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Abstract

In an effort of overcoming the limited availability of fossil energy resources and moving
toward a sustainable economy, the focus of the research and development in the area of
biofuels has shifted towards developing the 2™ generation of fuels that should be
produced via microbial fermentation. The 2™ generation biofuels should satisfy several
criteria such as lower emission, higher energy density and should be less corrosive to
engines. Although for many of these molecules, natural producers are known, they are
not produced in the appreciated quantities. Heterologous expression of biosynthetic
pathways taken from natural producers or expression of de novo synthetic pathways into
microbial workhorses such as Escherichia coli allows for production of a wide spectra of
biofuels. Recently, Pseudomonas putida has emerged as an amenable production host
with a number of advantages over natural producers. P. putida is a non-pathogenic soil
bacterium known for its versatile metabolism. This highly adaptive bacterium has been
found to survive and grow on a wide range of substrates from pure caffeine to toxic
industrial waste. Moreover, P. putida is tolerant to high toxicity compounds such as 2™

generation biofuel butanol. Counterintuitively, P. putida was seldom used as a host for

the production of biofuels.

In this thesis, we performed a computational analysis of this organism to evaluate its
metabolic capacities to serve as a potential 2™ generation biofuels production host. Its
capacity was compared against heavily used host E. coli on the test example of

production of one of the most prominent fuel candidate Methyl Ethyl Ketone (MEK).

To this end, we first performed a thermodynamic curation of the genome-scale iJN1411
model of P. putida, and we then used redGEM and lumpGEM algorithms to derive a
consistently reduced large-scale stoichiometric model of P. putida. We integrated
different omics data into resulting models and we proposed a novel way of constraining
concentrations of the same species across different compartments while maintaining the
consistency with the experimental measurements. To assess its capability to serve as a
host, we evaluated and analyzed more than 3.6 millions biosynthetic pathways for

production of 5 MEK precursors, in both heavily used industrial workhorse E. coli and
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rising P. putida. We compared their capability and performance with respect to
thermodynamic feasibility and yield and we identified the most promising pathways for
MEK production. Beside the discovered and evaluated pathways, we present a new way
of clustering of feasible pathways and pathway precursors that allows us to classify and
evaluate alternative ways for production and to better understand chemistry that leads

towards the target molecule.

Identification of metabolic engineering targets for the improved biofuel production
requires kinetic models. We used the ORACLE framework to generate a population of
large-scale kinetic models of P. putida, and we employed these models in two studies. In
the first study, for a wild-type strain of P. putida grown under aerobic conditions using
glucose as a carbon source, we evaluated and validated the predictions of the generated
kinetic models against a collection of experimental single-gene knockouts. In the second
study, we analyzed the capacity of P. putida to adapt to increased energy demand, and
we identified potential metabolic engineering targets for improved resistance of this

organism to stress conditions.

Keywords: Pseudomonas putida, Escherichia coli, thermodynamic, model reduction,
pathway feasibility, pathway similarity, pathway clustering, Methyl Ethyl Ketone, large-

scale and genome-scale kinetic models, kinetic parameters uncertainty
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Résume

Afin de surmonter la disponibilité limitée des ressources en énergie fossile et de
progresser vers une économie durable, la recherche et le développement dans le
domaine des biocarburants ont mis l'accent sur le développement de la deuxieme
génération de carburants issus de la fermentation microbienne. Les biocarburants de
2éme génération devraient satisfaire a plusieurs critéres, tels que la réduction des
émissions et la densité énergétique, et devraient étre moins corrosifs pour les moteurs.
Bien que pour beaucoup de ces molécules, les producteurs naturels soient connus, ils ne
sont pas produits en quantités appréciables. L'expression hétérologue de voies de
biosyntheése provenant de producteurs naturels ou l'expression de voies de synthése de
novo dans des « bétes de somme » microbiennes tels que Escherichia coli permet la
production d'un large spectre de biocarburants. Récemment, Pseudomonas putida s’est
avéré hote favorable a la production avec de nombreux avantages par rapport aux
producteurs naturels. P. putida est une bactérie du sol non pathogéne connue pour son
métabolisme polyvalent. On a constaté que cette bactérie hautement adaptative survit
et se développe sur une large gamme de substrats, de la caféine pure aux déchets
industriels toxiques. De plus, P. putida est tolérant a des composés hautement toxiques
tels que le biocarburant butanol de 2éme génération. Contre intuitivement, P. putida

était rarement utilisé comme héte pour la production de biocarburants.

Dans cette thése, nous avons effectué une analyse computationnelle de cet organisme
pour évaluer ses capacités métaboliques en tant qu'hote potentiel de production de
biocarburants de 2e génération. Sa capacité a été comparée a celle de 'héte fortement
utilisé E. coli, en se basant sur un test de production de 1'un des principaux candidats au

carburant, la méthyléthylcétone (MEK).

A cette fin, nous avons d’abord procédé a une curation thermodynamique du modéle
iJN1411 a I'échelle du génome de P. putida, puis nous avons utilisé des algorithmes
redGEM et lumpGEM pour obtenir un modeéle stoechiométrique a grande échelle de
P. putida réduit de maniere consistante. Nous avons intégré différentes données

omiques dans les modeéles résultants et nous avons proposé une nouvelle méthode pour



limiter les concentrations des mémes espéces dans différents compartiments tout en
maintenant la cohérence avec les mesures expérimentales. Pour évaluer sa capacité a
servir d’hote, nous avons évalué et analysé plus de 3,6 millions de voies de biosynthese
pour la production de 5 précurseurs de MEK, sur les deux bétes de somme industrielles
que sont E. coli et la nouvelle venue P. putida. Nous avons comparé leurs capacités et
leurs performances en termes de faisabilité thermodynamique et de rendement, et nous
avons identifié les voies les plus prometteuses pour la production de MEK. Outre les
voies découvertes et évaluées, nous présentons une nouvelle facon de regrouper les voies
et les précurseurs de voies possibles, ce qui nous permet de classer et d’évaluer des
méthodes alternatives de production et de mieux comprendre la chimie menant a la

molécule cible.

L'identification de cibles d'ingénierie métabolique pour I'amélioration de la production
de biocarburant nécessite des modeles cinétiques. Nous avons utilisé 'outil ORACLE
pour générer une population de modéles cinétiques a grande échelle de P. putida, et
nous avons utilisé ces modeles dans deux études. Dans la premieére étude, pour une
souche sauvage de P. putida cultivée dans des conditions aérobies en utilisant le glucose
comme source de carbone, nous avons évalué et validé les prédictions des modeles
cinétiques générés par rapport a un ensemble expérimental de KO a géne unique. Dans
la seconde étude, nous avons analysé la capacité de P. putida a s'adapter a une demande
énergétique accrue et nous avons identifié des cibles potentielles d’ingénierie

métabolique pour améliorer la résistance de cet organisme aux conditions de stress.

Mots-clés: Pseudomonas putida, Escherichia coli, thermodynamique, réduction de
modeéle, faisabilité de voies métaboliques, similarité des voies, regroupement des voies,
méthyléthylcétone, modeles cinétiques a grande échelle et a 1'échelle du génome,

incertitude des parametres cinétiques
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Introduction

Introduction

Motivation

In 2009, Shafiee and Topal, in one of the most impactful publications in the field of
energy production & sources (1289 citations based on the Google scholar in November
2018), estimated fossil fuel reserve depletion times for oil, coal and gas to approximately
35, 107 and 37 years, respectively [1]. More recently, in June 2017, British Petroleum (BP)
reported that the proved oil reserves rose to the total of 1707 billion barrels - just enough
oil to sustain the world consumption for 50.6 years at 2016 production rates [2]. Despite
the fact that in reality oil reserves may be higher, mankind has to find a solution to its
fossil fuel dependency. As a part of that solution, biofuels will play a big role and they

will represent an essential contribution to our future energy supply [3].

The idea of producing biofuels and biochemicals from biomass-derived sugars can be
traced back to the 1970’s [4]. A series of global fossil fuel crises between 1973 and 1979
sparked an intensive development of technologies for production of biofuels. Since then,
the first generation of biofuels (mainly ethanol and biodiesel) has been produced at
industrial scale. According to the Renewable Fuel Association (RFA) [5], the world
production of ethanol in 2017 was around 27 million gallons (102 million liters).
However, ethanol is not an ideal replacement for conventional fuels mainly because
both food and biofuel industry use corn as one of the principal production resources.
Limited arable land for food crops and the expected growth of the world population
(according to UN the world population will reach 9.6 billion by 2050) will further
toughen up the competition for resources and motivate the development of technologies

for sustainable production of food and fuels.
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Motivated by ethical (fuel vs. food), and practical (relatively low energy density of
ethanol compared to the fossil fuels and the highly hygroscopic nature of ethanol)
reasons, recent research efforts focus on a sustainable production of the 2™ generation
of biofuels. Compared to the currently used fossil fuels and bioethanol, these 2™
generation biofuels should provide lower carbon emissions, higher energy density, and
should be less corrosive to engines and distribution infrastructures. Recently, a large
number of potential candidates for the 2nd generation biofuels has been proposed such
as n-butanol [6], isobutanol [6], 2-methyl-1-butanol [6], 3-methyl-1-butanol [6], C13 to
C17 mixtures of alkanes and alkenes [7], fatty esters, fatty alcohols [8], and Methyl Ethyl

Ketone (MEK) [9].

While certain candidates for 2™ generation biofuels are native to some living cells, their
production does not occur in appreciable quantities [10]. In this case, metabolic
engineering strategies applied in native organisms can target rate limiting steps and
allow an enhanced production. For chemicals whose natural microbial producers are not
known, the feasibility of their bioproduction has to be assessed and potential novel
biosynthetic pathways for production of these chemicals are yet to be discovered [11, 12].
Even when production pathways for target chemicals are known, it is important to find
alternatives in order to further reduce cost and greenhouse gas emissions, and as well to

avoid possible patent issues.

Nowadays, knowledge assembled in the fields of metabolic engineering and systems
biology provide the tools to design hybrid organisms with novel biosynthetic capabilities
and suitable production properties [13]. The ideal microorganism for biofuel production
should possess high substrate utilization and processing capacities, fast and deregulated
pathways for sugar transport, good tolerance to inhibitors and product, high metabolic
fluxes, and should lead to the production of a single fermentation product [14]. The most
frequently suggested candidates for the host organisms are prokaryotic Escherichia coli
and eukaryotic yeast Saccharomyces cerevisiae [15-17]. These organisms have fast growth
rates and are facultative anaerobes, allowing a flexible and economical process design
for large-scale production[16]. However, during the expression of non-native pathways,
several important factors have to be taken into account: the affinity of an enzyme for

substrate(s) and its catalytic efficiency[18], the NADH/NAD+ imbalance[i5] that may



Introduction

result from the introduction of non-native pathways and their expression, additional

stresses caused by the toxicity of the non-native product [14] etc.

Recently, Pseudomonas putida emerged as a good alternative due to its fast growth with
low nutrient demand [19], considerable metabolic versatility [20], low cellular energy
demand [21], ability to grow in wide range of chemicals [22, 23] and its robustness and
high flexibility to adapt and counteract different stresses [24]. In addition, P. putida is
suitable for genetic manipulation [25]. For these reasons, P. putida rose as one of the

most promising production hosts for a wide range of chemicals including biofuels.

A systematic strain design for the production of biochemicals usually requires several
gene insertions/deletions, measurements of product titers and different omics data to
assess the performance of engineered strains. Combinatorial identification of target gens
and rate-limiting steps require inclusion of this information in a mathematical model.
To this end, mathematical models of metabolism serve as one of the essential tools for
designing recombinant organisms for the production of biofuels. In recent years, the
prevalent frameworks for modeling metabolic pathways were constraint-based
approaches that make use of network stoichiometry to characterize the intracellular
fluxes at steady state [26-29]. While proving their utility in studies of cellular physiology
and metabolic engineering [30-32], the stoichiometric models lack information about
metabolic regulation and enzyme kinetics. Therefore, these static descriptions are
unable to capture the dynamic features of metabolic pathways and they cannot be used
for predicting the complex dynamic responses to environmental and genetic
perturbations, or, e.g., for studying dynamic transitions of the metabolism [33-35] or
oscillatory phenomena [36, 37]. Such studies require a kinetic model. The overarching
ambition of kinetic metabolic modeling is to capture the dynamic behavior of
metabolism to such an extent that systems and synthetic biology strategies can reliably

be tested in silico.
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Aim and scope

This PhD thesis is a part of SynPath, a transnational research project between four
universities' under the ERA-SynBio initiative. The aim of this project was to develop a
workflow for the design and integration of novel synthetic biochemical pathways into
two chassis: Escherichia coli and Pseudomonas putida for the production of novel

molecules. This workflow was tested for the case of production of novel biofuels.

In spite of Pseudomonas putida versatility and superior stress tolerance compared to
other industrially-relevant organisms such as E. coli [38], this organism is rarely used as
a host for the production of biofuels. The principal objective of this thesis is to
investigate metabolic capabilities of this organism as a prospective host for the
production of second-generation biofuels. To this end, we performed series of
computational analysis of Pseudomonas putida metabolism, assessed its capacity for
producing biofuels and compared it to the one of Escherichia coli. This way, we were
able to underscore benefits and drawbacks of using Pseudomonas putida as an

alternative to Escherichia coli for biofuel production.
Thesis outline

This thesis is organized in 5 chapters. Each chapter contains the state-of-the-art related

to the chapter topic.

In chapter 1, we introduced some basic concepts and methods such as constrained
based modeling and Genome-Scale Models which appear throughout the whole thesis.
In chapter 2, we present the first thermodynamically curated genome-sale model of P.
putida and its three reduced counterparts of different complexity. We studied how
different constraints imposed in the model can affect our conclusions about gene
essentiality. In chapter 3, we used Biochemical Network Integrated Computational
Explorer (BNICE.ch) to explore the space of potential biotransformations around

promising 2™ generation biofuel candidate methyl ethyl ketone. The computational

' RWTH Aachen University (RWTH), Technical University of Denmark (DTU), Ecole Polytechnique Fédérale de Lausanne (EPFL)
Laboratory of Computational Systems Biotechnology (LCSB), and University of California, Berkeley & Lawrence Berkeley National
Laboratory (JBEI)
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techniques presented in this chapter for generating and analyzing biochemical pathways
can be useful for the development and evaluation of similar novel biochemical pathways
for many other compounds of biotechnological importance. Since the selection of a host
organism is critical step in metabolic engineering, in Chapter 4 we compared the
metabolic capacities of P. putida and E. coli from different aspects like thermodynamics,
capacity to produce different cofactors and we evaluated them as potential second-
generation biofuels production hosts. We have shown that choice of the host organism
has a huge impact on the biosynthetic pathway performance, e.g., pathway is
thermodynamically feasible in one organism but not in the other. Finally, to identify
metabolic targets for the optimization of production of desired molecules, in Chapter 5
we built a population of large-scale kinetic models of P. putida. This way, we are able to
identify enzymes that are potential candidates for metabolic engineering strategies

towards improving metabolic capabilities of a P. putida strain.

Supplementary material for this thesis is available in the electronic form, and it is

accessible at the following link:

https://zenodo.org/record/1545523#.W_vZzZNKhBw
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Chapter 1. Background

This chapter summarizes some of the basic concepts and definitions, which propagate
through whole thesis. Also, all computational tools used for production and generation

of obtained results, are reviewed and conceptually described.
1.1 Genome scale models

A mathematical model is a system of equations that represents the features of a certain
process. Typically, a metabolic network representing cell metabolism consists of a list of
biochemical reactions and the association between these reactions and relevant proteins
and genes. A reconstruction can be converted into a model by including the assumptions
necessary for computational simulation, for example, maximum reaction rates and
nutrient uptake rates [39]. Integration of experimental studies with metabolic modeling
allows comprehension of systems properties, prediction of perturbation effects and
generation of hypotheses for further research [40]. Models can be applied to generate
novel, testable and often quantitative predictions of cellular behavior [39]. Analysis of
the metabolic network allows us to simulate experimental conditions that are difficult
or very expensive and time consuming to perform. Also, model simulations can be

repeated relatively easily for different conditions.

Metabolic models that capture information about all known metabolic reactions and the
genes with their respective enzymes are known as Genome Scale Models (GEMs). GEMs
have been proved as very useful in the field of System Biology and they have been used
as tools for drug design and personalized medicine [41], for prediction of gene
manipulation targets for metabolic engineering [42-45], for understanding diverse

phenotypes [46, 47] and for studding of the effect of gene knockouts [48].
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1.2 Constrained-based modeling

The most commonly used computational tool for research and the understanding of cell
metabolism is constrained-based modeling. Basic concepts of constraint-based

modeling are shown in Figure 1.1.

V3

Constraints
1)Sv=0
2) a,-< V,'< b,‘

Optimization
maximize Z

(I
e

Allowable
solution space

Unconstrained

solution space Optimal solution

Vo Vo Vo

Figure 1.1 The conceptual basis of constraint-based modeling.

(Taken from Orth et al [49])

A metabolic network is represented as a stoichiometric matrix S. Every row of this matrix
corresponds to a compound (for a system with m compounds) and every column
corresponds to a reaction (n reactions). The flux of each metabolic reaction in a network
is represented by the vector v. If no constraints are applied to the network the flux
distribution may lie at any point of the n-dimensional solution space. An allowable
solution space is defined by constraints: mass balance equations, experimental flux
measurements and physiological upper and lower flux bounds (aj and b;). The network
may acquire any flux distribution within this space, but points outside this space are
denied by the constraints. For a given objective function (Z) an optimal set of fluxes can
be obtained subject to the mass balance (Sv=0) and linear inequality (ai<vi<bj)

constraints [49, 50].
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1.2.1 Flux balance analysis

The aim of Flux balance Analysis (FBA), as a constraint-based modeling approach, is to
find a flux distribution within n-dimensional constrained space which will maximize or
minimize an objective function Z (e.g. maximum growth or production of certain
metabolite). Such flux distribution has to satisfy mass balance equations. Solutions
obtained with FBA can be unreliable (although they are mathematically correct) because
they can violate thermodynamic constraints (e.g. a flux is forced through a reaction into

a direction that is not feasible due to the second law of thermodynamics).
1.2.2 Thermodynamics-based flux analysis

In order to address the thermodynamic feasibility, Henry et al. [51, 52] proposed the
introduction of additional constraints into the FBA workflow in order to generate
thermodynamically feasible flux distributions for a network and metabolite activity
profiles. This workflow is known as thermodynamics-based flux analysis (TFA) [53-57].
Additional thermodynamics constraints reduce further the allowable solution space.
This gives us the confidence that our metabolite concentrations and flux distribution
(directionality of reactions) are consistent with values of the Gibbs free energy of
reaction. TFA computes feasible flux profiles while taking into account thermodynamic
information about Gibbs free energy of compounds and reactions. To extract
thermodynamic information we use Group Contribution method (GCM) [58, 59], in
which each individual reaction participant is broken down into a smaller substructures
and linked with matching constituent molecular substructures from GCM with known

Gibbs free energy.

Thermodynamic feasibility can be determined based on the Gibbs free energy change of

reaction, which is defined as:

ARGV°=Z n; AG; +RTIn (1_[ x?i) (1.1)

i=1 i=1

where AfG';) is the standard Gibbs free energy of formation of compoundi, Ris the

universal gas constant, T is the temperature (here assumed to be 298 K), mis the
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number of metabolites involved in the reaction, xiis the activity of metabolites i,

and n; is the stoichiometric coefficient of metabolites i in the reaction (ni is negative for
reactants and positive for products). If ARG is smaller than o the reaction proceeds

spontaneously and if AgG ° is bigger than o the reaction is not energetically favorable

and will not occur spontaneously.
1.2.3 Other constrained-based methods

Beside FBA and TFA, whole gamut of constrained-based methods have been developed
for studding different phenomena. Minimization of Metabolic Adjustment (MOMA)
[47] was used for studding a flux redistribution in a mutants. The main assumption in
MOMA is that flux redistribution in a mutant is minimal compared with the flux
distribution in the wild-type. Regulatory Flux Balance Analysis (rFBA) [60], steady-state
rFBA (SR-FBA) [61] and probabilistic regulation of metabolism (PROM) [62] are
methods based on the Boolean rules for the genome-scale integration of transcription
and metabolism. Integrated FBA (iFBA) [63] simultaneously model the metabolic,
regulatory and signal transduction networks where signaling network is described by
the set of ordinary differential equations. Dynamic FBA (dFBA) [64] extended FBA with
the time component. Constrained Allocation Flux Balance Analysis (CAFBA) combines
mass balance and proteomic constraints [65]. Dynamic enzyme-cost FBA (deFBA) [66]
couples metabolism and gene expression by combining a quasi-steady state for the
intracellular metabolism, and a dynamic part for the evolution of biomass and substrate

concentrations.

1.3 Systems-level analysis and data integration

Strain design and production optimization traditionally rely on in vitro experiments and
measurements. Today, modern measurement techniques are capable of measuring a
wide range of intracellular (fluxes, concentrations, enzyme saturations, etc.) and
fermentation data. To capture the full benefit of these data, they have to be integrated
into the metabolic model. The model can use these data for further characterization and
optimization of cell performance. Due to the underdetermined nature of a model, it is

not possible to identify a single, unique flux profile but rather the large number of

10
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different flux profiles. Understanding the properties of all possible flux profiles is
imperative for understanding and optimizing the pathways. As mentioned above, TFA
integrates the information about the intracellular metabolite concentrations allowing
identifying the thermodynamic displacements from equilibrium of the network
enzymes and characterizes the bioenergetic state of the cell. The integrated metabolome
and fluxomic data from TFA are further used for the identification of the reactions

constituting rate-limiting steps in the network [67-69].
1.4 Systematic reduction of Genome Scale Models

Since its induction, GEMs are constantly growing in their size and complexity. Along
with the explosion in the number of reaction and metabolites, computational efforts for
their analysis gradually increased. Although reduced models are frequently used as an
alternative, they are often built around certain pathway [70-72] or subsystems of interest
[37, 73-75] in ad hoc manner. As a consequence, their utility is hampered by the
inconsistency in stoichiometry. To overcome this, Ataman et al. [76] proposed an
algorithm called redGEM, for systematic reduction of GEMs to core models. Erdrich at
al. [77] proposed the alternative called NetworkReducer. Both methods share the same
goal: an automated and unbiased way of delivering smaller models in a systematic way.
There are many advantages of reduced models compared with their GEM counterparts:
reduced complexity while keeping in mind that all the properties of GEM have to be
preserved, they are modular, easy expandable with a pathway of special interest and

reproducible.

1.5 Optimization of synthetic pathways for efficient biofuel
production, building a kinetic model

Traditional analysis of metabolic network is based on stoichiometric models and
FBA/TFA. Such a formulation does not allow the prediction of metabolic responses to

changes in cellular and process parameters. Such studies require a kinetic model of the

metabolic network.

