
Politecnico di Milano
MSc in Mathematical Engineering

École polytechnique fédérale de Lausanne
MSc in Computational Science and Engineering

Master Thesis

Controlling oscillations in
high-order schemes

using neural networks

Author:
Niccolò Discacciati
(ID No. 849777)

Supervisors:
Prof. Jan S. Hesthaven

Prof. Nicola Parolini
Dr. Deep Ray

Academic Year 2017-2018

https://polimi.it
https://epfl.ch
mailto:niccolo.discacciati@epfl.ch
mailto:niccolo.discacciati@epfl.ch
mailto:jan.hesthaven@epfl.ch
mailto:nicola.parolini@polimi.it
mailto:deep.ray@epfl.ch

iii

Abstract

High-order numerical solvers for conservation laws suffer from Gibbs phenomenon close to discontinuities,
leading to spurious oscillations and a detrimental effect on the solution accuracy. A possible strategy to
reduce their amplitude aims to add a suitable amount of artificial viscosity. Several models are available
in the literature, which rely on the identification of a shock sensor, adding dissipation when the solution
regularity is lost. The dependence on problem-specific parameters limits their performances. To solve
this issue, in this thesis we propose a new technique based on artificial neural networks. In particular,
we focus on the construction of multilayer perceptrons. Emphasis is given to the training phase, which
is carried out using a robust dataset created using the classical models with optimal parameters. The
online evaluation is then integrated in the numerical solver of the partial differential equation. Even
though most of the effort is put in one-dimensional problems, an extension to a two-dimensional
scenario is provided. Several numerical results are presented to demonstrate the capabilities of the
network-based technique. Initially, we focus on one-dimensional scalar problems, where Burgers
equation represents our first benchmark test. Then, we move to less simple cases, characterized by
non-convex flux functions or involving multiple equations (compressible Euler equations). The same
strategy is followed for multi-dimensional problems. In most of the cases, the proposed model is able
to guarantee high accuracy in presence of smooth solutions and to capture discontinuities (shock and
contact waves). In general, the results are comparable to (or better than) the classical models with
properly tuned parameters. A final performance analysis is carried out.

Keywords: Conservation laws, Discontinuous Galerkin, Artificial viscosity, Artificial neural net-
works

v

Abstract (Italiano)

Schemi numerici di alto ordine per leggi di conservazioni sono soggetti al fenomeno di Gibbs in prossimità
di punti di discontinuità, causando oscillazioni spurie e intaccando negativamente l’accuratezza della
soluzione. Una possibile strategia per smorzarne l’ampiezza consiste nell’aggiungere un adeguato
valore di viscosità artificiale. Diversi modelli sono presenti in letteratura, molti dei quali sono basati
sull’identificazione di un sensore di discontinuità (discontinuity sensor), aggiungendo dissipazione dove
la soluzione perde di regolarità. La dipendenza da parametri empirici limita le loro performances. Al
fine di risolvere questo problema, in questa tesi viene introdotta una nuova tecnica basata su reti neurali
artificiali (artificial neural networks). Più precisamente, viene presentata la costruzione di percettroni
multistrato (multilayer perceptrons). Particolare attenzione è data alla fase di apprendimento (training),
che viene effettuata usando un opportuno set di dati creato per mezzo dei modelli standard con
parametri ottimali. L’applicazione della rete neurale è integrata all’interno del solutore numerico
dell’equazione differenziale. Sebbene maggior enfasi è posta su problemi monodimensionali, vengono
fornite opportune estensioni al caso bidimensionale. Sono presentati diversi risultati numerici, con lo
scopo di dimostrare le potenzialità della tecnica proposta. Inizialmente, vengono considerati problemi
scalari monodimensionali, dove l’equazione di Burgers rappresenta il primo caso test. Successivamente,
si analizzano casi più complessi, caratterizzati da flussi non convessi o dalla presenza di più equazioni
(equazioni di Eulero). La medesima strategia è perseguita per problemi multidimensionali. Nella maggior
parte dei casi, il modello proposto garantisce elevata accuratezza in presenza di soluzioni regolari, così
come la capacità di catturare diverse discontinuità (onde di shock e di contatto). In generale, i risultati
sono comparabili con (o meglio de) i modelli classici con parametri opportunamente tarati. Infine,
viene effettuata una analisi delle performances computazionali delle tecniche considerate.

Parole chiave: Leggi di conservazione, Discontinuous Galerkin, Viscosità artificiale, Reti neurali
artificiali

vii

Acknowledgements

I would like to sincerely thank Prof. Jan S. Hesthaven for the opportunity to work within the
Chair of Computational Mathematics and Simulation Science (MCSS) at EPFL. His inspiring ideas,
his continuous support and his positive attitude represented a continuous incentive and motivation
throughout these months.
I wish to express my gratitude to Prof. Nicola Parolini, who accepted the role of thesis co-supervisor
without even knowing me. I really appreciated his kindness and availability.
A special thanks goes to Dr. Deep Ray. The precious advice he gave me, together with his positive
spirit, helped me a lot to fulfil my goals. The discussions we had during the last semester were
extremely useful and inspirational.
Thanks to all the people within MCSS, with a particular mention to my office mates Boris and Nicolò.
From the first day you made me feel as integral part of the group. I really enjoyed all the moments we
shared together, especially the ones outside university.
Ringrazio i miei colleghi di Doppia Laurea (Alberto, Antonio, Riccardo e Santo) con i quali ho condiviso
sia i periodi di disperazione che i momenti felici durante la nostra permanenza a Losanna. Anche quando
il traguardo sembrava irraggiungibile, li ringrazio per aver reso questa esperienza indimenticabile.
Ringrazio anche tutti gli amici e colleghi “italiani”, specialmente Jacopo e Matteo. Le belle giornate
passate all’interno e al di fuori dell’università saranno per sempre parte della mia vita.
Un ringraziamento particolare va a Maria Cristina. Lei sa il perché.
Infine, un grazie di cuore alla mia famiglia (Paola, Tino, Fabio, Maria Grazia e Camilla) per avermi
supportato emotivamente ed economicamente durante questo periodo a Losanna. Sapere di poter
contare sempre su di voi mi ha aiutato a superare i momenti difficili vissuti in questo periodo. Ho
sempre apprezzato l’affetto e lo spirito positivo che mi avete dimostrato ogni volta che tornavo a
casa.

ix

Contents

Abstract iii

Abstract (Italiano) v

Acknowledgements vii

Contents ix

List of Figures xi

List of Tables xiii

List of Algorithms xv

1 Introduction 1

2 Mathematical framework 3
2.1 Numerical discretization . 3

2.1.1 Spatial discretization: definitions . 3
2.1.2 Discontinuous Galerkin approximation . 5
2.1.3 Algebraic formulation . 7
2.1.4 Time discretization . 8
2.1.5 Boundary conditions . 9
2.1.6 Extension to two-dimensional problems . 10
2.1.7 Extension to systems of equations . 11
2.1.8 Test cases . 11

