms TRANSFORMERS by a factor of be-
tween 2.9 - 3.6. As a data-oriented partitioning approach, on the other hand, TRANSFORMERS
spends time on creating data partitions of equal size. It essentially needs to sort the spatial
elements in three dimensions to produce partitions (that correspond to the space units).
R-TREE partitions the data with a similar strategy but additionally has to recursively build
levels, resulting in a higher indexing time.

While PBSM ef ciently partitions the data, the partitions produced are unlikely to be reused
ef ciently. The resolution of the grid of PBSM is determined based on several factors (number
of elements, spatial extent and distribution of elements) but crucially on the size of the
elements of both datasets because the size of the grid cells needs to be chosen so that not too
many elements are replicated. The partitions produced therefore depend on the characteristics
of a particular combination of datasets and cannot ef ciently be reused when joining with
datasets that have considerably different characteristics.

As opposed to PBSM, TRANSFORMERS builds the indexes for each dataset separately and
adapts the join execution to the characteristics of the two indexes. An index built on one
dataset can therefore be reused when joining with any other dataset. The additional time
TRANSFORMERS requires to index one dataset can therefore be amortized over additional
joins with other datasets.

Join Performance. To analyse the join performance we break the execution time into 170
and join time. The I/0 time is the time spent on loading data during the join process while
join time is the time needed to join the data in memory, i.e., testing spatial elements for
intersection (and related operations). The results of the experiments joining two datasets of
the same size are shown in Figure 4.11 (middle). TRANSFORMERS (labeled TR) achieves the
best results and outperforms PBSM by a factor between 5.5 & 7.4.

PBSM requires substantially more time for 1/0 because it reads a signi cant amount of unnec-
essary data during the join phase. Data-oriented partitioning in combination with adaptive
exploration allows TRANSFORMERS to Iter out 20% of the total data on average when joining

64

4.7. Experimental Evaluation

TRANSFORMERS | PBSM RTREE
150M 0,16 1,02 4,55
250M 0,30 2,24 11,63
350M 0,49 4,28 24,92

Table 4.1 Execution time (hours) for datasets with uniform distribution.

DenseCluster datasets. When comparing the datasets with more distinctive local variations
(e.g., MassiveCluster) TRANSFORMERS Iters out on average 47% of the data while PBSM
has to read all data. The execution time, however, is additionally determined by the join
selectivity and the randomness of reads. PBSM inherently writes data for each partition to
disk individually (and thus distributed) in the indexing phase, resulting in almost exclusively
random reads during the join phase.

Figure 4.11 (right) shows the number of intersection tests between spatial elements for the
same experiment. For TRANSFORMERS this time also includes metadata comparisons. PBSM
compares all elements in one (possibly large) cell of both datasets and thus only avoids tests
between elements in different cells. PBSM consequently needs to perform 4.4 times more
comparisons than TRANSFORMERS which only retrieves and compares the very ne-grained
partitioned data.

Given the very ef cient indexing of PBSM, the overall improvement of TRANSFORMERS when
taking into account the indexing and the join phase over PBSM shrinks to 2.1 - 2.5. More
important, however, is the speedup in the join phase as the indexes built for TRANSFORMERS
can be reused for future joins (between different datasets).

4.7.5 Uniform Data Distributions

To further demonstrate TRANSFORMERS general applicability, we join Uniform datasets with
a uniform distribution (similar distribution and density throughout the area they cover). We
vary the number of elements from 150M to 350M, in steps of 100M. The results of the join are
shown in Table 4.1.

For this set of experiments TRANSFORMERS achieves a improvement of between 6.2 - 8.6 com-
pared to PBSM. The overall improvement when joining datasets with a uniform distribution is
aresult of TRANSFORMERS'’ initial strategy that suits the datasets with similar distribution and
similar number of elements. In addition, its preprocessing strategy provides sequential access
to data as it preserves spatial proximity. Considering that we join densely populated datasets
with the uniform distribution, PBSM’s performance deteriorates compared to the previous set
of experiments due to the increased replication rate. By default, its strategy causes elements
replication that leads to additional I/0s, comparisons and deduplication. Although the grid
hash join provides better performance for PBSM than the plane sweep join, it additionally

65

Chapter 4. Adapting to Spatial Datasets Characteristics

Figure 4.12 Execution time breakdown and number of intersection tests for the join phase
on neuroscience data.

increases the replication rate. The R-TREE join suffers from overlap at tree level and therefore
performs on average 21 times more comparisons.

4.7.6 Neuroscience Data

To demonstrate the general applicability of TRANSFORMERS we also test its performance on
neuroscience data by performing joins like the neuroscientists do. In total, at most 350 spatial
elements are spatially joined, where 250M are axons and 100M are dendrites.

As the illustration shows (Figure 4.3) the neuroscience dataset has a skewed distribution and
hence TRANSFORMERS behaves similarly as in the previous set of experiments. Figure 4.12
illustrates the experimental results. TRANSFORMERS achieves a speedup in join time of 2.3 -
3.3 compared to PBSM and 4.1 - 6.5 compared to R-TREE.

4.7.7 TRANSFORMERS Analysis

In the following we analyse the impact of transformations and quantify the overhead of
adaptive exploration.

Impact of Transformations. In the following experiments we use MassiveCluster datasets to
illustrate the impact of transformations on the performance. We join the same datasets, once
with TRANSFORMERS and once with TRANSFORMERS that does not apply transformations
(No TR), i.e., it just uses space nodes as the level of granularity.

With the increase of dataset size, also the data skew increases for MassiveCluster datasets.
As the results measuring the join time in Figure 4.13 show, the bene t of transformations
increases as the skew grows. An increase in skew triggers ner-grained transformations and
thus TRANSFORMERS Iters on average 47% of data resulting in an improvement in the
performance between 1.2 and 1.6 compared to No TR.

66

4.7. Experimental Evaluation

Figure 4.13 Impact of transformations on join performance (left) and transformations thresh-
old sensitivity (right).

Transformation Threshold. As discussed, TRANSFORMERS’ performance depends on the
transformation threshold. If the threshold is too high we will not bene t from transformations.
On the other hand, if we set the transformations threshold too low the performance will be
affected by the adaptive exploration overhead.

In these experiments we test the cost model using three datasets, each with 350M elements but
with different data distributions: MassiveCluster, UniformCluster & DenseCluster and Uniform.
To demonstrate the quality of the cost model, we use two additional con gurations: OverFit
uses 1.5 as a threshold and thus triggers many transformations and UnderFit uses 1,000,000
which prevents transformations, i.e., the algorithm uses default guide and follower and space
nodes as data layout. All the parameters of the cost model are set and updated at runtime
with an additional constraint that T, and ¢ are provided once the rst transformation is
executed. To trigger the rst transformation we set the corresponding thresholds to initial
values, i.e., tgy ~ 8,and tg, ~ 27. This volume ratio corresponds to the case where an edge of
one MBB is two/three times bigger than the other one.

The results of the join are shown in Figure 4.13. When joining datasets with uniform distribu-
tion TRANSFORMERS should perform a minimal number of transformations since the two
datasets do not have local variations in the distribution. The threshold proposed by the cost
model leads to performance close to UnderFit, the best con guration tested. MassiveCluster
datasets have signi cant local variations in the distribution and therefore bene t considerably
from transformations. Therefore, the threshold proposed by the cost model provides a per-
formance very close to OverFit (leading to many transformations). The data distribution in
UniformCluster & DenseCluster datasets (empty areas in DenseCluster, Figure 4.9) allows the
coarse grained con gurationto Iter considerable number of elements and the performance
of the cost model and UnderFit is thus similar.

Adaptive Exploration Overhead. The adaptive exploration process potentially introduces
overhead. More precisely, by usinga ne-grained data granularity we may lose the bene t of
processing comparisons in a batch operation and we may thus unnecessarily repeat Itering
operations such as distance and overlap calculations.

67

Chapter 4. Adapting to Spatial Datasets Characteristics

Figure 4.14 Adaptive exploration overhead.

In the following experiments we measure the overhead of adaptive exploration using Mas-
siveCluster datasets. To analyze the join performance, we break the execution time in join cost
and adaptive exploration overhead. The join cost is the time spent on disk access and the time
needed to join the data (the nal candidate set) in memory. Everything else is considered as
the overhead of adaptive exploration (Overhead).

As the results of the experiment show in Figure 4.14, the data layout transformations manage
to keep the adaptive exploration overhead low by moving to a coarser granularity if too many
elements need to be visited. On average, the adaptive exploration overhead takes 17% of the
join execution time.

4.8 Conclusions

This chapter identi es the problem of spatial join robustness, which arises when joining spatial
datasets of similar volumes but locally varying densities. As we show, current methods cannot
ef ciently perform a join between such datasets, which are prevalent in applications across
sciences; such methods read too much data and/or require too many comparisons.

We propose TRANSFORMERS, a method that achieves robust spatial joins by adapting to
local data characteristics. TRANSFORMERS partitions the data in advance, but, contrary to
previous work, does not rely solely on that partitioning; it also adapts its execution in an on
the vy, data-driven manner. First, it uses the locally sparser dataset to guide data retrieval,
ensuring that only strictly needed data from the locally denser dataset are retrieved. Second, it
adjusts the employed data layout, ensuring that only the relevant parts of the locally denser
dataset are compared.

We show that TRANSFORMERS achieves robust and ef cient joins. Thanks to its adaptivity, it
achieves a speedup between 2 and 8 in the join phase compared to PBSM, the fastest state-
of-the-art method throughout the density ratio spectrum. Moreover, it is scalable, capable to
perform on ever bigger data of growing density variations.

68

Part ||

Workload-Aware Spatial Incremental
Indexing

$] Disk-Based Incremental Indexing

Advances in data acquisition through more powerful supercomputers for simulation or sen-
sors with better resolution help scientists tremendously to understand natural phenomena.
At the same time, however, it leaves them with a plethora of data and the challenge of analysing
it. Ingesting all the data in a database or indexing it for an ef cient analysis is unlikely to pay
off because scientists rarely need to analyse all data. Not knowing a priori what parts of the
datasets need to be analysed makes the problem challenging.

Tools and methods to analyse only subsets of this data are rather rare. In this chapter we
therefore present Space Odyssey’, a novel approach enabling scientists to ef ciently explore
multiple spatial datasets of massive size. Without any prior information, Space Odyssey
incrementally indexes the datasets and optimizes the access to datasets frequently queried
together. As our experiments show, through incrementally indexing and changing the data
layout on disk, Space Odyssey accelerates exploratory analysis of spatial data by signi cantly
reducing data-to-insight time compared to the state of the art.

5.1 Introduction

In astronomy, biology, neuroscience and other disciplines, scientists are increasingly over-
whelmed by the amount of data they have at their disposal. With advances in sensor technol-
ogy, i.e., increased resolution, and supercomputing for large-scale simulations, the amounts of
data scientists have to analyse grow rapidly. Today’s tools are frequently inadequate to analyse
the data and answer key questions as already executing simple queries such as spatial range
queries becomes challenging given the amount of data. Datasets can, of course, be indexed a
priori to accelerate access but the areas analysed are rarely known beforehand and also only
touch a subset of the entire dataset, making indexing an undue overhead.

In neuroscience, for example, scientists need to explore multiple massive datasets originating
from different sources [82] to investigate particular areas of the human brain. The data in this

1 Space Odyssey originally appeared in [101].

71

Chapter 5. Disk-Based Incremental Indexing

use case is spatial and originates from different instruments (e.g., patch clamp, bright eld
spectroscopy, MRI) of different resolutions. To perform an analysis, they need to query small
parts of different combinations of datasets, each of a size in the order of Terabytes. What areas
of the datasets they need to access and what combinations of them are not known a priori. It
is consequently unclear what parts of what datasets need to be indexed. It is however clear
that fully indexing all datasets introduces considerable overhead which is unlikely to pay off.

More formally, the problem is the ef cient exploratory analysis of multiple spatial datasets
through the execution of range queries: given n datasets and a subset of datasets m n,
scientists need to ef ciently execute a spatial range query g on each of the datasets m. What
combinations of datasets m will be queried together and what spatial ranges g will be accessed
is not known beforehand. The challenges thus are twofold (a) what areas in the datasets are
accessed and (b) what datasets are accessed together.

Multiple spatial indexes have been developed to accelerate access to spatial datasets address-
ing the rstchallenge [33]. All of them, however, require the whole dataset to be indexed at
once. Incremental approaches to indexing (or reorganising data layout) have been developed
for one-dimensional data stored in main memory [53, 54], but not for spatial data on disk. The

rst challenge of incrementally indexing spatial data on disk as well as the second, accelerating
access to multiple datasets queried together, remain unaddressed in literature to the best of
our knowledge.

Space Odyssey, the approach we develop, addresses both challenges and enables the ef cient
exploration of multiple spatial datasets. While the datasets are being queried, it incrementally
indexes datasets (based on space-oriented indexing) to accelerate access to the datasets in
general and to the areas frequently queried in particular. At the same time, it reorganises the
layout of the data on disk so that parts of the datasets queried together can be retrieved more
ef ciently. By incrementally indexing and reorganising the data, Space Odyssey accelerates
explorative analysis of spatial data by substantially reducing data-to-insight time: Space
Odyssey answers up to several hundred queries (more than half the queries of the benchmark)
by the time the fastest existing approach has merely indexed the data.

The remainder of this chapter is organized as follows. We give an overview of our approach in
Section 5.2. We then discuss in detail the incremental indexing strategy in Section 5.3 and the
process of combining datasets in Section 5.4. We then analyse our approach experimentally in
Section 5.5 before we conclude in Section 5.6.

5.2 Space Odyssey Overview

Space Odyssey enables exploratory access to multiple spatial datasets such that scientists can
ef ciently access particular areas in combinations of datasets. Crucially, our approach enables
ef cient access without having to preprocess the data. Instead, Space Odyssey uses incoming
queries to reorganize the physical layout of the data to better serve queries.

72

5.3. Incremental Indexing

First, to enable ef cient access to precisely the areas queried in individual datasets, Space
Odyssey incrementally indexes the datasets. Second, to better support querying the same
areas in different datasets, it adapts the physical layout on disk, storing together the areas that
are queried together to accelerate retrieval.

Figure5.1 Space Odyssey: components, data structures and a snapshot of the physical layout.

Figure 5.1 illustrates the architecture of Space Odyssey its components, data structures and a
snapshot of the physical layout. The Adaptor is responsible for the incremental indexing and
the Merger performs operations related to the physical layout. Finally, the Query Processor
orchestrates the overall query execution using information provided by the Statistics Collector.

5.3 Incremental Indexing

Indexing all datasets a priori has the major drawbacks that (a) scientists must wait until all
data is indexed before they can start to query and (b) data that is never queried is indexed in a
time-consuming process.

Space Odyssey therefore uses incremental indexing where in every step (with every query) we
additionally re ne the index structure in the frequently queried hot areas to accelerate future
queries. At the same time, to keep the overhead of incremental indexing low, we use space-
oriented indexing, as it introduces minimal processing overhead (compared to data-oriented
partitioning [33]).

73

Chapter 5. Disk-Based Incremental Indexing

Figure 5.2 Incremental indexing strategy (in 2D).

5.3.1 Re nement Concept

More precisely, Space Odyssey incrementally builds an Octree [33] on each dataset queried.
The Octree is the index of choice since we want to introduce minimal overhead during the
query execution and thus, we split each dimension to a minimal number of partitions which
corresponds to 2¢ partitions in d-dimensional space. Figure 5.2 illustrates the indexing process
withd ™ 2, i.e., 4 partitions per level. The indexing process starts with the rst query Q1 where
Space Odyssey partitions the space uniformly into four partitions (pl, p2, p3, and p4). It
scans the dataset and assigns each object to the partitions it overlaps with. When the second
query arrives (Q2), Space Odyssey identi es the partitions that it intersects with (only p2 in
our example), re nes this partition, i.e., divides p2 into four sub-partitions (p21, p22, p23,
and p24) and reassigns its objects to the new partitions. In the same process it checks for the
objects in the qualifying new partitions whether or not they are inside Q2. Space Odyssey
applies the same procedure for query Q3 and all subsequent queries.

Space Odyssey re nes partitions to curb the amount of data retrieved and checked for inter-
section with the query. Otherwise, entire massive partitions need to be checked even only
for a small query. Intuitively, we want the partition size to approximate the query size. Then,
in the best case, a query hits only one partition which covers just the queried range so that
a single sequential scan of the partition retrieves all required objects. In the worst case, 2d
partitions are intersected by the query. Re ning a partition further only incurs unnecessary
processing overhead (the actual re ning as well as retrieving and scanning multiple resulting
partitions). Therefore, to control the degree of re nement Space Odyssey uses a re nement
threshold (rt). A partition isre ned following the execution of a query if the ratio \\;—Z ““rt where
Vp and Vg are partition and query volumes, respectively.

With this incremental re nement strategy the overhead of building the index and reorganizing
the data on disk is spread over several queries. Areas frequently queried will be indexed fully,
i.e.,, very ne granular such that range queries in these areas can be executed ef ciently, as

74

5.4. Combining Datasets

ef cientas if executed on a fully built Octree. Areas previously untouched will be partitioned at
acoarser granularity thus queries in these areas can also bene tfrom the adaptive partitioning
performed due to previous queries.

5.3.2 Optimizations

In case the query size is signi cantly smaller than the partition currently hit, it might require a
considerable number of queries until the partition is re ned enough. We can compute by how
many queries a partition needs to be hit before it reaches the nest level of re nement (or put
differently, before the Octree reaches the targeted depth) with the re nement threshold. The
following equation gives the number of queries (or levels in the Octree built) required:

Iogppl (Vp/(VgETrt))

where ppl is the number of partitions per level and ppl ~ 29 in a standard Octree. To allow for
faster convergence we can set Space Odyssey to use a bigger ppl.

Since we use space-oriented partitioning a spatial object can intersect with several partitions
which introduces additional intersection tests. To avoid object replication and thus curb
the memory footprint while avoiding unnecessary comparisons, we translate the problem of
indexing volumetric objects to indexing point objects by using the query window extension
technique [122]. Space Odyssey assigns each object o to a partition based on o’s center and
keeps track of the maximum object extent (maxExtent) in each dimension. Then, to answer
a query correctly ensuring that all intersecting objects are retrieved, its range is extended by
maxExtent and the cells the extended query overlaps with are inspected.

Finally, Space Odyssey performs the updates in-place, i.e., it reads a partition p, re nesitand
uses the pages where partition p was stored for the newly created partitions. After re ning p
we may require more disk pages than were initially required to store p; we append these pages
at the end of the le.

5.4 Combining Datasets

By building data structures incrementally we can signi cantly decrease the data-to-insight
time. At the same time we have the opportunity to optimize the placement of data structures
on disk to accelerate the queries executed.

Particularly in the case where multiple datasets are analysed, apart from building an index

structure incrementally for each dataset, Space Odyssey also rearranges the data on disk such

that the areas in different datasets which are queried together are also stored together. Doing

so allows Space Odyssey to avoid random disk access for retrieving the same area in different
les and thereby accelerates access.

75

Chapter 5. Disk-Based Incremental Indexing

5.4.1 Merging Partitions

While executing queries Space Odyssey keeps statistics about the datasets queried together
and the partitions retrieved from them. More precisely, given queries of the form Q ~
{A;DS1, ... ,DSn} where A is the area queried in datasets DS; through DSy, it will store:
1) how often a given combinationC = {DS4, ... ,DSyn}is accessed and 2) what partitions are
retrieved from C, i.e., what partitions P overlap with A.

Once the number of retrievals for a particular combination C of datasets exceeds a preset
merging threshold (mt), Space Odyssey merges the data for all the partitions p 2 P retrieved
in the context of C. It iterates over all partitions that have been queried for in C, retrieves
them from every dataset DS 2 C and merges them on disk. Note that some of the merged
partitions may be retrieved less frequently by past queries than others, but the overhead of
including them in the merged le is minimal while there is a bene tin case they are accessed
more frequently in the future. Lastly, Space Odyssey merges data only for combinations of size
jCj », 3 because merging is more bene cial for bigger combinations as it prevents (random)
accesses to a large number of datasets.

5.4.2 Data Structures

Space Odyssey creates a new merge le where it stores the partitions P from different datasets
queried together in a combination C so they can be read sequentially and hence more ef-

ciently once they are again queried together. The partitions in the merge le are copies,
meaning that Space Odyssey also keeps the original partitions to support ef cient querying
on an individual dataset DS. Space Odyssey maintains a space budget for merge les (and
thus replicated partitions). Once the space budget is exceeded it removes the least recently
used merge les to adhere to the budget.

For a given partition p, the merge le physically stores the objects contained in p from each
dataset DS sequentially. Given, for example, datasets DSy,DSy,DS;, Space Odyssey stores
objects from DSy on the rst disk pages, followed by objects from DSy followed by DS, . Doing
so allows to retrieve ef ciently only the objects belonging to a queried subset of all datasets
merged (e.g. DSy and DS;) by reading them sequentially while skipping over the rest (DSy).
The merge leis append-only, i.e. new partitions are always added at the end of the le.

Space Odyssey incrementally builds index structures per dataset and the same regions in
different datasets may thus have a different level of re nement. In dataset DSy, for example,
the area may still only be covered by one partition p while it is divided into eight partitions in
DSy. Including copies of the unre ned partition p in merge les adds the challenge of having
tore ne all the copies once re nement of p is triggered by a new query, thereby introducing
substantial overhead. Space Odyssey addresses this issue by only merging partitions which
are at the same level of re nement. Additionally, in our current implementation the merged
partitions are not re ned any further.

76

5.4. Combining Datasets

5.4.3 Querying

To ef ciently execute queries and take advantage of merge les, i.e., to decide whether to
retrieve areas from individual datasets DS or from merge les, Space Odyssey maintains a
directory where it keeps information about what partitions of what combinations of datasets
are stored together.

Once a query Q ~ {A;DSy, ..., DSn} is to be executed, Space Odyssey checks what parti-
tions intersect with A and whether these partitions are stored in a merge le. There are four
possibilities:

Exact Merge File. If the exact combination Cq ~ {DSy, ..., DSn} is stored in a merge le
and contains the partitions intersecting with A, then it is used to retrieve those partitions
sequentially.

Superset. IfasupersetC Cgq is stored, i.e. the merge le contains more datasets than the
ones requested, then the merge le will still be used. Using the merge le is more ef cient than
accessing individual datasets thanks to the internal organization of merge les: the objects
from each dataset are organized sequentially, meaning that they can be read ef ciently but
also that if data from a particular dataset is not needed it can be skipped.

Subset. If asubset C % Cg is stored, i.e. the merge le contains fewer datasets than the ones
requested, then Space Odyssey uses the merge le to retrieve all data from the subset C as well
as other merge lesorindividual les to retrieve the remaining datasets C4 \C. The decision
which of the merge les to use is based on maximizing the number of datasets already stored
inamerge le and thus minimize (random) access to individual les. Space Odyssey chooses
the one merge le which contains the most datasets queried for.

No Merge File. If no merge le exists for a combination C, individual les are used.

5.4.4 Open Issues

Building a merged index for the hot areas where multiple data sets are queried together
signi cantly accelerates queries but several challenges need to be addressed to fully automate
the merging and maximize the performance gains. In particular, we plan to develop a cost
model which indicates how to adapt the parameters (minimum size of combination to be
merged jCj and mt) at runtime based on the workload. Additionally, we plan to investigate the
bene ts of merging partitions at different re nement levels and examine alternative strategies
for doing so, e.g., should all partitions be re ned to the same level as the nest partition before
merging or as the coarsest, or shall we allow multiple re nement levels to coexist in the merged
index. Lastly, we plan to improve disk space management to avoid the replication of a dataset
which is used in several different combinations whenever possible.

77

Chapter 5. Disk-Based Incremental Indexing

5.5 Experimental Evaluation

In this section we rst describe the experimental setup and methodology and then demon-
strate the behavior of Space Odyssey by comparing it against state-of-the-art spatial indexing
approaches using real neuroscience datasets.

5.5.1 Experimental Setup

Hardware Con guration. The experiments are run on a Linux Ubuntu 12.04 machine
equipped with 2x Intel Xeon Processors, each with 6 cores running at 2.8GHz, with 64kb L1,
256KB L2 and 12MB L3 caches and 48GB RAM at 1333MHz. Storage consists of 2 SAS disks of
300GB capacity each.

Competing Approaches. We have implemented Space Odyssey and set its con guration
parameters rt ~ 4, ppl ~ 64, and mt ™ 2. Additionally, we consider the following approaches:

FLAT is the state-of-the-art indexing technique for spatial range queries, for which we obtained
the source code from the authors [127]. As we need to index multiple spatial datasets, we
implement two strategies: one-for-each (1fE) and all-in-one (Ainl). The rst strategy, 1fE,
builds one index for each dataset. To perform a query, all the indexes corresponding to the
queried datasets are probed and the union of the retrieved results forms the nal answer. The
second strategy, Ainl, builds only one index structure containing all the spatial objects from
all the datasets. To perform a query, the index is probed and items belonging to datasets which
are not queried are Itered.

Gridisastatic, uniform grid-based technique where the indexed space is uniformly partitioned
intoa xed number of cells. We use our own implementation. The objects are assigned to the
grid cells in-memory and ushed to disk when the memory buffer becomes full. Similarly to
Space Odyssey, replicating objects to multiple grid cells is avoided by using the query window
extension technique [122]. The con guration is set to 60° cells, which we determine through
a parameter sweep, given the absence of heuristics. We use 1fE as a default strategy for
Grid given that both strategies, 1fE and Ainl, achieve similar performance as a result of the
employed space-oriented partitioning.

Software Setup. All implementations are written in C++, they are single-threaded and com-
piled using g++v4.9.2 with the -O3 optimization ag. The disk page size is set to 4KB. To
obtain realistic run-times, where dataset sizes are signi cantly larger than the main memory
size, all techniques are restricted to 1GB of main memory footprint. For all experiments only
one disk is used (i.e., no RAID con guration) while the OS caches and disk buffers are cleared
(overwritten with an empty le) before each query is executed to avoid any caching effects.

