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École Polytechnique Fédérale de Lausanne

Abstract—Sparse recovery from undersampled random quan-
tization measurements is a recent active research topic. Previous
work asserts that stable recovery can be guaranteed via the
basis pursuit dequantizer (BPDQ) if the measurements number
is large enough, considering random sampling patterns. In this
paper, we study a learning-based method for optimizing the
sampling pattern, within the framework of sparse recovery via
BPDQ from their uniformly quantized measurements. Given
a set of representative training signals, the method finds the
sampling pattern that performs the best on average over these
signals. We compare our approach with the random sampling
and other state-of-the-art sampling methods, which shows that it
achieves superior reconstruction performance. We demonstrate
that proper accounting for sampling and careful sampler de-
sign has a significant impact on the performance of quantized
compressive sensing methods.

Index Terms—Compressed sensing, quantized measurements,
learning-based method, greedy algorithm, sampling pattern.

I. INTRODUCTION

The basic goal of compressed sensing (CS) [1, 2, 3] is to
recover a K-sparse or compressible signal x ∈ RN from a
small number of linear measurements compared to the input
dimension of the signal. Such a problem is ubiquitous in signal
processing, having an extensive range of applications including
medical resonance imaging (MRI) [4, 5], spectroscopy [6],
radar [7], Fourier optics [8, 9], and computerized tomography
[10, 11]. With the help of the restricted isometry property
[2], classical CS theory [3] asserts that basis pursuit denoising
(BPDN) can stably recover the target signal provided the
measurement number is of order K logcN for some value
c > 0, considering sub-Gaussian, random partial Fourier, or
random partial Hadamard measurement matrices [12, 13].

Although in traditional CS methods, the measurement ma-
trix and vector are assumed to be real-valued, quantization is
unavoidable in the real acquisition systems. In practice, analog
measurements are quantized and mapped from real values to
discrete values of quantization points. Sometimes, quantization
bit-rate is enforced by the hardware. In addition, quantization
strategies are preferred in real-world sensing systems since
low-bit data acquisition is efficient and inexpensive. In these
scenarios due to limited bandwidth and energy constraints,
quantized measurements are beneficial. Moreover, having low-
bit measurements helps in substantially decreasing the cost
of converting the analog signals to the digital ones, and
simplifying the complexity of the needed hardware. It has

been also shown that quantized CS strategies tend to be
more robust to amplification and other errors [14]. These
practical necessities and advantages motivate the quantization
of measurements in CS.

To accommodate the distortions created by quantization in
the measurements, one may view the quantization error as an
l2-bounded noise and approximate the target signal via solving
BPDN. However, theoretically, the quantization distortions are
highly non-Gaussian, and treating the quantization error as
alternative bounded noise is more preferable [15, 16]. Particu-
larly, Jacques et al. [15] modeled the quantization error as an
lp-bounded noise with p > 2, and they theoretically showed
that such a method can model the quantization distortion
more faithfully than the conventional l2-bounded approach.
Based on this, they proposed a convex optimization-based
decoder titled BPDQ of moment p (BPDQp), and showed
that BPDQp performs better than BPDN according to their
numerical results considering random sampling patterns.

While considering random sampling patterns plays a key
role for developing theoretical results of classical CS and
quantized CS, in practice, selecting the sampling pattern in
an advantaged/greedy way using extra available information
would significantly improve the performance of the decoder.
Indeed, the so-called dictionary learning [17, 18], adapted
sampling [4, 19], learning-based methods [20, 21] are falling
into this category. Particularly, the learning-based methods
have been successfully applied to classical CS, either with
a linear decoder [21] or with a BPDN decoder [20].

In this paper, we study quantized CS, i.e., sparse recovery
via BPDQp from undersampled quantization measurements.
We consider the measurement matrix of the form Φ = PΩΨ,
consisted of a subsampling operator PΩ indexed with a
subset Ω ⊆ {1, · · · , N} and an orthonormal matrix Ψ. We
propose a learning-based method for optimizing the sampling
pattern Ω. Given a set of representative training signals, the
method finds the sampling pattern that performs the best
on average over these signals using a greedy algorithm. We
experimentally show that our proposed method efficiently
reconstruct the signals and substantially improves the recovery
performance. Recently, [22, 23] proposed a deep learning
framework to jointly optimize for the binary measurement
matrix with elements constraint ∈ {−1, 1} and a non-uniform
quantizer. However, the focus of this paper is not on using a
quantized measurement matrix, whereas efficiently computing



a mask indices by employing the learning-based approach. We
investigated the effect of the sampling patterns in quantized
CS scenarios.