2.2 Artificial viscosity models . 13
2.2.1 Overview . 13
2.2.2 Derivative-based (DB) model . 14
2.2.3 Highest modal decay (MDH) model . 15
2.2.4 Averaged modal decay (MDA) model . 16
2.2.5 Entropy viscosity (EV) model . 18

3 Artificial neural networks 19
3.1 Background . 19

3.1.1 The model . 19
3.1.2 Network topology . 21
3.1.3 Training the network . 22

3.2 A neural network to predict artificial viscosity . 23
3.2.1 A family of neural networks . 23
3.2.2 Choice of input and output . 24
3.2.3 Cost function . 26
3.2.4 Activation functions . 26
3.2.5 Hyperparameters . 27
3.2.6 Optimization algorithm . 28
3.2.7 Training and validation sets . 29
3.2.8 An example . 30

3.3 Improved versions . 34
3.3.1 Two coupled neural networks . 34
3.3.2 A different scaling . 35

x

3.3.3 A remark . 36
3.4 Extension to systems . 36
3.5 Extension to two dimensional problems . 37

3.5.1 How to build a two-dimensional network . 39
3.5.2 A two-dimensional example . 41

4 Practical implementation 43

5 Numerical results 47
5.1 One-dimensional scalar problems . 47

5.1.1 A smooth problem . 47
5.1.2 Burgers equation: a simple test . 51
5.1.3 Burgers equation: a compound wave . 55
5.1.4 A degree-4 flux function . 59
5.1.5 Buckley-Leverett problem . 61
5.1.6 Remarks . 62

5.2 One-dimensional Euler system . 63
5.2.1 A smooth problem . 63
5.2.2 Single waves . 64
5.2.3 Sod problem . 65
5.2.4 Shu-Osher problem . 69
5.2.5 Remarks . 69

5.3 Two-dimensional scalar problems . 69
5.3.1 A smooth problem . 75
5.3.2 2D Burgers equation: a Riemann problem . 76
5.3.3 KPP rotating wave problem . 78

5.4 Two-dimensional Euler system . 80
5.4.1 Riemann problem case 4 . 80
5.4.2 Riemann problem case 12 . 82
5.4.3 Riemann problem case 6 . 82

5.5 Performance analysis . 88

6 Conclusion 91

Bibliography 93

xi

List of Figures

2.1 Graphical representation of the two-dimensional mapping Ψ. 10
2.2 A graphical representation of the smoothed viscosity profile using P = 1 in a one-

dimensional framework. The blue lines denote the piecewise constant values, while the
(continuous) red line represents the final profile, after the smoothing process. 14

3.1 A simplified model of the biological neuron. The image has been taken from [35]. . . . 20
3.2 A graphical representation of a single neuron j receiving k input signals {xsi}ki=1 with

output yj . 21
3.3 A graphical representation of a MLP with NI = 2 input neurons, L = 2 hidden layers

made of N1
H = N2

H = 5 neurons each and an output layer with NO = 3 neurons. 22
3.4 A graphical representation of the strategy used to build the network. 25
3.5 A graphical representation of the smoothed viscosity profile using P = 1 and m = 2

in a one-dimensional framework using the ANN. The green dots denote the pointwise
values obtained with the network. The blue lines denote the piecewise constant values,
obtained as the maximum value in each cell. The (continuous) red line represents the
final profile, after the smoothing process. 25

3.6 Graphical representation of the activation functions used in this work. The blue line
represents the activation function itself, while the red one corresponds to the ReLU
function, which the both the LReLU and the SP approximate. 27

3.7 Typical behavior for the train and validation errors with respect to the number of
iterations. 28

3.8 I.c. for test case nb 1. 31
3.9 I.c. for test case nb 2. 32
3.10 I.c. for test case nb 3. 32
3.11 I.c. for test case nb 4. 32
3.12 I.c. for test case nb 5. 33
3.13 I.c. for test case nb 6. 33
3.14 I.c. for test case nb 7. 33
3.15 Graphical representation of different triangles having the same diameter h. 39
3.16 A graphical representation of the orientation issue using m = 2. Even if the shape is

equal, the way the degrees of freedom are stored is different. 39
3.17 A graphical representation of the unstructured mesh we used to generate the two-

dimensional dataset. 40
3.18 I.c. for test case nb 1. 41
3.19 I.c. for test case nb 2. 42
3.20 I.c. for test case nb 3. 42
3.21 I.c. for test case nb 4. 42

5.1 Initial condition for the second test case, Burgers equation. 51
5.2 Numerical results for the second test case, Burgers equation, m = 1. 52
5.3 Temporal history of the artificial viscosity for the second test case, Burgers equation,

m = 1. 53
5.4 Numerical results for the second test case, Burgers equation, m = 4. 53
5.5 Temporal history of the artificial viscosity for the second test case, Burgers equation,

m = 4. 54
5.6 Infinity norm of the artificial viscosity with respect to time, second test case, Burgers

equation, m = 4. 55
5.7 Initial condition for the third test case, Burgers equation. 55

xii

5.8 Numerical results for the third test case, Burgers equation, m = 1. 56
5.9 Numerical results for the third test case, Burgers equation, m = 4. 57
5.10 Temporal history of the artificial viscosity for the third test case, Burgers equation, m = 4. 58
5.11 Comparison of the three different strategies for the NN technique, f(u) = u4/4, m = 4. 60
5.12 Numerical results for the fourth test case, f(u) = u4/4, m = 4. 60
5.13 Temporal history of the artificial viscosity for the fourth test case, f(u) = u4/4, m = 4. 61
5.14 Numerical results for the fifth test case, Buckley-Leverett problem, m = 4. 62
5.15 Temporal history of the artificial viscosity for the fifth test case, Buckley-Leverett

problem, m = 4. 62
5.16 Numerical results for the single contact wave case, m = 1. 65
5.17 Numerical results for the single shock wave case, m = 1. 66
5.18 Numerical results for the Sod problem, m = 1. 67
5.19 Temporal history of the artificial viscosity for the Sod problem, m = 1. 68
5.20 Numerical results for the Shu-Osher problem, m = 1. 70
5.21 Numerical results for the Shu-Osher problem, m = 2. 71
5.22 Numerical results for the Shu-Osher problem, m = 3. 72
5.23 Numerical results for the Shu-Osher problem, m = 4. 73
5.24 Temporal history of the artificial viscosity for the Shu-Osher problem, m = 1. 74
5.25 A graphical representation of the structured mesh we employ in this work. 75
5.26 A graphical representation of the domain extension. The blue lines separate the four