Datasets. We use 10 real neuroscience datasets that we obtained from our collaboration with
neuroscientists in the Human Brain Project [82]. Each dataset represents a subset of neurons
contained in the same brain volume. The neurons are modeled with a 3D surface mesh. An

78

5.5. Experimental Evaluation

identi er is attached to each object to distinguish items belonging to different datasets. Each
dataset requires approximately 5 GBs of storage on disk (and » 50 GBs in total).

Queries. Based on the previously described use cases, we synthetically generate queries
each havinga xed volume (qvol) of 10i4% of the queried brain volume. We use a clustered
distribution and choose a number of clustercenters (jclusterscentersj ™ 10). Query centers are
distributed around the cluster centers following a Gaussian distribution (,,~ 0, ~ qvol£10).
For completeness and to evaluate non-skewed cases, we also generate uniformly distributed
query centers. We generate a workload of 1000 queries.

To choose which subset of datasets is queried for each query range, we use a synthetic dis-
tribution generator based on Gray et al. [40]. The distributions we use are: (1) heavy hitter,
(2) self-similar, (3) Zipf, and (4) uniform. These distributions have been used in other studies
for similar purposes (e.g., in [20, 117]). In the heavy hitter distribution, one combination
of queried datasets accounts for 50% of all possible combinations, while the other queried
combinations are chosen uniformly from the remaining ones. The self-similar distribution
uses an 80 20 proportion, and the Zipf distribution uses an exponent of 2. For non-skewed
scenarios, we also choose the combination of datasets randomly using a uniform distribution.

5.5.2 Experimental Analysis

Total Processing Cost. Figures 5.3, 5.4, and 5.5 depict the total workload processing time
when queries follow a clustered distribution, while the subsets of the dataset queried are
chosen according to Zipf, heavy hitter, and self-similar distributions respectively. In Figure 5.6,
we uniformly choose both the query ranges, as well as the queried datasets, in order to
demonstrate the worst-case performance, where neither hot areas nor popular combinations
exist. In all experiments the number of queried datasets is increased from 1 to 9 (note that
while the number of possible combinations to query increases from 10 and peaks at 252, the
actually queried combinations are often smaller and depend on the distribution; also shown
on the x axis). For Space Odyssey’s competitors, the processing time is additionally broken
down into indexing and querying.

FLAT is based on data-oriented partitioning and therefore, the FLAT variants are the slowest
to build among all approaches. Indexing with FLAT is up to £5 slower compared to the simple
uniform Grid?. As such, only Grid is competitive in terms of overall data-to-insight time
when compared to Space Odyssey. Nevertheless, by the time Grid nishes indexing the data,
Space Odyssey has already answered half of the queries on average. Therefore, the important
aspect of Space Odyssey is that it minimizes data-to-insight time, because there is no need to
build complete indexes for all the datasets in advance.

2 Favouring Grid, we assume that the optimal con guration is known. Otherwise, several builds of Grid are
required to tune it.

79

Chapter 5. Disk-Based Incremental Indexing

Figure 5.3 Query ranges: clustered, dataset ids: zipf.

Figure 5.4 Query ranges: clustered, dataset ids: heavy-hitter.

Figure 5.5 Query ranges: clustered, dataset ids: self-similar.

80

5.5. Experimental Evaluation

Figure 5.6 Query ranges: uniform, dataset ids: uniform.

Space Odyssey is a middle ground between the one-for-each and the all-in-one strategies. The
one-for-each (1fE) strategy accesses individual (smaller) indexes and only for the datasets
queried. Consequently, the query processing cost increases with the number of queried
datasets. The all-in-one (Ainl) strategy, on the other hand, always operates on a huge index
structure and suffers from unnecessary data accesses. As such, when the number of queried
datasets is less than 5, 1fE is preferred over Ainl. Space Odyssey follows a hybrid strategy,
where the individual datasets are indexed adaptively (similarly to 1fE), but hot areas from
different datasets are merged together (similarly to Ainl).

While all related approaches are insensitive to skew in the workload, the adaptive mechanisms
in Space Odyssey are able to exploit it. For example, when the queried dataset combinations
are coming from the very skewed zipf (Figure 5.3) and heavy-hitter (Figure 5.4) distributions,
Space Odyssey quickly re nes the hot areas, merges the partitions of the popular datasets
together, and is often able to perform most of the queries before even Grid nishes building.
This is not the case with the less skewed self-similar distributions (Figure 5.5), where Grid
(once its building phase is over) answers individual queries faster than Space Odyssey most of
the time. When both query ranges and queried datasets are uniformly distributed (Figure 5.6),
Space Odyssey cannot bene tfrom adaptive re ning and thus requires more time than Grid
to process the entire workload of 1000 queries.

Query Performance. In Figure 5.7, we show the response time for each query in the se-
guence when 5 datasets are queried. In Figure 5.7a, the queries are clustered and the queried
combinations of datasets are chosen from the self-similar distribution, while in Figure 5.7b
both the queries and the combinations are chosen from a uniform distribution. We study
Space Odyssey and the two approaches that are the most competitive in terms of querying per-
formance: FLAT-Ain1 and Grid-1fE. In both cases, the very rst query is the most expensive for
Space Odyssey, as it fully scans and partitions at the rst (coarsest) level the raw data les for
all 5 datasets in the combination. Nevertheless, we observe that Space Odyssey converges to

81

Chapter 5. Disk-Based Incremental Indexing

Figure 5.7 Query times for each query in a sequence.

the speed of the fully indexed case under both skewed (Figure 5.7a) and uniform (Figure 5.7b)
scenarios. As expected, the convergence is slower in the uniform scenario. FLAT-Ain1 has con-
sistently better and more robust performance than Grid-1fE because it is less sensitive to data
skew. Once Space Odyssey has converged, its querying performance is between FLAT-Ainl
and Grid-1fE, while it performs some queries even faster than FLAT-Ain1 as a result of the
merging strategy. Finally, when an area that has not been previously re ned and/or merged is

queried, the querying time for Space Odyssey is still higher.

Effect of Merging. Lastly, to isolate the effect of merging partitions that are often queried to-
gether, we run Space Odyssey with and without merging enabled. In this experiment, clustered
queries are produced using 5 instead of 10 clustercenters, in order to ensure that the queries
can bene tfrom merging. In Figure 5.7c we plot the execution times only for the queries that
request the most popular combination (for the Zipf distribution, this combination is queried
751 times). While the same combination may still request completely different ranges (e.g., in
different clusters), we see that eventually Space Odyssey bene ts from the merged partitions
for the majority of the queries. We observe 25% performance gain on average for the queries

accessing the merged partitions.

82

5.6. Conclusions

5.6 Conclusions

In this chapter we identi ed the challenge of ef ciently exploring multiple spatial datasets
with the same range query acommon type of analysis across scienti ¢ applications. State-of-
the-art methods fall short in supporting this challenge ef ciently, as they require to index all
data a priori, including the parts never analyzed.

As a consequence, we develop Space Odyssey, an approach which incrementally indexes
the bits of the data needed and adapts the physical layout of the data on disk to ef ciently
support the queries executed. Our approach to incrementally indexing and reorganizing
spatial data on disk shows bene ts in decreasing the data-to-insight time. Although the
current implementation of Space Odyssey already achieves speedup, we primarily consider it
a starting point demonstrating the potential of our idea. In particular, we believe that re ning
the cost model for merging and indexing can further increase performance bene ts.

83

In-Memory Incremental Indexing

With large-scale simulations of increasingly detailed models and improvement of data acqui-
sition technologies, massive amounts of data are easily and quickly created and collected.
Traditional systems require indexes to be built before analytic queries can be executed ef -
ciently. Such an indexing step requires substantial computing resources and introduces a
considerable and growing data-to-insight gap where scientists need to wait before they can
perform any analysis. Moreover, scientists often only use a small fraction of the data the
parts containing interesting phenomena and indexing it fully does not always pay off.

In this chapter we present a novel incremental index for the exploration of spatial data. Our
approach, QUASIIY, builds a data-oriented index as a side-effect of query execution. QUASII
distributes the cost of indexing across all queries, while building the index structure only for
the subset of data queried. It reduces data-to-insight time and curbs the cost of incremental
indexing by gradually and partially sorting the data, while producing a data-oriented hierarchi-
cal structure at the same time. As our experiments show, QUASII reduces the data-to-insight
time by up to a factor of 11.4x, while its performance converges to that of the state-of-the-art
static indexes.

6.1 Introduction

The advances in data acquisition technologies and supercomputing for large-scale simulations
rapidly increase the amounts of spatial data generated and collected. For instance, in the
Human Brain Project (HBP) [82], neuroscientists build spatial models of the brain which will
ultimately feature 10! neurons [127], each reconstructed with thousands of 3d cylinders.
NASA released 500 TB of earth observation data generated through remote sensing [87], while
the Dutch government released point cloud data with 640 billion points [88] acquired through
airborne scanning. Similarly, volunteers generate large amounts of spatial data through
services such as OpenStreetMap [94]. Given these massive and growing amounts of spatial
data, algorithms to query them ef ciently are crucial.

1 Quasii originally appeared in [103].

85

Chapter 6. In-Memory Incremental Indexing

Previous research has proposed many techniques [33, 70, 127] for the fast and scalable query-
ing of spatial datasets. Existing approaches, however, have two major drawbacks. First, they
require a time-consuming step to build indexes before they can be used. This pre-processing
step signi cantly delays the analyses: indexing a model in the HBP, for example, can take sev-
eral hours [127]. With increasing dataset size, the data-to-insight time grows as well. Second,
scientists frequently only analyse a small fraction of the data [2, 140]. In the HBP, for example,
a scientist builds a model of the brain but after a few queries may determine that it is not
biorealistic (e.g., density in certain areas does not agree with measurements) and stops the
analysis. Given the small number of queries executed, the overhead of indexing the entire
model cannot be fully amortized.

The problems of delayed analysis (due to prior indexing) and the impossibility to amortize
indexing cost (due to too few queries) are not exclusive to spatial data management. Database
research has proposed incremental indexes for relational data (e.g., cracking [53] and adaptive
merging [38]) and for time-series [140]. The core idea is to incrementally index only the parts
of the data queried, spreading the cost of indexing over the rst few queries. The major data-
to-insight bottleneck is thus eliminated, i.e., queries are answered as soon as data is available
(albeit the rst queries run slower, as no index is initially available).

To address the aforementioned challenges, we develop an incremental indexing approach for
spatial data in main memory, with the aim of reducing data-to-insight time, as well as achieving
performance comparable to traditional spatial indexes (after enough queries are executed).
As no current incremental indexing approach for main memory exists, we demonstrate the
limitations of applying current options to incrementally index spatial data. As we show, using
the concepts for incrementally indexing one-dimensional data [53] to index three-dimensional
data does not signi cantly reduce data-to-insight time, as the major bulk of work still has to be
done for the rst query. Space Odyssey [101] (Section 5) is designed for exploratory analyses
of multiple spatial datasets that reside on disk. Its main bene t comes from indexing only
the subsets of multiple datasets and optimizing accesses on disk to the parts of the datasets
frequently queried together. However, in a different setting, indexing of one dataset in main
memory, these bene ts disappear.

We thus develop a QUery-Aware Spatial Incremental Index - QUASII: a novel data-oriented,
query-driven incremental indexing approach. QUASII substantially reduces data-to-insight
time and keeps the cost of incremental strategy low, by gradually and partially sorting the
spatial objects considering all dimensions. QUASII thus distributes the cost of indexing across
all queries, while preserving spatial proximity and producing a data-oriented style partitioning

which typically entails an expensive pre-processing step in the static setting. Finally, being
data-oriented, it executes queries ef ciently, as it adjusts to the distribution of the data, while
avoiding data replication.

Our experiments show that QUASII substantially accelerates the exploratory analysis of spatial
data in main memory by reducing the data-to-insight time by up 11.4£, while achieving the

86

6.2. Problem De nition

query performance of current algorithms for spatial indexing. Static algorithms are not able to
amortize their building cost over QUASII even after 10000 queries.

To our knowledge we are the rst to develop and analyze incremental indexing for spatial data.
Our contributions are:

We demonstrate the challenges of adapting and using known incremental indexing [53,
101] to spatial data in main memory. We use the resulting approaches as motivation
and baseline.

We develop QUASII, an incremental approach that signi cantly reduces the data-to-
insight time, while achieving the query performance of state-of-the-art spatial indexes.
We experimentally analyse QUASII’s performance and the number of queries it needs to
reach the performance of its static counterparts.

The remainder of the chapter is structured as follows. We de ne the problem in Section 6.2 and
motivate it in Section 6.3. We then describe QUASII in Sections 6.4 and 6.5 and experimentally
evaluate it in Section 6.6. We conclude in Section 6.7.

6.2 Problem De nition

Our work is driven by the need for the exploratory analysis of spatial datasets through querying.
The queries executed are ad hoc, i.e., the next query is only known after the results of the rst
query are analyzed, and they thus cannot be batched and executed with only one sequential
read of the dataset.

Example Application. In the Human Brain Project, neuroscientists build spatial models of
the brain [82]. Already now the models are so detailed that to simulate a neocortical volume of
only 0.29 mm? supercomputers are needed [83].

Once the part of a model is built, neuroscientists need to validate it by choosing a subset of its
regions at random and inspecting them. Each region is queried with several spatially close
queries and the query results are used to verify the composition, density and other metrics
agree with the real brain. The results of these analyses are crucial to determine whether or
not the model can be simulated or should be abandoned (subsequently building a new one
using a different con guration). Scientists currently only have two fundamentally different
options: index all data a priori and execute queries with the index or scan all data each time to
answer a query. Not knowing a priori how many queries will be executed (and if indexing can
be amortized) makes it dif cult to decide.

Data. We consider spatially extended (volumetric) objects enclosed by a minimum bounding
box (MBB). In a three-dimensional (3d) setting, each MBB b is de ned by two 3d points
lower(b) and upper(b) corresponding to lower and upper coordinate at each dimension
(Tower(b) ™ (X1, y1,2z1) and upper(b) ™ (Xu, Yu, Zu)) [33].

87

Chapter 6. In-Memory Incremental Indexing

Queries. We focus on range (window) queries as they are broadly used in many applica-
tions and are also the building block for many other spatial queries (e.g., k-nearest neighbor
queries [60]). Each query is a 3d box speci ed by two 3d points, e.g., (9;,qu). Given a query q,
all objects with their bounding box b intersecting with q, i.e., where b\ g% ;, are in the result.

Setting. We assume that all data and necessary index structures tin main memory. We
consider a static setting, i.e., all raw data is available before querying.

6.3 Motivation

No current incremental indexing approach can index spatial data in main memory. To explore
the possibility of using relational incremental indexing approaches to index spatial data, we
extend database cracking [53] to spatial domain. We also adapt our approach, Space Odyssey
(introduced in Chapter 5), for main memory when indexing just one spatial dataset.

6.3.1 Cracking for Spatial Data

Relational Cracking. Database cracking [45, 53, 54] incrementally builds an index as a byprod-
uct of query execution in the context of main memory column-stores. The proposed tech-
niques partially sort elements based on the query execution, essentially performing an incre-
mental quick sort. In its simplest form, cracking [53] rearranges elements in an array according
to the end points of the query range (q;,qy): all values ~ g, are moved towards the beginning
of the array, while values "~ q, are moved towards the end. With each query, the index becomes
more re ned until it is fully sorted and indexed.

SFCracker. Using this strategy to index spatial data is inherently challenging: spatial data
has multiple dimensions and, unlike 1d data, no total order can be directly imposed on it.
Therefore, to be able to use the strategy of cracking we transform data from the multi- to the
one-dimensional domain. We perform this transformation using a space- lling curve (SFC)
a common approach to impose a total, 1d order on spatial objects.

A SFC maps data to 1d domain by visiting all the points in a d-dimensional grid exactly once;
the order in which the objects are visited de nes their order in 1d space. When mapping
spatial data, it is crucial to consider SFCs that preserve proximity (such as Z-order [96] or the
Hilbert curve [59]), so that data points close in multi-dimensional space remain close in 1d
space [29, 86].

The resulting approach, SFCracker, incrementally sorts SFC codes based on the queried region.

Both, data and queries are transformed to 1d space. The data transformation takes place in the
rst query, which makes it the most expensive one. Once the data is transformed, the queries

perform cracking based on the 1d intervals obtained through the query transformation.

88

6.3. Motivation

Figure 6.1 Overhead introduced when transforming query to the 1D space.

A naive query transformation to 1d space results in a substantial number of false positives
(needed to be tested for intersection) because the transformed 1d range can be signi cantly
larger than the original multidimensional range if only the lower and upper coordinates of
the range query are considered. An example is shown in Figure 6.1: the curve segments
in blue belong to the transformed range (SFCcode|, SFCcode,), but they are outside of the
original query range (in red). To reduce the overhead of false positives, we use a technique
that partitions the curve into multiple sub-intervals each of which is fully contained in the
original range [132]. Consequently, a range query is transformed into a number of intervals
and the data is thus cracked multiple times per query, once for every interval.

Limitations. Cracking in the relational domain decreases data-to-insight time, distributing the
cost of sorting over all queries with fairly low overhead and initialization cost. These bene ts,
however, decrease for datasets with a higher number of dimensions. First, the initial query is
expensive as it maps all the objects from the multi- to the one-dimensional domain. Second,
as opposed to relational data, a single query has to perform multiple expensive cracks to avoid
performance penalties introduced with the transformation to 1d space. Consequently, spatial
cracking still has a considerable data-to-insight time, along with an expensive incremental
strategy. We demonstrate these limitations experimentally in Section 6.6.3.

6.3.2 Disk-based Incremental Indexing in Main Memory

Disk-based Incremental Indexing. Space Odyssey (introduced in Section 5) is designed for
exploratory analyses of multiple spatial datasets that reside on disk. Although Space Odyssey
addresses a different problem, we use its ideas related to incremental indexing, to explore its
applicability and limitations when indexing a dataset in main memory. We adapt them for use
in main memory in Mosaic.

Mosaic. Mosaic incrementally builds an Octree [57] by dividing the space uniformly into
eight partitions. For every query, Mosaic identi es the partitions that overlap with the query,

89

Chapter 6. In-Memory Incremental Indexing

splits them into eight partitions and reassigns their objects to the newly created partitions.
Frequently queried areas in a dataset are indexed fully, whereas less frequently queried areas
are coarser grained. The top-down strategy is thus bene cial for consecutive queries, as they
can reuse the previous partitioning, independent of the workload pattern. However, data in
frequently queried areas is re-partitioned multiple times.

Limitations. The main bene t of Space Odyssey comes from indexing only the subsets of
multiple datasets (as opposed to indexing all datasets upfront) and optimizing accesses on
disk to the parts of the datasets frequently queried together. However, in a different setting,
indexing of one dataset in main memory, these bene ts disappear. More precisely, Mosaic
introduces signi cant overhead as the data in frequently queried areas is re-partitioned
multiple times until it reaches its nal con guration. Consequently, a static approach based
on space-oriented partitioning, such as the uniform grid, outperforms quickly Mosaic in terms
of total execution time (we provide more details in Section 6.6.3).

Mosaic additionally suffers from considering more objects than strictly necessary a problem
inherent in space-oriented partitioning and related to data assignment. For indexes based on
space-oriented partitioning, objects can be assigned to cells with two strategies: replication
and query extension. Replication assigns an object to all partitions that it overlaps with. As
a consequence more objects need to be considered for intersection, the memory footprint
increases and an expensive de-duplication step is needed. The alternative is to use query
extension [122] which assigns an object to a cell based only on its center. This technique avoids
object replication, however, it can considerably increase the number of objects necessary
to be tested for intersection. More precisely, to ensure the correctness of the query result,
it extends the query range by the maximum object extent. As a result, the area queried for
is bigger than the initial query. Both strategies, replication and query extension, slow down
query execution but, as we show in Section 6.6.2, replication is particularly expensive when
working with volumetric spatial objects and we thus use query extension in Mosaic.

6.4 QUASII Overview

As discussed, an approach to incrementally index spatial data is not as straightforward as
adapting known approaches. Besides the challenges, we also identify important design goals:

(i) minimal data-to-insight time: the main requirement for incremental indexing is to
enable instant access to the data, i.e., the rst queries must not introduce undue over-
head/processing;

(ii) ef cient query performance: the performance of frequently queried subsets of data
should converge to that of the fully indexed approach (or better);

(iii) low costincrementalindexing: indexing should introduce as little overhead as possible,
i.e., its cumulative execution time should only exceed the one of static indexes after as
many queries as possible (or not at all).

90

6.4. QUASII Overview

Figure 6.2 Incremental indexing strategy.

Given the design goals and our analyses, we develop QUery-Aware Spatial, Incremental Index,
QUASII. QUASII is a data-oriented index, incrementally built as a side effect of query execu-
tion. It reduces data-to-insight time and curbs the cost of incremental indexing by gradually
and partially sorting the data, while simultaneously producing a data-oriented hierarchical
structure. It is based on a nested reorganization strategy which incrementally slices the space
in each dimension and a hierarchical, data-oriented structure designed to accommodate the
incremental indexing process and provide ef cient query execution.

Overview. Figure 6.2 illustrates QUASII’s incremental strategy on a high level. Given range
queries of the form q = [q; ~ (X1, Y1, Z1), Qu ~ (Xus Yu, Zu)], QUASII reorganizes the objects
based on each query’s lower (q;) and upper (qy) coordinate by slicing each dimension and
performing a nested reorganization. It rst reorganizes objects on the x dimension, producing
three x slices where the middle one contains the objects in the range [x;, xy] given the query
range in dimension x. Subsequently, it continues reorganizing the middle x slice on the y
dimension, producing again three slices where the middle one contains objects in the range
[y1, yul- Finally, QUASII reorganizes the y slice on the z dimension producing the z slice which
contains the query result. QUASII never performs a complete sort but reorganizes data locally,
given the query’s boundaries.

The slices produced are organized in a hierarchical structure that incrementally forms the
index. Figure 6.3 illustrates the structure of QUASII after the very rst query (left) and after an
arbitrary number of queries (right) are executed. QUASII forms a hierarchical structure with
one level per dimension, i.e., the rst (top), second, and third (bottom) levels correspond to
slices at x, y, and z dimensions, respectively. The top level has the coarsest granularity as its
objects are constrained with one dimension, while the bottom level is the most ne-grained
since it is constrained by all dimensions. When executing the queries, QUASII traverses the
structure depth- rst, performing additional re nements when necessary, as we discuss later
in Algorithm 6.

Nested Reorganization Strategy. The incremental strategy of QUASII is query-driven and
data-oriented. Being query-driven, it reorganizes the minimal amount of data while executing
queries. At the same time, being data-oriented, it achieves query ef ciency as it adjusts to the

91

Chapter 6. In-Memory Incremental Indexing

Figure 6.3 Index structure after the rst (left) and few more (right) queries.

data distribution, while avoiding replication. QUASII accomplishes both through its nested
reorganization strategy.

Data-oriented partitioning typically entails an expensive pre-processing step in the static
setting as it preserves spatial proximity based on a strategy for ordering multi-dimensional
objects. QUASII distributes the cost of this pre-processing across all queries by performing
nested and partial reorganization. It reorganizes only a subset of data driven by queries,
gradually curbing the amount of data partially sorted with every dimension. This strategy is
inspired by the Sort-Tile-Recursive (STR) R-tree bulkloading algorithm [70]. STR produces
tiles that form leaf-level nodes for the R-Tree by recursively, fully sorting spatial objects in each
dimension. More precisely, STR for 3d objects rst sorts the spatial objects on the x-axis and
partitions them in vertical tiles of equal size (i.e., the same number of objects). Then, within
each x tile, it recursively applies the same strategy rst considering y and then z dimension.
This tiling strategy is particularly ef cient as the resulting R-Tree has less overlap than other
approaches [70]. By only performing partial reorganizations for the parts of the data that is
actually queried, QUASII outputs partitions targeting these characteristics at lower cost (as
opposed to complete sorts in STR).

Index Structure. QUASII’s index structure is designed to support an ef cient incremental
strategy with as little performance penalty as possible. Its hierarchical structure is designed
to accommodate the reorganization strategy: each level corresponds to one (reorganization)
dimension and each parent node is represented by its children in a nested form along the
dimensions QUASII reorganizes data. We discuss the data structure and how it accommodates

incremental indexing in more detail in Section 6.5.1.

Bene ts. Ultimately, the design choices behind our approach enable us to achieve the goals
we outlined. To reduce data-to-insight time (i), QUASII keeps data in the multi-dimensional,
spatial domain. This avoids transforming all data at the very beginning which signi cantly
hurts performance of the rst query. Next, to achieve query ef ciency (ii), QUASII uses data-
oriented partitioning that preserves spatial proximity, adjusts to the distribution of data, and
avoids object replication. Finally, to keep the cost of the incremental indexing low (iii), QUASII
gradually and partially sorts the data using a nested reorganization strategy.

92

6.5. Data Structure & Query Processing

6.5 Data Structure & Query Processing

In the following, we explain the QUASII index structure and data organization before we
proceed with discussing querying and incremental indexing algorithms.

Throughout this section, we refer to a 2d example given in Figure 6.4. It depicts a dataset
D ™ {o0o,...,09} Of ten (gray) rectangular spatial objects. All sub gures have three main parts:
the top part shows a 2d view of the dataset D and how the space is conceptually sliced by
QUASII, the middle (Data array) depicts how (raw) data objects are re-organized in main
memory, and the bottom shows QUASII’s hierarchical data structure that is incrementally
built. All x- and y-axis related slicing is marked in green and blue, respectively. Figure 6.4 a)
shows the initial state: the slice-less view of the data space with D objects and the very rst
query qi, the data array of spatial objects in an arbitrary initial order, and the data structure
containing the initial slice, sg (capturing the entire dataset).