11
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Reliable kinetic models require information about kinetic properties of enzymes, and
quite often, this information is not available. To overcome this, Wang and
Hatzimanikatis have proposed an approach based on Metabolic Control Analysis (MCA)
and uses Monte Carlo techniques to simulate the uncertainty in the values of the system
parameters [78, 79]. The approach laid a foundation for a computational method that
integrates available information into a mathematical structure. The new method is
named ORACLE (Optimization and Risk Analysis of Complex Living Entities) [69, 80].
ORACLE methodology allows for the integration of the flux profile analysis from TFA
along with metabolomics and fluxomics data and kinetic expressions for the

development of large-scale kinetic models under great deal of uncertainty.

Within MCA two important variables are defined: flux control coefficients (FCC) and
concentration control coefficients (CCC). Control coefficients (CC) are defined as the
fractional change of metabolic fluxes and metabolite concentrations in response to
fractional changes of system parameters [78, 79]. Control coefficients are determined by
the elasticities, which quantify the strength of interactions of the enzymes with
substrates, products, inhibitors and activators. Control coefficients capture the
sensitivity of a metabolic network to a small perturbation of the metabolic parameters
and they are used for understanding the properties of the metabolic pathways and to

predict cellular responses [69].
The control coefficients are defined as:

e Flux control coefficient (FCC)
v dv/v _dlnv
P dp/p dlnp

= Il — E(NVE)"INVII (1.2)

e Concentration control coefficients (CCC)

. dx/x _dlnx
P dx/p dlnp

= —(NVE)~INVII (1.3)

where N is the stoichiometric matrix, V the diagonal matrix of fluxes, E the elasticity

matrix and I the parameter matrix; p is the parameter, x concentration and v is the flux.

MCA is a local sensitivity analysis approach. It is based on small perturbations of the

parameter values around the steady state solution. We can use a kinetic model to

12
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simulate any kind of perturbation of its components [81]. A properly built kinetic model

can be used to:

* Assess possible responses of engineered strains
* Guide the design of industrial organisms

* Uncover couplings in metabolic networks

13
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Chapter 2. Curation and systematic

reduction of Pseudomonas putida

GEM iJN1411

2.1 Introduction

Pseudomonas putida is a highly adaptive, non-pathogenic, soil bacterium that can grow
on a wide range of substrates, and it is tolerant to high toxicity compounds[82z]. For
these reasons, it emerged recently as one of the most promising production hosts for a
wide range of chemicals. Recent efforts toward understanding and improving the
behavior and systemic properties of P. putida metabolism resulted in several genome-
scale reconstructions. The first reconstructed Genome-Scale Model (GEM) of P. putida,
iJN746, was published in 2008 and it comprised 911 metabolites, 950 reactions, and 746
genes [83]. It was rapidly followed by the publication of iJP815 [84] and several other
reconstructions [85, 86]. These models have shown their value in studying metabolic
features of P. putida such as the enhanced production of poly-hydroxyalkanoates [87],
reconciliation of key biological parameters for growth on glucose under carbon-limited
conditions [88], or identification of essential genes for growth on minimal medium [89].
The inconsistencies among these models motivated Yuan et al. to build so-called
pathway-consensus model PpuQY1140 [9o]. The so far most complete GEM of P. Putida,
iJN1411, was published in 2017 by Nogales et al. [91], and it contains 2057 metabolites,

2581 reactions, and 1411 genes.

15
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Thermodynamics is an important property of the metabolic network with a broad
impact on the directionality of reactions [52, 55]. Methods that use thermodynamics
data such as the thermodynamics-based flux analysis TFA [51-53, 55-57] allow us to
integrate the metabolomics data together with the fluxomics data, to eliminate in silico
designed biosynthetic pathways not obeying the second-law of thermodynamics [92-
94], to eliminate infeasible thermodynamic cycles [95-97], to identify how far or how
close are reactions from thermodynamic equilibrium [54, 98] or to constrain available
flux and concentration spaces [53, 55]. Despite the fact that usefulness of
thermodynamics has been demonstrated in many applications, only a few reconstructed

GEMs consider this important network property [54, 99-102].

Analyzing GEMs can be a challenging task. Some methods like enumeration of
elementary modes [103] can be even unmanageable in GEMs composed of several
thousand reactions and the complexity of this method is widely recognized in the
literature [104]. While this method works well for small scale models, it might fail even
for the medium scale network [105]. For example, Flynn et al. [106] used elementary
modes method to analyze metabolic model of Shevanella oneidensis MR1. Although their
analysis was limited to a model composed of 64 reactions and 61 metabolites, they
constructed 368’545 elementary modes. It’s not hard to imagine an explosion in number
of modes in a bigger model. On the other side, availability of intracellular metabolomics
and fluxomic data is typically limited to the central carbon pathways, leaving most of
the GEM uncovered. Reduced model came naturally as an alternative. While many
reduced models are delivered in biased way, with ad hoc stoichiometry around
pathway/s or subsystem/s of interest and tailored made for the “in the lab” study,
Ataman et al. [76] proposed a systematic semi-automatic method for reduction of GEMs

to core models in unbiased way

In this chapter, we used the thermodynamics-based flux analysis (TFA) [51-53, 55-57] to
introduce thermodynamics into iJNi4u. With TFA, we imposed thermodynamic
information for 62.3% metabolites and 59.3% reactions from the model. We analyzed
thermodynamic behavior of the model and we corrected the topology of the network.

Finally, we applied redGEM algorithm and we delivered 3 reduced modes of different

16
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complexity. All reduced models are validated against their GEM counterpart in terms of

gene essentiality, flux variability and the growth predictions.

2.2 Methods

2.2.1 Thermodynamic-based flux analysis (TFA)

We integrated thermodynamic properties into existing stoichiometric model iJN1411 [91]
using Thermodynamic-based flux analysis (TFA) framework [51-53, 55-57]. TFA
computes feasible flux profiles while considering thermodynamic information about
Gibbs free energy of compounds and reactions. To extract the thermodynamic
information we used Group Contribution method (GCM) [58, 59], in which each
individual reaction participant is broken down into a smaller substructures and linked
with matching constituent molecular substructures from GCM with known Gibbs free

energy.

2.2.2 Integration of metabolomics data while considering cellular

compartments.

Here we propose a novel set of constraints that allow for concentrations of the same
species across different compartments to be different while maintaining the consistency

with the experimental measurements.

For the concentration C,; of a metabolite M measured in the range C,;, € (CM,E) we

have:

N S Nei
CM = Tt — &ifd (2.1)
Ve XiVei

where N; is the number of moles of M and V; is the total volume of the cell. N; and V;

are the corresponding quantities in compartments i. Considering that ); Vp; =V, i.e.,

i % = Y,; a; = 1, by dividing (2.1) with V; we obtain

ZiNCiVCi 5
Vi Vi iaiCpmi
Cy = L — (2 2)
M Ve .
Zi—VC;'L Ziai
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where Cy; is the concentration of metabolite M in the compartment i and q; is the
volume fraction of the compartment i with respect to the entire cell. Observe that a; and

Cy; are positive quantities.
If we apply logarithm to (2.2), we have:

i%iCmi
logCy, = logZZaTz". (2.3)

Considering that log is a concave function, we can use Jensen’s inequality [107] where

for a concave function ¢ and positive weights «; it holds that:

iaix; Ziaip(x)
( Ziai ) Z Zial- ’ (24)
Therefore, by combining (2.3) and (2.4) we get:
2i #iCyi
logCy = logW > Y a;logCy;. (2.5)

Moreover, if we denote the physiological lower and upper bound on intracellular

metabolite concentrations as LB = 1 uM and UB = 50 mM, respectively, then the upper

bound on Cy;, Cyy;, can be derived from the following expression:
Cn = aiCy; + (1 —a;) * LB, (2.6)
hence

Cu+ (1-a;)+LB

aj

Cuyi = (2.7)

To prevent the case Cy; > UB for some values of a;, we put the upper bound on Cy; as

follows:

Coi = min (M UB). (2.8)

i

Analogously for the lower bound on the concentration of the metabolite M in the

compartment i, Cy;;, we have:

Cm+ (1—a;)=UB
Cyi = max (—M (e

, LB). (2.9)

441
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Therefore, instead of using i constraints on the compartment species of metabolite M in
the form of log Cy; < logCy; < logCy,, we propose to use i+2 constraints providing more

flexibility and relaxing the assumption on equal concentrations of metabolite M in all

compartments:

log Cyi < logCy; < log Coi (2.10)
together with (2.5) and

logCy <logCy < log Cyy (2.11)
where Cy; and Cyi are computed as in (2.8) and (2.9).

The volume fractions of cytosol, a;, and periplasm, a,, were taken respectively as 0.88

and 0.12 [108].
2.2.3 Gap-filling of thermodynamically curated iJN1411

We merged two genome-scale models, iJN1411 of P. putida [91] and i]O1366 of E. coli [29]
into one compound model that was used for gap-filling of iJN1411. We removed duplicate
reactions from the compound model along with phosphofructokinase (PFK) that is
absent from P. putida metabolism [109]. Compared to iJN1411 the compound model had
additional 1201 reactions originating from iJO1366. We imposed experimentally
measured ranges of ATP concentrations, glucose uptake and the specific growth rate,
and performed TFA while minimizing the number of reactions from the set of the added
1201 that can carry flux. The optimization revealed that it is sufficient to add a single
reaction, sulfate adenyltransferase (SADT2), from iJO1366 to iJNi4u1 and obtain

consistency of iJN1411 TFA solutions with the experimental data.
2.2.4 Systematic reduction

We used the redGEM [76] and lumpGEM [110] algorithms to deliver reduced models of
three different sizes (referred in the results section as D1, D2 and D3). The first step in
the redGEM algorithm is to select the metabolic subsystems of interest around which

the reduced models are built. We selected the following six metabolic subsystems from
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iJN1411: glycolysis and gluconeogenesis, pentose phosphate pathway, pyruvate
metabolism, TCA cycle and oxidative phosphorylation. From the reactions belonging to
these six subsystems we removed all cofactor pairs and small metabolites such as
protons, phosphate groups and inorganics. We then used a graph search algorithm to
identify all one-reaction, two-reaction, and three-reaction steps pairwise connections
between six subsystems and formed the core metabolic networks of D1, D2 and D3
model, respectively. We next performed another graph search to find the connections
of D1-D3 core networks with the extracellular space. With this step the core networks of

D1, D2 and D3 models were finalized.

We then used the lumpGEM|[110] algorithm to connect the core networks of D1, D2 and
D3 with the building blocks of the iJN1411 biomass reaction. For each of 102 iJNi411
biomass building blocks (BBBs), lumpGEM identified a set of alternative minimal
subnetworks that were able to connect precursors belonging to the core network and
the BBB. The size of minimal networks is denoted Smin [110]. For some studies it is of
interest to identify subnetwork of higher sizes. Herein we identified subnetworks of the
size Smint+2. Finally, lumpGEM collapses the identified subnetworks into lumped

reactions that together with the core networks constitute the core reduced model.

All delivered models passed a series of tests, to ensure consistency between them and
GEM. These tests include thermodynamic feasibility, theoretical maximal biomass yield,
gene essentiality of common genes and thermodynamic flux ranges of common

reactions.

2.3 Results and Discussion

2.3.1 Thermodynamic curation of the P. putida GEM iJNi411

We used Group Contribution method (GCM) [58, 59] to assign the standard Gibbs free
energy of formation to 62.3% metabolites and the standard Gibbs free energy of reaction
to 59.3% reactions from the iJNi411 model. We could calculate the standard Gibbs free
energies for all metabolites and reactions participating in the pathways of central carbon
metabolism (glycolysis, gluconeogenesis, pentose phosphate pathway, tricarboxylic acid

(TCA) cycle). In contrast, we could estimate the standard Gibbs free energy of reaction
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for only 3.3% reactions in the poly-hydroxyalkanoates (PHA) metabolism because the
majority of involved metabolites from these pathways have the structures with unknown
residuals which precluded computation of the thermodynamic properties. With TFA we
identified 103 bidirectional reactions, while this number was 115 when thermodynamics
were not considered (Table 2.1). In this case, only constraint imposed in the model was

upper glucose uptake of 10 mmol/gDCW/hr.

We integrated experimental measurements of glucose uptake and biomass yield on
glucose [111] and metabolite concentrations [112] into the thermodynamically curated
model iJN141. The performed TFA indicated that the model predicted ranges of ATP
concentrations could not match the values reported in the literature [109, 112]. A reason
behind this mismatch could lie in the fact that the H*/ATP stoichiometry in the electron
transport chain (ETC) of P. putida might be inaccurately determined in iJN1411 which
would lead to large discrepancies in ATP yield on glucose [20, 113]. Here, we investigated
another venue and hypothesized that iJNi411 is missing a critical reaction in the ATP-
related metabolism. Therefore, to make model predictions consistent with the
experimental observations, we performed gap-filling with the 01366 GEM of E. coli [29]
(Methods 2.2.3). Our analysis indicated that one reaction, sulfate adenyltransferase
(SADT2), is missing in the iJNi411. SADT2 plays a role in cysteine formation, and
similarly to sulfate adenylyltransferase (SADT), which already exists in the iJNi41, it
catalyzes the production of cysteine precursor adenosine 5-phosphosulfate from ATP
and SO,. The production of adenosine 5-phosphosulfate catalyzed by SADT2 is coupled
with GTP consumption, whereas this coupling is absent in SADT. Since the experimental
evidence supports that GTP hydrolysis enhances the rate of adenosine 5’-phosphosulfate
formation [114], we included this reaction into iJNi411. The thermodynamically curated,
gap-filled, model iJN1411 was consistent with the experimental values of both fluxomics

and metabolomics data.
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Table 2.1 Reactions that are determined as bi-directional in FBA, but unidirectional in

TFA

Reaction

abbreviation
3HAACOAT120
3HAACOAT60
3HAACOATS8o
FALDM
RECOAH2
RECOAH3
RECOAHs5
RHACOAR100
RHACOAR120
RHACOAR140
RHACOARG60

RHACOARS8o

Reaction Name

3 Hydroxyacyl ACPCoA Transacylase

3 Hydroxyacyl ACPCoA Transacylase

3 Hydroxyacyl ACPCoA Transacylase

formaldehyde dismutase

3 hydroxyacyl Coa dehydratase 3R 3 hydroxyhexanoyl CoA
3 hydroxyacyl Coa dehydratase 3R 3 hydroxyoctanoyl CoA
3 hydroxyacyl Coa dehydratase 3R 3 hydroxydodecanoyl CoA
3R 3 Hydroxyacyl COANADP oxidoreductase

R Hydroxyacyl CoANADP oxidoreductase

3R 3 Hydroxyacyl COoANADP oxidoreductase

3R 3 Hydroxyacyl CoANADP oxidoreductase

3R 3 Hydroxyacyl CoANADP oxidoreductase
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Table 2.2 Additionally constrained reactions upon implementation of experimental data

ALCD1g alcohol dehydrogenase glycerol

ATPS4rpp ATP synthase four protons for one ATP periplasm
COztex COz transport via diffusion extracellular to periplasm
COztpp CO2 transporter via diffusion periplasm

DM _co2_e CO2 exchange

DM_h2o_e H20 exchange

FALDtex formaldehyde transport via diffusion extracellular to periplasm
FALDtpp formaldehyde transport via diffusion periplasm
FMNR2r FMN reductase

G3PD2 glycerol 3 phosphate dehydrogenase NADP
GLYALDDr D Glyceraldehyde dehydrogenase

H20tex H20 transport via diffusion extracellular to periplasm
H20tpp H20 transport via diffusion periplasm

MTHEFC methenyltetrahydrofolate cyclohydrolase

MTHFD methylenetetrahydrofolate dehydrogenase NADP

TPI triose phosphate isomerase

The integration of thermodynamics data into models restricts the available flux and
concentration spaces [53, 55] because thermodynamics determines the directionality in
which reactions can operate [52, 55]. With the Flux Balance Analysis (FBA) we found
that 108 reactions could operate in both forward and reverse direction (bi-directional
reactions) while still being consistent with the integrated fluxomics data [111]. We used

TFA to integrate additional metabolomics data, and we found that there were 87 bi-
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directional reactions. This means that 21 reactions that were bi-directional with the
stoichiometric constraints could not operate in both directions due to thermodynamic
constraints. Compared with unconstrained TFA case, 16 additional reactions were

determined as unidirectional (Table 2.2).
2.3.2 Core reduced stoichiometric models of P. putida

We next performed redGEM algorithm [76] on the thermodynamically curated GEM of
P. putida, iJN1411 [91], to generate three different reduced models of different complexity.
Firstly, we selected a set of starting central carbon subsystems (glycolysis,
gluconeogenesis, pyruvate metabolism, pentose phosphate pathway, TCA cycle and
oxidative phosphorylation), as an initial set of subsystems around which we did
expansion (Fig 2.1). These subsystems include go reactions and 99 metabolites. Next, we
performed the intra-expansion between subsystems in a pairwise manner with respect

to a different degree of connectivity D (Methods 2.2.4).

The simplest out of three core models (subsequently referred to as D1) contained the D1
core network formed by the reactions and metabolites from the six subsystems and the
reactions that belonged to one-reaction-step pairwise connections between these six
subsystems (Fig 2.1). Most of them were around L-aspartate node like L aspartate 3
hydroxylase (ASP3H) and L aspartate oxidase (ASPOs5), which connect L-aspartate, and
succinate or aspartate transaminase (ASPTA), which connects L-aspartate with
oxaloacetate. The algorithm also added two glutamate dehydrogenases (one uses NADH
(GLUDx) and second NADPH (GLUDy)) as a direct link between 2-oxoglutarate and L-
glutamate, which is a precursor of one of the P. putida biomass building blocks L-
glutamine. It also added a direct link between 2-oxoglutarate and succinate via Kdo 2
hexa acyl lipid A hydroxylase (LIPAH). Finally redGEM added reactions whose reactants
are only cofactors like adenylate kinase (ADKi), NAD kinase (NADK), nucleoside
triphosphatase ATP (NTP1), Nucleoside triphosphate pyrophosphorylase ATP (NTPP6)
or NADH peroxidase (NADHPO).

In a medium complexity core model, D2, algorithm added many two reaction step
connections between initial subsystems such as link between acetyl-CoA and acetate via

acetaldehyde dehydrogenase (acetylating) (ACALD) and aldehyde dehydrogenase
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(acetaldehyde, NAD) (ALDD2x) through intermediate metabolite acetaldehyde or link
between phosphoenolpyruvate and 3-dehydroquinate via 3 deoxy D arabino
heptulosonate 7 phosphate synthetase (DDPA) and 3 dehydroquinate synthase (DHQS)
through intermediate metabolite 2-dehydro-3-deoxy-D-arabino-heptonate 7-phosphate
(Fig 2.1). The biggest number of added reactions were connections between L aspartate
and fumarate like phosphoribosylaminoimidazolesuccinocarboxamide synthase
(PRASCSi) and adenylosuccinate lyase (ADSL2r). Finally, algorithm added reactions
around GTP and GTP nodes like adentylate kinase GTP (ADK3), nucleoside
triphosphatase GTP (NTP3) and nucleoside diphosphate kinase ATP GDP (NDPKx).

The core network of the highest complexity model, D3, included reactions around
chorismate node from phenylalanine tyrosine tryptophan biosynthesis pathway such as
3 phosphoshikimate 1 carboxyvinyltransferase (PSCVT), chorismate synthase (CHORS),
anthranilate synthase (ANS) (Figure 2.1). It also added three-reaction step connection
between 3-phospho-D-glycerate and glyoxylate (glycerate kinase (GLYCK), tartronate
semialdehyde reductase (TRSARr) and glyoxalate carboligase (GLXCL)). The biggest
number of reactions was added around glycerol-3-phosphate and glycerol nodes (not
shown in the figure). Starting from the initial set of 7 subsystems (including extracellular
metabolites as the extracellular subsystem), by network expansion, reactions from D3
covered in total 38 different subsystems. In GEM there are 89 unique subsystems which
mean that only with three-step connections we were able to cover more than 40 % of all

systems defined in GEM.
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Figure 2.1 The core networks generated by the redGEM algorithm from iJN1411 genome-

scale model

The core network was built around reactions (grey) that belong to the six subsystems of central carbon
metabolism (glycolysis and gluconeogenesis, pentose phosphate pathway, pyruvate metabolism, TCA

cycle and oxidative phosphorylation). Reactions belonging to one-reaction step, two-reaction-step, and

three-reaction-step connections between the six subsystems are marked in red, cyan and magenta,

respectively.
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2.3.3 Generation of lumped reaction for production of biomass

building blocks

Next step in building systematically reduced models is to connect systematically
reduced core networks with the biomass building blocks (BBBs). The biomass reaction
in iJN1411 contains 102 biomass building blocks. To connect BBBs with systematically
reduced core networks we used redGEM [76] accompanying algorithm called lumpGEM
[110], which identifies a subnetwork and its elementally balanced lumped reactions that
can produce a BBB from the precursors that belong to the systematically reduced core
network. By its definition, lumpGEM is identifying a subnetwork through minimization
of the number of reactions that don’t belong to the core network (non-core reactions),
which is able to connect a precursor belonging to the core network and a BBB. This
minimal number of reactions is called S. It is also able to identify all the possible
alternatives of the size S, but also alternatives with the higher S. For example, for
production of 10-formyltetrahydrofolate from the D1 core network, the minimal number
of non-core reactions is 41 (Smin). There are 8 different subnetworks of size 41, but only
4 unique lumped reactions. If we go to the higher S, there are 20 subnetworks of size 42
(Smin plus 1) with 10 unique lumped reactions and 10 subnetworks of size 43 (Smin plus 2)
with 7 unique lumped reactions. On contrary, for production of L-alanine, only one non-
core reaction is enough (L alanine transaminase). For this case, Smin = 1. In this work, we
generated all possible alternative subnetworks up to the size of Snin plus 2, for all
systematically reduced core network (D1to D3). In total, we added 550 unique reactions

generated by lumpGEM in the D1, 397 in D2 and 407 in D3 (Table 2.3).
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Table 2.3 An overview of the delivered reduced models

D1 D2 D3
Reactions 828 704 750
Core 278 307 343
Lumped 550 397 407
% of reactions with estimated
70.4 70.8 62.3
standard Gibbs free energy
Metabolites 286 306 336
Cytosolic 156 174 200
Periplasmic 70 71 74
Extracellular 60 61 62
% of metabolites with estimated
81.8 82.7 82.1
standard Gibbs free energy

2.3.4 Consistency checks of core reduced models

An important step in the generating systematically reduced model is checking their
properties against their GEM counterpart. In other words, we have to be assured that
our reduced model behaves exactly in the same way as GEM. We performed a battery of
tests to validate the consistency of the systemic properties of the core reduced models
D1, D2 and D3 with their GEM counterpart, iJN1411. Here we present and discuss results
for D2.