sectors in which the domain is divided into. 76
5.27 Numerical results for the 2D Riemann problem, m = 4. 77
5.28 Infinity norm of the artificial viscosity with respect to time, 2D Riemann problem, m = 4. 78
5.29 Numerical results for the KPP problem, m = 4. 79
5.30 Infinity norm of the artificial viscosity with respect to time, KPP problem, m = 4. . . 80
5.31 Numerical results for the 2D Riemann problem, configuration 4, m = 4. 81
5.32 Numerical results for the 2D Riemann problem, configuration 12, m = 1. 83
5.33 Numerical results for the 2D Riemann problem, configuration 12, m = 2. 84
5.34 Numerical results for the 2D Riemann problem, configuration 12, m = 3. 85
5.35 Numerical results for the 2D Riemann problem, configuration 12, m = 4. 86
5.36 Numerical results for the 2D Riemann problem, configuration 6, m = 4. 87

xiii

List of Tables

2.1 Coefficients used for the time integration scheme. 9

3.1 Table which summarizes the different choices for the variables U1 and U2. 26
3.2 A summary on how to generate the datasets for Burgers equation. 31
3.3 A summary on how to post-process the data for Burgers equation. 34
3.4 A summary on how to generate the datasets for Burgers equation in a two-dimensional

scenario. 41

5.1 L2 convergence errors and estimated rate in the inviscid case and using standard artificial
viscosity models. Linear advection problem, m = 1. 48

5.2 L2 convergence errors and estimated rate in the inviscid case and using standard artificial
viscosity models. Linear advection problem, m = 2. 48

5.3 L2 convergence errors and estimated rate in the inviscid case and using standard artificial
viscosity models. Linear advection problem, m = 3. 49

5.4 L2 convergence errors and estimated rate in the inviscid case and using standard artificial
viscosity models. Linear advection problem, m = 4. 49

5.5 L2 convergence errors and estimated rate in the inviscid case and using the ANN-based
method. Linear advection problem, m = 1. 49

5.6 L2 convergence errors and estimated rate in the inviscid case and using the ANN-based
method. Linear advection problem, m = 2. 50

5.7 L2 convergence errors and estimated rate in the inviscid case and using the ANN-based
method. Linear advection problem, m = 3. 50

5.8 L2 convergence errors and estimated rate in the inviscid case and using the ANN-based
method. Linear advection problem, m = 4. 50

5.9 Parameter values for the standard artificial viscosity models for the second test case. . 51
5.10 Parameter values for the standard artificial viscosity models for the third test case. . . 56
5.11 Comparison of the time-averaged infinity norm of the artificial viscosity of the three

different strategies for the NN technique, m = 4. 60
5.12 Parameter values for the standard artificial viscosity models for the fourth test case. . 60
5.13 Parameter values for the standard artificial viscosity models for the fifth test case. . . 61
5.14 L2 convergence errors and estimated rate in the inviscid case, using standard artificial

viscosity models and with the ANN model using the improved scaling. Smooth problem,
m = 1. 64

5.15 L2 convergence errors and estimated rate in the inviscid case, using standard artificial
viscosity models and with the ANN model using the improved scaling. Smooth problem,
m = 4. 64

5.16 Parameter values for the standard artificial viscosity models for the single wave case. . 64
5.17 Parameter values for the standard artificial viscosity models for the Sod problem. . . . 66
5.18 Parameter values for the standard artificial viscosity models for the Shu-Osher problem. 69
5.19 L2 convergence errors and estimated rate in the inviscid case and using standard artificial

viscosity models and with both the 1D and 2D ANNs. Linear advection problem, m = 1. 75
5.20 L2 convergence errors and estimated rate in the inviscid case and using standard artificial

viscosity models and with both the 1D and 2D ANNs. Linear advection problem, m = 4. 76
5.21 Parameter values for the standard artificial viscosity models for 2D Riemann problem. 77
5.22 Parameter values for the standard artificial viscosity models for the KPP problem. . . 78
5.23 Parameter values for the standard artificial viscosity models for Riemann problem (case

4), Euler system. 80

xiv

5.24 Parameter values for the standard artificial viscosity models for Riemann problem (case
12), Euler system. 82

5.25 Parameter values for the standard artificial viscosity models for Riemann problem (case
6), Euler system. 82

5.26 Computational times, iterations and time per iteration for the Shu-Osher problem. Both
the total time and the time per iteration are expressed in seconds. 88

5.27 Computational times, iterations and time per iteration for the 2D Riemann problem
(configuration 12). Both the total time and the time per iteration are expressed in seconds. 89

xv

List of Algorithms

4.1 Compute numerical solution. 43
4.2 Generation of training and validation set for a given degree m. 44
4.3 Select the best artificial viscosity model. 44
4.4 Train the Neural Network. 45
4.5 Minibatch optimization. 45
4.6 Apply the Neural Network. 46

1

Chapter 1

Introduction

In the context of computational sciences, numerical accuracy and precision are key properties demanded
by practical applications, such as mechanics or fluid dynamics [1]. These requirements are translated
in a strict limit on the error level of the associated discretization schemes. Thus, the last few decades
have seen an increasing research activity in the development of high-order methods, among which
Discontinuous Galerkin (DG) schemes [2] have risen in popularity. Geometrical flexibility, high
order accuracy, conservation of physical properties and high parallelization potential are some of
the advantages of using DG methods. A challenging class of problems is constituted by hyperbolic
conservation laws, such as Euler equations or magnetohydrodynamics. It is well known that their
solutions might be discontinuous even for smooth initial data [3]. Therefore, high-order schemes need
to be corrected in the regions where regularity is lost in order to avoid the Gibbs phenomenon [4],
which consists in the emergence of spurious numerical oscillations close to discontinuities and leads to
inaccurate and unstable numerical results.
Several approaches have been proposed to tackle this issue [5], among which a popular family is flux
limiting [6, 7, 8]. Although they guarantee the solution to be total variation diminishing (TVD),
they are computationally expensive and have a detrimental effect on the solution accuracy. The
difficulties in their generalization to a multidimensional framework and the dependence on empirical
parameters are critical issues to be taken into account. An alternative technique is based on weighted
essentially non-oscillatory (WENO) reconstruction [9, 10]. Despite keeping high order accuracy and
being extendible to multidimensional scenarios, the computational cost might still be high. We recall
that both these strategies are extensively based on the identification of the troubled cells, namely the
mesh elements where the solution loses regularity [11].
Another family of stabilization methods consists in adding artificial dissipation to the problem. Their
implementation is usually quite straightforward and can be easily extended to higher dimensions.
Ideally, a locally varying amount of viscosity has to be added in each cell, possibly keeping high
order accuracy in presence of smooth solutions. In this framework, several approaches have been
proposed, with a common theme of constructing a sensor which measures the regularity of the solution,
controlling the numerical viscosity to be injected. A first technique employs first-order differential
operators, adding dissipation in regions of strong compressibility. The original version, proposed in [12,
13], is developed for compressible Navier-Stokes equations. In [14], the authors define a simple and
more general derivative-based model, similar to the technique developed in [15]. A second idea relies
on the estimation of the decay rate of the modal coefficients, analogous to a Fourier expansion. Here,
the primary approach consists in evaluating the decay of the highest mode [16]. Although this method
is quite popular, its suffers from drawbacks related to the lack of both a sense of scale and a monotone
decay of the coefficients. Thus, an improved version, specifically designed for high polynomial orders,
is proposed in [17]. A third strategy exploits the entropy production, using the local residual of the
entropy equation to estimate the artificial viscosity [14, 18, 19]. Other artificial viscosity approaches,
which are not considered in this work, construct the dissipation relying on the local residual of the
equation [20], the solution jump at the element boundaries [21], or a suitably defined PDE [22].
The main drawback of these models is their dependence on empirical parameters, whose choice might
have an impact on stability, accuracy and robustness of the numerical solution. Since there is no rule
to estimate the best values, their tuning is usually done in a problem-dependent, time-consuming
framework. In this work we propose an alternative technique based on artificial neural networks (ANNs).
It can be interpreted as a parameter-free, universal black-box which predicts a (pseudo-)optimal amount
of dissipation, having the further advantage of being computationally inexpensive.