6.5.1 Data Structure

QUASII forms a d-level hierarchical structure, organized according to the number d of dimen-
sions. Each level | has a one-to-one mapping to the corresponding dimension. That is, the

rst level (I ™ 1) represents slicing of data at X, the second level (I ™ 2) slices at y, and the third
level (I ™ 3) slices at the z dimension. The top level always slices data objects at the coarsest
granularity, while the bottom level is the most ne-grained. Each slice is described with four
attributes: (i) its level, (ii) a minimum bounding box capturing all its objects, (iii) indices to the
data array corresponding to the rst and last entry of the objects that belong to the slice, and
(iv) pointers to sub-slices re ning the slice further on the subsequent dimension. In Figure 6.4,
this corresponds to the four elds present in each node of the data structure (next to slice
label, e.g., sg): I, box, ids, and arrow pointers (when not null). In our two-dimensional view of
the dataset, we mark boxes with a solid line (in the corresponding color), while the slice cuts
are marked as dashed lines.

Data-oriented Slicing. One of the main advantages of data-oriented partitioning is that each
spatial object is always assigned to just one partition (slice). However, QUASII determines the
slices in each dimension based on query ranges. Given volumetric spatial objects, objects can
be sliced through and thus overlap with multiple slices. To overcome this problem, QUASII
represents each object using only one of its coordinates and uses this coordinate to identify a
slice where an object will be assigned to. In particular, during indexing, it uses each object’s
lower coordinate (X, V), 2;). Being part of object’s MBB, this does not require any additional
computation or storage?. In Figure 6.4, this coordinate is marked as a black dot for all objects.
Figure 6.4 b) illustrates slicing based on the very rst query g1 and its range [2,4] on the x-axis.
Slicingat x ~ 2 and x ~ 4 results in three x-slices (s1, S», and s3). While object og overlaps two
slices (sp and s3), it is assigned to s, based on its lower coordinate (x;). Note how the objects

2 The upper coordinate (Xy, Yu, Zu) or the object’s center (requires to be computed, though) can equally be used.

93

Chapter 6. In-Memory Incremental Indexing

a1

I

R e
X

Data array:
[01]0203[04]05 |06 [07 05|99 [00
Data structure:

I=1 So
box=inf
ids=0:9

(a) Spatial data and query q1

X
Data array:
[02]07]09]04]06 |90 [01]03]0s [s]
Data structure:
|I=1 S1 =1 S2 |I=1 S3
box=0,| |box=b, | |box=bs
ids=0:0| |ids=1:4| |ids=5:9
—
I=2 S21[|=2 S22
box=b>; || box=bys
ids=1:2 ||ids=3:4
(c) After slicing based on y of g1

Y a1
™
= 1 .
Data array:
[02[04]0s [07]0s [0001 [0s] 05]
Data structure:
I=1 S1| |I=1 S2| |I=1 S3

box=0, | |box=b,| |box=bs
ids=0:0| |ids=1:4| |ids=5:9
(b) After slicing based on x of g1

B "[la

Data array:
[0207[09 [04 0505 [0s [0 [01 05]
Data structure:
I=1 S1| |I=1 S2{[I=1 sh|[I=1 Sa
box=0, | | box=b, || box=b} || box=b,
ids=0:0| |ids=1:4||ids=5:6 ||ids=7:9
—
I=2 S21[1=2 S22
bOX:b21 bOX:bzz
ids=1:2 ||ids=3:4
(d) After processing g2

Figure 6.4 An example of query processing and incremental indexing in QUASII (con gured
with ¢x ~ 4 and ¢y = 2), given ten spatial objects (09 0g) and two range queries (g1 and q3).

are re-organized in the data array and correspond to three partitions (slices) with coordinates

X 2,2=x=4,and 4" x. Accordingly, the data structure is updated with three new (more

re ned) slices replacing the initial (coarser) slice sg (capturing the whole dataset).

94

6.5. Data Structure & Query Processing

While QUASII assigns objects to slices based on their single (lower) coordinate, it records
a minimum bounding box for each slice taking into account the actual spatial extent of
the objects and thus ensures the correctness of the query result. This also results in slice
representations (their MBBs) that are often much smaller but not necessarily within the
originally sliced bounds. For example, s; contains only one object and thus has a very small
MBB (i.e., itsbox ™ 0y), while the MBB of s, is by and exceeds the original cutat x ~ 4 (Figure 6.4
b)). As we show later, this enables QUASII to discard many unnecessary slices during query
execution. To limit unnecessary computation (as a slice can be reorganized multiple times
until itis fully re ned), QUASII computes a full MBB only when a slice is completely re ned.
Otherwise, a slice is represented with an open-ended MBB, i.e., the MBB has bounds only on
the dimension it has been sliced on.

Con guration. QUASII has only one con guration parameter, a size threshold ¢, that deter-
mines the maximum number of objects in a slice atthe nest level. That s, at the bottom level,
whenever a slice s contains less or ¢, number of objects (i.e, jsj = ¢), it is considered to be fully
re ned. Intuitively, this is similar to setting a (leaf) node size in the R-Tree.

The sizes of the remaining d j 1 levels are calculated as follows. Since QUASII performs data-
oriented slicing, the total number of partitions required to satisfy threshold ¢ is dn/¢e, where
n is the total number of objects (i.e., n ™ jDj). Consequently, the number of times QUASII has
to slice the data space across each dimension to produce dn/¢e partitions is equal to:
I m

r— pn/g, (6.1)
If we use ¢4 to denote the slice threshold at the bottom level | = d (i.e., ¢q ~ ¢), then the
maximum number of objects per slice for the remaining levels (up to the top) can be expressed
recursively as ¢q;1~ r £¢q. Note that r corresponds to the number of sub-slices (within a

slice) at each index level.

Turning to our 2d example?, after x-based slicing in Figure 6.4 b), s1 contains one object and
thus is considered fully re ned (i.e., js1j ~ 1 = ¢x), while s3 has ve objects and may be re ned
in the future. Also note that s3 stores an open-ended MBB (s3.box ™ b3).

The number of levels in QUASII is xed and always equals to the dimensionality of the queried
dataset. That is, it does not depend on the size of the dataset. Therefore, to accommodate the
index growth (the index grows in breadth) and enable ef cient query execution, QUASII keeps
the children (within a slice) organized/sorted according to the level’s dimension. QUASII uses
this order and the minimum bounding boxes (box) of each node to prune the amount of
objects necessary to be tested during the query execution.

3 To minimize the required number of objects in Figure 6.4, we x¢x ~ 4and ¢y~ 2.

95

Chapter 6. In-Memory Incremental Indexing

Algorithm 6: query(query q,data D,slices S, result R)

1: 80 ; // to store newly created (re ned) slices

2. dim 7 S[0].I // current level/dimension of slices in S

3: i 7 binarySearch(S, lower(g[dim]))

4: whilei ™ jSjand lower (S[i].box[dim]) « upper(q[dim]) do
5 if g\ S[i].box = ; then continue

6: S®~re ne(S[i], D,q) //asper Algorithm 2

7: for each slice s 25% do
8
9

if g\s.box® ; then
. if s.l is the bottom level then
10: foreach j 2{s.ids}do

11 ifD[j]\g¥® ; then
12: RTRIDIj]

13: else

14: if |s.childrenj™ 0 then
15: createDefaultChild(s)
16: query(q, D, s.children, R)
17: Sl

18: i—i 1

19: STS[S’

20: sort(S)

6.5.2 Query Processing and Index Re nement

Having de ned QUASII’s data structure, we discuss how it is incrementally built and main-
tained as a side effect of each query.

Query Processing. Algorithm 6 shows the pseudo-code for query processing. Each query tra-
verses the d-level structure depth- rst, starting from the rst level (having x-slices). Because
the slices are sorted, QUASII performs a binary search (Line 3) to nd the starting slice. It then
scans all the slices S[i] within the query range on the current dimension (i.e., while the loop
conditions in Line 4 hold). The loop conditions guarantee that each slice S[i] intersects q only
in the current dimension. To discard potential false positive slices early, Line 5 checks if its
actual boundaries (S[i].box) also intersect with the query range.

Next, QUASII potentially re nes S[i] (Line 6), which may be further sliced into multiple more

ne-grained slices S¥ if it is larger than the maximum size threshold ¢, (discussed in the next
algorithm). In Lines 7 16, QUASII traverses (potentially re ned) slices S”. For each s 2 8%, it
either checks all s objects for intersection in case of the bottom level or recursively proceeds
querying its children based on the next level/dimension (a default child is assigned to a not
fully re ned slice, Line 15). Finally, all the newly created slices are accumulated in S° (Line 17),
appended to S (Line 19), and re-sorted (Line 20). The slices are sorted based on their ids, i.e.,
the position (index) of the rstslice’s object in the data array.

96

6.5. Data Structure & Query Processing

Index Re nement. With each query, QUASII attempts to re ne all query intersecting slices
(i.e., Line 6 in Algorithm 6). Algorithm 7 provides the simpli ed pseudo-code for thisre ne-
ment process. Note that the processing within Algorithm 7 is always based only on the current
dimension/level of slice s (s.1).

The inputslice s is considered for slicing only if it exceeds the threshold ¢. Given s is coarse
enough, QUASII proceeds with determining the type of slicing based on the intersection
between query q and slice s. It considers three types of slicing. If both g’s lower and upper
coordinates are within s, a three-way slicing is performed splitting s into three sub-slices
(Line 5). If only one of q’s coordinates is within s, a two-way slicing is performed splitting s
into two sub-slices (Line 6). Finally, if g contains s (i.e., both q’s coordinates are outside of s’s
bounds), QUASII performs a two-way slicing based on an arti cially introduced coordinate.

QUASII iterates through the generated slices and for the ones that still exceed ¢, (and overlap
with the query) itapplies additional re nementaccording to arti cially introduced boundaries
in Line 10 (it repeats the process recursively until aslice is fully re ned in the corresponding
dimension). The three- and two-way slicing algorithms (Line 5 and Line 6) reorganize the data
(D) following the incremental quick sort strategy introduced in database cracking [53]. In the
reorganization process, QUASII also records the information about the boundaries (box) of
newly created or modi ed slices.

Example. Continuing with our example in Figure 6.4, after re ning sg into three x sub-slices
in Line 6 of Algorithm 6 (and resulting in Figure 6.4 b)), QUASII recursively continues with the
intersecting (and just re ned) slice s, based on the y dimension (Figure 6.4 ¢)). As such, s,
is further re ned based on the queried y range and results in three new slices (s»1, S22, and
S»3). In this step, only the objects within the s, range (ids ~ [1..4]) are three-way sliced and
re-organized in the data array. The two new slices (s3 is empty) are appended to the data
structure as children of s;. They are fully re ned (as js21j = 2 and js22j = 2) and have much
smaller MBBs (by; and by, respectively) than the initial slice cuts. Finally, because it is the
bottom level, the objects within sy, are checked against the query range and the two qualifying
objects {04,0¢} are added to the result set (R).

The subsequent query g, bene ts greatly from previous slicing, as illustrated in Figure 6.4 d).
For example, x-slices s; and s, are skipped completely because query g, does not intersect
with their MBBs (i.e, test on Line 5 in Algorithm 6). Therefore, QUASII proceeds with the only
intersecting slice s3, which is not fully re ned and requires further slicing. As per Algorithm 7,
this time a two-way slicing is performed (at x ~ 5.5) resulting in two ner slices (sg and s4)
replacing the previous slice s3. Next, QUASII continues with y-based slicing of the fully q5-
contained slice s}. Since s} reaches the size threshold ¢y, it is not re ned further. Finally, the
actual data array objects within s% range (ids ™ [5..6]) are checked for intersection with g, and
the qualifying og is added to the result set.

Arti cial Re nement. To produce a balanced hierarchical structure QUASII has to conform
with the de ned thresholds when forming the slices and using only query boundaries does

97

Chapter 6. In-Memory Incremental Indexing

Algorithm 7: re ne(slice s,data D,query q) j ¥ slices S
1: ifjsj = ¢[s.1] then

return {s}

2287 ; // to store re ned slices
3: t 7 determineSliceType(s, q)

4: switch (t)

5: case both: S' ~ sliceThreeWay(s, g, D)

6: case one: S" " sliceTwoWay(s, q, D)

7: default: S’ " sliceArti cial(s, q, D)

8: for each slice s 25’ do

o: if jsj" " ¢[s.1]and q[s.1]\s.box[s.1]1® ; then
10: S%~ sliceArti cial(s, g, D)
1L s—ss”
12: else
13: ST S[s

14: return Sa

not meet these requirements. One query is usually not suf cient and we cannot use the
subsequent queries for this purpose, as they may interfere with the existing order of the slices.
For instance, reorganizing a slice again (that has been organized according to all dimensions)
based on the x dimension, may disrupt the previously established partitioning for y and z
dimensions.

To address this problem, QUASII reorganizes a slice s (Lines 7 and 10 in Algorithm 7) until it
meets a size threshold ¢ in the corresponding dimension. It achieves this by forcing a two-way
slicing based on arti cially introduced coordinate and thus splitting the slice into two sub-
slices. Given the range (x;, Xy), the new coordinate isc ™ b(x; ~ xy)/2c. The two new slices are
recursively sliced further until the threshold ¢ is satis ed.

While more advanced approaches, e.g., based on the concepts from R*-Tree node splitting
algorithms [12], would minimize overlap in data structure, they would also signi cantly
increase the cost of incremental strategy. Therefore, QUASII employs the above uniform and
low-cost arti cial slicing strategy to meet ¢ thresholds at each of d levels.

Query & Re ne. The outcome of QUASII’s reorganization strategy are the slices that are
within the query range and consequently only the objects in these slices are checked for
intersection. However, performing the reorganization following strictly the query’s boundaries
would produce an incomplete result, as illustrated in Figure 6.5. For instance, the object o
overlaps with the query range q, however, its lower coordinate is outside the query’s boundaries
and consequently o would not be identi ed as a part of the result.

To ensure correct query execution while preforming re nement, QUASII employs the query
extension technique [122]. More precisely, it extends the query for maximum object extent in

98

6.6. Experimental Evaluation

Figure 6.5 Re nement step: query extension.

each dimension, considering lower coordinate. This extension is done only when performing
re nement and only within not fully re ned slice. Consequently, the query that performs re-

nement potentially considers more objects for intersection as its range is enlarged. However,
this introduces a minimal overhead as the only alternative is the expensive scan of the entire
unre ned slice. We apply the same logic for the binary search where, to avoid missing any
slices due to the overlap within them, we extend the query range (while performing binary
search) for the maximum slice extent in the corresponding dimension.

6.6 Experimental Evaluation

In this section, we rst describe the experimental setup & methodology and then present
a thorough experimental analyses that illustrates the bene ts of our incremental approach,
both on a real-world neuroscience and synthetic datasets. We start the analyses by outlining
the shortcomings of the approaches based on space-oriented partitioning in Section 6.6.2. We
then study the incremental approaches by comparing them with their static counterparts in
Section 6.6.3 and cross-evaluating their performance in Section 6.6.4. Finally, Section 6.6.5
describes the sensitivity analyses of QUASII.

6.6.1 Experimental Setup & Methodology

Hardware. We run our experiments on a Red Hat Enterprise Linux Server release 7.3 machine
equipped with 2 Intel Xeon CPU E5-2650L processors at 1.80GHz and 768GB of RAM. Each
processor has 12 cores (24 hardware threads) with private L1 (32KB) and L2 (256KB) caches
and 30MB of shared L3 cache.

Implementations. All indexing techniques are implemented in C++ and compiled with g++
4.9.3 with the maximum optimization level. The list below summarizes the implementations
that we study:

Scan: performs a full data scan to answer each query.

99

Chapter 6. In-Memory Incremental Indexing

SFCracker: is our incremental variant of database cracking [53] for spatial data, described
in Section 6.3.1. We use the Z-order as a SFC order. The average farthest distance of neighbours
in the Z-order is (slightly) higher than in the Hilbert order [29] (i.e., it has better locality),
however, we opt to use the Z-order due to its simplicity and the huge body of work on its
ef cient range query algorithms [11, 120, 132, 134]. We use 32-bit to represent zcodes (i.e., 10
bits per dimension) as a trade-off between memory resources and precision (the number of
false positives to be Itered).

SFC: is a static counterpart of SFCracker. In the pre-processing phase, SFC transforms data
from multi- to one-dimensional domain and sorts it according to the produced SFCcodes.
During querying, a (3d) query range is also converted to a 1d range and a binary search is
used to locate the objects in the 1d interval. We employ the same representation of zcodes and
query optimization as in SFCracker (described in Section 6.3.1).

QUASII: is our incremental approach discussed in Section 6.4. We use 60 objects as a node
capacity ¢;.

R-Tree: according to our setting, all data is available before querying. Therefore, we use a
bulk-loading approach to build the R-Tree index as it reduces overlap and decreases pre-
processing time compared to the R-Tree built by inserting one object at a time [70]. For this
purpose, we use an ef cient STR [70] bulk-loading strategy that balances well the overhead of
partitioning the data and query performance. It outperforms Hilbert R-Tree [61] in terms of
query performance [70], while its pre-processing cost is hot signi cantly higher [127]. Similarly,
TGS [34] and PR-Tree [10] can outperform STR on datasets with extreme skew and aspect
ratio, however, they incur considerable overhead for data partitioning. We use the same
con guration for node capacity (60) as in QUASII.

Mosaic: corresponds to the space-oriented incremental approach described in Section 6.3.2.

Grid: is a uniform grid-based index, a static counterpart of Mosaic. We use query exten-
sion [122] technique (as discussed in Section 6.3.2) to assign an object to a grid cell. We use
two con gurations with 100 and 220 partitions per dimension for the synthetic and neuro-
science datasets, respectively. Both con gurations are obtained through a parameter sweep.

Dataset and Queries. We use real-world neuroscience and synthetic datasets.

Neuroscience: we use a small part of the rat brain model represented with 450 million cylin-
ders as elements in a volume of 285 ,,m®. We approximate the cylinders with MBBs, resulting
in the total number of 450 million MBBs with a size of 21GB on disk. Based on the previously
described use cases, we synthetically generate queries, each having a xed volume gvol of
1012% of the queried brain volume and a clustered distribution. We generate 5 query clusters
each with 100 queries, where query centers are distributed around the cluster centers following
a Gaussian distribution (,, — 0, ~ gvol).

100

6.6. Experimental Evaluation

(a) Query execution (b) Con guration

Figure 6.6 The impact of space-oriented partitioning.

Synthetic: we create synthetic datasets by distributing spatial boxes in a space of 10000
units in each dimension of the 3d space. The length of each side of each box is determined
uniform randomly between 1 and 10 for 99% of the objects, while 1% of the objects has a side
ranging from 10 - 1000 units. The spatial elements are distributed according to a uniform
distribution. The datasets have 500 million and 1 billion elements (size on disk 22.5GB and
45GB). For completeness and to test non-skewed cases, we generate uniform workload. The
uniform workload contains up to 10000 uniformly distributed queries. To have range queries
of different selectivity, we vary qvol: 1013%, 10i1%, 1%, and 10% of the universe.

6.6.2 Space-oriented Partitioning Challenges

Both, Mosaic and SFCracker (introduced in Section 6.3), use space-oriented partitioning at
their core Mosaic partitions space, while SFCracker assigns the SFCcodes using a uniform
grid. Before we start the analysis of incremental approaches we experimentally demonstrate
the shortcoming of space-oriented partitioning the overhead introduced with data assign-
ment strategy since it also affects incremental solutions. Further on, we illustrate why a
static approach based on space-oriented partitioning, such as a uniform grid, is not a suitable
replacement for an incremental index despite having a comparatively cheap pre-processing
step (once properly con gured).

Data Assignment. Inthe rstexperimentwe illustrate the impact of data assignment strategies

by comparing the performance of Grid and R-Tree. We use two variants of the Grid approach:

GridQueryExt avoids the objects replication by using the query extension technique it assigns

an object to the grid partition based on its center, while GridReplication replicates the objects
it assigns an object to all the overlapping partitions.

Figure 6.6a) shows the results of the experiments where we execute 500 clustered queries of
selectivity 0.01% on the neuroscience dataset. GridReplication is heavily affected by object
replication which increases the number of objects necessary to be checked for intersection and
introduces an expensive de-duplication step (needed due to objects replication). GridQueryExt

101

Chapter 6. In-Memory Incremental Indexing

achieves better performance, however, it still considers 3.1£ more objects for intersection
than the R-Tree as it extends the initial query for the maximum object extent. The R-Tree
clearly outperforms both GridReplication and GridQueryExt with a speedup of 19.4£ and 3.7£
respectively.

Con guration. In the second experiment we demonstrate the dif culty to con gure the grid-
based approaches. We use two datasets with identical extent and number of elements but
different data distributions: Uniform (uniform distribution, synthetic dataset) and Neuro
(skewed distribution, the neuroscience dataset). We use the same experimental setup as for
the previous experiment. The best con guration (number of partitions per dimension) is
100 for Uniform and 220 for the Neuro dataset and is determined in a parameter sweep. We
measure the execution time when using both con gurations for each dataset and illustrate
the results in Figure 6.6b).

Although both datasets have the same number of elements and extent, the best con guration
signi cantly depends on the data distribution the neuroscience dataset requires more
partitions compared to the Uniform dataset since it has the very dense regions that require ne
grained partitioning. Furthermore, the grid con guration signi cantly affects performance

the grid performance on the Uniform dataset deteriorates notably when using the Neuro
dataset con guration and vice versa.

Summary. Space-oriented partitioning introduces performance penalties. Depending of data
assignment strategy, we either consider more elements or suffer from replication. Additionally,
the grid con guration is non-trivial and using the wrong one has a detrimental impact on
the execution time. In practice we have to use a parameter sweep to nd the con guration
for a given workload. Consequently, grid con guration turns into a time-consuming process,
increasing data-to-insight time.

6.6.3 Incremental versus Static

We rst analyze the incremental approaches by comparing their performance with the perfor-
mance of their static counterparts (introduced in Section 6.6.1). Each static approach has sim-
ilar properties as its incremental counterpart, however, it involves necessary pre-processing.
We categorize the approaches according to these properties as a) one-dimensional, b) space-
oriented and c) data-oriented approaches. For each category we present the performance
of the incremental approach, its static counterpart and Scan. We rst evaluate if and when
the approaches converge to the performance of their static counterparts and then analyze
the overhead of the incremental strategy. For this purpose we execute the clustered query
workload with 500 queries of selectivity 0.01% on the neuroscience dataset.

Convergence. In the rst experiment we evaluate the convergence of the incremental ap-
proaches how fast an approach converges to the execution time of a fully indexed dataset.
Figure 6.7 measures the execution time of each query for all approaches.

102

6.6. Experimental Evaluation

Figure 6.7 Convergence of a) one-dimensional, b) space-oriented c) data-oriented based
approaches.

Figure 6.8 Cumulative time of a) one-dimensional, b) space-oriented c) data-oriented based
approaches.

The results show ve peaks in execution time, one for each query cluster. The execution of the

rst cluster of queries (and the associated processing of the data) takes the longest as no index
structure exists at the beginning. The rst queries therefore exceed the cost of Scan, because
at this point, the entire dataset has to be scanned along with building partial index structures.
Subsequent queries within a cluster use a partial index and thus execute in less time than a full
scan, but take longer than queries on the static approach. This process continues as queries
in the same cluster further re ne the index. Queries in one cluster not only re ne the index
locally but also carry out limited, global re nement. The queries in a subsequent cluster thus
bene tfrom previous clusters and execute faster. As the index converges to its full structure,
the query execution time approaches that of the to static approach.

Cumulative Response Time. While in the previous set of experiments we measure the individ-
ual query performance, in this analysis we measure the cumulative execution time (including
index building step for the static approaches). Figure 6.8 illustrates the experimental results.

Similar to the convergence experiment, the query clusters are visible: the cumulative response
time jumps each time the experiment moves to a new cluster. The most expensive is the
transition fromthe rstto the second cluster while subsequent transitions become less evident
as the index becomes more re ned.

The cumulative cost of SFCracker is comparatively high and, crucially, with a very expensive
rst query. One reason is that the rst query takes 12.9% of the total pre-processing by
assigning the objects to the grid cells and calculating the zcode values for the entire dataset.

103

Chapter 6. In-Memory Incremental Indexing

Adding to this the cost of cracking, the total execution time of the rst query grows to 43% of
the total pre-processing time. More precisely, in order to minimize the overhead introduced
by the transformation to 1d space, we partition the 1d query range into sub-intervals that
tightly cover its original 3d range. This optimization [132] results in a high number of small
intervals per query on average 197. As a consequence, the rst queries crack the previously
uncracked area into a number of small adjacent intervals and therefore reorganize signi cant
amounts of data.

The static (SFC) index, on the other hand, is not substantially slower for the rst queries, i.e.,
the building cost of SFC is not much higher than the rst query of SFCracker. In fact, the
cumulative execution time of SFCracker exceeds the one of SFC after 23 queries already. The
incremental approach SFCracker thus does not offer a considerable bene t over SFC.

The incremental strategy of Mosaic is less expensive compared to SFCracker the objects
within the partition queried are potentially reassigned to the eight newly created partitions
based on their location. Therefore, it takes Mosaic longer, i.e., 100 queries, before it exceeds the
cumulative time of the static Grid. However, its cumulative execution time is still considerable
with the biggest overhead being its top-down incremental strategy. The top-down strategy
ensures fast convergence but it also introduces overhead as the data in frequently queried
areas is re-partitioned multiple times until Mosaic reaches its nal level of re nement.

QUASII, at the same time, does not exceed the cumulative execution of the R-Tree in our
experiments. Even after 500 executed queries, the cumulative execution time for QUASII is
39.4% of that of the R-Tree. The main bene tcomes from its partial reorganization strategy
where the objects are gradually reorganized within the query boundaries, as opposed to the
complete sort.

Summary. While all the incremental approaches reach the performance of their static coun-
terparts, the incremental strategies of SFCracker and Mosaic are comparatively expensive. As
we show for SFCracker, the major bulk of work has to be done when executing the rst query
as the data needs to be transformed to 1d space and a single query has to perform multiple
cracking operations to avoid performance penalties due to the transformation to 1d space.
Mosaic increases its cumulative time considerably due to its top-down partitioning strategy

it reorganizes data in frequently queried areas multiple times until it reaches its nal level
of re nement. Only the cumulative execution time of QUASII does not exceed the one of its
static counter part, the R-Tree, in our experiments.