We first performed FBA and TFA for the glucose uptake of 10 mmol/gDCW/hr, and we
found the identical maximum specific growth rate of p=0.939 h™ for both D2 and iJN1411,

meaning that D2 was able to capture well the physiology of the growth on glucose.
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We then carried out the comparison of essential genes between D2 and GEM. In silico
gene deletion represents one of the most common analysis of metabolic networks, and
it is used to assess the predictive potential of the model [83] or to identify main genetic
targets for strain engineering [87, 115]. Out of 314 genes that D2 shared with GEM, we
identified 47 as in silico essential. Out of these 47, 36 were essential in both D2 and GEM
and 11 were essential in D2 only. These 11 genes were essential in D2 because this model
was missing some of the alternative pathways from GEM. For example, aceF PP_0338
(encoding for acetyltransferase component of pyruvate dehydrogenase complex) and
aceE PP_o0339 (encoding for pyruvate dehydrogenase, E1 component) are essential in D2
because they encode for enzymes necessary for synthesizing acetyl-CoA from pyruvate,
whereas GEM contains additional alternative pathways for this synthesis. Interestingly,
among the 11 genes is the gene tpiA PP_4715 that encodes for triose-phosphate

isomerase although it is reported as essential in the literature [116].

A third criterion to assess compatibility between GEM and D2 is thermodynamic-based
flux variability analysis (TVA). We performed TVA on all common reactions between
GEM and D2 to compare allowable flux ranges. Although for the majority of the
reactions we obtained consistent flux ranges, there are some reactions that had reduced
flexibility in D2 compared with its GEM counterpart (Figure 2.2). The majority of these
reactions were in the upper glycolysis (GAD2ktpp (gluconate 2 dehydrogenase
periplasm), GLCDpp (glucose dehydrogenase), HEX 1 (hexokinase), GNK
(gluconokinase) and gluconeogenesis (PGK (phosphoglycerate kinase), PGM
(phosphoglycerate mutase), ENO (enolase)). Reason for this lies in the absence of some
subsystems in the Dz. In this case additional flexibility in these reactions in the GEM
comes from the starch and sucrose metabolism and cell envelope biosynthesis cellulose

metabolism, which are absent in the D2 (Figure 2.3).

Final step in the validation is concentration variability analysis with TFA on shared
metabolites between D2 and GEM. It this validation step, we didn’t see any discrepancy
between the two. Similar result was reported for the case of E. coli where the discrepancy
for concentration ranges was reported for only few metabolites [76]. Detailed

consistency checks for D1, D2 and D3 can be consulted in Appendix Chapter 2.
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Glycolysis
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Figure 2.2 Flux variability of reactions in 4 starting subsystems in D2 and GEM
Red line FVA of reduced model, black lines FVA of GEM
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Figure 2.3 Starch and sucrose metabolism and cell envelope biosynthesis cellulose
metabolism from GEM

Reactions belonging to these subsystems: PGMT (phosphoglucomutase), GALUi (UTP
glucose 1 phosphate uridylyltransferase irreversible), CELLS (cellulose synthase UDP
forming), CELASEpp (Endo 1 4 D glucanase cellolose), BGLApp (beta glucosidase
periplasmic)

2.3.5 Essentiality of genes encoding for EDA and EDD

Neither D2 nor GEM could predict experimentally observed essentiality of genes from
the Entner-Doudoroff (ED) pathway. ED pathway is essential for the growth of P. putida
on glucose, which is experimentally confirmed by the absence of the growth in mutants
lacking the key enzymes 2-dehydro-3-deoxy-phosphogluconate aldolase (EDA) and 6-
phosphogluconate dehydratase (EDD) [111, 116, 117]. In silico, these genes are not essential
[89] because the model can replenish the pool of triose phosphates through pentose

phosphate pathway.
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We analyzed how the directionalities of reactions from the pentose phosphate pathway
impact the essentiality of EDA and EDD in D2. We found that the directionalities of
three reactions that have glyceraldehyde 3-phosphate (g3p) as reactant (transaldolase,
TALA, and two transketolases, TKT1 and TKT2) determine if EDD and EDA are in silico
essential. When directionality of TKT2 was imposed towards production of g3p, TALA
and TKT1 became exclusively unidirectional towards consumption of g3p and production
of g3p, respectfully (Fig. 2.4a), and EDA and EDD were not essential. In contrast, when
TKT2 operated towards consumption of g3p EDA and EDD were essential regardless the
directionality of the other two reactions (Fig 2.4b). Therefore, to ensure the consistency
of in silico and experimentally observed gene essentiality of EDD and EDA in the

subsequent studies we imposed the directionality of TKT2 towards consumption of g3p.

(Fig 2.4b).
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Figure 2.4 The directionality of transketolase 2 (TKTz2) impacts the in silico essentiality
of two genes encoding enzymes EDD and EDA from the Entner-Doudoroff pathway

(a) if TKT2 operates towards production of g3p, then due to the stoichiometric coupling
transketolase 1 (TKT1) and transaldolase (TALA) are unidirectional and EDD and EDA
are not in silico essential. (b) if TKT2 operates towards consumption of g3p, EDD and
EDA are essential irrespectively of the directionalities of TKT1 and TALA.
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2.4 Conclusions

In this chapter, we presented the first thermodynamically curated genome-scale model
of P. putida. Thermodynamic curation makes the curated GEM iJNi411 amenable for
integrating metabolomics data in a wide gamut of studies. The integration of
thermodynamics data into models restricts the available flux and concentration spaces
[53, 55] because thermodynamics determines the directionality in which reactions can
operate [52, 55]. For example, Flux Balance Analysis (FBA) of iJN1411 revealed that 108
reactions could operate in both forward and reverse direction (bi-directional reactions)
while still being consistent with the integrated fluxomics data [111]. We found that there
were 87 bi-directional reactions when additional metabolomics data [112] were
integrated with TFA, meaning that 21 reactions that were bi-directional with the
stoichiometric constraints could not operate in both directions due to thermodynamic

constraints.

To improve the integration of metabolomics data into stoichiometric models that have
species in more than one compartment, we proposed a novel set of constraints. Current
metabolomics measurement techniques do not allow for distinguishing concentrations
of the same species in different compartments. Consequently, when integrating
metabolomics data in constraint-based techniques that consider thermodynamics such
as the energy balance analysis [18], the network-embedded thermodynamic analysis
[119] and the thermodynamics-based flux analysis [51, 55-57] it is commonly assumed
that the concentrations of a metabolite appearing in several compartments are identical
and constrained within experimentally measured values. The novel constraints enable
integration of metabolomics data without imposing this restrictive assumption thus
allowing the metabolites that exist in several compartments to have different
concentrations and still be consistent with the experimentally measured values for the
whole cell. This way, we ensure that the set of possible metabolic outcomes predicted

by model encompasses the actual cellular physiology.

Finally, we delivered three reduced models of different complexity in the completely
unbiased way, which assures that these models can be used in different studies designed

outside of this laboratory. These models captured experimentally confirmed essentiality
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of previously reported as in-silico non-essential genes like triose-phosphate isomerase.
We have shown on the example of trasketolase how different constraints imposed in a
model can affect our conclusion about essentiality. This suggests that even published

GEMs require constant improvement, in order to avoid false conclusions.
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Chapter 3. Discovery and evaluation
of biosynthetic pathways for the
production of five methyl ethyl

ketone precursors

3.1 Introduction

Limited reserves of oil and natural gas and the environmental issues associated with
their exploitation in the production of chemicals sparked off current developments of
processes that can produce the same chemicals from renewable feedstocks using
microorganisms [8, 120, 121]. A fair amount of these efforts focuses on a sustainable

production of the 2™ generation biofuels.

As it was discussed in the Introduction, these 2™ generation biofuels should outperform
the currently used fossil fuels and bioethanol in terms of energy density, carbon
emission and should have lower hygroscopicity. Although some of these compounds
that can satisfy above-mentioned criteria, like branched-chain higher alcohols, were
detected in living cells, they cannot be synthesized economically using native organisms
[10, 16]. For example, Clostridium acetobutylicum is a native producer of 1-butanol, but
its high yield production is hampered with various byproducts like butyrate or acetone
[122]. In addition, Clostridium acetobutylicum’s complex physiology hinders possible

further metabolic improvements [123].
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On the other hand, the high production yield can be achieved in a more suitable host
using a synthetic pathway. In this respect, Escherichia coli is probably the best-studied
and well-characterized microorganism. Hanai et al. [124] engineered a synthetic pathway
in Escherichia coli to produce isopropanol by expressing various combinations of genes
from Clostridium acetobutylicum ATCC 824, Escherichia coli K-12 MG1655, Clostridium
beijerinckii NRRL B593, and Thermoanaerobacter brockii HTD4. In the production phase
they achieved a yield of 43.5 % mol/mol. In a similar manner, Atsumi et al. used
Escherichia coli as a host for 1-butanol production [123]. Other successful examples

include compounds such as (S)-3-methyl-1-pentanol [125] and 3-methyl-1-butanol [126].

For chemicals whose microbial producers are not known, novel biosynthetic pathways
have to be designed [11, 12]. Pathway discovery and its experimental verification is not
an easy task. Typically, it takes multiple gene insertions and deletions (usually three to
four) to achieve desired phenotype [127]. Even if a production pathway already exists
and it is operative in a certain organism, there is no guarantee that expression of this
pathway will be successful in some other host (e.g. can violate thermodynamics).
Experimental verification can be costly and time consuming. Also, there are just a few
examples in which pathways are operating on the edge of the theoretical maximum [128].
Pathway could operate on theoretical maximum in one organism but in the other is not
so efficient. Also, it is important to find alternatives to bypass existing patents and

further reduce operating costs.

Computational approaches provide valuable assistance in the design of novel
biosynthetic pathways because they allow exhaustive generation of alternative novel
biosynthetic pathways and evaluation of their properties and prospects for producing
target chemicals [12]. For instance, computational tools can be used to assess, prior to
experimental pathway implementation, the performance of a biosynthetic pathway

operating in one organism across other host organisms.

There are different computational tools for pathway prediction available in the literature
[11, 129-138]. An important class of these tools is based on the concept of generalized
enzyme reaction rules, which were introduced by Hatzimanikatis and co-workers [139,

140]. These rules emulate the functions of enzymes, and they can be used to predict in
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silico biotransformations over a wide range of substrates [12]. Most of the
implementations of this concept appear in the context of retrobiosynthesis, where the
algorithm generates all possible pathways by starting from a target compound and

moving backward towards desired precursors [11, 12, 121, 129, 133, 135, 138-144].

In this chapter, we used the retrobiosynthesis framework of BNICE.ch [12, 129, 139-144]
to explore the biotransformation space around Methyl Ethyl Ketone (MEK). Besides
acetone, MEK is the most commercially produced ketone with broad applications as a
solvent for paints and adhesives and as a plastic welding agent [145]. MEK shows
superior characteristics compared to conventional gasoline and ethanol in terms of its
thermo-physical properties, increased combustion stability at low engine load, and cold
boundary conditions, while decreasing particle emissions [146]. There is no known
native microbial producer of MEK, but in the recent studies this molecule was produced
in E. coli [147, 148] and S. cerevisiae [9] by introducing novel biosynthetic pathways. To
convert 2,3-butanediol to MEK, Yoneda et al. [147] introduced into E. coli a B-12
dependent glycerol dehydratase from Klebsiella pneumoniae. Srirangan et al. [148]
expressed in E. coli a set of promiscuous ketothiolases from Cupriavidus necator to form
3-ketovaleryl-CoA, and they further converted this molecule to MEK by expressing
acetoacetyl-CoA:acetate/butyrate:CoA transferase and acetoacetate decarboxylase from
Clostridium acetobutylicum. In S. cerevisiae, Ghiaci et al. [9] expressed a Bi2-dependent
diol dehydratase from Lactobacillus reuteri to convert 2,3-butanediol to MEK.
Alternatively, hybrid biochemical/chemical approaches were proposed where
precursors of MEK were biologically produced through fermentations and then catalytic

processes were used to produce MEK [149, 150].

We used the BNICE.ch algorithm to generate a network of potential biochemical
reactions around MEK, and we identified 1325 (159 biochemical and 1166 chemical)
compounds one reaction step away from MEK (Appendix Chapter 3 Table S1). We
considered as biochemical compounds the ones that we found in the KEGG [151, 152]
database, and as chemical compounds the ones that we found in the PubChem [153, 154]
but not in the KEGG database. A set of 154 compounds appeared in both databases. Out
of these 1’325 compounds, 2-hydroxy-2-methyl-butanenitrile (MEKCNH) was the only
KEGG compound connected to MEK through a KEGG reaction (KEGG Ro09358). For
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further study, we chose MEKCNH along with three KEGG compounds: 3-oxopentanoate
(30XPNT), but-3-en-2-one (MVK) and butylamine (BuNH,), and one PubChem
compound: 1-en-2-olate (1B20T). The latter four compounds were chosen based on two
important properties: (i) their simple chemical conversion to MEK, e.g., 30XPNT
spontaneously decarboxylates to MEK; and (ii) their potential use as precursor
metabolites to further produce a range of other valuable chemicals [155-157]. MVK can
be converted to MEK by a 2-enoate reductase from Pseudomonas putida, Kluyveromyces
lactis or Yersinia bercovieri, [158] however, these reactions are not catalogued in KEGG.
Similarly, 30XPNT can be decarboxylated to MEK by acetoacetate decarboxylase from
Clostridium acetobutylicum [148]. In contrast, there are no known enzymes that can

convert 1B20T and BuNH, to MEK.

We have reconstructed all possible novel biosynthetic pathways (3'679’610 in total) up
to a length of 4 reaction steps from the central carbon metabolites of E. coli towards the
5 compounds mentioned above. We evaluated the feasibility of these 3’679'610 pathways
with respect to the mass and energy balance, and we found 18’662 thermodynamically
feasible pathways which we further ranked with respect to their carbon yields. We
identified the metabolic subnetworks that were carrying fluxes when the optimal yields
were attained, and we determined the minimal sets of precursors and the common

routes and enzymes for production of the target compounds.

3.2 Methods

The BNICE.ch framework [12, 129, 139-144] was employed to generate biosynthetic
pathways towards 5 precursors of Methyl Ethyl Ketone: 3-oxopentanoate (30XPNT), 2-
hydroxy-2-methyl-butanenitrile (MEKCNH), but-3-en-2-one (MVK), 1-en-2-olate
(1B20T) and butylamine (BuNH.). We tested the set of reconstructed pathways against
thermodynamic feasibility and mass balance constraints, and discarded the pathways
that were not satisfying these requirements [12]. Next, the pruned pathways were ranked
based on the several criteria, such as yield, number of known reaction steps and pathway

length. The steps of the employed workflow are discussed further (Figure 3.1)
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3.2.1 Metabolic network generation

The retrobiosynthesis algorithm of BNICE.ch [12, 159] was applied to generate a
biosynthetic network that contains all theoretically possible compounds and reactions
that are up to 5 reaction steps away from MEK. The BNICE.ch network generation
algorithm utilizes the expert-curated generalized enzyme reaction rules [139, 140, 160]
for identifying all potential compounds and reactions that lead to the production of the
target molecules. The most recent version of BNICE.ch includes 361 bidirectional
generalized reaction rules capable of reconstructing more than 6’500 KEGG reactions
[142] Starting from MEK and 26 cofactors required for the generalized enzyme reaction
rules (Appendix Chapter 3 Table Sz2), we identified the reactions that lead to MEK along

with its potential precursors [161].

Note that for studies where we need to generate a metabolic network that involves only
KEGG compounds, mining the ATLAS of Biochemistry [142] is a more efficient
procedure than using BNICE.ch retrobiosynthesis algorithm. The ATLAS of
Biochemistry is a repository that contains all KEGG reactions and over 130’000 novel

enzymatic reactions between KEGG compounds.
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3.2.2 Pathway reconstruction

The generated metabolic network was represented as a graph where the compounds
were graph nodes and the reactions graph edges. A graph-based pathway search
algorithm was then used to reconstruct all possible linear pathways up to the length of
4 reaction steps that connect the five target molecules with the set of 157 native E. coli
metabolites (Appendix Chapter 3 Table S3) [29]. The search algorithm was employed as
follows. Starting from a given native E. coli metabolite, we first searched for the shortest
pathways toward a target molecule. Then, we searched for the pathways that are one
reaction step longer than the shortest ones. We continued the search by gradually
reconstructing the pathways of increased length, and we stopped with the 4 reaction
step pathways. This procedure was repeated for all combinations of native E. coli

metabolites and target molecules.

Note: If we were interested in pathways containing only KEGG reactions, we would

perform a graph-based search over the network mined from the ATLAS of Biochemistry

[142].
3.2.3 Pathway evaluation

It is crucial to identify and select, out of a vast number of generated pathways, the ones
that satisfy physico-chemical constraints, such as mass balance and thermodynamics, or
the ones that have an economically viable production yield of the target compounds
from a carbon source. Evaluation of pathways is context-dependent, and it is important
to perform it in an exact host organism model and under the same physiological
conditions as the ones that will be used in the experimental implementation. Both Flux
Balance Analysis (FBA) [162] and Thermodynamic-based Flux Analysis (TFA) [51-53, 55-
57] were performed to evaluate the pathways. We have also used BridgIT [163] to identify
candidate sequences for protein and evolutionary engineering in implementing the
pathways. The availability of such sequences for the novel reactions and the ability to

engineer them should also serve as a metric in ranking the feasibility of the pathways.
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Flux balance and thermodynamic-based flux balance analysis. The generated
pathways were embedded one at the time in the genome-scale model of E. coli, iJ01366
[29] and FBA and TFA were performed for each the resulting models. In these analyses,
we distinguished the following types the reactions: (R1) known and novel reactions for
which have no information about their directionality; (R2) reactions that have
preassigned directionality in iJO1366; and (R3) reactions that involve CO, as a
metabolite. It was assumed that the only carbon source was glucose and the following

two types of constraints on reaction directionalities were applied:

(C1) The preassigned reaction directionalities [164] from the iJO1366 model (R2
reactions) were removed with the exception of ATP maintenance (ATPM), and it
was assumed that the reactions that involve CO, (R3 reactions) are operating in the
decarboxylation direction. The lower bound on ATPM was set to 8.39
mmol/gDCW/hr. The remaining reactions (R1 reactions) were assumed to be bi-
directional for FBA, whereas for TFA the directionality of these reactions was
imposed by thermodynamics. The purpose of removing preassigned reaction
directionalities was to investigate alternative hypotheses about the catalytic
reversibility of the enzymes. The catalytic reversibility or irreversibility of enzymes
could be altered through protein and evolutionary engineering and enzyme

screening [165].

(C2) The preassigned directionalities of the R2 reactions were kept and the
directionality of the R3 reactions was fixed towards decarboxylation. R1 reactions are

left unconstrained.

Since FBA is computationally less expensive than TFA, we first performed FBA as a
prescreening method to identify and discard the pathways: (i) that are not satisfying the
mass balance, e.g., pathways that need co-substrates not present in the model; and (ii)
that have a yield from glucose to the target compounds lower than a pre-specified
threshold. In this work we used the pre-specified threshold of 0.1 mol/mol, however, this
value can be chosen based on various criteria such as the economic viability of pathways.

TFA was then performed on the reduced set of pathways to identify the pathways that
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are bio-energetically favorable and their yields from glucose to 5 target compounds were

computed under thermodynamic constraints.

BridgIT analysis. We used BridgIT [163] to associate genes to novel reactions appearing
in the feasible pathways. BridgIT compares the similarity of a novel reaction to the KEGG
reactions with annotated protein sequences using the information about the structures
of their substrates and products, and then assigns genes of the most similar known
reactions as candidates for catalyzing the novel one. BridgIT integrates the information
about the structures of substrates and products of a reaction into reaction difference
fingerprints [166]. These reaction fingerprints contain the information about chemical
groups in substrates and products that were modified in the course of a reaction. BridgIT
compares the reaction fingerprints of novel reactions to the ones of known reactions
and quantifies this comparison with the Tanimoto similarity score [167]. The Tanimoto
score of 1 signifies that two compared reactions had a high similarity, whereas the
Tanimoto score values close to o signify that there was no similarity. This score was used
to rank the reactions identified as similar to each of the novel reactions. The gene and
protein sequences of the highest ranked reactions were proposed as candidates for either

a direct experimental implementation or enzyme engineering.
3.2.4 Subnetwork reconstruction

Once the biologically feasible pathways were identified and ranked, the parts of the
metabolism that carry fluxes when the target compounds are produced from glucose
were analyzed. We considered that the active parts of metabolism consisted of: (i) the
core metabolic network (Figure 3.4a), which included the central carbon pathways, such
as glycolysis, pentose phosphate pathway, tricarboxylic acid cycle, electron transport
chain; and (ii) the active anabolic subnetworks (Figure 3.4a), which contain the reactions
that would carry fluxes when a target molecule is produced but did not belong to the
core metabolic network. We also defined the connecting precursors as metabolites that

are connecting the core and the active anabolic subnetworks (Figure 3.4.a).

The core metabolic network was derived from the genome-scale reconstruction iJO1366
[29] using the redGEM algorithm [76], and the lumpGEM [110] algorithm was then used

to identify active anabolic subnetworks and to compute their lumped reactions. The
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analysis of lumped reactions allowed us to identify connecting precursors of the target
chemicals. We then performed clustering to uncover connecting precursors, common
enzymes, and intermediate metabolites of the anabolic subnetworks leading to the

production of the target chemicals.

Identification and lumping of active anabolic subnetworks. The lumpGEM
algorithm was applied to identify the comprehensive set of smallest metabolic
subnetworks that were stoichiometrically balanced and capable of synthesizing a target
compound from a defined set of core metabolites. The set of core metabolites belongs
to the core metabolic network, and it includes also cofactors, small metabolites, and
inorganic metabolites (Appendix Chapter 3 Table S4). Then, for each target compound
and for each identified subnetwork, we used lumpGEM to generate a corresponding
lumped reaction. Within this process, the stoichiometric cost of core metabolites for the

biosynthesis of these target compounds was also identified.

Clustering of subnetworks. To better understand the chemistry that leads towards the

target compounds, we performed two types of clustering on the identified subnetworks:

e Clustering based on the structural similarity between the connecting precursors and
byproducts of the lumped reactions. For each lumped reaction, we removed all non-
carbon compounds, such as H,, O,, and phosphate, and the cofactor pairs, such as
ATP and ADP, NAD* and NADH, NADP* and NADPH, flavodoxin oxidized and
reduced, thioredoxin oxidized and reduced, ubiquinone and ubiquinol. This way, a
set of substrates (connecting precursors) and byproducts of interest was created for
each lumped reaction. We then used the msim algorithm from the RxnSim[168] tool
to compare the lumped reactions based on individual similarities of their connecting
precursors and byproducts. We finally used the obtained similarity scores to perform
the clustering.

e C(Clustering based on the structural similarity between reactions that constitute the

anabolic subnetworks. BridglT was used to compute structural fingerprints of

reactions that constitute the anabolic subnetworks, and we then performed a
pairwise comparison of the anabolic subnetworks as follows.
For a given pair of anabolic subnetworks, a pairwise comparison of their reactions

was carried out. As a comparison metric we used the Tanimoto distance of the
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reaction fingerprints [167]. Based on this comparison, the pair of the most similar
reactions in two subnetworks was found and the corresponding distance score was
stored. This pair of reactions was then removed from comparison, and the next pair
of the most similar reactions was found and their distance score was stored. We
continued with this procedure until all pairs of reactions in two subnetworks were
found. Whenever the number of reactions in two subnetworks was unequal, the
unmatched reactions were ignored. The distance score between two compared
subnetworks was formed as the sum of the distance scores of compared pairs of
reactions. This procedure was repeated for all pairs of subnetworks.