2 Chapter 1. Introduction

In general, ANNs are computing models which are capable of approximating a function exhibiting high
degrees of complexity and nonlinearity. They are based on simple computational units, named neurons,
which process signals, similarly to their biological counterpart [23]. The neurons are assembled together,
creating a network of connected nodes. A key feature of ANNs is their capacity to learn. After training
them by means of a given dataset, they are able to predict the output for samples which are not
included in the training set. One of the main advantages of ANNs lies in the low computational cost.
For a given input, the model output is obtained at a cost which is comparable to some matrix-vector
multiplications, independently of the degree of complexity of the underlying input-output mapping. For
this reason, they increased their popularity in applications such as image processing, voice recognition,
forecasting, medical diagnosis and so on. In the context of numerical analysis and computational
sciences, possible applications relate to solution of partial differential equations [24], reduced order
modeling [25] or identification of troubled cells for DG schemes [11].
The goal of this work is to explain the design, training and application of an ANN to predict artificial
viscosity. Here, we focus on a simple yet effective ANN architecture, named multilayer perceptron
(MLP). The neurons are grouped in layers, processing data from an input to an output layer. Despite
their simplicity, they can be viewed as universal function approximators [26, 27], making them well
suited for our purpose. The (expensive) offline training phase is performed using an appropriately
created dataset. The (cheap) online evaluation of the trained network is carried out at each iteration
of the time-integration scheme for the particular conservation law being solved.
This rest of this thesis structured as follows. In Chapter 2 we describe both the spatial (DG) and the
temporal (Runge-Kutta) discretization we employ, as well as some standard artificial viscosity models,
which are needed to assemble the training set and evaluate the performances of the proposed technique.
After an overview of the main tools needed to build an ANN, in Chapter 3 we present the construction
of the MLP-based artificial viscosity predictor. A few implementation aspects are discussed in Chapter
4, focusing mainly on some ANN-related algorithms. In Chapter 5 we present several numerical results
to show the capabilities of the proposed model, along with a comparison with the classical artificial
viscosity models. After a comment on computational performances, we make a few concluding remarks
in Chapter 6.

3

Chapter 2

Mathematical framework

2.1 Numerical discretization

Let Ω ⊂ Rd be a bounded domain and T > 0 be a fixed time instant. Consider a conservation law
expressed by the following formulation:

∂u

∂t
+∇ · f −∇ · g = 0, (2.1)

in Ω × [0, T]. The spatial coordinate will be denoted by x = (x1, . . . , xd). If a single dimension is
involved, we simply set x = x1, while in the two-dimensional case we often write (x, y) = (x1, x2). In
(2.1), u ∈ Rn×1 denotes the vector consisting of n conserved variables, while f = f(u) ∈ Rn×d is the
convective flux and g ∈ Rn×d is the artificial viscous flux. Throughout this work, the latter takes the
following form:

g = µq, q = ∇u,

where µ denotes the artificial viscosity coefficient. Here, artificial means that no physical viscosity is
present and, in the continuous limit, µ vanishes and the standard form of a first-order conservation law
is recovered. Note that the convective flux can be decomposed in its d components as

f =
d∑
i=1

fxiexi ,

where exi ∈ R1×d are the unit (row) vectors of the canonical basis in Rd, and the components fxi
belong to Rn×1. A similar decomposition holds for the viscous flux.
Problem (2.1) is completed by suitable boundary conditions on ∂Ω× [0, T] and an initial condition
u(x, t = 0) = u0(x) in Ω.
For the sake of simplicity, we provide a detailed description of the finite-dimensional discretization
in the one-dimensional scalar case, i.e. with d = 1 and n = 1. We describe the extension to the
two-dimensional case, as well to systems of equations, in the dedicated Subsections.

2.1.1 Spatial discretization: definitions

The spatial discretization is performed using a Discontinuous Galerkin (DG) scheme. In the one-
dimensional case, Ω is simply an interval, say [a, b]. Let us subdivide the domain into K elements,
namely intervals, denoted by Dk = [xkl , xkr]. In particular, we have x1

l = a and xKr = b. We also
denote by hk = xkr − xkl the length of each interval. Moreover, let m ≥ 1 be an integer representing
the discretization degree, which we assume to be fixed a priori and constant in all the elements. In
each interval we consider the finite-dimensional space made of polynomials up to degree m, defined
as

V kh := Pm(DK) =
{
p = p(x) : p =

m∑
i=0

αix
i, x ∈ Dk

}
,

4 Chapter 2. Mathematical framework

and we set the global space as

Vh :=
{
v ∈ L2(Ω) : v|Dk ∈ V kh

}
.

Note that we omit the dependence on the degree m in order to simplify the notation. In the spirit of
standard Discontinuous Galerkin schemes, the solution is approximated by a piecewise polynomial
function uh, defined as the direct sum

uh =
K⊕
k=1

ukh,

with ukh ∈ V kh for all k ∈ 1, . . . ,K. The dimension of V kh is given by
(
m+d
m

)
= m+ 1 and it is denoted

by N or Nm, in case the dependence on m has to be stressed.
As in classical finite elements discretizations, it is helpful to introduce the idea of reference element.
In particular, given any mesh interval, there exists an affine mapping Ψ between a suitably defined
reference element, denoted by I, and the physical one. For the one-dimensional framework, we consider
I = [−1, 1]. Thus, we can map any point r in I to a point x of a physical interval Dk as follows:

x = Ψ(r) = −r − 1
2 xkl + r + 1

2 xkr = xkl + r + 1
2 hk.

Using this mapping, we are able to assemble all the building blocks of the scheme in the reference
element. We consider two different possibilities of constructing a basis for the space of polynomials
over I:

1. Nodal basis
The basis is defined through Lagrange polynomials, denoted by {li}mi=0. Letting {ri}mi=0 be a set
of disjoint points in I, we define the basis as

li(r) =
m∏
j=0
j 6=i

r − rj
ri − rj

, (2.2)

Such polynomials satisfy the following interpolation property:

li(rj) = δij . (2.3)

A good choice for {ri} is given by the Gauss-Legendre-Lobatto quadrature nodes [28], which
include the extrema of each interval in the set of points.
Thus, we can represent a polynomial function on I as linear combination of the basis functions,
namely

uh(r) =
m∑
j=0

uj lj(r). (2.4)

Due to property (2.3), the coefficients uj are the nodal values of the solution at the quadrature
points, i.e. uj = uh(rj).