6.6.4 Comparative Analysis

In this set of experiments, we compare the performance of incremental approaches. We use
the same setup as previously and measure the convergence of execution time as well as the
cumulative execution time.

104

6.6. Experimental Evaluation

Figure 6.9 Comparative analysis of incremental approaches: convergence.

Convergence. Figure 6.9 depicts the single query execution time for all the incremental
approaches compared with the R-Tree and Scan. We use the R-Tree approach as a reference
because it is the fastest approach among the static indexes for the workloads tested. We

rst analyze the execution time of the rst query and then focus on the performance of the
converged data structure.

The execution time of the rst query determines data-to-insight time and thus has to be as
small as possible. Among the incremental approaches, SFCracker has the most expensive rst
query due to the transformation of data to the 1d space. Mosaic’s rst query is faster, but still
expensive as it has to reassign all the objects to new partitions, examining all three coordinates.
Finally, QUASII has the least expensive rst query due to the nested data reorganization
the number of objects necessary to be examined and reorganized becomes smaller as more
dimensions are taken into account: all objects are scanned on the x-dimension, but on the
y-dimension only the objects with a x-value satisfying the query will be scanned (accordingly
for the z-dimension). Overall, Scan is 13.7, 9.2 and 4.6 times faster compared to SFCracker,
Mosaic and QUASII respectively, when executing the rst query.

Among the incremental approaches, only QUASII attains the query execution time of R-Tree on
a fully converged index. Mosaic and SFCracker have at their core space-oriented partitioning
and therefore, their performance is affected by the data assignment strategy as well as the
skew in distribution, as Section 6.6.2 shows. SFCracker additionally transforms data to 1d
domain and thus cannot preserve spatial proximity to the same extent as the other approaches.
Consequently, QUASII outperforms Mosaic and SFCracker with a speedup of 3.68x and 4.9x
respectively for the average execution time of a query in a fully re ned area.

Cumulative Execution Time. We use the cumulative execution time as metric to evaluate the
decrease in the data-to-insight time as well as the "break-even" point the point when the
cumulative cost of incremental exceeds that of static indexing to assess the quality of an

105

Chapter 6. In-Memory Incremental Indexing

Figure 6.10 Comparative analysis of incremental approaches: cumulative time.

incremental index. Figure 6.10 shows the experimental results. We use Grid as a reference since
it has the smallest cumulative execution time among the static approaches its pre-processing
step is comparatively cheap (once its optimal con guration is determined).

As discussed in Section 6.6.3, SFCracker and Mosaic have comparatively expensive strategies
and thus reach the performance of Grid after 13 and 100 queries respectively. Grid, on the
other hand, compared to QUASI, has not amortized its building cost after 500 queries. More
precisely, QUASII reaches 84% of the Grid cumulative execution time and, more importantly,
it achieves 3.66x faster query performance for completely re ned areas. QUASII executes the

rst query the fastest and consequently achieves the highest decrease in data-to-insight time
5.1x and 11.4x compared to Grid and R-Tree.

For single query execution, the major bene t of QUASII comes from its data-oriented parti-
tioning. Similar the to R-Tree, it adjusts to the distribution of the data and, as opposed to Grid
and SFC, it does not replicate the objects or extend the query. It additionally keeps the data in
multidimensional space and does consequently not suffer from decrease in dimensionality.
Its low cumulative cost is mostly attributed to its incremental strategy. QUASII does not sort all
objects, but rather reorganizes them within the speci ¢ bounds, gradually curbing the amount

of data necessary to be reorganized.

Summary. QUASII outperforms other incremental approaches with respect to the conver-
gence of execution time and cumulative time. It achieves performance comparable to the
R-Tree (the fastest static approach) in the areas of the dataset where enough queries have been
executed, while not exceeding the cumulative time of Grid (the static approach with the least
expensive pre-processing). Its major bene ts come from the data-oriented partitioning and
the nested reorganization strategy which reorganizes precisely the data touched and used.

106

6.6. Experimental Evaluation

Figure 6.11 Convergence and cumulative time: the rst 500 (a & ¢) and last 100 (b & d)
queries.

6.6.5 Analysis of QUASII

In this section we focus on QUASII. We evaluate its performance on the workloads other than
neuroscience, analyze its scalability and the impact of query selectivity.

6.6.6 Uniform Workload

In the previous analyses we used workloads with query clusters that show the bene t of
incremental approaches: the index quickly converges to the nal performance as the queries
are targeting the same areas. In this experiment we evaluate the performance of QUASII for
a uniform workload. We execute 10000 uniformly distributed queries of selectivity 0.1% on
the dataset with uniform distribution and 500M elements. We compare the performance of
QUASII with Scan and R-Tree and additionally consider Grid for the cumulative execution
time. Figure 6.11 illustrates both convergence and cumulative time for the rst 500 and last
100 queries of the workload.

None of the rst 500 queries is executed on a completely re ned index. Starting with the 300th
query, however, the single query execution is close to the nal performance. Among the last
100 queries, 64 are executed on a completely re ned index. The performance of queries on
the re ned structure is equal or very close to the performance of the R-Treg, i.e., on average
7.5% slower than the R-Tree.

107

Chapter 6. In-Memory Incremental Indexing

Figure 6.12 Scalability analysis. Figure 6.13 Impact of selectivity.

After 10000 executed queries QUASII reaches 75% and 63.8% of the cumulative time of the
R-Tree and Grid approaches respectively (y axis is in log scale). Likewise, it decreases data-
to-insight time by 10.3x and 5.6x compared to R-Tree and Grid. Although the pre-processing
step of Grid is signi cantly cheaper compared to the R-Tree, its cumulative time deteriorates
with more queries executed due to the expensive single query performance.

6.6.7 Performance Trends

In the following experiment we evaluate the scalability of QUASII by executing 10000 queries of
selectivity 0.1% on datasets with 500 million and 1 billion elements. In Figure 6.12 we compare
the cumulative time of QUASII with R-Tree, where we additionally split the execution time of
R-Tree into Building and Querying.

After 10000 executed queries QUASII reaches 75% and 73.7% of the cumulative time of the
R-Tree with datasets of 500M and 1B elements respectively. By the time the R-Tree nishes
its building process QUASII has executed around 8000 queries in both cases. QUASII also
decreases data-to-insight time by 10.3x (on the 500M dataset) and 10.6x (on the 1B dataset)
compared to the R-Tree, maintaining the performance trends as the dataset size increases.

6.6.8 Impact of Selectivity

In this set of experiments we evaluate the impact of query selectivity on the performance of
QUASII. We measure the cumulative time for a uniform workload: 500M dataset and 5000
queries of 0.001%, 1%, and 10% selectivity. Figure 6.13 illustrates the results where we consider
both the R-Tree and QUASII.

Intuitively, a static index (R-Tree) takes more time to amortize its building cost when executing
0.001% selectivity queries. On the other hand, the lower selectivity queries (10%) touch and
reorganize asigni cant amount of data and QUASII thus reaches the break-even point with
the R-Tree faster. Overall, after 5000 executed queries, QUASII reaches 68.8%, 79.8% and 85.6%
of the cumulative time of the R-Tree for queries with 0.001%, 1%, and 10% selectivity.

108

6.7. Conclusions

6.7 Conclusions

The advances in data acquisition technologies and supercomputing for large-scale simulations
rapidly increase the amounts of spatial data generated and collected. This data helps the
scientist tremendously to gain insights and understand natural phenomena, however, at the
same time, it leaves them with the challenge of analyzing it. Known approaches to spatial
indexing have two major drawbacks with respect to exploratory analyses. First, they require a
time-consuming pre-processing step that delays analyses. Second, given the massive amounts
of data, a scientist frequently only analyzes a small fraction of it and consequently indexing
the entirety of the data does not always pay off.

In this chapter we present a novel incremental index for the exploration of spatial data, where
the ultimate goal is to let the scientists perform exploratory analyses as soon as the data is
available, while using their queries to incrementally index the data. Our approach, QUASII,
reduces data-to-insight time and curbs the cost of incremental indexing, by gradually and
partially sorting the data, while producing a data-oriented hierarchical structure. As our
experiments show, QUASII reduces the data-to-insight time by up to a factor of 11.4x, while its
performance converges to that of the fastest state-of-the-art static indexes.

109

Part 111

Dictionary Compression Tailored for
Spatial Data

4 Dictionary Compression in Point
Cloud Data Management

Nowadays, massive amounts of point cloud data can be collected thanks to advances in data
acquisition and processing technologies like dense image matching and airborne LiDAR (Light
Detection and Ranging) scanning. With the increase in volume and precision, point cloud
data offers a useful source of information for natural resource management, urban planning,
self-driving cars and more. At the same time, the scale at which point cloud data is produced,
introduces management challenges: it is important to achieve ef ciency both in terms of
querying performance and space requirements. Traditional le-based solutions to point cloud
management offer space ef ciency, however, cannot scale to such massive data and provide
the same declarative power as a database management system (DBMS).

In this chapter, we present a time- and space-ef cient solution to storing and managing point
cloud data in main memory column-store DBMS. Our solution, Space-Filling Curve Dictionary-
Based Compression (SFC-DBC)*, employs dictionary-based compression in the spatial data
management domain and enhances it with indexing capabilities by using space- lling curves.
It does so by constructing the space- lling curve over a compressed, arti cially introduced
3D dictionary space. Consequently, SFC-DBC signi cantly optimizes query execution, and
yet it does not require additional storage resources, compared to traditional dictionary-based
compression. With respect to space- lling curve-based approaches, it minimizes storage
footprint and increases resilience to skew. As a proof of concept, we develop and evaluate our
approach as a research prototype in the context of SAP HANA. SFC-DBC outperforms other
dictionary-based compression schemes by up to 61% in terms of space and up to 9.4x in terms
of query performance.

7.1 Introduction

Recent advances in laser technology [137] and image processing [44] have evolved the impor-
tance of point cloud data and challenges considering its management. The ease of gathering
3D point cloud data, together with its public availability, have made it more attractive to users.

1 This work originally appeared in [102].

113

Chapter 7. Dictionary Compression in Point Cloud Data Management

During recent years, many datasets have been released as open data. These datasets offer a
useful source of information for natural resource management, urban planning and more, by
modeling point data through up to 26 properties such as x, y, and z coordinates, angle of scan,
and color. One such prominent dataset is the second national height map of the Netherlands
(AHNZ2) [88], which was acquired through airborne and terrestrial scanning and contains 640
billion points.

Given the massive amounts of point cloud data, it is important to achieve ef ciency in terms
of both querying performance and storage footprint. Traditional solutions to point cloud data
management are le-based: points are stored in lesin a prede ned format and processed
by application-speci c algorithms. These solutions typically employ ef cient compression
schemes, but 1) face scalability problems with respect to the increasing number and size of

les to process and 2) lack the declarative power of a DBMS [8, 134]. Therefore, research in
this area has recently shifted towards DBMSs, as many of the data management challenges
encountered with the increasing point cloud data size have already been addressed in DBMS
solutions [134]. Recent work [8, 37, 67, 134] illustrates the potential of column-store DBMSs to
meet point cloud management requirements, but focuses mostly on processing performance
and ignores storage considerations.

This chapter presents a design for storing and managing point cloud data in the context of
column-store DBMSs, that is driven both by time and space ef ciency requirements. More
speci cally, we employ dictionary-based compression (DBC) a compression method fre-
quently used in main-memory column stores [30, 68] in the spatial domain and enhance
it with indexing capabilities, minimizing both space and time requirements. The resulting
technique, Space-Filling Curve Dictionary-Based Compression (SFC-DBC), compresses point
cloud data using DBC, leveraging the frequent repetition of the values for X, y, and z coordi-
nates across point cloud entries; this property is particularly evident for data obtained through
image matching processing as it inherits the grid-like structure of images. DBC signi cantly
minimizes space requirements. However, it is agnostic to spatial data properties. To preserve
and exploit spatial data properties and thus optimize further for query execution, we combine
DBC with Space-Filling Curve (SFC) order to design a new compression scheme.

According to our compression scheme, a point cloud entry is represented through its position
inanarti cially introduced 3D dictionary space and indexed using a SFC order. As we illustrate
in our experimental results, SFC-DBC does not require additional space resources, and yet
signi cantly optimizes query execution, compared to traditional DBC. With respect to the
traditional space- lling curve-based approaches, it minimizes storage footprint and increases
resilience to skew.

In particular, our contributions are:

We explore different solutions to store and manage point cloud data, having dictionary-
based compression asa rst-class citizen.

114

7.2. Background

We develop SFC-DBC, a novel encoding scheme that employs dictionary-based com-
pression in the spatial domain, enhancing it with indexing capabilities to provide time
and space ef ciency properties.

We develop and evaluate our approach as a research prototype in the context of SAP
HANA [30]. SFC-DBC outperforms other dictionary-based compression schemes by up
to 61% in terms of space and up to 9.4x in terms of query performance.

The remainder of the chapter is structured as follows. We provide the background of our work,
i.e., discuss DBC and SFC order in the context of point cloud data management in Section 7.2.
We introduce our approach in Section 7.3 and discuss experimental evaluation in Section 7.4.
Finally, we draw conclusions in Section 7.5.

7.2 Background

Our proposed solution combines dictionary-based compression (DBC) and space- lling curve
(SFC) order to ef ciently store and manage point cloud data. Therefore, in this section we
discuss the choice of DBC and SFC order, describe traditional approaches to these techniques
and outline their shortcoming and challenges when it comes to point cloud data management.

7.2.1 Dictionary-based Compression

Two major technologies that are used for point cloud data acquisition are LiDAR [137] and
dense image matching [44]. LiDAR is fundamentally a distance technology that uses an
emitted laser pulse to determine an object’s distance from a sensor, while image processing
technology acquires point cloud data through dense image matching of multiple overlapping
aerial images. With recent technological advancements, dense image matching has gained
popularity as it offers the same capabilities as LiDAR, at a lower price and ner resolution [44].
Whether the point cloud data is obtained through LiDAR or image matching technology,
the values for x, y, and z coordinates (not the points themselves) repeat across point cloud
entries frequently. The data obtained through image matching processing by default has
these properties as it inherits the grid-like structure of images, while LiDAR data obtains these
characteristics as the result of typically employed post-processing steps (e.g., thinning-out of
data) [110, 137]. We take advantage of these patterns in data distribution by employing DBC, a
method frequently used in main-memory column stores [30, 68].

Dictionary-based Compression. DBC compresses a column by mapping its domain to a list
of continuous integer values, i.e., replacing wide values in the attribute domain with smaller
codes. Its simplest form consists of a dictionary and an index vector (1V) [107, 118]. The
dictionary stores the sorted distinct values of the column domain, while the IV maps each
point to its position in the dictionary. The IV can be further compressed [138].

115

Chapter 7. Dictionary Compression in Point Cloud Data Management

Figure 7.1 An example of range query execution over a dictionary-based representation of
point cloud data.

When naively applied in the context of point clouds, DBC represents point cloud data as three
independent columns one for each dimension of the 3D space composed of a dictionary
and an IV. The dictionary stores the sorted distinct values for the corresponding dimension
and the IV maps the point to its corresponding position in the dictionary, as illustrated in
Figure 7.1. A 3D range query is executed by performing binary search on the dictionary of each
dimension to identify values and their corresponding positions in dictionaries that intersect
with the query range. The binary search is followed by a scan of the corresponding IV to
identify the records that match the identi ed dictionary position.

Challenges. We use the aforedescribed approach as a baseline in our experimental evaluation.
For space-ef ciency purpose, the IV is further compressed [138], i.e., each IV entry hasa xed
length that corresponds to the number of bits necessary to represent a maximum value in IV.

Although the baseline DBC solution to store and query point cloud data is a straightforward
one, it wastes computational resources as it does not leverage the spatial properties of data.
It treats and consequently processes the dimensions and points independently, leading to
a full scan of the 1Vs for each dimension. As we illustrate in our experiments (Section 7.4),
even optimized scans of vector data require considerable time when processing massive point
cloud datasets.

Therefore, to optimize this strategy we leverage a correlation within and across point cloud
entries. A point cloud entry is represented with X, y, and z coordinates that are correlated, i.e.,
they describe a point in 3D space. Moreover, there is a correlation across the points: points
close in 3D space will be frequently processed (e.g., queried) together. Therefore, we take
advantage of this property and organize data to persevere spatial proximity. Consequently,
we can restrict a search range using an index structure (that combines all 3 dimensions) and
improve the data access patterns. However, a challenge is to achieve this in both time and
space-ef cient manner, as an index-like structure normally increases the storage footprint.

116

7.2. Background

7.2.2 Space- lling Curves

A common way to preserve and exploit spatial data properties is by using Space- lling Curves
(SFC) [69, 84, 85, 104, 134]. SFC-based organization transforms data from a multi- to a one-
dimensional domain using a SFC to impose a total, one-dimensional (1D) order by visiting
all the points in a D-dimensional grid exactly once. The Hilbert curve [59], the Gray-code
curve [28], and the Z-order [96] are examples of SFC curves that are effective in preserving
spatial proximity [29, 59, 86]. We opt to use a SFC-based organization to preserve and exploit
spatial data properties due to its suitability for column-store DBMS. By transforming data to a
1D domain, we do not preserve spatial proximity to the same extent as with multi-dimensional
data structures, however, we retain the ability to employ ef cient scans of vector data. Sim-
plicity and ef ciency in the preprocessing step are additional bene ts of this approach. In
the following we describe the traditional approach to organize and query data using SFC. We
focus on range queries as they are broadly used in many applications and are also the building
block for many other spatial queries (e.g., k-nearest neighbor queries [60]).

SFC Organization. SFC order reorganizes data in three steps: (1) Partition the dataset’s
universe with a uniform grid and assign to each cell a value on the space- lling curve (SFCcode),
(2) Assign SFCcode to every point cloud entry according to the grid cell they belong to, where
multiple point cloud entries can map to the same SFCcode value, and (3) Sort the points based
on the assigned SFCcode.

Range query execution is composed of two steps. 1) Transform a query to the 1D domain
according to the SFC-order and perform binary search on the SFCcodes data structure based
on the transformed ranges. 2) As a SFCcode is assigned per cell and not per point basis, all the
points whose SFCcode matches the result of the binary search have to be additionally checked
whether they belong to the query range in order to remove false positives. Techniques that
partition the curve into multiple sub-intervals, each of which is fully contained in the original
range [132], are used in order to minimize the number of checks in the second step.

Challenges. Traditional SFC-based organization offers a simple and ef cient way to preserve
and exploit spatial proximity. However, it does so by constructing a SFC order that is stored
in addition to the data model. Therefore, whether we preserve data in the initial form (un-
compressed 3D points) or use dictionary-based representation (Section 7.2.1), the SFCcodes
structure requires additional storage resources. Consequently, applying the traditional scheme
improves querying performance, however, it hurts space ef ciency. To evaluate the perfor-
mance of our approach, apart form the technique described in Section 7.2.1, we also develop
a solution that is based on the aforedescribed, traditional approach. For space-ef ciency
purposes we introduce one modi cation instead of representing data in its initial, uncom-
pressed form, we use the dictionary-based representation (as discussed in the experimental
evaluation section Section 7.4).

117

Chapter 7. Dictionary Compression in Point Cloud Data Management

Figure 7.2 Dictionary space, 2D illustration.

7.3 Space-Filling Curve Dictionary-Based Compression

To ef ciently employ DBC in the spatial domain, we develop Space-Filling Curve Dictionary-
Based Compression (SFC-DBC), a solution for storing and managing point cloud data that is
driven both by time and space ef ciency requirements. SFC-DBC combines DBC with SFC
order to ensure space ef ciency and preserve spatial proximity, thus optimizing for query
execution. Our approach ultimately applies DBC in the spatial domain and enhances it with
indexing capabilities without introducing additional storage requirements.

SFC-DBC represents a point cloud entry through its position in an arti cially introduced 3D
dictionary space and indexes it using a SFC order. The dictionary space is a compressed 3D
space that we reconstruct from x, y, and z dictionaries. To do so, we exploit the fact that the
dictionaries resemble the dataset space (universe) when combined, since each of them is
sorted according to the corresponding dimension. SFC-DBC represents and indexes a point
cloud entry using a SFC order constructed over this 3D space.

Figure 7.2 illustrates the dictionary space where, for the sake of simplicity, we use a 2D il-
lustration. The SFC order (Z-order in our example) is constructed over the dictionary space,
by partitioning it into four cells per dimension. SFC-DBC represents and indexes a point
cloud entry with its position in the SFC order, i.e., with the assigned SFCcode which identi es
the dictionary space cell that the point belongs to. As multiple points can map to the same
SFCcode, to uniquely represent the position of the point in the dictionary space (and thus its
value), SFC-DBC additionally captures the position within the cell that the point belongs to.
For instance, in Figure 7.2 a point P(0.1,1.5) is represented through our encoding scheme
with a SFCcode that encodes the cell ids that P maps to (0 and 0 value for x and y coordinate,
indicated with blue color) and with the offsets that store the position of P withinacell (0 and 1
value for x and y coordinate, indicated with red color).

118

7.3. Space-Filling Curve Dictionary-Based Compression

Figure 7.3 SFC-DBC (data-aware) and SFC-based (space-oriented) partitioning strategy.

Improvement over DBC. With respect to traditional DBC, SFC-DBC signi cantly optimizes
query execution, and yet it does not require additional storage resources, as we illustrate
in Section 7.3.3. The key insight is that a SFC order is integrated into the dictionary space
model. Consequently, the SFC order plays the role of the IV data structure (Section 7.2.1)
while preserving spatial data proximity and low storage footprint.

Improvement over SFC. Compared to traditional SFC-based approaches, SFC-DBC minimizes
storage footprint and increases resilience to skew. SFC-DBC achieves this by constructing a
space- lling curve over areduced dictionary space, instead of the original data space (universe).
This partitioning strategy has a twofold effect on SFC-DBC. First, it enables the integration of
SFC into the dictionary model. This consequently lowers the storage footprint and assigns two
roles to the SFC: the role of spatial index and IV in DBC. Second, it enables a better adjustment
of SFCcodes to the distribution of the data.

Figure 7.3 illustrates an example of data partitioning using both SFC-DBC and traditional
SFC-based strategy. We use the subset of a dataset represented with six points p1-p5 & pn and
assume that each dimension is divided into four cells. The SFC order, constructed according
to the traditional encoding scheme, follows space-oriented partitioning, i.e., it uses uniform
partitioning of the space, regardless of data distribution. As opposed to this, SFC order in SFC-
DBCisde ned in a data-aware manner. As illustrated in the example, data-aware partitioning
improves skew handling, since it is done based on the actual points values. Data-aware also
restricts the number of distinct points per cell, additionally improving skew resilience. In
the example, SFC-DBC can have at most four distinct points per cell, while space-oriented
partitioning does not have these guaranties.

It is necessary to notice that our partitioning scheme is a middle ground between traditional
space- and data-oriented partitioning. The data-oriented strategy partitions data taking into
consideration its spatial distribution. It also controls space utilization by limiting the number
of objects assigned per partition. Our approach takes into consideration the data distribution,

119

Chapter 7. Dictionary Compression in Point Cloud Data Management

Figure 7.4 Point cloud data organized according to SFC-DBC Encoding.

however it does not have explicit control over the number of elements assigned per partition
(apart from an upper bound), given that it uses a grid-based structure.

In the following subsections we discuss necessary data structures and describe how to build
and use them in the preprocessing and querying step. We discuss the space requirements of
our approach and the impact of space- lling curve granularity on space- and time-ef ciency
of our approach. Finally, we conclude with the scope of our approach.

7.3.1 Preprocessing & Data Structures

The SFC-DBC approach represents a point cloud entry through its position in an arti cially
introduced 3D dictionary space and indexes it using a SFC order. Consequently, the prepro-
cessing step results in two types of data structures: dictionary- and index-like structures. In
the following we describe these structures and the preprocessing step that produces them.

Data Structures. SFC-DBC operates on a dictionary space and a space- lling curve index
vector (SFC_1V) data structures, as illustrated in Figure 7.2 and Figure 7.4. The dictionary space
is a 3D space reconstructed from x, y, and z dictionaries that captures the distinct values of
point cloud entries in each dimension. SFC_IV maps a point to its position in the dictionary
space and thereby its value. At the same time, it plays the role of a spatial index by encoding
the point through its position in the SFC order constructed on top of the dictionary space.

To uniquely identify the position of a point in dictionary space, SFC_IV further consists of the
SFCcodes and offsets vectors. The SFCcodes vector maps the point to its position in the SFC
order based on the assigned SFCcode. The corresponding SFCcode does not uniquely identify
the position of the point in the dictionary space but rather the cell it is in, as we assume that a
point does not have a unique representation in the SFC order. Therefore, we also capture the
position of the point within the cell using the offsets vector data structure.

We additionally compress both structures to further minimize the storage requirements. First,
following the IV representation in the baseline DBC scheme (Section 7.2.1), we compress offsets

120

7.3. Space-Filling Curve Dictionary-Based Compression

Algorithm 8: Query Execution: produce candidate results set

Input: g: range query - de ned with two coordinates

Output: minDQ, maxDQ: min and max position in dictionary that corresponds to query
range

Output: candidateSet: candidate result set

//transforms query to 1D:
ford ~ O0todimensions do
minDQ[d] ™ binaryS(dictionary[d],g.low[d])
maxDQ[d] ™~ binaryS(dictionary[d],q.high[d])
end
gSFCcodes ™ calcSFCcode(g,minDQ,maxDQ)
candidateSet ~ binaryS(gSFCcodes,SFCcodes)
return candidateSet

vectors [138] eachentry hasa xed length that corresponds to the number of bits necessary
to represent a maximum integer value in offset. Second, considering that multiple points
map to the same SFCcode, we store just the distinct SFCcodes values and their corresponding

starting positions in the input, similar to run-length encoding compression.

