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Abstract
The penetration of stochastic renewable generation in modern power systems requires to

reconsider conventional practices to ensure the reliable operation of the electrical network.

Decentralized control schemes for distributed energy resources (DERs) have gained attention

to support the grid operation. In order to cope with the uncertainties of the DERs, predictive

schemes that leverage on forecast of renewable generation recently came into prominence.

The period of the control action typically depends on the availability of the reserve in the grid.

For the case of microgrids, their limited physical extension and the lack of spatial smoothing

imply fast power fluctuations and the necessity of coupling energy management strategies

with real-time control. Among the DERs, small-scale photovoltaic (PV) systems are expected

to represent most of the future available capacity, and consequently, solar resource assessment

and power forecasting are of fundamental importance.

This thesis focuses on developing forecasting methods and generation models to support

the integration of photovoltaic systems in microgrids, considering short-term temporal hori-

zons (below one hour) and fine spatial resolution (single site installations). In particular,

we aim at computing probabilistic prediction intervals (PIs), i.e., we include information

accounting for the intrinsic uncertainty of the prediction. In this respect, nonparametric

tools to deliver PIs from sub-second to intra-hour forecasting horizons are proposed and

benchmarked. They forecast the AC power and/or the global horizontal irradiance (GHI) by

extracting selected endogenous influential variables from historical time-series. The meth-

ods are shown to outperform available state-of-the-art techniques and are able to capture

the fastest fluctuations of small-scale PV plants. Then, we investigate how the inclusion of

features from ground all-sky images can be used to improve time-series-based forecasting

tools, thanks to identifying clouds movement. In this respect, we define a toolchain that

allows predicting the cloud cover of the sun disk, through image processing and cloud motion

identification. Furthermore, a methodology to estimate the irradiance from all-sky images is

proposed, investigating the possibility of using an all-sky camera as an irradiance sensor. Next,

we consider the problem of having power measurements that are corrupted by exogenous

control actions (e.g. curtailment) and, therefore, not representative of the true potential of the

PV plant. We propose a model-based strategy to reconstruct the maximum power production

of a PV power plant thanks to integrating measurements of the PV cell temperature, system

DC voltage, and current. The strategy can improve time-series-based direct power forecasting

techniques when the production of the PV system is curtailed and thus the measured power

does not correspond to the maximum available. The proposed methods to model and forecast
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the PV generation are then integrated into a single chain that allows delivering power PIs that

are able to account for the overall uncertainty of a PV system at a predefined confidence level.

In the last part of the thesis, the proposed methods are experimentally validated in a real

microgrid by considering possible applications in modern power systems. First, we show how

the stochastic behaviour of a PV plant can be accounted in a control framework specifically

designed for the real-time control of microgrids. Then, we focus on an energy management

problem and we discuss how PV plants can be used as flexible resources to track a specific

dispatch plan set the day before operation.

Keywords— Microgrids, Photovoltaics, Solar forecasting, Irradiance estimation, Prediction in-

tervals, Stochastic resources, Predictive algorithms, All-sky imager, Machine learning, Artificial

intelligence.
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Résumé
La pénétration toujours croissante des ressources énergétiques distribuées (REDs) dans les

systèmes électriques modernes oblige à reconsidérer les pratiques conventionnelles pour

assurer le fonctionnement fiable des réseaux électriques. En effet, afin de faire face aux incerti-

tudes liées aux REDs, caractérisé par une production stochastique, les schémas de contrôle

prédictif décentralisé ont récemment pris de l’importance. Ces schémas s’appuyant sur les

prévisions de consommation et de production d’énergie renouvelable. La durée de l’action

de contrôle dépend généralement de la disponibilité de la réserve de production dans un

réseau électrique donné. Dans le cas des micro-réseaux, leur extension physique limitée et

l’absence de lissage spatial impliquent des fluctuations de puissance rapides et la nécessité

de coupler des stratégies de gestion de l’énergie au contrôle en temps réel. Parmi les REDs,

les systèmes photovoltaïques (PV) à petite échelle devraient représenter la majeure partie

de la capacité de production future disponible. Par conséquent, une évaluation précise des

ressources solaires et une prévision de leur puissance sont d’une importance fondamentale.

Cette thèse porte sur le développement de méthodes de prévision et de modèles de génération

pour soutenir l’intégration de systèmes photovoltaïques dans des micro-réseaux, en prenant

en compte des horizons temporels à court terme (moins d’une heure) et des horizons spatiaux

limités (installations à site unique). En particulier, nous cherchons à calculer des intervalles de

prédiction probabilistes (IP), c’est-à-dire que nous incluons des informations rendant compte

de l’incertitude intrinsèque de la prédiction. À cet égard, des méthodes non paramétriques

permettant de fournir des IPs à des horizons de prévision inférieurs à la seconde ou à l’heure

sont d’abord proposés et comparés. Ils peuvent être utilisés pour prévoir les puissances en AC

et/ou le rayonnement horizontal global en extrayant certaines variables influentes endogènes

à partir de séries temporelles historiques. Il est démontré que les méthodes proposées sur-

passent les techniques de pointe disponibles et permettent de capturer les fluctuations les plus

rapides des installations photovoltaïques à petite échelle. Ensuite, nous étudions comment

l’intégration d’entités à partir d’images du ciel (prises par un sky imager orienté vers le haut

qui prend des photos hémisphériques) peut être utilisée pour améliorer les outils de prévision

basés sur des séries temporelles, grâce à l’identification du mouvement des nuages. À cet

égard, nous définissons une chaîne d’outils permettant de prédire la couverture nuageuse du

disque solaire, par le traitement de l’image et l’identification du mouvement des nuages. De

plus, une méthodologie pour estimer l’irradiance à partir d’images du ciel est proposée. Elle

permet d’étudier la possibilité d’utiliser le sky imager comme capteur d’irradiance. Ensuite,

nous examinons le problème des mesures de puissance qui sont corrompues par des actions
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de contrôle exogènes (par exemple, des interruptions momentanées) et qui ne sont donc

pas représentatives du potentiel réel de l’installation photovoltaïque. Nous proposons une

stratégie basée sur un modèle visant à reconstruire la production maximale d’énergie d’une

centrale photovoltaïque grâce à l’intégration des mesures de la température de la cellule

photovoltaïque, de la tension continue du système et du courant continu. La stratégie peut

améliorer les techniques de prévision directe de la puissance basées sur des séries temporelles

lorsque la production du système photovoltaïque est réduite et que la puissance mesurée

ne correspond au maximum disponible. Les méthodes proposées pour modéliser et prévoir

la production photovoltaïque sont ensuite intégrées dans une chaîne unique permettant de

fournir des IPs de puissance capables de prendre en compte l’incertitude globale d’un système

photovoltaïque à un niveau de confiance prédéfini.

Dans la dernière partie de la thèse, les méthodes proposées sont validées expérimentalement

dans le cas d’un micro-réseau réel en tenant compte des applications possibles dans les

systèmes électriques modernes. Tout d’abord, nous montrons comment le comportement

stochastique d’une installation photovoltaïque peut être pris en compte dans un cadre de

contrôle spécialement conçu pour celui en temps réel des micro-réseaux. Ensuite, nous nous

concentrons sur un problème de gestion de l’énergie et discutons de la façon dont les centrales

photovoltaïques peuvent être utilisées comme ressources flexibles pour suivre un dispatch

plan spécifique défini la veille de l’exercice d’exploitation.

Mots clefs— Micro-réseau, Photovoltaïques, Prédiction solaire, Estimation d’irradiance, Pré-

diction probabilistes, Ressources stochastiques, Algorithmes prédictifs, Sky-imager, Apprentis-

sage automatique, Intelligence artificielle.

x



Contents
Acknowledgements v

Abstract (English/Français) vii

List of figures xiv

List of tables xviii

Introduction 1

1 Inclusion of Stochastic Resources into Predictive Control Frameworks 5

1.1 Chapter Highlights and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Active Distribution Network and Microgrid: Main Definitions . . . . . . . . . . . 5

1.3 Active Distribution Network and Microgrid: Control . . . . . . . . . . . . . . . . 7

1.3.1 Traditional Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 Predictive Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.3 Inclusion of Uncertainties into Predictive Control . . . . . . . . . . . . . . 8

1.4 Modelling of Photovoltaic Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Solar Resource Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 Solar Forecast: Definitions and Classification of the Methods . . . . . . . . . . . 17

1.6.1 Probabilistic Forecast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Direct Power Forecast of Photovoltaic Generation via Time-Series Analysis 21

2.1 Chapter Highlights and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Ultra-Short-Term Prediction Intervals of Photovoltaic AC Active Power . . . . . 22

2.2.1 Experimental Setup and Observed Power Fluctuations . . . . . . . . . . . 22

2.2.2 Experimentally Observed Correlations . . . . . . . . . . . . . . . . . . . . 22

2.2.3 Algorithm I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.4 Algorithm II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.2 Error Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.3 Reliability of the PIs Delivered by the eDIP . . . . . . . . . . . . . . . . . . 29

2.3.4 Independence of the Point Forecast Method . . . . . . . . . . . . . . . . . 29

2.3.5 Comparison with Benchmark Methods for PI Computation . . . . . . . . 31

xi



Contents

2.3.6 Comparison between Algorithm I and II . . . . . . . . . . . . . . . . . . . 32

2.3.7 Deployment into an Industrial Hardware Platform . . . . . . . . . . . . . 33

2.4 Chapter Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Solar Irradiance Forecast via Time-Series 35

3.1 Chapter Highlights and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Clear-sky Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Influential Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Clustering of the Training set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Prediction Intervals Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Selection of the Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6.1 A-posteriori Selection of k with Exhaustive Search (ES) . . . . . . . . . . . 40

3.6.2 A-priori Selection of k with Silhouette Analysis (SA) . . . . . . . . . . . . 40

3.7 Algorithms Time Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.8 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.8.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.8.2 Data Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.9 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.9.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.9.2 Clear-sky index and GHI Time-series Comparison . . . . . . . . . . . . . 44

3.9.3 Parameters Selection and Sensitivity Analysis . . . . . . . . . . . . . . . . 45

3.9.4 Ultra-short-term Forecasting: Performance Evaluation . . . . . . . . . . 48

3.9.5 Short-term Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.9.6 From Ultra-short to Short-Term Forecasts . . . . . . . . . . . . . . . . . . 53

3.9.7 Reliability Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.9.8 Execution Time Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.10 Chapter Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Solar Irradiance Forecast and Estimation via All-sky Camera 59

4.1 Chapter Highlights and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Forecasting Toolchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Image Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Image Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Cloud Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5.1 Proposed Method for Cloud Segmentation based on the IBR . . . . . . . 63

4.5.2 Segmentation Results: a Comparison of State-of-the-art Methods . . . . 64

4.6 Cloud Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6.1 Local Cloud Cover Computation . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6.2 Results on Cloud Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.7 Improvement of Time-series-based Forecasting . . . . . . . . . . . . . . . . . . . 69

4.8 All-sky-camera for GHI Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.8.1 ASI-based GHI Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.8.2 Satellite-based ANN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xii



Contents

4.8.3 Heliosat-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.8.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.8.5 Computational Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.8.6 Extension to Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.9 Chapter Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Indirect Power Forecast of PV generation: from Irradiance to DC Power 93

5.1 Chapter Highlights and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Introduction to DC Maximum Power Computation . . . . . . . . . . . . . . . . . 94

5.3 PV Plant Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Estimators of the Solar Irradiance . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4.1 Analytical Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4.2 Immersion and Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4.3 Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5 Maximum Power Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.6 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.7.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.7.2 Maximum Power Estimation in non-MPPT Conditions . . . . . . . . . . . 104

5.7.3 Maximum Power Estimation in MPPT Conditions . . . . . . . . . . . . . . 106

5.7.4 Robustness Against Measurements Noise . . . . . . . . . . . . . . . . . . . 106

5.8 Improvement of Data-driven Forecasting Methods . . . . . . . . . . . . . . . . . 109

5.9 Chapter Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Uncertainty Assessment of the Output Power of Grid-Connected PV Plants 113

6.1 Chapter Highlights and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.4.2 Models Parameters: Off-line Assessment . . . . . . . . . . . . . . . . . . . 119

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.5.1 Maximum Available Power Uncertainty Assessment . . . . . . . . . . . . 120

6.5.2 Setpoint Tracking Uncertainty Assessment . . . . . . . . . . . . . . . . . . 122

6.6 Chapter Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7 PV Modelling and Short-term Forecast: Applications 127

7.1 Chapter Highlights and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.2 The Commelec Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.2.1 Uncontrollable PV Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.2.2 Controllable PV Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.2.3 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.2.4 Microgrid Real-Time Dispatchability . . . . . . . . . . . . . . . . . . . . . 135

xiii



Contents

7.2.5 Line Congestion Management using PV Curtailment . . . . . . . . . . . . 137

7.3 An ADMM-based Coordination and Control Strategy for PV and Storage to Dis-

patch Stochastic Prosumers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.4 Chapter Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8 Conclusions and Future Work 147

8.1 Main Conclusions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A Appendix A 151

B Appendix B 153

B.1 Transposition Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

B.2 Results on DC Maximum Power Estimation from Different Sensors . . . . . . . 154

Bibliography 171

Curriculum Vitae 173

xiv



List of Figures
1.1 Solar angles, [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Solar radiation components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Apogee All-Season Heated Pyranometer. . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 PV cell characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Circuital model of an ideal PV cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6 Circuital model of real PV cell including the series and parallel resistances. . . . 13

1.7 PV Converter Efficiency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.8 Irradiance and AC power variations during a partly cloudy day in July 2017,

registered for a 10 kW rooftop PV installation at EPFL. . . . . . . . . . . . . . . . 16

1.9 GHI and aggregated power profile (load and PV production) as a function of the

UTC Time, registred at the EPFL campus on the 15th of May 2016. . . . . . . . . 17

1.10 Forecasting techniques at different spatial/temporal scales, from [2]. . . . . . . 18

1.11 Statistical distribution of the persistent point forecast error. . . . . . . . . . . . . 20

2.1 PV AC active power measured between August and September 2015 (30 days). . 23

2.2 Example of measured PV variations: AC active power and its time derivative.

Time derivatives are calculated for a time horizon of 500 ms. . . . . . . . . . . . 23

2.3 2.5%-97.5% quantile intervals of the error caused by the point forecast at t +1

for different ranges of the AC power time derivative at t . Time horizon=250 ms. 24

2.4 2.5%-97.5% quantile intervals of the error caused by the point forecast at t +1

for different ranges of the AC power time derivative at t . Measurements are

clustered in three groups based on the AC active power value. Time horizon=250

ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Reliability Diagram for the eDIP. The observed confidence level (measured as

PICP) is close to the ideal case (1:1 line) . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Box plot of the normalized interval width. 30 days of power data are considered

for a time horizon of 250 ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 PIs (yellow shading) and AC active power measurements (black dots) are plotted

for the two algorithms and for high AC power derivative. . . . . . . . . . . . . . . 34

3.1 Example of k-means clustering obtained for k = 5. The x and y axis represent

the normalized clear-sky index average and variability, respectively. The black

marker signs the centroids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

xv



List of Figures

3.2 CWC as a function of the time horizon. Comparison between the use of the GHI

time-series (original) and the clear-sky index one (normalized). . . . . . . . . . 44

3.3 CWC as a function of n for different forecast horizons. N is equal to 30 days. k is

equal to 5 for cases (a)-(c) and equal to 30 for case (d)-(f). . . . . . . . . . . . . . 45

3.4 Number of clusters k as a function of the length of the training dataset. The

Summer dataset is selected for the analysis. The dashed lines refer to the value

of k corresponding to maximum performance for Method A and B, respectively.

It is calculated a-posteriori by applying the ES. The solid line refers to the value

of k from the SA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Number of cluster k as a function of the length of the training dataset. The

Autumn dataset is selected for the analysis. . . . . . . . . . . . . . . . . . . . . . 47

3.6 Number of cluster k as a function of the length of the training dataset. The

Winter dataset is selected for the analysis. . . . . . . . . . . . . . . . . . . . . . . 48

3.7 CWC as a function of the number of training days for 500 ms time horizon. CWC

is shown in logarithmic scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.8 CWC as a function of the number of training days for 1 min time horizon. CWC

is shown in logarithmic scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.9 CWC as a function of the number of training days for 5 min time horizon. CWC

is shown in logarithmic scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.10 PICP [%] and PINAW [%] are shown for the Summer, Autumn, and Winter periods

and different target confidence levels α. . . . . . . . . . . . . . . . . . . . . . . . . 54

3.11 PIs and realizations are shown for different forecast horizons considering day-

light hours, α= 99% and Method B is applied. Two days with different weather

conditions are selected from the Winter period. . . . . . . . . . . . . . . . . . . . 56

3.12 PIs and realizations are shown for 5 minutes time horizon and different target

confidence levels, represented by different levels of shadings for the same data

of Fig. 3.11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.13 Reliability Diagrams for the three periods and forecast horizons. . . . . . . . . . 58

4.1 Process of GHI forecast with all-sky images. . . . . . . . . . . . . . . . . . . . . . 60

4.2 Basler all-sky camera installed on the rooftop PV plant at the EPFL DESL laboratory. 61

4.3 The original all-sky image (left) and pre-processed all-sky image (right) are

shown. Fig. 4.3b is undistorted and cleaned of the horizon features, and the sun

location is denoted by the blue disk. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Example of segmentation using the IBR method. . . . . . . . . . . . . . . . . . . 66

4.5 Example of the forecasted cloud map procedure. . . . . . . . . . . . . . . . . . . 68

4.6 PINAW of the GHI prediction for different forecast horizons. . . . . . . . . . . . 70

4.7 Outline of the proposed method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.8 Percentage of variance that can be explained by each principal component alone

(bat plot, left axis) and its cumulative sum (blue curve, right axis). . . . . . . . . 83

4.9 Estimated vs Measured clear-sky index for the ASIs-based estimation (left plots)

and the Heliosat-2 (right plots). The red line is the 1:1 line. . . . . . . . . . . . . 85

xvi



List of Figures

4.10 Probability density of the GHI estimation error, defined as the difference between

the estimation and the measurement. The plot refers to the whole testing dataset

(April, July, September, and December) and to 1 min time resolution. The y-axis

is in logarithmic scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.11 ASIs-based and the H-2 GHI estimations along with measurements from the

pyranometer for a cloud-free and a partly-cloudy day. . . . . . . . . . . . . . . . 87

4.12 Moving training and increasing training (blue bar) along a period of 30 days; the

last 5 days are used as testing (red bar). . . . . . . . . . . . . . . . . . . . . . . . . 88

4.13 nRMSE is calculated on a fixed testing set of 5 days in July and for a changing

training set. It is possible to observe that performance deteriorates when the

time period between the two sets (training/testing) increases. . . . . . . . . . . 88

4.14 puRMSE as a function of the forecast horizon. The proposed ASIs-based forecast

is benchmarked against the persistent method. . . . . . . . . . . . . . . . . . . . 90

5.1 DC Power estimations. In the left case the irradiance is measured while in the

right case it is estimated using an inverse model of the PV plant. Then the

irradiance and the temperature are given as input to a PV model to estimate the

PV maximum power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Example of measured power (star) and maximum power (dot) shown for one PV

module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 On the left plot the AC power of the PV plant is curtailed from index 200 to index

380. On the right the irradiance profile is plotted to show that the measured

power and the solar irradiance are not correlated when curtailment happens. . 95

5.4 The adopted five parameter circuit model of a PV cell. . . . . . . . . . . . . . . . 97

5.5 PV installation at the EPFL laboratory (GPS coordinates 46.52-N, 6.56-E). The

strings indicated with blue color are connected to C1 and the strings indicated

with red color are connected to C2. The white cross indicates the panel where

the temperature sensor and the pyranometer are installed. . . . . . . . . . . . . 103

5.6 Maximum power (Ground Truth) and curtailed power (Pdc) are shown. Measure-

ments come from two identical converters (same technology) that are working

under equivalent conditions but different modes (i.e. MPPT for C2 and non-

MPPT/curtailed for C1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.7 Comparison between the ground truth maximum power and the reconstructed

maximum power using the analytical, the EKF, and the I&I estimators. . . . . . 105

5.8 Comparison between the ground truth maximum power, the estimation using

the analytical formulation and the one starting from the irradiance sensed by a

pyranometer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.9 The FFT single-sided amplitude spectrum of the estimated and measured irradi-

ances is shown as a function of the frequency in a semilogarithmic scale in Fig.

5.9a. The same spectrum is shown for the estimated and ground truth maximum

power values in Fig. 5.9b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.10 Noise is increased on the DC current. . . . . . . . . . . . . . . . . . . . . . . . . . 109

xvii



List of Figures

5.11 Noise is increased on the DC voltage. . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.12 Noise is increased on the measured cell temperature. . . . . . . . . . . . . . . . . 110

5.13 3 days are shown from the testing set. The measured power of C1, shown with

the dashed line, is curtailed during the first two days. The solid black line

represents the maximum available DC power, measured from C2. The red line is

the reconstructed maximum power using the I&I estimator. . . . . . . . . . . . . 111

6.1 Problem context. We consider a generic PV plant connected to the grid. The

resource is equipped with an agent that can communicate with a generic grid

controller. The dashed lines delineate exogeneous elements to the resource. . 114

6.2 Detailed view of the PV system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3 Maximum Available Power Estimator. The AC maximum power value can be

reconstructed using the PV and converter model. The inputs are the measured

DC voltage and current (v , i ), and the cell temperature θ. . . . . . . . . . . . . . 116

6.4 On-line modelling chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.5 The AC power, estimated using the converter model described in Section 6.4.1,

is compared with the measured AC power. . . . . . . . . . . . . . . . . . . . . . . 118

6.6 Comparison of the forecast bounds, model bounds, and realizations. One day of

active power generation is shown for the considered 13 kWp plant. . . . . . . . 123

6.7 Per unit change of the DC maximum power estimation with respect to the per

unit change of the input parameter. The base unit quantities of the DC maximum

power and of the parameters are those originally obtained from the model in [3]. 124

6.8 Setpoints Tracking Uncertainty on Active Power. . . . . . . . . . . . . . . . . . . . 125

7.1 Schematic of the Commelec Structure, as given in [4]. . . . . . . . . . . . . . . . 128

7.2 Structure of the software deployed in a microcontroller for each RA. . . . . . . . 130

7.3 Representation of the advertisement sent by an UPVA. . . . . . . . . . . . . . . . 131

7.4 PV system Power Flexibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.5 Examples of Belief Functions. The subscripts represent three different possible

setpoints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.6 Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.7 Microgrid Overall Architecture, [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.8 Real-Time Dispatchability using PV as source of flexibility. . . . . . . . . . . . . . 137

7.9 Line Congestion Management using PV as source of flexibility. . . . . . . . . . . 138

7.10 The EPFL’s experimental setup used for the validation. . . . . . . . . . . . . . . . 139

7.11 Flow chart showing real-time operation during 24 hours. The index i denotes

the rolling current 5 minute interval. . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.12 Operation of the dispatchable feeder with ADMM strategy on 17 September 2017.145

7.13 SOC evolution with and without ADMM. The former is experimental, whereas

the latter is obtained by playing back into simulations experimental data. With

ADMM, SOC constraints are respected, whereas they are not without ADMM. . 146

B.1 Probability density of the pyranometer, ASIs and H-2 DC power estimation errors.155

xviii



List of Tables
2.1 Performance comparison: absolute and relative error. . . . . . . . . . . . . . . . 29

2.2 Performance of the eDIP coupled with the different point forecast methods. . . 30

2.3 Performance comparison of different PIs computation methods. . . . . . . . . . 31

2.4 Performance comparison between Algorithm I and II. . . . . . . . . . . . . . . . 33

2.5 Performance of Algorithm II for time horizon of 500 ms and different discretiza-

tions of the AC active power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Percentage of periods with high irradiance volatility. . . . . . . . . . . . . . . . . 43

3.3 CWC [%] for 500 ms, α=95%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 PICP-PINAW-CWC [%] for a time horizon of 500 ms, α=95%. . . . . . . . . . . . 51

3.5 PICP-PINAW-CWC [%].Performance comparison of the proposed Method B with

the Dynamic Interval Predictor. α=95%. . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 CWC [%] for 1 min, α=95%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.7 CWC [%] for 5 min, α=95%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.8 PICP-PINAW-CWC [%] for a time horizon of 1 min, α=95%. . . . . . . . . . . . . 53

3.9 PICP-PINAW-CWC [%] for a time horizon of 5 min, α=95%. . . . . . . . . . . . . 53

3.10 PINAW [%] is shown for the two days of Fig. 3.11. . . . . . . . . . . . . . . . . . . 55

4.1 Segmentation parameter setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Precision of several segmentation methods. . . . . . . . . . . . . . . . . . . . . . 66

4.3 Comparison on cloud motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 PICP (%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 PINAW (%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 Characterization of the datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.7 Data upsampling/downsampling methods. . . . . . . . . . . . . . . . . . . . . . 80

4.8 Extracted Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.9 GHI Estimations Comparison for 15 days in April. . . . . . . . . . . . . . . . . . . 82

4.10 GHI Estimations Comparison for 15 days in July. . . . . . . . . . . . . . . . . . . 84

4.11 GHI Estimations Comparison for 15 days in September. . . . . . . . . . . . . . . 84

4.12 GHI Estimations Comparison for 15 days in December. . . . . . . . . . . . . . . 84

4.13 GHI estimations comparison for selected days at 1 min. . . . . . . . . . . . . . . 86

4.14 GHI estimations using the ASIs-based algorithm for July 2018. . . . . . . . . . . 89

xix



List of Tables

5.1 Performance for a clear-sky day/non-MPPT. . . . . . . . . . . . . . . . . . . . . . 106

5.2 Performance for a partly cloudy day/ non-MPPT. . . . . . . . . . . . . . . . . . . 106

5.3 Performance for a clear-sky day/MPPT. . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4 Performance for a partly cloudy day/MPPT. . . . . . . . . . . . . . . . . . . . . . 107

5.5 Standard Deviations (STD) of the Input Measurements . . . . . . . . . . . . . . . 109

5.6 Normalized Mean Absolute Error . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.1 Converter Model Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2 Coverage Probability-CP [%], for α= 95%. Results are shown from 100 ms to 5

min forecast horizon. Underlines refer to global CP lower than α. . . . . . . . . 121

6.3 Normalized Average Width-AW [%], for α= 95%. Results are shown from 100 ms

to 5 min forecast horizon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.1 Description of connected elements at GCP . . . . . . . . . . . . . . . . . . . . . . 142

7.2 PV generation, PV curtailments and SOC constraint violation. . . . . . . . . . . 144

7.3 Tracking error statistics without dispatch, with dispatch and no ADMM, and

dispatch + ADMM (kW). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

B.1 Estimations Comparison for 15 days in January. . . . . . . . . . . . . . . . . . . . 155

xx



Introduction

Motivation

The increasing proportion of distributed generation (DG) in the electrical grid requires redefin-

ing conventional practices to mitigate the impact of stochastic resources like photovoltaic

(PV) systems [6]. The main issues are related to the operational limits of the distribution grid,

in terms of quality of supply and line congestions, [7].

A paradigm increasingly advocated in the recent technical literature to cope with the variabil-

ity of stochastic generation is the development of robust and predictive control strategies.

They take advantage of the short-term forecast of renewable generation in order to plan ade-

quate counteractions to prevent or mitigate operational issues related to renewables’ power

fluctuations. Examples include the dispatchability of the distributed resources, achieving

self-consumption of locally generated electricity, and the short-term redispatching of con-

ventional generation units, e.g. [8, 9]. In this context, knowing the expected solar power and

its associated uncertainty is a fundamental aspect, [10]. The main challenges of predicting

the solar energy output are related to its volatile characteristics and the temporal and spatial

dependencies of the irradiation patterns, [11]. Indeed, the PV output has both a deterministic

and a stochastic component. The deterministic component depends on the sun position and

can be easily calculated. The stochastic component depends on the cloud shading effects and

represents the main source of uncertainty. In particular, for localized power plants, cloud-

induced power dynamics can be extremely high, with fluctuations at sub-second time-scale

[12]. Since conventional solar forecasting methods, like those based on satellites and numeri-

cal weather predictions, lack of the spatial and temporal resolution required by modern power

system applications to cope with these fast dynamics, new short-term forecasting methods

based on local monitoring are required, [2]. These methods generally rely on analytic of histor-

ical time-series and are based on machine learning and statistical algorithms, [13]. The inputs

are diverse: local measurements of the solar irradiance and temperature, ground sky-images,

or electrical measurements of the PV plant like currents and voltages, e.g. [14]. Since the solar

power can be curtailed, the real-time direct measurements of the power might not reflect

the true potential of the PV system and therefore physical models of the plant should also be

integrated into the forecasting chain.

There is a general gap in the literature about methodologies able to quantify the overall
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uncertainty of a PV plant operation at very short-term and low aggregation level. In this

context, the thesis provides and benchmarks different methods to predict the power output of

a PV plant at short-term horizons (from sub-second to several minutes). The forecasting is

provided in terms of a prediction interval (PI) which is the interval where the future observation

is expected to fall, with a given probability. Accounting for the uncertainty of the prediction

is important since it allows defining robust control policies. The developed methods are

integrated into control frameworks operating in experimental testbeds where photovoltaic

plants are able to provide flexibility to the grid in coordination with other resources, e.g.

battery storage systems.

Thesis Outline

The thesis is organized as follows:

Chapter 1 summarizes the main challenges associated with the integration of renewable

resources into the electrical grid and introduces some main concepts, e.g., active distribution

network (ADN) and microgrid. It describes recently proposed predictive-based approaches

for microgrids control and presents the state-of-the-art on solar generation modelling and

forecasting.

Chapter 2 focuses on the direct AC active power forecast of small-scale photovoltaic (PV)

plants for sub-second time horizons. A nonparametric method for irradiance forecast, called

Dynamic Interval Predictor (DIP) originally proposed in [12], is extended to compute predic-

tion intervals for PV AC active power from 100 ms up to 500 ms, by considering influential

variables other than the derivative of the irradiance.

Chapter 3 deals with global horizontal irradiance (GHI) forecasting based on historical time-

series. It describes a nonparametric tool for computing short-term PIs of the GHI using

clustering of historical observations of the clear-sky index. The main novelty of the proposed

method is the ability to deliver PIs from sub-second (500 ms) to intra-hour (5 min) forecasting

horizons. Results are presented by comparing the proposed method with state-of-the-art

prediction models.

Chapter 4 investigates the use of an all-sky camera (installed at ground level) to infer cloud

motion and to estimated the GHI value. Image processing, feature selection, and machine

learning-based methods are combined and benchmarked at this scope to provide both proba-

bilistic and point forecast of the GHI.

Chapter 5 proposes model-based methods to reconstruct the maximum power of a PV plant

starting from measurements of the DC voltage, current, and temperature. The estimation per-

formance is evaluated by using measurements from an experimental setup and benchmarked

against estimations from a GHI sensor (pyranometer).

Chapter 6 discusses a gray-box method to assess the overall flexibility and associated uncer-
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tainties of a small-scale PV plant. The proposed method integrates a model for the PV modules,

a model for the converter, and a probabilistic short-term forecasting tool, i.e. it considers the

overall chain that allows obtaining the AC maximum power. For different forecast horizons

and for different levels of curtailed energy, we identify which sub-model is the most critical in

terms of uncertainty.

Chapter 7 provides application examples of the methods presented in the previous chapters.

In particular, the importance of knowing the future behavior of a PV plant is demonstrated,

by considering the real-time control of a low voltage microgrid, and an energy management

problem to track a specific dispatch plan set the day before operation.

Chapter 8 contains a summary of the main outcomes and future perspectives.

Contributions

A summary of the contributions of the thesis is the following:

• Development and experimental validation of a new probabilistic method to forecast

the short-term AC power availability of a small-scale PV plant in a direct way, namely

by simply learning from historical measurements of the AC power. It is shown how the

PV power can vary more than 20% in one second, this requiring the forecasting tool to

be computationally efficient. It is discussed how direct power forecasting methods can

encounter some limitations when the power measurements are not representative of the

true potential of the PV plant (e.g., because of some curtailment control actions). The

importance of reconstructing the maximum power availability is quantified in terms of

improved performance of the learning process of a selected forecasting tool.

• Development and experimental validation of new probabilistic methods to estimate

and forecast the global horizontal irradiance (GHI) at short-term (from sub-second to

5-10 min). Machine learning-based models using different inputs are considered and

benchmarked: from pyranometers, electrical measurements of voltages and currents,

all-sky images, and satellites. The comparison is performed in terms of predicted

maximum power, i.e. also considering the uncertainty associated with the conversion

from the GHI to the AC power.

• Deployment of the prediction methods in embedded industrial systems to provide real-

time prediction intervals of the generation of monitored PV plants. The methods are

shown to be reliable (i.e., to guarantee a given coverage probability) and computation-

ally compliant with the fastest dynamics that characterize small-scale inertia-less power

systems (namely, sub-second time scale). An all-sky camera prototype has been devel-

oped. It makes use of machine learning and image processing techniques to provide

information on the cloud motion and improve the forecasting with respect to the sole

use of GHI measurements.
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• Application of the developed methods to provide PV flexibility when controlling a real-

scale test-bed microgrid and for the energy dispatching of an electrical feeder. The

added value coming from integrating information on the PV expected maximum power

is shown by controlling the PV power output of a PV roof installation.
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1 Inclusion of Stochastic Resources into
Predictive Control Frameworks

1.1 Chapter Highlights and Summary

In this Chapter, we introduce the main topics and define the principal concepts of the thesis,

and we give an overview of the current literature.

We first define the concepts of active distribution network (ADN) and microgrid and we

introduce the related challenges with a special insight on the control of stochastic resources.

Since the thesis focuses on the integration of photovoltaic (PV) into the electrical grid, we

then give an overview on how PV plants are generally modelled, from the single PV cell to the

whole system. Finally, an overview of the PV variability and power forecasting is presented,

also serving as an introduction to the following Chapter.

1.2 Active Distribution Network and Microgrid: Main Definitions

In the last two decades, distribution networks have evolved from passive networks (i.e. sup-

plying local loads) to active distribution networks. As defined by CIGRE, [15], "ADNs have

systems in place to control a combination of distributed energy resources (DERs), defined as

generators, loads, and storage. Distribution system operators (DSOs) have the possibility of

managing the electricity flows using a flexible network topology. DERs take some degree of

responsibility for system support, which will depend on a suitable regulatory environment and

connection agreement."

The integration of DERs is mainly driven by environmental factors, however their implemen-

tation is such that a large number of technical and regulatory issues need to be accounted for,

[16]. Technical issues are related to:

• Power quality: deviations in magnitude and frequency of the voltage and current wave-

forms from the specified ranges, creating problems for the customer. The basic types of

power quality disturbances are transients, over and under voltages, harmonic distortion,

voltage flickers, voltage sags and swells, electrical noise.
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• Stability: voltage and frequency are strongly coupled in a microgrid and therefore the

common classification that distinguishes between voltage instability and frequency

instability in common power systems is more difficult for microgrids. Stability issues

for microgrids should be divided into control system stability (electric machine and

converter stability) and power supply and balance stability (loss of a generation unit,

violation of DERs power limits, poor power sharing among multiple DERs, wrong selec-

tion of slack(s) resources, and/or involuntary no-fault load tripping). A review of the

main challenges related to the stability of a microgrid can be found in [17].

• Protection: a first problem is related to DERs location since they are distributed rather

than central, and therefore the short circuits might originate from directions that are not

considered in conventional protection schemes. A second consideration is that DERs are

connected to the grid via inverters, and the short circuit capacity of grids with inverters

is lower than that of grids with rotating machines of the same rating; furthermore,

the inverter short circuit current has a different time characteristic determined by the

inverter control scheme. These considerations lead to what is called protection blinding,

i.e. the grid contribution to the short-circuit current could be below the pick-up current

of the feeder relay. Third, the DER should be now able to provide short circuit capacity

before and after the fault and the Fault Ride Through (FRT) capability is of major concern.