We then used the computed distance scores to perform the subnetworks clustering.
3.2.5 Ranking and visualization of in silico pathways

In this step, we identified the pathways that were most likely to produce the target
molecules. We defined the following criteria: (i) minimal number of reaction steps
without promising candidate enzymes for catalyzing them; we consider that a novel
reaction step has a promising candidate enzyme if the BridgIT algorithm has found its
most similar known reactions with the similarity score higher than 0.3 [163]; (ii) minimal
number of novel reaction steps in a pathway; (iii) maximal yield from glucose to the
target molecules; (iv) minimal number of reaction steps in the production pathway; and
(v) highest average similarity scores of novel reaction steps from BridgIT. For scoring
and ranking the biologically meaningful pathways, we used criterion (i) as the primary
ranking. Then, equally ranked pathways from the primary ranking were further ranked
based on criterion (ii). Analogously, we performed the tertiary, quaternary and quinary

ranking based on criteria (iii), (iv) and (v), respectively.

An expert opinion is important in choosing the pathways for implementation. One can
use other ranking criteria or a different prioritization of the criteria. For example, the
pathways can be first ranked based on a maximum yield and then based on a minimal
number of novel reactions. The complete set of pathways is provided on http://lcsb-
databases.epfl.ch/GraphlList/ProjectList, and the readers can rank the pathways

according to their own rules.
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3.2.6 Experimental implementation and pathway optimization

The highest ranked candidate pathways can then be experimentally implemented in the
host organism and can further be optimized through the Design-Built-Test-(Learn)

cycle of metabolic engineering [169-171].

3.3 Results and Discussion

3.3.1 Generated metabolic network around Methyl Ethyl Ketone

We used the retrobiosynthesis algorithm of BNICE.ch to reconstruct the biochemical
network around MEK. BNICE.ch [12, 129, 139-144] is a computational framework that
takes advantage of the biochemical knowledge derived from the thousands of known
enzymatic reactions to predict all possible biotransformation pathways from known
compounds to desired target molecules. We applied BNICE.ch and generated all
compounds and reactions that were up to five reaction steps away from MEK (Figures

3.2a and 3.2b).

To start the reconstruction procedure, we provided the initial set of compounds that
contained 26 cofactors along with MEK (Appendix Chapter 3 Table S2). In the first
BNICE.ch generation, we produced 6 biochemical and 25 chemical compounds
connected through 48 reactions to MEK. Interestingly, among these reactions were also

the ones proposed by Yoneda et al. [147], Srirangan et al. [148] and Ghiaci et al. [9]

After five generations, a total of 13'498 compounds were generated (Figure 3.2a). Out of
these, 749 were biochemical and the remaining 12’749 were chemical compounds. We
could also find 665 out of the 749 biochemical compounds in the PubChem database.
All generated compounds were involved in 65’644 reactions, out of which 560 existed in
the KEGG database and the remaining 65084 were novel reactions (Figure 3.2b). A large
majority of the predicted reactions (67%) were oxidoreductases, 15.4% were lyases, 8.6%
were hydrolases, 4.3% transferases, 3.6% isomerases and only 0.72% ligases (Figure 3.2c).
Out of 361 bidirectional generalized enzyme reaction rules of BNICE.ch, 220 were

required to generate the metabolic network around MEK with the size of 5 reaction
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steps. As expected from the statistics on the predicted reactions, most of these rules

(38%) described the oxidoreductase biotransformation (Figure 3.2d).
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Figure 3.2 Growth of the generated metabolic network over 5 generations

(@) The BNICE.ch retrobiosynthesis algorithm generated 749 biochemical (blue) and
12’749 chemical (red) compounds. (b) Generated compounds participated in 560 KEGG
(blue) and 65’084 novel (red) reactions. Categorization of the predicted reactions (c)
and utilized generalized enzyme reaction rules (d) on the basis of their Enzymatic
Commission[172], EC, classification.

Though MEK participated in a total of 1’551 reactions (Appendix Chapter 3 Table Ss)
only one reaction, which connected MEK to MEKCNH, was catalogued in the KEGG
database (KEGG Ro09358). These 1’551 reactions connected MEK to 1325 compounds (159
biochemical and 1166 chemical), which could be potentially used as MEK precursors
(Appendix Chapter 3 Table S1). Reaction steps for a biochemical production of MEK from
the five precursors (30OXPNT, MVK, BuNH,, 1B20T, and MEKCNH) together with their

most similar KEGG reactions can be consulted in Appendix Chapter 3 Table S6.
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3.3.2 Pathway reconstruction towards five target compounds

In the pathway reconstruction process, we used as starting compounds 157 metabolites
selected from the generated network, which were identified as native E. coli metabolites
using the E. coli genome-scale model iJO1366 [29] (Appendix Chapter 3 Table S3). We
performed an exhaustive pathway search on the generated metabolic network, and we
reconstructed 3'679’610 pathways towards these five target compounds with pathway
lengths ranging from 1 up to 4 reaction steps (Table 3.1). The reconstructed pathways
combined consist of 37448 reactions, i.e., 57% of the 65’644 reactions reproduced from

the BNICE.ch generated metabolic network.

More than 58% of the discovered pathways were towards BuNH,, while only 3.8% of the
reconstructed pathways were towards 1B20OT, which was the only PubChem target
compound (Table 3.1). Only 33 reconstructed pathways were of length one, and 28 out
of them were towards BuNH. and none towards 1B20T. The majority of reconstructed
pathways (> 97%) were of length four. These results suggest that the biochemistry of

enzymatic reactions favors smaller changes of a molecule structure over several steps.



Chapter 3. Discovery and evaluation of biosynthetic pathways for the production of 5 MEK precursors

Table 3.1 Reconstructed pathways towards five target compounds.

3-oxopentanoate
641493 1 198 12’222 629’072 361187 1’145
(3OXPNT)
but-3-en-2-one - . , o8 . )
43 9 1 13 7554 43119 57173 4117
(MVK)
Butylamine
2'146’890 28 1236 53573 2092053 2721 916
(BuNH,)
but-1-en-2-olate
140’779 0 53 2’905 137821 30’689 1826
(1B20T)
2-hydroxy-2-methyl-
butanenitrile 311559 3 94 6’546 304’916 1’151 658
(MEKCNH)
3'679’610 33 1717 82800 3595060 | 48741 @ 18’662

3.3.3 Evaluation of reconstructed pathways

We performed a series of studies of the 3'679'610 generated pathways to assess their
biological feasibility and performance (Methods 3.2.3). The feasibility of the pathways
depends on the metabolic network of the chassis organism. Therefore, we embedded
each of the reconstructed pathways in the E. coli genome-scale model 01366 and
performed flux balance analysis (FBA) [162] and thermodynamics-based flux analysis
(TFA) [51-53, 55]. The directionality of the reactions is an important factor in FBA and
TFA [55], and in our studies, unless stated otherwise, for FBA and TFA we applied the C1
constraints on reaction directionalities where we constrained the reactions that involve

CO:. to operate in the decarboxylation direction (Methods 3.2.3).
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Flux balance analysis. We used FBA as a prescreening method to reject pathways that
were incompatible with the host organism (Methods 3.2.3). If an FBA model formed by
embedding a pathway in iJO1366 can produce the target compound, then the pathway
is considered as FBA feasible. Out of all reconstructed pathways, only 13.24% (487411
were FBA feasible (Table 3.1). Though the largest number of reconstructed pathways
were towards BuNH,, only 1.27% (2721) of these were FBA feasible. The number of FBA
feasible pathways for MEKCNH was also low (3.59%). In contrast, more than 56% of
pathways towards 30XPNT were FBA feasible.

Thermodynamics-based flux analysis. We used TFA to identify 18662
thermodynamically feasible pathways (0.5% of all generated pathways, or 3.8% of the
FBA feasible pathways). A pathway is considered TFA feasible if a TFA model formed by
embedding the pathway in iJO1366 can produce the target compound under
thermodynamic constraints. The set of TFA feasible pathways involved 3166 unique
reactions. These results demonstrate that TFA is important for pathway evaluation and

screening.
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Table 3.2 Number of known reaction steps versus all reaction steps in the predicted
pathways.

Table should be read as follows: e.g., among the predicted pathways of length 3 towards
30XPNT, there were 371 pathways with all novel reaction steps (no known steps), 118
pathways with 1 known and 2 novel reaction steps, and no pathways with 2 known and
1 novel reaction steps. Pathways with one novel reaction step are marked in red. All
shown pathways are TFA feasible.

o 14 371 7059 7444
3-
1 18 2'956 3074 oxopentanoate
(30XPNT)
2 627 627
0 4 72 3196 3272
= ! ! B 793 7 but-3-en-2-one
3
';E 2 2 110 112 (MVK)
="
o
g 3 16 16
72)
="
v
k7 o 2 27 752 781
=
o .
= Butylamine
g 1 7 108 15
U (BuNH,)
1]
§ 2 20 20
]
o]
& ) )
s 0 23 1576 1599
Tt
2 but-1-en-2-olate
E 1 10 196 206
2 (1B20T)
2 21 21
o 50 380 430
2-hydroxy-2-
methyl-
1 2 202 204
butanenitrile
(MEKCNH)
2 24 24
21 695 17946 18’662
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We found BuNH. to have the lowest rate of TFA feasible pathways with 0.04% of
reconstructed pathways being TFA feasible (Table 3.1). The highest rate of TFA feasible
pathways was again for 30OXPNT (1.74 %). The shortest TFA feasible pathways consisted
of 2 reaction steps (21 pathways), whereas a majority of TFA feasible pathways had length
4 (Table 3.2). All pathways contained novel reaction steps, and only 19 pathways had one
novel reaction step (Table 3.2). All of these 19 pathways were towards MVK, and they all
had as intermediates 2-acetolactate and acetoin. The final reaction step converting

acetoin to MVK was novel in all of them.

Yield analysis. We used TFA to assess the production yield of the feasible pathways
from glucose to the target compounds (Appendix Chapter 3 Table S7). We identified
pathways for all target compounds that could operate without a loss of carbon from
glucose. More than a half of the pathways towards 30XPNT (57%) could operate with
the maximum theoretical yield of 0.774 g/g, i.e., 1Cmol/1Cmol (Appendix Chapter 3
Table S7). In contrast, only 4% (25 out of 658) pathways towards MEKCNH could operate
with the maximal theoretical yield of 0.66 g/g (Appendix Chapter 3 Table S7). We found
that pathway yields were distributed into several distinct sets rather than being more
spread and continuous, i.e., we obtained eleven sets for 30XPNT, four sets for MEKCNH,
1 sets for BuNH,, nine sets for 1B2OT and ten sets for MVK (Appendix Chapter 3 Table
S7). Interestingly, a discrete pattern in pathway yields was also observed in a similar
retrobiosynthesis study for the production of mono-ethylene glycol in Moorella

thermoacetica and Clostridium ljungdahlii [159)].

Analysis of alternative assumptions on reaction directionalities. Since we found
that the directionality of reactions in the network impacts yields, we investigated how
the type of alternative constraints C2 affected the yield distribution (Methods 3.2.3). The
C2 constraints contain the preassigned reaction directionalities from the iJO1366 model
together with the C1 constraints. As expected, these additional constraints reduced
flexibility of the metabolic network and some pathways even became infeasible
(Appendix Chapter 3 Table S8). With the C2 constraints, the yields were in general
reduced and their distribution was more spread compared to the one obtained using the

(1 constraints. For example, we found with both sets of constraints three alternative
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pathways for the production of 30XPNT from acetate via two intermediate compounds:
2-ethylmalate and (3S)-3-hydroxypentanoate. The three alternative pathways had three
different cofactor pairs in the final reaction step that converts (3S)-3-hydroxypentanoate
to 3OXPNT (Figure 3.3). With the C1 constraints, the three pathways had an identical
yield of 0.642 g/g. In contrast, with the Cz constraints, the pathway with NADH/NAD
cofactor pair in the final step had a yield of 0.537 g/g, the one with NADPH/NADP had
a yield of o.542 g/g, and the one with H.O./H.o had a yield of 0.495 g/g. These
differences in yields are a consequence of the different costs of cofactor production upon

adding supplementary constraints.
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Figure 3.3 Three alternative ways to produce 30XPNT from acetate through 2
intermediate metabolites: 2-ethylmalate and 3-hydroxypentanoate
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BridgIT analysis. For each novel reaction from the feasible pathways, we identified the
most similar KEGG reaction whose gene and protein sequences were assigned to the
novel reaction (Methods). The BridgIT [163] results can be consulted at http://lcsb-

databases.epfl.ch/GraphList/ProjectList upon subscription.

3.3.4 Identification and analysis of anabolic subnetworks capable of

synthesizing target molecules

In pathway reconstruction, we identified the sequence of the main reactions required to
produce the target molecules from precursor metabolites in the core network. However,
these reactions require additional co-substrates and cofactors that should become
available from the rest of the metabolism. In addition, these reactions produce also side
products and cofactors that must be recycled by the genome-scale metabolic network in
order to have a biologically feasible and balanced subnetwork for the production of the
target molecules. Therefore, we identified the active metabolic subnetworks required to
synthesize the corresponding target molecule (Methods 3.2.4). The active metabolic
subnetworks were then divided into the core metabolic network, which included central
carbon metabolism pathways [173, 174], and the active anabolic subnetwork (Figure 3.4.a,
and Methods 3.2.4). On average there were more than three alternative anabolic
subnetworks per pathway due to the redundant topology of metabolism (Table 3.3). For
example, we identified 35013 alternative anabolic subnetworks for 1’145 feasible
pathways towards 30XPNT. Overall, for the 18’662 TFA feasible pathways, 55788 active

anabolic subnetworks were identified.
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Table 3.3 Alternative anabolic subnetworks for 5 target compounds together with their

lumped reactions and precursors.

Alternative Unique :
Target Feasible Overlapping Unique
anabolic lumped sets of

compounds pathways

precursors precursors

subnetworks reactions

3-oxopentanoate

145 35013 4517 281 40
(30XPNT)
but-3-en-2-one

417 10'162 1762 126 32
(MVK)
Butylamine

916 2858 974 102 30
(BuNHz)
but-1-en-2-olate

1826 5339 1’536 o7 3
(1B20T)
2-hydroxy-2-methyl-
butanenitrile 658 2’416 792 37 17
(MEKCNH)

18662 55788 9’581
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Figure 3.4 Alternative ways of producing 3OXPNT from glucose.

(a) Schematic representation of the metabolic network producing 30XPNT from glucose. Reactions
pertaining to the core metabolic (black) and the active anabolic (red) subnetworks. Metabolites of the
core metabolic (green) and the active anabolic (orange) subnetworks together with connecting precursors
(yellow), i.e., metabolites that connect the core and active anabolic subnetworks. (b) Alternative pathways
connecting ribose-5-phosphate, r5p, with 2-deoxy-D-ribose-1-phosphate, 2drip. (c) Alternative pathways
connecting the core metabolites with propanal, Ppal.
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Next, we computed a lumped reaction for each of the alternative subnetworks (Methods
3.2.4). Similar to previous findings from the analysis of the biomass building blocks in E.
coli [10], only 9’581 out of the 55788 computed lumped reactions were unique (Table
3.3). This result suggests that the overall chemistry and the cost to produce the
corresponding target molecule are the same for many different pathways. Since the cost
of producing a target molecule depends of the host organism, this implies that the
choice of the host organism is important. On the other hand, the multiple alternative
options could also provide useful degrees of freedom for synthetic biology and metabolic

engineering design.

The largest diversity in alternative subnetworks per lumped reaction was found for
30XPNT, where on average more than seven alternative subnetworks had the same
lumped reaction (Table 3.3). In contrast, we observed the smallest diversity for BuNH,
with approximately three alternative subnetworks per lumped reaction (Table 3.3). An
illustrative example of multiple pathways with the same lumped reaction is provided in

Figure 3.5.

Interestingly, the 35'013 active anabolic networks towards the production of 30OXPNT
were composed of only 394 unique reactions. Out of these 394 reactions, 132 were
common with the pathways leading towards the production of all biomass building
blocks (Appendix Chapter 3 Table Sg) except chorismate, phenylalanine, and tyrosine.
This finding suggests that biomass building blocks could be competing for resources

with 30XPNT and that they could affect the production of this compound.

Origins of diversity of alternative anabolic subnetworks. To better understand the
diversity in alternative anabolic subnetworks, we performed an in-depth analysis of the
two-step pathway from acetyl-CoA and propanal to 30XPNT, which presented the
largest number of alternative anabolic networks (185) among all reconstructed pathways
(Figure 3.4a). The smallest anabolic subnetwork of the 185 alternatives consisted of 14
enzymes, whereas the largest one comprised 22 enzymes (Appendix Chapter 3 Table
S10). All 185 subnetworks shared five common enzymes: the two enzymes from the
reconstructed pathway converting propanal via (3S)-3-hydroxypentanoate to 30XPNT

(with the BNICE.ch assigned third level Enzymatic Commission [172], EC, numbers
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233.- and 111-), two enzymes involved in acetyl-CoA production
(phosphopentomutase deoxyribose (PPM2), and deoxyribose-phosphate aldolase
(DRPA)), and aldehyde dehydrogenase (ALDD3y) that converts propionate to propanal

(Figure 3.4).
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Figure 3.5 Three different pathways from acetate to 30XPNT sharing the same lumped
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(glyceraldehyde 3-phosphate).
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The multiplicity of ways to produce acetyl-CoA and propionate contributed to a large
number of alternative subnetworks: there were 102 alternative ways of producing acetyl-
CoA from ribose-5-phosphate (r5p) via 2-deoxy-D-ribose-1-phosphate (2drip) (Figure
3.4.b) and g different ways of producing propionate (Figure 3.4.c).

There were two major routes to produce 2drip within the 102 alternatives. In the first
route with 50 alternatives, rsp is converted either to ribose-1-phosphate (in 31
alternatives) or to D-ribose (in 19 alternatives), which are intermediates in producing
nucleosides such as adenosine, guanosine, inosine and uridine. These nucleosides are
further converted to deoxyadenosine (dad), deoxyguanosine (dgsn) and deoxyuridine
(duri) that are ultimately phosphorylated to 2drip. In 26 of the remaining 52 alternatives
of the second route, r5p is converted to phosphoribosyl pyrophosphate (prpp), which is
followed by a transfer of its phospho-ribose group to nucleotides such as AMP, GMP,
IMP and UMP. These nucleotides are then converted to 2drip by downstream reaction
steps. In the remaining alternatives for the second route, r5p is first converted to AMP

in one reaction step, and then to 2drip via dad and dgsn.

There were g alternative routes to produce propionate. In 4 of these, this compound was
produced from pyruvate and succinate (Figure 3.4.a and 3.4.c), in 3 routes it was
produced from aspartate (Figure 3.4.c), and in 2 routes it was produced from 3-

phosphoglycerate and glutamate.

Connecting precursors of five target compounds. An abundant availability of
precursor metabolites is crucial for an efficient production of target molecules [175].
Here, we defined as connecting precursors the metabolites that connect the core to the
active anabolic subnetworks (Figure 3.4.a). We analyzed the different combinations of
connecting precursors that appeared in the alternative subnetworks. Our analysis
revealed that the majority of subnetworks were connected to the core network through
a limited number of connecting precursors. We found that all 35’013 alternative
subnetworks for the production of 30XPNT were connected to the core network by 281
sets of different combinations among 40 unique connecting precursors (Table 3.3). We
ranked these sets based on their number of appearances in the alternative networks. The

top ten sets appeared in 24’210 subnetworks, which represented 69% of all identified

59



Chapter 3. Discovery and evaluation of biosynthetic pathways for the production of 5 MEK precursors

subnetworks for this compound (Table 3.4). Moreover, the metabolites from the top set
(acetyl-CoA, propionyl-CoA, pyruvate, ribose-5-phosphate, and succinate) were the
precursors in 8’510 (24.3%) subnetworks for 30XPNT (Table 3.4). Ribose-5-phosphate
appeared in 9 out of the top ten sets, and it was a precursor in 32’237 (92%) 30OXPNT

producing subnetworks.

Table 3.4 Top ten connecting precursor combinations for the production of 30XPNT.
Connecting precursors: acetate (ac), acetyl-CoA (acCoA), aspartate (asp-L),
dihydroxyacetone phosphate (dhap), propionyl-CoA (ppCoA), pyruvate (pyr), ribose-5-
phosphate (r5p), succinate (succ), succinyl-CoA (succCoA).

v v Vv v 8’510 624
v v v 5409 2790

v v Vv v 3463 920

v v v 1344 672
v Vv v 1049 382

v v Vv 965 101
v v v 956 478
v v v o15 460

v v v 834 419
v v 765 387
24’210 7323
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3.3.5 Clustering of feasible pathways

The repeating occurrences of connecting precursors and lumped reactions in the
alternative anabolic subnetworks motivated us to identify common patterns in
connecting precursors, enzymes, and intermediate metabolites required to produce the
target molecules. To this end, we used the feasible pathways from acetate to 30XPNT as

the test study, and we performed two types of clustering on these 115 pathways.

Clustering based on connecting precursors and byproducts of lumped reactions.
We identified 242 alternative anabolic networks for 115 pathways from the test study,
and we computed the corresponding 242 lumped reactions. We chose the first lumped
reaction returned by the solver for each of the n5 pathways, and we clustered the
pathways based on the structural similarity between the connecting precursors and

byproducts of the lumped reactions (Methods 3.2.4).

The clustering separated the 115 pathways in eleven groups, B1-Bu1 (Figure 3.6a and 3.6b,
Appendix Chapter 3 Table Su). The main clustering condition among the 115 pathways
was the presence or absence of thioesters, such as AcCoA, in the set of connecting
precursors. There were 56 pathways with CoA-related precursors (groups Bi1-Bs) and 59
pathways that did not require CoA (groups B6-Bu). The pathways from groups Bi-Bs
were further clustered subject to the presence of: the precursor succCoA and the
byproduct CO, (group Bi); the precursor succCoA and the byproduct malonate (group
Bz); the precursor ppCoA (group B3); the precursors acCoA and ppCoA (group B4); and
the precursor acCoA (group Bs). The pathways that did not require CoA were further
clustered depending on if they had as precursors dhap (groups B6 and B7) or formate
(B8) or not (Bg-Bn).
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Figure 3.6 Clustering of the 15 reconstructed pathways from acetate to 3OXPNT.