Preprocessing. The preprocessing step consists of four tasks that we describe through an
example illustrated in Figure 7.4. First, we begin by producing a 3D dictionary space and a
grid on top of it. More precisely, we produce a dictionary per dimension and divide them into
cells, for each dimension independently. The number of cells is determined by the number of
bits assigned per dimension (BPD) in the SFCcode and it corresponds to 28PP. For instance, in
the example (Figure 7.4), the x dictionary is divided into 1024 cells as BPD corresponds to 10.
Consequently, every cell has two dictionary entries, given that the number of entries in the x
dictionary is 2000. Notice that the number of entries per cell (EPC) differs between x, y, and
z dimensions as the dictionaries have different sizes (depending on the number of distinct

values per dimension).

Second, once the dictionary space is partitioned, we assign a SFCcode to every point according
to the dictionary cells they belong to. For instance, the rst point P(1.2,55,0.5) in the example
(Figure 7.4, points) belongs to the cells with ids 1, 1 and 0 for the x, y, and z dimension
respectively, and thus the SFCcode encodes these ids. The ids, however, do not uniquely
identify the position of the point in the dictionaries. To do so, in the third step we additionally
store the position of the point within the cells (Figure 7.4, offsets) therefore, for the rst point
we store 0, 2 and 1 values according to x, y, and z dimensions. Lastly, once the nal structures

are produced, we sort them according to the assigned SFCcode.

121

Chapter 7. Dictionary Compression in Point Cloud Data Management

7.3.2 Query Execution

Similar to the traditional SFC-based approach, the query execution is composed of two steps.
Inthe rst step, the SFCcodes vector restricts search space by producing the candidate results
set, while in the second step we additionally prune, i.e., remove false positive results.

The rststep is illustrated in Algorithm 8. The query execution rst transforms the query
range to the 1D domain, by determining its position in the dictionary space and calculating
the corresponding gSFCcodes. Based on the produced codes, we determine the candidate
result set by performing binary search on the SFCcodes vector. The resulting candidate set
may contain false positive results considering that the SFCcode is assigned per cell and not
per point. Therefore, in the second step we check if the identi ed points indeed belong to the
query range.

To do so, we reconstruct the position of the point in the dictionary (and thus its value) for the
points identi ed in the candidate results set and check if they belong to the query range. We
perform this algorithm for all three dimensions in parallel, as illustrated in Algorithm 9. More
precisely, the position is reconstructed by combining the decoded SFCcode and offset values,
i.e., applying the following formula for the corresponding dimension:

position~ cell idE#EPC ™ of fsets (7.1)

where cell_id represents the dictionary cell id obtained by decoding the SFCcode for the
corresponding dimension and EPC stands for the number of entries per cell in the corre-
sponding dictionary. Once the position is reconstructed, we check if it belongs to the query
range <minDQ,maxDQ>, which corresponds to the minimum and maximum position in
the dictionary that the query maps to (obtained in Algorithm 8).

Filtering. The time consuming operations in this process are the scan of the offsets vector and
the decoding of the SFCcode. As the decoding is done once per distinct SFCcode value (once
avalue is decoded it is reused for all the points that have the same SFCcode), the scan of the
offsets vector dominates the total execution time, as illustrated in Section 7.4.2. Therefore,
to optimize the offsets vector scan, SFC-DBC minimizes the number of the offset entries
necessary to be examined by skipping the entries that are completely enclosed by the query
range. This can be done by checking the enclosedByQuery condition in Algorithm 9, which
requires just the decoded SFCcode and EPC values in order to calculate the minimum and
maximum position in dictionary that the points with a given SFCcode can map to. Intuitively,
this optimization is more bene cial for the non-selective queries, as illustrated in Section 7.4.5.

7.3.3 Space Requirements

SFC-DBC enhances dictionary-based compression with indexing capabilities, optimizing
for query execution without introducing additional space requirements. Therefore, in the
following we analyze the space requirements of the baseline DBC and SFC-DBC.

122

7.3. Space-Filling Curve Dictionary-Based Compression

Algorithm 9: Query Execution: produce nal results set

Input: g: range query - de ned with two coordinates

Input: candidateSet: candidate result set

Input: minDQ, maxDQ: min and max position in dictionary that corresponds to query
range

Input: EPC: number of entries per cell, d - dimension

Output: pOut: point cloud result set

fori ™ valueincandidateSet do

cell_id ~ decode(SFCCodes[i],d)

base ~cell _id~EPC[d]

//retrieve the positions of the points for the given SFCcode

<inputMin, inputMax> = mapSFCcodeTolnputPosition(i)

//enclosedByQuery condition

ifminDQ[d] "~ base AND (base EPC[d]) " maxDQ[d] then
pOut.setRange(inputMin,inputMax)

continue
end

//not enclosedByQuery - retrieve offsets
for j T inputMin;j " inputMax do
position = base + offests[j];
ifmMinDQ ~ position - maxDQ then
| pOut.set(j)
end
end
end
return pOut

As illustrated in Section 7.2.1, the baseline DBC operates based on dictionaries and V. There-
fore, its total space requirements correspond to Equation 7.2, where for the sake of simplicity
we assume that each dictionary in 3D space has the same length. More precisely, 3£DS £de
represents the space requirements of the dictionaries, where DS and de are the number of
entries and the size of an entry in the corresponding dictionary respectively. IVs corresponds
to3£n£10g,DS, where n is the number of points and 10og,DS is the number of bits per IV
entry (which corresponds to the number of bits necessary to represent the maximum position
in the corresponding dictionary).

3E£(DS£de n£log,DS) (7.2)

On the other hand, the SFC-DBC approach stores dictionaries, offsets and SFCcodes vectors,
resulting in the total space requirements illustrated in Equation 7.3. More precisely, the dictio-
naries are represented with 3£DS £de, the offsets vectors with 3£n £10g,dDS/28Pe where
BPD is the number of bits assigned per dimension, while the SFCcodes vector corresponds
to #SFCcode £3 £BPD where #SFCcode represents the number of distinct SFCcode values.

123

Chapter 7. Dictionary Compression in Point Cloud Data Management

Compared to the space requirements of the baseline DBC the dictionaries are identical,
offsets vector minimizes the resources of IV since an offset entry indexes the values within a
dictionary cell as opposed to the entire dictionary, while SFCcodes vector introduces additional
space requirements.

3£(DSE£de n£log,dDS/2BPPe ™ #SFCcode £BPD)

_ _ (7.3)
-3£(DS£de n£log,DSin£BPD #SFCcode£BPD)

Therefore, comparing the requirements of both approaches (according to Equation 7.2 and
Equation 7.3), the SFC-DBC approach subtracts 3£n £BPD, while at the same time it
introduces an additional overhead in the form of 3£#SFCcode £BPD. Considering that
n> #SFCcode, the bene tis higher than the overhead and thus, the space requirements of
SFC-DBC are always smaller or equal to the requirements of DBC.

7.3.4 Impactof Space- lling Curve

The granularity of the space- lling curve, i.e., the assigned number of bits per dimension
(BPD) affects both time- and space-ef ciency of our approach. Therefore, in the following we
discuss in more detail and formalize this impact. Based on our analyses, we devise the models
that can be used to determine the granularity of space- lling curve in order to optimize for
time- and space-ef ciency.

Time-ef ciency. The BPD determines the total number of cells (per dimension) in the uniform
grid built on top of the dictionary space and consequently the maximum number of distinct
SFCcodes. The number of grid cells, i.e., the grid granularity controls the number of point
cloud entries that qualify for the second step in the query execution (removing false positives).
Therefore, by increasing BPD we boost query performance as we produce a ner-grained grid
and reduce the number of points considered in the Itering step. However, by increasing BPD
we also increase the number of distinct SFCcodes and consequently, the number of SFCcodes
necessary to be decoded per query. Therefore, choosing a large number of BPD to represent
the space- lling curve does not necessarily result in the best performance in terms of query
execution. To further estimate the impact of the chosen granularity on the time-ef ciency of
SFC-DBC we devise a performance model. We concentrate on the second step in the query
execution as it dominates the total execution time.

As described in Algorithm 9, given the identi ed candidate result set, i.e., the list of SFCcodes
that overlap with the query range, SFC-DBC decodes the SFCcodes and checks if SFCcodes, i.e.,
the cells they belong to, are completely enclosed by the query range. The points that belong
to the enclosed SFCcode are immediately marked as part of the results, while the points that
belong to the border SFCcodes are further processed. More precisely, for a given SFCcode
SFC-DBC reconstructs the position of the points in the dictionary using the corresponding
offset values and checks if the positions belong to the query range.

124

7.3. Space-Filling Curve Dictionary-Based Compression

Figure 7.5 The number of SFCcodes examined per query: the best and worst case.

Equation 7.4 models the cost of this process. SFCcode; is the total number of SFCcodes that
are decoded and checked for enclosure, where decode and check, represent the cost of afore-
mentioned operations. SFCcodey is the number of border SFCcodes whose points are further
checked for the intersection, where check; is the cost of the corresponding intersection checks.
Finally, assuming uniform distribution, n/#SFCcode represents the number of points per a
grid cell, where n is the total number of points in the dataset and #SFCcode is the maximum
number of codes that can be generated given BPD and n, i.e., #SFCcode ~ min(2BFPP£d n)
where d is the number of dimensions.

_ _ n
SFCcode¢ £(decode checks) SFCcode, £d————e£check; (7.4)
#SFCcode

We rst determine SFCcode; and SFCcode, the number of total and border SFCcodes
considered per query for a given BPD and the ratio query/universe size. Figure 7.5 illustrates
an example of the worst and the best case scenario when a ratio between query and cell is 3
and 4 (note that we consider the ratio between corresponding edges). For the sake of simplicity
we illustrate 2D example and assume a range query of equal edges.

The number of SFCcodes examined per query corresponds to the number of grid cells that
intersect with the query. The best case minimizes the total number of intersecting cells and
maximizes the number of completely enclosed cells. On the other hand, the worst case
maximizes the total number of intersecting cells and minimizes the number of completely
enclosed cells. In our example, queries Q1 and Q3 illustrate the best case (intersecting 9 and
16 cells), while queries Q2 and Q4 illustrate the worst case (intersecting 16 and 25 cells) for
ratios 3 and 4, respectively. Equation 7.5 and Equation 7.6 generalize this rule and calculate
the number of total and border cells (SFCcodes) for the best and worst case, where d stands
for the number of dimensions and r for the query/cell edge ratio. In our model, we use the
average of these extremes to express SFCcode; and SFCcodey,.

SFCcodet"dred, SFCcodeb"dred j brcd (7.5)

125

Chapter 7. Dictionary Compression in Point Cloud Data Management

SFCcode; ~ (dre” 1)¥, SFCcodep, ™ (dre—1)¢ j (brc j 1) (7.6)

Equation 7.5 and Equation 7.6 represent the best and the worst case for SFCcode; and
SFCcodep independent of the dataset size. More precisely, the equations are devised given
the assumption that all gird cells are represented with a SFCcode, i.e., have at least one point.
However, this assumption does not hold if n ~ 2BPP£d j e the number of points in a dataset
is smaller than the maximal number of SFCcodes that can be generated given the BPD and
d. Therefore, to take into consideration the actual dataset size, we adjust the worst and best
case with the ratio min(28PP#d n)/2BPDEd asjllustrated in Equation 7.7 and Equation 7.8.
min(2BPP£d n) is the maximal number of SFCcodes that can be produced given a dataset of
size n, and 2BPP£4 js the maximal number of SFCcodes that can be generated given the BPD
andd.

SEC - min(ZBPD£d,n) g - min(ZBPDEd,n) q. q
codey SBPDEG £dre”, SFCcodey SEPDE £(re” jbrc?) (7.7)
- min(ZBPDEd,n) i
SFCcodet SEPDE £(dre 1) 78
min(28PPEd _ '
SFCcodep — 2(BPD£d)£((dre 1)d irei l)d)

To model the cost of decode, checke and check; we use a simple execution model, and use
the average cost of instruction using a methodology similar to that found in [21]. The cost
of decoding is represented with Equation 7.9. More precisely, to decode a SFCcode value we

rst need to retrieve the SFCcode (incurring the cost of MemoryTransfer) and perform the
corresponding decoding arithmetic operations (with the cost of ArithmeticlnstrDec). However,
given that we perform a binary search on SFCcodes in the rst step of query execution, the
corresponding SFCcode is transferred from cache (rather than memory) resulting in the
total cost of CacheTransfer ArithmeticlnstrDec. The cost of check. is modeled as
Equation 7.10, i.e., with the corresponding arithmetic operations (ArithmeticlnstrEncCheck)
necessary to perform enclosure check, described in Algorithm 9.

decode ™ MemoryTransfer ArithmeticlnstrDec 7.9)
- CacheTransfer ArithmeticlnstrDec '

checke ~ ArithmeticlnstrEncCheck (7.10)

The cost of check; is represented by Equation 7.11. More precisely, to check if a SFCcode’s
points belong to a query range we need to retrieve the corresponding offsets from the off-
sets vector, reconstruct the positions of the points in the dictionary and perform the corre-
sponding intersection checks. Therefore, the total cost corresponds to MemoryTransfer

126

7.3. Space-Filling Curve Dictionary-Based Compression

Arithmeticlnstrinter. However, given that we access all the points for a SFCcode in se-
quence, we only pay the cost of MemoryTransfer for the rst point, while other points have a
cost of CacheTransfer (the memory access pattern is trivial for a prefetcher). The fetching of the
rst point is more expensive as we jump to the different parts of offsets vector for the different
SFCcodes given that a query is partitioned into multiple sub-intervals (see Section 7.2.2).
checkjfirst™ MemoryTransfer Arithmeticlnstrinter

o (7.11)
checkj “CacheTransfer Arithmeticlnstrinter

Incorporating the cost of decode, checke and checkj, Equation 7.12 represents a nal
model, where we benchmark the machine to determine the values for MemoryTransfer,
CacheTransfer and Arithmeticlnstr. Given the number of BPD, n and the ratio of query
to universe size, Equation 7.12 models the SFC-DBC performance trend in terms of query
execution and can be used to maximize time-ef ciency of SFC-DBC.

SFCcodet£(CacheTransfer ArithmeticlnstrDec ArithmeticlnstrEncCheck)
~ SFCcodep, £(MemoryTransfer Arithmeticlnstrinter)

“SFCcodep £d i leE£(CacheTransfer Arithmeticlnstrinter)

(7.12)

n
#SFCcode

Space-ef ciency. The granularity of the space- lling curve, i.e., the assigned number of bits
per dimension (BPD) affects also the space-ef ciency of our approach. The BPD determines
the size of the SFCcode, however, having fewer BPD does not necessarily imply smaller space
requirements as BPD balances the space requirements of SFCcodes and offsets data structures.
To further estimate the impact of chosen granularity on the space-ef ciency of SFC-DBC, we
devise a model that quanti es our storage requirements. We consider the data structures that
are affected by the granularity of space- lling curve.

SFC-DBC stores the distinct SFCcodes values and their mapping, i.e., the corresponding
starting positions in the input which map the points to the SFCcode values. Therefore, the total
space requirements of the space- lling curve correspond to the space requirements of distinct
SFCcodes (SFCcodes) and the corresponding mapping entries (mapping). Additionally, to
be able to uniquely identify the position of the point in the dictionary space, SFC-DBC stores
an offset for every point resulting in the nal cost illustrated in Equation 7.13.

SFCcodes mapping of fsets (7.13)

The total space requirements of SFCcodes are further represented as Equation 7.14, where the
size of a SFCcode is 3£BPD. We adjust the number of distinct SFCcodes to the dataset size
applying logic similar to determining the best and worst case for the number of SFCcodes;
and SFCcodesy.

127

Chapter 7. Dictionary Compression in Point Cloud Data Management

SFCcodes ~ #SFCcode £3£BPD

min(2BPPEd 1 (7.14)
) Z(BPDEd)Emin(ZBPD£d,n)£3£BPD

Similarly to the requirements of SFCcodes, the cost of mapping depends on the number of
entries necessary to be mapped (i.e., the number of distinct SFCcodes) where the size of each
entry is log,n, as formulated in Equation 7.15.

mapping ~ #mapping £logzn

min(2BPPEd n (7.15)
) Z(BPng)£min(2BPD£d,n)£|og2n

Finally, the total space requirements of of f sets correspond to Equation 7.16, where for the
sake of simplicity we assume that each dictionary in 3D space has the same length, DS. Since
an offset is a position of a point in a dictionary cell, the number of bits necessary to represent
an offset corresponds to the number of bits necessary to represent the maximum position
withinacell 10g,dDS/28PPe. Finally, we store an offset for every point (£n) and for all three
dimensions (£3).

of fsets~ 3£n£10g,dDS/287Pe (7.16)

Therefore, incorporating the cost of SFCcodes, mapping and offsets in Equation 7.13 gives us a
model that, given the number of BPD and the number of elements of dataset n, estimates the
space requirements of the SFC-DBC approach. Combined together with the time-ef ciency
model, it can be used to tune the performance of our approach considering both query
execution and storage requirements.

7.3.5 Scope

As discussed, DBC is a good approach for point cloud data representation, because of the
repetition of values for the X, y, and z coordinates. A limitation for such dictionary-based
solutions is that this property cannot be guaranteed for raw (unprocessed) point cloud data
obtained through LiDAR technology, as it results in unstructured form. However, LiDAR data
typically obtains these characteristics as the result of post-processing steps (e.g., thinning-out
of data) [110, 137].

Additionally, our solution is primarily designed for a static use case, which is aligned with the
static nature of point cloud data. SFC-DBC inherits this property from space- lling curves,
which are typically suitable for static environments. More precisely, an insertion/update to a
space- lling curve might require re-computation of the SFCcodes (if the universe space is
modi ed) or reordering of the objects, so that they conform to the space- lling curve order.

128

7.4. Experimental Evaluation

Given that our approach inherits similar limitations, an insertion/update into our encoding
scheme is a possible, yet costly operation, as the whole or a part of preprocessing might need
to be redone. While this is a general constraint of our approach, it is necessarily to notice that
this limitation does not hurt our scheme in the context of SAP HANA. As we discuss in section
7.4, HANA has segments of storage that do not need to provide cheap single-insert or update
operations due to the Delta/Main concept.

7.4 Experimental Evaluation

In this section we rst describe the experimental setup and methodology and then evaluate
the performance of the proposed approaches over real-world datasets.

Hardware Con guration. We run experiments on a SUSE Linux Enterprise Server 12 SP1
machine equipped with 4 Intel Xeon CPU E7-4880v2 processors at 2.50GHz and 512GB of
RAM. Each processor has 15 cores with private L1 (32KB) and L2 (256KB) caches, as well as
37,5MB of shared L3 cache.

SAP HANA. HANA is an in-memory database that offers the possibility to store data in either
a row-oriented or a column-oriented fashion. It has a unique way of handling inserts and
updates. More precisely, each column partition has two segments, a read-optimized Main
segment and a write-optimized Delta segment. Updates and inserts are written to the Delta
segment, while Main segments are created by an asynchronous background task. As this
process has access to all the column fragment’s data, it can make an optimal decision on the
type of the Main segment (such as our SFC-DBC container) to be created and its properties.
It is necessary to notice that SAP HANA is the system that we used as a proof of concept to
develop and evaluate our approach, however, the proposed solution can be integrated in any
other main memory column-store DBMS.

Implementation. All indexing techniques are implemented in C++ and compiled with GCC
4.8.5 . The list below summarizes the implementations that we study experimentally.

Baseline is the baseline dictionary-based compression approach described in Section 7.2.1.

SFC-DBC represents our approach, introduced in Section 7.3. We use the Z-order as a SFC
order, due to its simplicity and the huge body of work on its ef cient range query algorithms
(e.g., [11, 120, 132]). In our approach, a zcode encodes the cell ids (for x, y, and z dimension)
that a point cloud entry maps to in a uniform grid built over the dictionary space and, therefore,
we represent a zcode as an integer. The BPD in a zcode determines the total number of cells (per
corresponding dimension) in the uniform grid and, consequently, the maximum number of
point cloud entries that can qualify for the second step in the query execution of our approach,
i.e., removing false positives. We represent zcode with 32 bits (10 bits per dimension BPD) as
a trade-off between memory resources and precision (number of false positives to be Itered).

129

Chapter 7. Dictionary Compression in Point Cloud Data Management

SFC stands for the Space-Filling Curve-based approach, which we implemented as a middle
ground solution between the Baseline approach and SFC-DBC. The SFC approach does not
require decoding of SFCcode, however, it needs additional space for its storage. Therefore, we
use SFC to evaluate SFC-DBC: the overhead introduced with its decoding step, but also the
storage bene ts.

More precisely, the SFC approach corresponds to the traditional approach described in Sec-
tion 7.2.2 with one modi cation. To have a fair comparison in terms of space requirements, we
build a SFC order as an addition to the DBC model. Therefore, the SFC approach extends the
Baseline approach with a SFC order, using space-oriented partitioning of the dataset universe.
Consequently, it stores the SFCcodes vector in addition to the structures used in the Baseline
approach. Like in the SFC-DBC approach, we use the Z-order and compress the SFCcodes,
each represented with 32 bits. The query execution is adjusted to the DBC model. We rst
execute a query on the SFCcodes producing a candidate results set, while in the second step we
remove false positive results by examining the actual points. Similar to the Baseline approach,
the points are examined by combining the information from dictionaries and IVs. However,
the scan of IV is restricted, as we examine just the ranges detected by the candidate results set.

Datasets. We use two types of datasets, obtained using dense image matching and LiDAR
technologies. "Senatsverwaltung f r Wirtschaft, Technologie und Forschung™ and "Europ is-
cher Fonds f r regionale Entwicklung (EFRE)" provided the datasets that are generated using
dense image matching. Berlin aerial scan has regular point distribution with 100 points per
square meter, while terrestrial castle scan represents irregular point distribution and a varying
point density. We also use AHN2 dataset [88], obtained using LiDAR technology. To evaluate
the scalability of approaches, we sample the datasets uniformly, increasing the dataset size
from 125 million to 5 billion points.

Queries. We produce one hundred 2D and 3D range queries that follow uniform distribution.
We vary selectivity by increasing the queries’ volume: 0.01%, 0.1%, 1%, 10%, 20%, and 40%.

Experimental Results. In all the experiments we illustrate relative numbers. To preserve
trends in the results, the numbers are represented relative to the smallest value in a result
set (always having value 1 in the relative representation). For instance, the execution time
is relative to the Baseline approach, i.e., its execution time obtained when processing the
smallest dataset (125M elements). Following the same logic, the space requirements results
are relative to the Uncompressed storage model (considering the smallest dataset).

7.4.1 Space Requirements

In this set of experiments we evaluate the space requirements of the aforementioned ap-
proaches when processing the Berlin aerial and AHN2 datasets. We measure the requirements
of dictionaries and 1Vs for the Baseline approach, considering additionally the size of SFC-
codes for the SFC-based approaches. Furthermore, we measure the size of uncompressed

130

7.4. Experimental Evaluation

Figure 7.6 Berlin aerial dataset, space requirements: a) total and b) breakdown.

Figure 7.7 AHN2 dataset: a) space requirements and b) query execution time (3D queries).

Figure 7.8 Berlin aerial dataset, query execution time: a) 3D and b) 2D range queries.

data, i.e., when using a straightforward approach of storing all three coordinates. Figure 7.6a)
presents the relative space requirements (Section 7.4 provides more details on relative values),
while Figure 7.6b) illustrates the breakdown for the smallest and the biggest point cloud size
when processing the Berlin aerial dataset. The horizontal line corresponds to the requirements
of the Uncompressed model, for the smallest dataset.

Dictionary-based compression signi cantly reduces the space requirements: the Baseline
approach reduces the space necessary to represent uncompressed data by up to 65%. SFC-DBC
additionally minimizes the requirements, reducing the Baseline approach storage footprint by
up to 40%. On the other hand, the SFC approach requires up to 13% more storage compared
to the Baseline approach. The observed trends are similar for the AHN2 dataset, as illustrated
in Figure 7.7a).

131

Chapter 7. Dictionary Compression in Point Cloud Data Management

Figure 7.9 SFC-DBC: execution time breakdown.

According to Figure 7.6b) all dictionary-based approaches have dictionaries of the same size,
while the Index (i.e., IV /offsets) and the SFCcodes requirements vary. SFC-DBC has the smallest
Index size, where the space reduction over the SFC and Baseline approaches is constant - 46%.
On the other hand, it produces more distinct SFCcodes values compared to the SFC approach
due to data-aware partitioning (as discussed in Section 7.3). Consequently, it increases the
space quota, but it also improves skew handling by enabling a better adjustment of SFCcodes
to the distribution of the data.

7.4.2 Query Performance

To evaluate the query performance of SFC-DBC we execute 100 uniformly distributed 3D and
2D range queries with a selectivity of 1% on the Berlin aerial and AHN2 datasets.

Figure 7.8 illustrates the relative execution time when executing 3D and 2D queries on the
Berlin aerial dataset. As the experiment illustrates, the Baseline approach requires substantially
more time because it scans the complete Vs, whereas the SFC-based approaches scan just the
intervals detected by the candidate result set. Therefore, the SFC-DBC approach outperforms
the Baseline approach with speedup of 7.5 - 8.9 and 6.8 - 9.4x, when executing 3D and 2D
queries respectively. SFC-DBC achieves performance comparable to that of the SFC approach
considering that 1) decoding is done once per distinct SFCcode value, and 2) the decoded value
was suf cient to decide whether a point satis es a range query for 86% of the candidate result
set values (i.e., the Itering step was applied, Section 7.3.2). Therefore, SFC-DBC compensates
for the decoding step by its ability to avoid the offsets vector scan. The observed trends are
similar for the AHN2 dataset, as illustrated in Figure 7.7b).

Figure 7.9 presents the execution time breakdown for the SFC-DBC approach when processing
the smallest and the biggest point cloud datasets. Decoding represents the time necessary
to perform decoding of SFCcode and the Binary Search&Scan measures the time necessary
to perform binary search (on SFCcodes and dictionaries) and the scan of the corresponding
offsets. As the small dataset (125M points) is produced by uniformly sampling the biggest

132

7.4. Experimental Evaluation

Figure 7.10 The impact of skew: space requirements and query execution time.

dataset (1000M points), the number of distinct SFCcode values does not differ signi cantly
between two datasets the 1000M dataset has x1.32 more distinct SFCcodes. Therefore, the
decoding time takes 71% and 13% of the total execution time, since the number of distinct
SFCcodes corresponds to 29% and 5% of the point cloud entries in the smallest and biggest
datasets respectively.