A detailed description of the main issues related to protections can be found in [18].

Traditional regulations also need to be reviewed. In particular, distribution system operators

(DSOs) will have a crucial role, as they are expected to carry the main investment burden,

interact with transmission operators, and with the market players, see [19, 20].

In order to cope with the aforementioned technical issues, modern communication technolo-

gies and smart electronic devices are needed in ADNs, leading to what is called a smartgrid.

In this context, the concept of microgrid is defined, which is a group of DERs, including Re-

newable Energy Resources (RES) and Energy Storage Systems (ESS), and loads, that operate

together locally as a single controllable entity, [21]. The main advantage is that the microgrid

can disconnect itself from the main grid (islanding) when a power quality issue or a fault

occurs in the local grid, [22]. Furthermore, by locally controlling the available resources, a mi-

crogrid can facilitate the integration of stochastic resources by solving the technical problems

in a decentralized fashion, without requiring to refurbish the regional/national distribution

systems which would be more complex and expensive. Finally, when in grid-connected mode,

the microgrid can provide ancillary services to the main grid by dispatching the available

resources, [23].
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1.3 Active Distribution Network and Microgrid: Control

1.3.1 Traditional Control

The available literature summarizing practices for microgrid control (e.g [6, 24]) distinguishes

between three levels of control, similarly to the frequency control of bulk traditional power

systems: primary, secondary, and tertiary control. These levels differ for the speed of response

and the infrastructure requirements. The primary control is essential to provide independent

active and reactive power sharing controls for the DER, and features the fastest response

(second time-scale). The secondary control is based on a longer term energy management to

compensate for the voltage and frequency deviations caused by the operation of the primary

controls. Ultimately, the tertiary control manages the power flow between the microgrid

and the main grid and facilitates an economically optimal operation. In view of the chal-

lenges caused by the highly fluctuating DERs, we focus here on the primary control that

is conventionally based on droop control. It generally uses local measurements and local

control laws to directly control the DERs output. Droop-based methods are conventionally

used in power systems and are based on the relationship between active power/frequency

and reactive power/voltage to emulate the droops characteristics of synchronous generators,

[25, 26, 27, 28, 29, 30]. Synchronous machines and their well-known dynamics are progres-

sively substituted by power electronics-interfaced resources and the droop principle can be

integrated into power electronics interfaces between the sources and the microgrid, namely

voltage-source inverters (VSI). The main advantage of droop is that it is only based on local

measurements without any need of communication, this conferring flexibility. However, these

techniques have some main challenges:

• in a microgrid the interconnecting impedances are featured by a non-negligible resistive

component so that the real power is affected more by the voltage magnitude, and the

reactive power by phase angle differences. There are two main approaches to face this

problem. The first is to introduce virtual resistive impedances at the converter output

through closed-loop control as in [30]. This impedance modifies the output voltage

reference based on current feedback. The second technique is to decouple the voltage

and frequency droop controls by introducing current and voltage control scheme able

to compensate the effect of the line impedances (e.g. [26]). As an example, PV inverters

used to interface the resource to the grid, are generally used for droop-based voltage

regulation by controlling the reactive power injections [31]. However, since power

distribution networks are characterized by lines parameters with large R/X (ratio of the

components of their longitudinal impedances), there is generally the need of coupling

the reactive power control with active power curtailment (APC) strategies [32, 33, 34];

• distributed generation has generally an intermittent nature and does not contribute to

the system inertia. This implies the lack of an energy buffer and the electrical decoupling

of the resource to the grid. The lower the inertia, the more nervous is the grid frequency

in responding to abrupt changes in load and generation patterns. In this case, enhanced
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droop control strategies are proposed, based for example on mimicking the inertia of

conventional generation (fossil fuel-based) using storage systems, [35].

1.3.2 Predictive Control

The main alternative to conventional droop-based methods is the definition of predictive

control-oriented approaches that are capable of optimizing the microgrid operation by lever-

aging consumption and generation forecasting. The use of predictions of the future behaviour

of the system leads to a more performing exploitation of the available resources with respect to

conventional myopic strategies, thanks to the optimal management of the available resources.

The main drawback is that these methods generally rely on communication whose failure

might lead to suboptimal operating conditions.

Regarding the control architectures, we can define between two main approaches, i.e. cen-

tralized and decentralized. A centralized control architecture consists in a central controller

that, informed of the states of the available resources in the microgrid, determines an ap-

propriate dispatch according to selected objectives. The central controller can use either

on-line or off-line calculations to take decisions of the optimal operation. Examples of cen-

tralized approaches for scheduling the energy resources can be found in [36]. The Authors

propose a scheduling based on two stages: a day-ahead scheduler for the optimization of

distributed resources production during the following day and an intra-day scheduler that

every 15 min adjusts the scheduling in order to take into account the operation requirements

and constraints of the distribution network. In [4, 37] a new control framework based on

hierarchical agents is proposed to control a power grid. Each resource is equipped with a

resource agent (RA). A RA translates the internal state and constraints of its resource into

an abstract, device-independent format to a grid agent (GA), which controls a subsystem

consisting in the local electrical grid interconnecting a number of resources. On the contrary,

decentralized approaches intend to solve the problem in a way that decisions on the control

variables are taken locally. In the literature, decentralized secondary control is based on the

concept of Multi-Agent System (MAS). A MAS is a system composed of intelligent agents

that, provided with local information, interact with each other to reach several goals. State

estimation theory in power system can be integrated in a MAS. The use of multi-agent systems

to control a distributed smart grid in a simulated environment is described in [38] and [39].

1.3.3 Inclusion of Uncertainties into Predictive Control

In the above-described context, stochastic resources (mainly photovoltaic and wind) play a

major role, and accounting for uncertainties has become a challenge at all the different control

levels. In particular, the growth of photovoltaic has been exponential and its worldwide

cumulative capacity reached about 302 GW by the end of 2016, [40], with small-scale PV

systems playing a major role. For the case of microgrids, their limited geographical extension

joined with the capability to function autonomously determine the presence of very fast (sub-

seconds) power fluctuations and thus the need for very fast control actions. Furthermore, the
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scheduling and operation of microgrids also imply the need to account for their intermittent

behaviour on a longer time-scale (from minutes to day-ahead). For the above-mentioned

reasons, microgrids control is asked to deal with uncertainties at different time-scales.

Decision making under uncertainty is a well-known problem in modern control theory. One

method to deal with uncertainty is stochastic control. In stochastic control, uncertainties in the

observations are modelled with probability distribution functions (pdfs), [41]. Alternatively,

robust control methods try to bound the uncertainty rather than defining it with a distribution

function. Provided that the uncertain parameters are bounded, the control is said to be robust

if the results meet the control system requirements in all cases. Therefore, robust control

theory might be stated as a worst-case analysis method, [42]. Several control schemes have

been proposed in the literature to account for the stochastic nature of load and generation.

In [43] the scheduling problem of a building is considered where the objective function is

to minimize the overall cost of electricity and natural gas for a building operation over a

time horizon while satisfying the energy balance. The uncertainties are captured and their

impact is analyzed by the scenario tree method. Authors of [44] consider the load dispatch and

optimal reconfiguration of a microgrid, by also accounting for the stochasticity of renewable

resources using a forecasting tool based on support vector regression techniques. In [45], a

two-stage adaptive robust model for the unit commitment problem in the presence of nodal

injection uncertainty is proposed. Authors of [46] propose an energy management strategy

for grid-connected microgrid with renewable sources in order to minimize the net monetary

cost; a robust formulation is proposed accounting for the worst-case amount of harvested

renewable energy.

In this context, the necessity of modelling the PV resource variability and uncertainty in a

probabilistic fashion becomes of fundamental importance. The next paragraphs give an

introduction of how this can be achieved, by modelling and forecasting the solar irradiance

and the PV generation.

1.4 Modelling of Photovoltaic Plants

The main inputs to model a photovoltaic plant are weather information and solar irradiance

data. This last quantity is an instantaneous measurement of solar power over a given plane;

unless differently specified, in this work we refer to terrestrial irradiance, namely inside the

atmosphere. When the extraterrestrial solar radiation traverses the atmosphere, some photons

are scattered by interacting with the atmosphere, producing what is called diffuse irradiance

component. The global irradiance (I ) received by a horizontal surface includes both the beam

(or direct) component (B) and the diffuse one (D). For a horizontal surface is possible to write:

I = Bcos(θz )+D, (1.1)
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where θz is the solar zenith angle relative to an observer on the surface of the Earth. The

main solar angles used to describe the solar position are shown in Fig. 1.1 and are the solar

elevation (θel ), the azimuth (θA), and the zenith (θz ). When referring to a tilted surface, a

further irradiance component should be considered that is the one reflected from the ground

and is indicated with R. Thus, for tilted surfaces we can write:

I = Bcos(θz )+D +R. (1.2)

Fig. 1.2 shows possible components of the solar irradiance on different surfaces.

Figure 1.1 – Solar angles, [1].

Modelling PV systems generally includes the estimation of the irradiance on the tilted plane

(plane of array, POA). This implies the necessity of knowing at any time i) the sun position

and the ii) the orientation of the array. Furthermore, modelling the POA irradiance from the

global horizontal irradiance (GHI) involves two steps, namely the decomposition of GHI into

its direct and diffuse components and the transposition of these components to the POA of

the modules. Decomposition models are generally empirical and use the clear-sky index (that

is the ratio of the global horizontal irradiance and the theoretical clear-sky one), e.g. [47].

The most used transposition models are the Hay/Davies and the Perez models, [48, 49]. An

overview of the performance of the different transposition methods can be found in [50]. They

differ in the way they treat the diffuse component which is considered as the largest potential

source of error.

The irradiance on the PV panel surface can be monitored by installing specific instruments in

the proximity of the plant. Pyranometers are generally used to measure the GHI since they have
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Figure 1.2 – Solar radiation components.

a 180◦ field of view. They can also be used to measure the diffuse component, by blocking out

the beam radiation with a disk placed over the instrument. It is possible to distinguish between

two types of pyranometers. Thermopile pyranometers have a black surface that is heated by the

incident solar radiation. The resulting increase of temperature is measured via thermocouples

connected series-parallel to make a thermopile. Alternatively, solid-state silicon photodiodes

generate a photocurrent that is proportional to the incident flux. In general, photodiode

pyranometers are less accurate in presence of clouds but have a higher response time than

thermopile pyranometers. An example of a photodiode pyranometer is shown in Fig. 1.3.

Figure 1.3 – Apogee All-Season Heated Pyranometer.

Besides the irradiance, another main input for PV modelling is the cell temperature. The cell

temperature depends on the air temperature, wind speed, solar irradiance, and type of PV

module, [51]. The most common procedure to measure the cell temperature is to measure
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Figure 1.4 – PV cell characteristics.

the backside temperature of the module and assume that is equal to the cell one. In order to

consider the temperature difference between the rear surface of the module and the cell, an

offset can be estimated. E.g., the work in [52] proposes a difference of 3◦ for an irradiance of

1000 W/m2 that is then linearly scaled with the irradiance. Alternatively, the cell temperature

can be estimated from measured weather quantities using empirical models. For example, if

the irradiance I and the air temperature Tai r are known by measurements, it is possible to

approximate the cell temperature T as:

T = Tai r + NOCT−20

80
I (1.3)

where the Nominal Operating Cell Temperature (NOCT) is a parameter of the module and can

be generally found in the PV module datasheet.

The values of the irradiance and temperature define the operating current-voltage (i-v) curve

of a PV cell. The i-v characteristics of a generic PV cell are shown in Fig. 1.4, where different

colours refer to different irradiance and temperature values (Figures 1.4a and 1.4b, respec-

tively). In order to model the i-v curves (and so the behaviour of the panels), equivalent

circuit models can be used. The parameters of the models can be found by using datasheet

information or by fitting the available measurements. Fig. 1.5 shows the circuit for an ideal

PV cell. From the semiconductor theory, ip is the current generated by the incident light

and is proportional to the irradiance, and iD is the leakage current of the diode (represents

the voltage-dependent current lost to recombination), [53]. The governing equation is the

Shockley diode equation:

i = ip − iD

[
exp

(
vq

nr kT

)
−1

]
, (1.4)

where k, q are physical constants and stand for diode Boltzmann constant and electron charge
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respectively, and nr is the diode ideality factor. In order to account for the real behaviour

ip iD

Figure 1.5 – Circuital model of an ideal PV cell.

of a PV cell, shunt and series resistances are added, leading to the well-known one-diode

5-parameter model shown in Fig. 1.6.

ip iD RpiRp

Rs

i

v

Figure 1.6 – Circuital model of real PV cell including the series and parallel resistances.

The main equation in this case is:

i = ip +−v +Rs i

Rp
− iD

[
exp

(
q

v +Rs i

nr kT

)
−1

]
, (1.5)

where Rp andRs are the shunt and series resistance, respectively. The model is derived from

physical principles (e.g. [54, 3]). The series resistance considers the losses due to the current

flow resistance in the silicon material, in the electrodes, and in their contact. The shunt resis-

tance accounts for the leakage current in the p–n junction and depends on the temperature.

The single-diode model represents a good compromise between simplicity and accuracy

and is therefore the most adopted one. The model requires to compute the 5 parameters

Rs ,Rp , ip , iD ,nr . Normally they can be extracted from the equations solved at different operat-

ing points (open circuit, short circuit, maximum power point) and using information from the

PV module datasheet. Real measurements, if available, can also be used to fit the i-v curves;

however this requires to cover all the different operating conditions for a sufficient number of

irradiance and temperature combinations.

More complex models have been proposed in the literature to improve the single diode model.

For example the two-diode model allows accounting for recombination current losses which

is higher at low voltage, see [55]. A review of the possible models can be found in [56] while a

review on the parameter estimation of solar photovoltaic (PV) cells can be found in [57].

A PV module refers to a number of cells connected in series. Modules are connected in series

and in parallel to form an array. The PV model can be extended from cell to module and then
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to an entire plant by knowing how the elements are connected (series or parallel) as described

in [58]. This allows computing the DC power output of a PV plant when its operational point

on the i-v curve is identified. For a PV panel composed of np cells in parallel and ns in series,

Eq. 1.5 becomes:

i = ip np +−
v +Rs i ns

np

Rp
ns
np

− i +−iD np

[
exp

(
q

v +Rs i ns
np

nr kT ns

)
−1

]
. (1.6)

The last important step in modelling a PV plant is the conversion of the DC power into an AC

one, to account for the losses of the inverter. The inverter efficiency is the ratio of the usable

AC power and the input DC power, and it is mainly a function of the DC power and DC voltage.

Two main models are available in the literature to model the behaviour of PV inverters. The

Sandia model, [59], predicts the AC output power from DC input power and voltage while the

Driesse model, [60], estimates the power losses in the converter. Both the models are based

on empirical coefficients that need to be fitted using real measurements from the converter.

An example of the efficiency of a PV converter as a function of the AC power (in % of the rated

one) is shown in Fig. 1.7.
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Figure 1.7 – PV Converter Efficiency.

1.5 Solar Resource Variability

The variability of PV generation mostly depends on the irradiance that is impinging the PV

panels. Irradiance variability includes a deterministic component, that can be computed by

knowing the solar geometry, and a cloud-related variability component. In order to remove the

deterministic component, the clear-sky index is introduced. It is defined as the ratio between

the measured GHI, I , and the clear-sky irradiance at ground level, Ics (i.e., the irradiance that

would reach the ground in clear-sky conditions):
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K = I

Ics
. (1.7)

The clear-sky irradiance can be calculated using clear-sky models; a review of the available

methods can be found in [61]. The solar position and the extraterrestrial radiation are common

inputs to all the clear-sky models and can be calculated by knowing the site’s location (latitude

and longitude) and the local time; more sophisticated models also account for properties of

the atmosphere (e.g., aerosols, water vapour..).

Irradiance cloud-induced variability should be considered from both a spatial and temporal

perspective. As shown in [11], in a given location, the solar energy variability decreases when

the temporal integration increases. Furthermore, increasing the solar generation from a single

unit to a larger number of dispersed units also reduces the overall variability (this phenomenon

is known as smoothing effect). In order to understand the spatial and temporal effects on

variability, we first introduce the clear-sky index variability:

Clear-sky index variability =
√

Var[∆Kt ] (1.8)

where Var is the variance and ∆Kt = Kt −Kt−1, namely is the difference between adjacent

elements of the time series. Hoof and Perez, [62], estimate that for a fleet of N locations with

uncorrelated clear-sky index time-series, the fleet nominal variability is:

σ
f leet
t = σtp

N
(1.9)

where σt is the variability of a single plant. In other words, nearby plants, that are highly

correlated, exhibit the same variability of a single plant while dispersed plants, for which the

correlation of the time series is lower, shows a reduced variability (of a factor
p

N ). Therefore,

the key factor is to assess the correlation among the available PV plants. The correlation

is generally considered as a function of three factors: the distance between two locations,

the considered time scale, and the speed of the clouds. Authors of [63] shows that the zero

correlation threshold is 500 m, 1 km, 4 km and 10 km for fluctuation time scales of 20 s, 1 min, 5

min, and 15 min, respectively. This information can be used for planning PV installations such

that natural smoothing naturally occurs. For example, the same work considers dispersed solar

resource in a metropolitan area (40 × 40 km) and shows that the high frequency (20 s) variability

experienced by a single small system is reduced by a factor of 80 when considering the

entire metropolitan area. The variability reduction would become smaller as the considered

frequency increases: the metropolitan variability would be reduced by respectively 40, 10, and

4 for fluctuation time scales of 1, 5, and 15 min. In [64], the Authors show that the level of

variance of a 10 MWp plant is four times higher than that one of 1.1 MWp plants dispersed

across a 15 km area. In other words, resource spreading can reduce the issues at substation

level by reducing the variability of the aggregated power when considering an entire network.
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However, local transients at the single plant level still persist, and issues such as voltage

flickers and inverter tripping are not eliminated. There might be local installations that violate

the grid constraints, and therefore local monitoring is necessary to undertake appropriate

counteractions.

From a temporal perspective, short-term variability is to be accounted for small-scale PV

plants and decreases with the considered spatial footprint. For small and medium scale PV

plants (from meters to few kilometers) variations in the order of seconds and minutes can be

relevant and create issues (e.g. voltage violations). On the contrary, for large areas and regional

transmission, fluctuations above 15-30 min should instead be considered to guarantee the

grid balance between generation and consumption.

In the present work, we focus on localized PV plants and microgrids where natural mitigation

due to spatial smoothing does not always apply. In this context, short-term solar forecasting

and local solar assessment are extremely important to mitigate the operational issues caused

by fast power fluctuations. As an example, Figures 1.8a and 1.8b show the irradiance and AC

power and their derivatives measured on a 10 kW rooftop installation at EPFL during a day

characterized by high volatility. Irradiance fluctuations of 300 W/m2s are registered, meaning

a variation of 30% in one second. This reflects in a power fluctuation of almost 3 kW in one

second, for a PV plant with rated power of 10 kW. As a further example, Figures 1.9a and 1.9b

respectively show daytime global horizontal irradiance measurements (GHI, recorded at the

EPFL campus by using a pyranometer) and the power consumption of a group of five EPFL

buildings equipped with a 95 kWp PV-roof system. As visible, GHI variations (which varies up

to 85% in magnitude in less than two minutes) cause very steep fluctuations of the aggregated

power. The availability of high-quality short-term GHI forecast enables the possibility of taking

preemptive control actions and mitigating the effect of its fluctuations.
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Figure 1.8 – Irradiance and AC power variations during a partly cloudy day in July 2017,
registered for a 10 kW rooftop PV installation at EPFL.
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(a) Measured GHI (b) Aggregated Power Profile

Figure 1.9 – GHI and aggregated power profile (load and PV production) as a function of the
UTC Time, registred at the EPFL campus on the 15th of May 2016.

1.6 Solar Forecast: Definitions and Classification of the Methods

In this thesis, we refer to the term forecast horizon as the amount of time between the present

and the effective time of the prediction, always considering one-step-ahead forecast. The

time resolution refers instead to the sampling frequency of the time-series of reference. A vast

number of papers have been proposed to forecast the maximum PV power available from a PV

plant, in different perspectives.

A first classification distinguishes between direct and indirect models. In the case of direct

forecast, the PV output power is predicted directly using past data, e.g. by correlating historical

measurements (meteorological or electrical) with the PV power, e.g. [65]. On the contrary, in-

direct forecast refers to the case where the irradiance (and the temperature) are first predicted

and then they are given as input to a model of the PV plant to obtain the power value, e.g. [66].

On one side, direct forecast might be a more performing approach since it does not depend on

the PV plant modelling error. On the other side, the direct use of power measurements might

be incorrect when, due to disturbances or control actions (e.g. active power curtailment), the

measured power is not representative of the maximum availability of the plant and therefore

not correlated with the weather conditions.

A second classification is based on the temporal/spatial scale targeted by the forecasting

method. In general, the choice of the forecast method is strictly related to the target forecast

horizon and geographical scale, [10]. Fig. 1.10 shows the different techniques adopted for

different spatial resolutions and temporal horizons. Day-ahead regional irradiance forecasting

relies on satellite observations and numerical weather predictions (NWPs), e.g. [67]. Statistical

methods are generally applied from very short-term (second) to larger horizons (day-ahead)

and low spatial resolution (< 10 km). They refer to time-series-based approaches that are able
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Figure 1.10 – Forecasting techniques at different spatial/temporal scales, from [2].

to extract relations from past data to predict the future behaviour of the plant. In general,

the relation of interest is between the target variable (the PV power) and selected influential

variables, also called predictors. Most of these methods are based on machine learning

techniques, like artificial neural network (ANN) e.g. [68], and support vector machines (SVM)

e.g. [69]. The fast advancement in the field of machine learning has led to an increasing

number of available tools that, coupled with the promising performance, have made these

methods particularly appealing for practitioners in the solar forecasting field. The main

drawbacks are related to the need of a training set that has to be representative and reliable

(and thus based on high quality data), the computational efficiency, and the tuning of the set

of inputs required to be set before the training (also referred as hyperparameters). Satellites

and ground images represent a valid alternative or complementary information for short-term

forecast. The temporal and spatial resolutions of satellite-based estimations are generally

site specific and depend on the characteristics of the available fleet of geostationary satellites.

E.g., for Europe, Africa, and Indian Ocean, Meteosat-10 and 11 satellites provide real-time

imagery with 1-3 km spatial resolution, and 5-15 min temporal resolution. For Asia and the

Pacific region, Himawari-8 provides full disk scans with a spatial resolution in the range 0.5
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to 2 km and 5 min temporal resolution. Examples of short-term satellites-based forecast

can be found in [70, 71]. The use of all-sky cameras is a promising solution for intra-hour

forecast horizons, [14, 72]. Apart from cloud detection and motion, sky images contain

more information impacting the GHI prediction: examples are the cloud cover and the type

of clouds. This kind of information can be combined with machine learning methods to

compute the forecast, e.g. [73, 74]. Forecasting tools can also be classified based on the origin

of the inputs. Input data can be endogenous (meaning that they are based on current and/or

lagged time-series of the production of a PV plant), or exogenous (meaning that the inputs

come from other measurements like temperature, wind speed, sky images, neighboring PV

plants). A further classification concerns how the forecasting information is delivered: a first

kind (deterministic) considers only the point forecast while the second one (probabilistic)

is in form of prediction interval (PIs) and includes information accounting for the intrinsic

uncertainty of the prediction. As discussed above, it is more appropriate when dealing with

control and decision making in modern power systems, [75]. Regarding GHI point predictions,

the simplest forecast model is the persistent one, which is commonly used as a benchmark

for performance evaluation. It assumes that the GHI remains constant with the forecast

horizon. In general, most of the point forecast techniques are based on AI methods. A more

deterministic approach consists in detecting the position of the clouds, deducing clouds

motion and calculating the time when a cloud covers the sun, e.g. [14, 76]. Several works

address the problem of probabilistic forecast and propose PIs computation models. As detailed

in the next paragraph, PIs give a range of possible values in which the future realization is

expected to lie with a given confidence level α, [77]. Probabilistic solar power forecast is

proposed in [78, 79] where a set of likely predictions (i.e. an ensemble) is provided using

a historical set of variables and deterministic meteorological models. Authors of [78] use a

distance criterion to retrieve similar past forecasts, under the assumptions that their errors

are likely to be similar to the errors of the current forecast. These methods refer to 0-72

hours forecast horizons, considering hourly power data. In [80], a hybrid model is proposed,

integrating Support Vector Machine (SVM), ANN and sky imaging techniques to deliver real-

time PIs for direct normal irradiance (DNI) for 5, 10, 15, 20 minutes ahead. At each time step,

the computational time is less than 5 seconds. Another stochastic approach in [81] proposes

the design of a k-nearest neighbors (KNN) algorithm. The KNN algorithm is used to predict

the GHI and DNI and their uncertainty intervals, for time horizons from 5 to 30 minutes.

More recently, Authors of [82] proposed a data-driven method to construct GHI probability

densities for one hour-ahead predictions, using nonparametric bootstrap and a map of solar

position. The developed method has low computational complexity, requiring 0.56 seconds

on a personal computer. In [83], point forecasts are generated using AutoRegressive Moving

Average (ARIMA) and the associated PI is calculated using a Generalized AutoRegressive

Conditional Heteroskedasticity model (GARCH), considering a prediction horizon from 10

minutes to 6 hours. The use of recursive formulas, to update the model parameters in real-

time, allows reducing the computational complexity of the method. The next paragraph is

meant to give an insight on PIs since probabilistic forecast is mainly targeted in the thesis.
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1.6.1 Probabilistic Forecast

Let x1...xN+1 be a set of random variables, a prediction interval (PI) at level α is defined by the

upper and lower bounds
(
I ↓αN+1, I ↑αN+1

)
such that:

P
(
I ↓αN+1(x1...xN ) ≤ xN+1 ≤ I ↑αN+1(x1...xN )

)
≥α. (1.10)

For example, if the distribution is normal and with known parameters, a prediction interval at

a level α= 0.95 would be µ±1.96σ where µ and σ are the mean and the standard deviation.

However, there is some additional uncertainty since often the distribution is not known and

the parameters need to be estimated, [84]. In general, most of the literature focuses on having

a symmetric target distribution (e.g. the normal one) where the upper and lower bounds of the

PI are centered at the point forecast. However, when the hypothesis that the point prediction

errors follow a known distribution appears to be weak, an alternative solution is to develop

nonparametric approaches for estimating the PIs. Distribution-free approaches do not rely

on any assumption on the error-generating process, i.e. they are not based on a particular

model, [77]. This is the case for photovoltaic power where empirical analysis showed that the

distribution of the point errors does not generally follow a known distribution, [83, 85]. As an

example, Fig. 1.11 shows the statistical distribution of the persistent point forecast error on

the clear-sky index measured at EPFL, for 1 min ahead. We can see that the distribution of the

errors shows a peak around the mean and asymmetry. In order to avoid assumptions on the
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Figure 1.11 – Statistical distribution of the persistent point forecast error.

shape of predictive distributions, in this thesis nonparametric forecast methods are targeted.

The proposed methods are then benchmarked against models assuming a given distribution

of the point forecast error.
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2 Direct Power Forecast of Photovoltaic
Generation via Time-Series Analysis

2.1 Chapter Highlights and Summary

As mentioned in Chapter 1, direct power forecast of PV plants refers to methods that directly

calculate the power output of the plant without firstly predicting the irradiance. In this Chapter,

we focus on the direct AC active power forecast of small-scale photovoltaic (PV) plants for

sub-second time horizons. Indeed, for power distribution systems integrating distributed

PV plants, the volatility of the solar irradiance in time scales below a second can impact the

grid operation (e.g. [12]). These dynamics can involve high value of the time derivative of the

injected AC active power if the PV panels are coupled with inverters equipped with a Maximum

Power Point Tracking (MPPT) control capable to react with time scales similar to the solar

irradiance variations, e.g. [86].

This Chapter presents a method to compute prediction intervals (PIs) for PV AC active power

from 100 ms up to 500 ms (ultra-short-term) and relies on the content of [87]. The original

method, called Dynamic Interval Predictor (DIP), was first developed in [12] for sub-second

irradiance forecast and it is based on the experimental evidence that the error of a given

point forecast method is correlated with the irradiance time derivative. The DIP is here

extended. First, the method is applied to directly forecast the PV AC active power by only

using past AC power measurements and without relying on the irradiance measurements.

Second, we consider the absolute point forecast error instead of the relative one to quantify

the uncertainty of the prediction. For the sake of clarity, we name this extended version eDIP

(extended DIP). Furthermore, we consider two versions of the eDIP. In the first case (Algorithm

I) the explanatory variable expected to influence the prediction uncertainty is the derivative of

the PV AC active power as proposed in [12]. The the second case (Algorithm II) we consider

the value of the AC active power as a further explanatory variable that is expected to influence

the error caused by the point forecast.

In the results section, the two algorithms are compared against benchmark models that

assume instead a parametric distribution of the point forecast error and a reliability analysis

of the method is also proposed. Finally, we describe how the algorithm can be embedded into
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Chapter 2. Direct Power Forecast of Photovoltaic Generation via Time-Series Analysis

an industrial microcontroller to be adopted within a real-time control framework.

2.2 Ultra-Short-Term Prediction Intervals of Photovoltaic AC Active

Power

In this Section the experimental setup, the observed correlations, and the method are de-

scribed in details.

2.2.1 Experimental Setup and Observed Power Fluctuations

The experimental setup used for the validation of the proposed methodology is located at the

following GPS coordinates: 46.518◦N, 6.565◦E. The PV plant consists of 255 W Polycrystalline

modules connected to a 10 kW solar converter as follows: 2 branches with 14 modules each

and one branch with 11 modules. In each branch the modules are connected in series. The

DC/AC three-phase converter is equipped with DC/DC converters implementing the max-

imum power point tracking (MPPT). Three LEM CV 3-100 Voltage Transducers are used to

measure the AC voltages while three LEM LF 205-S Current Transducers are used as AC current

sensors. The output of these sensors is sampled at 50 kHz and AC phasors extraction is used to

estimate the PV output power with a pace of 50 ms using the algorithm in [88]. Three different

downsampling times are considered to generate series of the PV AC active power: 100 ms, 250

ms, and 500 ms. The time-series are obtained by considering instantaneous values (simple

downsample by decimation). In what follows data collected between August and September

2015 are used as a validation set considering a total period of one month. Only hours with

daylight are included in the evaluation. The whole time-series is shown in Fig. 2.1. Significant

AC active power fluctuations are observed at sub-second time scale for our PV installation.

In order to provide an example, Fig. 2.2 shows the time evolution of the AC active power

along with its time derivative for a time window of 150 s, considering a period of high solar

variability. For our installation, the observed fluctuations can reach time derivatives of 2 kW/s.

Considering that our PV plant has a rated power of 10 kW, this represents a fluctuation of

20% of the PV capacity in about one second. In this respect, we underline that the PV power

fluctuation strongly depends on the variation of the solar irradiance and on the action of the

MPPT controller adopted by the PV converter.

2.2.2 Experimentally Observed Correlations

Similarly to [12], we show here the experimental correlation between the PV AC active power,

its derivative, and the errors caused by a given point forecast method. As mentioned, the

method is based on the investigation of the correlation between the error of the point forecast

computation et+∆t at t +∆t and the derivative of AC power Ṗt at t , where ∆t is the considered
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Figure 2.1 – PV AC active power measured between August and September 2015 (30 days).

Time [s]
0 50 100 150

A
C

 P
ow

er
 [W

]

2000

4000

6000

8000

10000

A
C

 P
ow

er
 d

er
iv

at
iv

e 
[W

/s
]

-3000

-1000

1000

3000

5000

AC Power
AC Power derivative

Figure 2.2 – Example of measured PV variations: AC active power and its time derivative. Time
derivatives are calculated for a time horizon of 500 ms.
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forecast horizon. The error et+∆t is defined as:

et+∆t = Pt+∆t − P̂t+∆t , (2.1)

where Pt+∆t is the measured AC power value at t +∆t and P̂t+∆t the predicted AC power (one-

step ahead point forecast). As anticipated, using the relative error, defined as et+∆t /Pt+∆t , can

be misleading. Indeed, high values of the relative error can be generated by low AC power

values rather than by high power fluctuations. This means that we might have significant

errors even if the AC power derivative is negligible. The improvement obtained by using the

absolute error instead of the relative one is shown in Section 2.3.2. The discrete time derivative

is calculated as:

Ṗt = Pt −Pt−∆t

∆t
. (2.2)

In what follows, in order to simplify the notation, we use t ±1 since the time discretization

is done at constant ∆t and we refer to one-step ahead forecasts. Fig. 2.3 illustrates the 2.5%-

97.5% quantile intervals of the absolute error (computed at t + 1) associated to different

ranges of the power derivative (computed at t ). In this example, a time horizon of 250 ms is

selected. To avoid redundancy, the figure shows the absolute value of the power derivative

(indeed, a symmetric behavior for negative and positive derivatives was observed). It is worth

noting that different quantiles of the error are associated to different power derivative ranges.

Consequently, we are interested in investigating the possibility to statistically quantify the

error made by the point forecast computation (at t +1) as a function of the AC power time

derivative (at t ). This consideration is the starting point of the eDIP method, presented in the

next Section (Algorithm I).
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Figure 2.3 – 2.5%-97.5% quantile intervals of the error caused by the point forecast at t +1 for
different ranges of the AC power time derivative at t . Time horizon=250 ms.
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2.2. Ultra-Short-Term Prediction Intervals of Photovoltaic AC Active Power

As mentioned, we propose here an improved version of the eDIP that considers the value of

the AC active power as a further explanatory variable. The method is presented in the next

Section (Algorithm II). In this context, Fig. 2.4 illustrates the 2.5%-97.5% quantile intervals of
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Figure 2.4 – 2.5%-97.5% quantile intervals of the error caused by the point forecast at t +1 for
different ranges of the AC power time derivative at t . Measurements are clustered in three groups
based on the AC active power value. Time horizon=250 ms.

the absolute error associated to different ranges of the power derivative, considering different

ranges of the AC active power value (for clearness we show here only three ranges of AC active

power, highlighted with different colors). Data are first clustered based on the power value and

then, for each group, the quantiles of the error are calculated for different ranges of the power

derivative. We can observe that, for a given derivative range, the error distribution depends

on the considered power range, this suggesting that a further clustering in this direction can

improve the performance. This is the main assumption behind the development of Algorithm

II.

2.2.3 Algorithm I

In this first part, we summarize the procedure for computing the PIs using only the AC power

derivative as predictor. For more details, the reader is referred to the original DIP formulation

in [12]. The main idea of the DIP is to use the correlations defined by the conditional distri-

bution matrix R to compute the PIs. We define e(n) as the nth discretized value of errors and

ṗ(m) as the mth discretized value of derivatives. Then, R(n,m) corresponds to the probability

that the next forecast error is e(n), given that the derivative of the AC active power is ṗ(m).

The process to compute the PI is the following.

1. Define the nominal confidence level α;

2. At the generic time step t , calculate Ṗt via Eq. (2.2);
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Chapter 2. Direct Power Forecast of Photovoltaic Generation via Time-Series Analysis

3. Create an array of discretized values of the power derivative and of the absolute error

(i.e. divide the range of the derivative and the error into uniform bins indexed m and n,

respectively). 1

4. Find column m for which the discretized value ṗ(m) is the closest to Ṗt ;

5. Column m of matrix R is considered as the histogram of a probability distribution that

has a discrete cumulative distribution function F (). The matrix R returns the values of

F () at the points e(n) as:

F (e(n)) =
n∑

n′=1
R(n′,m). (2.3)

6. Compute the upper and lower quantiles of the distribution of errors corresponding to

column m of matrix R, associated to the confidence level α. The values e↑αt+1 and e↓αt+1

are obtained by the conditions:

F (e↓αt+1) = 1−α
2

,

F (e↑αt+1) = 1+α
2

.
(2.4)

7. The PI widths are then obtained by:

P↓α
t+1 = e↓αt+1 + P̂t+1

P↑α
t+1 = e↑αt+1 + P̂t+1.