(a) Pathways were classified in eleven groups (Bi-Bu) based on connecting precursors and
byproducts of their lumped reactions. The byproducts are denoted with an asterisk (*). The
pathway yields were consistent within each of the groups and distinctly separated between
them. The color-coding of the groups corresponds to the yields of the involved pathways. (R)-
CoA denotes the group of thioesters. Abbreviations: 2-oxoglutarate (akg), acetyl-CoA (acCoA),
aspartate (asp), dihydroxyacetone phosphate (dhap), formate (for), glycolate (glyclt), malate
(mal), malonate (maln), propionyl-CoA (ppCoA), pyruvate (pyr), succinyl-CoA (succCoA). (b)
Nine out of eleven groups of reconstructed pathways (Bi-B2 and B4-B1o) are characterized by
the connecting precursors and their co-substrates in the first reaction step of the pathways.
Group B3 is characterized by intermediate metabolites acetaldehyde and propionyl-CoA
involved in the novel reaction step EC 2.3.1.-. Group Bu pathways have as an intermediate 2-
methylcitrate.
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In general, we expect the set of precursors and byproducts to affect the pathway yield.
Interestingly, the clustering based on connecting precursors and byproducts of lumped
reactions also separated distinctly the pathways based on their yields (Figure 3.6.a).
Pathways that have ppCoA, acCoA, dhap, and for as precursors (groups B3-B8) have a
maximal theoretical yield of 0.774 g/g. Despite sharing the first reaction step in which
acetate reacted with 2-oxoglutarate to create 2-hydroxybutane 1-2-4-tricarboxylate, the
pathways from group Bg were split in two groups with different yields (Figure 3.6.a).
These two groups differed in the sequences of reactions involved in the reduction of 2-
hydroxybutane 1-2-4-tricarboxylate, a 7-carbon compound, to 30XPNT. In 1 pathways,
the yield was 0.483 g/g due to a release of two CO, molecules, whereas in one pathway
the yield was 0.644 g/g due to malate being created as a side-product and recycled back
to the system. The pathway from group B2, with succCoA as a precursor and maln as a
byproduct, together with the 11 pathways from group Bg had the lowest yield (0.483 g/g)

from the set of examined pathways (Figure 3.6.a).

The clustering also provided insight into the different chemistries behind the analyzed
pathways. For most of the pathways, i.e., the ones classified in groups B1-B2 and B4-Bio,
there was a clear link between the connecting precursors and co-substrates of acetate in
the first reaction step of the pathways (Figure 3.6.b). For example, the pathways from
the group B1 have a common first reaction step (EC 2.8.3.-) that converts acetate and 3-
oxoadipyl-CoA to 3-oxoadipate (Figure 3.6.b). The clustering grouped these pathways
together because succCoA was the connecting precursor of 3-oxoadipyl-CoA through 3-
oxoadipyl-CoA thiolase (3-OXCOAT). Moreover, 3-oxoadipate, a 6-carbon compound,
was converted in downstream reaction steps to 30XPNT, a 5-carbon compound, and
one molecule of CO, through 18 alternative routes. Similarly, in the single pathway of
group B2 the co-substrate in the first reaction step was (S)-methylmalonyl-CoA, which
was produced from succCoA through methylmalonyl-CoA mutase (MMM). This
enzyme, also known as sleeping beauty mutase, is a part of the pathway converting
succinate to propionate in E. coli.[176] Malonate (maln), a 2-carbon compound, was
released in the first reaction step, which resulted in a low yield of this pathway (Figures

3.6.a and 3.6.b).
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Pathways from group B3 utilized different co-substrates, such as ATP and crotonoyl-
CoA, along with acetate to produce acetaldehyde in the first reaction step. All these
pathways shared a common novel reaction step with acetaldehyde and propionyl-CoA

as substrates (EC 2.3.1.-).

Finally, group Bu1 contained the pathways with the intermediate 2-methylcitrate, which

was produced from pyruvate (pyr).

The presented clustering analysis has been shown to be very powerful in identifying the
features of the large number of pathways. The classification can further guide us to
identify the biochemistry responsible for the properties of pathways. Such deeper
understanding can provide further assistance for the design and analysis of novel

synthetic pathways.

Clustering based on involved enzymes. Although the clustering based on the
connecting precursors and byproducts provided an insight of the chemistry underlying
the production of 30XPNT from acetate, lumped reactions conceal the identity of the
enzymes involved in the active anabolic subnetworks. We analyzed the 15 active
subnetworks corresponding to 115 pathways, and we found that five enzymes were
present in all of them: AMP nucleosidase (AMPN), 5-nucleotidase (NTD6), purine-
nucleoside phosphorylase (PUNP2), PPM2 and DRPA, which participated in the
production of acetaldehyde from rsp (Figure 3.7b).

To find common enzyme routes in these subnetworks, we performed a clustering based
on the structural similarity between their constitutive reactions (Methods). The
clustering separated 115 subnetworks in two groups depending on the existence (47
subnetworks) or not (68 subnetworks) of a sequence of six enzymes starting with
aspartate kinase (ASPK) and ending with L-threonine deaminase (THRD_L), whose

product 2-oxobutanoate was converted downstream to 30XPNT (Figures 3.7a and 3.7b).
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Figure 3.7 Clustering of 115 active subnetworks corresponding to 115 reconstructed
pathways from acetate to 30OXPNT.
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coded as in Figure 3.6.a. (b) Structure of 47 subnetworks containing a sequence of six enzymes
starting with aspartate kinase (ASPK) and ending with L-threonine deaminase (THRD_L)
(groups Brand By in a). The core metabolites are marked in green, the connecting metabolites
in yellow, while the metabolites from the active anabolic networks are marked in orange.
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Both groups were further clustered based on a set of enzymes required to produce
deoxyadenosine and the downstream metabolite acetaldehyde (Figures 4a and 4b). The
first subgroup of enzymes, i.e. ribonucleoside-diphosphate reductase (RNDRu),
deoxyadenylate kinase (DADK) and NTD6, converted adp to deoxyadenosine. In the
second subgroup, atp was transferred to deoxyadenosine via ribonucleoside-
triphosphate reductase (RNTRic2), nucleoside triphosphate pyrophosphorylase
(NTPP5) and NTD6 (Figure 3.7b). Then, for both subgroups, deoxyadenosine was
converted to 2-deoxy-D-ribose 5-phosphate (2drsp) that was further transformed to
acetaldehyde via PPM2 and DRPA (Figures 3.4 and 3.7b).

The clustering based on enzymes allowed us to identify enzymatic routes corresponding
to different yields (Figure 3.7a, and Appendix Chapter 3 Table S7). For example, all
pathways that include ASPK and novel reaction steps with the third level EC class 2.3.1.-
and 1.2.1.- (group B3), would provide the maximal theoretical yield of 0.774 g/g (Figure
4a). Similarly, pathways that contain ALDD3Y (group B4), methylglyoxal synthase
(MGSA) (groups B6 and B7), and ASPK, RNDR1, and methylisocitrate lyase (MCITL2)
(group Bs), would also provide the maximal theoretical yield. In contrast, the clustering
also permitted us to identify key enzymes participating in pathways with a reduced yield.

For example, pathways that contained 3-OXCOAT had a yield of 0.644 g/g.

Furthermore, the clustering based on enzymes allowed us to clarify the link between the
precursors and the corresponding sequence of enzymes that needed to be active for
producing the target molecule. For example, pathways from group Bi, which had
succCoA as a connecting precursor and CO. as a byproduct, had the common reaction
step 3-OXCOAT (Figure 3.7a). Similarly, all pathways from group B4 with connecting
precursors ppCoA and acCoA contained ALDD3Y.

3.3.6 Ranking of biosynthetic pathways and recommendations

We further ranked the corresponding feasible pathways according to number of reaction
steps and enzymes that could be directly implemented or needed to be engineered, their
yield, and the BridgIT score of the novel reaction steps (Methods 3.2.5). As we saw earlier
(e.g. in Appendix Chapter 3 Table S7), there are several distinct maximum yield values

that can be achieved with all these alternatives rather than a continuous distribution of
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yields. The clustering analysis suggests that the reason for the discreet distribution is
the loss of the carbon atoms in specific steps along the pathways. We obtained the top
candidate pathways for each of the target molecules that were likely to produce these
compounds with economically viable yields (Appendix Chapter 3 Table Si2-S16). For
each of the target molecules, the highest ranked candidate pathways could operate with
their maximum theoretical yields (Figure 3.7). Furthermore, the BridgIT results suggest
that the novel reactions appearing in these pathways can be catalyzed by the known
enzymes (Figure 3.7). The highest ranked candidate pathway among all feasible
pathways was from pyruvate to 30XPNT, and it consisted of two novel reactions of the
third level EC class 2.3.3- and 1.1.1.- (Figure 3.7a). The BridgIT[163] analysis identified
KEGG Roo472 as the most similar reaction to 2.3.3.-. KEGG reports that Roo472 can be
catalyzed by EC 2.3.3.9. Similarly, KEGG Ro1361 was identified as the most similar to 1.1.1,
and according to the KEGG database this reaction is catalyzed by EC 1..1.30.
Interestingly, there is a reaction that involves CO. in the top pathways for MVK and
MEKCNH (Figure 3.7b and 3.7e). Although in the literature this reaction is reported to
operate in the decarboxylation direction, TFA allows it to operate in the opposite

direction as well. Without TFA this information would stay hidden.

The pathways were visualized and can be consulted at http://lcsb-

databases.epfl.ch/GraphList/ProjectList upon subscription.
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Figure 3.8 The highest ranked candidate pathways for the production of (a) 3OXPNT,
(b) MVK, (c) BuNH,, (d) 1B20T and (e) MEKCNH.

Known non-orphan KEGG reactions are the black and novel reactions the red boxes.
KEGG compounds are denoted as the green and PubChem compounds as the red circles.
For each of the novel reactions, the KEGG IDs, catalyzing enzyme, and the BridgIT
similarity scores of the two most similar non-orphan KEGG reactions are provided.

3.3.7 Further experimental implementation and pathway

optimization

After ranking of the top candidate pathways, the experts can choose the most amenable
ones for experimental implementation in the host organism. The implemented
pathways typically need to be optimized further for economically viable production
titers and rates. The optimization is performed through the Design-Built-Test-(Learn)
cycle of metabolic engineering [169-171] where stoichiometric [177-179] and kinetic
models [68, 69, 180-185], genome editing [186, 187] and phenotypic characterization [188]

are combined to improve recombinant strains for production of biochemicals.
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3.4 Conclusions

In this chapter, we used BNICE.ch to reconstruct, evaluate and analyze more than 3.6
million biosynthetic pathways from the central carbon metabolites of E. coli towards five
precursors of Methyl Ethyl Ketone (MEK), a 2™ generation biofuel candidate. Our
evaluation and analysis showed that more than 18’000 of these pathways are biologically
feasible. We ranked these pathways based on process- and physiology-based criteria,
and we identified gene and protein sequences of the structurally most similar KEGG
reactions to the novel reactions in the feasible pathways, which can be used to accelerate
their experimental realization. Implementation of the discovered pathways in E. coli will
allow the sustainable and efficient production of five precursors of MEK (3OXPNT,
MVK, 1B20T, BuNH,, and MEKCNH), which can also be used as precursors for the

production of other valuable chemicals [155-157].

The pathway analysis methods developed and used in this work offer a systematic way
for classifying and evaluating alternative ways for the production of target molecules.
They also provide a better understanding of the underlying chemistry and can be used
to guide the design of novel biosynthetic pathways for a wide range of biochemicals and

for their implementation into host organisms.

The present study shows the potential of computational retrobiosynthesis tools for
discovery and design of novel synthetic pathways for complex molecules, and their
relevance for future developments in the area of metabolic engineering and synthetic

biology.
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Abbreviations

Abbreviation Reaction EC number

30XCOAT 3-oxoadipyl-CoA thiolase 2.3.1.174
ACACT1r Acetyl-CoA C-acetyltransferase 2.3.1.9
ALDD3y Aldehyde dehydrogenase (propanal, NADP) | 1.2.1.4
AMPN AMP nucleosidase 3.2.2.4
ASPK Aspartate kinase 2.7.2.4
DADK Deoxyadenylate kinase 2.7.4.3
DRPA Deoxyribose-phosphate aldolase 4.1.2.4
FTHFLi Formate-tetrahydrofolate ligase 6.3.4.3
LALDO3 L-Lactaldehyde:NADP+ 1-oxidoreductase 1.1.1.283, 1.2.1.49
MCITD 2-methylcitrate dehydratase 4.2.1.79
MCITL2 Methylisocitrate lyase 4.1.3.30
MGSA Methylglyoxal synthase 4.2.3.3
MMM Methylmalonyl-CoA mutase 5.4.99.2
NTD6 5'-nucleotidase ({AMP) 3.1.3.89
NTTPs Nucleoside triphosphate pyrophosphorylase | 3.6.1.19
PPM2 Phosphopentomutase 2 (deoxyribose) 5.4.2.7
PUNP2 Purine-nucleoside phosphorylase 2.4.2.1
RNDR1 Ribonucleoside-diphosphate reductase | 1.17.4.1
(ADP)
RNTRic2 Ribonucleoside-triphosphate reductase | 1.17.4.2
(ATP)
THRD_L L-threonine deaminase 4.1.1.19
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Chapter 4. Comparative study on
Escherichia coli and Pseudomonas

putida metabolic capabilities

4.1 Introduction

Escherichia coli is probably the best studied and the most comprehensively understood
prokaryotic organism [189], especially popular among metabolic engineers due to its
simplicity, easy manipulation and cultivation. It was discovered and later named after
Theodor Escherich in 1884. Since then, it was used as a model organism in many studies.
More recently, it was used regularly as a host for the production of the second generation

of biofuels [14, 16, 123, 124, 126, 190-192].

Successful application of genetically modified organisms for biofuel production depends
on organism ability to produce biofuels in industrial scale [189]. In a report in Nature
Biotechnology, Stephen del Cardayre, vice president of research and development at LSg
of South San Francisco, California stated: “To be competitive a fermentation needs to
produce around 100 grams per liter of end product; its productivity should exceed two
grams per liter per hour; and its anaerobic yield should stand at ~95% of the theoretic
yield” [193]. Toxicity is recognized as the major obstacle towards obtaining high titers
and yields [4, 14]. The natural tolerance of non-native systems is typically one to two
order of magnitude lower than some of the native producers [194], e.g., isobutanol
reduces E. coli growth already at concentrations > 1% vol/vol [192]. While Pseudomonas
putida represents one of the most promising alternatives as a host for the biofuel
production due to its superior tolerance to compounds such as: benzene, toluene,
ethylbenzene, xylene and as well as other hydrocarbons (e.g., n-hexane, cyclohexane),
there are not many examples in literature of P. putida usage as a biofuel producing host.

Nikel and de Lorenzo [38] recruited genes for ethanol biosynthesis from Zymomonas
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mobilis to activate EtOH synthesis pathway in P. putida and they showed that P. putida
outperformed E. coli in every ethanol tolerance test conducted. Nielsen et al. [195]
expressed butanol biosynthesis pathway from Clostridium acetobutylicum in P. putida
and obtained titer of 50 £ 6 mg/l with glucose and 122 + 12 mg/l with glycerol as the

carbon source.

The main advantage of P. putida comes from its glucose catabolism, which favors
NADPH production, an important counteractor against different environmental stresses
[116]. Glycolysis in P. putida is known to occur almost solely through Enthner-Doudoroff
(ED) pathway [109, 196]. The first step in the ED pathway is the conversion of glucose to
gluconate with enzyme glucose dehydrogenase localized in the periplasmic space.
Gluconate is further converted into 2-ketogluconate or imported to the cytosol and
converted to the key ED metabolite 6-phospho-D-gluconate. Nikel at al. [116] showed
that about 90% of consumed glucose is converted to directly to 6-phospho-D-gluconate,
confirming that other possible ways of glucose conversions, like conversion to glucose
6-phosphate are only minor shunts in P. putida [196]. 6-phospho-D-gluconate is broken
down further to the ED pathway end-products pyruvate and glyceraldehyde 3-
phosphate via EDD (6-phosphogluconate dehydratase) and EDA (2-dehydro-3-deoxy-
phosphogluconate aldolase). As a result, the ED pathway yields one molecule of ATP,
one of NADH and one of NADPH per one molecule of glucose consumed (Figure 4.1a).
Chavarria et al. [109] tried to activate Embden-Meyerhoff-Parnas (EMP) pathway in P.
putida by transferring pfkA (phosphofructokinase) gene from E. coli, but they failed to

redirect carbon from the ED to EMP pathway.

In contrast to P. putida, E. coli has functional both EMP and ED pathway (Figure 4.1b).
However, the glucose metabolism in this organism relies mainly on the EMP pathway,
while the ED pathway remains mostly inactive [197]. Hollinshead et al. [197] showed that
about 9o % of flux in E. coli is channeled through EMP pathway while the flux through
ED pathway was negligible (less than 1% of the consumed total carbon). They
overexpressed EDD and EDA enzymes and they reported that 20 % of the consumed
total carbon was directed through the ED pathway. In a mutant strain lacking pfkA
(phosphofructokinase) in combination with the overexpression of EDD and EDA, about

72 % of the flux is channeled through the ED pathway [197]. Since the EMP pathway

74



Chapter 4. Comparative study on E. coli and P. putida metabolic capabilities

yields one molecule of ATP more than the ED pathway, they reported also the slower

growth of these mutants.
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Figure 4.1 Upper glycolysis in P. putida (a) and E. coli (b).
Reactions belonging to Enthner-Doudoroff pathway (a) and Embden-Meyerhoff-Parnas
(EMP) pathway (b) are marked in red

Flamholz et al. [198] compared EMP and ED pathways in terms of their thermodynamics
and kinetics properties. They reported that the EMP pathway is considerably more
thermodynamically constrained than ED. Moreover, the ED pathway requires several-
fold less enzymatic proteins than EMP pathway. Although the ED pathway seems more
thermodynamically favorable, there are indications that E. coli can significantly improve

EMP thermodynamics through metabolite channeling [197, 199].

One of the major differences between P. putida and E. coli is P. putida’s ability to grow
almost or completely without any by-products. In P. putida ethanol-producing strain,
Nikel and de Lorenzo [38] reported the small amounts of secreted acetate (< 1.5 mM). In
the same paper, they reported significantly higher concentrations of secreted acetate

(~70 mM) and other by-products such as formate, succinate, and lactate in E. coli.
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Similarly, Nielsen et al. [195] reported that the butanol biosynthesis in E. coli was
followed with the secretion of ethanol, succinate, lactate, acetate, and formate, whereas
P. putida secreted only small amounts of acetate during the butanol biosynthesis. When
growing on glucose P. putida can accumulate relatively small amounts of gluconate and
2-ketogluconate, but these two metabolites can be re-imported back into the cell once

glucose is depleted [111].

Despite many shared characteristics, it is clear that these two organisms have also many
distinctive metabolic features. In this chapter, we compared these two organisms from
different aspects. First, we focused on the similarities and differences of their core
carbon networks. With redGEM and lumGEM we derived three different reduced
models of E. coli and we compared them against their P. putida counterparts discussed
in Chapter 2. Next, we compared their: (i) capability for the production of different
cofactors; (ii) displacements from the thermodynamic equilibrium; and (iii) capability

for the production of 5 Methyl-Ethyl Ketone precursors.
4.2 Methods

4.2.1 Reduced P. putida and E. coli models

For the purpose of comparison, we used redGEM [76] and lumpGEM [110] (see Section
2.2.4) to derive three different core reduced models of E .coli referred here as D1 (smallest
complexity), D2 (middle complexity) and D3 (the most complex model) of E. coli’s
iJO1366 [29]. Similar to the case of P. putida, the reduced models were built around the
following subsystems: glycolysis/gluconeogenesis, TCA cycle, pentose phosphate
pathway, pyruvate metabolism and oxidative phosphorylation. Lumped reactions are
obtained from the Smin+2 subnetworks, keeping all the possible alternatives od Smin+2
size (Section 2.2.4). P. putida models of the same complexity were described in Chapter

2.
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4.2.2 Displacements form the thermodynamic equilibrium

To calculate displacement from the thermodynamic equilibrium we used standard TFA
[51, 53-55, 57]. For any reaction, the displacement from the thermodynamic equilibrium

is a function of the equilibrium constant K4, defined as a ratio:

_ 1 1Py
= Kou TI5: (4.1)

where Pjand S; are the concentration of the involved products and substrates.
The equilibrium displacement is related to the Gibbs free energy as follows:
AG = RT InT (4.2)

Reaction can operate (i) strictly far from the equilibrium (o < T <o0.1), (ii) with the middle

displacement (0.1 < T <0.9) or (iii) strictly near equilibrium (0.9 < T <1).

Each bi-directional reaction can lead to two distinct flux directionality profiles. We
sampled the flux solution space, and we used the principle component analysis to the
representative flux directionality profile. For the chosen flux directionality profile, we
sampled the space of metabolite concentrations and we computed a population of 10’000
vectors of reaction displacements from thermodynamic equilibrium. In our analysis, we
assumed that if 75 % of the displacements of a reaction were lying between 0.9 and 1,
that the reaction was considered to be close to the equilibrium. In contrast, if 75 % of
samples were between o and o.1, the reaction was considered to be far from the
equilibrium. For some reactions, the displacements belonged to more than one of the
above-defined groups. In order to have fair comparison of the reaction displacements
between the two organisms, we imposed the same directionalities for the bi-directional

reactions belonging to both organisms.
4.2.3 Pathway evaluation

We embedded the discovered pathways in the genome-scale model iJNi1411, and we
performed the pathway evaluation as already discussed in section 3.2.3. We used C1 set
of constraints, with the exception of ATP maintenance whose value was set to 0.92

mmol/gDCW/h and it is P. putida specific [24].
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4.3 Results and Discussion

4.3.1 Stoichiometric comparison of reduced models

Comparison of core networks. Latest GEM of P. putida, iJN1411 [91] consists of 2860
reactions separated in 9o subsystems across two compartments (cytosol and periplasm)
and extracellular space. In 5 core carbon subsystems (glycolysis, gluconeogenesis, TCA
cycle, pentose phosphate pathway, pyruvate metabolism, and oxidative
phosphorylation) there were 9o reactions and 99 metabolites (Do core network, for
more details see section 2.2.4). In E. coli GEM iJO1366 [29], 2585 reactions are separated
into 37 subsystems. In the same 5 core carbon subsystems of E. coli, there were 128
reactions and 113 metabolites (Do core network). The major difference between the two
came from the oxidative phosphorylation (35 reactions in P. putida, 70 reactions in E.
coli) because P. putida is lacking menaquinones and demethylmenaquinones, and from
glycolysis, because E. coli has phosphofructokinase and glycogen related metabolic

pathways whereas P. putida has not.

Different topologies of E. coli and P. putida GEMs and differences among central carbon
core reactions resulted in differences among reduced models of three different sizes

(Table 4.1).
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Table 4.1 Comparison of reduced models of P. putida and E. coli

First number represents P. putida, second E. coli

D1 D2 D3
Reactions 828 / 857 | 704 / 866 | 750/ 903
Core 278 /342 | 307/ 435 | 343/ 465
Lumped 550 /515 | 397 /431 | 407/ 438
Metabolites 286 /303 | 306 /348 | 336/ 364
Cytosolic 156 /160 | 174 /188 | 200 /199
Periplasmic 70 / 80 71/ 01 74/ 93
Extracellular 60 / 63 61/ 69 62 /72

The smallest model of E. coli, Di1EC, consists of 857 reactions and 303 metabolites.
Compared to P. putida D1 model, D1PP, D1EC has more core reactions (342 compared to
278). We observed that D1EC has 64 core reactions more than DiPP, and D3EC has 122
core reactions more than D1PP. This suggests the better connectivity in the E. coli core

networks than in the P. putida ones.