2. Modal basis
An alternative strategy is to consider an orthonormal basis for the polynomial space. In the
one-dimensional case, a good choice is provided by the Legendre polynomials, which can be
introduced as a special case of the Jacobi polynomials [2, 28]. The latter have multiple equivalent
definitions, one of them being the recursive relation

rP (α,β)
n (r) = anP

(α,β)
n−1 (r) + bnP

(α,β)
n (r) + an+1P

(α,β)
n+1 (r), n ≥ 1,

where an, bn are coefficients depending on α, β, n defined as

an = 2
2n+ α+ β

√
n(n+ α+ β)(n+ α)(n+ β)

(2n+ α+ β − 1)(2n+ α+ β + 1) ,

2.1. Numerical discretization 5

bn = − α2 − β2

(2n+ α+ β)(2n+ α+ β + 2) .

The initial values P (α,β)
0 and P (α,β)

1 are equal to

P
(α,β)
0 (r) =

√
2−α−β−1 Γ(α+ β + 2)

Γ(α+ 1)Γ(β + 1) ,

P
(α,β)
1 (r) = 1

2P
(α,β)
0 (r)

√
α+ β + 3

(α+ 1)(β + 1) ((α+ β + 2)x+ (α− β)) .

With these definitions, the following orthonormality condition is satisfied:∫
I

P
(α,β)
i (r)P (α,β)

i (r)(1− r)α(1 + r)βdr = δij .

The Legendre polynomials are simply obtained by setting α = 0, β = 0 and are denoted by
{φi(r)}mi=0. This leads to an orthonormal basis with respect to the standard inner product in
L2(I). Again, we write a polynomial function on I as linear combination of the basis functions,
namely:

uh(r, t) =
m∑
j=0

ûj(t)φj(r), (2.7)

where each coefficient ûj can be interpreted as the L2(I)-product between uh and the j-th basis
function.

We construct the corresponding bases in each physical element by composition with the geometric
mapping Ψ. We adopt the same notation for the basis in the reference and physical element, unless a
distinction is explicitly required. Thus, the physical nodal basis is defined as

li(x) = lphii (x) = lrefi (Ψ−1(x)) = li(r),

but the superscripts phi and ref are dropped in order to ease the notation. A similar expression holds
for the modal basis.
It’s worth noting that there exist a bijective linear mapping between the modal and the nodal coefficients.
Indeed, it is enough to observe that

ui = uh(ri) =
m∑
j=0

ûjφj(ri) =
m∑
j=0

Vij ûj ,

or in a vectorial form
u = Vû,

where we introduced the Vandermonde matrix V defined as Vij = φj(ri).

2.1.2 Discontinuous Galerkin approximation

In order to perform the spatial discretization, we consider the Lagrange basis functions, leading to
the so-called nodal Discontinuous Galerkin approximation. We refer to the expansion coefficients
in equation (2.4) as the (local) degrees of freedom, since it can be easily proven that the unknown
polynomial function ukh is uniquely determined by assigning its value at such points. We recall that
our starting point is the following conservation law:

∂u

∂t
+ ∂f

∂x
− ∂g

∂x
= 0, (2.8a)

g = µq,

q − ∂u

∂x
= 0. (2.8b)

6 Chapter 2. Mathematical framework

Due to the local nature of the finite dimensional space, we can focus on a single interval, say Dk,
dropping the superscript k in all the involved terms, unless explicitly required. Thus, we consider the
local nodal approximation for both the solution and the fluxes, namely

uh(x, t) =
m∑
j=0

uj(t)lj(x), uj(t) = uh(xj , t),

fh(x, t) =
m∑
j=0

fj(t)lj(x), fj(t) = fh(xj , t), (2.9a)

gh(x, t) =
m∑
j=0

gj(t)lj(x), gj(t) = gh(xj , t),

qh(x, t) =
m∑
j=0

qj(t)lj(x), qj(t) = qh(xj , t),

and we define the residuals associated to equations (2.8a) and (2.8b) respectively as:

Rh,1 = ∂uh
∂t

+ ∂fh
∂x
− ∂gh

∂x
,

Rh,2 = qh −
∂uh
∂x

.

We remark that, even though we seek ukh belonging to the polynomial space V kh , the convective flux
does not necessarily belong to the same space. Thus, equation (2.9a) implies a projection of the flux
function on this space, defined as the element in V kh minimizing the error at the nodal points. A similar
reasoning holds for the (artificial) viscous term.
The Discontinuous Galerkin approximation is defined by imposing the residuals to vanish locally, i.e.
within the element Dk, in a Galerkin sense. In other words, we require the residuals to belong to
(V kh)⊥, by imposing orthogonality with respect to each of the Lagrange basis functions as∫

Dk
Rh,1(x, t)li(x)dx = 0,

∫
Dk

Rh,2(x, t)li(x)dx = 0, ∀i = 0, . . . ,m = N − 1 ∀t ∈ [0, T].

Integrating both equations by parts, we obtain the Discontinuous Galerkin (weak) formulation:∫
Dk

(
∂uh
∂t

li − fh
∂li
∂x

+ gh
∂li
∂x

)
+
∫
∂Dk

(f∗h n li − g∗h n li) = 0, (2.11a)

∫
Dk

(
qhli + uh

∂li
∂x

)
−
∫
∂Dk

u∗h n li = 0, (2.11b)

which is completed by
gh = µ qh.

Note that in (2.11a) and (2.11b) n denotes the outward unit vector in element Dk. In the one-
dimensional case it is simply equal to 1 (resp. −1), depending whether we consider the right (resp.
left) boundary. In principle, such notation is redundant for the one-dimensional scenario, since one
could simply write ∫

∂Dk
v′(x)dx = v(xkr)− v(xkl),

for any smooth enough function v(x), without the need to introduce the vector n. However, this
formulation is more compact and makes the extension to higher dimensions easier.
Moreover, the flux functions evaluated at the boundary are replaced by suitable numerical fluxes. This
is mandatory in Discontinuous Galerkin (and finite volumes) schemes, in order to have a uniquely
defined flux at the interfaces. Practically, such terms are the only ones which link the neighboring
elements, since the internal contributions are, by definition, local. The choice of these fluxes plays
a key role in terms of, e.g. consistency, stability and accuracy of the numerical scheme. In general,
they depend on the solution in both the elements sharing the same boundary. To properly define
them, consider two neighboring elements, denoted by D+ and D−, having normal vectors n+ and

2.1. Numerical discretization 7

n− respectively. Suppose that such elements share a boundary e. Given a generic function v, whose
restriction on e ∈ D+, D− is denoted by v+, v− respectively, we define the average and jump operators
across e as follows:

{v} := 1
2
(
v+ + v−

)
, [v] := v+n+ + v−n−.