(2.5)

The PI computation is based on the knowledge of the conditional distribution matrix R. The

matrix R is updated at each time step and is fed by the raw sample data of the PV AC active

power. The proposed update method is based on the following. Let assume that, at time t , we

have a new observation, and let e(n0) and ṗ(m0) be the closest discretized values to the error

et+1 and to the derivative Ṗt , respectively. The update equations for matrix RN EW are:

RN EW (n0,m0) = NOLD (n0,m0)+1

NOLD (m0)+1
, (2.6)

RN EW (n,m0) = NOLD (n,m0)

NOLD (m0)+1
,n 6= n0,

RN EW (n,m) = ROLD (n,m),n 6= n0,m 6= m0,

with:

• NOLD (m0) is the number of observations having a derivative in the range of ṗ(m0);

1The power derivative and the error ranges are determined using historical observations.
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• NOLD (n0,m0) is the number of observations having an error in the range of e(n0) and a

derivative in the range of ṗ(m0).

The superscripts N EW and OLD refer to the updated and the old version of the R matrix,

respectively.

2.2.4 Algorithm II

In Algorithm II we add a third dimension to matrix R. In particular we introduce p(l ) as the

l th discretized value of AC active powers that the PV plant can generate. Then, R(n,m, l )

corresponds to the probability that the next forecast error is e(n), given that the derivative of

the power is in the range of ṗ(m) and the measured AC active power is in the range of p(l ).

Then, the process to compute the PIs is:

1. Define the nominal confidence level α;

2. Create an array of discretized values of the power indexed as l . 2

3. Find the layer l for which the discretized power value p(l ) is the closest to the AC power

measurement Pt .

4. Then, the procedure corresponds to the one described for Algorithm I (numbers 2-7),

but applied to the the selected layer l of matrix R.

We assume that, at time t , we have a new observation and p(l0) is the closest discretized AC

power value to the measurement Pt . Then, Let e(n0) and ṗ(m0) be the closest discretized

values to the error et+1 and to the derivative Ṗt , respectively. The update equations for matrix

RN EW are:

RN EW (n0,m0, l0) = NOLD (n0,m0, l0)+1

NOLD (m0, l0)+1
, (2.7)

RN EW (n,m0, l0) = NOLD (n,m0, l0)

NOLD (m0, l0)+1
,n 6= n0,

RN EW (n,m, l ) = ROLD (n,m, l ),n 6= n0,m 6= m0, l 6= l0.

2.3 Results and Discussion

First, we show the improvement obtained by using the absolute error definition instead of the

relative one to deliver our PIs. Furthermore, the reliability of the PIs is shown, proving that the

method is able to guarantee the target coverage probability (i.e. the percentage of successful

PIs is close to the target confidence level). Then, the eDIP is applied to three different point

2The power range varies from 0 to a maximum value, that is the PV plant rated power.
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forecast techniques to prove that the algorithm can be coupled with different point forecast

methods while maintaining good performance. Additionally, the eDIP is compared with two

benchmark methods used to calculate the PIs. To ensure a fair comparison, the Holt Winter

(HW) method is selected as point forecaster for this second analysis. The HW is based on

exponential smoothing and has a simple model formulation, [89]. These first results are all

obtained by implementing Algorithm I but the same conclusions can be drawn when applying

Algorithm II. Then, a further analysis is carried out to compare the two proposed algorithms (I

and II). For the testing results shown hereafter, PIs are constructed at a nominal confidence

level of 95%. The evaluation of the performance is done by using power measurements

covering the period of 30 days shown in Fig. 2.1. In order to analyze our results, it is necessary

to define specific performance metrics.

2.3.1 Metrics

We use three standardized metrics from the existing literature to evaluate the performance of

the proposed methods [90]. The first metric is the PI coverage probability (PICP) which counts

the number of times that the realization falls inside the PI for a given confidence level α:

PICP = 1

L

L∑
t=1

ct (2.8)

where L is the total number of forecast instances of the testing dataset and

ct =
1, P↓α

t+1 ≤ Pt+1 ≤ P↑α
t+1

0, otherwise.
(2.9)

Then, to account for the fact that the wider the PI, the easier it is to have a realization falling

inside it, we measure the PI normalized averaged width (PINAW):

PINAW = 1

LPmax

L∑
t=1

(P↑α
t+1 −P↓α

t+1), (2.10)

where, for our specific plant, Pmax = 10 kW. The third metric quantifies the trade-off between

having a large coverage probability and small interval width. It is called coverage width-based

criterion (CWC):

CWC = PINAW(1+γ(PICP)e−µ((PICP)−µ)) (2.11)

where

γ=
0, PICP ≥α

1, PICP <α.
(2.12)
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The parameterµ can be tuned based on how much bad PIs are to penalize, see [90]. Accordingly

to the literature, we select here µ= 50 to highly penalize wrong PIs. PIs should have high PICP

(higher or equal to the target confidence level) coupled with a low value of PINAW.

2.3.2 Error Definition

Table 2.1 shows the performance improvement obtained by using the absolute error instead

of the relative one used in [12] to build the algorithms and compute the PIs. Results are shown

for Algorithm I but an equivalent improvement was found for Algorithm II (not shown here

to avoid redundancy). Different columns refer to different time horizons of 100, 250 and

500 ms, respectively. We can see that, when using the relative error, the PICP is below the

nominal confidence level even with a higher value of PINAW. This holds for all the considered

forecast horizons. All the results shown hereafter are obtained considering the absolute error

distribution to build the matrix R and deliver our PIs.

Table 2.1 – Performance comparison: absolute and relative error.

PICP-PINAW-CWC %

Time Horizon 100 ms 250ms 500 ms

Abs. Error 95.15-0.059-0.059 95.47-0.12-0.12 95.44-0.27-0.27

Rel. Error 94.68-0.38-0.79 94.75-0.55-1.13 94.70-0.72-1.15

2.3.3 Reliability of the PIs Delivered by the eDIP

In this Section, we further investigate the reliability of the PIs delivered by the eDIP. A method

is considered reliable when the PICP is close to the target confidence level. We consider

Algorithm I and a forecast horizon of 500 ms (however results can be generalized for all the

horizons).

From Fig. 2.5 we can conclude that the eDIP is able to guarantee a coverage probability that is

close to the target confidence level.

2.3.4 Independence of the Point Forecast Method

In this Section we show that the proposed eDIP can be coupled with generic point forecast

methods. For this first analysis we use Algorithm I. The eDIP is applied to three different point

forecast techniques:

1. Holt Winters (HW), [91].

2. The simple linear interpolation (where the linear interpolant is used to compute the
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Figure 2.5 – Reliability Diagram for the eDIP. The observed confidence level (measured as PICP)
is close to the ideal case (1:1 line)

.

prediction at the next time step).

3. The Adaptive Neuro Fuzzy Inference System (ANFIS) with a Gaussian function as mother

function, [92]. For this purpose we have adopted a toolbox available in Matlab.

Table 2.2 shows the performance metrics of the eDIP applied to the above listed point forecast

methods.

Table 2.2 – Performance of the eDIP coupled with the different point forecast methods.

PICP-PINAW-CWC %

Time Horizon 100 ms 250 ms 500 ms

HW 95.15-0.059-0.059 95.47-0.12-0.12 95.44-0.27-0.27

Linear Interpolation 95.04-0.14-0.14 94.62-0.087-0.19 95.20-0.24-0.24

ANFIS 95.82-0.13-0.13 95.76-0.13-0.13 96.00-0.16-0.16

By observing Table 2.2 it is possible to derive the following conclusions:

1. For a time horizon of 100 ms the eDIP coupled with the HW is the most performing one

in terms of trade-off between high coverage probability and low interval width.

2. For 250 ms, the HW and the ANFIS return comparable performance.

3. The ANFIS point forecast method coupled with the eDIP is outperforming the other

methods for forecast horizons of 500 ms.
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4. In general, we have better performance for lower forecast horizons due to the lower

variability. The only case where the PICP is lower than the nominal confidence level is

the one using linear interpolation at 250 ms forecast horizon.

2.3.5 Comparison with Benchmark Methods for PI Computation

In this Section, we compare the proposed eDIP with different conventional interval predictors.

For this second analysis, we use Algorithm I. We consider the following cases:

1. HW forecast method with the proposed eDIP.

2. HW forecast method with PIs based on the variance computation with Gaussian distri-

bution of the error associated with the forecast computation.

3. HW forecast method with PIs based on the basic Bootstrap (BS), [93]. Namely, we sample

(in a bootstrap kind of way) the point forecast error time-series, and we use the empirical

quantiles of the error distribution (associated to α) to compute the PIs.

The error distributions of cases 2) and 3) are updated at each additional sample.

Table 2.3 – Performance comparison of different PIs computation methods.

PICP-PINAW-CWC %

Time Horizon 100 ms 250 ms 500 ms

eDIP 95.15-0.059-0.059 95.47-0.12-0.12 95.44-0.27-0.27

GAUSS 98.30-0.35-0.35 97.60-0.54-0.54 97.71-1.80-1.80

BS 92.22-0.12-0.56 90.75-0.15-1.30 92.63-0.27-1.10

Table 2.3 shows that:

1. If we simply look at the CWC value (that combines the other two metrics) we can

conclude that, for every time horizon, the eDIP coupled with the HW point forecast

method is the most performing.

2. The HW coupled with the Gaussian error distribution has high coverage probability but

this is counterbalanced by higher values of the PI width.

3. The HW coupled with the Bootstrap has low values of PINAW but PIs are penalized by a

coverage probability which is lower than the nominal confidence level.

Fig. 2.6 gives a more comprehensive evaluation of the PIs obtained with the different interval

predictors. Due to the large amount of data, parallel box plots are shown for the comparison.
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Figure 2.6 – Box plot of the normalized interval width. 30 days of power data are considered for
a time horizon of 250 ms.

The plotted interval widths are computed such as each distance is normalized with respect to

the maximum PV power output. Each box refers to one of the three different interval predictors,

considering again the whole time-series of Fig. 2.1 and a time horizon of 250 ms. For each

bound predictor, the red central mark represents the median, the two blue edges of the box

are the 25th and 75th percentiles and the whiskers extend to the maximum and minimum

values of the normalized PI width not considered as outliers. For the sake of completeness, the

value of the PICP associated to each case is added above the relative box plot. The presented

eDIP is characterized by the lowest values of the median, quantiles, and whiskers but by a

higher number of outliers compared to the other two cases (outliers are not plotted here for

the sake of clarity). For the eDIP, 12% of the points are outliers, reaching a maximum value of

the normalized PI width of 20%. For the Gaussian case, 8% of the points are outliers with a

maximum normalized PI width of 0.96%. For the Bootstrap case, 11% of the points are outliers

with a maximum normalized PI width of 0.41%. The Gaussian method is characterized by a

larger interquartile range, which means that the values of the normalized PI are more spread.

The PIs are characterized by a higher variability and by more extreme values (represented by

the whiskers). However, this is counterbalanced by a high coverage probability. For the BS case

the interval widths are less dispersed but, as discussed, we have a poorer coverage probability.

2.3.6 Comparison between Algorithm I and II

Table 2.4 shows a comparison between algorithms I and II. We select the HW as point forecast

method and the AC active power value is discretized in 10 equally spaced intervals (l=10).
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2.3. Results and Discussion

Table 2.4 shows that, for each time horizon, the addition of a third dimension accounting

Table 2.4 – Performance comparison between Algorithm I and II.

PICP-PINAW-CWC %

Time Horizon 100 ms 250 ms 500 ms

Alg. I 95.15-0.059-0.059 95.47-0.12-0.12 95.44-0.27-0.27

Alg. II 95.14-0.055-0.055 95.46-0.11-0.11 95.31-0.24-0.24

for the AC active power as further influential variable, allows improving the performance,

in terms of trade-off between PICP and PINAW. From a posteriori analysis, we noticed that

performance improves when increasing the number of discretization intervals up to l=200,

see Table 2.5. Increasing l leads to a lower PINAW while keeping high value of PICP (higher

than α). However, for l higher than 200 we have that PICP decreases below the value of α, this

reducing the quality of the PIs.

The improvement introduced by Algorithm II is particularly evident when encountering high

dynamics. This is firstly suggested by Fig. 2.4 and then confirmed by experimental evidence.

As an example, Fig. 2.7 illustrates the time evolution of the proposed eDIP during high PV AC

active power fluctuations, for the two algorithms. In both cases the eDIP tries to adapt the

width of the PI in order to keep the AC power measurements inside the interval. It is possible to

see that Algorithm II succeeds and returns PIs that are narrower than those given by Algorithm

I.

Table 2.5 – Performance of Algorithm II for time horizon of 500 ms and different discretizations
of the AC active power.

PICP-PINAW-CWC %

l = 5 l = 50 l = 100 l = 200 l = 400

95.3-0.26-0.26 95.5-0.21-0.21 95.5-0.18-0.18 95.1-0.16-0.16 94.4-0.12-0.27

2.3.7 Deployment into an Industrial Hardware Platform

In order to discuss the applicability of the proposed eDIP, the method (Algorithm II) is deployed

into an industrial microcontroller. In particular, the eDIP has been working with a real-time

measurements system since July 2015 as a forecasting tool for the PV plant described in the

experimental setup. The predictor is deployed in a National Instrument CompactRIO 9068,

composed by a reconfigurable Artix-7 FPGA, a dual-core ARM Cortex-A9 processor, a 512 MB

DDR3 memory and equipped with a NI Linux Real-Time OS. Real-time measurements are

acquired by using analog input modules (NI-9215), characterized by an input range of ± 10 V

and with a maximum sampling frequency of 100 kHz. The R matrix is updated at each sample

and there is no need to store past data. When a new power measurement is ready, the matrix

is updated and it is available for the following PI computations. At each iteration, the whole
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Figure 2.7 – PIs (yellow shading) and AC active power measurements (black dots) are plotted for
the two algorithms and for high AC power derivative.

process including the update of the matrix and the calculation of the PI takes less than 1 ms.

2.4 Chapter Conclusions

This Chapter focuses on the computation of sub-second PIs to directly forecast the AC active

power output of PV panels equipped with MPPT controllers. The proposed method, based

on the theory developed in [12], uses the experimentally observed correlation between the

AC active power derivative and the error caused by a generic point predictor. An improved

approach, accounting for the value of the AC active power as additional explanatory variable,

is also presented. The validation dataset consists of an experimental time-series of PV power

measurements of 30 days. As in [12], the method does not require any hypothesis on the

distribution of the error nor any specific point forecast technique and it is able to account

for high AC active power fluctuations by adapting the PI width and while maintaining the

target coverage probability. The eDIP is compared with other benchmark methods for PIs

(i.e., Gaussian and Bootstrap). Results from this comparison show that the eDIP exhibits the

best performance in terms of trade-off between high coverage probability and low interval

width. A further analysis proves that accounting for the AC active power value, as additional

influential variable, allows improving the performance in particular when encountering high

variations. The proposed method has been deployed into an industrial hardware platform

and efficiently operates at sub-second update speed for the real-time computation of PIs of a

rooftop PV plant.
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3 Solar Irradiance Forecast via Time-
Series

3.1 Chapter Highlights and Summary

Forecasting the global horizontal irradiance (GHI) is usually the first step for predicting the

power generated by the PV plant. Then, the GHI information can be converted into power

values by using transposition models (if the PV panels are tilted) and physical models of the PV

plants. In particular, indirect maximum power models are preferable to direct ones (described

in Chapter 2) when the power measurements are uncorrelated with the true PV maximum

power and, consequently, with the true irradiance (e.g. due to the action of curtailment

strategies). The direct use of production measurements in time-series-based forecasting tools

might lead to mistreaning the algorithm, as later discussed in Chapter 5.

This Chapter focuses on GHI forecasting based on time-series. It describes a nonparametric

tool for computing ultra-short and short-term prediction intervals (PIs) of the global horizontal

irradiance (GHI) based on the clustering of historical observations of the clear-sky index. The

main novelty of the proposed method is the ability to deliver probabilistic PIs from sub-second

(500 ms) to intra-hour (5 min) forecasting horizons, needed by microgrid applications. At

first, the clear-sky model is introduced and its importance discussed. Then, the influential

variables and the method to derive the PIs are described, and the advantage of differentiating

the clear-sky index time-series is also presented. Results are presented by comparing the

proposed method with state-of-the-art prediction models, including the eDIP described in

the previous Chapter (this time applied to predict the solar irradiance rather than the PV AC

power directly).

3.2 Clear-sky Model

GHI measurements are pre-processed in order to remove the daily and seasonal components

due to changes of the sun position. This is achieved by introducing the clear-sky index

K , which is defined as the ratio between the measured GHI and the clear-sky irradiance,

respectively denoted by I and Ics . Clear-sky models allow deleting deterministic fluctuations
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due to changes in the solar position. The clear-sky index is defined as the ratio between the

measured GHI and the modeled clear-sky irradiance at ground level:

K = I

Ics
. (3.1)

The clear-sky irradiance is the irradiance that would reach the ground in clear-sky conditions,

i.e. absence of clouds. In this section, the clear-sky irradiance is obtained by applying the

clear-sky model implemented in the geographical information system GRASS, which also

accounts for topological shading [94, 95].

3.3 Influential Variables

The proposed PI estimation method consists in clustering historical data according to the

value of certain influential variables, introduced in the following. The clusters are therefore

used as empirical conditional probabilities of future realizations and used to compute the

PI by calculating the quantiles according to a given confidence level. In particular, these

influential variables should be representative of the irradiance fluctuations since it is the

main cause of the uncertainty associated with solar forecasts. These variables, inputs of the

clustering process, are selected according to the literature that considers the average and

the variability of the clear sky-index as the most influential ones, [81, 96]. We consider a

training dataset of historical clear-sky index observations K1, . . . ,KN , from which we extract

the following influential variables:

• the average clear-sky index value on a mobile window of length n considering the most

recent data points:

Mi = 1

n

i∑
j=i−n+1

K j , i = n +1, . . . , N (3.2)

of which we consider the normalized version M∗
i . Namely, we normalize the sequence

M0, . . . , M1 to a length of 1; 1

• the clear-sky index variability:

Vi =
√√√√ 1

n

i∑
j=i−n+1

(K j −K j−1)2, i = n +1, . . . , N (3.3)

which is a measurement of GHI fluctuations. As for the previous case, we consider the

normalized version V ∗
i .

1 The normalized version of a vector X is a vector X∗ = X/||X||, where ||X|| is the 2-norm of X.
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3.4. Clustering of the Training set

Normalization of the influential variables is required to enable a fair comparison between

parameters with different scale. For each observation, the vector pi of influential variables is:

pi = (M∗
i ,V ∗

i ), i = n +1, . . . , N . (3.4)

The process to compute the PIs is performed in two ways:

• Method A: we cluster the original clear-sky index time-series;

• Method B: we cluster the differentiated clear-sky index time-series:

∆Ki = Ki −Ki−1, i = 2, . . . , N , (3.5)

to verify if differencing leads to better prediction performance.

3.4 Clustering of the Training set

The k-means iterative algorithm is firstly used to classify historical observations of the clear-sky

index according to predefined influential variables2. K-means clustering, [97], is a partitioning

algorithm that allocates each observation into one and only one of the k clusters, each one

defined by a representative centroid. In particular, k centroids are at first randomly selected

(the first centroids are simply uniformly random observations). Then, each vector of the

training dataset is assigned to the closest centroid, and the centroid is iteratively recalculated

as the mean of the vectors of each class until convergence is reached (i.e., centroids do not

change anymore between iterations).

Method A

We apply the k-means algorithm to cluster the vectors pi belonging to the training set, being

k the number of clusters. The algorithm assigns to each vector pi a cluster index l between

1 and k and determines the centroids locations cl = (M∗
l ,V ∗

l ) for l = 1, . . . ,k. We denote the

generic cluster Gl as composed by all the clear-sky indexes Ki+1 for which pi has index l .

Method B

We apply the same clustering procedure described above for Method A. However, we denote

the generic cluster ∆Gl as composed by all the differentiated clear-sky realizations ∆Ki+1 for

which pi has index l .

2The k-means clustering has shown better performance when compared with other clustering techniques as
DBSCAN
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An example of the k-mean partitioning of the influential variables is shown in Fig. 3.1 where

the normalized clear-sky index average and variability are clustered. It is worth noting that the

k-means clustering of the training dataset can be performed off-line on historical data. This is

a key aspect if considering the high reporting rate of predictions for microgrid applications

since it allows reducing the computational complexity.

0 5 ·10−3 1 ·10−2 1.5 ·10−2 2 ·10−2 2.5 ·10−2
0

1 ·10−2

2 ·10−2

3 ·10−2

4 ·10−2

M*

V
*

Figure 3.1 – Example of k-means clustering obtained for k = 5. The x and y axis represent the
normalized clear-sky index average and variability, respectively. The black marker signs the
centroids.

3.5 Prediction Intervals Computation

In this Section we describe how PIs are computed, distinguishing between the two proposed

methods.

Method A

Starting from the clusters G1, . . . ,Gk defined in the previous section, the PIs at the target

confidence level α can be computed as:

q↑α
l = (1+α)/2 quantile of Gl , l = 1, ...,k (3.6)

q↓α
l = (1−α)/2 quantile of Gl , l = 1, ...,k. (3.7)

For increased computational efficiency, we note that also this operation can be performed

off-line, and the PIs for each class can be stored. Say being at time t , the objective is to perform

the on-line computation of the PI for the next time interval t +1. The vector of influential

variables at t is denoted by pt = (M∗
t ,V ∗

t ). It is calculated by normalizing the raw influential

variables Mt ,Vt with respect to those available in the training dataset. The next step is the
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3.5. Prediction Intervals Computation

calculation of the Euclidean distances between pt and the centroids cl:

dl = ‖cl −pt‖2, l = 1, ...,k (3.8)

which is used as a similarity criterion to select the cluster representative of the future clear-sky

outcome. We indicate with l̂ the index corresponding to the cluster with minimum distance.

It is used to select the quantiles used in the PI computation as:

K ↑α
t+1|t = q↑α

l̂
. (3.9)

K ↓α
t+1|t = q↓α

l̂
(3.10)

Method B

Starting from the clusters ∆G1, . . . ,∆Gk obtained from the differentiated GHI time-series, the

PIs at the target confidence level α can be computed as:

q↓α
l = (1−α)/2 quantile of ∆Gl, l = 1, ...,k (3.11)

q↑α
l = (1+α)/2 quantile of ∆Gl, l = 1, ...,k. (3.12)

Also in this case, the quantiles extraction is computed off-line. The on-line computation of

the PIs consists in finding the index l̂ of the cluster with centroid at the minimum distance

from pt. It is used to select the quantiles used in the PI computation as:

K ↑α
t+1|t = Kt +q↑α

l̂
, (3.13)

K ↓α
t+1|t = Kt +q↓α

l̂
. (3.14)

i.e., the current measurement is summed to the upper and lower quantiles of the differentiated

time-series.

It is important to note that, so far, PIs are computed to forecast the clear-sky index. The last

step consists in computing the PI for the GHI:

I ↑αt+1|t = K ↑α
t+1|t Ics,t+1, (3.15)

I ↓αt+1|t = K ↓α
t+1|t Ics,t+1. (3.16)

In the results section, performance of methods A and B are evaluated by comparing the

estimated PIs as defined in (3.15)-(3.16) with the GHI measurements.
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3.6 Selection of the Parameters

The hyper-parameters we need to specify when applying the k-means clustering procedure

are:

• The number of samples n used in equations (3.2) and (3.3);

• The number of cluster k used for the partition of the training dataset;

• The length of the training dataset N .

The selection of the parameters values is a sensitivity process that is exhaustively evaluated in

Section 3.9. The assessment is performed in a searching dataset, and then the selected values

are applied in a testing dataset for performance evaluation. While it was seen from the results

that variations of n in the range from 2 to 5 do not, in general, alter modeling performance,

the values of k and N are interdependent and the selection of these two parameters needs to

be carried out simultaneously (i.e. we need to find the combination of k and N with the best

performance). For each specific case, a diagnostic analysis should be performed. We consider

here two main approaches to fix k and N as described in the next sections.

3.6.1 A-posteriori Selection of k with Exhaustive Search (ES)

Several (k, N ) combinations are attempted in a searching dataset: the candidate combination

is the one with best a-posteriori prediction performance. These values are then used to evalu-

ate the performance of the testing dataset, supposing that it exhibits similar characteristics of

the searching set. This approach can become computationally expensive, therefore motivating

the development of methods for the a-priori selection of the free parameters, as described in

the next Section.

3.6.2 A-priori Selection of k with Silhouette Analysis (SA)

The objective is to use Silhouette Analysis, [98], to improve the partitioning of the training

dataset, allowing for an a-priori selection of parameter k and in order to avoid the exhaustive

approach. The Silhouette Analysis consists in some main steps:

• a small value of k is chosen (e.g. k = 5) and the clustering algorithm is run;

• the silhouette value for a generic point i is calculated as:

s(i ) = a(i )−b(i )

max(a(i ),b(i ))
(3.17)

where a(i ) is the average distance from point i to the other points in the same cluster,

while b(i ) is the minimum average distance from instance i to points in a different

40



3.7. Algorithms Time Complexity

cluster, minimized over clusters. Parameter s is a measure of how close the instance

is to the other instances in its cluster and how far it is to those in the other clusters. In

general, a silhouette value close to 1 is desired because it means that the point is well

clustered while a value close to -1 means misclassification;

• the mean of the silhouette values is computed. If most points have a high silhouette

value, then the clustering is appropriate;

• the value of k is augmented and it is evaluated if having more clusters allows for a better

partitioning (higher mean of the silhouette values);

• the number of clusters is selected equal to the value k above which we do not see any

improvement in terms of increasing of the average silhouette value.

As it is shown in Section 3.9.3, the value of N required to converge at constant k is not sensitive

to the characteristics of the dataset. In general, for each forecast horizon and given k, it is

possible to identify a value of N above which performance is close to convergence. Above this

value, small oscillations are explained by the intrinsic stochasticity of the data. This feature is

important for the modeler since it allows for the reduction of the parameters to be found.

3.7 Algorithms Time Complexity

In this Section, we evaluate the time complexity of the real-time computation of the proposed

algorithms. This is an important aspect because they are designed with the stated objective of

delivering PIs to real-time control processes for electrical power systems.

The algorithms consist of two parts, the training phase and on-line computation of PIs. The

former does not have any real-time requirement and can be performed off-line. The latter

phase is instead time critical, and it is to perform with a hard-real deadline. First, it consists

in calculating the normalized influential variables, (3.2)-(3.3), an operation with constant

time complexity, O(1), which involves algebraic operations. Then, we have the computation

of k norms, O(k), and a minimum search, which can be performed efficiently with a merge

search, O(k log(k)). Considering that k is fixed by design, the time complexity of the real-time

computation is constant time, O(1), therefore denoting that complexity does not grow with

the size of the problem (scalability). Statistics on the execution time of the algorithms are

given in Section 3.9.8.

3.8 Data

3.8.1 Data Acquisition

Global horizontal irradiance measurements are collected at 50 ms resolution 3 by using an

Apogee SP-230 all-seasons pyranometer which is located at the GPS location given in Section

3We note that the pyranometer response time is less than 1 ms.
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2.2.1. Silicon-cell pyranometers are sensitive to the wavelength range of approximately 350-

1100 nm. Spectral errors appear when measuring radiation in conditions that are different

from calibration (namely, clear-sky conditions, solar zenith angle of approximately 45 degrees,

and atmospheric air mass of 1.5). The Apogee pyranometer has a spectral error up to 6% at

solar zenith angles of 75 degrees, up to 5% for air mass of 8, and up to 9% for cloudy conditions.

We consider three datasets of 85 days each, corresponding to different periods of the year. The

first contains irradiance measurements from July to September 2015 (Summer), the second

from October to December 2015 (Autumn), and the third from January to March 2016 (Winter).

Each dataset is divided into a searching subset of 55 days and a testing one composed of the

remaining 30 days. The original time-series is downsampled to three different resolutions:

500 ms, 1 min, and 5 min. These series are used to compute one-step-ahead PIs for the

corresponding forecast horizon. Downsampling is computed by averaging the intermediate

samples. It is worth noting that applying the clear-sky normalization causes very high values

of K close to sunrise and sunset. Therefore, we consider only daylight values covering the

period of the day for which the clear-sky index does not diverge.

3.8.2 Data Classification

Characterizing the dataset is important for performance comparison and evaluation. Indeed,

the robustness of the method should be tested during periods of different irradiance volatility.

In our case, we are interested in characterizing the three available datasets: Summer, Autumn,

and Winter. First, we give an information regarding the weather of the selected period and

location. In particular, we retrieve cloud cover data 4 from MeteoSwiss Idaweb services, from

two weather stations in the vicinity of our installation. The average cloud okta values for the

three seasons are: 3.86 okta in Summer, 4.67 okta in Autumn and 5.96 okta in Winter. Second,

we introduce a criterion consisting in counting the percentage of periods with a volatility

lower than a given threshold. For each timestep t , we calculate the per-unit difference as

∆It = (It − It−1)/Imax , where Imax = 1000 W/m2. For each prediction horizon, we establish

a threshold for ∆It , above which the observation at time t is considered with high volatility.

The threshold is empirically computed as the 99% quantile of the ∆I time-series obtained by

manually selecting a period of 3 clear-sky days. The values are shown in Table 3.1 for different

forecast horizons.

Table 3.1 – Thresholds.

Time Horizon Thresholds

500 ms 0.0004

1 min 0.011

5 min 0.025

4Cloud cover corresponds to the fraction of the sky obscured by clouds when observed from a given location.
The unit of measurement is the okta, ranging from 0 (completely clear-sky) to 8 (completely overcast).
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Table 3.2 – Percentage of periods with high irradiance volatility.

Forecast Horizon

Season 500 ms 1 min 5 min

Summer 16 17 22

Autumn 5 9 12

Winter 13 15 20

The percentage of periods exceeding the threshold of GHI high volatility is shown in Table 3.2,

for each dataset and for different forecast horizons. As it can be observed, the Summer period

is characterized by the highest GHI volatility, followed by Winter and Autumn.

3.9 Results and Discussion

First, Section 3.9.2 shows the advantage given by the introduction of a clear-sky model at

different forecast horizons. Then, in Section 3.9.3 the sensitivity of the performance with

respect to the selection of the model parameters is discussed. In Sections 3.9.4-3.9.6 the

performance of the proposed methods is benchmarked against existing techniques. First, we

compare the proposed methodology with the symmetric quantile extraction, which is the

simplest way to construct our intervals. We use the empirical quantiles extracted from the

distribution of the time-series to build the PIs as in (6.4)-(6.5) and (6.7)-(6.8), respectively. It is

important to highlight that the quantiles at time t are extracted from the whole time-series,

from t = 0 to t −1. As a second benchmark, we compare our method with a model commonly

used in forecasting. We first generate a point forecast using AutoRegressive Moving Average

model (ARIMA), [99], with Double Exponential Smoothing. Then PIs are constructed assuming

a Gaussian distribution of the point forecast error as:

K ↑α
t+1|t = K̂t+1 +ηα

√
σ2

t , (3.18)

K ↓α
t+1|t = K̂t+1 −ηα

√
σ2

t . (3.19)

where K̂t+1 is the point forecast obtained by the ARIMA model, ηα is the quantile of the

normal distribution corresponding to the target confidence level α and σ2
t is the variance of

the forecast error.

Unless otherwise indicated, the target confidence level used for the following analysis is fixed

equal to 95%. Section 3.9.7 presents and discusses the reliability diagrams. Finally, statistics of

the method execution time are provided in Section 3.9.8.
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3.9.1 Metrics

We use the three standardized metrics defined in Section 2.3.1 to evaluate the PIs. In this case,

the normalising factor is Imax = 1000 W/m2. The value has been selected accordingly to the

work in [81], that is later used as benchmark for performance comparison.

3.9.2 Clear-sky index and GHI Time-series Comparison

A first analysis aims at assessing the difference between using the measured irradiance (GHI)

or the clear-sky index (K ) time-series as inputs for the PIs computation method. In particular,

we apply methods A and B and we increase the forecast horizon to evaluate when the inclusion

of a clear-sky model becomes advantageous. Fig. 3.2 shows that the CWC is, in general,
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Figure 3.2 – CWC as a function of the time horizon. Comparison between the use of the GHI
time-series (original) and the clear-sky index one (normalized).

lower (better performance) when using the clear-sky index. In particular, the advantage of

using a clear-sky model becomes evident for time horizons longer than 1 min. As expected,

the normalization of the time-series becomes more important at higher forecast horizons,

when the effect of the sun position becomes more dominant. When referring to ultra-short-

term horizons, fluctuations of solar irradiance are mainly related to cloud motion and the

importance of a clear-sky model becomes marginal. Since the inclusion of a clear-sky model

only leads to similar or better prediction performance, the proposed methods are applied to

the clear-sky index time-series.
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Figure 3.3 – CWC as a function of n for different forecast horizons. N is equal to 30 days. k is
equal to 5 for cases (a)-(c) and equal to 30 for case (d)-(f).

3.9.3 Parameters Selection and Sensitivity Analysis

Selection of Parameter n

Fig. 3.3 shows the CWC metric as a function of n (Eq. 3.2-3.3) obtained from a-posteriori

analysis of the performance of the whole Autumn dataset. Method B is applied. The analysis

considers different forecast horizons for both k=5, cases (a)-(c), and k=30, cases (d)-(f). It is

possible to see that performance is not very sensitive to variations of n in the range from 2 to 5.

From an a-posteriori analysis of our datasets at different forecast horizons, we can conclude

that n can be fixed to a value between 2 and 5, for all the considered cases. Indeed, analogous

conclusions can be inferred for Method A and different datasets (not shown here because of

the similar behavior). These values of n are a good trade-off between having enough significant

measurements to compute the influential variables and avoiding to consider realizations that

are too far from the actual conditions. The results presented in what follows are obtained with

n = 3.
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Selection of Parameter k and N

As introduced in Section 3.6, two main procedures are proposed to assign parameters k and

N . In the case of the exhaustive search, we isolate 55 days of each dataset to perform the

exhaustive searching. The number of clusters k could potentially vary between one (single

cluster) and the total number of training samples (each data is assigned to its own cluster).

Since the computational effort of the k-means algorithm is linearly dependent to the number

of clusters and to the number of data, we here limit k to 1000 and N to 30 days. The dashed

lines in Figures 3.4, 3.5 and 3.6 show the value of k that returns the best performance for a fixed

N . This k is obtained a-posteriori by applying methods A and B to the searching dataset of 55

days (kES,A and kES,B , respectively). The three figures refer to different datasets. Each figure

includes three sub-figures referring to the three forecast horizons, respectively. It is possible to

note that, due to the heuristic nature of the methods, the optimal value of k cannot be known

a-priori and it varies among the different considered cases (namely, we do not have a global

optimum). Therefore, we select k and N as the combination returning the best prediction

performance (minimum CWC), found a-posteriori. These values found for the searching set

of 55 days are then applied for performance evaluation in the remaining 30 days. In the case

of the silhouette analysis, k is calculated for different N as the one maximizing the average

silhouette of the training set and it is shown in Figures 3.4, 3.5 and 3.6 with the solid line. The

value of k that maximizes the average silhouette does not correspond to the one returning the

best forecasting performance. However, we notice that its value does not vary with N and can

be selected independently. In order to determine N in the case of the silhouette analysis, we fix

k equal to the one returned by the analysis (k=5) and we evaluate the prediction performance

for a different number of training days. Figures 3.7, 3.8 and 3.9 show the CWC (in logarithmic

scale) as a function of N . They refer to 500 ms, 1 and 5 min, respectively. Each figure consists

of two plots, showing the performance for Method A and B, respectively. We can make the

following observations:

• For each forecast horizon, it is possible to identify a first drop of CWC after which

performance tends to stabilize. The value of N that leads to performance stabilization

is not sensitive to the dataset and can be fixed independently. On the contrary, as it is

shown in the next sections, performance at convergence depends on the nature of the

dataset and, in general, the behavior of the PIs depends on the volatility content of the

dataset.