Comparison of subnetworks for production of biomass building blocks. A
different topology of GEMs resulted in differences among the subnetworks and the
corresponding lumped reactions for the production of biomass building blocks (BBBs).
To produce 86 BBBs of P. putida, we generated 550 unique lumped reactions from 1463
alternative subnetworks (Appendix Chapter 4, Table S1). In contrast, for 78 BBBs of E.
coli, we generated 1399 alternative subnetworks and 515 unique lumped reactions
(Appendix Chapter 4, Table S2). The P. putida subnetworks contained 638 unique
reactions, while the E. coli subnetworks contained 531 unique reactions. Common
between these two sets were 379 reactions, 191 were unique for the P. putida subnetworks

and 152 unique for the E. coli subnetworks. The main difference came from the
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organism-specific BBBs such as lipopolysacharide in P. putida (48 alternative
subnetworks and 16 lumped reactions Appendix Chapter 4, Table S1). For some shared
BBBs like lipoate, we generated 179 alternative subnetworks and 37 lumped reactions in
P. putida, while in E. coli we could generate only 25 alternative subnetworks and 22

lumped reactions (Appendix Chapter 4, Table S1 and Table S2).

Comparison of bidirectional reactions. DiPP model has 21 bidirectional reactions
(BDRs) when we require at least 9o % of the optimal growth (Appendix Chapter 4, Table
S3). In D1EC there are 19 BDRs under the same conditions (Appendix Chapter 4, Table
S4). While some of BDRs are common in two organisms, especially in pentose phosphate
pathway transadolase (TALA), both transketolases (TKT1 and TKT2) and ribulose 5-
phosophate 3-epimerase (RPE) and in TCA succinyl CoA synthetase (SUCOAS), some
BDRs are specific to only one organism. As a direct consequence of predominate ED
pathway in P. putida, fructose-bisphosphate aldolase (FBA) and triose-phosphate
isomerase (TPI) are unidirectional in D1PP, while in D1EC they are BDRs. Since E. coli is
using EMP pathway for glucose catabolism, glyceraldehyde-3-phosphate dehydrogenase
(GAPD), enolase (ENO), phosphoglycerate kinase (PGK) and phosphoglycerate mutase
(PGM) are unidirectional in D1EC, while in D1PP they are BDRs.

4.3.2 Cofactor production costs

Cofactors play a significant role in the production of reduced compounds like biofuels.
Here we compared the costs of production of different cofactors in P. putida and E. coli.
As a basis for comparison, we took the minimal network and its alternatives if they exist
for the production of a cofactor from the core metabolites belonging to the simplest

metabolic network, Da.

The smallest network for the NADPH production in P. putida consists of 26 reactions
(Table 4.2). There is one additional alternative subnetwork of the same size. Both of the
subnetworks generate their own unique lumps. In the first alternative, the cost of
production of one molecule of NADPH is 5.5 molecules of ATP (Appendix Chapter 4,
Table Ss). In this alternative, one molecule of CO, is produced as well. The cost of the
production of one molecule of NADPH in the second alternative is six molecules of ATP.

In both alternatives, the generation of NADPH is followed by the generation of glycine.
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The standard Gibbs free energy of these reactions is -42.81 kcal/mol and -42.38 kcal/mol,
respectively.

Compared to P. putida, the smallest subnetwork for NADPH production in E. coli is 27
reactions (Appendix Chapter 4, Table Ss). There are 4 alternative subnetworks and each
of them generates its own unique lumped reaction (Table 4.2). In two alternatives, it is
possible to obtain same ratio ATP/NADPH like in P. putida, but without generating CO,
(the standard Gibbs free energy of these reactions is -44.75 kcal/mol and -44.32 kcal/mol,
respectively). Also, the NADPH generation is accompanied by the generation of glycine.
The other two alternatives are much more energetically expensive. They require 12 (the
standard Gibbs free energy -52.23 kcal/mol) and 13 molecules of ATP per molecule of
NADPH (the standard Gibbs free energy -51.83 kcal/mol), respectively, but in this case,
glycine is not produced (Appendix Chapter 4, Table Ss).

Table 4.2 Comparison between P. putida and E. coli alternative subnetworks for
production of different cofactors.
The first number in the table cells corresponds to P. putida and the second one to E. coli.

NADPH 26 | 27 24 2|4

Malonyl CoA 52 | 44 5 6 5] 2

Another cofactor, important in the biodiesel production, is Malonyl Coenzyme A.
Biodiesel is composed of fatty acid alkyl esters, including fatty acid methyl esters
(FAMESs) and fatty acid ethyl esters (FAEEs) [200], which are produced in the fatty acid
metabolism. In this metabolism, Malonyl CoA plays a notable role [201, 202]. P. putida’s
minimal subnetwork size for production of CoA is 52 (Table 4.2). There are 5 different
alternatives with 5 unique lumped reactions. Production of one molecule of malonyl
CoA can be achieved with consumption of 18, 20, 21, 23 or 25 ATP molecules and 5
NADPH. The production of NADPH is accompanied by the formation of 3 or 4 molecules

of CO.. In E. coli, the minimal network size is 44, and there are 6 alternative networks
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with 2 unique lumped reactions. Production of one molecule of malonyl CoA requires

either 19 or 21 ATP molecules, 5 NADPH molecules and one molecule of CO, is secreted.

For some important biochemical intermediates like chorismate, P. putida and E. coli
share their production routes. Kuepper at al. used chorismite pathway to produce
anthranilate from glucose in P. putida [203]. Yu et al. used the same intermediate
pathway for production of para-hydroxy benzoic acid in P. putida [204]. For the
chorismate production, P. putida and E. coli share their subnetwork of 7 reactions and

one overall lumped reaction (Appendix Chapter 4, Tables S1 and S2).

A detailed comparison of subnetworks for production of each biomass building block

can be consulted in Appendix Chapter 4, Tables S1 and Sa.
4.3.3 Displacements from the thermodynamic equilibrium

One of the features the thermodynamics-based flux balance analysis brought to the
constrained-based modelling is the possibility to calculate reaction displacements from
the thermodynamic equilibrium. It is important to calculate the equilibrium
displacements because the enzymes that operate near thermodynamic equilibrium have
no control on fluxes in a cellular network [68]. Analysis of equilibrium displacements
can give insight also about representative regulatory enzymes in the pathway. Kiimmel
at al. [ng] identified pfk and pyk as potential regulatory enzymes of glycolysis in E. coli

since they operated far from equilibrium.

We analyzed the distribution of equilibrium displacements of reactions in a wild-type
optimally grown E. coli, and we discovered that only 5 cytosolic reactions operate strictly
near thermodynamic equilibrium: pyruvate synthase (PORjs), flavodoxin reductase
(FLDR2), aspartate transaminase (ASPTA), aconitase (ACONTa) and NAD
transhydrogenase (NADTHRD) (Fig 4.2). Phosphofructokinase (PFK) and pyruvate
kinase (PYK), which have been identified as regulatory enzymes in the previous studies
[119, 205], and also the enzymes from the ED pathway were among 513 reactions (169
non-lumped and 344 lumped reactions) that operated far from the thermodynamic

equilibrium (Fig 4.2).
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In a wild-type optimally grown P. putida, only one reaction was operating strictly near
equilibrium: Kdo 2 hexa acyl lipid A hydroxylase (LIPAH) (Fig 4.3). Further analysis of
the equilibrium displacements revealed that majority of enzymes from the ED pathway
as well as hexokinase may serve as potential glycolytic regulatory targets. Sudarsan et al.
[174] reported upregulation of the regulatory genes (ptxS and lacl), which control the
utilization of glucose via the ketogluconate and gluconate pathways, during the shift
from benzoate to glucose. They also observed the upregulation of GItR which controls
the glucokinase pathway. Moreover, they reported the induction of the oadA gene,
encoding the oxaloacetate decarboxylase (OAADC), which was identified to operate far

from thermodynamic equilibrium in our analysis.

We compared the equilibrium displacements of reactions in P. putida and E. coli, and
the major observed difference was in glycolytic/gluconeogenetic enzymes
phosphoglycerate kinase (PGK), phosphoglycerate mutase (PGM) and enolase (ENO).
In P. putida, PGK and ENO were strictly far from equilibrium and PGM was either far
from equilibrium or with the middle displacement. In contrast, in E. coli only PGM was
strictly far from equilibrium, whereas PGK was operating with the middle displacement
and ENO was operating either close to equilibrium or with the middle displacement (Fig

4.2 and Fig 4.3).
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Figure 4.2 Displacements from the thermodynamic equilibrium for E. coli
Color-coding of the reactions denotes the distance from the thermodynamic
equilibrium
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4.3.3 Pseudomonas putida as a potential host for production of 5

methyl ethyl ketone precursors

Table 4.3 Reconstructed pathways towards 5 compounds used as a basis for comparison

of P. putida and E. coli capabilities
TFA feasible

Target Reconstructed Reaction steps
pathways

compounds pathways P. putida  E. coli

3-oxopentanoate
606181 1 186 1675 594’319 1027 10’559
(30OXPNT)
but-3-en-2-one
412737 1 128 7130 405’478 4699 4016
(MVK) 3 3 5
Butylamine
1988174 28 1196 49’873 1937077 1053 873
(BuNH.)
but-1-en-2-olate , 8 6 266 . 3
131093 o 4 2’679 128’3 2232 1803
(1B20T)
2-hydroxy-2-methyl-
butanenitrile 311559 3 94 6’546 304916 946 658
(MEKCNH)
3'449'744 33 1652 77903 3370156 | 19'957 17909

Feasibility analysis. To asses P. putida capability as an alternative host for production of

the second-generation biofuels, we embedded biosynthetic pathways for 5 methyl ethyl
ketone precursors reconstructed with BNICE.ch (see Chapter 3) in the
thermodynamically curated GEM iJN1411 (see Chapter 2). To ensure a fair comparison of
pathways in two organisms, from the initial set of pathways reconstructed from the

central carbon metabolites of E. coli, we removed the ones starting from 16 metabolites
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that are not part of the iJNi4u (Appendix Chapter 4, Table S6). In total, we removed
249155 pathways from the initial set of 3’679’610 reconstructed biosynthetic pathways in
E. coli (Chapter 2), and we also removed the corresponding FBA and TFA feasible
pathways (Appendix Chapter 4, Table S6). In total, we removed 753 pathways from
18662 E. coli TFA feasible pathways (Table 4.3).

The highest rate of host-specific pathways was for 3-oxopentanoate, 43.7 % (2’061 out of
4’7m) for P. putida and 59.8 % (1’593 out of 2’663) for E. coli (Table 4.4). Out of 471 TFA
feasible only in P. putida, 1729 (36.7%) were FBA feasible in both organisms (Table 4.4).
We observed also that 2’015 out of 2’663 (75.6%) TFA pathways feasible only in E. coli
were FBA feasible in both organisms (Table 4.4). These findings further confirm our
previous statements from Chapter 3 that TFA is a must for reliable biosynthetic pathway

evaluation procedures [93].

Yield analysis. We analyzed yields for 15246 pathways which were TFA feasible in both
organisms. In the case of P. putida, for three compounds (30XPNT, MVK, and 1B20T),
we identified pathways that could operate without the loss of carbon from glucose
(Table 4.5). We identified such pathways in E. coli for all five compounds. For 4
compounds (30XPNT, MVK, BuNHz2, and 1B20T) we could find the pathways with the
same yield in both organisms. The exception is MEKCNH, where all pathways had higher
yield in E. coli.

Also, we identified pathways with the higher yield in P. putida and there were pathways
with a higher yield in E. coli. For example, out of 8966 feasible pathways for production
of 30XPNT in both organisms, 677 had higher yield in P. putida, 7012 in E. coli, and 1277
pathways had the same yield in both organisms (Table 4.5). Moreover, the lowest

obtained yield in P. putida for this compound was 0.15 g/g, while in E. coli it was 0.28

g/g.
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Table 4.4 Comparison of TFA feasible host specific pathways

Out of TFA feasible pathways in only one organism, the number in the brackets
represent the number of FBA feasible pathways in both organisms. For example, there
were 2’061 TFA feasible pathways towards 30XPNT in P. putida. Out of them, 916 were

FBA feasible in both E. coli and P. putida.
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3-oxopentanoate

2061 (916) 1593 (1432)
(30XPNT)
but-3-en-2-one 438 (520) (s27)
14306 (529 755 \527
(MVK)
Butylamine
319 (177) 139 (23)
(BuNH.)
but-1-en-2-olate 602 (83) (30)
02 (83 173 (30
(1B20T)
2-hydroxy-2-
methyl-
. 291 (24) 303)
butanenitrile
(MEKCNH)

471 (1'729)

2'663 (2'015)
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Table 4.5 Yield dependency with the respect to the chosen host

3
oxopentanoate 8966 677 1277 7012 | 0.15-0.77 | 0.28-0.77
(30XPNT)
but-3-en-2- 6 106 6 66 0.13 = 0.19 -
3261 119 39 1669
one (MVK) 0.58 0.58
Butylamine
734 40 158 536 0.10 - 0.41 | 0.17 — 0.61
(BuNH,)
but-1-en-2- ' 8 )
1630 251 1290 | 0.2-0. 0.2 -0.
olate (1B20T) 3 > 9 9 29 29
2-hydroxy-2-
methyl- 0.32 - 0.41 -
., 655 / / 655
butanenitrile 0.44 0.66
(MEKCNH)

Subnetwork analysis. An important question in understanding the differences in

metabolic capabilities of E. coli and P. putida is why certain pathways have different
yields in the two organisms. As the first glimpse into this question, we analyzed the
anabolic subnetworks (see 3.2.4) corresponding to a three-step pathway that converts
glyoxylate to 30OXPNT, with the maximal predicted yield of 0.72 g/g in P. putida and 0.66
g/gin E. coli:

02
2 NADPH zHI%I(RDP Acetoacetate NADH ﬁéoD

AN THCOs N IN
Glyoxylate ————— 3 Formaldehyde 5-hydroxy- — 3 30x0pentanoate

3-oxopentanoicacid

We first computed the minimal anabolic subnetwork for this pathway in P. putida and

its alternatives. The minimal network contained 37 reactions, with 24 alternatives of the
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same size. The 24 alternatives had only 2 unique lumped reactions. In E. coli, the
minimal anabolic subnetwork contained 13 reactions, with two alternatives that had its
own unique lumped reaction (Appendix Chapter 4, Table S7). The main differences
between the two sets of anabolic networks (one set in P. putida and one set in E. coli)
came from the inability of P. putida to phosphorylate nucleosides to 2 deoxy-D-ribose-
1-phosphate (in E. coli this pathway is described in Chapter 3, Fig 3.4). Consequently, P.
putida and E. coli are using different sets of core precursors. P. putida is using pyruvate,
L-aspartate, D-erythrose 4 phospate and phosphoenolpyruvate, whereas E. coli is using
D-ribose 5-phosphate and acetate (Appendix Chapter 4, Table S7). In Chapter 3, we have
demonstrated that yields depend on the precursors (Fig 3.6), which suggests the answer
to the addressed research question. A similar question was addressed in the work by

Asplund-Samuelsson et al [93].
4.4 Conclusions

The selection of the suitable host organism is one of the critical points in metabolic
engineering. While E. coli was for a long time, and in many cases still is, the first choice,
recent studies in metabolic engineering and synthetic biology demonstrated that some
other organisms can be as suitable hosts as E. coli, especially for the production of highly
toxic compounds such are 2™ generation biofuels. Analysis of reduced models derived
by redGEM [76] and lumGEM [u10] allowed us to analyze fundamental differences in
metabolic capacities between E. coli and P. putida. We showed that differences exist
already at the level of central carbon pathways and that routes for production of BBBs
are different for the two organisms. Analysis of thermodynamics displacements revealed

differences in potential regulatory targets.

We have already shown in Chapter 3 and in Tokic et al. [92] that thermodynamic
feasibility of individual pathways cannot be studied outside the metabolic network. In
order to assess the thermodynamic feasibility of reaction steps within a pathway, we
need to embed it into a genome-scale model of the host organism. In the study
conducted in this chapter, we discovered that there are pathways with the higher yield
in P. putida than in E. coli for four target molecules. We demonstrated that simple

stoichiometric models are not enough and that pathway evaluation process has to be
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performed in the thermodynamically curated models. Moreover, we have shown that
thermodynamics is a host specific. There is no guarantee that if a pathway is
thermodynamically feasible in one host, it will be feasible in the other host.
Furthermore, if a pathway is feasible in multiple organisms, it might well be that it will

not have the same yield due to, e.g., the different cofactor production costs.
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Chapter 5. Large-scale kinetic
metabolic models of Pseudomonas
putida for consistent design of
metabolic engineering strategies

5.1 Introduction

Kinetic models couple dynamics of metabolic concentrations and metabolic fluxes to
enzyme concentrations and they allow us to take into consideration allosteric regulation
and regulation at post-translational level [206]. Although the predictive capabilities and
potential of kinetic models compared to their stoichiometric counterparts are
promising, they come at a price. These dynamical descriptions of metabolic pathways
are typically built in a bottom-up manner, wherein for each reaction a description of
kinetic rate expression along with its corresponding parameter values is required. This
results in model structures with large number of parameters. Due to the absence of
large-scale experimental assays that could provide the required extent and diversity of
measurements for the rigorous parameterization of these models, researchers
incorporate the needed information from different sources: (i) literature; (ii) databases
such as Brenda and SABIO-RK [207, 208]; or (iii) they perform experimental
measurements themselves [74, 209, 210]. Whenever the model parameters are not
experimentally measured, parametric estimation methods [211] or Monte Carlo methods
are used [69, 181, 212, 213]. In the latter, the parameters are characterized within well-
defined bounds that are consistent with the studied conditions and physicochemical

laws. The available experimental values of kinetic parameters are often uncertain due to
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variations stemming from different experimental conditions and set-ups and due to
measurement and estimation errors [78]. As a consequence, many existing kinetic
models are of a limited scope, often with ad hoc stoichiometry, they cover one or a few
metabolic pathways, and frequently they neglect the whole network dynamics as

observed in [206, 214].

Recent efforts have been made towards building large- and genome-scale kinetic models
(34, 54, 80, 181, 215-219]. In the quest for the models with a large- or genome-scale scope,
one must ensure that the increased size and scope is attained without sacrificing the

consistency with physicochemical laws and the necessary mechanistic details.
5.1.1 Issues in building kinetic models

When building kinetic models, we are given a set of observation and we seek to identify
the set of kinetic parameters that best describe the observations. In metabolic kinetic
models we usually start with a set of metabolic fluxes (extracellular and intracellular)
and a set of metabolite concentrations (extracellular and intracellular). We also assume
that the stoichiometry of the metabolic network and the thermodynamic properties of
the reactions in the network are known. The basic problem then is to identify a kinetic
model or a set of kinetic models that consistently describe the experimental

observations. We discuss here briefly the main issues in building kinetic models.
5.1.1.a Uncertainty

Uncertainty is widely recognized in the literature as the main, persisting challenge in
kinetic modeling of biological systems [69, 206, 214]. The dynamic behavior of
metabolism is a result of complex interactions of metabolite concentrations, through
kinetics and thermodynamics, and uncertainty in these interactions propagate to the

structure and parameters of the kinetic models.

¢ Uncertainty in kinetic properties of enzymes
We can distinguish two types of uncertainty in kinetic properties of enzymes:
structural and quantitative [69, 78-80]. Structural uncertainty is associated to the
missing information about kinetic mechanisms and allosteric regulations.

Quantitative uncertainty refers to the lack of knowledge about the values of kinetic
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data and inconsistencies in the available kinetic data. While the databases that
collect and organize the information about kinetic parameters are growing in size
[207, 208], the available kinetic data are not standardized. Indeed, kinetic data are
coming from different sources and they are measured under different experimental
conditions. As a result, the values of available kinetic parameters often range within
several orders of magnitude. Furthermore, important factors that impact the values
of kinetic parameters such as temperature or pH are frequently not reported in the
databases or in the literature. An additional issue is a very disputed question if the
values of the kinetic parameters that are quantified in vitro and for each enzyme
separately can represent well the behavior of a multitude of enzymes interacting in

a crowded in vivo environment [80, 209, 220, 221].

¢ Uncertainty in metabolic fluxes
Despite the availability of abundant fluxomics data, complex topology of metabolic
networks, e.g. existence of a large number of branching points, prohibits
determination of the exact values and directionality of intracellular metabolic fluxes
[53, 56]. This translates into the existence of multiple alternative flux profiles that are
consistent with the measured data but with uncertainty in determining a unique flux
profile.

e Uncertainty in metabolite concentration levels and thermodynamic
properties
The introduction of Second Law of Thermodynamics in the context of flux balance
analysis (FBA) allows coupling the directionality of the fluxes and the levels of
metabolite concentrations [51, 53, 56]. Using the expressions for the Gibbs energy of
reactions to formulate the additional set of thermodynamic constraints on feasible
solution space we can eliminate thermodynamically infeasible flux directionalities.
At the same time, this enables integration of metabolomics data in the constraint-
based analyses [54]. However, the thermodynamic properties (Gibbs free energies)
of many reactions are not measured, and instead, they are estimated using group
contribution methods [58]. These estimates contain both measurement and

estimation errors, and together with uncertainties in metabolite concentration
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measurements they can affect the conclusions about directionalities of reactions and

eventually the conclusions about cellular physiology.

5.1.1.b Size and content of metabolic networks

As the main purpose of the models is the understanding of system-wide properties, we

need large models in order to capture the interactions determining the behavior of the

system as a whole. The size of a model introduces a tradeoff between the accuracy of the

models that comes from the description of all possible and important interactions and

the number of unknown and uncertain parameters introduced into the model. However,

there are issues to be considered when large- and genome-scale kinetic models are

constructed.

96

Large number of unknown parameters, sloppiness and overfitting

As the size of the metabolic network increases, the portion of available
experimentally measured values for kinetic parameters is rapidly going down.
Consequently, a large number of unknown parameter values have to be determined.
A common way to find the missing parameter values is to use the parameter
estimation techniques [211]. However, due to a large number of parameters to be
estimated, uncertainty in available data, and the intrinsic sloppiness of parametric
models in systems biology [222, 223] there are multiple sets of parameters consistent
with data, i.e. it is impossible to compute unique parameter values. Considering that
available data in biology are usually scarce, and when the number of parameters is
large relative to the number of observations, the obtained models tend to describe
measurement errors rather than functional relationships within the modeled process
(overfitting). As a result, poor predictions are obtained when these models are
validated against independent data sets.