The rest of this paper is structured as follows. In Section
II, we briefly review the principles of quantized CS and
BPDQp decoder. Section III introduces the greedy mechanism
to optimize the sampling patterns. To demonstrate the power
of sampling method, we provide experimental results on signal
and image reconstruction problems in section IV. We finally
conclude the paper in Section V.

II. QUANTIZED COMPRESSED SENSING

In this section, we briefly review the mathematical formu-
lation and BPDQ decoder for quantized CS.

In CS [1, 24] , signals are assumed to have a sparse
representation in an orthogonal basis Ψ′ ∈ RN×N . Typically,
the measurement matrix Φ has a special form Φ = PΩΨ,
where PΩ : RN → Rm is a subsampling operator that selects
rows of another orthonormal basis Ψ given in the index set
Ω ⊆ {1, · · · , N}, with |Ω| = m and m < N . We refer to
Ω as the sampling pattern. Usually, the sampling indexes are
chosen randomly in classical CS theory.

In classical CS, one assumes that the measurement matrix
Φ and the measurement vector y = Φx+n′ are given, where
n′ is typically assumed to be a Gaussian noise. Here, for
simplicity, we consider the noiseless case, i.e., n′ = 0. To fur-
ther accommodate the quantization distortion occurring during
the measurement of the continuous signals by digital devices,
we consider the following uniform-quantization measurement
model:

yq = Qα[Φx] = Φx + n, (1)

where (Qα[.])i = αb (.)iα c+
α
2 , is a uniform quantization oper-

ator in Rm with bin width α, yq is the quantized measurement
vector and n is a noise vector due to quantization distortion.

Given the quantized measurements yq and the measurement
matrix Φ indexed with a sampling pattern Ω, the goal of a
decoder g is to find an estimate x̂ which is written as follows:

x̂ = g(Φ,yq). (2)

With a slight abuse of notation, we write g(Φ,yq) as g(Ω,yq)
in the follows assuming that the orthonormal basis Ψ is fixed
throughout.

A variety of decoding techniques have been proposed for
quantized CS. In what follows, we first review BPDN method,
which models the quantization distortion as a Gaussian noise.
We then continue with reviewing the BPDQp decoder which is
one of the best-performing techniques for quantized CS. With
a suitable data fidelity constraint, BPDQp decoders are able
to model the quantization distortion more faithfully.

A. Basis pursuit denoise

Viewing the quantization noise n as an l2-bounded noise,
i.e., ‖n‖2 ≤ ε for some ε > 0, then stable and robust recovery

of the signal x from the noisy measurements yq = Φx + n
is possible using the BPDN:

∆(yq, ε) = arg min
u∈Rp

‖u‖1 s.t. ‖yq −Φu‖2 ≤ ε. (3)

Note that (3) is a convex quadratic problem, and thus it can be
solved by many general solvers, such as interior point methods.
For large-scale problems, many specialized methods that are
faster than interior point methods have been proposed [25, 26].
In the noiseless case ε = 0, problem (3) is called Basis Pursuit
program and is addressed in [27].

B. Basis pursuit dequantizer

BPDQp program returns a sparse estimation of x from the
quantized measurements yq = Φx+n given that the noise n
is bounded in lp-norm, i.e., ‖n‖pp =

∑
k |nk|p ≤ εp for some

ε > 0 and 2 < p ≤ ∞. The program is defined as follows:

∆p(yq, ε) = arg min
u∈RN

‖u‖1 s.t. ‖yq −Φu‖p ≤ ε. (4)

The fidelity constraint expressed in the lp-norm is now tuned
to noises that follow a zero-mean generalized Gaussian dis-
tribution of shape parameter p, with the uniform noise case
corresponding to p → ∞. Thus, BPDQp with a suitable
p outperforms classic BPDN in quantized CS empirically
[15]. In fact, for measurement matrix Φ with i.i.d. standard
Gaussian entries and m & (K log(N/K))

p
2 and assuming

that the quantization distortion is uniformly distributed in each
quantization bin, BPDNp can stably recover a K-sparse signal
with high probability [15]:

‖x̂− x‖2 .
α√
p+ 1

.

This further justifies that BPDNp can outperform BPDN theo-
retically in some special cases. As noted in [15], the objective
and the constraint functions in BPDNp are non-smooth and
one can use monotone operator splitting proximal methods
[26] to solve the program. More precisely, they are practically
solved using the Douglas-Rachford splitting method which can
be written as follows:

u(t+1) = (1− αt
2

)u(t) +
αt
2

(2Sγ − I) ◦ (2PTp(ε) − I)(u(t)),

(5)
where αt ∈ (0, 2),∀t ∈ N, Sγ is the soft-thresholding operator
applied component-wise with threshold γ > 0, I is the identity
operator, and PTp(ε) is the orthogonal projection operator on
the set Tp(ε) defined as: Tp(ε) = {u ∈ RN : ‖yq −Φu‖p ≤
ε}.