• For the sub-second time horizon and Method A we have a first drop of CWC after about

one day, and then performance tends to stabilize. Method B reaches convergence after

few hours of training with subsequent small CWC oscillations.

• For time horizon of 1 minute we have a first drop of CWC after about 5 days of training

and then performance smooths out more slowly.

• For time horizon of 5 minutes we have a first drop of CWC after about 5 days of training

and then a second drop after 10 days. Then, performance smooths out more slowly.
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Figure 3.4 – Number of clusters k as a function of the length of the training dataset. The Summer
dataset is selected for the analysis. The dashed lines refer to the value of k corresponding
to maximum performance for Method A and B, respectively. It is calculated a-posteriori by
applying the ES. The solid line refers to the value of k from the SA.
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Figure 3.5 – Number of cluster k as a function of the length of the training dataset. The Autumn
dataset is selected for the analysis.

In conclusion, when applying the exhaustive search we use the optimal combination of

k and N found for the 55 days dataset as candidates for performance evaluation in the

remaining 30 days. On the contrary, when applying the silhouette analysis approach, we

select k=5 and N equal to 1, 5 and 10 days respectively for three time horizons. These

values are valid for all the three datasets. A comparison between the two approaches is

presented in what follows.
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Figure 3.6 – Number of cluster k as a function of the length of the training dataset. The Winter
dataset is selected for the analysis.

3.9.4 Ultra-short-term Forecasting: Performance Evaluation

We focus here on sub-second forecast horizon: one-step-ahead PIs at 500 ms. At first, we

analyze the two proposed approaches to compute k and N . Then, performance of methods

A and B is evaluated, and therefore compared with existing methods from the technical

literature.

Exhaustive Search and Silhouette Analysis

In this Section, we compare the performance obtained by applying the exhaustive search

and the silhouette analysis to determine k and N . Furthermore, results are compared with

the optimal performance found a-posteriori to evaluate how far the estimations are from the

optimum found a-posteriori. Evaluation is carried out in the testing set of 30 days, for each

one of the three datasets.

Results are shown in Tables 3.3 for methods A and B. The comparison considers metric CWC.

For 500 ms forecast horizon, the exhaustive search is outperforming the silhouette analysis

and returns performance very close to the optimal a-posteriori. Indeed, when dealing with

high sampling frequency, the large amount of data would require a number of clusters which is

much higher than the one returned by the silhouette analysis. For sub-second time horizons,

we proceed our analysis by using the exhaustive search method.

The following additional conclusions can be drawn from this analysis:

• For ultra-short-term forecast, Method B outperforms Method A for each considered

case.
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Figure 3.7 – CWC as a function of the number of training days for 500 ms time horizon. CWC is
shown in logarithmic scale.
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Figure 3.8 – CWC as a function of the number of training days for 1 min time horizon. CWC is
shown in logarithmic scale.
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Figure 3.9 – CWC as a function of the number of training days for 5 min time horizon. CWC is
shown in logarithmic scale.

Table 3.3 – CWC [%] for 500 ms, α=95%.

(a) Method A

Season

Method Summer Autumn Winter

Optimal 2.88 1.18 2.55

Silhouette 51 27.7 20.3

Exhaustive Search 4.69 2.41 4.03

(b) Method B

Season

Method Summer Autumn Winter

Optimal 0.24 0.046 0.13

Silhouette 0.37 0.12 0.27

Exhaustive Search 0.27 0.047 0.15

• For both the methods, the Summer period is characterized by worse performance and

this is explained by the highest volatility content, as shown in Table 3.2. As expected, the

Autumn period returns the best performance.

Comparison with Benchmark Methods

Table 3.4 shows the performance of the proposed methods compared with the above described

benchmarks. First, we refer to the simple quantiles extraction (Quantiles A and Quantiles B),

where the quantiles are computed from the original and differentiated time-series respectively.

This comparison aims at showing the performance improving obtained by the k-mean clus-

tering compared to the case where we extract the quantiles of the whole time-series without

any clustering process. We can conclude that the k-means clustering is beneficial and leads to

relevant performance improvement for all the analyzed cases.
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The last row of Table 3.4 shows the results obtained by applying the ARIMA model and assum-

ing a Gaussian distribution of the point forecast error (ARIMA + GAUSS). This method has to

be compared with our proposed Method B since it requires a point forecast to compute the PIs.

For 500 ms forecast horizon, the model is over confident with respect to the assumed normal

distribution, returning PICP higher than 99% for α=95%. Thus, to allow a fair comparison with

our method, we empirically adjust the target confidence level (and so η) in order to obtain

values of PICP similar to those given by the k-mean algorithm. Table 3.4 shows that, for the

same coverage probability, Method B is characterized by lower PINAW.

Table 3.4 – PICP-PINAW-CWC [%] for a time horizon of 500 ms, α=95%.

Season

Method Summer Autumn Winter

Method A 90.5-1.94-4.69 93.7-0.33-2.41 92.6-1.85-4.03

Quantiles A 94.6-57.4-113 93.3-29.5-62.6 95.7-35.1-35.1

Method B 97.0-0.27-0.27 96.1-0.047-0.047 98.2-0.15-0.15

Quantiles B 90.4-0.35-0.35 91.4-0.13-0.30 91.0-0.12-0.28

ARIMA+GAUSS 97.0-0.50-0.50 96.1-0.1-0.1 98.2-0.32-0.32

We refer to the extended Dynamic Interval Predictor (eDIP) described in Chapter 2. To allow

a fair comparison, we compare Method B with the eDIP coupled with the persistent point

forecast. From Table 3.5 we can conclude that the proposed method shows better performance

when compared to the literature with respect to ultra-short-term horizons.

Table 3.5 – PICP-PINAW-CWC [%].Performance comparison of the proposed Method B with the
Dynamic Interval Predictor. α=95%.

Season

Method Summer Autumn Winter

Method B 97.0-0.27-0.27 96.1-0.047-0.047 98.2-0.15-0.15

eDIP 97.2-0.36-0.36 96.0-0.053-0.053 97.4-0.19-0.19

3.9.5 Short-term Forecasting

In this Section, we extend the proposed methods to higher forecast horizons (i.e. minutes).
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Exhaustive Search and Silhouette Analysis

Tables 3.6 and 3.7 show metric CWC obtained by applying the exhaust searching, the silhouette

analysis and the optimum a-posteriori, for 1 and 5 min forecast horizons. The silhouette

analysis coupled with Method B shows here the best performance and is used for further

comparison. On the contrary, when using the original time-series, the exhaustive search

performs better and should be used to select k and N .

Table 3.6 – CWC [%] for 1 min, α=95%.

(a) Method A

Season

Method Summer Autumn Winter

Optimal 21.7 8.50 22.9

Silhouette 58.0 31.6 33.0

Exhaustive Search 25.2 11.4 23.4

(b) Method B

Season

Method Summer Autumn Winter

Optimal 6.82 2.83 6.20

Silhouette 10.5 3.26 9.10

Exhaustive Search 14.0 3.81 10.3

Table 3.7 – CWC [%] for 5 min, α=95%.

(a) Method A

Season

Method Summer Autumn Winter

Optimal 34.2 16.7 24.0

Silhouette 54.7 25.7 31.5

Exhaustive Search 37.9 20.7 24.0

(b) Method B

Season

Method Summer Autumn Winter

Optimal 14.2 6.62 11.2

Silhouette 17.9 6.70 14.5

Exhaustive Search 16.2 15.1 23.4

Comparison with Benchmark Methods

First, we present the advantage given by the k-means clustering for forecasting of 1 and 5 min

ahead. Table 3.8 shows the comparison with the simple quantiles extraction for the original

and differentiated time-series (Quantiles A and B, respectively) for 1 min forecast horizon,

as explained for the ultra-short-term analysis. Table 3.9 shows the same comparison for 5

minutes time horizon. For Method A, we apply the exhaustive search while for B we apply the

silhouette analysis. For all the cases, we can see an improvement coming from the k-means

clustering with respect to the simple quantile extraction.

The last row shows the results obtained by implementing the ARIMA model and assuming a

Gaussian distribution of the point forecast error (ARIMA+GAUSS). For these forecast horizons,

the PICP is slightly lower than the target confidence level, with values of PINAW that are

however higher than those returned by Method B.

It is difficult to compare the proposed method with results available in the literature due to

the different GHI measurements (characterized by dissimilar climatology). Similar results are
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Table 3.8 – PICP-PINAW-CWC [%] for a time horizon of 1 min, α=95%.

Season

Method Summer Autumn Winter

Method A 90.1-10.2-25.2 90.8-4.81-11.4 88.8-8.87-23.4

Quantiles A 94.7-56.7- 112 93.1-29.5-61.9 95.8-34.7-34.7

Method B 96.9-10.5-10.5 97.5-3.26-3.26 97.8-9.1-9.1

Quantiles B 89.7-13.8-34.8 90.6-6.1-14.6 91.7-6.73-15.3

ARIMA+GAUSS 93.4-19.2-40.3 94.0-8.13-16.5 95.6-10.6-10.6

Table 3.9 – PICP-PINAW-CWC [%] for a time horizon of 5 min, α=95%.

Season

Method Summer Autumn Winter

Method A 91.5-16.5-37.9 86.7-6.96-20.7 96.1-24.0-24.0

Quantiles A 94.7-55.6-110 93.1-28.5-60.6 95.8-33.7-33.7

Method B 96.7-17.9-17.9 96.2-6.70-6.70 96.1-14.5-14.5

Quantiles B 89.4-25.9-66.4 89.5-13.6-34.0 91.2-16.0-36.0

ARIMA+GAUSS 91.7-28.9-65.8 92.3-14.1-31.4 95.0-19.0-19.0

obtained in [81] for 5 minutes ahead GHI forecast, where a probability coverage of ≈ 95% and

PINAW of ≈ 8%. In [81] a dataset of 1 year is considered. The percentage of periods of high

volatility (i.e. with ∆K higher than 0.5) is ≈ 0.3−0.6% while in our datasets is ≈ 0.9−1.5%.

3.9.6 From Ultra-short to Short-Term Forecasts

For sub-second time horizons, the best performance is obtained by applying the exhaustive

search coupled with Method B. On the contrary, for higher forecast horizons, the silhouette

analysis coupled with Method B is the most performing one. For all the considered horizons,

differentiating the time-series has a positive effect on the final performance and allows having

a PICP higher than or equal to α. However, the improvement coming from the differentiation

decreases with increasing forecast horizons. Indeed, performance of Method A worsens less

than those of Method B when increasing the forecast horizon. To complete the analysis, Fig.

3.10 shows our metrics as a function of the forecast horizon and for different confidence levels:

85%, 95%, and 99%.We can see that PICP (left side) is always higher or equal to the target

confidence level. Furthermore, the value of PINAW (right side) increases with the forecast

horizon (to account for the higher uncertainty) and increases with α, i.e. the method adapts

the bound widths to guarantee the target coverage. Fig. 3.11 shows the PIs and the actual

realizations obtained for 500 ms, 1 and 5 min forecast horizons, respectively. Method B is

53



Chapter 3. Solar Irradiance Forecast via Time-Series

500 ms 1 min 5 min
85

90

95

99
P

IC
P

[%
]

α=85%
α=95%
α=99%

(a) PICP-Summer

500 ms 1 min 5 min
0

10

20

30

P
IN

A
W

[%
]

(b) PINAW-Summer

500 ms 1 min 5 min
85

90

95

99

P
IC

P
[%

]

(c) PICP-Autumn

500 ms 1 min 5 min
0

5

10

15

P
IN

A
W

[%
]

(d) PINAW-Autumn

500 ms 1 min 5 min

90

95

99

P
IC

P
[%

]

(e) PICP-Winter

500 ms 1 min 5 min
0

10

20

30

P
IN

A
W

[%
]

(f) PINAW-Winter

Figure 3.10 – PICP [%] and PINAW [%] are shown for the Summer, Autumn, and Winter periods
and different target confidence levels α.
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applied and the target confidence level is 99%. A day of high variability and a clear-sky day

from the Winter period are selected for the comparison. The corresponding values of PINAW

are shown in Table 3.10, for the two days respectively, showing that the PIs are narrower for the

clear-sky day where the variability is lower. For the clear-sky day at 500 ms a zoom is added

since the PIs and the points are not easily distinguishable. We can see that larger intervals are

associated to higher time horizons, this reflecting the higher uncertainty. In Fig. 3.12 the same

Table 3.10 – PINAW [%] is shown for the two days of Fig. 3.11.

Day

Forecast Horizon High Volatility Clear-sky

500 ms 0.22 0.18

1 min 11.8 10.8

5 min 24.9 23.8

days of Fig. 3.11 are selected and PIs are plotted for different confidence level (99%, 95% and

85%). It is interesting to notice that for the considered clear-sky day a target confidence level

of 85% is enough to have all the measurements inside the PI.

3.9.7 Reliability Diagrams

The objective of this last analysis is to compare the target confidence levels with the observed

ones, here represented by metric PICP.

The analysis is for the three considered periods and three forecast horizons and is shown in Fig.

3.13. We consider Method B and the ARIMA model with Gaussian distribution of the error and

compare their performance with the ideal behaviour, namely when the target confidence level

is identical to the observed one. As it can be seen, the confidence levels obtained for Method B

exhibit an overall good matching with the target ones, proving the capability of the method to

provide reliable predictions. In particular, Method B is always slightly over confident with the

exception of the Autumn period where is under confident for low values of α. The proposed

benchmark method has lower reliability, it is over confident for sub-second time horizons

while its behaviour for higher horizons depends on the value of α. This mismatch suggests

that parametric models, with the implicit assumption of a Gaussian distribution of the error,

might not be suitable.

3.9.8 Execution Time Statistics

Execution times are computed adopting a Matlab 2016a implementation of the algorithm on

an Intel Core i7-6600U CPU 2.60GHz machine. For the analysis, we consider the worst case

scenario corresponding to the highest number of clusters. We select it equal to 1000 that is

the maximum value of clusters returned by the analysis at 500 ms (above this value of k we

do not see any performance improvement). At each time step, the overall operational time
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Figure 12: PIs and realizations are shown for different forecast horizons considering daylight

hours, α = 99% and Method B is applied. Two days with different weather conditions are

selected from the Winter period.

32

Figure 3.11 – PIs and realizations are shown for different forecast horizons considering daylight
hours,α= 99% and Method B is applied. Two days with different weather conditions are selected
from the Winter period.
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Figure 3.12 – PIs and realizations are shown for 5 minutes time horizon and different target
confidence levels, represented by different levels of shadings for the same data of Fig. 3.11.

required to deliver the PI is always less than 0.5 ms. The mean and the standard deviation of

the computational time at each time step are 0.35 ms and 1.14 ms, respectively. Therefore, the

method can be used for the real-time computation of PIs at sub-second time scales.

3.10 Chapter Conclusions

The problem of quantifying the uncertainty associated with solar volatility is investigated

in this Chapter, focusing on forecast horizons that are meaningful in microgrids control

applications (i.e. from sub-second up to minutes). A simple method to deliver PIs for GHI is

proposed and its performance assessed. The proposed technique extracts information from a

limited training set: data are clustered off-line by using the well-known k-means algorithm

and the quantiles of the obtained clusters are then used for PIs computation. The method

does not rely on any specific point forecast technique and does not need any information

from sky imaging. First, a clear-sky model is implemented. It is shown that the de-trending of

the time-series is advantageous for time horizons higher than the minute time-scale, when

the influence of the dynamics associated to solar position becomes non-negligible. We show

that the algorithm outperforms the benchmark case with simple quantiles extractions and the

benchmark case considering the ARIMA model Gaussian distribution of the point forecast

error. Furthermore, performance is shown to be in line or improve those available in the

literature, for all the considered forecast horizons and using a shorter and limited training set.

The method is applied to the original and differentiated clear-sky index time-series. Results

show that the benefit coming from the time-series differentiation decreases while increasing

the forecast horizon. It is shown that the proposed method is able to adapt the widths of the

PIs in order to guarantee the target coverage. In the next Chapter, we investigate if further

information from sky images can improve the proposed method.
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Figure 3.13 – Reliability Diagrams for the three periods and forecast horizons.
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4 Solar Irradiance Forecast and Estima-
tion via All-sky Camera

4.1 Chapter Highlights and Summary

Ground observations using all-sky cameras have recently gained recognition in the field of

solar irradiance forecasting. Considering that the area seen by the hemispherical image

is relatively small, the associated forecasting methods are interesting for single PV plants

or small-scale distribution feeders. In this Chapter, we experimentally investigate how the

inclusion of features from ground all-sky images can be used to: i) improve time-series-based

GHI probabilistic forecasting tools as the one in Chapter 3 and ii) estimate the actual and the

one-step-ahead GHI.

First, we propose a toolchain that allows predicting the cloud cover on the sun disk, through

image processing and cloud motion identification. We investigate the benefit of integrating

this information to improve probabilistic GHI forecasting methods, besides the sole use of the

GHI time-series proposed in Chapter 3. This first analysis also includes a comparison of differ-

ent cloud segmentation and cloud motion identification methods. Second, a methodology to

estimate the irradiance from all-sky images using neural networks is proposed, investigating

the possibility of using an all-sky camera as an irradiance sensor. The obtained estimations

are benchmarked against satellites-based ones. The toolchain is also extended to consider

one-step-ahead GHI point forecast.
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4.2 Forecasting Toolchain

Since the solar irradiance is highly dependent on the cloud coverage, image-based solar

cloud forecast has been largely studied by the recent literature, [14, 100]. This technique

generally refers to short time horizons (the typical maximum horizon is in the order of 20 min,

depending on the wind speed and the camera’s field of view) and provides information on

localised effects. Even if the available studies differ on how the single models are implemented,

a generic toolchain usually adopted in the literature is shown in Fig. 4.1 and consists of the

following steps:

Figure 4.1 – Process of GHI forecast with all-sky images.

1. Image acquisition. Fish-eye cameras are generally used to capture sky images at high

resolution (second time scale).

2. Image pre-processing. The horizon (i.e. topological features and nearby objects) is

removed from the image, and the distortion due to the fish-eye lens is corrected.

3. Cloud segmentation. It consists in detecting the clouds from the clear-sky.

4. Cloud motion or tracking. It consists in estimating the cloud movement.

5. Irradiance forecast. Information from the previous blocks are used to forecast the

irradiance or irradiance variations. This may include cloud shadow mapping (i.e. de-

termining the 3D positions of a cloudy pixels in a real world coordinate system) or

empirical methods based on machine learning.

The following paragraphs detail how these steps are implemented in this work. We first

describe the custom setup for image acquisition and how the images are pre-processed.

Then, we focus on cloud segmentation and cloud motion methods. Our irradiance forecast

model relies on the adoption of machine learning methods.1 In particular, we predict the sun

occlusion (i.e., the predicted local cloud cover in the sun disk) and we use it as influential

variable to train the algorithm proposed in Chapter 3.

1Since our setup does not have a celiometer or similar instrumentations to calculate cloud height, cloud shadow
mapping is not considered in the analysis.
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4.3 Image Acquisition

Two cameras are installed on the roof of our laboratory building at EPFL (GPS coordinates

46.518◦N, 6.565◦E), both pointing at the zenith. The first camera is an ELP USB 2 megapixel

camera with a CMOS sensor and a fish-eye lens. Frames are taken at 1 min resolution with

manual exposure time to limit overexposure of the circumsolar area. The frame-grabber is a

Raspberry PI embedded microcontroller. The second camera is a Basler USB 1.8 megapixel

camera (acA1300-200uc) with a CMOS sensor and a 2/3" Format C-Mount fish-eye lens and

it is shown in Fig. 4.2. A dome-shaped fish-eye protector is installed to protect the lens,

characterized by a 92% light transmission. The frame-grabber is an Intel Nuc. Despite being

more expensive, this second solution allows for a higher controllability of the exposure time.

Frames are taken at 30 s resolution and at 3 different exposure times: automatic (from the

camera internal control algorithm), underexposed, and overexposed. These three images

are then combined in real-time to generate a High Dynamic Range (HDR) image using the

PICCANTE image processing library, [101].

Figure 4.2 – Basler all-sky camera installed on the rooftop PV plant at the EPFL DESL laboratory.

All the images are timestamped and locally saved in a server at the EPFL DESL laboratory. We

note that since the direct light is not blocked, the region around the sun is affected by glare

which affects negatively the accuracy of the cloud segmentation. Results on the first part of the

chapter (namely cloud segmentation, motion, and forecasting) are obtained with the Basler

underexposed images, while results on the irradiance estimations (second part of the chapter)

are obtained using the ELP camera. Indeed, the two setups showed similar performance, only

one is selected for each analysis to avoid redundancy in the results.

4.4 Image Pre-processing

All-sky images are treated to remove the distortion introduced by the fish-eye lens with the

procedure described in [102]. This requires the knowledge of the intrinsic, extrinsic and lens
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distortion parameters, which are inferred with the method in [103], applied one-time prior

operations in an off-line process. Moreover, all the pixels containing unnecessary information,

like objects along the horizon, are removed by applying a bitmask, that is manually determined

off-line since the position of the camera is stationary. Finally, the PVLib library, [104], is used

to calculate the solar angles (azimuth, zenith, and elevation), by knowing the time and the

GPS location of the camera, and then the position of the sun in the image is determined by

applying the zenithal equal area projection method [105]. Fig. 4.3 shows an example of original

and processed images.

(a) Original Image (b) Pre-processed Image

Figure 4.3 – The original all-sky image (left) and pre-processed all-sky image (right) are shown.
Fig. 4.3b is undistorted and cleaned of the horizon features, and the sun location is denoted by
the blue disk.

4.5 Cloud Segmentation

Cloud segmentation consists in determining if a pixel corresponds to a cloudy or a clear-sky

point (binary classification). It is probably the most challenging part of the forecasting chain

due to the fact that several types of clouds exist, combined with several varieties of lighting

conditions.

Most of the literature presents a binary segmentation based on colour features. A common

procedure for cloud detection consists in computing the red to blue ratio (RBR) of the image

color channels for each pixel, and comparing it with a fixed threshold to detect whether the

pixel corresponds to a cloud (high RBR) or a clear-sky (low RBR) pixel. The method was

inspired by the Scripps Institution of Oceanography, [106]. Increased molecular Rayleigh

scattering of shorter wavelengths causes the blue channel to be larger for clear-sky pixels. On

the contrary, since clouds scatter the visible wavelengths more evenly, the red signal is similar

to the blue signal for cloudy pixels. However, misclassification occurs due to very bright clear

sky pixels (high RBR) in the circumsolar area and very dark clouds (low RBR). The method in

[107] suggests an Hybrid Thresholding Algorithm (HYTA) based a normalized RBR. The HYTA

first identifies the RBR as either unimodal or bimodal according to its standard deviation,

and then the unimodal and bimodal images are treated by fixed and minimum cross entropy
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(MCE) thresholding algorithms, respectively. Authors of [14] propose to use a clear-sky library

and a sunshine parameter to improve the cloud detection. The clear-sky library is a database

of clear-sky images captured for different solar zenith angles while the sunshine parameter

is a dynamic RBR threshold that changes from image to image, and is typically small when

the sun is obscured. Authors of [108] propose an augmented RBR definition. It makes use

of a clear-sky library to achieve a better segmentation of the circumsolar pixels, and solar

saturation and gray intensity level to account for dark clouds.

Alternatively to threshold-based methods, learning algorithms have recently gained impor-

tance. Authors of [109] propose a supervised segmentation method based on an analysis

of different color spaces and using principal component analysis and partial least square

regression, providing a probabilistic classification rather than a binary one. The method is

shown to outperform other classical methods based on the RBR. The same Authors in [110]

model the various labels/classes with a continuous-valued multi-variate distribution. Authors

of [111] proposed an unsupervised learning method based on adaptive Gaussian mixture

model and using as feature vectors different combinations of the red, blue and green channels.

4.5.1 Proposed Method for Cloud Segmentation based on the IBR

After an empirical analysis on the combination of several color channels (e.g.: red, blue,

green, intensity) and of different segmentation methods (e.g., Otsu’s thresholding [112], region

growing [113]), the following procedure was found to be the most accurate:

• For each pixel we compute the intensity-blue ratio (IBR). The pixel intensity is computed

by converting the image in grayscale.

• We compute the IBR for the corresponding clear-sky image (IBRcs).

• Subtracting the IBRcs to the IBR of the original image leads to higher accuracy only if

the sun is partly covered or clear-sky, but it misclassifies dark clouds as sky if the sun is

entirely obscured. For this reason we proceed with the ratio subtraction only when the

average pixel intensity in the sun disk (Isun) is above a certain threshold Tsun :

IBR =
IBR− IBRcs, Isun > Tsun

IBR, otherwise.
(4.1)

where Tsun is empirically selected.

• The optimal threshold, i.e. the value above which the pixel is considered as a cloud, is

found by applying the Otsu’s method on the training set, [112]. It is based on computing

the histogram of an image, i.e. the distribution of the pixel values in the image. If

the image is composed of objects on a background, then two peaks are present in the

histogram and the optimal threshold is the value that minimises the intra-variance
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inside each classes (object and background). The Otsu’s method is implemented using

the graythresh function in Matlab.

4.5.2 Segmentation Results: a Comparison of State-of-the-art Methods

In order to find the most appropriate method for the segmentation, we propose here a com-

parison of some of the methods available in the literature. We select 60 underexposed images.

They are selected during September 2017 and to cover different conditions, from clear-sky to

completely cloudy sky. These images are manually segmented and divided randomly into a

training set consisting of 30 images and a testing set consisting of the remaining 30 images.

The training set is used to compute the empirical parameters for the threshold-based methods

or to train the algorithm in the supervised learning methods. All the results are presented by

performing a two-fold cross-validation on the set of 60 images. The selected methods, their

implementation, and the results of the comparison are described hereafter.

Schmidt’s segmentation

The first method is the one proposed in [108]. The modified RBR is defined as:

Rmod = Rorig −RCSL(a (S−1)−b (In− c)) (4.2)

where Rorig is the RBR of the considered image, RCSL is the corresponding RBR value on a

clear-sky picture (selected from a clear-sky library such that the sun position is as close as

possible to the target picture 2), S is the saturation and refers to the percentage of saturated

pixels in a circumsolar region with radius r , In is the gray intensity level, while a, b and c

are tuning parameters. Finally, a pixel is marked as a cloud if its modified RBR value in Eq.

4.2 is larger than a threshold Rthr esh . The free parameters a, b, c, r , Rthr esh involved in the

cloud detection procedure are determined in order to give the best performance with our

imaging setup. They are chosen with the following heuristic procedure: the training images are

segmented by using different possible combinations of the parameters in the ranges shown in

Table 4.1. Then, the segmented images are compared with the manually segmented ones and

best values of the parameters are chosen as those leading to the best cloud map estimation.

Table 4.1 – Segmentation parameter setting

Name Selected value Tested range
a 0.1 0 to 1, with a step of 0.1
b 0.006 0 to 0.003, with a step of 0.001
c 400 100 to 500, with a step of 10
Rthr esh 0.4 0.1 to 1, with a step of 0.1
r (pixels) 30 30 to 100, with a step of 10

2The clear-sky library is a set of clear-sky pictures that is manually determined off-line by selecting clear-sky
days from the same period of the testing images.
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Hyta

The second method we propose to compare is the Hyta previously introduced. In our exper-

iments, we set the standard deviation threshold to 0.3 (an image with a standard deviation

greater than 0.3 is considered bimodal, otherwise is unimodal). The fixed threshold for uni-

modal images is instead fixed to 0.25. These parameters are selected as those leading to the

best cloud map estimation in the training set.

IBR Method

For the proposed methods based on the IBR, we found that the best performance is obtained

for a value of Tsun=230 ( considering pixels value of 8-bit integer giving a range of possible

values from 0 to 255). The threshold above which the pixel is considered as cloudy is found

equal to 0.73 and 0.0989 for the cases without and with sun subtraction, respectively.

Supervised Learning Methods

Finally, we implement four supervised segmentation methods:

• We use the method proposed in [110] to perform a binary cloud classification. The set of

features (SET 1) is composed by the red channel, the RBR, and the saturation channel of

the HSV color space. This set of features was found to be the most significant for cloud

segmentation when performing an extensive analysis on 16 colour channels by the same

Authors [114]. Assuming each feature to be a continuous random variable, Gaussian

Discriminant Analysis is used to model the different class labels using multivariate

Gaussian distribution (MVG), [115].

• The same set of features (SET 1) is used to classify the pixel using the binary support

vector machine (SVM) classifier implementation in Matlab, [116]. We name this method

as SVM1. 3

• The same set of features (SET 1) is used to classify the pixel in cloudy or clear-sky using

the multinomial logistic regression (MLR) implementation in Matlab, [117]. We name

this method as MLR1. Given a set of predictors, the algorithm returns the predicted

probabilities for the multinomial logistic regression model. In our case, the probability

above which the pixel is considered as cloud is selected empirically on the training set

equal to 0.72.

• A new set of features is considered as input to the SVM and the MLR. The second set

of features (SET 2) is selected as proposed in [118]. The new features are: the RBR, the

normalized RBR, the contrast and the entropy of the image, the red ad blue difference,

3 An SVM classifies data by finding the best hyperplane that separates all data points of one class from those of
the other class.

65



Chapter 4. Solar Irradiance Forecast and Estimation via All-sky Camera

Table 4.2 – Precision of several segmentation methods.

Method Schmidt Hyta IBR MVG SVM1 MLR1 SVM2 MLR2
Precision [%] 80.3 79.8 83.7 80.7 73.1 78.6 72.6 77.8

and the ratio of the red channel to the maximum of red and blue channel. We name

these methods SVM2 and MLR2, respectively.

Metrics and Results

By comparing the obtained segmented image with the ground truth, we obtain the true

positive (TP), true negative (TN), false positive (FP), and false negative (FN) samples of a

binary image. We compute the segmentation precision as:

Precision = TP/(TP+FP) (4.3)

Results are shown in Table 4.2. From the table, we can conclude that the proposed IBR method

is the most performing one, followed by the supervised MVG, and the Schmidt method.

An example of segmentation obtained using the proposed IBR method is shown in Fig. 4.4. We

can see how also dark clouds are correctly classified.

Figure 4.4 – Example of segmentation using the IBR method.

4.6 Cloud Motion

Cloud motion identification is the next important step to compute the irradiance forecast.

Most of the literature compares two consecutive images to identify pixel correlations and

cloud velocity fields. Then, assuming spatial homogeneity, a unique motion vector, here called

global motion vector, is obtained. Finally, assuming a persistent cloud motion for the following

time interval, the cloud map is advected at the speed and direction of the global motion vector

to obtain the predicted cloud map. Several methods have been proposed in the literature
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for cloud motion identification. Chow et Al., [14], use the cross-correlation method (CCM),

applied to two consecutive images, to search the vector with the largest cross-correlation

coefficient. Another technique for cloud tracking is the optical flow, [119], which consists

of a collection of apparent velocities of objects in an image. It is applied for predicting sun

occlusions in [120], using consecutive frames shot at 5 seconds distance. To stabilize the

tracking process, the Kalman Filter is applied as a predictor-corrector algorithm. Authors of

[121] propose to use the particle image velocimetry (PIV) and by then applying the k-means

clustering on the obtained velocity vectors in order to obtain a representative velocity vector.

Quesada-Ruiz et al. in [122] propose a method for cloud tracking applied to intra-hour direct

normal irradiance forecast. A sector-based method is used to detect the direction of motion

of potentially sun-blocking clouds, and an adjustable-ladder method focuses on sky regions

that potentially affects DNI values. Finally, Bernecker et al. in [123] introduced non-rigid

registration for detecting cloud motion. A sun occlusion probability is filtered by a Kalman

filter to obtain continuous GHI forecasts for up to 10 min.

In our analysis three methods are considered to compute the motion fields:

1. Particle Image Velocimetry (PIV). In brief, PIV consists in comparing two consecutive

pictures by evaluating the cross-correlation between portions of the images, called

interrogation areas. This allows inferring the most likely particle displacement and to

compute the motion vectors. We use the "MPIV" library in [124] and using an inter-

rogation window of 32x32 pixels, the velocity vectors are calculated by the minimum

quadratic difference algorithm, and with 0 overlapping between consecutive windows.

2. The optical flow (OF). OF is performed by implementing the Lucas-Kanade method is its

Matlab formulation, [125]. It assumes that the flow is constant in a local neighbourhood

of the pixel under consideration, and solves the basic optical flow equations for all the

pixels in that neighbourhood, using the least squares criterion.

3. The persistent method. This method assumes that the clouds are persistent in a short-

term horizon, and therefore the global cloud motion vector is zero.

Once the cloud fields are obtained from the PIV and OF, the global motion vector is obtained

by spatially averaging the obtained vectors.

4.6.1 Local Cloud Cover Computation

The last step of our chain aims at predicting the local cloud cover at the following time step. It

consists in translating the current cloud map according to the global motion vector, which is

scaled in magnitude according to the forecasting horizon. This leads to the so-called forecasted

cloud map.

An example of the procedure described until this stage is shown in Fig. 4.5. Fig. 4.5a shows
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Figure 4.5 – Example of the forecasted cloud map procedure.

the undistorted view of the sky with the sun location (blue circle) and motion vectors (green

arrows). The global motion vector, obtained by spatially averaging the vectors, is used to

translate the cloud map obtained by segmenting the original image. The translated cloud

map is shown in Fig. 4.5b, where the white color denotes cloudy pixels, blue the clear-sky,

and yellow the circumsolar region. Fig. 4.5c shows the 1 min ahead realization. Fig. 4.5d

compares the forecasted cloud map (purple color) against the future ground truth cloud map

from Fig. 4.5c (green color). The white color denotes those pixels which are correctly classified

as cloudy.

The forecasted local cloud cover is computed as the percentage of cloudy pixels in the fore-

casted cloud map in a region around the sun. The considered region is a disk centered at the

sun position. We consider a circumsolar area rather than the whole picture since this is the

region with the largest interest when considering short-term sun occlusions by clouds.

4.6.2 Results on Cloud Motion

In order to evaluate the performance of the cloud motion, we select 20 consecutive pictures

during a partly cloudy period and we manually segment them such that the segmentation error

is negligible in this analysis. Then, the three cloud motion methods (PIV, OF and Persistent)

are applied to obtain the forecasted local cloud cover (which is computed on an area of 100

pixels around the sun position). We define the cloud motion error as the relative error between

the forecasted local cloud cover and the ground truth one.

Results are shown in Table 4.3. The OF returns the lowest error and is therefore used in the
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Table 4.3 – Comparison on cloud motion.

PIV OF Persistent
Cloud Motion Error [%] 2.0 1.2 2.5

following analysis.

4.7 Improvement of Time-series-based Forecasting

In this Section, we investigate if integrating the local cloud cover into machine learning-based

methods can lead to improve performance with respect to the case when only information

from the irradiance time-series are used. We consider the probabilistic forecasting tool de-

scribed in Chapter 3. Indeed, the clustering procedure is general enough to include heteroge-

neous influential variables (e.g. coming from the GHI time-series or the images). We augment

the proposed algorithm by including the local cloud cover as an additional influential variable.

To compute the forecasted local cloud cover and test its influence on the GHI forecasting tool,

we choose the best performing segmentation and cloud motion algorithms from the previous

analysis, namely the IBR method for segmentation and the optical flow for cloud motion.