Then, we adopt the following numerical fluxes for the solution and viscous flux:

u∗h = u∗h(u+
h , u

−
h) = {uh} , g∗h = g∗h(g+

h , g
−
h) = {gh} ,

which are known as centered fluxes. More challenging is the choice for the convective flux, since fh can
have a nonlinear dependence on the degrees of freedom. A good choice for the corresponding numerical
flux is the following:

f∗h = f∗h(u+
h , u

−
h) = {f(uh)}+ Λ

2 [uh] , (2.12)

where Λ is a large enough stabilization parameter, usually defined as Λ := max |f ′(uh)|. The maximum
is either taken over the whole domain Ω or locally within the elements sharing the considered face. The
first choice leads to the so-called Lax-Friedrichs flux, while the second one is generally known as Local
Lax-Friedrichs or Rusanov flux. Being less dissipative, we adopt the latter choice. An interpretation of
the two terms on the right-hand-side of equation (2.12) is the following. The first one, which is the
same as the centered flux, guarantees the accuracy of the scheme, while the second term is responsible
of stability, penalizing the jumps of the solution. We also point out that, in general, f and f∗, as well
as their discrete counterparts, may depend on space and time.

2.1.3 Algebraic formulation

Now, we define a few algebraic operators with the aim of clarifying how to practically compute the
terms required by a DG discretization.
Firstly, we point out that the operator definition is independent of time, and most of the computations
can be done in the reference element. This is a huge performance advantage, since their assembly
is performed once in the preprocessing step. Secondly, we observe that such operators are defined
locally in each physical element, as the Discontinuous Galerkin formulation is, by definition, local.
Thirdly, a key role is played by the geometric mapping Ψ or, more precisely, by its jacobian matrix J ,
its determinant and its inverse. Since Ψ is affine, these quantities are constant within Dk and in one
spatial dimension they are scalar values equal to hk

2 , hk2 and 2
hk

respectively.
The key operators we employ are the following:

• Internal mass matrix:

Mij =
∫
Dk

lj(x)li(x) dx = |det J |
∫
I

lj(r)li(r) dr = hk
2

∫
I

lj(r)li(r) dr, (2.13)

where i, j = 0 . . . N − 1.

• Advection matrix:

Sij =
∫
Dk

li(x) d
dx

(lj(x)) dx = |det J |
∫
I

li(r)J−1 d

dr
(lj(r)) dr =

∫
I

li(r)
d

dr
(lj(r)) dr,

where i, j = 0 . . . N − 1.

• Boundary mass matrix:

Mσ
e,ij =

∫
σe

lj(x)li(x) dx = |det Jbd|
∫
Ie

lj(r)li(r) dr = (δi1δj1δe1 + δiNδjNδe2) ,

where i, j = 0 . . . N − 1, while e ∈ {1, 2} denotes the left (resp. right) boundary.

8 Chapter 2. Mathematical framework

We refer to [2] for a detailed description of such matrices and their practical assembly. Now, we can
write the following algebraic semi-discrete form:

M
du

dt
− STf + STg +

2∑
e=1

Mσ
e f
∗ne −

2∑
e=1

Mσ
e g
∗ne = 0, (2.14a)

Mq + STu−
2∑
e=1

Mσ
e u
∗ne = 0, (2.14b)

where we introduced the finite-dimensional vectors u, f , g, q collecting the (local) degrees of freedom,
namely the nodal values, of uh, fh, gh, qh respectively. The system is completed by the equation

g = µq (or g = µ� q),

which identifies the point-wise multiplication between the nodal values of µ, collected in the vector µ,
and the degrees of freedom of q. We recall that the symbol � denotes the Hadamard product, defined
as (a� b)i = aibi for two vectors a and b.
Moreover, due to our choice of the flux u∗h we observe that, knowing the values of uh, we can easily
compute qh in equation (2.11b) and inject it into (2.11a). Indeed, by definition u∗h does not depend on
qh.
Collecting the local contributions from all the elements, we can formally assemble a global algebraic
formulation:

du

dt
= A(u,f , g), (2.15a)

g = µq, (2.15b)

q = Bu, (2.15c)

by means of finite-dimensional operators A and B which already take into account the inversion of the
mass matrix. Note that B is linear. Finally, equations (2.15a), (2.15b) and (2.15c) can be cast a single
equality as

du

dt
= A(u,f(u), µBu) = F(t,u), (2.16)

which is the standard form of an ordinary differential equation.

2.1.4 Time discretization

The final step is the choice of time integrating scheme, leading to the definition of the fully discretized
version of the problem. In principle, any (stable) method could be employed. However, we do not want
the time discretization error to have a (large) impact on the global solution accuracy. Therefore, a
high-order time integrator should be implemented. In the context of a DG discretization, a standard
choice is the class of (explicit) Runge-Kutta schemes. Here we focus on the so-called five-stage fourth-
order low-storage Runge-Kutta scheme.
We briefly recall its main aspects, referring to [29] for more details. The algorithm originates from a
modification of standard Runge-Kutta schemes, designed in order to implement the method employing
two storages (i.e. vectors) only, denoted by U, V . Considering a suitable time step ∆t and given the
numerical solution uh(tn) at time tn, the scheme computes uh(tn + ∆t) as follows:

U ← uh(tn), (2.17a)

V ← AjU + ∆t F(tn + cj∆t, U), ∀j = 1 . . .M,

U ← U +BjV, ∀j = 1 . . .M,

uh(tn + ∆t)← U, (2.17b)

for some given coefficients Aj , Bj , cj , while M is the number of stages. Note that the coefficients cj
are the same values appearing in the standard Butcher’s tableau [28]. In order to have a fourth order
scheme, we need to choose five stages, i.e. M = 5. Moreover, the algorithm is both self-starting and

2.1. Numerical discretization 9

explicit, since both A1 and c1 are equal to zero. The unique initialization of the storages has to be
performed at the first step by means of the initial condition, setting U = u0 and V = 0. In other
words, there is no need to re-initialize the storages at each time iteration. Thus, equations (2.17a) and
(2.17b) are, at a computational level, redundant.
The coefficients Aj , Bj , cj we employ are the ones denoted as ‘Solution 3’ in [29], whose rational form
is reported in Table 2.1.

Aj Bj cj

j = 1 0 1432997174477
9575080441755 0

j = 2 − 567301805773
1357537059087

5161836677717
13612068292357

1432997174477
9575080441755

j = 3 − 2404267990393
2016746695238

1720146321549
2090206949498

2526269341429
6820363962896

j = 4 − 3550918686646
2091501179385

3134564353537
4481467310338

2006345519317
3224310063776

j = 5 − 1275806237668
842570457699

2277821191437
14882151754819

2802321613138
2924317926251

Table 2.1: Coefficients used for the time integration scheme.