III. LEARNING-BASED FRAMEWORK

In this section, we discuss how to learn the optimal sam-
pling pattern Ω̂ using a greedy method which optimizes the
performance of a BPDQp decoder on the target signal x. Our
approach is motivated by the learning-based framework [20],
which is outlined as follows.
• Let x1, . . . ,xM be a set of training signals and x an

unknown target signal with similar properties to the given
training set.



• We assume that decoder, BPDQp, is given.
• Given a recovery performance measure ηΩ, e.g., SNR,

the goal is to find a sampling mask Ω̂ with the maximum
empirical average performance on the training signals:

Ω̂ = arg max
Ω:|Ω|=m

1

M

M∑
j=1

ηΩ(xj) (6)

The main idea is that since the training signals and the
unknown target signal are similar, the obtained mask Ω̂
which performs the best on average over the training
signals is expected to also perform well on the target
signal x.

• The problem (6) is generally computationally challeng-
ing. However, an approximate solution can be found
using a parameter-free greedy method [20], which will
be discussed in the next section.

A. Greedy method

In this section, we describe the details of the greedy method
to determine the subsampling pattern. Our goal is to find
a sampling pattern Ω ⊆ E with |Ω| = m and m < N ,
where E = {1, . . . , N} is the index set of all rows of the
measurement matrix. Algorithm 1 describes a parameter-free
method to greedily select the sampling pattern. The algorithm
starts with an empty set Ω, and at each iteration, adds one
element to Ω. At each step, the greedy method considers all
the remaining candidates e in E, which are not yet included
in the mask, and adds the element e∗ ∈ E resulting in the
maximum average performance η over the training signals.
The method stops when m elements are included in the mask.

Algorithm 1: Greedy optimization of the mask
Input : Training data x1, . . . ,xM , reconstruction rule g,

sampling subsets E, number of mask elements
m

Output: Sampling pattern Ω satisfying |Ω| = m
1 Ω← ∅;
2 while |Ω| ≤ m do
3 for e ∈ E do
4 Ω′ = Ω ∪ e;
5 for j = 1, . . . ,M do
6 set yqj ← Qα[PΩ′Ψxj ], x̂j ← g(Ω′,yqj)

7 end
8 η(Ω′)← 1

M

∑M
j=1 η(xj , x̂j)

9 end
10 compute e∗ = arg maxe η(Ω ∪ e)− η(Ω)
11 and set Ω← Ω ∪ e∗
12 end

In this paper, we did not try to discuss the statistical
guarantees of the above algorithm, but one should keep in
mind that the theoretical results developed in [20] for learning
based approach in classical CS setting should be also true in
our setting. We left this to the interested readers.

B. Learning-based method with parametric approach

It is alternatively possible to apply the learning-based
method to parametric variable-density approaches. In these
approaches, a set of candidate masks Ω1, . . . ,ΩD by trying
a variety of parameters are generated. The method selects the
mask with maximum empirical performance on the training
dataset. The details of this approach are shown in Algorithm
2.

Algorithm 2: Learning based idea for a set of parametric
masks [20]
Input : Candidate masks Ω1, . . . ,ΩD, training data

x1, . . . ,xM , reconstruction rule g, performance
measure η

Output: Sampling pattern Ω
1 for i = 1, . . . , D do
2 for j = 1, . . . ,M do
3 set yqj ← Qα[PΩi

Ψxj ], x̂j ← g(Ωi,yqj)

4 end
5 η(Ωi)← 1

M

∑M
j=1 η(xj , x̂j)

6 end
7 compute i∗ = arg maxi=1,...,D ηi and set Ω← Ωi∗

IV. EXPERIMENTS

In this section, we provide numerical experiments demon-
strating the performance of the learning based framework on
quantized CS and compare it with state-of-the-art sampling
methods. We compared the performance of the greedy sam-
pling method described in Algorithm 1 with the following
baselines:

• Parametric: We considered parametric randomized vari-
able density method [4]. This method has two parameters
1) the size or radius of a fully-sampled region at low
frequencies (r); and 2) the polynomial rate of decay of
sampling at higher frequencies (d). We find the optimal
mask using learning-based framework described in algo-
rithm 2. We used the implementation available online [4].

• Single-image: We considered the approach of [19]. This
method considers a single training image, and generate a
probability density function, in which probability is pro-
portional to the energy of the signal. Then, mask indices
are randomly selected from this probability distribution
by random under-sampling of k-space according to its
energy distribution.

• Single-signal: We applied the same method for generat-
ing single-image masks on 1-D signals.