We compare the k-means-based algorithm (formulated as Method B, i.e. by differentiating

the clear-sky index time-series, see Chapter 3) for three different combinations of influential

variables:

• average irradiance and its variability. This is the original method discussed in Chapter 3,

which does not require all-sky camera information. We name this case GHI measure-

ments;

• average irradiance, its variability, and the local cloud cover (henceforth called Images +

GHI measurements);

• local cloud cover only (henceforth called Images).

The training and testing dataset consists of 22 and 8 days, respectively. GHI observations

are from the pyranometer as described in Section 2.2.1. Images and GHI measurements are

time synchronized at 1 min resolution. We consider 1, 2, 5, and 10 min as forecast horizons.

Therefore, for the analysis at 2, 5, and 10 min the information are downsampled by simple dec-

imation. We use the standardized metrics defined in Section 2.3.1 to evaluate the PIs, namely

the prediction interval coverage probability (PICP) and the prediction interval normalized

average width (PINAW). Results are summarized in Tables 4.4 and 4.5, and the PINAW is also

shown in Fig. 4.6. They can be summarized as follows:

• from Table 4.4, all the considered cases have a coverage probability (PICP) close to the

target confidence level (95%), denoting that the methods have a good reliability;
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Table 4.4 – PICP (%)

Forecast horizon 1 min 2 min 5 min 10 min

GHI measurements 96.06 95.6 95.14 97.2

Images + GHI measurements 94.75 95.16 96.45 97.23

Images 94.92 94.56 94.75 95.95

• in any case, adding the forecasted local cloud cover to GHI measurements is beneficial

as it improves the GHI forecast for all the considered forecasting horizons (or it does not

impact negatively, as in the 1 min case);

• the use of the forecasted local cloud cover as only influential variable outperforms the

other methods at 1, 2, and 5 min forecast horizons in terms of PINAW. However, the

PICP is slightly lower.

Table 4.5 – PINAW (%)

Forecast horizon 1 min 2 min 5 min 10 min

GHI measurements 4.13 7.05 12.69 18.12

Images + GHI measurements 4.1 6.65 12.1 16.1

Images 3.5 5.6 11.7 17.1
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Figure 4.6 – PINAW of the GHI prediction for different forecast horizons.

In conclusion, results on GHI prediction intervals shows that including information of the

local cloud cover is in general beneficial because it leads to get smaller PIs width. Future work

might include the extension of the method to a larger dataset (e.g. one year). Furthermore, it

is expected that improving the toolchain (e.g. having a more sophisticated segmentation and

cloud motion methods) can lead to a more precise calculation of the local cloud cover, and

finally to smaller PIs.
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The main drawback of the method is that it still relies on GHI measurements. For this reason,

the next step is to evaluate if, when correctly calibrated, the all-sky camera can be used as a

GHI sensor itself, this allowing getting rid of the pyranometer or in general of a further sensing

system.

4.8 All-sky-camera for GHI Estimation

Irradiance ground measurements are generally provided by thermopile or photodiode pyra-

nometers; a comparison of the two technologies for PV-plant monitoring applications can

be found in [126]. The use of all-sky cameras for irradiance estimation has recently come

to prominence. The fundamental advantage over pyranometers is that all-sky images pro-

vide additional information, like the cloud map and movement, which can be relevant for

irradiance forecasting processes. In contrast to satellites, the all-sky camera can deliver local

high-frequency images (up to sub-second resolution) thanks to its reduced footprint and the

possibility of being installed in the proximity of the PV panels.

Measurements of the solar irradiance over large geographical areas are usually based on

satellite imaging. Heliosat-2, [127, 128], is the most established physical-based method. It

converts observations made by geostationary meteorological satellites into estimates of the

global irradiance at ground level, by combining a clear-sky model with a cloud index. The

cloud index is calculated from a comparison of what is observed by the sensor and what

is observed over that pixel in clear-sky conditions. Other methods using information from

satellites normally use supervised regression techniques to map certain features extracted

from satellite images to measured irradiance values. E.g., Authors of [129] use Meteosat SEVIRI

thermal channels to train two artificial neural networks (ANN), one for estimating the direct

normal irradiance (DNI) and one for the diffuse horizontal irradiance (DHI), which are then

combined to estimate the GHI. One year of data is used for training and one year of data for

testing. The normalized root mean square error (nRMSE) of the estimation at 10 min resolution

is 12.4%. The temporal and spatial resolutions of satellite-based estimations are generally

site specific and depend on the characteristics of the available fleet of geostationary satellites.

E.g., for Europe, Africa, and Indian Ocean, Meteosat-10 and 11 satellites provide real-time

imagery with 1-3 km spatial resolution, and 5-15 min temporal resolution. The coarse spatial

and temporal resolutions of satellite-based estimations limit their applicability to regional

electricity systems. This opens to the need for irradiance estimations using ground-based

images.

Recently, Authors of [130] estimate both the direct normal irradiance (DNI), and the diffuse

horizontal irradiance (DHI) using information from a camera system with a charge-coupled

device (CCD) sensor. The former is estimated by using the pixels in the 16-bit high dynamic

range (HDR), the latter by evaluating the intensity of the smear effect on CCDs caused by

very bright light. Each of the components requires calibration, done three times during the

testing period of 1 year. The estimation nRMSE of GHI is 6-9% compared to pyranometer
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measurements and considering hourly averaged data. However, the method applies to CCD

sensors only.

Few works focus on the use of image features to build regression models. Authors of [131]

present an estimator of the direct, diffuse, and global irradiance using a full-colour sky camera

system with a CCD sensor and a rotational shadow-band. Polynomials functions are fitted by

selecting the best colour channels combinations to describe each solar radiation component.

Four years of data are used in the analysis, showing a nRMSE for 1 min period GHI of about

9% (6% during clear-sky, 13% for partly-cloudy, and 12% for overcast conditions). The work in

[132] proposes to estimate the direct, diffuse and global irradiance using a low-cost camera.

The irradiance components are estimated by the use of specific radiation transfer functions

established by linear regression. The average nRMSE of GHI estimation at 5 min resolution

over a one month period is 17%. Authors of [133, 134] use image features as the average pixel

intensity of the whole image and the circumsolar area, analysis of the gray-level co-occurrence

matrix (GLCM), information of the RGB color space, and the cloud coverage to estimate

normalized direct and diffuse irradiance. In particular, features are ranked with decision

tree algorithm and then the k-nearest neighbour (k-NN) regression algorithm is applied. The

average nRMSE for 10 s GHI estimations is 24%.

We propose here a new method to estimate the GHI from images delivered by an all-sky camera,

based on an artificial neural network (ANN). At first, a number of features are extracted from

historical all-sky images and from a clear-sky model. Then, feature selection is performed

to determine the most relevant features by applying principal component analysis (PCA),

[135]. The reduced features are used to perform a supervised training4 of the ANN, where

the target value is the clear-sky index (i.e. the ratio between the measured GHI and clear-sky

GHI). At the time of delivering an estimation, the relevant features are extracted from the

newly available all-sky image, and input to the ANN to estimate the current clear-sky index,

which is finally converted to GHI by multiplying by the clear-sky GHI. The proposed method

is denoted as ASIs-based. As a further contribution, the obtained results are benchmarked

against methods that produce irradiance estimates from satellite images. In particular, we

exploit the potentiality of the proposed method to integrate heterogeneous data sources to

evaluate whether additional features from satellites images improve the GHI estimations. In

the first case, Meteosat SEVIRI spectral channels are used as additional inputs to the proposed

method, i.e. PCA feature selection and ANN (we refer to this case as ASIs/S-based). In the

second case, only the spectral channels from the satellites are used as input to the proposed

method, similarly to [129]. We refer to this last case as S-based. The GHI estimations obtained

in the three cases (ASIs-based, ASIs/S-based, and S-based) are benchmarked against the

Heliosat-2 method. The testing dataset covers different periods of the year and different time

resolutions (1, 5 and 15 min). As a final analysis, the proposed ASI-s based method is extended

to GHI forecasting, namely the output of the ANN is the one-step-ahead clear-sky index rather

than the actual one. For this last analysis, results are compared with the persistent forecast.

4The training is considered supervised when the desired output value is known during the learning phase.
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4.8.1 ASI-based GHI Estimation

We assume to have access to the following historical information: all-sky images taken at

ground level, and GHI measurements used as ground truth.5 The proposed procedure to

estimate the GHI is summarized in Fig. 4.7 and detailed in the following paragraphs. During

the training phase (performed off-line), historical all-sky images are pre-processed, and a

large set of features is extracted from each image. Then, PCA is applied for feature selection

and the selected subset is used for training an ANN, using the clear-sky index (calculated as

described in Section 4.8.1) as a target. Once the ANN model is built, the on-line procedure to

estimate the GHI can be followed: a new image is captured and pre-processed, and the set of

selected features is used as input to the ANN to estimate the clear-sky index. The GHI is then

obtained by multiplying the estimated clear-sky index by the clear-sky irradiance.
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Figure 4.7 – Outline of the proposed method.

Features Extraction

The features extracted from the images are 26 in total and are extensively described in the

following paragraphs. They are chosen empirically, or inspired from the existing literature,

5The measurements of the GHI are needed only during the training phase, and a possible final user would not
need this further information during the on-line operation.
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with the objective of capturing those quantities which might be related with the irradiance

incident on the sensor. The considered features are: the average intensity of the pixels and

the frequency of saturated pixels in four concentric areas around the sun, the mean of several

colour channels representations over the whole image (red, green, blue, hue, saturation,

value, luma and chrominance), image texture information (contrast, homogeneity, correlation,

energy, skewness, kurtosis), the red-to-blue ratio (RBR), and the red-to-green-ratio (RGR).

In addition to the 26 image features, the solar azimuth (θA), solar elevation (θel ), and the

clear-sky irradiance (GHIcs) are used as additional inputs to the ANN and they are computed

as described in [104].

Sun areas features: Inspired by [134], solid anglesΩ of 5◦, 10◦, 15◦ and 20◦ are used to define

four subtended areas around the sun location. For each area with a set P of m pixels, we

compute the average intensity of the pixels as:

Aver ag e Intensi t y = 1

3m

( ∑
R∈P

R+ ∑
B∈P

B+ ∑
G∈P

G

)
, (4.4)

where R, B, G are the red, blue and green pixel values, respectively. Pixel saturation happens

when the color channels of the camera sensor assume the maximum value. The frequency of

saturated pixels is calculated as:

Satur ated F r equenc y = 1

3m

( ∑
R∈P

cR + ∑
B∈P

cB + ∑
G∈P

cG

)
, (4.5)

where for a generic color channel i

ci =
1, i ≥ Threshold

0, otherwise.
(4.6)

We select a threshold value of 253 assuming an 8-bit representation per color channel.

Color Features: It is possible to represent pixel values in different systems. The most common

one is the RGB (Red, Green, Blue), that is physically used by the camera to capture the light

information. An alternative system is the HSV (Hue, Saturation, Value), that is obtained

through a non-linear transformation of the 3 dimensional space of RGB to an hexcon, see [136].

A third system is the YIQ system (where Y is the luma while I and Q represent the chrominance),

that is obtained from the RGB space by applying the following linear transformation:

Y

I

Q

 =

 0.299 0.587 0.114

0.701 −0.587 −0.114

−0.299 −0.587 0.886


R

G

B

 . (4.7)

For the three color representation systems, we consider the mean of each color component
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over the whole image. If the masked image’s pixels set has dimension M , the mean values of a

generic channel X is defined as:

Xmean = 1

M

∑
X∈M

X . (4.8)

Texture features: The image grey level co-occurrence matrix (GLCM), [137], can measure the

texture of an image, i.e. it gives information about the spatial arrangement of the colors and

intensities. In the GLCM matrix each element (i , j ) represents the number of times that the

pixel valued i occurs horizontally adjacent to a pixel valued j . We consider the normalized

GLCM, where each element lies between 0 and 1 so that each element can be thought as a

probability p(i , j ). In our analysis, the distance between the pixel of interest and its neighbour

is considered as an offset of value 1 (namely, 0 row and 1 column). Contrast measures the

intensity between a pixel and its neighbour over the whole image:

contr ast =∑
i , j

|i − j |2p(i , j ). (4.9)

Homogeneity measures the closeness of the distribution of elements in the GLCM to the

GLCM diagonal:

homog enei t y =∑
i , j

p(i , j )

1+|i + j | . (4.10)

Correlation measures how correlated a pixel is to its neighbour over the whole image:

cor r el ati on =∑
i , j

(i −µi )( j −µ j )p(i , j )

σiσ j
, (4.11)

where µ andσ are the mean and the standard deviation of the row and column elements sums,

respectively. Energy represents the smoothness of the image:

ener g y =∑
i , j

p(i , j )2. (4.12)

The entropy of the image:

entr opy =−∑
i

pi l og2(pi ), (4.13)

where log2 is the base 2 logarithm.

Finally, we add the skewness and the kurtosis computed for the grayscale image. Skewness

measures the asymmetry around the distribution mean:

skewness =
1

MGL

∑
IGL∈MGL

(IGL − ĪGL)3

∑
IGL∈MGL

(√
1

MGL
(IGL − ĪGL)2)

)3 , (4.14)
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where MGL is the number of pixels in the grayscale image, IGL is the pixel grayscale intensity,

and ĪGL the mean pixel intensity over the grayscale image. Kurtosis shows how outlier-prone

the distribution is:

kur tosi s =
1

MGL

∑
IGL∈MGL

(IGL − ĪGL)4(
1

MGL

∑
IGL∈MGL

(IGL − ĪGL)2
)2 . (4.15)

RGB channel ratio: Two more features, usually adopted for cloud detection, are added: the

red-to-blue ratio (RBR) and red-to-green-ratio (RGR). The ratios are defined as:

RBR = 1

M

∑
R,B∈M

R

B
, (4.16)

RGR = 1

M

∑
R,G∈M

R

G
. (4.17)

Clear-sky index

The target value of the proposed estimator is the clear-sky index, K , defined as the ratio

between the measured GHI and the clear-sky irradiance GHIcs, see 3.2.

The clear-sky irradiance is here calculated using the Ineichen/Perez model, [138, 139], as

formulated in the PVLib library, [104]. We remind here that in the proposed method, the

clear-sky index K is used as the target of the ANN while the GHIcs is used as an additional

influential variable.

Principal Component Analysis

Features selection is carried out to avoid over-fitting, curse dimensionality, and to reduce

the computational time needed for training. One of the most common dimension reduction

technique is Principal Component Analysis (PCA). PCA is a statistical method that transforms

a set of possibly correlated variables into a new set of orthogonal variables, called principal

components, so that the greatest variance lies on the few first principal components. In order

to evaluate the significance of each original variable we combine the simple PCA with the

procedure proposed in [140]. In particular:

• The original dataset consists of N observations and D features (N -by-D matrix). We

normalize the dataset by subtracting the mean across each feature dimension.

• We compute the covariance matrix of the dataset, along with its eigenvalues and eigen-

vectors (V ).

• We determine the L eigenvectors corresponding to the first L largest eigenvalues. The

number of principal component L is here selected such that they contain 99.5% of the
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total variance.

• We compute the contribution indexes of the j th component as:

C j =
L∑

z=1
|Vz j | j = 1...D. (4.18)

• We sort the indices C j in descending order and select the first L features that represent

the reduced dataset in the original space. For example, if Cx and Cy are respectively

the first and second largest among all the C j , then we will have D1 = x and D2 = y ,

meaning that the x th and y th feature components of the original dataset are the two

most important features.

Artificial Neural Network

ANNs are used for both regression and classification problems in many fields, including

irradiance modelling and forecasting. The general concept behind ANNs is that the input

variables are connected to the output by sending signals through layers of units called neurons.

In particular, the first layer contains the inputs, the last layer contains the output, and the

middle layers contain a given number of hidden neurons. A feedforward network consists

of connections that transfer the output of a neuron to the input of the next neuron, each

connection characterized by a weight. Optimization algorithms, e.g. conjugate gradients,

back-propagation, and Levenberg-Marquardt are used to adjust the weights, with the aim of

minimizing a performance function on the training dataset. In our case, the Matlab implemen-

tation of the Levenberg-Marquardt algorithm is used to train the ANN, [141]. The performance

function is the mean square error between the network predictions and the target outputs.

The number of hidden layers is 1, and the number of neurons per layer is 10. These values are

selected to avoid overfitting the data and to guarantee a limited computational time.

4.8.2 Satellite-based ANN

The same procedure described in Section 4.8.1 is followed, by applying PCA feature selection

and then training the ANN. In this case, two possible set of input features are considered:

• Satellites spectral channels are added as features to those selected from the all-sky

camera (ASIs/S-based method);

• Only satellites spectral channels are used as features (S-based method).

Rectified (level 1.5) Meteosat SEVIRI Rapid Scan image data are obtained from the EUMETSAT

Data Centre at 5 min resolution, [142] and are used to retrieve the values of the spectral

channels. High Rate SEVIRI image data consist of geographical arrays of various sizes of image

pixels. Each pixel contains information on the received radiation in 12 spectral wavelength
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channels. Of these 12 spectral channels, 11 (8 channels in the infrared and three in the

solar spectrum) provide measurements with a resolution of 3 km while the 12th , the High

Resolution Visible (HRV) channel, provide measurements with a resolution of 1 km. Spectral

channels are retrieved using Pytroll for the pixel corresponding to our location, [143]. In

particular, we extract those channels generally considered as sensitive to the constituents

of the atmosphere and generally applied to observe wind fields, clouds, water vapor, etc.,

[129]: IR3.9 (3.9µm), WV6.2 (6.25µm), WV7.3 (7.35µm), IR8.7 (8.7µm), IR9.7 (9.7µm), IR10.8

(10.8µm), IR12.0 (12µm), IR13.4 (13.4µm), VIS0.6 (0.635µm), VIS0.8 (0.81µm). The first eight

channels are converted into brightness temperatures as explained in [144].

4.8.3 Heliosat-2

Heliosat-2-based GHI estimations are obtained from the HelioClim-3 database, [145], from

the SoDa Service, [146, 147]. We use the HelioClim-3 version 5 (HC3v5), based on the McClear

clear-sky model, [148], with forecasted values of aerosols, water vapor, ozone from the Coper-

nicus Atmospheric Monitoring Service. We retrieve the GHI time-series from the service at

1, 5, and 15 min time resolution. The spatial resolution corresponds to the Meteosat images

(3 km at Nadir). The acquisition time step of Meteosat is 15 min so the 1 and 5 min sampled

time-series are obtained by temporal interpolation. As suggested in [149], satellites-based

estimations are refined through a calibration using on-site measurements. The calibration

is performed accordingly to what proposed in [146], i.e. by fitting a regression between the

GHI measurements and the ground truth daily value (e.g. the local measurements from the

pyranometer). Daily GHI local measurements are retrieved for one year at one hour resolution,

and time aligned with the Heliosat-2 estimations. The calibration is computed as:

GHIcal = aGHIday +bW2 +c, (4.19)

where W = dayofyear
365 −0.5, GHIday is the daily measured irradiance, and a,b, and c the fitting

coefficients. The three coefficients are obtained from a regression analysis between the ground

truth values and the HC3v5 values. In our case, the calibration allows reducing the annual bias

error from 45 to 0.01 W/m2.

4.8.4 Results

Training and Testing Datasets

All-sky images are selected from the ELP setup described in Section 4.3, frames are taken at

1 min resolution with fixed exposure time. The GHI is sampled at 1 s temporal resolution

using the Apogee SP-230 all-season pyranometer described in Section 3.8, installed in the

proximity of the camera (3 meters distant). GHI measurements, originally sampled at 1 s

resolution, are downsampled to 1 min by averaging the samples. For the analysis, we consider

four datasets of 15 days each from different periods of the year (April, July, September, and
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Table 4.6 – Characterization of the datasets.

Number of Data GHI mean W/m2 GHI variability W/m2

April 5540 438 200

July 9720 412 270

September 6395 304 240

December 4400 182 99

December). Each dataset consists of: measurements of the GHI (considered as the ground

truth, originally available at 1 s resolution and then downsampled by average to 1 min), ASIs

(originally obtained at 1 min resolution), SEVIRI images from the satellites (originally available

at 5 min resolution), and the Heliosat-2-based GHI estimations (originally available at 15 min

resolution).The data are first processed and then time-aligned on a local server via Network

Time Protocol (NTP).

A quality check procedure is performed for the GHI ground truth measurements, inspired by

[150]. In particular:

• the values are set to NaN below a solar elevation angle of 10 degrees and if the measured

GHI is negative;

• all the missing values are set to NaN;

• the values which exceed Extremely Rare Limits (ERL):

0.03GHIT < GHI < min(1.2BNIT,1.5BNITcos(θz )1.2 +100) (4.20)

and Physical Possible Limits (PPL):

0.03GHIT < GHI < 1.2BNITcos(θz )1.2 +50 (4.21)

are discarded. GHIT and BNIT are the global and the beam components of the irradiance

at the top of atmosphere, and θz the solar zenith angle.

• if the difference between two consecutive GHI measurements is higher than 1000 W/m2

the values are set to NaN;

• any valid single value surrounded by NaN values is also set to NaN.

Table 4.6 shows for the minute samples time-series (April, July, September, and December) the

number of data available after the quality check, the average measured GHI, and its variability

(here defined as the standard deviation of the difference between the series and its moving

average over a 15 min time interval).
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GHI measurements from the pyranometer are downsampled by averaging the samples to

obtain the time-series for the 5 and 15 min time resolutions. For the analysis at 5 and 15 min,

ASIs estimations are also downsampled by averaging the estimations available at 1 min. For

the analysis at 1 min, SEVIRI-based information are upsampled assuming they are piecewise

constant in the 5 min interval. For the analysis at 15 min, SEVIRI-based information are

downsampled by averaging the values. We note that the 5 and 15 min downsample of the data

are performed only if at least 100% of the 1 min data are available in that time window. For the

analysis at 1 and 5 min, Heliosat-2 estimations are upsampled by a smart temporal interpola-

tion, which takes into account the sun position for each minute. Table 4.7 summarizes the

upsampling/downsampling methods adopted for the different types of data.

Table 4.7 – Data upsampling/downsampling methods.

1 min 5 min 15 min

Pyranometer downs. by average downs. by average downs. by average

ASIs - downs. by average downs. by average

SEVIRI piecewise constant upsample - downs. by average

Heliosat-2 smart upsample smart upsample -

It is worth noting that, since temporal information can be converted into spatial information

via cloud speed (by simply considering cloud advection), a temporal average of the GHI

measurements also represents a spatial average and vice-versa, [11].

The feature selection is performed on a reduced dataset containing 20 days at 1 min resolution.

These days are randomly selected from the global dataset of 60 days. Training and testing are

computed for each period separately and follow a three-fold cross-validation. Each of the

three datasets is further split into three sub-sequences. For each sub-sequence, the ANN is

trained on the first fold and tested on the remaining two. Each training fold contains 75%

of the data and each testing the remaining 25%. The process is repeated for all the three

folds, each time testing the ANN on the part of the data which is not used for the training. In

total, the ANN is trained and tested three times for each dataset and for each time resolution.

Each sub-sequence contains days with a mix of weather conditions: clear-sky, partly-cloudy,

and overcast. The performance metrics reported below are the average of the metrics values

obtained in each fold of the three-fold cross-validation.

Selected Features

All extracted features are listed in Table 4.8 for the three cases: features from images and solar

position (ASIs), combination of ASIs with SEVIRI channels (ASIs/SEVIRI), and SEVIRI channels

with solar position (SEVIRI). For all the cases, the clear-sky irradiance GHIcs, the solar azimuth

θA , and the solar elevation θel are added as further influential variables. The most influential
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features are selected using the procedure described in Section 4.8.1, and are underlined in

Table 4.8. The number of selected features is 18 in the ASIs case, 19 in the ASIs/SEVIRI case

(only one additional feature from satellites is selected by the PCA), and 7 in the SEVIRI case.

Fig. 4.8 shows the percentage of the total variance explained by each principal component

and its cumulative sum.

Table 4.8 – Extracted Features.

ASIs

Average Intensity Ω= 5◦,Ω= 10◦,Ω= 15◦,Ω= 20◦,

Saturated Frequency Ω= 5◦,Ω= 10◦,Ω= 15◦, Ω= 20◦

Rmean , Gmean , Bmean , Hmean , Smean , Vmean , Ymean , Imean , Qmean ,

contrast, homogeneity, correlation, energy, entropy, skewness, kurtosis,

RBR, RGR, GHIcs, θA , θel

ASIs/SEVIRI

Average Intensity Ω= 5◦,Ω= 10◦,Ω= 15◦,Ω= 20◦,

Saturated Frequency Ω= 5◦,Ω= 10◦,Ω= 15◦, Ω= 20◦

Rmean , Gmean , Bmean , Hmean , Smean , Vmean , Ymean , Imean , Qmean ,

contrast, homogeneity, correlation, energy, entropy, skewness, kurtosis,

RBR, RGR, GHIcs, θA , θel ,

WV6.2, WV7.3, IR8.7,IR9.7, IR10.8, IR12.0, IR13.4, VIS0.6, VIS0.8

SEVIRI
GHIcs, θA , θel , WV6.2, WV7.3, IR8.7,IR9.7, IR10.8,

IR12.0, IR13.4, VIS0.6,VIS0.8.

Metrics

Let GHIt be the ground truth GHI at time t = 1, . . . ,T , where T is the number of samples, ĜHIt

the estimation, GHImean the mean irradiance over the considered period, and GHImax = 1000

W/m2. The metrics used to characterize the performance of the proposed techniques are: the

per unit (pu) and normalized (n) mean squared error (RMSE), the mean absolute error (MAE),

the mean bias error (MBE), and the correlation coefficient (CC):

puRMSE = 1

GHImax
·
√√√√ T∑

t=1

(ĜHIt−GHIt)

T

2

, (4.22)

nRMSE = 1

GHImean
·
√√√√ T∑

t=1

(ĜHIt−GHIt)

T

2

, (4.23)

MAE =
T∑

t=1

|�GHIt −GHIt|
T

, (4.24)

MBE =
T∑

t=1

�GHIt −GHIt

T
, (4.25)

CC =

T∑
t=1

(�G H It − �G H It )(G H It −G H It )√
T∑

t=1
(�G H It − �G H It )2

√
T∑

t=1
(G H It −G H It )2

(4.26)
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where the bar symbol represents the average value of the time-series.

GHI Estimation

Results of the GHI estimations are shown in Tables 4.9, 4.10, 4.11, and 4.12 respectively for

the four considered periods (April, July, September, and December), time resolutions, and

investigated methods. The proposed ASIs-based estimations (ASIs) outperform the other

cases in terms of all the considered metrics. The relative improvement with respect to the

Heliosat-2 (H-2) method ranges between 20-45% in terms of RMSE. The improvement is

observable also when considering a time resolution of 15 min (i.e., when satellites information

is not upsampled). This is explained by the fact that the all-sky camera is able to capture

fast local dynamics caused by cloud passing more accurately than the satellite method that

is characterized by a spatial resolution of 3 km. This is also shown by the cross-correlation

coefficient that is closer to 1 for the ASIs-based method. It is possible to see that even if

the H-2 calibration allows deleting the yearly bias, a monthly bias is still present (MBE is

in our case positive for April and July, and negative for September and December). From

Tables 4.9-4.12 it is possible to verify that the ASIs/S-based method (ASIs/S) is not better than

the ASIs-based, thus denoting that the additional information does not lead to increase the

performance. Finally, the case with the SEVIRI features (S) shows the poorest performance

with a puRMSE ranging from 11% to 22%. Fig. 4.9 shows the scatter plots of the estimates

clear-sky index versus the measured one considering all the available estimations (i.e., all the

four periods), and for 1, 5, and 15 min resolution. Left plots refer to the ASIs method and right

plots to the H-2. Also from these plots is possible to see that for the ASIs cases the points are

more distributed around the 1:1 line. The probability density of the GHI estimation error is

shown for the whole considered period and 1 min resolution in Fig. 4.10 for the all-sky camera

(ASIs) and Heliosat-2 (H-2) methods (the behaviour at 5 and 15 min resolution is similar and

therefore not shown). The ASIs-based method has higher probability around the zero GHI

estimation error compared to the H-2.

Table 4.9 – GHI Estimations Comparison for 15 days in April.

1 min

ASIs ASIs/S S H-2

puRMSE [%] 6.50 7.17 17.4 9.92

nRMSE [%] 14.8 16.4 39.8 22.6

MAE [W/m2] 41.2 69.4 126 82.8

MBE [W/m2] -4.43 -2.11 13.3 29.6

CC 0.95 0.94 0.71 0.93

5 min

ASIs ASIs/S S H-2

5.75 8.42 16.1 9.11

13.1 19.2 36.7 20.7

37.5 74.4 112 75.2

-3.58 -3.60 13.0 28.1

0.96 0.87 0.79 0.95

15 min

ASIs ASIs/S S H-2

5.48 7.33 15.0 8.26

12.5 16.7 34.2 18.8

38.7 47.9 114.7 70.2

-2.70 -4.60 13.0 29.1

0.96 0.94 0.8 0.96
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(a) ASIs
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(b) ASsI/SEVIRI
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(c) SEVIRI

Figure 4.8 – Percentage of variance that can be explained by each principal component alone
(bat plot, left axis) and its cumulative sum (blue curve, right axis).
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Table 4.10 – GHI Estimations Comparison for 15 days in July.

1 min

ASIs ASIs/S S H-2

puRMSE [%] 10.2 14.6 22.3 13.9

nRMSE [%] 24.8 35.5 54.2 33.7

MAE [W/m2] 73.3 98.8 170 101

MBE [W/m2] 6.42 12.0 11.0 13.7

CC 0.91 0.83 0.46 0.85

5 min

ASIs ASIs/S S H-2

8.46 11.6 21.5 12.6

20.5 28.2 52.1 30.5

58.9 84.3 164 94.7

4.6 13.7 11.3 14.5

0.94 0.90 0.53 0.87

15 min

ASIs ASIs/S S H-2

6.45 10.8 20.8 11.1

15.6 26.3 50.5 26.8

46.4 72.6 163 83.0

7.3 12.1 11.2 14

0.96 0.89 0.62 0.90

Table 4.11 – GHI Estimations Comparison for 15 days in September.

1 min

ASIs ASIs/S S H-2

puRMSE [%] 9.20 10.7 23.4 11.8

nRMSE [%] 30.2 35.3 77.3 38.9

MAE [W/m2] 55.8 68.9 87 85.8

MBE [W/m2] -16.6 -20.5 -59.0 -30.3

CC 0.89 0.81 0.23 0.80

5 min

ASIs ASIs/S S H-2

7.03 8.14 23.6 10.8

23.1 26.7 77.6 35.6

44.6 64.9 85.0 79.5

-18.3 -19.5 -58.5 -30.3

0.90 0.89 0.23 0.81

15 min

ASIs ASIs/S S H-2

6.97 7.9 23.9 9.67

22.9 25.9 78.8 31.8

54.0 62.3 86.1 71.1

-22.0 -19.0 -59.2 -29.1

0.88 0.87 0.24 0.81

Table 4.12 – GHI Estimations Comparison for 15 days in December.

1 min

ASIs ASIs/S S H-2

puRMSE [%] 2.81 4.55 11.6 5.10

nRMSE [%] 15.4 25.1 63.8 27.9

MAE [W/m2] 18.6 28.3 97.0 42.3

MBE [W/m2] 3.50 -5.5 30.1 -19.6

CC 0.96 0.91 0.5 0.94

5 min

ASIs ASIs/S S H-2

2.64 3.23 11.3 4.9

14.5 17.7 62.2 27.0

16.6 21.1 71.0 40.6

4.52 -4.30 25.0 -19.5

0.98 0.95 0.47 0.91

15 min

ASIs ASIs/S S H-2

2.49 3.0 12.5 4.72

13.6 16.4 69.0 25.9

16.0 19.7 79.3 38.0

5.93 -5.0 22.7 -20.0

0.98 0.94 0.43 0.93

Cloud-free and Partly-cloudy Analysis

In this Section, the ASIs-based GHI estimations are compared against the Heliosat-2 on a

testing set of selected days that differ in terms of weather conditions. The cases including the

SEVIRI information are discarded from this analysis due to the poor performance.

Estimation performance is evaluated on eight prevalently cloud-free days and eight prevalently

partly-cloudy days. The days are extracted from the whole period (i.e., two days in April, two

days in July, two days in September, and two days in December), while all the remaining days

are used to train the ANN 6. The analysis refers to 1 min time resolution and results are in

Table 4.13. We can see that, during clear-sky days, the H-2 method has similar performance of

the ASI-s based method (with an identical CC), while during partly-cloudy days the proposed

method improves the H-2 (relative improvement of 30% RMSE). This is also reflected in

Figures 4.9 where, for the H-2 method, a high concentration of data points is visible close to an

estimated clear-sky index equal to one, i.e. close to clear-sky conditions, while data are more

sparse for clear-sky index values in the range 0.3-0.9 (i.e. intermediate overcast conditions).

6The selection of the cloud-free and clear-sky days is performed by visual inspections.
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4.8. All-sky-camera for GHI Estimation

Figure 4.9 – Estimated vs Measured clear-sky index for the ASIs-based estimation (left plots) and
the Heliosat-2 (right plots). The red line is the 1:1 line.
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Figure 4.10 – Probability density of the GHI estimation error, defined as the difference between
the estimation and the measurement. The plot refers to the whole testing dataset (April, July,
September, and December) and to 1 min time resolution. The y-axis is in logarithmic scale.

The improvement from the ASI-based method is significant during periods of high variability

when rapid irradiance fluctuations generate challenging conditions for the power system.

Examples of measured and estimated GHI are shown in Fig. 4.11 for two typical weather

conditions. During a cloud-free day the H-2 method matches the measurements slightly

better than the ASIs-based, while during partly-cloudy conditions the proposed method is able

to better follow the fast irradiance fluctuations, thanks to the availability of high-resolution

ground images.

Table 4.13 – GHI estimations comparison for selected days at 1 min.

Cloud-free Partly-cloudy

ASI H-2 ASI H-2

puRMSE [%] 6.7 6.8 12.7 17.5

nRMSE [%] 13.3 13.6 34.9 47.9

MAE [W/m2] 43.3 46.0 82.8 103

MBE [W/m2] 3.7 5.0 22.0 6.1

CC 0.97 0.97 0.89 0.80
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Figure 4.11 – ASIs-based and the H-2 GHI estimations along with measurements from the
pyranometer for a cloud-free and a partly-cloudy day.

Training set Analysis

This Section investigates the importance of training the ANN using days from a similar period

of the year of the testing days. We consider 30 days between June and July containing a mix

of weather conditions: clear-sky, partly-cloudy, and overcast. The last 5 calendar days are

used as a fixed testing set, while the training set can change accordingly to two case scenarios.

In the first case, called moving training, the length of the training set is fixed to 15 days: the

estimator is initially trained with the oldest data (with respect to the testing), and then, at each

iteration, the time window of the testing data is progressively moved forward by one day. In

the second case, called increasing training, the estimator is initially fitted with the oldest 15

days long set, and progressively a new day is added (one day each iteration). The procedures

last until the last day of training corresponds to the day before the first day of testing. The two

scenarios are illustrated in Fig. 4.12. The nRMSE values of the ASI-s based estimations are

shown in Fig. 4.13 as a function of the time period between the last calendar day of training

and the first calendar day of testing. Results are compared against the H-2 estimations which

shows a constant nRMSE because the method does not require training on historical data.