7.4.3 Impact of Data Skew

The performance of approaches based on space-oriented partitioning typically gets penalized
when working with datasets that have non-uniform distributions. More precisely, space-
oriented partitioning is done by partitioning the space containing the data, regardless of the
spatial distribution of the objects. While space-oriented partitioning provides simplicity, it
also limits the ability to adjust to the data distribution/density as it does not have explicit
control over the number of elements assigned per partition.

Approaches based on traditional SFC partitioning inherit this problem, since they use space-
oriented partitioning at their core. Given that our partitioning scheme is a middle ground
between traditional space- and data-oriented partitioning, it also gets affected by skew in data.
Therefore, in the following set of experiments we analyze the impact of skew in data on the
space requirements and query performance of both SFC-based approaches. We execute 100
uniformly distributed 3D queries (1% selectivity) on the terrestrial castle scan that has an irreg-
ular point distribution and a varying point density. Figure 7.10a) presents space requirements,
while Figure 7.10b) illustrates the execution time.

Due to skew in data distribution and density, the space requirements of the dictionary-based
approaches are minimized compared to their requirements when processing data with uni-
form distribution (Section 7.4.1). As the number of distinct values per coordinate decreases,
the space requirements of dictionaries and IVs/offsets also decrease and therefore, the Baseline
approach reduces the space necessary to represent uncompressed data by up to 75%. Skew
additionally reduces the number of distinct SFCcodes and thus, SFC-DBC reduces the Baseline
approach storage footprint by up to 61%.

133

Chapter 7. Dictionary Compression in Point Cloud Data Management

Figure 7.11 The impact of selectivity. Figure 7.12 The impact of Itering.

On the other hand, skew in data distribution and density re ects to SFCcodes distribution
and thus penalizes query performance. More speci cally, having fewer distinct SFCcodes
increases the number of point cloud entries needed to be checked for intersection per SFCcode.
Therefore, the speedup of SFC-DBC and SFC approaches over Baseline drops up to 10% and
16% compared to the speedup achieved when processing the data with uniform distribution.

The decrease in the number of distinct SFCcodes has a twofold effect on SCF-DBC perfor-
mance. It hurts performance since the number of points necessary to be scanned increases.
However, it also decreases the number of SFCcodes necessary to be decoded. Overall, SCF-
DBC incurs smaller performance penalties, compared to the traditional scheme, considering
that it employs data-aware partitioning and therefore, it adjusts better to data distribution,
producing 1.59x more SFCcodes.

7.4.4 Impact of Selectivity

To evaluate the impact of selectivity on query performance we execute one hundred 3D
queries on the Berlin aerial dataset (500 million points) varying selectivity from 0.01% to
40%. Figure 7.11 illustrates the total execution time.

As expected, SFC-based approaches bene t from queries with high selectivity. They minimize
the number of 1V/offsets entries necessary to be scanned using a SFC order as an index, while
the Baseline approach performs a full IV scan. On the other hand, less selective queries (e.g.,
40% selectivity) favour the Baseline approach considering that they touch signi cant amount
of data. Thus, the speedup of the SFC-DBC approach drops from 8.4x to 2.8x when decreasing
query selectivity.

7.4.5 Impact of Filtering

To evaluate the impact of Itering (introduced in Section 7.3.2) on the performance of SFC-
DBC, we execute one hundred 3D queries on the Berlin aerial dataset (500 million points)
varying selectivity from 0.01% to 10%. Figure 7.12 illustrates the relative execution time for the
SFC-DBC approach, when we enable and disable Itering.

134

7.4. Experimental Evaluation

Figure 7.13 The impact of space- lling curve: query execution time for a) 125M and b) 500M
points.

The Itering step minimizes the range that has to be scanned in the offsets vector. Since the
length of the range is determined by the query selectivity, the impact of Itering depends
on the selectivity. As illustrated in the Figure 7.12, the Itering step signi cantly improves
the execution time for low selectivity queries, considering that it Iters more data (e.g., the
improvement in the execution time is 38% for 10% selectivity). On the other hand, Itering
does not have a signi cant impact on performance when executing high selectivity queries
(e.g., for 0.01% selectivity queries the improvement in the execution time is 0.6%).

7.4.6 Impactof Space- lling Curve: Time-ef ciency

In the following set of experiments we analyze the impact of the space- lling curve granularity
on the performance of the SFC-DBC approach, when considering query execution time. At
the same time, we evaluate the performance of the proposed performance model. We execute
100 uniformly distributed 3D queries (1% selectivity) on the AHN2 dataset of 125 and 500
million points. We vary the number of assigned bits per dimension BPD for the space- lling
curve from 1 to 10 and measure the query execution time for each con guration. Figure 7.13
illustrates the experimental results where SFC-DBC represents the actual execution time and
Model represents the execution time estimated based on our model.

We rst analyze the measured execution time. Having a few BPD obviously hurts performance,
as the space- lling curve has coarse granularity and consequently a signi cant percentage
of the dataset has to be considered in the Itering step. Therefore, as we increase BPD we
approach the best performance, which corresponds to the execution time when having 7 BPD
(for both datasets). After that point, the total execution time gradually increases resulting
in 2.1x and 1.39x slower performance for 10 BPD when considering the 125M and 500M
datasets, respectively. Therefore, the best con guration for this setting balances the number
of points checked for intersection and the number of decoded SFCcodes. At this point, the
space- lling curve achieves suf cient pruning and any additional re nement (i.e., increasing
BPD) introduces overheads due to the additional decoding required.

135

Chapter 7. Dictionary Compression in Point Cloud Data Management

Figure 7.14 The impact of space- lling curve on space-ef ciency.

The execution time estimated based on our model achieves similar performance trends with
the actual execution time. Model estimates 7 BPD as the best con guration for the dataset of
125M objects, which is aligned with the actual execution time. For the bigger dataset, of 500M
elements, Model estimates 8 BPD as the best con guration. According to the actual execution
time the 8 BPD con guration has 3% slower performance compared to the best con guration
(7 BPD). It is necessary to notice that as we increse the number of elements in dataset, the
con gurations with the larger number of BPD become less penalized.

Model uses Equation 7.12 where we adjust the parameters given the benchmarks performed
on our machine. The nal model is illustrated in Equation 7.17, where U is the average cost
of an integer instruction. 40 £U represents the cost of fetching a SFCcode from L3 cache and
200 £U is the cost of accessing the rst offset for a SFCcode from memory. ArithmeticlnstrDec,
Arithmeticlnstr EncCheck, Arithmeticlnstrinter are represented with 2£BPD £U,5£U and
4 £U respectively.

SFCcode(£(40£EU 2£BPDE£U ~5£U)
TSFCcode, £(200£U “4£U) (7.17)

_ n _
SFCcodep £Ed———— j1e£(20EU 4£U)
#SFCcode

7.4.7 Impactof Space- lling Curve: Space-ef ciency

To evaluate the impact of the space- lling curve granularity on storage requirements of the
SFC-DBC approach and the accuracy of our space requirements model, we execute 100 uni-
formly distributed 3D queries (1% selectivity) on the AHN2 dataset of 500 million points.
Similarly to the previous setting, we vary the number of assigned bits per dimension BPD for
the space- lling curve from 1 to 10 and measure the storage requirements for each con gura-
tion. Figure 7.14 illustrates the results where SFC-DBC and Model represent the actual and
estimated storage requirements.

136

7.4. Experimental Evaluation

Figure 7.15 SFC-DBC performance: a) query execution time and b) space requirements.

The best con guration, according to the actual storage requirements, corresponds to the
con guration of 9 BPD. This con guration balances the space-requirements of SFCcodes and
offsets data structures. A smaller number of bits in BPD results in smaller requirements in
terms of SFCcodes, but higher in terms of offsets. On the other hand, the situation is opposite
when increasing BPD.

According to our Model the best con guration corresponds to 8 BPD, while the actual storage
requirements for 8 BPD take 1% more space compared to the best con guration (9 BPD).
The minor difference in the estimation of the best con guration and the deviation in the
performance trends for the con gurations of 9 and 10 BPD are caused due to lack of knowledge
about the actual data distribution. More precisely, the number of distinct SFCcodes for 9 and
10 BPD is signi cantly smaller compared to the estimated values.

7.4.8 Time-and Space-ef ciency: Performance Trends

In this set of experiments we evaluate the scalability of our approach with respect to time
and space requirements, when using the space- lling curve con guration suggested by our
cost models. We use AHN2 datasets of 500, 1000, 2000, 4000, and 5000 million elements and
execute 100 uniformly distributed 3D queries (1% selectivity).

The space- lling curve con guration (i.e., the number of assigned bits per dimension, BPD)
that yields the best results in terms of time-ef ciency does not necessarily align with the best
con guration in terms of space-ef ciency (as illustrated in Section 7.4.7 and Section 7.4.6).
Therefore, based on our models, we calculate the best con guration in terms of time-ef ciency
(8,9,9,9,9) and space-ef ciency (8, 8, 8, 9, 9) for each dataset (500, 1000, 2000, 4000, 5000
million elements) and use their average as the nal con guration) to provide a middle ground
between time- and space-ef ciency. To evaluate the performance of our models, we determine
the best con guration for our approach in terms of query performance and space utilization
independently by varying BPD (as illustrated in Section 7.4.7 and Section 7.4.6).

Figure 7.15 presents the experimental results, i.e., query execution time and space require-
ments when using the BP D average con guration. As illustrated, SFC-DBC achieves scalability

137

Chapter 7. Dictionary Compression in Point Cloud Data Management

Figure 7.16 Preprocessing cost.

both with respect to time and space requirements. Query execution time, however, scales
slightly better, as the BPD con guration, used in our experiments, results in 1.5% slower
execution time and uses 9.5% more storage requirements on average compared to the best
query execution time and storage utilization identi ed by our benchmark.

7.4.9 Preprocessing cost

Our approach organizes data following the order established with a space- lling curve. This
organization enables us to preserve and exploit spatial proximity, however, it also increases
the preprocessing cost. To evaluate the overhead introduced with spatial reorganization we
measure the total preprocessing time of the Baseline and SFC-based curve approaches when
processing the Berlin aerial dataset. The experimental results are illustrated in Figure 7.16.

Compared to the Baseline approach, the SFC-based approaches additionally produce the
SFCcodes, sort them and reorganize the data structures given this order. Consequently, the
SFC-based approaches take up to 1.39x more time to preprocess the data compared to the
Baseline approach. The performance of the two SFC-based approaches is comparable, where
the minor difference in performance comes from the conceptual differences in the algorithms

SFC-DBC integrates the space- lling curve into the dictionary-based model, while the SFC
approach produces it in addition to the model.

The data reorganization thus introduces an overhead into the preprocessing step, however, it
also signi cantly boosts query performance given that it preserves spatial proximity.

7.4.10 Experimental Summary

The Baseline approach wastes computational resources as it requires a complete scan of
index vectors. Adding a space- lling curve to the dictionary-based representation of point

138

7.5. Conclusions

cloud data, used in Baseline, restricts search space. However, the resulting approach requires
additional storage resources, as illustrated in Section 7.4.1.

By integrating space- lling curves into the dictionary-based model, SFC-DBC does not require
additional storage resources (Section 7.4.1), i.e., the space requirements of SFC-DBC are always
smaller or equal to the requirements of the Baseline approach. SFC-DBC improves space
savings over Baseline by adjusting the granularity of the space- lling curve. More precisely,
having multiple points represented with the same SFCcode enables us to additionally reduce
the size of SFCcode by using compression methods such as run-length encoding. In terms of
time-ef ciency, SFC-DBC preserves spatial proximity and reduces the search space by using
the space- lling curve as an index (Section 7.4.2).

The granularity of the space- lling curve affects both space- and time-ef ciency. In Sec-
tion 7.4.7 and Section 7.4.6 we discuss and evaluate this impact, as well as the accuracy of our
cost model devised for the space- lling con guration. Finally, our approach organizes data
following the order established by a space- lling curve. While this reorganization enables us to
preserve and exploit spatial proximity, it also increases the cost of preprocessing, as illustrated
in Section 7.4.9.

7.5 Conclusions

With the recent increase in the volume of point cloud data produced, existing data manage-
ment solutions face two challenges: time and space ef ciency. In this work we investigate how
the ef ciency requirements can be met in main memory column-store DBMSs.

We propose Space-Filling Curve Dictionary-Based Compression (SFC-DBC), a time and space-
ef cient solution to storing and managing point cloud data. Our solution employs dictionary-
based compression in the spatial data management domain, enhancing it with indexing
capabilities without introducing additional storage overhead. The SFC-DBC approach rep-
resents and indexes a point cloud entry through its position in an arti cially introduced 3D
dictionary space, taking advantage of space- lling curve properties for indexing purposes.
We evaluate our approach in the context of SAP HANA and show space ef ciency gains of
up to 61% and query performance gains of up to 9.4x compared to other dictionary-based
compression schemes.

139

Conclusions and Future Directions

Spatial data analytics represent a powerful means to extract knowledge from data. However,
due to recent technological advancements, there is a discrepancy between expectations,
determined by application requirements, and the actual ability of spatial data management
systems. In this thesis, we advocate for a data- and workload-aware design of spatial data
management algorithms to bridge the gap between requirements and system performance.

In this chapter, we summarize the contributions of this dissertation and present potential
directions for future work.

8.1 Technological Impact

Data-Aware Spatial Joins. The spatial join is a core operator in spatial analytics. Given its
importance, a number of methods have been developed to perform spatial joins. However,
as we show, the state-of-the-art spatial join approaches are unable to ef ciently join two
spatial datasets in a robust manner with respect to data distributions, as they employ static
strategies in the join phase. Their performance deteriorates, or gets penalized with wasted
computational resources when faced with variations in the distribution of data.

In Chapters 3 and 4 we argued that the key to optimizing performance is to be data-aware,
that is to adapt the join strategy, and the supporting data structures to the underlying data
distributions, in order to maximize performance. We introduced two disk-based spatial join
approaches that leverage and adapt to dataset characteristics, achieving time-ef ciency on
non-uniform data distributions. Motivated by the increase in non-uniformity with respect
to data distributions, we designed GIPSY to address the scenario of joining datasets with
contrasting density. GIPSY uses the sparser dataset to navigate the join process and therefore,
by leveraging dataset characteristics, it selectively retrieves and joins only the data needed.
TRANSFORMERS achieves robust spatial joins on non-uniform data distributions, by adapting
to dataset characteristics. It detects local variations in distributions and adapts the join strategy
and data layout to local dataset characteristics at run-time.

141

Chapter 8. Conclusions and Future Directions

Workload-Aware Spatial Incremental Indexing. Traditional systems require indexes to be
built before analytical queries can be executed ef ciently. Such an indexing step requires
substantial computing resources and introduces a considerable and growing data-to-insight
gap, where users need to wait before they can perform any analysis. Moreover, users often only
use a small fraction of the data, the parts containing interesting information, and indexing
it fully does not always pay off. This contrasts the latest data exploration trend propagated
among data-driven applications, where the ultimate goal is to analyze data the moment is
available, identify and extract useful information fast.

In Chapters 5 and 6 we advocated for workload-driven incremental index building, which
signi cantly reduces the data-to-insight time and thus provides a tool for ef cient data explo-
ration. Indexes are built as a side-effect of query execution, and only for the parts of the data
queried, consequently reducing computational and storage requirements. To our knowledge
we are the rst to develop and analyze incremental indexing for spatial data. We rst intro-
duced Space Odyssey, designed for exploratory analyses of multiple spatial datasets that reside
on disk. Space Odyssey takes advantage of workload access patterns to incrementally index
the datasets and optimize the access to parts frequently queried together. We then presented
QUASII, a query-aware spatial incremental index. QUASII minimizes data-to-insight time,
achieves ef cient query performance and low-cost incremental strategy by preserving data in
native, spatial domain and employing data-driven, nested reorganization strategy.

Dictionary Compression Tailored for Spatial Data. Point data representation and manage-
ment are not new to spatial data management. However, with the recent advances in laser
and image processing technology, data properties, and applications requirements in terms
of point cloud management have evolved, challenging the ef ciency of traditional solutions.
More precisely, the scale at which point cloud data is produced demands for ef ciency both in
terms of querying performance and space requirements.

In Chapter 7 we argued that to maximize performance, apart from preserving spatial proximity,
it is equally important to leverage secondary data characteristics, other than spatial. These
characteristics are typically a result of technological advancements and introduce new patterns
in data that should be exploited. We introduced the Space- lling curve dictionary-based
compression approach that leverages point cloud data properties (the frequent repetition of
values for the x, y, and z coordinates across point cloud entries), to employ dictionary-based
compression in the spatial domain and enhance it with indexing capabilities to achieve both
time- and space-ef ciency. As a proof of concept, we developed and evaluated our approach
as a research prototype in the context of SAP HANA.

8.2 Intellectual Impact

Our work on data-aware spatial joins demonstrates the potential of data-driven, adaptive
strategies to maximize performance and avoid wasting computational resources. Given

142

8.2. Intellectual Impact

varying data distributions, we identify strategies and data layouts that maximize performance
with respect to the local data distributions and switch seamlessly between them.

The principles of our approaches are not tied to a disk-based environment or spatial joins
approaches. Our solution minimizes the amount of data read and considered for intersection,
and provides sequential access to data. This strategy can be bene cial in main memory as
well, given that it minimizes computation and has the potential to reduce the number of
cache misses. Looking beyond spatial joins, adapting the design of index structures to local
data distributions has the potential to improve query performance and storage utilization.
For instance, adjusting the granularity of partitions to the underlying data distributions, i.e.,
producing fewer partitions in densely populated areas, has the potential to minimize the
problem of overlap associated with data-oriented partitioning.

Our work on incremental indexing sets the ground for techniques that enable ef cient data
exploration in the spatial domain. We illustrated the potential of workload-driven incremental
index building to reduce the data-to-insight time and achieve query performance comparable
to traditional indexing approaches. In addition, we explored the design space for incremental
indexing in the spatial domain, by identifying promising design goals, but also by illustrating
the limitations of applying existing one-dimensional solutions in the spatial domain.

Looking ahead, there are challenges to be addressed and opportunities that should be taken
advantage of. One of the challenges is to achieve robustness with respect to workload access
patterns, where the arti cial re nement used in QUASII and the concepts from the one-
dimensional domain [45] can be used as a base for more advanced techniques that can
stabilize, but also optimize query performance. More precisely, a workload driven incremental
strategy has the potential to not just minimize data-to-insight time, but also optimize query
performance. By taking advantage of both workload access patterns and data properties, a
data structure can be built incrementally, while adapting its form such that negative design
implications are minimized for instance, the overlap among partitions or the replication rate
in data- and space-oriented partitioning strategies respectively.

Our work on point cloud data management enabled the use of dictionary-based compression
in the spatial domain, while achieving both time- and space-ef ciency. The employed scheme
is thus a compact representation of point data, enhanced with indexing capabilities. In
addition, it also represents a partitioning strategy that is a middle ground between data-
and space-oriented partitioning, as it takes into consideration the data distribution, while
preserving the simplicity of grid-like structures. The proposed scheme thus can be used to
reduce storage requirements, but also as a partitioning strategy to improve query performance.

143

Bibliography

[1]
(2]

(3]

[4]

[5]

[6]

[7]

NYC Open Data, 2018. http://data.ny.gov . [Page 2]

Cristina L. Abad, Nathan Roberts, Yi Lu, and Roy H. Campbell. A storage-centric analysis
of mapreduce workloads: File popularity, temporal locality and arrival patterns. In
Proceedings of the 2012 IEEE International Symposium on Workload Characterization,
IISWC 2012, La Jolla, CA, USA, November 4-6, 2012, pages 100 109, 2012. doi: 10.
1109/11SWC.2012.6402909. URL https://doi.org/10.1109/11ISWC.2012.6402909

[Page 86]

Daniel Abadi, Peter A. Boncz, Stavros Harizopoulos, Stratos Idreos, and Samuel Madden.
The design and implementation of modern column-oriented database systems. Foun-
dations and Trends in Databases, 5(3):197 280, 2013. doi: 10.1561/1900000024. URL
https://doi.org/10.1561/1900000024 . [Page3]

Daniel J. Abadi, Samuel Madden, and Miguel Ferreira. Integrating compression and
execution in column-oriented database systems. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, Chicago, Illinois, USA, June 27-29,
2006, pages 671 682, 2006. doi: 10.1145/1142473.1142548. URL http://doi.acm.org/
10.1145/1142473.1142548. [Page 3]

Ablimit Aji, Hoang Vo, and Fusheng Wang. Effective spatial data partitioning for scalable
guery processing. CoRR, abs/1509.00910, 2015. URL http://arxiv.org/abs/1509.
00910 [Page 2]

Volkan Akcelik, Jacobo Bielak, George Biros, loannis Epanomeritakis, Antonio Fernan-
dez, Omar Ghattas, Eui Joong Kim, Julio C. L pez, David R. O’Hallaron, Tiankai Tu, and
John Urbanic. High resolution forward and inverse earthquake modeling on terascale
computers. In Proceedings of the ACM/IEEE SC2003 Conference on High Performance
Networking and Computing, 15-21 November 2003, Phoenix, AZ, USA, CD-Rom, page 52,
2003. doi: 10.1145/1048935.1050202. URL http://doi.acm.org/10.1145/1048935.
1050202 [Page 2]

loannis Alagiannis, Renata Borovica, Miguel Branco, Stratos Idreos, and Anastasia Ail-
amaki. Nodb: ef cient query execution on raw data les. In Proceedings of the ACM

145

http://data.ny.gov
https://doi.org/10.1109/IISWC.2012.6402909
https://doi.org/10.1561/1900000024
http://doi.acm.org/10.1145/1142473.1142548
http://doi.acm.org/10.1145/1142473.1142548
http://arxiv.org/abs/1509.00910
http://arxiv.org/abs/1509.00910
http://doi.acm.org/10.1145/1048935.1050202
http://doi.acm.org/10.1145/1048935.1050202

Bibliography

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

146

SIGMOD International Conference on Management of Data, SIGMOD 2012, Scottsdale,
AZ, USA, May 20-24, 2012, pages 241 252, 2012. doi: 10.1145/2213836.2213864. URL
http://doi.acm.org/10.1145/2213836.2213864 . [Pages 3,4, and 16]

Foteini Alvanaki, Romulo Goncalves, Milena Ivanova, Martin L. Kersten, and Kostis
Kyzirakos. GIS navigation boosted by column stores. PVLDB, 8(12):1956 1959, 2015.
doi: 10.14778/2824032.2824110. URL http://www.vldb.org/pvidb/vol8/p1956-
alvanaki.pdf . [Pages 5,18, and 114]

Lars Arge, Octavian Procopiuc, Sridhar Ramaswamy, Torsten Suel, and Jeffrey Scott Vitter.
Scalable sweeping-based spatial join. In VLDB'98, Proceedings of 24rd International
Conference on Very Large Data Bases, August 24-27, 1998, New York City, New York, USA,
pages 570 581, 1998. URL http://www.vldb.org/conf/1998/p570.pdf . [Pages 12

and 16]

Lars Arge, Mark de Berg, Herman J. Haverkort, and Ke Yi. The priority r-tree: A practically
ef cientand worst-case optimal r-tree. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, Paris, France, June 13-18, 2004, pages 347 358,
2004. doi: 10.1145/1007568.1007608. URL http://doi.acm.org/10.1145/1007568.
1007608 [Pages 61 and 100]

Rudolf Bayer. The universal b-tree for multidimensional indexing: general concepts.
In Worldwide Computing and Its Applications, International Conference, WWCA '97,
Tsukuba, Japan, March 10-11, 1997, Proceedings, pages 198 209, 1997. doi: 10.1007/3-
540-63343-X_48. URL https://doi.org/10.1007/3-540-63343-X_48 . [Pages 11,14,

100, and 129]

Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The
r*-tree: An ef cient and robust access method for points and rectangles. In Proceedings
of the 1990 ACM SIGMOD International Conference on Management of Data, Atlantic
City, NJ, USA, May 23-25, 1990., pages 322 331, 1990. doi: 10.1145/93597.98741. URL
http://doi.acm.org/10.1145/93597.98741 . [Pages 12, 15, and 98]

Jon Louis Bentley. Multidimensional binary search trees used for associative searching.
Commun. ACM, 18(9):509 517, 1975. doi: 10.1145/361002.361007. URL http://doi.
acm.org/10.1145/361002.361007 . [rage 15]

Jon Louis Bentley. Multidimensional binary search trees in database applications.
IEEE Trans. Software Eng., 5(4):333 340, 1979. doi: 10.1109/TSE.1979.234200. URL
https://doi.org/10.1109/TSE.1979.234200 . [Page 15]

Renata Borovica-Gajic. Toward timely, predictable and cost-effective data analytics.
2016. [Page 3]

http://doi.acm.org/10.1145/2213836.2213864
http://www.vldb.org/pvldb/vol8/p1956-alvanaki.pdf
http://www.vldb.org/pvldb/vol8/p1956-alvanaki.pdf
http://www.vldb.org/conf/1998/p570.pdf
http://doi.acm.org/10.1145/1007568.1007608
http://doi.acm.org/10.1145/1007568.1007608
https://doi.org/10.1007/3-540-63343-X_48
http://doi.acm.org/10.1145/93597.98741
http://doi.acm.org/10.1145/361002.361007
http://doi.acm.org/10.1145/361002.361007
https://doi.org/10.1109/TSE.1979.234200

Bibliography

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Thomas Brinkhoff and Hans-Peter Kriegel. Approximations for a multi-step processing
of spatial joins. In IGIS '94: Geographic Information Systems, International Workshop
on Advanced Information Systems, Monte Verita, Ascona, Switzerland, February 28 -
March 4, 1994, Proceedings, pages 25 34, 1994. doi: 10.1007/3-540-58795-0_31. URL
https://doi.org/10.1007/3-540-58795-0_31 . [Page 10]