Since the time-marching algorithm is explicit, an upper bound on the time step is required to make
the scheme stable. Such stability condition has to take into account both the physical and the viscous
fluxes, and it can be viewed as an extension of the standard Courant-Friedrichs-Levy (CFL) condition.
Therefore, we require

∆t = C min
{

1
|f ′(uh)|m2

h + µm
4

h2

}
, (2.18)

where C, which is usually of order one, depends weakly on m, since the influence of the polynomial
degree is already taken into account in the denominator. In this work, an adaptive time step is chosen.
At each temporal iteration, condition (2.18) is evaluated, so that ∆t is chosen according to the current
solution features. Clearly, if at the n-th iteration the value of tn + ∆t exceeds the final simulation time
T , the time step is corrected setting ∆t = T − tn.

2.1.5 Boundary conditions

Imposing boundary conditions is a key step in this framework. Indeed, we need to guarantee that their
application does not have an impact on the high-order accuracy of the problem. They are imposed
weakly, computing fluxes between the physical boundary elements and suitably defined ghost elements.
Given an element k0 having at least one boundary point (edge), say e ⊂ ∂Dk0 , we want to compute the
fluxes through e. Denoting with u−h the numerical solution restricted to e, we need to appropriately
define the quantity u+

h . A similar reasoning holds for the auxiliary variable gh. Throughout this work,
we consider three types of boundary conditions:

• Dirichlet b.c.
Let G = G(t) be a prescribed function on e. At a continuous level, we aim to impose u = G on e.
In this case we simply define u+

h = −u−h + 2G(t). Concerning the auxiliary variable g, we impose
g+
h = g−h . With such choices we have that {uh} = G and JghK = 0.

• Neumann b.c.
Only homogeneous Neumann, namely zero-gradient boundary conditions, are needed in this work.
Thus, we define u+

h = u−h and g+
h = −g−h , leading to {gh} = 0 and JuhK = 0. Essentially, we are

swapping the signs with respect to Dirichlet conditions.

• Periodic b.c.
Imposing periodicity can be interpreted as the absence of physical boundaries. Let D1 and DK

be the first and the last mesh interval. Thus, periodic conditions are imposed as uh|+DK = uh|−D1

and uh|+D1 = uh|−DK . Concerning the auxiliary variable, we impose that g+
h = g−h on the involved

boundaries, similarly to Dirichlet conditions.

Similar definitions hold for systems of equations.

10 Chapter 2. Mathematical framework

2.1.6 Extension to two-dimensional problems

The extension of the previous framework to two-dimensional problem is rather straightforward from
the numerical point of view, although it is worth emphasizing the main changes.
We seek the discrete solution in the space of multivariate polynomials having degree at most m,
i.e.

V kh := Pm(DK) =

p = p(x, y) : p =
m∑

i,j=0
i+j≤m

αijx
iyj , (x, y) ∈ Dk

 .

For the two-dimensional case, its dimension is N = (m+1)(m+2)
2 .

We consider triangular meshes only, and the definition of the reference element can be extended from
the one-dimensional case. In this framework, I is the triangle whose vertexes are P1 = (−1,−1),
P2 = (1,−1) and P3 = (−1, 1), and the affine mapping is consequently defined as

x = (x, y) = Ψ(r, s) = −r + s

2 v1 + r + 1
2 v2 + s+ 1

2 v3,

where {vi}3i=1 denotes the set of vertices of the physical triangle. A graphical representation is provided
in Figure 2.1. Different choices for the grid spacing hk can be considered. Throughout this work, as

P1 P2

P3

(x, y) = Ψ(r, s)

v1

v2

v3

r

s

x

y

Figure 2.1: Graphical representation of the two-dimensional mapping Ψ.

characteristic length we adopt the diameter of the triangle, defined as the length of its longest edge.
The definitions of the nodal and modal bases can be easily extended. A key role is played by the choice
of quadrature points, since no trivial definition is provided for triangular elements. In [30], the authors
end up with a set of quadrature points satisfying a minimum energy solution to an electrostatics problem
on a reference equilateral triangle. We exploit such points, after mapping them from the equilateral
triangle to I. Note that with this choice we recover the one-dimensional Gauss-Legendre-Lobatto points
along each of the edges. Concerning the nodal basis, property (2.3) still holds, but there is no explicit
expression similar to (2.2). On the other hand, the modal basis exploits again the one-dimensional
Jacobi polynomials. In particular, the functions {φj}N−1

j=0 are defined as

φj =
√

2Q(0,0)
i (a)Q(2i+1)

l (b)(1− b)i,

where j is related to (i, l) as j = l + (m+ 1)i− 1
2 i(i− 1), with (i, l) ≥ 0 and i+ l ≤ m. Here, (a, b)

denote the coordinate system of the square [−1, 1]2, transformed from the coordinates (r, s) of the
reference triangle, i.e.

a = 21 + r

1− s − 1, b = s.

Obviously, if s = 1 such mapping is singular, since the top edge of the square collapses into a single point
of the triangle. Again, the change of basis is represented by the Vandermonde matrix Vij = φj(ri, si).

2.1. Numerical discretization 11

The Discontinuous Galerkin weak form can be written as∫
Dk

(
∂uh
∂t

li − fh · ∇li + gh · ∇li
)

+
∫
∂Dk

(f∗h · n li − g∗h · n li) = 0,∫
K

(qhli − uh∇li)−
∫
∂Dk

u∗h n li = 0,

where the inner products act on the unit vectors exi of the canonical basis in R2. Defining the x and y
advection matrices as

Sxij =
∫
Dk

li(x, y) ∂
∂x

(lj(x, y))

= |det J |
(∫

I

li(r, s)(J−1)11
∂

∂r
(lj(r, s)) +

∫
I

li(r, s)(J−1)12
∂

∂s
(lj(r, s))

)
= |det J | ∂r

∂x

(∫
I

li(r, s)
∂

∂r
(lj(r, s))

)
+ |det J | ∂s

∂x

(∫
I

li(r, s)
∂

∂s
(lj(r, s))

)
,

Syij =
∫
Dk

li(x, y) ∂
∂y

(lj(x, y))

= |det J |
(∫

I

li(r, s)(J−1)21
∂

∂r
(lj(r, s)) +

∫
I

li(r, s)(J−1)22
∂

∂s
(lj(r, s))

)
= |det J |∂r

∂y

(∫
I

li(r, s)
∂

∂r
(lj(r, s))

)
+ |det J |∂s

∂y

(∫
I

li(r, s)
∂

∂s
(lj(r, s))

)
,

the algebraic form can be cast as

M
du

dt
− (Sx)Tfx − (Sy)Tfy + (Sx)Tgx + (Sy)Tgy +

3∑
e=1

Mσ
e f
∗ · ne −

3∑
e=1

Mσ
e g
∗ · ne = 0,

Mqx + (Sx)Tu−
3∑
e=1

Mσ
e u
∗nxe = 0, Mqy + (Sy)Tu−

3∑
e=1

Mσ
e u
∗nye = 0,

where the boundary and internal mass matrices are defined in a way similar to the one-dimensional
case.