We can observe that when the time period between the last day of training and the first day

of testing is lower than 15 days, the performance is stable and comparable to the results

obtained in Section 4.8.4. However, for a time period larger than 15-20 days, performance

starts deteriorating rapidly, and, after that, the proposed method performs poorer than the

Heliosat-2. This analysis suggests that the training set should include days that are exemplary

of the periods of the year under test. The similarity in the behaviour of the two training cases

suggests that a single ANN model, trained on a set of days that are representative of different

weather conditions, is sufficient to guarantee satisfactory performance of the method for that

period. In order to show this, we evaluate the performance of the method when the training is
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(a) Moving training
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(b) Increasing training

Figure 4.12 – Moving training and increasing training (blue bar) along a period of 30 days; the
last 5 days are used as testing (red bar).
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Figure 4.13 – nRMSE is calculated on a fixed testing set of 5 days in July and for a changing
training set. It is possible to observe that performance deteriorates when the time period between
the two sets (training/testing) increases.
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4.8. All-sky-camera for GHI Estimation

Table 4.14 – GHI estimations using the ASIs-based algorithm for July 2018.

puRMSE [%] 9.6

nRMSE [%] 19.9

MAE [W/m2] 69

MBE [W/m2] -56

CC 0.97

done in one month in July 2017, and the testing in one month in July 2018. Results are shown

in Table 4.14. It is possible to conclude that if the method is trained with days that are far in

time (1 year) from the testing, but from the same period of the year (similar light conditions),

the performance above-discussed is guaranteed. In other words, it is in principle possible to

calibrate the algorithm with one year of data and then use the camera to sense the GHI in the

following years, without the need of an intra-year retraining.

4.8.5 Computational Time

When a new image is available, the on-line procedure of the ASIs-based method (image pre-

processing, features extractions and application of the ANN model to estimate the actual

GHI) takes less that 2 s on a personal computer (Intel Core i7-6600 2.6 GHz, with 12 GB RAM).

The proposed method can be implemented to capture local fast irradiance dynamics, which

represents an advantage over satellite-based estimations characterized by a sparser temporal

and spatial resolution.

4.8.6 Extension to Forecasting

In this Section, we evaluate the possibility of extending the proposed ASIs-based method to

GHI point forecasting. The main differences with respect to the ASIs-based GHI estimation

discussed so far, is that the target of the ANN is the one-step-ahead realization instead of the

current clear-sky index. In other words, if the features are extracted at time t , the correspond-

ing target is the clear-sky index at time t +∆t . For this analysis, we consider 1 month of data

at 1 min resolution (August 2017), and we target different forecast horizons, namely ∆t can

assume values 1, 5, 10, 15 min. Even in this case we perform a three-fold cross-validation and

75% of the data are used for training and the remaining 25% for testing. The persistent point

forecast is used as benchmark (it means that the one-step-ahead forecast is assumed equal to

the current GHI measurements from the pyranometer). Results are shown in Fig. 4.14 where

the obtained puRMSE is shown for different forecast horizons. It is possible to see that the

proposed method outperforms the baseline case (persistent forecast) in terms on puRMSE for

forecast horizons higher than 1 min. This preliminary analysis confirms that the all-sky image

contains meaningful information that can be used to improve forecasting performance with
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Figure 4.14 – puRMSE as a function of the forecast horizon. The proposed ASIs-based forecast is
benchmarked against the persistent method.

respect to the baseline method. Future work might consider to include features that accounts

for cloud dynamics for further improving the performance.

4.9 Chapter Conclusions

In the first part of the Chapter, a chain to predict the local cloud cover in the sun disk is

proposed. This includes the analysis of several cloud segmentation and motion methods.

Regarding binary cloud segmentation, a new method based on the intensity-to-blue ratio

is proposed and proved to outperform available methods based on different color channels

(e.g, the red-blue ratio) and supervised segmentation models. A preliminary analysis on

different cloud motion algorithms has shown that the optical flow is the most promising

method. Furthermore, we have shown that the information on the local cloud cover can be

used to improve a machine learning based method to deliver GHI PIs, besides the sole use of

past irradiance measurements proposed in the previous chapter. Since the main drawback of

the proposed toolchain is that the prediction method is still dependent on the pyranometer,

in the second part we evaluate the possibility of using the sky-camera as a GHI sensor itself.

With this aim, a machine learning-based method to estimate the GHI using images from an

all-sky camera is proposed. At first, a large set of features is extracted from the images, and

then feature selection is performed using principal component analysis (PCA). The subset of

selected features is then used as input to train an artificial neural network (ANN), considering

the clear-sky index as a target. Furthermore, SEVIRI thermal channels are used alone and in

combination with features from the camera as input to the same procedure (PCA and ANN),

to evaluate if this information can improve the GHI estimation. Performance evaluation is

presented using pyranometer measurements, collected in the same location of the camera,

as ground truth. The analysis considers for different periods of the year and three different

time resolutions (i.e., 1, 5, and 15 min). The GHI estimations are benchmarked against the
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Heliosat-2, a well-established method to estimate the GHI from satellites (e.g. Meteosat in

Europe). Results show that the all-sky camera-based GHI estimations proposed in this work

outperform the Heliosat-2, with a RMSE relative improvement of 20-45%. In particular, this

happens when fast irradiance dynamics are present (e.g. during partly-cloudy conditions),

due to the fact that satellites-based models lack the spatial and temporal resolution needed

to capture localised fluctuations. Results also suggest that the additional information from

satellites thermal channels are not improving the estimation. The method has been extended

to the case of GHI point forecast, showing an improvement with respect to a simple persistent

method for forecast horizons higher than 1 min. Future work will evaluate how to integrate

the information from the two best performing methods (ASIs-based and H-2), for example by

distinguishing between clear-sky and partly-cloudy conditions beforehand.
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5 Indirect Power Forecast of PV genera-
tion: from Irradiance to DC Power

5.1 Chapter Highlights and Summary

When estimations of the irradiance are available from sensors (e.g. pyranometers, sky-images,

satellites) they can be used as input to a physical PV model to reconstruct the maximum

power value.1 Alternatively, a second approach consists in using measurements from the

PV system itself to compute the irradiance on the plant. The two approaches are sketched

in Fig. 5.1. An analysis on the first approach, showing the results on the DC maximum

PV MODEL
INVERSE 
PV MODEL

PV MODEL

TEMPERATURE

TEMPERATURE

IRRADIANCE MEASUREMENTS

DC POWER

TEMPERATURE, V, I

DC POWER

IRRADIANCE 

Figure 5.1 – DC Power estimations. In the left case the irradiance is measured while in the
right case it is estimated using an inverse model of the PV plant. Then the irradiance and the
temperature are given as input to a PV model to estimate the PV maximum power.

1We note that in this Chapter the term irradiance refers to the irradiance on the plane of array (POA) so that we
do not need any transposition models. Transpositions model are presented in Appendix B.
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power estimation starting from different sensing systems (pyranometer, sky images..) can

be found in Appendix B. In this Chapter, we focus on the second approach and we propose

three model-based methods to reconstruct the maximum power of a PV plant starting from

experimental measurements of the DC voltage, current and temperature. Two formulations

from the existing literature (the analytical from [151] and the Immersion & Invariance (I&I)

from [152]) are considered and extended to estimate the theoretical maximum power of an

entire PV array, irrespectively of its operating conditions. A third estimator, based on a Kalman

Filter (KF), is proposed here and included in the performance assessment. More specifically

the Chapter focuses on these contributions:

• a formal comparison of PV maximum power estimators is performed using experimental

data from a 14.3 kWp PV-roof installation;

• performance is validated with measurements from a dedicated experimental setup

which allows to account for MPPT and non-MPPT operating conditions;

• the maximum power estimations of the analyzed methods are compared with those

obtained starting from pyranometer readings;

• the rejection to measurements noise and the bandwidth of the estimators are formally

compared;

• a practical application of the methods to improve data-driven maximum power forecast-

ing tools is proposed. We show that training the forecasting algorithm with historical

data that are corrupted by exogenous disturbances might lead to a deterioration of the

forecasting tool, in terms of its ability to predict the maximum power. In this context, we

apply the analyzed methods to reconstruct the maximum point and we therefore make

sure that the forecasting algorithm learns from values that are always representative of

the true potential of the irradiance.

5.2 Introduction to DC Maximum Power Computation

The knowledge of the PV generation is normally achieved by directly measuring the power

injected by the PV inverter into the grid. However, local measurements might be affected by the

action of (unobserved) control actions, e.g. due to curtailment policies [153]. These exogenous

disturbances make the observations uncorrelated with the true PV maximum power and,

consequently, with the true irradiance. Due to their lack of representativeness, the use of these

observations as proxy measurements, or as training data for PV forecasting, would have a

detrimental impact on the estimation of the PV state and prediction performance, respectively.

For this reason, indirect methods are advisable and mainly consist in inputting the measured

irradiance and temperature into physical models of the PV system, to finally compute the

PV injected power. As example, Fig. 5.2 depicts a situation where a PV plant operates in

curtailment regime (star). The production at this working point is not representative of
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5.2. Introduction to DC Maximum Power Computation

the true irradiance potential, which corresponds instead to the maximum power point (dot).

Fig. 5.3 shows real measurements of an entire day when the AC power is curtailed and therefore

the measured power is not correlated with the corresponding irradiance.
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Figure 5.2 – Example of measured power (star) and maximum power (dot) shown for one PV
module.
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(b) Irradiance Profile

Figure 5.3 – On the left plot the AC power of the PV plant is curtailed from index 200 to index
380. On the right the irradiance profile is plotted to show that the measured power and the solar
irradiance are not correlated when curtailment happens.

In this Chapter, we propose a novel methodology to reconstruct the maximum power pro-

duction of a PV plant using model-based methods that need measurements of the array DC

voltage, DC current, and cell temperature as inputs. Similar approaches have already been

exploited in the existing literature to estimate the irradiance from a single PV module. Authors

of [151] propose a closed-form analytical estimator of the irradiance based on the same inputs

considered in this work. Similarly, Authors of [152] propose a globally convergent estimator

based on the immersion and invariance (I &I ) principle. In [154], temperature and DC electri-

cal measurements are used to perform real-time estimation of the irradiance. The method

has the drawback of requiring the PV system to move in three different states (panel under

load, short circuit or open circuit), a feature that is not normally implemented in commercial

PV systems. In [155], an approach based on neural network is also proposed to estimate the
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irradiance starting from cell temperature and electrical DC information. The proposed model

is implemented in a microcontroller and used to infer the irradiance. In [156], a model-based

approach is used to implement a maximum power point tracking (MPPT) algorithm. The

method requires a pyranometer for the identification of the model parameters and is validated

for a single module. It is to note that there are some advantages in estimating the power output

using measurements of electrical quantities rather than information from a pyranometer.

On one hand, voltage and current measurements are generally available from the converter

management system and the module temperature is easy to measure, [155]. On the other

hand, irradiance sensors are sensitive to calibration, [157], and return measurements that are

significative for a specific point rather than gathering the average irradiance conditions on

the installation. For this last reason, several pyranometers might be necessary, this increasing

the overall cost. Furthermore, when observations from a pyranometer are not available nor

reliable, one might consider to estimate the irradiance and the PV production potential by

exploiting the knowledge of the measured production of nearby PV installations. Also in this

case, one should consider that the PV power output could be curtailed, thus the measured

power would not be representative of the true irradiance potential and its maximum value

should be reconstructed.

5.3 PV Plant Model

We introduce here the one-diode five-parameter model from [3], shown in Fig. 5.4 for a single

PV cell. This model is accurate, simple to implement, and only requires datasheet information

normally available from the panel manufacturer. The adopted model f (·) describes the

relationship between the DC voltage v , current i , solar irradiance on the PV module plane I�,

and cell temperature T , for a PV panel composed of np cells in parallel and ns in series. The

model is:

f (v, i ,T, I�) = 0 = ip (T, I�)np +−
v +Rs i ns

np

Rp (I�) ns
np

− i+

− iD (I�)np

[
exp

(
q

v +Rs i ns
np

nr kT ns

)
−1

]
,

(5.1)

where k, q are physical constants and stand for diode Boltzmann constant and electron charge,

respectively. The parameters Rs ,Rp , Ip , id ,nr respectively denote the series resistance, shunt

resistance, light current, saturation current and diode ideality factor. Let the notation ∗
denote values at Standard Test Condition (STC), i.e. temperature T ∗ = 25◦C and irradiance
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I∗ = 1000Wm−2, the five parameters at different conditions (T,I�) are calculated as:

Rs = R∗
s (5.2)

Rp = R∗
p

I∗

I�
(5.3)

ip =
(
i∗p +α(

T −T ∗)) I�

I∗
(5.4)

nr = n∗
r (5.5)

iD = i∗D [T /T ∗]3 exp
(
E∗

g /kT ∗−Eg /kT
)

(5.6)

Eg = 1.17−4.73×10−4 T 2

T +636
, (5.7)

where E∗
g is the band gap energy (eV) at T ∗, while R∗

s ,R∗
p , I∗p , i∗D ,n∗

r are the parameters at STC,

calculated with the procedure detailed in [158] by using the following datasheet information:

the open circuit voltage v∗
OC , the short circuit current i∗SC , the voltage and the current at the

maximum power v∗
MP and i∗MP , the absolute temperature coefficients of the open circuit

voltage β and short circuit current α.

ip iD RpiRp

Rs

i

v

Figure 5.4 – The adopted five parameter circuit model of a PV cell.

5.4 Estimators of the Solar Irradiance

This Section describes three selected methods to estimate the irradiance received by a PV

array (Analytical, Immersion and Invariance, and Extended Kalman Filter). The inputs are the

DC voltage, DC current, and the cell temperature while the single diode model introduced in

Section 5.3 is used to describe the PV system, for all the three cases. The output of the model

(estimated irradiance, I�) is then used to reconstruct the maximum power as described in

Section 5.5. We assume that the measured cell temperature is representative for the whole

plant, in other words we assume a uniform temperature distribution. To test the fairness of this

modelling assumption, two identical temperature sensors were installed in different parts of

the plant. They recorded an average temperature difference lower than 0.4◦C and a maximum

value of ≈0.8 ◦C. Such a value determines a difference in the estimated maximum power of

≈0.5%, thus making the assumption acceptable for the considered rooftop PV installation. In

case of larger scale PV plants, this assumption should be re-evaluated, and the single-diode

model could be replicated considering more temperature sensing points. The sensitivity of
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the models to temperature measurement errors is further discussed in Section 5.7.4.

5.4.1 Analytical Formulation

The irradiance is calculated analytically and in a closed-form by substituting equations (5.2)-

(5.6) into (5.1) and solving for I�. Formally, it is:

I�A =
i + i∗D np [T /T ∗]3 exp

(
E∗

g /kT ∗−Eg /kT
)[

exp
(
q

v+R∗
S i ns /np

nr kT ns

)
−1

]
1

S∗

[
np

(
I∗p +α(T −T ∗)

)− v+R∗
S i ns /np

R∗
p ns /np

] (5.8)

where v , i and T are measured quantities and I�A is the inferred irradiance.

5.4.2 Immersion and Invariance

Authors of [152] design an estimator exploiting the fact that the i-v characteristics described by

Eq. (5.1) can be re-parametrized to show a monotonic behavior. The estimator is based on the

principles of immersion and invariance, originally described in [159]. The re-parameterization,

based on the model in Eq. (5.1), is as follows. They define a measurable signal y(t ):

y(t ) = i (t )−F (i (t ), v(t ),T (t )) (5.9)

where,

F (i , v,T ) = I0(T )exp

(
C1

T
(v +C2i )−1

)
(5.10)

I0(T ) =−C6T 3 exp

(
C7 − C8

T
+ C9T

T +C10

)
. (5.11)

Ci are constant values that can be calculated from single-diode equations and found in

[152]. The only difference is in the definition of constant C3 since Authors of [152] consider a

proportional relation between Rp and I�, while we here consider inverse proportionality, as

expressed in Eq. (5.3).

Then, they express the nonlinear regression form as:

y(t ) =Φ(I�, t ) (5.12)

Φ(I�, t ) = I� (C4 +C5T (t ))−C3/S (v(t )+C2i (t )) (5.13)

with Φ(I�, t) strictly monotonically increasing with I�. At this point, the immersion and

invariance estimator states:

˙
I�I = γ

[
y −φ(I�I )

]
(5.14)
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and γ> 0 ensures:

lim
t→∞ I�I (t ) = I� (5.15)

where I�I is the estimated irradiance. Performance depends on the value of parameter γ that

should be selected as a trade-off between convergence speed and noise filtering.

5.4.3 Extended Kalman Filter

We propose to apply Kalman Filter to estimate the irradiance as a function of voltage, current,

and temperature measurements2. The advantage of a KF over a conventional low pass filter

is that, by exploiting the knowledge of the process model, it achieves to filter out system

disturbances and measurements noise on the whole spectrum of the state variables. We

consider a linear discrete-time system described by:

xk = Fk−1xk−1 +Gk−1uk−1 +wk−1, (5.16)

yk = Hk xk +vk , (5.17)

E [wk w T
j ] =Qkδk− j , (5.18)

E [vk v T
j ] = Rkδk− j . (5.19)

The goal is to estimate the state xk , knowing some noisy measurements yk , and the system

dynamics. Fk−1 is the state-transition model, Hk the observation model, and uk−1 indicates

external control variables. The noise wk andvk are white, zero-mean, uncorrelated and

have as covariance matrices Qk and Rk , respectively. δk− j is the Kronecker delta function.

When all the measurements including time k are used to estimate xk , the estimation is called

a-posteriori:

x̂+
k = E [xk |y1...yk ]. (5.20)

For the a-posteriori state estimate and covariance we can write:

x̂+
k = (I −Kk Hk )(Fk−1x̂+

k−1 +Gk−1uk−1)+Kk yk (5.21)

P+
k = (I −Kk Hk )(Fk−1P+

k−1F T
k−1 +Qk−1) (5.22)

Kk = (Fk−1P+
k−1F T

k−1 +Qk−1)H T
k (Hk (Fk−1P+

k−1F T
k−1 +Qk−1)H T

k +Rk )−1 (5.23)

where Pk denotes the the covariance of the estimated error:

P+
k = E [(xk − x̂+

k )(xk − x̂+
k )T ], (5.24)

2As known from the existing bibliography, Kalman estimation consists in reconstructing the state of a system
with noisy measurements by integrating the knowledge of the process which generated them.
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and Kk is the Kalman Gain. If wk andvk are white, zero-mean, uncorrelated, then the Kalman

Filter is the optimal linear solution of the problem. In the Extended Kalman Filter (EKF), the

state transition and observation models are not linear functions of the state. However, it is

possible to linearize the non-linear function around the current estimate (e.g. by making a

Taylor series expansion and dropping all but the constant and linear terms).

In what follow we describe how to apply the EKF to estimate the irradiance. The prerequisite

to apply Kalman filtering is the knowledge of the system model and covariance matrices of

system noise and measurements. To this end, we exploit the results from Chapter 3, where

it is shown that the irradiance evolution in the few seconds time scale can be captured with

a persistence model plus a random variation from an identifiable pdf (probability density

function), which is function of certain data features. Let the state xk = I�k be the irradiance on

the panel. At each discrete time k, the measurements vk , ik and Tk are linked to the state by

the nonlinear relationship f (·) in Eq. (5.1). Let f1(·), f2(·), f3(·) denote the function f (·) solved

for voltage, current and temperature:

vk = f1(xk , ik ,Tk ) (5.25)

ik = f2(xk , vk ,Tk ) (5.26)

Tk = f3(xk , vk , ik ). (5.27)

The observation vector y k = [vk , ik ,Tk ]T is approximated as:

y k ≈ Hk xk +Dk , (5.28)

where H = [H1, H2, H3]T and D = [D1,D2,D3]T are from first order Taylor expansions of

f1, f2, f3. For example, for the case of f1, they are:

vk ≈ f1(·)+ f1,x (·)(xk −ak ) (5.29)

H1 = f1,x (·) (5.30)

D1 = f1(·)− f1,x (·) ·ak (5.31)

where f1(·) and f1,x (·) denotes the function and its first order derivative calculated in the

point ak , ik ,Tk , with ak is the irradiance value around which linearising (assumed as the last

available estimate, i.e. ak = xk−1) and ik and Tk are both from measurements.

The state-space formulation of the system model is:

xk = Fk−1xk−1 +wk−1, wk−1 ∈ N (0,Qk ) (5.32)

y k = Hk xk +uk , uk ∈ N (0,Rk ). (5.33)

where Fk−1 = 1 is the (scalar) system matrix, Qk is the process noise variance, and Rk the 3×3

measurement noise covariance matrix.

The variance Q is computed by applying the method described in Chapter 3 and summarized
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in the Appendix A. The covariance matrix of measurements noise R is a diagonal matrix R =
diag(σ2

1,σ2
2,σ2

3). Measurements are assumed to be uncorrelated. The variance components

are calculated assuming that the tolerance of the sensors corresponds to the the 3-sigma level

of a Gaussian distribution with zero mean, i.e. σi = ti /3, i = 1,2,3, where ti is the tolerance of

the instrument i . Once Hk , Qk and Rk are known from the procedures described above, the

expected value x̂ = E[xk ] and variance Pk = Var[xk ] of the estimation are:

x̂k = (Iy −Kk Hk )(Fk−1x̂k−1)+Kk y k (5.34)

Pk = (Iy −Kk Hk )(Fk−1Pk−1F T
k−1 +Qk−1), (5.35)

where Iy is the identity matrix, and Kk is the Kalman gain:

Kk = Pk−1Hk
T (Hk Pk−1Hk

T +Rk )−1. (5.36)

We note that the linearization of the observer equation leads to an Extended Kalman filter

(EKF) formulation. Unlike the linear KF, the EKF violates the guarantee of optimality of the

solution.

5.5 Maximum Power Computation

Once the irradiance is estimated from any of the methods proposed in Section 5.4 or measured

by a pyranometer, it is then used, together with T , to compute the maximum power output

according to the following procedure:

• as defined in [160], the open circuit voltage vOC is:

vOC = v∗
OC

(
1+β(T −T ∗)

)+Vt nr ns ln

(
I�

I∗

)
(5.37)

where Vt = kT /q is the thermal voltage;

• we determine the i-v curve by applying Eq. (5.1) for values of the DC voltage v varying

between 0 and vOC
3;

• the maximum power of the PV module is computed as the maximum product i · v from

the i-v curve;

• the array maximum power is obtained by multiplying the module maximum power by

the number of modules.

3The diode equation, (5.1), can be solved numerically or using the explicit formulation based on the Lambert
function, described in [161], that gives an exact analytical solution for i as a function of v and it is computationally
more efficient.
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5.6 Experimental Setup

The considered experimental setup is a 14.3 kWp rooftop PV installation of the EPFL Romande

Energie solar park in Switzerland and consists of two identical subsystems. Each subsystem

is composed of one couple of strings (each with with 14 ECSOLAR 255 W Polycrystalline

modules in series) connected to a three-phase DC/AC power converter. Panels are south

facing and with 10 degrees tilt from the horizontal plane. The whole system is shown in Fig. 5.5,

where the individual subsystems are marked with red and blue color. The two converters,

denoted by C1 and C2, are of the same commercial model and work independently. They

can operate in MPPT mode (using the Perturb and Observe method) or follow a specific

active power external request (non-MPPT mode). This dedicated setup allows validating the

capability of the proposed estimators also when the plant operates in non-MPPT mode, thanks

to sending specific set-points requests to C1 while leaving C2 in MPPT mode (its output power

is considered as the ground truth maximum power value). The equivalent behavior of the

two converters has been tested experimentally by running both of them in MPPT mode: in

this case, their power output differ of less than 0.2%. DC currents are measured with LEM LF

205-S current transducers with an accuracy of ± 0.2%. DC voltages are measured with LEM-CV

3-100 voltage transducers with an accuracy of ±0.5%, as described in Section 2.2.1 for the AC

measurements. The irradiance on the plane-of-array is measured with a silicon-cell device to

limit the spectral mismatch due to the different spectral response between the modules and

the sensor. Thus, an Apogee SP-230 all-season pyranometer is installed in the same location

of the plant, as described in Section 3.8. The cell temperature is measured using a TSic303, a

sensor with ±0.5 ◦C accuracy, installed on the rear surface of the panel, as detailed in [162]. In

order to correct the temperature readings accounting for the thermal resistance of the support

material, we follow the procedure described in [163] and add a positive offset with magnitude

n·3 ◦C, where n is dimensionless irradiance (we here use 1000Wm−2 as base quantity). The

value of n is calculated using the irradiance estimated at the previous time-step, which is a fair

assumption since our estimations are at high time resolution and the temperature dynamics

are slower than the irradiance ones. The location of the pyranometer and temperature sensor

is marked with a white cross in Fig. 5.5. Analog measurements of voltage and current are

acquired at 20 kHz with an 18 bit analog-to-digital converter (ADC, NI CompactRIO 9068

equipped with a 9215 module), while irradiance and temperature are sampled 20 kHz with a

NI sbRIO 9625 with a 16 bit ADC. All the measurements are then downsampled by average at

1 s and saved in a database. The two acquisition devices mentioned above are synchronized,

and the two groups of measurements are with a time jitter of 0.5 s at most. Only daylight data

are selected for the analysis, i.e. for solar elevation larger than 3 degrees.

5.7 Results

In this Section, the performance of the methods in Section 5.4 is compared in terms of quality

of the estimations of the maximum power they provide. Summarizing from the previous sec-

tions, this consists in i) computing the irradiance using the analytical (Analytical), immersion
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x

1.5 m

Figure 5.5 – PV installation at the EPFL laboratory (GPS coordinates 46.52-N, 6.56-E). The
strings indicated with blue color are connected to C1 and the strings indicated with red color
are connected to C2. The white cross indicates the panel where the temperature sensor and the
pyranometer are installed.

and invariance (I&I), and extended Kalman Filter (EKF) methods and ii) estimating the maxi-

mum power with the procedure described in Section 5.5. The quality of the maximum power

estimations is assessed by comparing them against the measured power flow (ground truth

value) of converter C2 that is always in MPPT mode. As a further benchmark, we include the

maximum power estimation performed by using measurements from the pyranometer: this

consists in feeding the procedure for the maximum power estimation in Section 5.5 with POA

irradiance readings and cell temperature measurements. The Section is organized as follows.

Section 5.7.1 presents the metrics used for the comparison. Sections 5.7.2 and 5.7.3 compare

the performance of the proposed methods for maximum power estimation for non-MPPT

and MPPT conditions, respectively. Finally, in Section 5.7.4 the robustness of the proposed

estimators in terms of rejection against measurements noise is assessed by decreasing their

signal-to-noise ratio. Two days are considered for the analysis: a clear-sky (9 of September

2016) and a partly cloudy day (12 of September 2016).

5.7.1 Metrics

Let Pdc,t be the ground truth DC maximum power value at the time interval t = 1, . . . ,T , where

T is the number of samples, P̂dc,t the estimation, P dc the average over time of the ground truth

values in the interval t = 1, . . . ,T . Three metrics are used to characterize the performance of

the proposed techniques, the normalized root mean squared error (nRMSE), the normalized
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maximum error (Errmax) and the normalized mean error (nME):

nRMSE = 1

P dc

√
m∑

t=1
(P̂dc,t −Pdc,t )2/m, (5.38)

Errmax = max
{∣∣P̂dc,t −Pdc,t

∣∣/P dc , t = 1, . . . ,m
}

, (5.39)

nME = 1

m

m∑
t=1

(P̂dc,t −Pdc,t )/P dc . (5.40)

5.7.2 Maximum Power Estimation in non-MPPT Conditions

Tables 5.1 and 5.2 show the performance of the proposed techniques and of the pyranometer-

based estimations, when the power output of converter C1 is curtailed as shown in Fig. 5.6,

for a clear-sky and partly cloudy day respectively. As explained in Section 5.4.2, performance

of the I&I estimator depends on the value of parameter γ that should be selected as a trade-

off between good convergence and noise filtering. Authors of [152] suggest values in the

range 0.1-1, thus we first fix γ equal to 0.7. Performance denotes that the methods are able
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Figure 5.6 – Maximum power (Ground Truth) and curtailed power (Pdc) are shown. Measure-
ments come from two identical converters (same technology) that are working under equivalent
conditions but different modes (i.e. MPPT for C2 and non-MPPT/curtailed for C1).

to reconstruct the maximum output power starting from any operating point, as shown in

Fig. 5.7. Indeed, it is possible to reconstruct the maximum power even when starting from
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(b) Maximum Power Comparison/Partly Cloudy

Figure 5.7 – Comparison between the ground truth maximum power and the reconstructed
maximum power using the analytical, the EKF, and the I&I estimators.

curtailed conditions. The analytical method outperforms the other estimators, during both

clear-sky and partly cloudy conditions. For the pyranometer-based estimations, larger errors

are likely generated when irradiance measurements are not representative of the conditions

of the whole plant. Figures 5.8a and 5.8b compare the ground truth maximum power values

against the analytical and pyranometer-based estimations for the clear-sky and partly cloudy

day, respectively. For a more detailed comparison we refer to numerical results in Tables 5.1

and 5.2.

Tables 5.1 and 5.2 also show that the EKF and the I&I (with γ=0.7) estimators have worse

performance than the others, especially in the partly cloudy case. This fact is justified by their

smaller bandwidth. In support to this, we compare in Figures 5.9a and 5.9b the amplitudes of

the fast Fourier transform (FFT) of the ground truth values and estimations, for the irradiance

and maximum power respectively. We consider 6200 samples taken from a period with large

power variations, in the central part of the cloudy day. As visible from Fig. 5.9a, only the

analytical estimation is able to track the irradiance fluctuations registered by the pyranometer,

especially at high frequency. Similarly, in Fig. 5.9b we observe that the EKF and I&I-based

power estimations tend to filter out fast but significative dynamics, thus determining poorer

performance. On the contrary, the analytical formulation is able to follow the ground truth

series even at high frequencies. A further analysis, consists in gradually increasing the value of

γ in order to favor the I&I performance over the noise filtering. Results show that values of γ in
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the range 20-200 (for the partly cloudy day) and 5-200 (for the clear-sky day) allow achieving

performance very close to the analytical case, thus denoting that the choice of γ is critical

and its selection may represent a drawback with respect to parameter-less methods as the

analytical one. The worse results of the EKF are due to the non-stationary of the irradiance

time series, even when differentiated, which makes difficult to identify an exact model of the

process.

Table 5.1 – Performance for a clear-sky day/non-MPPT.

nRMSE [%] Errmax [%] nME [%]

Analytical 5.40 20.4 -0.8

EKF 11.53 21.2 -10.4

I&I, γ=0.7 7.46 20.1 -4.57

Pyranometer 6.65 15.1 -2.76

Table 5.2 – Performance for a partly cloudy day/ non-MPPT.

nRMSE [%] Errmax [%] nME [%]

Analytical 5.6 7.15 2.53

EKF 19.9 30.0 -13.9

I&I, γ=0.7 19.9 23.0 5.17

Pyranometer 9.16 32.8 7.14

5.7.3 Maximum Power Estimation in MPPT Conditions

Tables 5.3 and 5.4 show the performance of the proposed techniques and of the pyranometer-

based estimations when the system is in MPPT mode for the whole period, for a clear-sky and

a partly cloudy day, respectively. The analysis confirms what observed for the non-MPPT case.

Results from the pyranometer estimations are independent of the PV system state and are

therefore identical for the MPPT and non-MPPT analysis. On the other hand, the analytical

method is the most sensitive to the operating point conditions and its performance improves

when the system is close to the maximum power point. As far as the I&I method is concerned,

same results of Section 5.7.2 apply regarding the tuning of parameter γ.

5.7.4 Robustness Against Measurements Noise

The EKF and I&I-based estimations are expected to have improved rejection against mea-

surements noise, thanks to integrating into the estimation process measurements which

are progressively becoming available with time. In this Section, we deliberately decrease

the signal-to-noise ratio of the measurements with the objective of showing the break-even
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Figure 5.8 – Comparison between the ground truth maximum power, the estimation using the
analytical formulation and the one starting from the irradiance sensed by a pyranometer.

Table 5.3 – Performance for a clear-sky day/MPPT.

nRMSE [%] Errmax [%] nME [%]

Analytical 0.51 1.5 0.37

EKF 11.53 18 -13.3

I&I, γ=0.7 4.21 6.8 -3.51

Pyranometer 6.65 15.1 -2.76

Table 5.4 – Performance for a partly cloudy day/MPPT.

nRMSE [%] Errmax [%] nME [%]

Analytical 3.7 5 1.51

EKF 19.9 35.1 -14.1

I&I, γ=0.7 19.9 22 4.06

Pyranometer 9.16 32.8 7.14

between the performance of the estimators. In other words, we want to investigate on the level

of measurement noise after which the use of filter-based estimators is advisable compared to

the analytical formulation. Original voltage, current and temperature measurements (which

107



Chapter 5. Indirect Power Forecast of PV generation: from Irradiance to DC Power

(a) FFT of Irradiance Series

(b) FFT of Power Series

Figure 5.9 – The FFT single-sided amplitude spectrum of the estimated and measured irradiances
is shown as a function of the frequency in a semilogarithmic scale in Fig. 5.9a. The same
spectrum is shown for the estimated and ground truth maximum power values in Fig. 5.9b.

are already characterized by the original noise inherent the respective sensing devices) are

corrupted with an additive independent and identically distributed (i.i.d.) Gaussian noise with

increasing values of standard deviation (STD). This analysis is carried out for each measure-

ment in a separate fashion, namely noise is added to a single measurement (voltage, current

or temperature) while keeping the others to their original level of noise.4 The original levels of

noise and those artificial added are recapped in Table 5.5.

The analysis considering the additional noise on voltage, current and temperature are shown in

Figures 5.10a, 5.11a and 5.12a for the MPPT case, and in Figures 5.10b, 5.11b and 5.12b for the

non-MPPT case. The x-axis shows the total level of noise standard deviation (i.e. original noise

4In the EKF case, the element of matrix R corresponding to the noisy measurement is augmented with the value
of the variance of the fictitious additional noise. Assuming that the variables are uncorrelated, we can say that the
variance of the sum equals the sum of the variances.
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Table 5.5 – Standard Deviations (STD) of the Input Measurements

Original noise (STD) Added Noise (STD)

i 0.55 0.3, 0.45, 0.55, 0.7

v 0.23 0.3, 0.71, 1

T 0.4 1.4, 2.23, 3.16

level plus additive i.i.d. noise) while the y-axis the nRMSE associated with the maximum power

estimation. The partly cloudy day is considered for the analysis. For the I&I we consider two

cases: a first with γ fixed to 1 and a second case where γ is tuned to optimize the performance

(γopt ). Figures 5.10, 5.11 5.12 show that the tuning of parameter γ allows the I&I estimator to

have stable performance even for high level of noise. When the noise augments, performance

of the analytical method deteriorates while the I&I estimator with γopt maintains a low nRMSE.

For the other cases (EKF and I&I with γ= 1) we can see that break-evens with respect to the

analytical performance happen for an STD of ≈0.68 for the current and ≈0.82 for the voltage

on the MPPT case. For the non-MPPT case, the break-even occurs for an STD of ≈0.63 for the

current ≈0.58 for the voltage. This break-even has, in general, a lower value in the curtailed

case, for which the analytical estimation is more sensitive to the presence of measurement

noise. Fig. 5.12 shows that the analytical estimation is less sensitive to temperature noise,

especially when working close to MPPT conditions. The break-even is reached for very high

STD, corresponding to an STD of ≈3.3 for the non-MPPT case.
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Figure 5.10 – Noise is increased on the DC current.

5.8 Improvement of Data-driven Forecasting Methods

We show how the discussed estimators are applied to treat historical production time series of

a PV plant to filter out exogenous control action components (e.g. due to curtailment) from a

training dataset, by reconstructing the maximum power value. The objective is to show how
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Figure 5.11 – Noise is increased on the DC voltage.
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Figure 5.12 – Noise is increased on the measured cell temperature.

the proposed estimators can be used to improve the performance of a machine learning-based

forecasting method for maximum power prediction. For this purpose, we select a scenario

where the PV power is curtailed, thus historical power measurements are not representative of

the maximum available power from the plant. As a forecasting tool, we implement an artificial

neural network (ANN), a method often advocated in the existing literature in application to

data-driven point predictions [2]. The fitting is performed considering 10 neurons and one

hidden layer and using as training algorithm the Matlab implementation of the Levenberg-

Marquardt back-propagation function, [164].