Issues with parameter estimation methods

Parameter estimation methods use optimization procedures to obtain the values of
parameters. Depending on the underlying formulation, network structure and
employed optimization technique parameter estimation might become

computationally intractable for large metabolic networks [224].
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e Issues with Monte Carlo methods
In Monte Carlo based methods the admissible parameter space is constrained with
physicochemical and thermodynamic laws along with the constraints obtained from
available measurements, and then a population of alternative parameter sets is
drawn from such a reduced solution space [54, 69, 181, 212, 213, 217, 225, 226].
Sampling of such constrained admissible parameter space is a computationally
daunting task for large metabolic networks. Another important challenge is that an
efficient sampling necessitates well-defined bounds on kinetic parameters such as
Michaelis constants, and these bounds are rarely known. To address these issues a
new tailor-made formulation and a new sampling technique were proposed in [80].

o Stiffness of metabolism dynamics
Large- and genome-scale kinetic models of metabolism provide an increased level of
details about dynamics of metabolism. As such, they are stiff systems of ordinary
differential equations (ODE) since they span over metabolic reactions with a wide
range of rate dynamics. The stiffness of these systems and the intrinsic nonlinearities
of the kinetic rate expressions will require advanced computational tools for robust

simulation of these models [227].
5.1.2. Standard Requirements in Kinetic Modeling

The structure and the complexity of a kinetic model should be adjusted to the modeling
goal, to the characteristics of the organism and to the physiological conditions of the
system under study. However, there is a set of conditions and terms that a kinetic model
must follow in order to fulfill the required quality requirements. These conditions will
preserve the most of the prior knowledge about biochemistry and cellular physiology,
and they will avoid biases that can be introduced during the assembly of the kinetic

model.

5.1.2.a Consistent pathway/network stoichiometry

The lack of knowledge about kinetic parameters and the difficulties in parameter
estimation for large-scale networks have led to kinetic models that are constrained to

few pathways, and often with a reduced level of details both in stoichiometry and in
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kinetic rate expressions. As discussed in [228], since the metabolism is a highly
interconnected network by disregarding certain parts of a network one potentially
neglects dynamics that is crucial for the behavior of the whole system. In addition,
ignoring so-called “small metabolites” has also important consequences on modeling
conclusions. For instance, there are studies that demonstrate the importance of
considering phosphate in the kinetic models [229, 230]. Thus, in balancing between the
complexity of the model and its predictive capabilities one has to ensure that the
elemental and charge balance is maintained irrespectively of the size of the modeled

metabolic pathways.

One of the most important questions in metabolic modeling, and especially in building
kinetic models of metabolism, is how the model size impacts its quality. While small
models might have provided some insights [231], the bias introduced by the ad hoc
choice of model size can always contaminate the results and limit the predictive strength
of the models as well as the confidence and reliability of the conclusions and learning
obtained using these models. Physiologically relevant kinetic models should be built on
a scaffold of a context specific stoichiometric models with the same stoichiometric

detail and consistency.

A critical quality check for a kinetic model is how well it represents the stoichiometric
model it has used as a scaffold and how well it accounts for those parts of the
stoichiometric models the modeler has chosen to omit from the stoichiometric
description. Most of the current kinetic models use the stoichiometry without
accounting consistently for many reactions around the pathways they attempt to model
[228, 232-234]. One could argue that such models simulate the dynamics of mutant

organisms with the knockouts of the reactions omitted from their model.

Researchers should consider an elementally and charge balanced stoichiometry that
focuses on the studied metabolic pathway(s), and simultaneously it is consistent with
the genome-scale metabolic reconstructions (GEMs) it was derived from. Along this
direction, Ataman et al. [76] have developed an algorithm called redGEM that is capable

to systematically produce reduced context specific stoichiometric models from GEMs.
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5.1.2.b Consistency with physicochemical laws and experimental data

The computed kinetic models have to be consistent with the observed experimental data
from flux and metabolite measurements. While the consistency with stoichiometric
models will guarantee elemental and species balance, we must ensure the
thermodynamic consistency of the integrated metabolomics data that will also
determine the directionalities of the reactions. This way, the uncertainty in models is
reduced and reaction directionalities that are not consistent with the observed
physiology are discarded [53]. The conservation of the physicochemical laws is also very
critical for the performance of the models since they introduce fundamental
physicochemical constraints similar to the typical metabolite balance constraints.
Palsson and Lee have demonstrated that neglecting electro-neutrality and osmotic
balances for the case of a red blood cell model can lead to erroneous interpretation and

analysis of the studied physiology [235].

5.1.2.c Appropriate kinetic descriptions and regulation

The purpose of the model, the computational complexity, and prior knowledge and
experience of the researchers determine the choice of kinetic rate laws, e.g. mass action
vs. generalized mass action, and the mechanistic details, e.g. allosteric regulation.
Simplified rate expressions are more frequently encountered in large-scale kinetic
models as they normally require less parameters compared to more complex kinetic
descriptions. On the other hand, as it is anticipated that kinetic models with
oversimplified rate laws and neglected allosteric regulations can have limited predictive
capabilities [231, 236]. Within this context, Chakrabarti et al. have recently shown that
for a specific concentration and flux profile in aerobically grown E. coli, it was not
possible to find parameters for a kinetic model with the mass-action kinetics for the
overall reaction that do account for the enzyme maximum activity. However, when they
considered kinetic models with detailed mechanistic rate laws, they found a large
population of models that could describe the observed physiology [181]. These studies

suggest that the first and foremost requirement is to use kinetic rate laws that are able
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to model enzyme saturations. The second important consideration will be to model the

allosteric regulation whenever possible [209, 231].

Analyses of a large class of nonlinear systems have shown that only a reduced set of
parameters determines the system behavior. However, the actual parameters that
constitute this set depend on the particular state of the system, and these can change if
the system moves away from the reference condition. An approach in modeling
metabolic networks is to model in detail only the kinetics of reactions which have been
shown to determine the system behavior, and to use simple approximate kinetic laws
for the remaining reactions [34, 206]. While this idea is appealing, we have to know in
advance which reactions are important for a particular physiological condition.
Therefore, we suggest that we use an efficient method to generate a representative class
of nonlinear models, perform next such dynamic model reduction, and then generate a
larger population of reduced models, which can be a combination of kinetic models with

stoichiometric, flux balanced, subsystems.

Such kinetic models that couple kinetic and stoichiometric models have appeared
recently [226]. However, they are based on rather strong and potentially misleading
assumptions because they use an ad hoc reduction of the kinetic scale without prior
knowledge about the steady-state and dynamic properties of the overall system they
attempt to model. As we discussed earlier, one must first construct a detailed
mechanistic model, show that some parts of the model operate near steady state (quasi-
steady state), and then to model these parts by stoichiometry only. Therefore, hybrid
models that combine subsystems of kinetic models with subsystems of stoichiometric
models should be used with caution and they must follow a rigorous model reduction

procedure.

5.1.2.d Compartmentalization

In eukaryotic cells many metabolic pathways involve reactions from more than one
compartment, and many metabolites are produced in one compartment and then

transported to other compartments [237]. The activity of these pathways that span

across several compartments depend on energy, redox and cofactor availability in each
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of involved compartments [238]. Although researchers are tempted to remove
compartments from the models, it was demonstrated that compartmentalization in
constraint based models is an important feature [239]. Specifically, it was shown that
removal of compartments from the model had significant effects on energy-related
pathways due to disruption of concentration gradients between compartments. While
the modeling of the cellular compartments must be done during the development of the
stoichiometric models, the modeling of the kinetics of the process across compartments

is critical for the performance of the kinetic model.

5.1.3 Current scope, level of details and consistency in kinetic

models

The majority of recent studies that involves kinetic models are focused on S. cerevisiae
(34, 37, 54, 67, 209, 210, 226, 240, 241] and E. coli [35, 181, 213, 217, 219, 225, 228, 242-248],
and more recently kinetic models for other organisms such as B. subtilis [234], P.
falciparum [74], P. knowlesi [233], Z. mobilis [232], L. Lactis [212, 223, 229], S. pyogenes
[229], C. acetobutylicum [249], T. brucei [230], CHO cells [241], C. thermocellum [184], P.
pastoris [250] and human cell [251, 252] have appeared. Most of these models are focused
around glycolysis [37, 74, 209, 210, 229, 232] or in combination with either pentose
phosphate pathway and/or citric acid cycle [35, 226, 230, 242-244, 246, 247, 249]. Some
models are focused around a specific pathway of interest, e.g. Entner-Doudoroff
pathway [232], phospholipid [233] or riboflavin [234] synthesis, and only a few models
have a broader scope [34, 54, 67, 181, 184, 217, 219, 225, 248, 252]. However, the choice of
the reactions and the assembly of the stoichiometric networks are based on ad hoc
choices and almost all of the models are missing important interactions. For example,
many of these models include the dynamic mass balances of two metabolites, and they
omit some reactions that connect directly these metabolites without providing proper

justification.

There are attempts to reduce complexity by combining kinetic and stoichiometric
models [226, 233], or alternatively the number of model parameters is reduced by
considering the concentrations of co-factors and small molecules such as CO, and

phosphate to be constant in the rate expressions [245, 251]. In some studies these
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molecules are completely overlooked in kinetic descriptions [241, 243, 249]. Another
attempt to reduce the complexity of the metabolic models of eukaryotes is to neglect
the reactions and species across and within compartments. Indeed, only very few of the
models [54, 206, 230, 251, 252] that are used to study eukaryote organisms include
compartments for the different organelles. However, all these attempts reduce
complexity at the cost of elemental balances and thermodynamic consistency, and only
a few kinetic modeling approaches provide thermodynamically consistent models [34,

54, 67, 181, 217, 219, 225, 248, 252].
5.1.4 Review of published kinetic models of P. putida

Multiple small-scale kinetic models of P. putida metabolism used either of Monod,
Haldane and Andrews kinetics for modeling the growth and changes in extracellular
concentrations [253-262]. Bandyopadhyay et al. used a simple Monod model to study
the effect of phenol degradation [255]. Wang and Loh modelled the co-metabolism of
phenol and 4-chlorophenol in the presence of sodium glutamate [262], and their kinetic
model accounted for cell growth, the toxicity of 4-chlorophenol, and cross-inhibitions
among the three substrates. Other models were used for studying growth during
benzene [253], toluene [253, 257-259, 261] and phenol biodegradation [253], growth and
biosynthesis of medium-chain-length poly-(3-hydroxyalkanoates) [254] and

dibenzothiophene desulfurization [256, 260].

More recently, Sudarsan et al. developed a kinetic model of the B-ketoadipate pathway
that contained mass balance equations for both extracellular and intracellular
metabolites described by mechanistic rate expressions based on in vitro investigation of
the participating enzymes [263]. Chavarria et al. modelled the dynamics of fructose
uptake while taking into account the dynamics of gene expression, protein stability,

enzymatic activity and the concentrations of intracellular and extracellular metabolites

[264].

In all these cases, the models were of limited size and with ad hoc stoichiometry, which
accentuated a need for developing large-scale kinetic models capable of reliably
identifying metabolic engineering targets for production of the desired chemicals [180].

However, construction of large-scale kinetic models remains a challenging task. Each
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reaction in a kinetic model requires a matching kinetic rate expression along with values
of kinetic parameters, which are frequently unknown. Moreover, even if the values of
kinetic parameters are available in the literature and databases, their ranges are often
reported within several orders of magnitude. Additionally, partial experimental fluxomic
and metabolomic data and estimation errors in related thermodynamic properties [180]
hinder us from determining unique steady-state metabolic fluxes and metabolite
concentrations. As a consequence, we are unable to find a unique model capable of
describing the observed physiology. Instead, to overcome this issue, a population of
kinetic models is constructed, and statistical methods are used to analyze and predict

the metabolic responses in the system.

In this chapter, we used the ORACLE framework [67, 69, 80] to generate a population
of large-scale kinetic models of P. putida around the computed steady state, and we
employed these models in two studies. In the first study, for wild-type strain of P. putida
KT2440 grown under aerobic conditions using glucose as a carbon source, we evaluated
and validated the predictions of the generated kinetic models against a collection of
experimental single-gene knockouts [265]. In the second study, we analyzed the capacity
of P. putida to adapt to increased energy demand [24], and we identified potential
metabolic engineering targets for improved resistance of this organism to stress

conditions.

5.2 Methods

5.2.1 Configuring stoichiometric model for kinetic studies of wild-
type physiology

We used D2 model described in Chapter 2 as a scaffold for constructing a population of
thermodynamically feasible kinetic models. We first expanded D2 by allowing free
diffusion to extracellular space for all intracellular metabolites that: (i) have less than 10
carbon atoms and do not contain phosphate or CoA; and (ii) do not have an existing
transport reaction in the model. This was done to model a possibility that small amounts

of these metabolites were produced during fermentation but in insufficient quantities
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for experimental detection. The expanded model contained 752 reactions and 331

metabolites across cytosol, periplasm, and extracellular space.

Based on the data provided in del Castillo et al. [11], we integrated into the model the
experimentally measured rates of glucose uptake and biomass growth and we forced the
secretion of D-gluconate and 2-dehydro-D-gluconate by putting a lower bound on their
exchange reactions to 0.3 mmol/gDCW/hr. For the remaining carbon-based by-
products, we allowed only their basal secretion by constraining their transport rates to
the extracellular space (10 - 102 mmol/gDCW/hr) following the common observation
in the literature that P. putida can break the carbon down almost without any by-

product formation [24].

We next integrated 57 experimentally measured intracellular metabolite concentrations
[112]. In the model, 12 out of the 57 measured metabolites appear in both cytosol and
periplasm. The concentration values of these 12 metabolites were measured per cell and
not per compartments, and therefore to integrate this information for each species in
the two compartments 2 additional constraints per metabolite were added in TFA
(Methods 2.2.2). Overall, these 57 measurements provided constraints for 69 metabolite

concentrations in the model.

Furthermore, we configured the model with several additional assumptions: (i) TCA
cycle was complete [24, 16]; (ii) two glutamate dehydrogenases (GLUDx and GLUDy),
were operating towards production of L-glutamate, (iii) dihydrolipoamide S-
succinyltransferase was generating NADH from NAD+ [266]. Since kinetic models in
ORACLE framework [67, 69, 78-80, 181, 248] are built around uniquely described flux
profile, additional assumptions for the remaining 8 bi-directional reactions (Figure 5.1)
are obtained from the result of the two step optimization in which biomass yield is

maximized subject to minimization of sum of the fluxes.

Each of the bidirectional reactions yields two distinct flux directionality profiles (FDPs),
in one a reaction is operating in the forward direction, in the second it is operational in
the backward direction. In theory, a maximal number of FDP is equal to
2‘number of bidirectional reactions

, but usually, this number is smaller, considering different

stoichiometric and flux coupling [267, 268]. In this case, 8 BDRs yielded 48 different
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FDPs. For each FDP, we first calculated minimal sum of the fluxes. This sum is further
imposed as an additional constraint in the TFA. We than performed additional
optimization in which we maximized biomass growth. Out of the resulting 48 flux
directionality profiles (FDPs), we chose the one with the minimal sum of fluxes (Figure
5.2). The directionality of the resulting flux profile was imposed into the stoichiometric
model: (i) acetaldehyde dehydrogenase (ACALD) was producing acetaldehyde, (ii)
ribulose 5-phosphate 3-epimerase (RPE) was converting D-ribulose 5-phosphate to
D-xylulose 5-phosphate; (iii) transaldolase (TALA) was operating in the direction of
consuming glyceraldehyde 3-phosphate while transketolase 1 (TKT1) was operating
towards production of glyceraldehyde 3-phosphate, (iv) adenylate kinase (ADK1) and
nucleoside-diphosphate kinase (NDPK1) were consuming ATP; (iv) GTP-dependent
adenylate kinase (ADK3) was consuming GTP, and (v) sodium antiporter (Nat3_15) was

importing sodium to the cell.

We performed TFA with so configured model, and all reaction directionalities within
the obtained thermodynamically feasible steady-state flux and metabolite concentration

profile were in agreement with the pre-assigned directionalities from iJNi411 [g1].
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Figure 5.1 8 bidirectional reactions (BDRs) from D2 used to compute 48 feasible flux

directionality profiles

BDRs: acetaldehyde dehydrogenase (ACALD), ribulose 5-phosphate 3-epimerase (RPE),
transaldolase (TALA), transketolase 1 (TKT1), adenylate kinase (ADKi1), nucleoside-
diphosphate kinase (NDPK1), GTP-dependent adenylate kinase (ADK3), sodium proton
antiporter (NAt3_1pp).
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Figure 5.2 Biomass yield for minimal sum of fluxes per FDP

Each red star represents one or multiple FDPs. In total 48 FDPs are plotted.

5.2.2 Configuring stoichiometric model for kinetic studies of stress

conditions

5.2.2.a Sensitivity analysis of a model response to changes in the oxygen uptake

rates and flux changes in ATP synthesis

Depending on physiological conditions, maximal rates of oxygen uptake and ATP
synthase in P. putida can take a wide range of values. For instance, in optimally grown
P. putida, oxygen uptake rate is about 15 mm/gDCW/h [83], while in the stress
conditions it can go above 50 mm/gDCW/h [24]. To investigate the effects of the

maximal rates on model predictions, we constrained upper bound on biomass growth
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to 0.73 1/h and we performed multiple TFAs for different combinations of maximal

allowed rates of oxygen uptake and ATP synthesis.

We varied the allowed maximal oxygen uptake between 30 and 70 mm/gDCW/h (the
range between 40 and 60 mm/gDCW/h was reported in [24]), and the allowed maximal
flux through ATP synthase between 40 to 100 mm/gDCW/h. For each combination of
oxygen uptake/ATP synthase maximal rates, we computed changes of minimal required

glucose uptake with the respect to changes in flux through ATP hydrolysis (Figure 7).

For the allowed maximal oxygen uptake of 30 mmol/gDCW/h, the peak of the minimal
glucose uptake rate was at 10.22 mmol/gDCW/h, which is slightly under the value
reported in Ebert et al. [24] (1.6 + 1.2 mmol/gDCW/h) (Figure 5.3). For the allowed
maximal oxygen uptake of 40 mmol/gDCW/h, the peak of the minimal glucose uptake
rate was at 11.89 mmol/gDCW/h which was within the bounds reported in [24], whereas
for the allowed maximal oxygen uptake of 50 mmol/gDCW/h, the peak of minimal
glucose uptake rate was above the experimental values (13.56 mmol/gDCW/h).
Consequently, we used the bound on allowed maximal oxygen uptake rate of 40

mmol/gDCW/h for our kinetic studies.

Interestingly, the constraint on the allowed maximal ATP synthase rate did not have an
effect on the magnitude of the peak value of the minimal glucose uptake rate. Instead,
it affected the position of the peak with the respect to the ATP hydrolysis flux (Fig. 7).
The higher the ATP synthase rate, the higher ATP hydrolysis flux was required to attain
the peak value of the minimal glucose uptake. For example, in the case of the allowed
maximal oxygen uptake of 30 mmol/gDCW/h, the ATP hydrolysis flux of 9 and 19
mmol/gDCW/h was required to attain the peak of the minimal glucose uptake of 10.22
mmol/gDCW/h for the allowed maximal ATP synthase rates of 40 and 50
mmol/gDCW/h, respectively. Based on these observations and comparison with the
experimental data, one can equally consider values of 50, 60 or 70 mmol/gDCW/h for
the upper bound on ATP synthase since all three values describe qualitatively well the
experimental data [24] (Fig. 5.3 and 5.8). We set the upper bound of ATP synthase to 70

mmol/gDCW/h to keep the maximal flexibility in the model.
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Figure 5.3 Minimal glucose uptake rate as a function of ATP hydrolysis flux for different
combinations of allowed maximal rates of the oxygen uptake and ATP synthesis

The sensitivity analysis indicates that models with the maximal oxygen uptake rate of
40 mmol/gDCW/h and the ATP synthesis rate of 70 mmol/gDCW/h (red box) are
providing the best qualitative agreement with the experimental data [24] while
maintaining the model flexibility.

5.2.2b Configuration of a model

The stoichiometric model was reconfigured in the following way: (i) we constrained the
specific growth rate in the range 0.43 + 0.2 1/h and the glucose uptake in the range 11.6

+ 1.2 mmol/gDCW/h. These values correspond to the concentration of 700 mg/liter of
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DNP in the experimental study or 44 mmol/gDCW/h in the simulation study (Figure
5.8d); (ii) the directionalities of 26 reactions from the glycolysis, gluconeogenesis, PPP
and TCA were constrained by putting lower and upper bounds from Ebert et al. [24].
Interestingly, the reported directionality of TKT2 in this physiological condition was
opposite than it was assumed in the study of wild-type physiology and in 2.3.5; (iii) two
glutamate dehydrogenases were operating towards production of L-glutamate; (iv)
dihydrolipoamide S-succinyltransferase was operating towards production of NADH

from NAD+ [266].

TFA performed with so configured stoichiometric model revealed that six reactions
(acetaldehyde dehydrogenase acetylating, adenylate kinase, adentylate kinase GTP,
sodium proton antiporter, nucleoside diphosphate kinase ATP:GDP and phosphate
reversible transport via symport periplasm) could operate in both directions while still
satisfying the integrated data. To fix the directionalities of these six reactions, we
performed an TFA optimization where we minimized the sum of the fluxes in the
metabolic network under the constraint that at least 99% of the observed specific

growth rate should be attained.

5.2.3 Construction of the large-scale kinetic models

The application of ORACLE [67, 69, 78-80, 181, 248] for calculation of control coefficients

requires the following steps

Step 1. Definition of stoichiometry and thermodynamic constraints, along with
incorporation available flux and concentration data. TFA analysis is performed in order

to compute thermodynamically feasible flux profiles.

Step 2. Integration of experimentally measured concentrations into the models. For the
estimation of concentrations for which we do not have data, a Monte Carlo sampling
method is used. The space of metabolite concentrations is sampled consistently with the
flux directionalities computed in Step 1. The displacement of enzymatic reactions from

the thermodynamic equilibrium is also computed at this step.
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Step 3. We integrate the kinetic properties of enzymes from the literature or databases
(BRENDA and SABIO-RK). For those enzymes with missing information, we sample

either enzyme states or the degree of saturation.

Step 4. We define the rate laws for the reaction kinetics and we formulate the kinetic
model for the complete network. The information acquired in this step allows us to

construct wide spectrum of kinetic models of metabolism including nonlinear models.

Step 5. We reject models that are either inconsistent with experimental measurements

and expert knowledge or that are unstable in terms of local stability characteristics.

Step 6. We can perform different computational analysis (GSA analysis, dynamic
simulations and MCA analysis). For each accepted model we compute a population of

control coefficients.

Step 7. We analyze the population of CCs to define the statistics of the potential
responses of population and to postulate hypotheses about system to genetic

perturbations

5.3 Results

5.3.1 Kinetic study of wild type P. putida physiology
5.3.1a Predicting model responses to six single-gene knockouts

In the process of the construction of kinetic models, we removed the mass balances for
the extracellular metabolites from the stoichiometry because we consider the
concentrations of extracellular metabolites as parameters. The mass balances for water
and the corresponding transport reactions were also removed. We then assigned a
kinetic mechanism to each of the enzyme catalyzed reactions in the model, and we
integrated experimental values for 21 Michaelis constants (Ku’s) that we found for the
Pseudomonas genus in the Brenda database [269-272]. Next, we used ORACLE [67-69,
78-80, 181] to construct a population of 50’000 nonlinear kinetic models around the
computed steady-state flux and concentration profile (Methods 5.2.3). The resulting
structure of kinetic models consisted of 775 enzymatic reactions and 245 mass balances

for metabolites distributed over cytosol and periplasm.
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As a test for evaluating predictive capabilities of the constructed models, we computed
the flux control coefficients [273, 274] of glucose uptake and specific growth rate with
respect to six enzymes (glucose dehydrogenase (GLCDpp), hexokinase (HEXu),
gluconokinase (GNK), EDA, EDD, and phosphogluconate 2-dehydrogenase
(PGLCNDH)), and compared them with the experimentally measured responses of the
glucose uptake and specific growth rate to single-gene knockouts of these six enzymes

[111].