Thomas Brinkhoff, Hans-Peter Kriegel, and Ralf Schneider. Comparison of approxi-
mations of complex objects used for approximation-based query processing in spatial
database systems. In Proceedings of the Ninth International Conference on Data Engi-
neering, April 19-23, 1993, Vienna, Austria, pages 40 49, 1993. doi: 10.1109/1CDE.1993.
344079. URL https://doi.org/10.1109/ICDE.1993.344079 . [Page 10]

Thomas Brinkhoff, Hans-Peter Kriegel, and Bernhard Seeger. Ef cient processing of
spatial joins using r-trees. In Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, Washington, DC, USA, May 26-28, 1993., pages
237 246, 1993. doi: 10.1145/170035.170075. URL http://doi.acm.org/10.1145/
170035.170075 [Pages 12, 17, 23, 24, 27, 45, 46, and 48]

Thomas Brinkhoff, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. Multi-step
processing of spatial joins. In Proceedings of the 1994 ACM SIGMOD International
Conference on Management of Data, Minneapolis, Minnesota, USA, May 24-27, 1994.,
pages 197 208, 1994. doi: 10.1145/191839.191880. URL http://doi.acm.org/10.
1145/191839.191880. [Page 10]

John Cieslewicz, Kenneth A. Ross, Kyoho Satsumi, and Yang Ye. Automatic contention
detection and amelioration for data-intensive operations. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD 2010, Indianapolis,
Indiana, USA, June 6-10, 2010, pages 483 494, 2010. doi: 10.1145/1807167.1807221.
URL http://doi.acm.org/10.1145/1807167.1807221 . [Page 79]

Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Everything you always wanted
to know about synchronization but were afraid to ask. In ACM SIGOPS 24th Symposium
on Operating Systems Principles, SOSP '13, Farmington, PA, USA, November 3-6, 2013,
pages 33 48, 2013. doi: 10.1145/2517349.2522714. URL http://doi.acm.org/10.
1145/2517349.2522714 [page 126]

Jens-Peter Dittrich and Bernhard Seeger. Data redundancy and duplicate detection in
spatial join processing. In Proceedings of the 16th International Conference on Data
Engineering, San Diego, California, USA, February 28 - March 3, 2000, pages 535 546,
2000. doi: 10.1109/1CDE.2000.839452. URL https://doi.org/10.1109/ICDE.2000.
839452 [page 12]

147

https://doi.org/10.1007/3-540-58795-0_31
https://doi.org/10.1109/ICDE.1993.344079
http://doi.acm.org/10.1145/170035.170075
http://doi.acm.org/10.1145/170035.170075
http://doi.acm.org/10.1145/191839.191880
http://doi.acm.org/10.1145/191839.191880
http://doi.acm.org/10.1145/1807167.1807221
http://doi.acm.org/10.1145/2517349.2522714
http://doi.acm.org/10.1145/2517349.2522714
https://doi.org/10.1109/ICDE.2000.839452
https://doi.org/10.1109/ICDE.2000.839452

Bibliography

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

148

Harish Doraiswamy, Eleni Tzirita Zacharatou, FEbio Miranda, Marcos Lage, Anasta-
sia Ailamaki, ClEudio T. Silva, and Juliana Freire. Interactive visual exploration of
spatio-temporal urban data sets using urbane. In Proceedings of the 2018 Interna-
tional Conference on Management of Data, SIGMOD Conference 2018, Houston, TX,
USA, June 10-15, 2018, pages 1693 1696, 2018. doi: 10.1145/3183713.3193559. URL
http://doi.acm.org/10.1145/3183713.3193559 . [Pages 2.and 3]

Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database Systems, 3rd
Edition. Addison-Wesley-Longman, 2000. ISBN 978-0-8053-1755-8. [Pages 17, 24, 27, and 46]

UBER Engineering. Engineering Intelligence Through Data Visualization at Uber, 2016.

https://eng.uber.com/go-geofence/ . [Page1]
UBER Engineering. Uber Hits 5 Billion Rides Milestone, 2017. https://www.uber.com/
en-SG/blog/uber-hits-5-billion-rides-milestone/ . [Page 1]

UBER Engineering. How We Built Uber Engineering’s Highest Query per Second Service
Using Go, 2018. https://eng.uber.com/go-geofence/ . [Page 3]

Christos Faloutsos. Gray codes for partial match and range queries. IEEE Trans. Software
Eng., 14(10):1381 1393, 1988. doi: 10.1109/32.6184. URL https://doi.org/10.1109/
32.6184. [pages 11, 14, and 117]

Christos Faloutsos and Shari Roseman. Fractals for secondary key retrieval. In Proceed-
ings of the Eighth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, March 29-31, 1989, Philadelphia, Pennsylvania, USA, pages 247 252, 1989. doi:
10.1145/73721.73746. URL http://doi.acm.org/10.1145/73721.73746 . [Pages 11, 88,
100, and 117]

Franz F rber, Norman May, Wolfgang Lehner, Philipp Gro e, Ingo M ller, Hannes Rauhe,
and Jonathan Dees. The SAP HANA database an architecture overview. IEEE Data Eng.
Bull., 35(1):28 33, 2012. URL http://sites.computer.org/debull/A12mar/hana.

pdf. [Pages 114 and 115]

Nivan Ferreira, Marcos Lage, Harish Doraiswamy, Huy T. Vo, Luc Wilson, Heidi Werner,
Muchan Park, and Cl£udio T. Silva. Urbane: A 3d framework to support data driven
decision making in urban development. In 2015 IEEE Conference on Visual Analytics
Science and Technology, VAST 2015, Chicago, IL, USA, October 25-30, 2015, pages 97 104,
2015. doi: 10.1109/VAST.2015.7347636. URL https://doi.org/10.1109/VAST.2015.
7347636 [Page 2]

Georg Fuchs, Natalia V. Andrienko, Gennady L. Andrienko, Sebastian Bothe, and Hendrik
Stange. Tracing the german centennial ood in the stream of tweets: rstlessons learned.
In Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Crowdsourced and
Volunteered Geographic Information, GEOCROWD 2013, Orlando, FL, USA, November 5,
2013, pages 31 38, 2013. doi: 10.1145/2534732.2534741. URL http://doi.acm.org/
10.1145/2534732.2534741. [Page 2]

http://doi.acm.org/10.1145/3183713.3193559
https://eng.uber.com/go-geofence/
https://www.uber.com/en-SG/blog/uber-hits-5-billion-rides-milestone/
https://www.uber.com/en-SG/blog/uber-hits-5-billion-rides-milestone/
https://eng.uber.com/go-geofence/
https://doi.org/10.1109/32.6184
https://doi.org/10.1109/32.6184
http://doi.acm.org/10.1145/73721.73746
http://sites.computer.org/debull/A12mar/hana.pdf
http://sites.computer.org/debull/A12mar/hana.pdf
https://doi.org/10.1109/VAST.2015.7347636
https://doi.org/10.1109/VAST.2015.7347636
http://doi.acm.org/10.1145/2534732.2534741
http://doi.acm.org/10.1145/2534732.2534741

Bibliography

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Volker Gaede and Oliver G nther. Multidimensional access methods. ACM Comput.
Surv., 30(2):170 231, 1998. doi: 10.1145/280277.280279. URL https://doi.org/10.
1145/280277.280279. [Pages 3. 4,9, 10, 13, 14, 72, 73, 74, 86, and 87]

YvEn J. Garc a, Mario A. L pez, and Scott T. Leutenegger. A greedy algorithm for bulk
loading r-trees. In ACM-GIS '98, Proceedings of the 6th international symposium on
Advances in Geographic Information Systems, November 6-7, 1998, Washington, DC,
USA, pages 163 164, 1998. doi: 10.1145/288692.288723. URL http://doi.acm.org/
10.1145/288692.288723. [Pages 15, 61, and 100]

Gartner. Gartner Says 8.4 Billion Connected "Things" Will Be in Use in 2017, Up
31 Percent From 2016, 2018. https://www.gartner.com/en/newsroom/press-
releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-
in-use-in-2017-up-31-percent-from-2016 . [Page 1]

S Gnanakaran, Hugh Nymeyer, John Portman, Kevin Y Sanbonmatsu, and Angel E Garc a.
Peptide folding simulations. Current opinion in structural biology, 13(2):168 174, 2003.

[Page 1]

Romulo Goncalves, Tom van Tilburg, Kostis Kyzirakos, Foteini Alvanaki, Panagiotis
Koutsourakis, Ben van Werkhoven, and Willem Robert van Hage. A spatial column-store
to triangulate the netherlands on the y. In Proceedings of the 24th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, GIS 2016,
Burlingame, California, USA, October 31 - November 3, 2016, pages 80:1 80:4, 2016. doi:
10.1145/2996913.2997005. URL http://doi.acm.org/10.1145/2996913.2997005

[Pages 5and 114]

Goetz Graefe and Harumi A. Kuno. Self-selecting, self-tuning, incrementally optimized
indexes. In EDBT 2010, 13th International Conference on Extending Database Technology,
Lausanne, Switzerland, March 22-26, 2010, Proceedings, pages 371 381, 2010. doi:
10.1145/1739041.1739087. URL http://doi.acm.org/10.1145/1739041.1739087

[Pages 15and 86]

Goetz Graefe and Harumi A. Kuno. Adaptive indexing for relational keys. In Workshops
Proceedings of the 26th International Conference on Data Engineering, ICDE 2010, March
1-6, 2010, Long Beach, California, USA, pages 69 74, 2010. doi: 10.1109/ICDEW.2010.
5452743. URL https://doi.org/10.1109/ICDEW.2010.5452743 . [Page 15]

Jim Gray, Prakash Sundaresan, Susanne Englert, Kenneth Baclawski, and Peter J. Wein-
berger. Quickly generating billion-record synthetic databases. In Proceedings of the
1994 ACM SIGMOD International Conference on Management of Data, Minneapolis,
Minnesota, USA, May 24-27, 1994., pages 243 252, 1994. doi: 10.1145/191839.191886.
URL http://doi.acm.org/10.1145/191839.191886 . [Page 79]

149

https://doi.org/10.1145/280277.280279
https://doi.org/10.1145/280277.280279
http://doi.acm.org/10.1145/288692.288723
http://doi.acm.org/10.1145/288692.288723
https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
http://doi.acm.org/10.1145/2996913.2997005
http://doi.acm.org/10.1145/1739041.1739087
https://doi.org/10.1109/ICDEW.2010.5452743
http://doi.acm.org/10.1145/191839.191886

Bibliography

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

[52]

150

Leopold Grinberg, T Anor, JR Madsen, A Yakhot, and GE Karniadakis. Large-scale
simulation of the human arterial tree. Clinical and Experimental Pharmacology and
Physiology, 36(2):194 205, 2009. [Pages 1 and 2]

Ralf Hartmut G ting. Anintroduction to spatial database systems. VLDB J., 3(4):357 399,
1994. URL http://www.vldb.org/journal/\VLDBJ3/P357.pdf . [Pages 1,3, and 9]

Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In SIG-
MOD’84, Proceedings of Annual Meeting, Boston, Massachusetts, USA, June 18-21, 1984,
pages 47 57,1984. doi: 10.1145/602259.602266. URL http://doi.acm.org/10.1145/
602259.602266 [Pages 12, 14, 15, 17, 18, 27, and 48]

Norbert Haala. Multiray photogrammetry and dense image matching. In Photogram-
metric Week, volume 11, pages 185 195. Ed. D. Fritsch Heidelberg, 2011. [Pages 113 and 115]

Felix Halim, Stratos Idreos, Panagiotis Karras, and Roland H. C. Yap. Stochastic database
cracking: Towards robust adaptive indexing in main-memory column-stores. PVLDB,
5(6):502 513, 2012. doi: 10.14778/2168651.2168652. URL http://vidb.org/pvidb/
vol5/p502_felixhalim_vidb2012.pdf . [Pages 4, 15, 88, and 143]

Thomas Heinis, Farhan Tauheed, Mirjana Pavlovic, and Anastasia Ailamaki. Enabling
scienti c discovery via innovative spatial data management. IEEE Data Eng. Bull., 36
(4):3 10, 2013. URL http://sites.computer.org/debull/A13dec/p3.pdf . [Pages 1,
2,and 3]

Thomas Heinis, Farhan Tauheed, Mirjana Pavlovic, and Anastasia Ailamaki. Enabling
scienti c discovery via innovative spatial data management. IEEE Data Eng. Bull., 36(4):
3 10, 2013. URL http://sites.computer.org/debull/A13dec/p3.pdf . [Page 3]

Tony Hey, Stewart Tansley, and Kristin M. Tolle, editors. The Fourth Paradigm: Data-
Intensive Scienti ¢ Discovery. Microsoft Research, 2009. ISBN 978-0982544204. URL
http://research . microsoft.com/en-us/collaboration/fourthparadigm/

[Page 1]

Klaus H. Hinrichs. Implementation of the grid le: Design concepts and experience.
BIT, 25(4):569 592, 1985. [Page 14]

Andreas Hut esz, Hans-Werner Six, and Peter Widmayer. Twin grid les: Space optimiz-
ing access schemes. In Proceedings of the 1988 ACM SIGMOD International Conference
on Management of Data, Chicago, Illinois, USA, June 1-3, 1988., pages 183 190, 1988. doi:
10.1145/50202.50222. URL http://doi.acm.org/10.1145/50202.50222 . [Page 14]

IDC. The Digital Universe of Opportunities: Rich Data and the Increasing Value of the
Internet of Things, 2014. https://www.emc.com/leadership/digital-universe/
2014iview/executive-summary.htm . [Page1]

Stratos Idreos. Big data exploration. Big Data Computing, 2013. [Pages3and 4]

http://www.vldb.org/journal/VLDBJ3/P357.pdf
http://doi.acm.org/10.1145/602259.602266
http://doi.acm.org/10.1145/602259.602266
http://vldb.org/pvldb/vol5/p502_felixhalim_vldb2012.pdf
http://vldb.org/pvldb/vol5/p502_felixhalim_vldb2012.pdf
http://sites.computer.org/debull/A13dec/p3.pdf
http://sites.computer.org/debull/A13dec/p3.pdf
http://research.microsoft.com/en-us/collaboration/fourthparadigm/
http://doi.acm.org/10.1145/50202.50222
https://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm
https://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm

Bibliography

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Stratos Idreos, Martin L. Kersten, and Stefan Manegold. Database cracking. In CIDR
2007, Third Biennial Conference on Innovative Data Systems Research, Asilomar, CA,
USA, January 7-10, 2007, Online Proceedings, pages 68 78, 2007. URL http://cidrdb.
org/cidr2007/papers/cidrO7p07.pdf . [Pages 4, 15, 72, 86, 87, 88, 97, and 100]

Stratos ldreos, Stefan Manegold, Harumi A. Kuno, and Goetz Graefe. Merging what’s
cracked, cracking what’s merged: Adaptive indexing in main-memory column-stores.
PVLDB, 4(9):585 597, 2011. doi: 10.14778/2002938.2002944. URL http://www.vIdb.
org/pvldb/vol4/p586-idreos.pdf . [Pages 4, 15,72, and 88]

Stratos Idreos, Olga Papaemmanouil, and Surajit Chaudhuri. Overview of data explo-
ration techniques. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015, pages
277 281, 2015. doi: 10.1145/2723372.2731084. URL http://doi.acm.org/10.1145/
2723372.2731084 [pages 3and 4]

ANEC INLAS. White paper big data, 2016. https://portail-qualite.public.
lu/dam - assets / fr/ publications / normes - normalisation / information -
sensibilisation/white-paper-big-data/WP_BigData_v1.pdf . [Page1]

Chris L Jackins and Steven L Tanimoto. Oct-trees and their use in representing three-
dimensional objects. Computer Graphics and Image Processing, 14(3):249 270, 1980.

[Pages 11, 14, 18, and 89]

Edwin H. Jacox and Hanan Samet. Spatial join techniques. ACM Trans. Database Syst.,
32(1):7, 2007. doi: 10.1145/1206049.1206056. URL http://doi.acm.org/10.1145/
12060491206056 [Pages 4,10, 16, 24, and 62]

H. V. Jagadish. Linear clustering of objects with multiple atributes. In Proceedings
of the 1990 ACM SIGMOD International Conference on Management of Data, Atlantic
City, NJ, USA, May 23-25, 1990., pages 332 342, 1990. doi: 10.1145/93597.98742. URL
http://doi.acm.org/10.1145/93597.98742 . [Pages 11, 14, 18, 31, 42, 88, and 117]

Christian S. Jensen, Dan Lin, and Beng Chin Ooi. Query and update ef cient b+-tree
based indexing of moving objects. In (e)Proceedings of the Thirtieth International
Conference on Very Large Data Bases, Toronto, Canada, August 31 - September 3 2004,
pages 768 779, 2004. URL http://www.vldb.org/conf/2004/RS20P3.PDF . [Pagesss

and 117]

Ibrahim Kamel and Christos Faloutsos. Hilbert r-tree: An improved r-tree using fractals.
In VLDB'94, Proceedings of 20th International Conference on Very Large Data Bases,
September 12-15, 1994, Santiago de Chile, Chile, pages 500 509, 1994. URL http:
[Iwww.vldb.org/conf/1994/P500.PDF . [Pages 15 and 100]

151

http://cidrdb.org/cidr2007/papers/cidr07p07.pdf
http://cidrdb.org/cidr2007/papers/cidr07p07.pdf
http://www.vldb.org/pvldb/vol4/p586-idreos.pdf
http://www.vldb.org/pvldb/vol4/p586-idreos.pdf
http://doi.acm.org/10.1145/2723372.2731084
http://doi.acm.org/10.1145/2723372.2731084
https://portail-qualite.public.lu/dam-assets/fr/publications/normes-normalisation/information-sensibilisation/white-paper-big-data/WP_BigData_v1.pdf
https://portail-qualite.public.lu/dam-assets/fr/publications/normes-normalisation/information-sensibilisation/white-paper-big-data/WP_BigData_v1.pdf
https://portail-qualite.public.lu/dam-assets/fr/publications/normes-normalisation/information-sensibilisation/white-paper-big-data/WP_BigData_v1.pdf
http://doi.acm.org/10.1145/1206049.1206056
http://doi.acm.org/10.1145/1206049.1206056
http://doi.acm.org/10.1145/93597.98742
http://www.vldb.org/conf/2004/RS20P3.PDF
http://www.vldb.org/conf/1994/P500.PDF
http://www.vldb.org/conf/1994/P500.PDF

Bibliography

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

152

Manos Karpathiotakis, Miguel Branco, loannis Alagiannis, and Anastasia Ailamaki.
Adaptive query processing on RAW data. PVLDB, 7(12):1119 1130, 2014. doi:
10.14778/2732977.2732986. URL http://www.vldb.org/pvidb/vol7/p1119-
karpathiotakis.pdf . [Page 16]

Manos Karpathiotakis, loannis Alagiannis, Thomas Heinis, Miguel Branco, and Anasta-
sia Ailamaki. Just-in-time data virtualization: Lightweight data management with
vida. In CIDR 2015, Seventh Biennial Conference on Innovative Data Systems Re-
search, Asilomar, CA, USA, January 4-7, 2015, Online Proceedings, 2015. URL http:
/[cidrdb.org/cidr2015/Papers/CIDR15_Paper8.pdf . [Page 16]

Kihong Kim, Sang Kyun Cha, and Keunjoo Kwon. Optimizing multidimensional index
trees for main memory access. In Proceedings of the 2001 ACM SIGMOD international
conference on Management of data, Santa Barbara, CA, USA, May 21-24, 2001, pages
139 150, 2001. doi: 10.1145/375663.375679. URL http://doi.acm.org/10.1145/
375663.375679 [Page 15]

Nick Koudas and Kenneth C. Sevcik. Size separation spatial join. In SIGMOD 1997,
Proceedings ACM SIGMOD International Conference on Management of Data, May 13-15,
1997, Tucson, Arizona, USA., pages 324 335, 1997. doi: 10.1145/253260.253340. URL
http://doi.acm.org/10.1145/253260.253340 . [Pages 11, 12, and 16]

James Kozloski, Konstantinos Sfyrakis, Sean L. Hill, Felix Sch rmann, Charles C. Peck,
and Henry Markram. ldentifying, tabulating, and analyzing contacts between branched
neuron morphologies. IBM Journal of Research and Development, 52(1-2):43 56, 2008.
doi: 10.1147/rd.521.0043. URL https://doi.org/10.1147/rd.521.0043 . [Pages 25

and 49]

Kostis Kyzirakos, Foteini Alvanaki, and Martin L. Kersten. In memory processing of
massive point clouds for multi-core systems. In Proceedings of the 12th International
Workshop on Data Management on New Hardware, DaMoN 2016, San Francisco, CA,
USA, June 27, 2016, pages 7:1 7:10, 2016. doi: 10.1145/2933349.2933356. URL http:
/ldoi.acm.org/10.1145/2933349.2933356 . [Pages 18 and 114]

Per- ke Larson, Cipri Clinciu, Eric N. Hanson, Artem Oks, Susan L. Price, Srikumar
Rangarajan, Aleksandras Surna, and Qingging Zhou. SQL server column store indexes.
In Proceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2011, Athens, Greece, June 12-16, 2011, pages 1177 1184, 2011. doi: 10.1145/
1989323.1989448. URL http://doi.acm.org/10.1145/1989323.1989448 . [Pages 114
and 115]

Robert Laurini. Graphics databases built on peano space- Iling curves. In Proceedings
of EUROGRAPHICS, volume 85, pages 327 338, 1985. [page 117]

http://www.vldb.org/pvldb/vol7/p1119-karpathiotakis.pdf
http://www.vldb.org/pvldb/vol7/p1119-karpathiotakis.pdf
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper8.pdf
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper8.pdf
http://doi.acm.org/10.1145/375663.375679
http://doi.acm.org/10.1145/375663.375679
http://doi.acm.org/10.1145/253260.253340
https://doi.org/10.1147/rd.521.0043
http://doi.acm.org/10.1145/2933349.2933356
http://doi.acm.org/10.1145/2933349.2933356
http://doi.acm.org/10.1145/1989323.1989448

Bibliography

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

Scott T. Leutenegger, J. M. Edgington, and Mario A. L pez. STR: Asimple and ef cient
algorithm for r-tree packing. In Proceedings of the Thirteenth International Conference
on Data Engineering, April 7-11, 1997, Birmingham, UK, pages 497 506, 1997. doi:
10.1109/1CDE.1997.582015. URL https://doi.org/10.1109/ICDE.1997.582015

[Pages 15, 29, 51, 61, 86, 92, and 100]

Yanhui Liang, Fusheng Wang, Darren Treanor, Derek R. Magee, George Teodoro,
Yangyang Zhu, and Jun Kong. Liver whole slide image analysis for 3d vessel reconstruc-
tion. In 12th IEEE International Symposium on Biomedical Imaging, ISBI 2015, Brooklyn,
NY, USA, April 16-19, 2015, pages 182 185, 2015. doi: 10.1109/1SBI.2015.7163845. URL
https://doi.org/10.1109/ISBI.2015.7163845 . [Page 2]

Yanhui Liang, Fusheng Wang, Darren Treanor, Derek R. Magee, George Teodoro,
Yangyang Zhu, and Jun Kong. A 3d primary vessel reconstruction framework with
serial microscopy images. In Medical Image Computing and Computer-Assisted Inter-
vention - MICCAI 2015 - 18th International Conference Munich, Germany, October 5 - 9,
2015, Proceedings, Part I11, pages 251 259, 2015. doi: 10.1007/978-3-319-24574-4_30.
URL https://doi.org/10.1007/978-3-319-24574-4 30 . [Page 2]

Yanhui Liang, Hoang Vo, Ablimit Aji, Jun Kong, and Fusheng Wang. Scalable 3d spatial
queries for analytical pathology imaging with mapreduce. In Proceedings of the 24th
ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems, GIS 2016, Burlingame, California, USA, October 31 - November 3, 2016, pages
52:1 52:4,2016. doi: 10.1145/2996913.2996925. URL http://doi.acm.org/10.1145/
2996913.2996925 [Page 2]

Ming-Ling Lo and Chinya V. Ravishankar. Spatial joins using seeded trees. In Proceedings
of the 1994 ACM SIGMOD International Conference on Management of Data, Minneapo-
lis, Minnesota, USA, May 24-27,1994., pages 209 220, 1994. doi: 10.1145/191839.191881.
URL http://doi.acm.org/10.1145/191839.191881 . [Pages 12 and 17]

Ming-Ling Lo and Chinya V. Ravishankar. Spatial hash-joins. In Proceedings of the 1996
ACM SIGMOD International Conference on Management of Data, Montreal, Quebec,
Canada, June 4-6, 1996., pages 247 258, 1996. doi: 10.1145/233269.233337. URL
http://doi.acm.org/10.1145/233269.233337 . [Page 17]

Nikos Mamoulis. Spatial join. In Encyclopedia of Database Systems, pages 2707 2714.
2009. doi: 10.1007/978-0-387-39940-9_356. URL https://doi.org/10.1007/978-
0-387-39940-9_356. [Pages 4 and 16]

Nikos Mamoulis. Spatial Data Management. Synthesis Lectures on Data Management.
Morgan & Claypool Publishers, 2011. doi: 10.2200/S00394ED1V01Y201111DTMO021.
URL https://doi.org/10.2200/S00394ED1V01Y201111DTMO021. [Pages 1, 3,9, and 13]

153

https://doi.org/10.1109/ICDE.1997.582015
https://doi.org/10.1109/ISBI.2015.7163845
https://doi.org/10.1007/978-3-319-24574-4_30
http://doi.acm.org/10.1145/2996913.2996925
http://doi.acm.org/10.1145/2996913.2996925
http://doi.acm.org/10.1145/191839.191881
http://doi.acm.org/10.1145/233269.233337
https://doi.org/10.1007/978-0-387-39940-9_356
https://doi.org/10.1007/978-0-387-39940-9_356
https://doi.org/10.2200/S00394ED1V01Y201111DTM021