We consider its prediction performance in two cases. First, when the ANN is trained by

using raw production measurements (direct forecast, DF); this means that the training can

contain values that are not representative of the maximum available power. Second, the

training time series is generated with the proposed estimators and thus the training data

always approximate the maximum available power (filtered forecast, FF). This latter case

implies the implementation of the analytical, EKF, I&I estimators, and the pyranometer-based

110



5.8. Improvement of Data-driven Forecasting Methods

one to reconstruct the maximum power. For the I&I we fix γ=10. The considered prediction

horizon is 5 minutes. The dataset consists of 35 days of experimental data (generated with

the setup described in Section 5.6), 30 of which are used for the training phase and 5 for

the testing. The training dataset contains 12 days where the PV power output is curtailed

according to a random pattern by controlling the active power set-point of the experimental

power converter. The same applies for 2 days of the testing dataset. For the remaining period,

the power converter is left in MPPT mode. As an example, 3 days extracted from the testing

time-series are shown in Fig. 5.13. For the first 2 days the power is curtailed while during the

third day the plant works in MPPT.

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
0

1000

2000

3000

4000

5000

6000

Time [min]

D
C

P
ow

er
[W

]

Recostructed
Maximum Available
Measured

Figure 5.13 – 3 days are shown from the testing set. The measured power of C1, shown with the
dashed line, is curtailed during the first two days. The solid black line represents the maximum
available DC power, measured from C2. The red line is the reconstructed maximum power using
the I&I estimator.

The metric used to evaluated point predictions performance is the normalized mean absolute

error (nMAE):

nMAE = 1

M

M∑
t=1

(P̃dc,t+1|t −Pdc,t+1)/P dc (5.41)

where P̃dc is the one-step-ahead prediction of the DC maximum power, Pdc is the realization,

M is the number of measurements in the testing dataset and P dc their average value. We

remind here that the aim of this comparison is not to assess the skills of the forecasting

method, rather showing the advantage introduced by the proposed pre-filtering approaches in

improving time-series based forecasting tools. Results are summarized in Table 5.6. They show

that reconstructing the maximum power with the proposed techniques is always beneficial
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when curtailment strategies are adopted: the DF, that simply uses past row measurements of

the output power, produces the largest nMAE. Performance of the other methods is in line

with what obtained in the estimation comparison in Section 3.9.

Table 5.6 – Normalized Mean Absolute Error

nMAE [%]

DF 19.7

FF, Analytical 9.0

FF, EKF 14.7

FF, I&I γ= 10 9.3

FF, Pyranometer 11.4

5.9 Chapter Conclusions

In this Chapter, we have analyzed three model-based methods to estimate the irradiance

received by a PV system from measurements of the system DC current, voltage and cell

temperature. The estimators are applied to reconstruct the maximum DC power output of a

PV plant independently of the fact it operates in MPPT mode or under curtailment regimes.

The estimation performance is evaluated by using measurements from an experimental setup

and benchmarked against pyranometer estimations. Results show that:

• the considered estimators can reconstruct successfully the theoretical maximum power

output of PV installations even when the plants operate in non-MPPT mode;

• when estimating the peak power of PV systems, the considered approach can outper-

form pyranometer-based estimations;

• for noise levels compatible with commercial sensors, the analytical estimator showed

similar or better performance and bandwidth than the immersion and invariance and

Kalman filter-based estimators, with the advantage of being parameter-less. If the

available measurements are characterized by a high level of noise (STD higher than

≈0.6 for voltage and current and than ≈3 for the temperature), the use of filter-based

strategies is advisable since they are able to delete noisy observations while accounting

for the structure of the process. In particular, the I&I method is able to maintain low

nRMSE but a preliminary tuning of γ is required;

• when considering an artificial neural network-based point predictor the forecasting

performance degrades if the training dataset contains operation points in curtailment

regimes. Instead, the proposed estimators achieve to remove the components due to

exogenous control actions by reconstructing the training dataset.
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6 Uncertainty Assessment of the Output
Power of Grid-Connected PV Plants

6.1 Chapter Highlights and Summary

PV power output forecasting is affected by an uncertainty that should be characterized in

order to intelligently exploit the flexibility of the available resources in a microgrid. These

uncertainties mostly depend on the external weather conditions, on the irradiance-to-power

conversion models, and on the prediction methods and forecasting horizons.

In this Chapter, we propose a gray-box method to assess the overall flexibility and associated

uncertainties of a small-scale PV plant. The contributions are the following. First, we describe

how to accurately predict the one-step-ahead AC maximum available power, integrating a

model for the PV modules, a model for the converter, and a probabilistic short-term forecasting

tool. The sub-models are selected to be of easy reproducibility, and the methodology needs

few inputs: i) information from the PV module datasheet, ii) real-time measurements of the

PV plant voltages and currents, and iii) a temperature sensor. The available literature generally

focuses on the individual sub-model accuracy, e.g. [165], while we here evaluate the overall

chain that allows obtaining the AC maximum power. For different forecast horizons and for

different levels of curtailed energy, we identify which sub-model is the most critical in term of

uncertainty. The validation is made possible by a dedicated experimental setup that relies on

a fully controllable converter, [166], which can track an external power reference of active and

reactive power. Second, the uncertainty of the PV converter in tracking an external setpoint is

accounted. Indeed, due to the internal characteristic of the converter (e.g. control loop), the

implemented power injection can differ from the external request.

6.2 Problem Definition

We consider a generic PV system (Fig. 6.1), with the following characteristics (i) it is always

connected to the grid as a grid-feeding converter, (ii) it allows to track an external active/reac-

tive power setpoint u = (P∗,Q∗) from a Grid Controller (GC). The PV system has an inherent

flexibility to modify its power operating conditions, namely the capacity of curtailing the gen-
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eration of this resource, along with the possibility of controlling its reactive-power injection.

Figure 6.1 – Problem context. We consider a generic PV plant connected to the grid. The resource
is equipped with an agent that can communicate with a generic grid controller. The dashed
lines delineate exogeneous elements to the resource.

In order to allow the GC to exploit this flexibility, a dedicated PV control agent is introduced. It

continuously receives an updated state x̂ from the PV system (e.g., the measured power value)

and sends to the GC a feedback X that represents the expected one-step-ahead operational

flexibility and uncertainty. It is important to note that, since the converter can track external

power setpoints, the measured AC power does not necessarily correspond to the maximum

available one, and may not be representative of the production potential of the plant, that

mostly depends on the external weather conditions w (e.g., solar irradiance). Therefore, a

physical model of the PV system is needed to reconstruct at each time-step the AC maximum

available power, as already discussed in Chapter 5 and detailed in Section 6.4. These recon-

structed power values are then used to train a time-series-based forecasting tool needed to

predict the one-step-ahead AC maximum power. The uncertainty related to the delivered

prediction is explained by both the stochasticity of the forecast and the PV/converter model-

ing errors. Furthermore, due to the converter internal operational constraints e, the external

power reference u = (P∗,Q∗) differs from the actual implemented power injection y = (P,Q),

this representing a further source of uncertainty. Consequently, a comprehensive uncertainty

assessment is needed to account for these aspects: i) uncertainty on the one-step-ahead

maximum available power computation, and ii) uncertainty on the setpoint tracking.
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6.3 Experimental Setup

We anticipate in this Section the description of the experimental setup to introduce infor-

mation about the observed state variables of the system we target to control. The PV system

under test is detailed in Fig. 6.2. The power stage includes a PV-Side Converter (PVSC), that

controls the power flow injected by the PV panels into the common DC-bus, and a Grid-Side

Converter (GSC) responsible of controlling active and reactive power flows injected into the

grid. We assume to have access to the measurements of the DC voltage, DC current, and

average cell temperature of the PV array (v , i , θ), and to the voltages and currents phasors

at the fundamental frequency components from the three-phase AC grid (V̄ , Ī )1. The global

irradiance on the PV plant, in figure indicated with G , could be measured by a sensor (e.g.

pyranometer, all-sky camera..), but in this analysis is inferred from the PV-array measurements

as proposed in Chapter 5, and detailed in Section 6.4.

Figure 6.2 – Detailed view of the PV system.

6.4 Methods

In this Section, we propose a method that, regardless of the PV system operating point, is

able to i) provide a probabilistic forecast of the one-step-ahead maximum available power,

and ii) determine the uncertainty on tracking a power setpoint. For short-term horizons

(from sub-seconds to minutes), the first goal can be achieved by using time-series based

forecasting methods. Accordingly to Chapter 5, we first apply a model-based estimator (with

parameters Pp ) to reconstruct the DC maximum available power, P̃dc , from measurements of

the DC voltage v , current i , and module temperature θ. Then, we use a model of the converter

(with parameters Pc ) to estimate the AC maximum power, P̃ . The procedure is shown in

Fig. 6.3. Historical values of P̃ are then used to train a forecasting tool. In what follows we

1These electrical quantities are commonly available in commercial PV converters, while the PV-array tempera-
ture can be easily measured.
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v, i, ✓ P̃dc P̃PV
Model Pp

Converter
Model Pc

Figure 6.3 – Maximum Available Power Estimator. The AC maximum power value can be
reconstructed using the PV and converter model. The inputs are the measured DC voltage and
current (v, i ), and the cell temperature θ.

detail the overall methodology necessary to predict the PV plant power capability and the

related uncertainty. The adopted models, used on-line, are presented in Section 6.4.1, while

Section 6.4.2 describes how to off-line assess their parameters.

6.4.1 Models

The on-line process, depicted in Fig. 6.4, is as follows. At each time-step t , the measurements

P̃t

P "↵
t+1,m

P #↵
t+1,m

P "↵
t+1,f

P #↵
t+1,f

P #↵
t+1

P "↵
t+1

Setpoint
Uncertainty

Model Ps

Forecasting
Tool Pf

ut+1

Error Pm

Modeling

B↵
t (ut+1)

Figure 6.4 – On-line modelling chain.

vt , it , θt are used as inputs to the maximum available power estimator in Fig. 6.3 to get P̃t .

This value is used as input to i) a forecasting tool (with parameters P f ) to deliver the upper

and lower bounds of the one-step-ahead prediction interval (P↑α
t+1, f ,P↓α

t+1, f , with α target

confidence level) and ii) a modeling error block (with parameters Pm) to compute the upper

and lower bounds accounting for the PV and converter model uncertainty (P↑α
t+1,m ,P↓α

t+1,m). A

conservative approach to compute the global uncertainty associated to the one-step-ahead

prediction is to consider the extreme bounds between the model bounds and the forecasting

intervals2:

P↑α
t+1 = max(P↑α

t+1, f ,P↑α
t+1,m) (6.1)

P↓α
t+1 = min(P↓α

t+1, f ,P↓α
t+1,m). (6.2)

These global bounds (P↑α
t+1,P↓α

t+1) are then used as an input for a block that models the ability

of the power converter to track a power setpoint (with parameters P s). This block outputs a

set-valued function, Bα
t (ut+1), which represents the overall uncertainty of tracking a power

2A detailed analysis of these uncertainties is reported in Section 6.5.1.
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setpoint ut+1. Thus, Bα
t (ut+1) include all the uncertainties related to the PV plant future

operation. We next describe the different blocks involved in the methodology: forecasting

tool, modeling error (PV model and converter model), and setpoint uncertainty model. We

discuss the off-line assessment of the models parameters P in Section 6.4.2.

PV Model

The PV model used to compute the maximum DC power is as described in Section 5.3. In

particular, the analytical method is used to reconstruct in real-time the maximum available

DC power. We indicate the parameters of the module model with Pp .

Converter Model

The converter model allows computing the AC power from the DC power and the DC voltage.

Two main models are available in the literature, [59] and [60]. Both require fitting the parame-

ters using datasheet and operational data. In our case, fitting a simple quadratic model led to

a better accuracy:

P̃t =β0 +β1P̃dc,t +β2vt +β11P̃ 2
dc,t +β12P̃dc,t vt +β22v2

t , (6.3)

where P̃t is the AC power (response variable), P̃dc,t the DC power, vt the DC voltage (the

predictors), and Pc = {β0,β1,β2,β11,β12,β22} are the model coefficients.

For our converter, the values of the coefficients from Eq. (6.3) are shown in Table 6.1. Fig. 6.5

Table 6.1 – Converter Model Coefficients

β0 β1 β2 β11 β12 β22

-220 0.92 -0.60 -2.89 ·10−6 2.06·10−5 -0.01

compares the estimations from the fitting to the measured AC power values for an entire day

of measurements, presenting an error of 1.6% (nRMSE).

Forecasting Tool

To compute short-term prediction intervals (PIs), we adopt the method proposed in Chapter 3

directly applied to the AC power. It consists in clustering historical differentiated maximum

power estimations using the k-means clustering algorithm. The clustering, performed off-

line, is based on two influential variables: i) the average power and ii) the power variability,

calculated on a rolling time window considering the last three AC maximum power estimations.

At each time-step, when a new AC maximum power estimation P̃ is available, the influential

variables are computed on-line. The Euclidean distance between the centroids and the actual

influential variables is then used as the similarity criterion to identify the representative cluster.
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Figure 6.5 – The AC power, estimated using the converter model described in Section 6.4.1, is
compared with the measured AC power.

Then, we use the upper and lower quantiles, P f = {q↑α
f , q↓α

f }, extracted from the representative

cluster, to calculate the prediction bounds, at a given confidence level α. In particular, we sum

the quantiles to the estimated AC maximum power:

P↑α
t+1, f = P̃t +q↑α

f , (6.4)

P↓α
t+1, f = P̃t +q↓α

f . (6.5)

Modeling Error

The model-based strategy to reconstruct P̃ ensure that the forecasting tool learns from training

data that are representative of the maximum power, even when the system is not operating

in MPPT mode. However, the obtained prediction interval does not account for the error

associated to the PV/converter models, needed in the chain to reconstruct the maximum

available power. For this reason, a set of AC measurements, {V̄ , Ī }, see Fig. 6.2, is used to

account for the modeling error defined at each time step as:

et = P̃t −Pt (V̄t , Īt ), (6.6)

where P̃t is the AC maximum power estimation and Pt the ground truth value, computed from

(V̄t , Īt ). This error captures all what is not captured by the forecasting model. We consider the

modeling error distribution on a training set, and we extract the upper and lower quantiles

of the set, Pm = {q↑α
m , q↓α

m }, corresponding to the target confidence level α. The uncertainty

bounds associated to the model are defined as:

P↑α
t+1,m = P̃t +q↑α

m , (6.7)

P↓α
t+1,m = P̃t +q↓α

m . (6.8)
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Setpoint Uncertainty Model

The uncertainty on tracking a power setpoint depends on the internal control law of the

converter. In particular, for a given setpoint u, we have a set of possible AC active and reactive

power injections (P,Q), for which we can compute the distances dP (u) = P∗ − P (u) and

dQ(u) = Q∗−Q(u). We define
(
δ↑αP (u),δ↓αP (u)

)
and

(
δ↑αQ (u),δ↓αQ (u)

)
as the upper and lower

quantiles extracted from the dP (u) and dQ(u) distributions, respectively. For a given setpoint

ut = (P∗
t ,Q∗

t ), the implemented power lays in a rectangular set with a certain confidence level

α, i.e. yt ∈Rα(ut ) where:

Rα(ut ) ={(P,Q) ∈ IR2|
δ↓αP (ut ) ≤ P∗

t −P ≤ δ↑αP (ut ),

δ↓αQ (ut ) ≤Q∗
t −Q ≤ δ↑αQ (ut )},

(6.9)

P s = {δ↓αP ,δ↑αP ,δ↓αQ ,δ↑αQ } contains all the extracted quantiles computed off-line for different

values of u.

The sets of parameters Pp ,Pc ,P f ,Pm ,P s , are computed during an off-line phase, as de-

scribed in the following.

6.4.2 Models Parameters: Off-line Assessment

The parameters of the module model Pp can be computed off-line using the procedure

in [158] that only needs the module datasheet as input information. The converter model

coefficients defining Pc are obtained by fitting a regression model on a set of data obtained

by operating the converter from zero to the maximum rated power. To train the forecasting

tool (and compute P f ) we consider a set of N historical measurements {v, i ,θ} and use the

maximum available power estimator, in Section 5.3, to get P̃ for each set of measurements.

The obtained N historical estimations of P̃ are used to build the clusters of the selected

probabilistic forecasting tool, see Section 6.4.1. The clustered data are used to extract the

quantiles that define P f . The quantiles of the modeling error distribution are used to define

Pm . In practice, for period of length M , we let the PV converter work in MPPT, and thus the

maximum available power can be directly measured. The training set used to define the error

should cover different irradiance and temperature conditions, for example by selecting few

entire days characterized by different weather conditions. Finally, the setpoint uncertainty is

assessed by requesting specific power setpoints to the converter, by sweeping the whole PQ

capability set. We then extract the quantiles from the distributions of the observed distances(
dP (u),dQ(u)

)
, for all the requested setpoints u. This allows defining P s .
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6.5 Results

The analysis refers to a 13 kWp rooftop PV installation of 51 polycrystalline modules. The

agent (Fig. 6.1) is implemented in a NI CompactRIO 9068 and communicates with the con-

verter through a CAN bus interface. Currents, voltage, and temperature measurements are

acquired as described in Section 5.6. Since our analysis includes curtailment periods, a second

equivalent PV system is used as a reference installation to obtain the maximum PV power

output when the test plant is operated in non-MPPT mode.3. In these conditions, the average

absolute difference between the delivered AC active power values is less than 100 W. Therefore

we can assume that the behaviours of the two systems are comparable.

6.5.1 Maximum Available Power Uncertainty Assessment

In this Section, we quantify the prediction uncertainty of the AC maximum power considering

different forecast horizons (100 ms, 1 s, 1 min and 5 min), and different levels of curtailed

energy (0%, 2% and 30%). The latter is computed as the percentage of curtailed energy over

the maximum available in the testing period. The metrics are adapted from Section 2.3.1. The

first metric is the bound Coverage Probability (CP) which counts the number of times the

realization falls inside the PI for a given confidence level α:

CP = 1

L

L∑
t=1

ct , ct =
1, P↓α

t+1|t ≤ Pt+1 ≤ P↑α
t+1|t

0, otherwise.
(6.10)

where L is the total number of testing instances.

The second one is the interval normalized Averaged Width (AW):

AW = 1

LPmax

L∑
t=1

(P↑α
t+1|t −P↓α

t+1|t ) (6.11)

where Pmax = 13 kW is the rated power of the converter. Bounds are considered accurate when

CP ≥α and the AW is low. The bounds are computed: i) as in Eqs. (6.1)-(6.2), i.e., considering

the worst case between modeling and forecast uncertainty (Global), ii) considering only the

forecast uncertainty (Forecast), and iii) considering only the modeling uncertainty (Model).

Results are summarized in Table 6.2 and Table 6.3 for a target confidence level of 95%. In

particular, we consider a training set of 4 days for the 100 ms and 1 s horizons, and of 10 days

for the 1 and 5 min horizons. The testing set is of 2 days. The number of clusters is 100, 25, 15,

and 5 for 100 ms, 1 s, 1 min, and 5 min, respectively. In our analysis, the same training set is

used to extract the quantiles for the modeling error. From Table 6.2 we observe that only the

global prediction chain is able to deliver bounds with high coverage (CP is similar to the target

3This reference PV system is needed only to assess the performance of the proposed method. The considered
models are based on measurements from the tested PV system and, as later explained in the text, the presence of a
reference system is not necessary to the final user.
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Table 6.2 – Coverage Probability-CP [%], for α= 95%. Results are shown from 100 ms to 5 min
forecast horizon. Underlines refer to global CP lower than α.

Global Uncertainty

Forecast Horizon MPPT 2% Curt. 30% Curt.

100 ms 98.1 93.2 86.0

1 s 97.6 93.0 86.1

1 min 98.0-8.7 97.0 96.7

5 min 98.0-15 95.7 96.5

Forecast Uncertainty

MPPT 2% Curt. 30% Curt.

22.7-0.27 31 27

28.8-0.3 32.0 28

84.8 76.9 81.0

92.6 92.0 94.0

Model Uncertainty

MPPT 2% Curt. 30% Curt.

97.4 89 84

96.8 87 83

79.9 69.8 53

58 40.6 38.0

confidence level). At short-term horizons (below the minute scale), the forecast uncertainty is

low (Table 6.3), and accounting for the model uncertainty is necessary to guarantee a decent

coverage (higher than 85%). At horizons above the minute scale, the forecast uncertainty is

instead dominant. As example, Fig. 6.6 shows forecast and model bounds for 1 s and 1 min

forecast horizons, see Fig. 6.6a and 6.6b, respectively. It is possible to see that at 1 s horizon

the model bounds are of bigger magnitude and are necessary to guarantee the target coverage

probability. On the contrary, above 1 min horizon the forecast uncertainty is higher, and it

has the highest contribution to the global coverage. From Table 6.2 we can see that the global

CP is lower than α only at low forecast horizon (second and sub-second) with curtailment,

highlighted with underlines. This is due to the fact that the selected maximum power estimator

(based on measurements of the PV system) is very sensitive to the operating conditions, and a

higher modeling error is expected when the system is far from MPPT conditions. However,

in common plants, the modeling error can be computed only with respect to a ground truth

value obtained by leaving the system in MPPT and comparing the measured and estimated

power. Thus, the error defined in Eq. (6.6) only accounts for MPPT and not for curtailed

conditions. This explains the lower coverage of the bounds when curtailment actions are

adopted. Furthermore, this higher modeling error affects the global CP only at low horizons

(lower than the minute scale), i.e. when accounting for the modeling error is more relevant.

To understand the higher error associated with the DC maximum power estimation when

far from MPPT, we perform a sensitivity analysis with respect to the model’s parameters. In

particular, we change one-factor-at-a-time (OAT approach), [167]. Fig. 6.7 shows the sensitivity
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Table 6.3 – Normalized Average Width-AW [%], for α= 95%. Results are shown from 100 ms to 5
min forecast horizon.

Global Uncertainty

Forecast Horizon MPPT 2% Curt. 30% Curt.

100 ms 2.28 3.4 2.6

1 s 2.1 3.2 2.5

1 min 8.7 14.9 12

5 min 15 25.4 20

Forecast Uncertainty

MPPT 2% Curt. 30% Curt.

0.27 0.2 0.78

0.3 0.3 0.75

6.7 11.9 9.4

15 24.1 20

Model Uncertainty

MPPT 2% Curt. 30% Curt.

2.15 2.2 2.2

2.15 2.2 2.2

2.15 2.2 2.2

2.15 2.2 2.2

of the DC maximum power estimation (P̃dc ) with respect to the parameters iD , nr , and Rs .

We recall from Section 5.3 that, these parameters, together with Rp and Ip , are computed

from datasheet parameters at STC and then updated to account for their dependency of the

temperature and irradiance. The sensitivity is done considering two values of irradiance (500

and 800 W/m2) and constant temperature. For this assessment we consider that the initial

operating point of the PV system can be MPPT, open circuit (OC), and curtailed (CUR, for this

case we select a point halfway between MPPT and OC). We observe that when operating far

from MPPT, the estimation is very sensitive to the values of iD and nr . For example, an error

on the estimation of nr of 10% can lead to an 80% error on the estimation of the DC maximum

power when the system operates close to OC conditions. The value of the series resistance Rs

similarly affects the MPPT and curtailed conditions, and less affects OC conditions.

We can conclude that when referring to forecast horizons below 1 min, where the model un-

certainty prevails in the definition of the global power prediction uncertainty, it is particularly

important to invest in an accurate model of the PV model and precise equations that account

for the dependency of the five parameters on the weather conditions.

6.5.2 Setpoint Tracking Uncertainty Assessment

In this Section we quantify the uncertainty produced by the power converter to track external

setpoints. We recall from Sections 6.4.1 and 6.4.2 that for a given request u = (P∗,Q∗), we

have a set of possible injections (P,Q), and a corresponding set of possible distances dP (u) =
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(a) Prediction Uncertainty, 1 s forecast horizon

(b) Prediction Uncertainty, 1 min forecast horizon

Figure 6.6 – Comparison of the forecast bounds, model bounds, and realizations. One day of
active power generation is shown for the considered 13 kWp plant.

P∗ −P (u) and dQ(u) = Q∗ −Q(u). In order to assess the uncertainty associated with the

setpoint implementation, we perform several tests by sending to the converter different

requests u, sweeping the whole PQ admissible set, with a step size of 100 W/100 var, for the

active and reactive power respectively4. The quantiles defining P s are extracted from the

dP (u) and dQ(u) distributions recorded during these off-line tests. As example, Fig. 6.8 shows

the quantiles (δ↓P ,δ↑P ) for a confidence level α= 95% and for different couples (P∗,Q∗). Similar

results are obtained for Q. The quantiles can be stored in a 2D look-up table that returns in

4Each test lasts until the maximum available power is reached, accordingly to given irradiance and temperature
conditions.
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Figure 6.7 – Per unit change of the DC maximum power estimation with respect to the per unit
change of the input parameter. The base unit quantities of the DC maximum power and of the
parameters are those originally obtained from the model in [3].

real-time the quantiles (δ↑P ,δ↓P ) and (δ↑Q ,δ↓Q ) as a function of a given request (P∗,Q∗). Fig. 6.8

shows that this uncertainty can reach magnitudes of 600 W that corresponds to ≈5% of the

plant rated power.

6.6 Chapter Conclusions

This Chapter tackles the problem of assessing the uncertainty associated with the operation of

a controllable PV facility. The analysis includes two fundamental aspects: determining the

PV generation potential for the next time interval (allowing identifying a region inside the

capability curve of the power converter from where it is possible to pick a power setpoint),

and characterizing the uncertainty associated to tracking a setpoint inside that region. The

former element is determined by using a short-term forecasting method, whereas the latter

depends on the converter internal dynamics and is evaluated with a data-driven approach.

The proposed grey-box modelling relies on physical models as well as on measurements of

the PV currents, voltages, and the cell temperature to compute the AC maximum power. The

proposed method was tested considering different forecasting horizons, from 100 ms to 5 min
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Figure 6.8 – Setpoints Tracking Uncertainty on Active Power.

ahead. Experimental results showed that, when considering forecasting horizons below 1 min,

accurate physical models are the key to achieve reliable coverage of the prediction interval.

On the other hand, for forecasting horizons larger than 1 min, the quality of the predictions is

mostly affected by the uncertainty associated with the forecasting, which becomes dominant

with respect to models performance.

Chapter 7 shows how these results can be used in a real-time control framework for microgrids

applications to advertise the flexibility and uncertainty of a generic PV plant.
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7 PV Modelling and Short-term Fore-
cast: Applications

7.1 Chapter Highlights and Summary

In this Chapter, we show how direct and indirect prediction methods of PV generation can be

used in real power system applications that include generation from photovoltaic plants.

In the first part, we describe a control framework, called Commelec (Composable Method for

Real-Time Control of Active Distribution Networks with Explicit Power Setpoints), specifically

designed in our laboratory at EPFL for the real-time control of microgrids. We focus on

how PV systems are accounted is such a framework, and on how the developed probabilistic

prediction tools can be used to provide information on the future power availability and

associated uncertainty. In particular, we show how direct methods can be adopted for the case

of an uncontrollable PV plant while indirect methods for a controllable one. In the second

part, we focus on an energy management problem, called dispatchable feeder. We discuss how

PV plants can be used as flexible resources in coordination with a battery storage system to

track a specific dispatch plan set the day before operation.

7.2 The Commelec Framework

We refer here to a new control approach called Commelec for microgrids control, see [4, 37].

This framework specifically targets the real-time control of active distribution networks, and

it is based on the idea that any power grid can be steered via explicit setpoints of active and

reactive power of the available resources. A schematic describing the Commelec process is

illustrated in Fig. 7.1. Software Agents (deployed in dedicated microcontrollers) are responsible

for resources and subsystems (such as storage systems, PVs, loads etc.). A Grid Agent (GA, also

called leader agent) is responsible for the control of a portion of a distribution network. The

GA receives advertisements from each Resource Agent (RA, also called follower agent). An

advertisement specifies the follower capabilities, expected behavior, and a simplified view

of its internal state. The advertisements are device independent and use a common abstract

framework; this is essential to ensure scalability and composability. It is important to notice
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that the GA can itself be a follower of a higher level agent (G A0) from which it can receive

a requested power setpoint. The GA has to compute the requested setpoints to send to the

followers and to aggregate information to send to its own leader. As explained in the next

paragraph, the GA decision process has the goal of steering the electrical state of the grid

such as to minimize the virtual costs of the RAs, keep the grid in a safe and feasible state of

operation, and satisfy the target setpoint coming from the higher level GA.

Figure 7.1 – Schematic of the Commelec Structure, as given in [4].

Grid Agent

The task of the GA is to minimize the following objective function:

F (U ) =
n∑

i=1
ωi Ci (Pi ,Qi )+ω0C0 (P0(U ),Q0(U ))+ J (U ), (7.1)

where U = (P1,Q1...Pn ,Qn) is the set of power setpoints to send to the n followers. The function

to minimize is the weighted sum of the normalized virtual costs Ci of the resources, a penalty

term C0 on the power flow (P0,Q0) at the point of connection with the upper-level grid, and a

penalty term J on the nodal voltages and line currents. The solution has to return a feasible

solution, namely:

• it respects voltage and current limitations:

Vk ∈ [V nom
k −βk ,V nom

k +βk ], Il ≤ I max
l (7.2)

where βk and I max
l are given threshold variables that depend on the grid, index k

indicates the nodes and l the lines.

• The power injection at the slack is within a given region R0.

All the terms of Eq. 7.1 are designed convex and, in order to solve the minimization at each

time step, the single iteration of the gradient descent method is used.
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Resource Agents

The main task of a RA (e.g., the PV Agent) is to translate its internal state into the abstract

framework which consists of three main elements: PQ profile, Virtual Cost (VC), and Belief

Function (BF):

• The PQ profile represents the region (of active and reactive power) where the subsystem

can inject or absorb power.

• The VC quantifies the propensity of a system to stay in a particular zone of the PQ profile.

• The BF accounts for the uncertainty of the subsystem operation: it returns the set of all

possible setpoints that the system might implement due to its own stochasticity.

The PQ profiles sent by the followers are assumed to be deterministic sets in the PQ plane,

and so the GA performs a deterministic optimization under constraints defined by the belief

function that accounts for the uncertainty related to the resources. It is worth noting that

the real-time assessment of the BF, able to account for uncertainties of some resources (e.g.

PV), is not a trivial aspect. For example, in the case of stochastic generation we need to

provide high resolution prediction intervals (PIs) in few milliseconds. Furthermore, the RAs

communicate to the GAs active/reactive power values that are measured at the point of

connection with the grid; for this reason DC/AC converters are always considered as part

of the resource. RAs are usually deployed in a microcontroller, specific for each resource. A

general schematic of the process running in the microcontroller is shown in Fig. 7.2. The

microcontroller communicates with the resource converter, the measurement board, and the

GA. The requested setpoint coming from the GA is projected into the actual PQ state of the

resource and then implemented by the converter. Voltages and currents values are acquired

by a measurements system, processed to compute the AC active and reactive power and the

DC power, logged and used by the RA. Besides projecting the request, the RA computes the

advertisement. The advertisement (PQ, BF, CF) is then sent to the GA.

To summarize, a RA implements four consecutive tasks:

• Upon receiving a request setpoint, it retrieves the resource state and computes the

current PQ profile. This set may differ from the one previously sent due to delays or

inaccuracies.

• It performs an Euclidean projection of the requested setpoint onto the current PQ profile.

The projected value is the command to send to the converter.

• The agent sends the setpoint to the actuator and waits until the setpoint is implemented.

The corresponding delay depends on the resource’s nature (e.g. on ramping constraints

and controller parameters).

• After this delay, the RA computes the advertisement to be sent to the GA.
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Figure 7.2 – Structure of the software deployed in a microcontroller for each RA.

A general overview on how to design the different RA (e.g. battery, supercapacitor, loads) can

be found in [37, 5]. In the following sections we focus on how to design an uncontrollable and

controllable PV agent, i.e. on how to advertise the behaviour of a photovoltaic plant that is

part of the grid when the injected power cannot/can be controlled, respectively.

7.2.1 Uncontrollable PV Agent

In this paragraph, we consider the case of a PV plant that is not controllable. The PV converter

works in maximum power point tracking (MPPT) conditions and thus we can assume that the

measured power corresponds to the maximum available. This means that the uncontrollable

PV agent (UPVA) does not provide any flexibility and is, for the Commelec control framework,

a source of uncertainty. Fig. 7.3 shows the PQ profile and the BF of the uncontrollable PV agent

(UPVA). The PQ profile is computed as the point forecast for the next time step while the BF

is the associated prediction interval (PI, dashed lines). Since no control action is performed

on the PV plant, we can directly apply time-series based direct power forecasting tool, as the

one proposed in Chapter 2, to deliver the point forecast and the PI for the active power. In

general, for grid connected PV plants, the converter tracks a power factor of one and therefore

the uncertainty on the reactive power is simply a noise around the zero value. Since the plant

is not controllable, we consider a zero cost function.
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Figure 7.3 – Representation of the advertisement sent by an UPVA.

7.2.2 Controllable PV Agent

In this paragraph, we consider a PV plant that is controllable, namely we can ask for specific

active/reactive power setpoints. We show here how it is possible to design an agent for

a PV system that is meant to periodically inform the GA about the PV plant capabilities,

independently of its actual operating point. These capabilities may continuously change

as a function of the external perturbation and the converter limitations. Accordingly to the

Commelec nomenclature and for the sake of clarity, we name here the three elements that

represent the way the PV system can be controlled as (i) the PQ profile A , (ii) the belief

function B, and (iii) the virtual cost C . Therefore, the information sent to the GA can be

defined as: X = (A ,B,C ). Note that, the PV Agent looks for expressing the controllability of

the PV system at a given time-period in the future, i.e., at the time when it expects to receive a

new power setpoint. We assume that, if the GA sends setpoints fast enough, the information

generated by the PV Agent can be computed in discrete-time, considering that it remains

constant between two consecutive time-steps. Therefore, we target to have a message update

in the sub-second scale so that we can cope with the fastest dynamics of real PV systems. This

serves to simplify the information sent to the GA without the need of explicitly including the

time dependence of the external perturbations between consecutive time-steps. We next

describe how to compute X .

PQ profile A

In general, we consider that at time t , the one-step-ahead power flexibility of a controllable

PV system can be defined as a function of (i) the predicted maximum available power P↑α
t+1,

(ii) the converter rated power Sr , and (iii) a minimum power factor constraint PFmin. This

last is typically required to minimize the reactive power flows in the grid and to comply with

quality-of-service norms, generally associated to voltage control. The maximum available

power is defined by the upper bound of the global prediction bound, P↑α
t+1. Since in this case

the PV plant is controllable, there is no guarantee that the measured power is the maximum
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available one and therefore direct forecasting methods are not advisable. On the contrary, the

maximum power should be computed from the solar irradiance and cell temperature, and the

procedure described in Chapter 6 used to deliver the predicted maximum power P↑α
t+1.

Considering this, and S = P + jQ as the complex power, we define A as the set in the PQ-plane

where a GA can request a setpoint u in the next time-step, i.e., ut+1 ∈At . This is,

At ={(P,Q) ∈ IR2|

0 ≤ P ≤ P↑α
t+1,

|P |
||S|| ≥ PFmin, ||S|| ≤ Sr }

(7.3)

The graphical representation of A is shown in Fig. 7.4.