The computed control coefficients for the glucose uptake and specific growth rate were
in a qualitative agreement with the data reported by del Castillo et al. [111] (Appendix
Chapter 5 Table S1), i.e., a decrease in the enzyme activity of the six enzymes would lead
to a decrease in both the glucose uptake and specific growth rate (Fig. 5.4a and 5.4b).
Nevertheless, a closer inspection of the flux control coefficients of glucose uptake
revealed that for four enzymes (GNK, EDD, EDA and PGLCNDH) the error bars were
spread around zero values (Fig. 5.4a). This meant that there was a subpopulation of
models with inconsistent predictions with some of the six knockouts. In fact, only 4 999
(~10%) out of 50 ooo computed models were able to correctly predict responses to all 6
knockouts reported in del Castillo et al. [11] due to the large uncertainty in the assigned
values of the kinetic parameters. This type of uncertainty remains one of the major

difficulties that limit the predictive strength of kinetic models [180].
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Figure 5.4 Distribution of the control coefficients of glucose uptake and specific cell
growth in wild-type P. putida cells

The control coefficients of glucose uptake and specific growth were first computed using
an unbiased sampling in ORACLE (a) and then further refined using the machine
learning methodology iSCHRUNK (b). The green bars are the mean values of the control
coefficients, whereas the errorbars correspond to the 25 and 75 percentiles of the
distributions.

5.3.1b Refinement of model responses to six single-gene knockouts

To eliminate the inconsistencies with the experimental data observed for some of the
predicted responses, we employed a machine learning method iSCHRUNK [275]. The
method allowed us to identify the kinetic parameters and their ranges that ensure the
consistency of model responses with the experimental observations. Out of 50 ooo
computed models, 4’999 were consistent with the results from del Castillo et al. [11],
and we used the parameters of these models to train the machine learning algorithm.

The method allowed us to identify seven kinetic parameters and their ranges that ensure
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the consistency of model responses with the experimental observations, and

interestingly, all parameters were related with the ED pathway (Table 5.1).

Table 5.1 Ranges of important parameters predicted by the iSCHRUNK algorithm
Abbreviations: 2DHGLCNtex, ketogluconate transport via diffusion extracellular to periplasm,
GAD:2ktpp, gluconate 2 dehydrogenase periplasm, GLCDpp, glucose dehydrogenase ubiquinone
8 as acceptor periplasm, GLCNtarpp, D-gluconate transport via proton symport reversible
periplasm, GNK, gluconokinase, 2dhglcn, 2-dehydro-D-gluconate, 6pgc, 6-phospho-D-
gluconate, adp, ADP, glcn, D-gluconate, g8, ubiquinone-8.

Parameter Range (mM)
K dngion 6.83"107 - 234"107
Kﬁgﬂiggf 6.83%10° - 0.133
Kr(r:LLq%Dpp 3.81¥107 - 0.899
ri;??npp 0.01 - 5.76
Kngien " 6.54"10* - 9.49*10™
KSNK 3.84*107 - 20
Kr?l,l\é};gc 4.26*10° - 8.37*10”

We generated a novel population of kinetic models with ORACLE with constrained
ranges of these seven parameters as defined by iSCHRUNK, and we computed the
distributions of corresponding control coefficients for the glucose uptake and specific
growth rate. Out of 50’000 models, 29’979 (~60%) models correctly predicted the
changes in the glucose uptake rate to six single-gene knockouts [11] (Fig. 5.4¢), while
35955 (~72%) models agreed with the experimental data for the specific growth rate
(Fig. 5.4d). In total, 26’120 (~52%) models were consistent with both the experimental

data for the glucose uptake and the specific growth rate.

We discovered with iSCHRUNK that operating regimes of only a few enzymes determine
metabolic responses to multiple single-gene knockouts. This emphasizes the
significance of accurately determining the kinetic parameters of such important

enzymes in order to obtain model responses consistent with the experimental
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observations. This also implies that we have to consider complex kinetic phenomena

such as crowding when modeling kinetic properties of certain enzymes [276].

5.3.1c Assessment of estimated kinetic parameters

In the ORACLE framework, we employ the Monte Carlo sampling technique to compute
the saturation states of enzymes. We then use these quantities to back-calculate the
unknown values of Michaels constants (Km’s) [78-80]. To obtain an unbiased assessment
of the accuracy of our estimates, we recomputed 50’000 models without imposing the
experimentally available values of Ku's from the BRENDA database [269-272].
Comparison of our estimates against available values of Kis from BRENDA showed that
ORACLE could capture the ranges for 17 out of 21 Ki’s (Fig. 5.5). Considering that in the
estimation process we did not use any kinetic parameters values and that the underlying
system is undetermined, this result is remarkable because it indicates that ORACLE with
integrated fluxomics and metabolomics data together with the physico-chemical laws is
capable to provide consistent estimates for a large number of kinetic parameters. This
means that ORACLE estimates can be used as hypothetic values for studies where the

unknown kinetic parameters are required.

For the four remaining parameters such as Michaelis constant of L-Threonine in
threonine aldolase or isocitrate in isocitrate lyase, ORACLEs underestimated
experimental values up to one and half orders of magnitude (Fig. 4). The discrepancies
between the estimated and measured values of these parameters can originate from
different sources: (i) the K, values from BRENDA were measured on several different
species from the Pseudomonas genus, whereas our K, values were estimated using a P.
putida model and the experimental data were acquired on P. putida (fluxomics data) and
P. taiwanensis (metabolomics data); and (ii) large uncertainty in available and partially
available experimental data. In general, the more experimentally measured data are
available for integration in the models by ORACLE, the better their predictive capability
will be.
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Figure 5.5 Ranges of Ku'’s predicted by ORACLE

Red boxplots, distribution of Km's computed with ORACLE without imposing
experimental values from BRENDA, black dots Ky’s reported in BRENDA. Whiskers
represent minimal and maximal value predicted by ORACLE. Full name of reactions is
provided in Appendix Chapter 5 Table S2

Similarly, we compared ranges of Vima's computed with ORACLE against data reported
on the literature. In the absence of Viax's for P. putida in the literature, we compared
them against the data for E. coli [277]. 15 of 19 experimentally reported values of Vimax's
were within in silico predicted ranges, while 4 were laying outside of the predicted
ranges (Fig 5.6). Although for majority of kinetic parameters reported in the literature,
we could predict their ranges, the uncertainty of kinetic parameters remain one of the
major issues in building kinetic models widely recognized in the literature [180, 275,

278].
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Figure 5.6 Ranges of Vimax's predicted by ORACLE

Red boxplots, distribution of Vimas computed with ORACLE, black dots Vmax's reported
in Albe et al. [277] Whiskers represent minimal and maximal value predicted by
ORACLE. Full name of reactions is provided in Appendix Chapter 5 Table S2

5.3.2 Kinetic study of increased ATP demand in P. putida

One of the main advantages of P. putida over E. coli is a buffering capacity to
accommodate and counterbalance different environmental challenges without showing
a distinct phenotype. Ebert et al. [24]. investigated the impact of increased ATP
hydrolysis on the P. putida metabolism by titration of 2,4-dinitrophenol (DNP). They
demonstrated that DNP concentrations below 300 mg/l did not impact the specific
growth rate of P. putida. In comparison, E. coli showed a significant reduction in the
specific growth rate already at the concentrations of 138 mg/l [279]. Above the
concentration of 300 mg/liter, DNP caused a significant reduction of P. putida’s specific
growth rate and increase of the glucose uptake (Figure 5.7a and 5.7b). At the
concentration of 700 mg/liter of DNP, glucose uptake reached the maximum of ca.
mmol/gDCW/h. For larger values of DNP concentration, both glucose uptake and the

specific growth rate declined.
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Figure 5.7 Fermentation profile of P. putida metabolism under increased ATP demand

Experimentally measured specific growth rate (a) and glucose uptake rate (b) of P.
putida as the ATP demand induced by titration of 2,4 dinitrophenol (DNP) increases.
The profiles of specific growth rate (c), glucose uptake rate (d), flux through ATP
synthase (e) and oxygen uptake rate (f) computed by TFA

5.3.2a Modeling and TFA of increased ATP demand

We preconfigured the model for this study (Methods 5.2.2) and used it to simulate the
impact of increased ATP demand on the P. putida metabolism by gradually increasing
the minimally required flux through ATP hydrolysis in increments of 1 mmol/gDCW/h
(Fig. 5.7). We set the upper bound of the specific growth rate to 0.73 1/h, as reported in

Ebert et al. [24] for the DNP concentration of o mg/l. Based on the performed sensitivity
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analysis of model responses to upper constraints on the oxygen uptake rate and ATP
synthase (Methods 5.2.2), we set the upper bounds on the oxygen uptake rate and ATP
synthase to 40 mmol/gDCW/h and 70 mmol/gDCW/h, respectively. The glucose uptake

rate was left unconstrained.

In agreement with the experiments, the model predicted that the minimal glucose
uptake of 7.51 mmol/gDCW/h is required to attain the specific growth rate of 0.73 1/h
when the lower bound of the flux through ATP hydrolysis is set to o mmol/gDCW/h
(Fig. 5.7¢ and 5.7d). Also consistent with the experiments, with the increase of the
minimally required ATP hydrolysis flux, the required minimal glucose uptake was
increasing (Fig. 5.7d) simultaneously with an increase of the ATP synthesis flux and
minimal oxygen uptake (Fig. 5.7e and 5.7f), while the specific growth rate remained
stable (Fig. 5.7¢). For the ATP hydrolysis flux of 37 mmol/gDCW/h, the minimal glucose
uptake was 9.56 mmol/gDCW/h and the slope of the minimal glucose and oxygen
uptake became steeper (Fig. 5.7d and 5.7f). When the ATP hydrolysis flux reached 44
mmol/gDCW/h, the oxygen uptake rate and ATP synthase flux simultaneously attained
their upper bounds (Fig. 5e and 5f). The corresponding minimal glucose uptake was 11.89
mmol/gDCW/h, which was consistent with Ebert et al. [24] (11.6 + 1.2 mmol/gDCW/h).
After this point, the required minimal glucose uptake started to decline (Fig. 5.7d)
together with a decline in the specific growth rate (Fig. 5c). For the ATP hydrolysis flux
of 73 mmol/gDCW/h, the model predicted the specific growth rate of 0.25 1/h and the
minimal glucose uptake rate of 8.54 mmol/gDCW/h, which was slightly more than what
was reported in the Ebert et al. [24] (7.5 + 0.8 mmol/gDCW/h).

The thermodynamically-curated core stoichiometric model described well the
qualitative behavior of P.putida in the stress condition of increased ATP demand.
However, the model failed to capture a decrease of the specific growth rate for DNP
concentrations in the range of 300-700 mg/l (Fig. 5.7¢). A possible explanation for this
discrepancy is that the decrease of specific growth rate in this region might be due to
kinetic effects that cannot be captured by stoichiometric models. It is also important to
observe that in Ebert et al. [24] the increased ATP demand was indirectly induced by
tittering different levels of DNP, whereas we simulated that effect by increasing the ATP

hydrolysis flux. Since P. putida does not necessarily respond to a linear increase in the
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DNP levels by linearly increasing the ATP hydrolysis, the exact correspondence of the
data points in the graphs obtained through experiments and computational simulation

was not expected.
5.3.2b Improving the robustness of P. putida under stress conditions

We then undertook to devise a metabolic engineering strategy that will allow P. putida
to maintain the specific growth rate for more severe stress conditions. To this end, we
computed the steady-state metabolic flux and metabolite concentration vectors for the
ATP hydrolysis flux of 44 mmol/gDCW/h. We then built a population of 50’000 kinetic
models around the computed steady-state, and we computed the control coefficients for

all fluxes and concentrations in the metabolic network.
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Figure 5.8 Control coefficients of the growth in the stress conditions
The green bars are the mean values of the control coefficients, whereas the errorbars
correspond to the 25 and 75 percentiles of the distributions.
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Analysis of the control coefficients for the specific growth rate revealed several strategies
for maintaining high growth in the presence of stress agent 2,4-dinitrophenol which
increases ATP demand (Fig. 5.8). The major positive control over the specific growth at
this stress condition have the key enzymes from the Entner-Doudoroff pathway (EDA,
EDD and GNK), e.g., the two-fold increase in activity of EDA would improve the specific
growth by more than 50%. This control is tightly connected with the ability of ED
pathway to generate additional NADPH, necessary to fuel proton-motive-force-driven
efflux pumps, the major mechanism of solvent tolerance in P. putida [280] or to reduce

stress through antioxidant systems that utilize NADPH [281].

Similarly, our analysis suggests that an increase in the activity of GLCDpp that catalyzes
the conversion of glucose to periplasmic gluconate would increase the specific growth,
i.e., the two-fold increase in GLCDpp activity would result in improved specific growth
by ~40% (Fig. 7). Furthermore, reduced activity of aspartate transaminase (ASPTA) or

succinate dehydrogenase (SUCDi) would also increase the specific growth.

It is rather intriguing that CO, transports (CO.pp and CO.iex) have a positive and
bicarbonate equilibration reaction (HCO;E) a negative control over the specific growth
at this steady-state if we consider that all three reactions consume CO.. Indeed, there

was a strong coupling between the control coefficients CE59 and CHEQYE" with the

Pearson correlation coefficient of -0.77 (Appendix Chapter 5 Table S3). We also sampled
metabolic fluxes from the space characterized by reactions that operate only in one
direction determined by the analyzed steady state [53, 282]. Interestingly, the correlation
analysis of the samples showed that there was no stoichiometric coupling of the fluxes
through CO.ppand HCOSE, i.e., the Pearson correlation coefficient for these two fluxes

was 0.06 (Appendix Chapter 5 Table 4)

We observed the similar effect of the ED enzymes on the glucose uptake (Appendix
Chapter 5 Table Ss).
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5.4 Conclusions

We presented here the first large-scale kinetic model of P. putida. To our best
knowledge, this is the largest kinetic model of any organism that could be found in the
literature. For comparison, a recently published genome-scale kinetic model of
Escherichia coli [219] consists of 457 reactions and 337 metabolites, while the model
presented in this study has 775 reactions and 245 metabolites. We used the developed

model in two studies of P. putida metabolism.

In the first study, we used the middle-size core reduced stoichiometric model of P.
putida as a scaffold to generate a population of 50’000 kinetic models for predicting the
behavior of six mutants of P. putida described in the literature [m1]. A comparison
between the models responses and the experimentally observed phenotypes revealed
that only about 10% percent of our models could correctly predict experimentally
reported behavior of these mutants due to the large uncertainty in the assigned values
of the kinetic parameters, which remains one the major difficulties towards reliable
predictions of the kinetic models [180]. To address this issue, we employed the
iSCHRUNK method [275], and we have shown that constraining the values of only three
kinetic parameters has a huge effect on the model response, i.e., the novel population of
models with constrained three parameters related to glucose dehydrogenase was
consistent with the experimental observations. This further implies urgency for accurate
experimental determination of kinetic parameters, not only in vitro, where different

kinetic effects such as crowding are disregarded [283-285], but also in vivo.

In the second study, we identified new strategies to maintain the robust behavior of P.
putida under stress conditions. Our analysis suggests that a metabolic engineering
strategy that targets enzymes from the ED pathway would have the positive control on
growth and glucose uptake in the presence of stress agent 2,4-dinitrophenol which
increases ATP hydrolysis. This control is tightly connected with the ability of this
pathway to generate additional NADPH, necessary to fuel proton-motive-force-driven
efflux pumps, the major mechanism of solvent tolerance in P. putida [280] or to reduce

stress through antioxidant systems that utilize NADPH [281].
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Conclusions and Perspectives

The production of second-generation biofuels by conversion of inexpensive feedstocks
via microbial fermentation is a basis for future bio-sustainable economy. Compared with
the other renewable sources of energy like solar electricity, liquid biofuels are
immediately compatible with the existing infrastructure and with the higher energy
density [286]. Fundamental to this problem is the selection of the host organism that
can produce biofuels at high volumetric productivity and yield from cheap and
abundantly available renewable energy sources [10]. Usually, when we talk about the
heterologous expression of non-native pathways, the first choice for the host is
Escherichia coli due to its ability for high growth on a large number of different carbon
sources in both aerobic and anaerobic conditions. The use of E. coli as a microbial cell
factory for biofuel production and its comparison against other frequently used hosts

like Saccharomyces cerevisiae is reviewed elsewhere [287].

Recently, P. putida drew a lot of attention as a valid alternative to E. coli, in particular
due to its ability to tolerate high concentrations of many organic solvents, thus
representing a potentially superior host for biofuel production. In this thesis, we
investigated the use of Pseudomonas putida as an alternative host for biofuel production,

assessed its metabolic capacities and compared them to the ones of E. coli.

We undertook to assess P. putida prospects as a biofuel production host by analyzing its
metabolism and more specifically its bioenergy requirements, redox metabolism and the
supply of biofuel precursors. For these analyses we needed to develop large-scale kinetic
models of this organism capable of capturing its system-wide properties. To this end, we
started with the most recent genome-scale stoichiometric models of P. putida, iJN1411,

and we used thermodynamic-based flux balance analysis to obtain the first
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thermodynamically curated GEM of P. putida. The curated model will allow to a broader
scientific community to perform more reliable computational analyses and predictions,
e.g., without thermodynamics and the gap-filling we performed in this thesis, iJN1411
could not capture experimentally measured concentrations of ATP. With TFA, we could
impose thermodynamic information for 62.3 % metabolites and 59.3 % reactions. In
comparison, for E. coli GEM iJO1366 the coverage is higher, i.e., 84.1 % for metabolites
and 81 % for reactions. The difference stems from a relatively low thermodynamic
coverage in the peripheric metabolic subsystems of P. putida such as poly-
hydroxyalkanoates metabolism. We then used such curated GEM to derive three
reduced models of i]N1411 using the redGEM and lumGEM algorithms. These models are
faithful replicas of their GEM counterpart in terms of growth, gene essentiality and
ranges of allowable fluxes and metabolite concentrations, and as such they can be used

as a scaffold for development of large-scale kinetic models.

We took five precursors of Methyl Ethyl Ketone (MEK), one of the most prominent fuel
candidates, as a test case for the assessment of P. putida metabolic capabilities and the
comparison with E. coli. These five compounds can serve as platform chemicals for other
biofuels. We discovered 18’662 thermodynamically feasible pathways from the central
carbon metabolism subsystems of E. coli toward these five compounds, and for each
novel reaction in these pathways we proposed the candidate enzymes that could
catalyze them. This is a valuable resource for studies in industry and academia for the
production of chemicals that can be derived from these five MEK precursors. Beside the
delivered pathways, we extended the already existing computational pipeline for
discovery, evaluation and analysis of biosynthetic pathways, BNICE.ch, with the new set
of analysis tools that will allow to metabolic engineers to evaluate the pathways, their
common routes and differences and assess the supply of the required metabolic
precursors, and analyze the alternative routes for production of a target molecule, which
would lead towards improved production and higher yields. This pipeline is applicable

to any compound of interest and any host.

For comparison purposes, we evaluated the pathways from the metabolites that appear
in the central carbon metabolism subsystems of both P. putida and E. coli toward the

five MEK precursors. We have shown that same pathway can have different properties
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in two host organisms. In some cases, we identified pathways with a higher yield in P.
putida than in E. coli. To unlock P. putida’s full potential, one should explore the space
of metabolites that belong uniquely to P. putida metabolism, and which can serve as
starting compounds in the pathways design. There were 54 metabolites in P. putida
carbon metabolism that do not appear in E. coli, and that could be used as starting

metabolites in the pathway discovery of 5 MEK precursors.

[t might be expected that upon experimental implementation of a pathway, the cell will
produce a target molecule with the lower yield than what was predicted as the
theoretical maximum. Identification of enzymes from the metabolic network whose
overexpression, downregulation or deletion would improve the production, require a
reliable kinetic model. As a final delivery of this thesis, we developed the first large-scale

kinetic model of P. putida consistent with the metabolic responses of several mutants.

The results obtained in this thesis highlight the importance of the choice of constraints
in FBA and TFA as they can influence our conclusions on reaction directionalities, and
the reaction directionalities have a critical impact on network properties such as gene
essentiality or yields [55]. Our results further suggest that particular caution should be
exercised when using “off-the-shelf” models because some of them have ad hoc pre-
assigned directionalities [53, 55, 56]. Additionally, this indicates that there is a need for
revisiting assumptions on reaction directionalities in the current genome-scale
reconstructions. This task can be performed by integrating thermodynamic constraints
in metabolic networks and thus allowing for systematical assigning of reaction
directionalities [55, 56]. However, for an accurate estimation of the reaction
directionalities using thermodynamics, it is crucial to consider the contribution of
metabolite activities to the Gibbs free energy of reactions instead of using only the
standard values [53, 56]. Since metabolite activities are proportional to metabolite
concentrations [288], this further emphasizes the importance of integrating

metabolomics data.

The ultimate goal of kinetic modeling is to procure the models of such a scope and level
of details that metabolic engineering and synthetic biology designs and hypotheses can

reliably be tested in silico before implementing them into the host organisms. The
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principal challenges in development of large- to genome-scale kinetic models remain
the uncertainties and the complexity that increases with the size of the networks. There
is a clear need for computational tools that will model the uncertainty and that will
analyze and reduce the uncertainty propagation in the system. Recognizing this,
recently a method has been proposed that makes use of machine learning techniques
and the Monte Carlo sampling based methods for generating kinetic parameters such as
ORACLE [275]. With this method, we have shown that constraining just three
parameters related with the P. putida’s periplasmic enzyme glucose dehydrogenase is
enough to capture the experimentally reported behavior of 6 mutants, while the values
of kinetic parameters in most of the enzymes can vary in a broad range. This is an
important finding as it will allow reducing the space of kinetic parameters significantly,
and therefore it will enable more comprehensive analyses of the metabolic networks.
During this work, we demonstrated the potential and usefulness of kinetic models in
rational metabolic engineering strategies for (i) understanding the physiology of
production hosts, (ii) optimizing production pathways, and (iii) improving the

metabolic responses of organisms to environmental stresses.

Mathematical models and different computational techniques described in this thesis
are the essential parts of a design-build-test-analyse strain engineering workflow [67]
(Figure 6.1). This flow includes following steps: (i) design (pathway design, identification
of a suitable host, yield estimation, identification of the precursors and alternative
routes for the production of the target molecule, building a kinetic model), (ii) synthesis
(pathway expression in a host, design of the novel enzymes, gene expression etc), (iii)
testing (lab-scale production, titers) and (iv) analysis (strain characterization). The
results from the analysis in step (iv) will be used to improve the model in step (i).
Comparison of the performance with the original design will lead towards novel
strategies for the production enhancement. This circle should be performed in an

iterative manner, until the desired strain performance is reached.
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Figure 6.1 Design-based strain engineering workflow
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