Bibliography

[78]

[79]

(8]

(81]

(82]

(83]

(84]

(85]

(86]

(87]

154

Nikos Mamoulis and Dimitris Papadias. Multiway spatial joins. ACM Trans. Database
Syst., 26(4):424 475, 2001. doi: 10.1145/503099.503101. URL http://doi.acm.org/10.
1145/503099.50310L [page 4]

Nikos Mamoulis and Dimitris Papadias. Slot index spatial join. IEEE Trans. Knowl. Data
Eng., 15(1):211 231, 2003. doi: 10.1109/TKDE.2003.1161591. URL https://doi.org/
10.1109/TKDE.2003.1161591 [rage 17]

Nikos Mamoulis, Yannis Theodoridis, and Dimitris Papadias. Spatial joins: Algorithms,
cost models and optimization techniques. In Spatial Databases: Technologies, Tech-
niques and Trends, pages 155 184. 2005. [rage 16]

Henry Markram. The blue brain project. Nature Reviews Neuroscience, 7(2):153, 2006.
[Page 24]

Henry Markram, Karlheinz Meier, Thomas Lippert, Sten Grillner, Richard S. Frackowiak,
Stanislas Dehaene, Alois Knoll, Haim Sompolinsky, Kris Verstreken, Javier DeFelipe, Seth
Grant, Jean-Pierre Changeux, and Alois Saria. Introducing the human brain project. In
Proceedings of the 2nd European Future Technologies Conference and Exhibition, FET
2011, Budapest, Hungary, May 4-6, 2011, pages 39 42, 2011. doi: 10.1016/j.procs.2011.
12.015. URL https://doi.org/10.1016/j.procs.2011.12.015 . [Pages 1, 2,45, 49,71, 78,
85, and 87]

Henry Markram, Eilif Muller, Srikanth Ramaswamy, Michael W Reimann, Marwan
Abdellah, Carlos Aguado Sanchez, Anastasia Ailamaki, Lidia Alonso-Nanclares, Nicolas
Antille, Selim Arsever, et al. Reconstruction and simulation of neocortical microcircuitry.
Cell, 163(2):456 492, 2015. [Page 87]

Oscar Martinez-Rubi, Peter van Oosterom, Romulo Goncalves, Theo Tijssen, Milena
Ivanova, Martin L. Kersten, and Foteini Alvanaki. Benchmarking and improving point
cloud data managementin monetdb. SIGSPATIAL Special, 6(2):11 18,2014. doi: 10.1145/
2744700.2744702. URL http://doi.acm.org/10.1145/2744700.2744702 . [Pages 18,
19, and 117]

Mohamed F. Mokbel and Walid G. Aref. Space- lling curves for query processing. In
Encyclopedia of Database Systems, pages 2675 2680. 2009. doi: 10.1007/978-0-387-
39940-9_350. URL https://doi.org/10.1007/978-0-387-39940-9_350 . [Page 117]

Bongki Moon, H. V. Jagadish, Christos Faloutsos, and Joel H. Saltz. Analysis of the
clustering properties of the hilbert space- lling curve. IEEE Trans. Knowl. Data Eng.,
13(1):124 141, 2001. doi: 10.1109/69.908985. URL https://doi.org/10.1109/69.
9089845 [Pages 11,88, and 117]

NASA. NASA/NEX Public Data Set, 2017. https://aws.amazon.com/blogs/aws/
process-earth-science-data-on-aws-with-nasa-nex/ . [Pages 2 and 85]

http://doi.acm.org/10.1145/503099.503101
http://doi.acm.org/10.1145/503099.503101
https://doi.org/10.1109/TKDE.2003.1161591
https://doi.org/10.1109/TKDE.2003.1161591
https://doi.org/10.1016/j.procs.2011.12.015
http://doi.acm.org/10.1145/2744700.2744702
https://doi.org/10.1007/978-0-387-39940-9_350
https://doi.org/10.1109/69.908985
https://doi.org/10.1109/69.908985
https://aws.amazon.com/blogs/aws/process-earth-science-data-on-aws-with-nasa-nex/
https://aws.amazon.com/blogs/aws/process-earth-science-data-on-aws-with-nasa-nex/

Bibliography

[88] Actueel Hoogte Bestand Nederland. AHN datasets, 2017. http://www.ahn.nl . [Pages2,
85, 114, and 130]

[89] J rg Nievergelt, Hans Hinterberger, and Kenneth C. Sevcik. The grid le: An adaptable,
symmetric multikey le structure. ACM Trans. Database Syst., 9(1):38 71, 1984. doi:
10.1145/348.318586. URL http://doi.acm.org/10.1145/348.318586 . [Pages 12 and 14]

[90] Sadegh Nobari, Farhan Tauheed, Thomas Heinis, Panagiotis Karras, St@phane Bressan,
and Anastasia Ailamaki. TOUCH: in-memory spatial join by hierarchical data-oriented
partitioning. In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013, pages 701 712,
2013. doi: 10.1145/2463676.2463700. URL http://doi.acm.org/10.1145/2463676.
2463700 [Pages 4and 23]

[91] Matthaios Olma, Manos Karpathiotakis, loannis Alagiannis, Manos Athanassoulis, and
Anastasia Ailamaki. Slalom: Coasting through raw data via adaptive partitioning and
indexing. PVLDB, 10(10):1106 1117, 2017. doi: 10.14778/3115404.3115415. URL
http://www.vldb.org/pvidb/vol10/p1106-olma.pdf . [Page 16]

[92] Matthaios Olma, Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki. BLOCK:
ef cient execution of spatial range queries in main-memory. In Proceedings of the 29th
International Conference on Scienti c and Statistical Database Management, Chicago,
IL, USA, June 27-29, 2017, pages 15:1 15:12, 2017. doi: 10.1145/3085504.3085519. URL
http://doi.acm.org/10.1145/3085504.3085519 . [Page 14]

[93] Beng Chin Ooi. Spatial kd-tree: A data structure for geographic database. In Daten-
banksysteme in B ro, Technik und Wissenschaft, GI-Fachtagung, Darmstadt, 1.-3. April
1987, Proceedings, pages 247 258, 1987. doi: 10.1007/978-3-642-72617-0_17. URL
https://doi.org/10.1007/978-3-642-72617-0_17 . [Page 15]

[94] OpenStreetMap. https://www.openstreetmap.org. URL https://www.openstreetmap.
org. [Pages2and 8s5]

[95] Oracle. Spatial and Graph Developer's Guide, 2017. https://docs.oracle.com/
database/121/SPATL/. [page 18]

[96] Jack A. Orenstein and T. H. Merrett. A class of data structures for associative searching.
In Proceedings of the Third ACM SIGACT-SIGMOD Symposium on Principles of Database
Systems, April 2-4, 1984, Waterloo, Ontario, Canada, pages 181 190, 1984. doi: 10.1145/
588011.588037. URL http://doi.acm.org/10.1145/588011.588037 . [Pages 11, 14, 18,
88, and 117]

[97] Stratos Papadomanolakis, Anastassia Ailamaki, Julio C. L pez, Tiankai Tu, David R.
O’Hallaron, and Gerd Heber. Ef cient query processing on unstructured tetrahedral
meshes. In Proceedings of the ACM SIGMOD International Conference on Management
of Data, Chicago, Illinois, USA, June 27-29, 2006, pages 551 562, 2006. doi: 10.1145/

155

http://www.ahn.nl
http://doi.acm.org/10.1145/348.318586
http://doi.acm.org/10.1145/2463676.2463700
http://doi.acm.org/10.1145/2463676.2463700
http://www.vldb.org/pvldb/vol10/p1106-olma.pdf
http://doi.acm.org/10.1145/3085504.3085519
https://doi.org/10.1007/978-3-642-72617-0_17
https://www.openstreetmap.org
https://www.openstreetmap.org
https://docs.oracle.com/database/121/SPATL/
https://docs.oracle.com/database/121/SPATL/
http://doi.acm.org/10.1145/588011.588037

Bibliography

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

156

1142473.1142535. URL http://doi.acm.org/10.1145/1142473.1142535 . [Pages 24,
28,29, and 50]

Jignesh M. Patel and David J. DeWitt. Partition based spatial-merge join. In Proceedings
of the 1996 ACM SIGMOD International Conference on Management of Data, Montreal,
Quebec, Canada, June 4-6, 1996., pages 259 270, 1996. doi: 10.1145/233269.233338. URL
http://doi.acm.org/10.1145/233269.233338 . [Pages 11, 12, 16, 23, 24, 27, 45, 46, and 48]

Mirjana Pavlovic, Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki. GIPSY: join-
ing spatial datasets with contrasting density. In Conference on Scienti ¢ and Statistical
Database Management, SSDBM '13, Baltimore, MD, USA, July 29 - 31, 2013, pages 11:1
11:12, 2013. doi: 10.1145/2484838.2484855. URL http://doi.acm.org/10.1145/
2484838.2484855 [pages 7, 23, 46, and 48]

Mirjana Pavlovic, Thomas Heinis, Farhan Tauheed, Panagiotis Karras, and Anastasia
Ailamaki. TRANSFORMERS: robust spatial joins on non-uniform data distributions. In
32nd IEEE International Conference on Data Engineering, ICDE 2016, Helsinki, Finland,
May 16-20, 2016, pages 673 684, 2016. doi: 10.1109/ICDE.2016.7498280. URL https:
//doi.org/10.1109/ICDE.2016.7498280 . [Pages 7 and 45]

Mirjana Pavlovic, Eleni Tzirita Zacharatou, Darius Sidlauskas, Thomas Heinis, and
Anastasia Ailamaki. Space odyssey: ef cientexploration of scienti cdata. In Proceedings
of the Third International Workshop on Exploratory Search in Databases and the Web,
San Francisco, CA, USA, July 1, 2016, pages 12 18, 2016. doi: 10.1145/2948674.2948677.
URL http://doi.acm.org/10.1145/2948674.2948677 . [Pages 7,71, 86, and 87]

Mirjana Pavlovic, Kai-Niklas Bastian, Hinnerk Gildhoff, and Anastasia Ailamaki. Dic-
tionary compression in point cloud data management. In Proceedings of the 25th ACM
SIGSPATIAL International Conference on Advances in Geographic Information Systems,
GIS 2017, Redondo Beach, CA, USA, November 7-10, 2017, pages 45:1 45:10, 2017. doi:
10.1145/3139958.3139969. URL http://doi.acm.org/10.1145/3139958.3139969
[Pages 7and 113]

Mirjana Pavlovic, Darius Sidlauskas, Thomas Heinis, and Anastasia Ailamaki. QUASII:
query-aware spatial incremental index. In Proceedings of the 21th International
Conference on Extending Database Technology, EDBT 2018, Vienna, Austria, March
26-29, 2018., pages 325 336, 2018. doi: 10.5441/002/edbt.2018.29. URL https:
//doi.org/10.5441/002/edbt.2018.29 . [Pages 7 and 85]

Giuseppe Peano. Sur une courbe, qui remplit toute une aire plane. Mathematische
Annalen, 36(1):157 160, 1890. [rPage 117]

Nikos Pelekis and Yannis Theodoridis. Mobility Data Management and Exploration.
Springer, 2014. ISBN 978-1-4939-0391-7. doi: 10.1007/978-1-4939-0392-4. URL
https://doi.org/10.1007/978-1-4939-0392-4 . [Pages1,3,and 9]

http://doi.acm.org/10.1145/1142473.1142535
http://doi.acm.org/10.1145/233269.233338
http://doi.acm.org/10.1145/2484838.2484855
http://doi.acm.org/10.1145/2484838.2484855
https://doi.org/10.1109/ICDE.2016.7498280
https://doi.org/10.1109/ICDE.2016.7498280
http://doi.acm.org/10.1145/2948674.2948677
http://doi.acm.org/10.1145/3139958.3139969
https://doi.org/10.5441/002/edbt.2018.29
https://doi.org/10.5441/002/edbt.2018.29
https://doi.org/10.1007/978-1-4939-0392-4

Bibliography

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

PostgreSQL. A PostgreSQL extension for storing point cloud (LiDAR) data, 2017. https:
/[github.com/pgpointcloud/pointcloud . [Page 18]

Iraklis Psaroudakis, Tobias Scheuer, Norman May, Abdelkader Sellami, and Anastasia
Ailamaki. Scaling up concurrent main-memory column-store scans: Towards adaptive
numa-aware data and task placement. PVLDB, 8(12):1442 1453, 2015. doi: 10.14778/
2824032.2824043. URL http://www.vldb.org/pvidb/vol8/pl442-psaroudakis.

pdf. [Page 115]

rapidlasso GmbH. LAStools, 2017. https://rapidlasso.com/lastools/ . [Page 17]

Gautam Ray, Jayant R. Haritsa, and S. Seshadri. Database compression: A performance
enhancement tool. In COMAD, page 0, 1995. [page 3]

Rico Richter and J rgen D llner. Out-of-core real-time visualization of massive 3d
point clouds. In Proceedings of the 7th International Conference on Computer Graphics,
Virtual Reality, Visualisation and Interaction in Africa, Afrigraph 2010, Franschhoek,
South Africa, June 21-23, 2010, pages 121 128, 2010. doi: 10.1145/1811158.1811178.
URL http://doi.acm.org/10.1145/1811158.1811178 . [Pages 115 and 128]

Hanan Samet. The quadtree and related hierarchical data structures. ACM Comput.
Surv., 16(2):187 260, 1984. doi: 10.1145/356924.356930. URL http://doi.acm.org/
10.1145/356924.356930. [Pages 11, 14, and 18]

Hanan Samet and Walid G. Aref. Spatial data models and query processing. In Modern
Database Systems, pages 338 360. 1995. [Pages3and 9]

Timos K. Sellis, Nick Roussopoulos, and Christos Faloutsos. The r+-tree: A dynamic
index for multi-dimensional objects. In VLDB'87, Proceedings of 13th International
Conference on Very Large Data Bases, September 1-4, 1987, Brighton, England, pages
507 518, 1987. URL http://www.vldb.org/conf/1987/P507.PDF . [Pages4and 15]

Shashi Shekhar, Hui Xiong, and Xun Zhou, editors. Encyclopedia of GIS. Springer, 2017.
ISBN 978-3-319-17884-4. doi: 10.1007/978-3-319-17885-1. URL https://doi.org/
10.1007/978-3-319-17885-1 . [Page 14]

Zhenghua Shu, Hong Li, Guodong Liu, Qing Xie, and Lvming Zeng. Application of gis in
telecommunication information resources management system. In Information Man-
agement, Innovation Management and Industrial Engineering (ICII1), 2011 International
Conference on, volume 1, pages 401 404. IEEE, 2011. [page 2]

Darius Sidlauskas, Simonas Saltenis, Christian W. Christiansen, Jan M. Johansen, and
Donatas Saulys. Trees or grids?: indexing moving objects in main memory. In 17th
ACM SIGSPATIAL International Symposium on Advances in Geographic Information
Systems, ACM-GIS 2009, November 4-6, 2009, Seattle, Washington, USA, Proceedings,
pages 236 245, 2009. doi: 10.1145/1653771.1653805. URL http://doi.acm.org/10.
1145/1653771.1653805 [Page 14]

157

https://github.com/pgpointcloud/pointcloud
https://github.com/pgpointcloud/pointcloud
http://www.vldb.org/pvldb/vol8/p1442-psaroudakis.pdf
http://www.vldb.org/pvldb/vol8/p1442-psaroudakis.pdf
https://rapidlasso.com/lastools/
http://doi.acm.org/10.1145/1811158.1811178
http://doi.acm.org/10.1145/356924.356930
http://doi.acm.org/10.1145/356924.356930
http://www.vldb.org/conf/1987/P507.PDF
https://doi.org/10.1007/978-3-319-17885-1
https://doi.org/10.1007/978-3-319-17885-1
http://doi.acm.org/10.1145/1653771.1653805
http://doi.acm.org/10.1145/1653771.1653805

Bibliography

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

158

Darius Sidlauskas, Christian S. Jensen, and Simonas Saltenis. A comparison of the
use of virtual versus physical snapshots for supporting update-intensive workloads.
In Proceedings of the Eighth International Workshop on Data Management on New
Hardware, DaMoN 2012, Scottsdale, AZ, USA, May 21, 2012, pages 1 8, 2012. doi:
10.1145/2236584.2236585. URL http://doi.acm.org/10.1145/2236584.2236585
[Page 79]

Vishal Sikka, Franz F rber, Wolfgang Lehner, Sang Kyun Cha, Thomas Peh, and Christof
Bornh vd. Ef cient transaction processing in SAP HANA database: the end of a column
store myth. In Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012, pages 731 742,
2012. doi: 10.1145/2213836.2213946. URL http://doi.acm.org/10.1145/2213836.
2213946 [page 115]

Chander Kumar Singh. Geospatial Applications for Natural Resources Management. CRC
Press, 2018. [Page 2]

Tom#ks Skopal, Michal Krktk |, Jaroslav Pokorn , and VEclav Snksel. A new range query
algorithm for universal b-trees. Inf. Syst., 31(6):489 511, 2006. doi: 10.1016/j.is.2004.12.
001. URL https://doi.org/10.1016/}.is.2004.12.001 . [Pages 100 and 129]

statista. Number of check-ins by registered members on Foursquare locations from August
2011 to August 2017 (in millions), 2018. https://www.statista.com/statistics/
253838/number-of-check-ins-on-foursquare/ . [Page 1]

Emmanuel Stefanakis, Yannis Theodoridis, Timos K. Sellis, and Yuk-Cheung Lee. Point
representation of spatial objects and query window extension: A new technique for
spatial access methods. International Journal of Geographical Information Science, 11
(6):529 554, 1997. doi: 10.1080/136588197242185. URL https://doi.org/10.1080/
136588197242185[pages 14, 75, 78, 90, 98, and 100]

Alexandros Stougiannis, Mirjana Pavlovic, Farhan Tauheed, Thomas Heinis, and Anasta-
sia Ailamaki. Data-driven neuroscience: enabling breakthroughs via innovative data
management. In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013, pages 953 956,
2013. doi: 10.1145/2463676.2463677. URL http://doi.acm.org/10.1145/2463676.
2463677 [Page 3]

P. M. Suijker, I. Alkemade, M. P. Kodde, and A. E. Nonhebel. User requirements massive
point clouds for esciences (wpl). Delft University of Technology, 2014. [Pages 5 and 18]

Yufei Tao and Dimitris Papadias. Adaptive index structures. In VLDB 2002, Proceedings of
28th International Conference on Very Large Data Bases, August 20-23, 2002, Hong Kong,
China, pages 418 429, 2002. URL http://www.vldb.org/conf/2002/S12P02.pdf

[Page 15]

http://doi.acm.org/10.1145/2236584.2236585
http://doi.acm.org/10.1145/2213836.2213946
http://doi.acm.org/10.1145/2213836.2213946
https://doi.org/10.1016/j.is.2004.12.001
https://www.statista.com/statistics/253838/number-of-check-ins-on-foursquare/
https://www.statista.com/statistics/253838/number-of-check-ins-on-foursquare/
https://doi.org/10.1080/136588197242185
https://doi.org/10.1080/136588197242185
http://doi.acm.org/10.1145/2463676.2463677
http://doi.acm.org/10.1145/2463676.2463677
http://www.vldb.org/conf/2002/S12P02.pdf

Bibliography

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

Farhan Tauheed. Scalable exploration of spatial data in large-scale scienti ¢ simulations.
PhD thesis, Ecole Polytechnique Federale de Lausanne, 2014. [Pages 2, 3, and 4]

Farhan Tauheed, Laurynas Biveinis, Thomas Heinis, Felix Sch rmann, Henry Markram,
and Anastasia Ailamaki. Accelerating range queries for brain simulations. In IEEE
28th International Conference on Data Engineering (ICDE 2012), Washington, DC, USA
(Arlington, Virginia), 1-5 April, 2012, pages 941 952, 2012. doi: 10.1109/1CDE.2012.56.
URL https://doi.org/10.1109/ICDE.2012.56 . [Pages 2,4, 15, 24, 28, 29, 50, 78, 85, 86, and 100]

Farhan Tauheed, Thomas Heinis, Felix Sch rmann, Henry Markram, and Anastasia
Ailamaki. OCTOPUS: ef cient query execution on dynamic mesh datasets. In IEEE
30th International Conference on Data Engineering, Chicago, ICDE 2014, IL, USA, March
31 - April 4, 2014, pages 1000 1011, 2014. doi: 10.1109/ICDE.2014.6816718. URL
https://doi.org/10.1109/ICDE.2014.6816718 . [Page 4]

Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki. Con guring spatial grids for
ef cient main memory joins. In Data Science - 30th British International Conference
on Databases, BICOD 2015, Edinburgh, UK, July 6-8, 2015, Proceedings, pages 199 205,
2015. doi: 10.1007/978-3-319-20424-6_19. URL https://doi.org/10.1007/978-3-
319-20424- 6_19. [Pages 54 and 61]

Yannis Theodoridis and Timos K. Sellis. Optimization issues in r-tree construction (ex-
tended abstract). In IGIS '94: Geographic Information Systems, International Workshop
on Advanced Information Systems, Monte Verita, Ascona, Switzerland, February 28 -
March 4, 1994, Proceedings, pages 270 273, 1994. doi: 10.1007/3-540-58795-0_54. URL
https://doi.org/10.1007/3-540-58795-0_54 . [Page 4]

Yannis Theodoridis, Emmanuel Stefanakis, and Timos K. Sellis. Cost models for join
queries in spatial databases. In Proceedings of the Fourteenth International Conference
on Data Engineering, Orlando, Florida, USA, February 23-27, 1998, pages 476 483,
1998. doi: 10.1109/1CDE.1998.655810. URL https://doi.org/10.1109/ICDE.1998.
655810 [Page 16]

Hermann Tropf and H. Herzog. Multimensional range search in dynamically balanced
trees. Angewandte Informatik, 23(2):71 77, 1981. [Pages 11,89, 100, 104, 117, and 129]

Michael Ubell. The montage extensible datablade achitecture. In Proceedings of the
1994 ACM SIGMOD International Conference on Management of Data, Minneapolis,
Minnesota, USA, May 24-27, 1994., page 482, 1994. doi: 10.1145/191839.191939. URL
http://doi.acm.org/10.1145/191839.191939 . [Page 23]

Peter van Oosterom, Oscar Martinez-Rubi, Milena lvanova, Mike H rhammer, Daniel
Geringer, Siva Ravada, Theo Tijssen, Martin Kodde, and Romulo Goncalves. Massive
point cloud data management: Design, implementation and execution of a point cloud
benchmark. Computers & Graphics, 49:92 125, 2015. doi: 10.1016/j.cag.2015.01.007.
URL https://doi.org/10.1016/j.cag.2015.01.007 . [Pages 5, 18, 19,100, 114, and 117]

159

https://doi.org/10.1109/ICDE.2012.56
https://doi.org/10.1109/ICDE.2014.6816718
https://doi.org/10.1007/978-3-319-20424-6_19
https://doi.org/10.1007/978-3-319-20424-6_19
https://doi.org/10.1007/3-540-58795-0_54
https://doi.org/10.1109/ICDE.1998.655810
https://doi.org/10.1109/ICDE.1998.655810
http://doi.acm.org/10.1145/191839.191939
https://doi.org/10.1016/j.cag.2015.01.007

Bibliography

[135]

[136]

[137]

[138]

[139]

[140]

[141]

160

So aBerto Villas-Boas. Big datain rms and economic research. 2014. [Page 1]

Fusheng Wang, Jun Kong, Lee Cooper, Tony Pan, Tahsin Kurc, Wenjin Chen, Ashish
Sharma, Cristobal Niedermayr, Tae W Oh, Daniel Brat, et al. A data model and database
for high-resolution pathology analytical image informatics. Journal of pathology infor-
matics, 2, 2011. [page 23]

Aloysius Wehr and Uwe Lohr. Airborne laser scanning an introduction and overview.
ISPRS Journal of photogrammetry and remote sensing, 54(2-3):68 82, 1999. [Pages 113, 115,
and 128]

Thomas Willhalm, Nicolae Popovici, Yazan Boshmaf, Hasso Plattner, Alexander Zeier,
and Jan Schaffner. Simd-scan: Ultra fast in-memory table scan using on-chip vector
processing units. PVLDB, 2(1):385 394, 2009. doi: 10.14778/1687627.1687671. URL
http://www.vldb.org/pvidb/2/vidb09-327.pdf . [Pages 115, 116, and 121]

Eleni Tzirita Zacharatou, Harish Doraiswamy, Anastasia Ailamaki, ClEudio T. Silva,
and Juliana Freire. GPU rasterization for real-time spatial aggregation over arbitrary
polygons. PVLDB, 11(3):352 365, 2017. doi: 10.14778/3157794.3157803. URL http:
IIwww.vldb.org/pvldb/vol11/p352-zacharatou.pdf . [Page 3]

Kostas Zoumpatianos, Stratos ldreos, and Themis Palpanas. Indexing for interactive
exploration of big data series. In International Conference on Management of Data,
SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014, pages 1555 1566, 2014. doi:
10.1145/2588555.2610498. URL http://doi.acm.org/10.1145/2588555.2610498
[Pages 16 and 86]

Marcin Zukowski, SEndor HZman, Niels Nes, and Peter A. Boncz. Super-scalar RAM-
CPU cache compression. In Proceedings of the 22nd International Conference on Data
Engineering, ICDE 2006, 3-8 April 2006, Atlanta, GA, USA, page 59, 2006. doi: 10.1109/
ICDE.2006.150. URL https://doi.org/10.1109/ICDE.2006.150 . [Page 3]

http://www.vldb.org/pvldb/2/vldb09-327.pdf
http://www.vldb.org/pvldb/vol11/p352-zacharatou.pdf
http://www.vldb.org/pvldb/vol11/p352-zacharatou.pdf
http://doi.acm.org/10.1145/2588555.2610498
https://doi.org/10.1109/ICDE.2006.150

161

162

163

	Acknowledgments
	Abstract (English/Français)
	Table of Contents
	List of Figures
	List of Tables