PFmin

Sr

P ↑α

A

Q

P

Figure 7.4 – PV system Power Flexibility.

Belief Function B

The uncertainty of implementing a given setpoint is strongly dependent on two factors (i) the

maximum available AC power (from forecast and model) and (ii) the setpoint tracking accuracy.

Let us first focus on the former. The set defined by the uncertainty of the maximum available

power, is a segment that depends on PFmin. The definition for any ut+1 = (P∗
t+1,Q∗

t+1) ∈At is

in Eq. (7.4).

Bα
1,t (ut+1) =

{(P∗
t+1,Q∗

t+1)} 0 ≤ P∗
t+1 ≤ P↓α

t+1,

[(P∗
t+1,Q∗

t+1), (P ′
t+1,Q∗

t+1)]∪ [(P ′
t+1,Q∗

t+1), (P↓α
t+1,Q ′

t+1)] P↓α
t+1 ≤ P∗

t+1 ≤ P↑α
t+1,

(7.4)

where the global bounds P↑α
t+1 and P↓α

t+1 are as discussed in Chapter 6.
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P ′
t+1 and Q ′

t+1 are expressed as:

P ′
t+1 =Q∗

t+1 tan(arccos(PFmin)), (7.5)

Q ′
t+1 = sign(Q∗

t+1)P↓α
t+1

√
1−PF2

min

PFmin
. (7.6)

The graphical representation is shown in Fig. 7.5a.

The uncertainty of the power converter to deploy a power setpoint is defined by a rectangular

set with a certain confidence level α as described in Eq. (6.4.1). The set defined by this

uncertainty for any (P∗
t+1,Q∗

t+1) ∈At , shown in Fig. 7.5b, is thus:

Bα
2,t (ut+1) =Rα(ut+1). (7.7)

The overall uncertainty on deploying a power setpoint ut+1 can be, therefore, written as follows

(see Fig. 7.5c):

Bα
t (ut+1) = ⋃

(p,q)∈Bα
1,t (ut+1)

Bα
2,t (ut+1). (7.8)

Virtual cost C

We assume that, a PV system operator would always look for maximizing the active power

production and minimizing the reactive power magnitude. Thus, the virtual cost can be

defined as a function of all power setpoint (P,Q) ∈A as

C (P,Q) =−P +Q2. (7.9)

Graphically, the virtual cost, defined in the domain of the PQ profile, is shown in Fig. 7.6 where

the red hue refers to higher cost.

7.2.3 Experimental Validation

The microgrid available at the DESL has been designed as a realistic scale of the CIGRE

low voltage (400 V at 50 Hz) microgrid benchmark defined in [168]. We here describe its

architecture as shown in Fig. 7.7, however the detailed description can be found in [5].

The currently available resources, framed with a dashed line in Fig. 7.7, are:

• Three controllable single-phase power converters to emulate the consumption of a

24 kW residential building that has electrical space-heating. In particular, any active/re-

133



Chapter 7. PV Modelling and Short-term Forecast: Applications

(P1, Q1)

(P ′
1, Q1)

(P ↓α
1 , Q′

1)

(P2, Q2)

(P ↓α
2 , Q2)

(P3, Q3)

Sr

P ↑α

P ↓α

Q

P

B1(P1, Q1)

B1(P2, Q2)

B1(P3, Q3)

(a) Maximum available power

(P1, Q1) (P2, Q2)

(P3, Q3)

Sr

P ↑α

Q

P

B2(P1, Q1)

B2(P2, Q2)

B2(P3, Q3)

(b) Setpoint tracking accuracy

(P1, Q1) (P2, Q2)

(P3, Q3)

Sr

P ↑α

P ↓α

Q

P

B(P1, Q1)

B(P2, Q2)

B(P3, Q3)

(c) Overall uncertainty

Figure 7.5 – Examples of Belief Functions. The subscripts represent three different possible
setpoints.

active power setpoint is translated into current amplitude and phase for the 3 phases.

The load is indicated in Fig. 7.7 with L1.

• A battery energy storage system with a 25 kW/25 kWh power/energy rating, indicated in

Fig. 7.7 with B. It is based on Lithium Titanate cells and is monitored by a local battery

management system (BMS). The battery uses a 4-quadrants converter, which directly

receives power setpoints.

• A 13 kW PV-roof installation (PV1), controllable using a a 4-quadrants converter as

described in [169].

• A supercapacitor (SC) bank composed of 6 modules connected in series. It is a 50 kW -

0.8 kWh based a 2.7 V and 3000 F cell. Also this system used a 4-quadrants converter.
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Figure 7.6 – Cost Function

• An hydrogen system composed of a fuel cell (15 kW) and a high-pressure (30 bar)

electrolyzer (6 kW) based on a proton-exchange membrane (PEM) technology. The fuel

cell and the electrolyzer are indicated with FC and EL, respectively.

• A 20 kW PV-roof installation (PV2) which is not controllable and always tracks the

maximum power and a 7 kW PV façade installation (PV3) also not controllable.

Every resource in the microgrid is equipped with a resource agent (RA) deployed in a NI CRIO

9068 as described in Fig. 7.2. Phasor Measurements Units (PMU) and RAs send their data

using IP multicast to both the grid agent (GA) and a Supervisory Control And Data Acquisition

(SCADA) system.

In the following paragraph we consider two key examples to show how the Commelec control

framework is able to exploit the predicted PV flexibility at two scopes: 1) to achieve the

microgrid dispatchability and 2) to maintain the grid in a safe state of operation.

Since in this work we focus on the inclusion of stochastic generation (e.g. PVs) the consid-

ered setup is reduced, namely not all the resources are operating. Further examples of the

Commelec framework capabilities can be found in [5].

7.2.4 Microgrid Real-Time Dispatchability

In this first experiment, we show the case where the microgrid is continuously requested to

change its power flow at the grid connection point (GCP). For this purpose, the GA simply
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Figure 7.7 – Microgrid Overall Architecture, [5].

activates a power-tracking function in its objective (C0 in Eq. (5)). We also set a constant

reactive power request Q = 0 kvar. We consider to have in our microgrid only the controllable

PV (PV1) and the uncontrollable one UPV (PV2). Thus, the only source of flexibility comes

from the controllable PV. Fig. 7.8 shows how it is possible to use the PV flexibility to track the

target request at the grid connection point (GCP). At first, both the PV and the UPV are working

in MPPT. Then, at Time=50 s, we ask to decrease the power at GCP and so the controllable

PV (yellow line) reacts accordingly. After this, a constant power of 15 kW is asked, even if the

maximum available power is almost 20 kW. It is interesting to see that when a cloud arrives, at

Time=290 s, the controllable PV is asked to react such that the setpoint at the GCP is tracked,

i.e. the PV system is able to provide upward regulating power.
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Figure 7.8 – Real-Time Dispatchability using PV as source of flexibility.

7.2.5 Line Congestion Management using PV Curtailment

In this second experiment, we show how the PV flexibility can be exploited by the GA to

maintain the grid in a safe state of operation, avoiding line congestions and/or voltage vio-

lations. We consider in our microgrid only the controllable PV (PV1), the uncontrollable PV

(PV2), and the Load (L1). The 24 kW residential building is modelled with discrete state-space

equations as described in [170]. It consists of 8 rooms, each equipped with an electrical heater

of 3 kW that can only be turned on or off. The controlled variable is the room temperature,

which needs to remain within a given comfort zone. The PQ profile is therefore calculated

to guarantee that the rooms’ temperature are within the comfort bounds, the VC is to steer

the rooms’ temperature to the average temperature of the comfort interval, and the BF is

the uncertainty of actuating a given power setpoint. The measured active power values are

shown in Fig. 7.9a and the measured current at the GCP in Fig. 7.9b. The ampacity limit of

this line is 20 A. At first, both the PV plants operate in MPPT, and the load is consuming active

power in order to maintain the rooms temperature inside the comfort zone. At Time=160 s we

reproduce the case when the load suddenly disconnects, causing the line current to increase.

It is possible to see that the GA immediately curtails the PV power so to maintain the line

current below the ampacity limit (20 A). Also in this case, the controllable PV can be used as a

source of flexibility and it can be exploited to avoid line congestions.

7.3 An ADMM-based Coordination and Control Strategy for PV and

Storage to Dispatch Stochastic Prosumers

In this second application, we focus on the integration of stochastic resources in the context of

the secondary control/energy management of an electrical feeder. Recently, a new approach

has been proposed and experimentally validated at EPFL to achieve the dispatchability of
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Figure 7.9 – Line Congestion Management using PV as source of flexibility.

distribution feeders with distributed resources by controlling utility-scale battery energy

storage systems (BESSs), [8]. The process, here referred as dispatchable feeder, is divided in

two parts:

• The day-ahead operation, where a scheduled trajectory, called dispatch plan, is deter-

mined at the grid connection point (GCP) and at 5 minutes resolution, by implementing

forecast of the local prosumption.

• The real-time operation, where the mismatch between the dispatch plan and the pro-

sumption realization is corrected by adjusting the real power injections of the BESS

converter with model predictive control (MPC). Both battery and consumption forecast-

ing models are data-driven (namely identified from experimental measurements).

For the full discussion, the reader is referred to [8].

The idea of dispatching the active power flow at the GCP can be extended to the case where

several flexible resources are available in the network. In particular, as described in Section 6,

PV plants can also provide some down power flexibility if the converter is controllable. For

this reason, the framework is extended for the case of a curtailable PV facility and battery

energy storage system (BESS). Fig. 7.10 shows the experimental setup used to test and validate

the proposed control: it consists of a radial distribution feeder interfacing a heterogeneous
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mix of demand and generation (office buildings with uncontrollable rooftop PV installations)

and two controllable resources, as later detaled in Section 7.3.1. In particular, the day-ahead

EPFL sub-transmission grid

Grid connection point (GCP)
50/21 kV

20 MVA
P (composite power flow)

L (aggregated feeder prosumption)

350 kWp Prosumption

(office buildings)

G (PV power)

13 kWp Curtail-

able PV facility

21/0.3 kV

0.75 MVA

B (BESS charging demand)

Lithium Titanate BESS
720 kVA/500 kWh

Dispatchable feeder Measured power
flows

Figure 7.10 – The EPFL’s experimental setup used for the validation.

operation is formulated as in [8] and it is here assumed as a given trajectory to track. Then,

distributed optimization is applied every 5 min to coordinate PV and BESS and provide the

real-time operation. The real-time operation consists in two algorithms executed at different

paces:

• a lower level tracking problem, executed at 10 s resolution, to achieve a fine tracking of

the dispatch plan by controlling the BESS active power. This is achieved with MPC with

the formulation proposed in [8].

• an upper level coordination mechanism, running at 5 min resolution, to coordinate the

operation between elements. Its role is essentially implementing an energy management

strategy to, i), make sure that enough power capacity is available for the faster control

loop to compensate for the power mismatch, and, ii), longer-term managing the BESS

state-of-charge (SOC) such that enough flexibility is available to compensate for the

energy error during the remaining part of the day.

More in details, the ADMM (Alternating Direction Method of Multipliers, [171]) is ap-

plied to share the control objective between multiple resources. Each 5 min, the ADMM

determines the trajectories of the battery injection and PV generation to achieve dis-

patch plan tracking by integrating short-term forecast of the demand and PV generation

(allowing to estimate the PV curtailment potential).

The day ahead predictions of the solar potential are obtained from the MeteoTest meteorologi-

cal web service, while the 5 min ahead are obtained by using a persistent forecast, based on
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pyranometers and temperature measurements as inputs. Physical-based modeling tool-chain

(transposition of the global horizontal irradiance and PV plant models) are used to compute

the PV generation from the current irradiance and temperature. In particular, the transpo-

sition model is as described in Appendix B and the PV model as in Section 5.3. 1 The flow

chart depicting the real-time operation procedure is sketched in Fig. 7.11. In the flow diagram,

controllers running at two time samples: i) faster MPC controller executed each 10 s and

ii) slower ADMM based coordination mechanism computing PV setpoints each 5 minute.

00:00 UTC (i=0)
Dispatch plan is retrieved.

SOC, PV maximum power, and load 
forecasts are updated using measurements. 

Mismatch error is updated.

ADMM computes the setpoints for the next 5 min.

Low level MPC at 10 seconds.

Stop at 24:00 UTC.

i=i+1

Figure 7.11 – Flow chart showing real-time operation during 24 hours. The index i denotes the
rolling current 5 minute interval.

1The persistent forecast is here selected as point forecast method for simplicity. However, more sophisticated
tools (e.g. machine learning based) can be integrated for improved performance of the control strategy.
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For the sake of clarity, we give here the formulation of the optimization problem, as described

in [172]. Let the index i denote the rolling current 5 minute interval, N the number of 5 minutes

interval in 24 hours, j = i , . . . , N a 5 minute time index spanning from the current time until

the end of the day, the sequence ê j the forecasted deviation between the dispatch plan and

forecasted realization for the remaining part of the day, B o
j and Go

j the battery and PV plant

setpoint trajectories, respectively, and Ĝ j the maximum theoretical PV power plant output.

The sequences ê j and Ĝ j are calculated by applying forecasting tools and are assumed given in

the following formulation. We focus here on the formulation of the optimization problem in a

centralized manner. The objective is to compute the trajectories B o
j and Go

j for the remaining

part of the day j = i . . . , N in order to compensate for the dispatch plan mismatch e j , while

performing the minimal amount of curtailment subject to PV and battery system constraints.

The PV system constraint is that the active power should be within 0 and the theoretical

maximum PV power production Ĝ j . For the battery, the constraints are that the power should

be within the four-quadrant apparent power converter capability, and the battery SOC within

the bounds (SOCmin
j ,SOCmax

j ).

Formally, the centralized optimization problem is:

argmin
Gi ,...,GN

Bi ,...,BN

N∑
j=i

(
G j −Ĝ j

)2
(7.10)

subject to:

B j +G j = e j j = i , . . . , N (7.11)

0 ≤G j ≤ Ĝ j j = i , . . . , N (7.12)

B min ≤ B j ≤ B max j = i , . . . , N (7.13)

SOCmin
j ≤ f (SOCi ,Bi−1, j−1) ≤ SOCmax

j j = i , . . . , N . (7.14)

It is possible to decompose the centralized problem into distributed ones, which can be solved

iteratively until reaching a consensus on a coupling constraint that in this case is the dispatch

constraint of Eq. 7.11.

Let g j (·) be a barrier function with zero cost when the tracking error constraint (7.11) is

respected and infinity otherwise:

g j (G j ,B j ) =
0 B j +G j = e j

∞ otherwise.
(7.15)

Let G j , B j be the variables that mimic the behavior of the original variables G j , B j , the so-

called copied variables. The centralized objective can be re-written by moving the system
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constraints into the objective function by using the barrier function g j (·). It is:

argmin
Gi ,...,GN

Bi ,...,BN

N∑
j=i

(
G j −Ĝ j

)2 +
N∑

j=i
g j (G j ,B j ) (7.16)

subject to:

B j −B j = 0 j = i , . . . , N (7.17)

G j −G j = 0 j = i , . . . , N . (7.18)

Constraints (7.17) and (7.18) can be moved in the cost function by using two sequences

of Lagrangian multipliers, denoted by yG i ,N and yB i ,N , referred to as dual variables in the

following. The augmented Lagrangian cost function is obtained by moving the equality

constraints (7.17)-(7.18) in the cost function (7.16). It is:

Lρ =
N∑

j=i

(
G j −Ĝ j

)2 +
N∑

j=i
g j (G j +B j )+

+ρ
2

(∣∣∣∣G i ,N −G i ,N
∣∣∣∣2

2 +
∣∣∣∣B i ,N −Bi ,N

∣∣∣∣2
2

)
+

+yG
T
i ,N (G i ,N −G i ,N )+ yB

T
i ,N (B i ,N −Bi ,N ).

(7.19)

For a complete tractation of the ADMM consensus and sharing problem the reader is referred

to [172].

7.3.1 Results

Characteristics of the involved units are summarized in Table 7.1. The active power flow of the

distribution network is monitored by sensing the consumption at the GCP with a PMU-based

metering system. The BESS is controllable by sending active/reactive power setpoints to the

power converter over a Modbus interface, and the PV plant is controllable by sending active

power setpoints to the converter over CAN communication.

Table 7.1 – Description of connected elements at GCP

Component Parameter Value

Grid-connected BESS
Nominal power 720 kVA
Energy capacity 560 kWh
Ramping rate ±20 MW/s

Prosumption (office
building + rooftop PV)

Peak active power de-
mand

350 kW

Average demand 101 kW
Generation capacity 82 kWp

Curtailable PV Plant Generation capacity 13 kWp

The experimental results for one day of operation are shown in Fig. 7.12. In particular, Fig. 7.12a
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shows the dispatch plan (in black), the prosumption realization (dashed red), and the realiza-

tion at the GCP (gray shaded area): the prosumption realization differs from the dispatch plan

due to forecasting errors, whereas the realization at the GCP, which is corrected by controlling

the contribution of the battery and curtailable PV facility, achieves a good tracking of the dis-

patch plan. Fig. 7.12b shows the battery injection (in the upper panel), and the SOC evolution

and its bounds (bottom panel, full and dashed line, respectively), which are an input of the

decision problem. In this case, SOC bounds are constrained at time 20:00 UTC to reproduce a

situation where the flexibility is constrained ( e.g., to simulate a situation where the battery

capacity is saturated). It is noteworthy that SOC evolution is always within the allowed bounds.

Fig. 7.12c shows the PV curtailment action, in particular the theoretical PV maximum power

point (in red), the PV converter setpoint (black) and the measured PV active power. During

the first part of the day, the PV setpoint corresponds to the maximum available power: the

small differences between the two profiles are due to the fact that maximum power point

operation is achieved by MPPT algorithms (maximum power point tracking), which normally

rely on perturb-and-observe strategies, and not on a physical model-based toolchain, as for

our case. As visible in Fig. 7.12c, the PV power is curtailed around midday. This is due to the

distributed optimization policy, which decides to implement curtailment in order to satisfy

the constraints of the optimization problem. To evaluate whether the curtailment action deter-

mined by the distributed optimization problem was necessary, we playback the experimental

measurements of the prosumption realization in a ad-hoc simulation framework. where the

feeder dispatch is enforced by controlling the battery only. In other words, we want to verify

if battery SOC constraints are still respected in the same stochastic conditions but without

leveraging the controllability of the curtailable PV facility. Fig. 7.13 compares the experimental

SOC (dashed red, from the battery management system, which includes ADMM action), the

simulated SOC with ADMM (shaded gray band), the simulated SOC without ADMM action,

and the SOC upper and lower bounds (dashed blue and black lines). As visible in Fig. 7.13, the

experimental SOC and simulated SOC without ADMM matches until approximately midday,

the time when the PV curtailment action begins (from Fig. 7.12c). After midday, the two

trajectories diverge because in the latter case the battery has to charge more in order to track

the dispatch plan. Nevertheless, in the former case, the battery SOC respect the SOC upper

bound constraint, whereas the latter strategy (without ADMM) fails at time 20:00 UTC. We

can therefore conclude that the curtailment action determined by the formulation with dis-

tributed optimization is necessary to respect BESS constraints. Numerical results comparing

the control performance with and without ADMM are shown in Table 7.2. They denote that

the distributed optimization control, even if it sacrifices PV generation, it achieves to respect

BESS capacity constraints and that it is able to coordinate the operation of the controllable

resources to achieve to dispatch stochastic prosumption.

Table 7.3 shows the statistics on the tracking error for the case where there is no control at

all (no dispatch), dispatch strategy without ADMM upper layer coordination strategy, and

dispatch with ADMM. In this case, the dispatch strategy with achieves the best tracking

performance with a RMS error less than 0.5 kW over 24 hours.
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Table 7.2 – PV generation, PV curtailments and SOC constraint violation.

Quantity no ADMM with ADMM

Max distance from SOC up-
per bound constraint (> 0 vi-
olation)

3.09 % -0.47 %

PV Generation 33.8 kWh 21.60 kWh

PV Curtailement – 12.2 kWh

Table 7.3 – Tracking error statistics without dispatch, with dispatch and no ADMM, and dispatch
+ ADMM (kW).

Scenario RMSE Mean Max

No dispatch 11.1 -4.1 36.0

Dispatch without ADMM 1.60 0.53 7.8

Dispatch + ADMM 0.32 ≤ 0.01 2.27

7.4 Chapter Conclusions

In this Chapter, we have shown the importance of knowing the future available maximum

power of a PV plant, considering two different applications and two experimental setups

equipped with a controllable PV plant. The first application concerns explicit power-flow

primary control in microgrids and targets dynamics at very short-time scale (sub-second). We

have considered a real-time control framework that is able to control a set of heterogeneous

resources in a real-scale microgrid deployed in our laboratory at EPFL. We have proved that it

is possible to exploit the flexibility of a controllable PV plant if the one-step ahead maximum

power and associated uncertainty are known and correctly advertised to a main controller. The

results are shown considering two different scenarios, i.e. capability of the microgrid to follow

a given dispatch profile and capability to avoid line congestion. The second application refers

to a predictive control strategy for the energy management of distributed resources and targets

the minute time scale. A curtailable PV facility and a battery energy storage system (BESS)

are considered as flexible resources to dispatch stochastic prosumers. The proposed ADMM-

based coordination mechanism successfully achieves to curtail PV generation in contingency

situation (e.g., loss of battery capacity) and respect battery state-of-charge constraints.
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(a) Dispatch plan (black), measured prosumption realization (shaded area), measured active power flow at the GCP
(dashed red).

(b) Battery power injection (upper panel), and battery SOC evolution and respective limits (bottom panel).

(c) Curtailed PV (black), theoretical maximum power point (MPP) PV (dashed red) and measured PV after imple-
mentation (shaded area)

Figure 7.12 – Operation of the dispatchable feeder with ADMM strategy on 17 September 2017.
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Figure 7.13 – SOC evolution with and without ADMM. The former is experimental, whereas
the latter is obtained by playing back into simulations experimental data. With ADMM, SOC
constraints are respected, whereas they are not without ADMM.
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8.1 Main Conclusions of the Thesis

The thesis developed, deployed, and experimentally applied new probabilistic methods that

allow modern control strategies to account for the fastest dynamics of photovoltaic plants

when connected to an electrical grid.

The case of an uncontrolled PV plant that always tracks the maximum power is considered,

and a probabilistic method is investigated to directly forecast the PV AC active power output.

The method is based on the experimentally observed correlation between the AC active power

value, its derivative, and the error caused by a generic point predictor. Results show that the

method is able to account for high AC active power fluctuations by adapting the PI width at

different confident levels.

Since direct power forecast is not advisable if the power measurements are corrupted by

curtailment actions, it might be necessary to first predict the irradiance and then convert

it into power using physical models of the plant. For this reason, we have focused on the

probabilistic forecasting of the GHI, targeting horizons that are meaningful for microgrids

control applications (i.e., from sub-second to five minutes). A method to deliver PIs for

GHI is proposed and its performance assessed. The technique extracts information from

a limited training set: pyranometers readings are clustered off-line by using the k-means

algorithm, and the quantiles of the obtained clusters are then used for the PIs computation.

The method is applied to the original and differentiated time-series. Results show that the

benefit coming from the time series differentiation decreases while increasing the forecast

horizon. It is shown that the algorithm outperforms benchmark cases, e.g. the one using

simple quantiles extractions and the one considering a Gaussian distribution of the point

forecast error. Furthermore, performance is shown to be in line or improve those available in

the literature, for all the considered forecast horizons and using a shorter and limited training

set. Thanks to its computational inexpensiveness and good performance at different forecast

horizons, the model can be useful for providing forecast of the GHI for the real-time control of

microgrids.
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Then, the use of ground images to support solar forecasting and sense the GHI is investigated.

The main goal is to study if it is possible to detect cloud movements and sun occlusion and to

use this information to reduce the uncertainty of predicting algorithms that are only based

on past irradiance measurements. First, a chain to predict the percentage of cloudy pixels

in the sun disk is proposed. It includes the development of cloud segmentation and motion

algorithms. Regarding cloud segmentation, a new method based on the intensity-to-blue

ratio is proposed and proved to outperform available models from the literature, including

threshold-based methods that consider different color channels (e.g, the red-blue ratio) and

supervised segmentation models. Furthermore, it is shown that the predicted local cloud cover

can be used as a further feature to improve a machine learning based method to deliver PIs of

the GHI, besides the sole use of past irradiance measurements. The possibility of using an all-

sky imager as irradiance sensor is also investigated. At first, a large set of features is extracted

from the images, and then feature selection is performed using principal component analysis

(PCA). The subset of selected features is then used as input to train an artificial neural network

(ANN). Training and performance evaluation is computed using pyranometer measurements,

collected in the same location as the camera. The GHI estimations are benchmarked against

the Heliosat-2, a well-established method to estimate the GHI from satellites (e.g. Meteosat

in Europe). Results show that the all-sky camera-based GHI estimations proposed in this

work outperform the Heliosat-2, with a RMSE relative improvement of 20-45%. In particular,

this happens when fast irradiance dynamics are present due to the fact that satellites-based

models lack the spatial and temporal resolution needed to capture localized fluctuations. The

method was extended to the case of GHI point forecast, showing an improvement with respect

to the baseline persistent method for forecast horizons larger than 1 min.

Then, the case when estimations of the irradiance are not available from sensors (e.g. pyra-

nometers, sky-images, satellites) is considered. To cope with this issue, an alternative approach

is proposed to reconstruct the maximum power of a PV plant: a gray-box model that leverage

on measurements of the DC voltage, current, and cell temperature, and on a physical model

of the PV plant. Three model-based estimators are investigated starting from the circuital

equations of the PV plant, corresponding to three formulations: the analytical, the Immersion

& Invariance (I&I), and the Kalman Filter (KF). Results showed that the considered estimators

can reconstruct successfully the theoretical maximum power output of PV installations in all

the operating conditions and outperform pyranometer-based maximum power estimations.

For noise levels compatible with commercial sensors, the analytical estimator showed better

performance and bandwidth than the I&I and KF-based estimators. However, if the available

measurements are characterized by a high level of noise, the use of filter-based strategies is

advisable since they are able to delete noisy observations while accounting for the structure of

the process. An application of the maximum power estimators to improve data-driven maxi-

mum power forecasting tools is proposed. We showed that training the forecasting algorithm

with historical data that are corrupted by curtailment actions leads to a deterioration of the

learning stage and therefore to a worse performance of the forecasting method. In this context,

we apply the analyzed methods to reconstruct the maximum point and we, therefore, make
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sure that the forecasting algorithm learns from values that are always representative of the

true potential of the plant.

Then, the problem of assessing the overall uncertainty associated with the operation of a

controllable PV facility is tackled. The analysis includes two fundamental aspects: determining

the PV generation potential for the next time interval (allowing identifying a region inside the

capability curve of the power converter from where it is possible to pick a power setpoint),

and characterizing the uncertainty associated to tracking a setpoint inside that region. The

former element is determined by using the discussed gray-box model based on the analytical

formulation, whereas the latter depends on the converter internal dynamics and is evaluated

with a data-driven approach. Experimental results showed that, when considering forecasting

horizons below 1 min, accurate physical models are the key to achieve reliable coverage of the

prediction interval. On the other hand, for forecasting horizons larger than 1 min, the quality

of the predictions is mostly affected by the uncertainty associated with the forecasting, which

becomes dominant with respect to models performance.

The thesis concludes by showing two possible applications to prove how to profit from know-

ing the future availability of a PV plant. The first application concerns primary control in

microgrids at a very short-time scale (sub-second). We have considered a control framework,

called Commelec, that controls a set of heterogeneous resources (batteries, loads, PVs..) in

a real-scale microgrid deployed at EPFL. Commelec consists of a main controller that, upon

receiving information of the status of the available resources, is capable of managing power

flows in the grid while guaranteeing its safe operation. We have proved that it is possible to

exploit the flexibility of a controllable PV plant if the one-step-ahead maximum power and

associated uncertainty are computed and correctly advertised to a main controller. Results are

shown considering two different services, i.e. the capability of the microgrid to follow a given

dispatch profile at the grid connection point and to avoid line congestion. The second appli-

cation refers to a predictive control strategy, also deployed at EPFL, to dispatch the operation

of a distribution feeder with heterogeneous prosumers according to a trajectory with 5 min

resolution. A curtailable PV facility and a battery energy storage system are exploited as flexible

resources to dispatch a set of stochastic prosumers. The proposed distributed coordination

mechanism successfully achieved to curtail PV generation in contingency situation (e.g., loss

of battery capacity) while respecting battery state-of-charge constraints.

8.2 Future Work

Overall, the methods proposed can be used to integrate PV plants into modern electrical grids

more effectively and reliably. However, more research is still required in this direction. Possible

interesting points that need further investigation are:

• Assess of the performance of the developed forecasting tools when considering larger

geographical areas. This includes both the case of a single large PV plant and the case
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of aggregated distributed PV plants. In particular, it would be interesting to asses for

which level of aggregation or spatial extension, local estimations (from pyranometers,

sky-cameras and monitored PV plants) are required to capture local irradiance dynamics

or, viceversa, when satellite estimations, characterized by a lower resolution, are instead

sufficient for this scope.

• Segmentation and cloud motion algorithms to detect cloud dynamics from the sky-

images should be improved. Possible research includes considering more sophisticated

segmentation methods, e.g. extending the binary segmentation to multiple regions, or

considering dynamic cloud segmentation where information from contiguous pictures

are incorporated.

• For the all-sky camera, all the discussed algorithms should be validated on a larger set

to consider performance over an entire year.

• The ASIs-based GHI estimations proposed in Chapter 4 could be improved by including

dynamic features (for example, the variation of the intensity during consecutive pictures,

the variation of the cloud cover, etc.). It could be also interesting to implement more

sophisticated deep learning techniques.

• Regarding the PV modelling chain, future research should also consider the effects of

fault occurrence and degradation processes of the PV cells. For example, adaptive model

identification with periodical re-training of model parameters can be implemented to

account for degradation.

150



A Appendix A

The following describes how to compute the variance Q for the Estimated Kalman Filter-

based irradiance estimation. In summary, it consists in grouping N historical values of the

differentiated irradiance time series (∆I ) into clusters according to the value of selected data

features:

• the average irradiance value on a mobile window of length n considering the most

recent data points:

Mi = 1

n

i∑
j=i−n

∆I j , i = n +1, . . . , N (A.1)

• the irradiance variability:

Vi =
√√√√ 1

n

i∑
j=i−n

(∆I j −∆I j−1)2, i = n +1, . . . , N (A.2)

The k-means iterative algorithm is used to classify historical observations using its formulation

in Matlab, [97]. It returns k clusters G1, . . . ,Gk and their centroids c1, . . .ck; the histograms of

these clusters are assumed as the empirical pdfs of the variations with respect to the one-step-

ahead irradiance realization. The number of clusters is chosen empirically with the objective

of minimizing the variance of each cluster pdf. During real-time operation, the data features

vector at time t , denoted by pt = (Mt ,Vt ), is calculated. The next step is the calculation of the

Euclidean distances between pt and the centroids cl

dl = ‖cl −pt‖2, l = 1, ...,k (A.3)

which is used as a similarity criterion to select the cluster representative of the future irradiance.

We indicate with l̂ the index corresponding to the cluster with minimum distance. The variance
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of the cluster pdf is then used as the value for Q. In particular:

Qt+1|t = Var(G l̂ ). (A.4)

It is worth noting that while doing this, we do the approximation that clusters pdfs are normally

distributed. Besides, we note that determining Q requires past irradiance values, whereas

previous methods do not.
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In this Appendix, we compare the performance of three maximum power estimators. In

particular, we consider that the GHI is firstly measured using three different systems explored

in the thesis: a pyranometer, an all-sky camera, and satellites. For the first case, a pyranometer

is installed in the vicinity of the PV plant, directly returning GHI measurements, as described

in Chapter 3 (Section 3.8). In the second case, the ASI-based method in Section 4.8 is used to

estimate the GHI by extracting meaningful influential variables from the images returned by

the all-sky camera, also installed in the vicinity of the plant. In the last case, Heliosat-2 GHI

estimations are retrieved from the Helioclim-3 database for the GPS location of the plant under

test as described in Section 4.8.3. Then, all the GHI values are transformed into plane-of-array

(POA) irradiance values using transposition models from the literature (see Section B.1 of

this Appendix), and then the transposed irradiance is converted into DC power values using

the 5-parameter PV model, as described in Sections 5.3 and 5.5. The cell temperature, used

as second input of the model, is measured using a temperature sensor installed on the rear

surface of the panel. The tested plant is a 3.7 kW rooftop PV installation, part of the plant

introduced in Section 2.2.1. To evaluate the ability of the different methods in capturing fast

power fluctuations, the estimated DC power values are compared with the measured DC

power at 1 min time resolution.

B.1 Transposition Model

In order to transpose the global horizontal irradiance (I ) into the plane of array irradiance I�,

we first need to decompose it into the beam and diffuse component, indicated with B and

D respectively, [173]. By neglecting the reflected component of the irradiance, we can write

I = B +D. First we can compute the direct irradiance by knowing the clear-sky index K and
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the clear-sky irradiance Ics , using the adjustment proposed in [174]:

B =


0 K < 19/69

Bcs(K −0.38(1−K ))2.5, 16/69 ≤ K ≤ 1

BcsK , K > 1.

(B.1)

where the clear-sky index is defined as the ratio between I and the clear-sky irradiance Ics :

K = I

Ics
. (B.2)

The clear-sky values are calculated using the Ineichen/Perez model, [138, 139], as formulated

in the PVLib library, [104]. Then, the global irradiance on the tilted plane I� can be computed

using the Klucher model, [175]:

I� =D

(
1+cosθT

2

)(
1+F sin3 θT

2

)
(1..+F cos2θI sin3θz )

+B
cosθI

cosθz
,

(B.3)

where F = 1− (D/(B +D))2, θT is the panel tilt angle, θI the solar incidence angle normal to

the angled plane.

B.2 Results on DC Maximum Power Estimation from Different Sen-

sors

Let Pt be the ground truth maximum GHI value at the time interval t = 1, . . . ,T , where T

is the number of samples, P̂dc,t the estimation. Three metrics are used to characterize the

performance of the proposed techniques, the normalized root mean squared error (nRMSE),

the mean absolute error (MAE), and the mean bias error (MBE):

nRMSE = 1

Pmax
·
√√√√ T∑

t=1

(P̂dc,t−Pdc,t )

T

2

, (B.4)

MAE =
T∑

t=1

|P̂dc,t −Pdc,t |
T

, (B.5)

MBE =
T∑

t=1

P̂dc,t −Pdc,t

T
. (B.6)

where Pmax is the maximum power measured in the considered time period T . Results of

the estimation performance are shown in Table B.1 for 15 days during January 2017. It is

possible to see that the lowest error is returned by the local measurements (pyranometer and
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all-sky camera). The relative improvement of the pyranometer and the ASIs with respect to

the Heliosat-2 method is ≈40% and ≈25% in terms of nRMSE. The probability density of the

estimation error is shown in Fig. B.1 for all the considered methods.

Table B.1 – Estimations Comparison for 15 days in January.

Pyranometer ASIs Heliosat-2

nRMSE [%] 7.3 9.1 12

MAE [W] 72 113 151

MBE [W] 76 79 107

−1000 −500 0 500 1000 150010−4

10−3

10−2

10−1

100

Estimation error [W]

P
ro

b
ab

il
it

y
d

en
si

ty

Pyranometer
ASI
Heliosat-2

Figure B.1 – Probability density of the pyranometer, ASIs and H-2 DC power estimation errors.

As expected, the use of local measurements of the irradiance (namely pyranometer and ASI)

leads to better estimations of the PV generation because they are representative of the local

potential. On the other hand, satellite estimates of the GHI denote temporal and spatial

averages, therefore they are less representative of local conditions. The pyranometer shows

better performance than the ASIs-based.
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