• Coherence-based: We considered variable density
method proposed in [4]. We used no training data, and
optimize an incoherence criterion as suggested in [4]. The
minimization is done using Monte Carlo method.

We considered Fourier operator as the orthonormal basis
Ψ of the measurement matrix Φ = PΩΨ through all the
experiments.
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Fig. 1. Reconstruction performance using BPDQP and greedy optimized
sampling pattern for 1-D sparse random signals for different p values.

TABLE I
THE OBTAINED AVERAGED RECONSTRUCTION SNRS FOR DIFFERENT

SAMPLING METHODS USING BPDQp DECODER.

XXXXXXXX
m
N

Method
greedy parametric single-image coherence-based

0.15 34.03 32.61 29.11 31.28
0.2 35.67 33.94 30.54 33.87
0.25 36.91 35.11 31.90 34.21
0.3 37.98 36.18 33.65 34.41
0.35 38.95 37.03 35.50 35.27
0.4 39.86 38.15 35.60 34.72
0.45 40.72 39.27 37.07 37.64
0.5 41.58 40.11 38.14 38.94

A. Synthetic 1-D signals

In the first experiment, we considered 1-D exactly sparse
random signals with dimension N = 512 and the sparsity
level of K = 8. We generated 500 signals. The nonzero
elements of the signals are generated from the standard
Gaussian distribution N (0, 1), positioned in the support drawn
uniformly in {1, . . . , b0.2Nc}, where b.c is the floor function.
We set the bin width to α = ‖Φx‖∞

20 similar to [15]. The
dataset is split into 30 signals as the training signals and
470 signals as the test signals. The quantized measurements
for each sparse signal were recorded using the Φ = PΩΨ
measurement matrix using the equation (1).

We recovered the signals using BPDQp decoder for var-
ious p ≥ 2 values. Figure 1 demonstrates the averaged
reconstruction performance for BPDQp decoder for various
values of p ≥ 2, and m/N ∈ [0.15, 0.5]. We measured the
reconstruction performance in terms of SNR. The SNR for
each signal is computed as SNR = 20 log10

‖x‖
‖x−x̂‖ , where x

is the real signal, and x̂ is the obtained reconstructed signal. As
shown in figure 1, the BPDQp optimized with greedy sampling
pattern for higher oversampling factors (m/N ), obtains higher
SNR values.

B. Kenya dataset

We created an image dataset in 16-bit tiff format of 182
Kenya images of resolution of 512× 512 previously collected
in [21]. We split the dataset into a training set of the first
30 images, and a test set with the remaining 152 images.
For BPDWp decoder, we set p = 10, and α = 50. Example
reconstructed images are provided in supplementary material.

TABLE II
THE OBTAINED AVERAGED RECONSTRUCTION SNRS FOR DIFFERENT

SAMPLING METHODS USING BPDQp DECODER.

XXXXXXXX
m
N

Method
greedy parametric single-signal

0.15 29.17 28.24 24.51
0.2 30.25 29.19 25.92
0.25 31.12 30.06 28.11
0.3 31.84 30.79 28.94
0.35 32.27 31.24 29.78
0.4 32.63 31.78 29.17
0.45 32.98 32.29 29.95
0.5 33.28 32.66 30.75

Table I shows the obtained SNR values for different sam-
pling patterns. As shown, greedy method substantially im-
proves the performance of recovery of signals.

C. iEEG dataset

This experiment is carried out on the I001-P034-D01 dataset
from iEEG.org portal. This data consists of approximately 1
day, 8 hours, and 10 minutes of recording at 5kHz, which
is approximately 6 × 108 samples. We used the first 6 × 104

samples, and we extracted signals of channels 1-31. Then,
we split the samples to 30 signals for training, and the rest
for testing. The training data is used to learn the sampling
pattern using greedy method and choosing the baseline masks
obtaining the maximum performance.

Let each sequence of the signals be of dimension N =
512. For parametric approach we experimented with r =
{ 4
2N ,

5
2N , . . . ,

16
2N }, and d = {1, 2, . . . , 75}. We generated 20

random draws for each set of parameters, and choose the one
which performs the best over the training signals. For BPDQp
decoder, we set α = 50, and p = 10.

Table II shows the obtained SNRs for varying sampling
rates. Learning based methods (greedy and parametric) obtain
superior performance compared to the baseline method. Espe-
cially, the greedy method achieves the highest reconstruction
performance.

V. CONCLUSION

In this paper, we have developed a learning-based quantized
CS method for recovery of sparse signals. We showed that
our framework efficiently optimizes the sampling pattern by
using the training signals. We experimentally demonstrated
that our approach is effective in real-world datasets, and
can improve the performance of quantized CS methods, and
obtains superior performance compared to the previous state-
of-the-art sampling patterns.
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