2.1.7 Extension to systems of equations

So far we focused on the scalar case, i.e. when the unknown variable u is a scalar quantity. In principle,
extending the previous framework to systems is quite straightforward. Roughly speaking, considering
separately each equation, the same reasoning holds. Thus, the local solution uh belongs to the space
(V kh)n.
We make a simple remark concerning the physical flux. Considering the one-dimensional case for
simplicity, for scalar problems there is no ambiguity in defining f ′(u), which is a scalar quantity. For
systems we continue to adopt the same notation, but it is worth observing that it is actually a matrix,
defined as

[f ′(u)]ij = [Jf (u)]ij = ∂fi
∂uj

,

Moreover, max |f ′(u)| is given by the maximum absolute eigenvalue of the jacobian matrix of the flux
function and represents the maximum wave speed.

2.1.8 Test cases

In this work, we consider different conservation laws. Each problem is characterized, at a continuous
level, by the choice of the conserved variables, flux function, initial and boundary conditions, and a

12 Chapter 2. Mathematical framework

final time.
For one dimensional problems, we deal with:

• linear advection equation, which describes, e.g., the transport of a scalar quantity u by a field
β = β(x, t). The problem is then defined choosing f(u) = βu.

• Burgers equation, representing a simplified version of Navier-Stokes equations. It is defined by
choosing f(u) = u2

2 .

• an equation with a degree-4 flux function, defined by f(u) = u4

4 , in order to have a non quadratic
(but still convex) flux.

• Buckley-Leverett problem, which describes the water saturation in a mixture of oil and water
[31]. It is defined by choosing the non-convex flux function

f(u) = u2

u2 + 0.5(1− u)2 .

• Euler system, representing the conservation of mass, momentum and energy for a compressible
inviscid flow. The physical variables are density (ρ), velocity (v) and pressure (p), while the
conserved variables are density (ρ), momentum (ρv) and energy (E). Thus, we define

u =

 ρ
ρv
E

 , f(u) =

 ρv
ρv ⊗ v + pI
v(E + p)

 =

 ρv
ρv2 + p
v(E + p)

 .

The system is closed by the ideal gas law as

p = (γ − 1)
(
E − 1

2ρ|v|
2
)
, (2.22)

γ being a fluid dependent constant which we take to be γ = 7/5, as it is typical for atmospheric
gasses. Other important variables are the speed of sound

c =
√
γp

ρ
,

and the Mach number
Ma = |v|

c
. (2.23)

In a two dimensional framework, we focus on the following problems:

• linear advection equation, defined choosing f(u) = fxex + fyey = (βxu, βyu).

• a possible two-dimensional extension of Burgers equation, obtained by setting f(u) = fxex +
fyey = (u2

2 ,
u2

2).

• The KPP rotating wave problem [18], obtained by setting non-convex x and y fluxes

f(u) = fxex + fyey = (sin(u), cos(u)).

• Euler system, representing the conservation of mass, momentum and energy for a compressible
inviscid flow. Compared to the one-dimensional case, we have to take into account both the x
and y component of the velocity, defined as v = (vx, vy). Thus, we have

u =

ρ
ρvx
ρvy
E

 , f(u) =

 ρv
ρv ⊗ v + pI
v(E + p)

 =

ρvx

ρv2
x + p
ρvxvy

vx(E + p)

 ex +

ρvy
ρvyvx
ρv2
y + p

vy(E + p)

 ey,
and

p = (γ − 1)
(
E − 1

2ρ|v|
2
)

= (γ − 1)
(
E − 1

2ρ(v2
x + v2

y)
)
, (2.24)

2.2. Artificial viscosity models 13

while the definitions of the speed of sound and the Much number remain the same.

2.2 Artificial viscosity models

In this Section we present the artificial viscosity models adopted in this work. Such models will play a
central role in the construction of the training samples, and they will represent the benchmark cases in
order to evaluate the performances of the new technique based on artificial neural networks. Unless
explicitly required, in this Section we drop both the subscript h and the superscript k to denote the
finite-dimensional local variables. However, we note that these models are defined at a discrete level
only and they employ local variables to compute the viscosity.

2.2.1 Overview

Before going into the details of each model, we remark that the main aspect to be taken into account
in adding the artificial viscosity is the spatial locality, which results in a different amount of dissipation
in each mesh element. As a consequence, the viscosity profile is globally nonlinear. More precisely,
one wants to inject dissipation only close to discontinuities, while if the solution is regular enough the
inviscid scheme should not be altered. A related aspect is the choice of an optimal viscosity amount.
Indeed, large values would result in over-dissipative results, and significant features of the solution
could not be captured. Vice versa, the artificial viscosity has to be large enough to smoothen spurious
numerical oscillations.
The strategy followed by all the shock-capturing models is similar and can be summed up as fol-
lows:

• In each cell of the domain

– Estimate a maximum amount of viscosity by choosing a characteristic velocity and length.
We choose these as the (maximum) local wave speed max

Dk
|f ′(u)| and the subcell grid size

h
m respectively. Thus, we define

µmax = cmax
h

m
max
Dk
|f ′(u)|, (2.25)

where cmax is a problem-dependent global constant. Note that in the high-resolution limits
h→ 0 and/or m→∞ the numerical dissipation vanishes.

– Identify a shock sensor S, namely a quantity which estimates the smoothness of the solution
and determines the amount of artificial viscosity to be added. In general, S depends
nonlinearly on the solution u and its choice characterizes the different models.

– Based on the sensor, estimate a value for the viscosity, say µS . Depending on the model,
we obtain either a pointwise or a constant value for the numerical dissipation.

– Require µ to be not greater than µmax by defining

µ = min {µS , µmax} .

• If needed, perform a global smoothing of the viscosity. This is justified by two main arguments.
Firstly, it helps to further reduce the numerical oscillations. As an example, if we consider a model
which gives a piecewise constant dissipation, the global viscosity profile might be discontinuous
across the element boundaries. This causes additional undesirable spurious oscillations, especially
for high discretization degrees and/or when the jump in the viscosity is sufficiently large. We
refer to [22] for a broader discussion on this topic and a more concrete example. Secondly, the
viscosity sub-cell resolution is enhanced. In other words, after the smoothing, a different value of
µ is added in each node, letting the dissipation vary locally within each cell.
In this thesis we consider a simple C0 smoothing, performed only for the models giving a piecewise
constant profile for the artificial viscosity. It is carried out in three steps:

14 Chapter 2. Mathematical framework

1. Consider the set of nodal points corresponding to a given degree P . Conduct averaging
with all the cells sharing the same node, in order to have a uniquely defined viscosity at the
boundary points.

2. Compute the coefficients of the degree-P interpolating polynomial in each element.

3. Evaluate such a polynomial on the nodal points required by the discretization order m.

For most of practical applications, choosing P = 1, 2 is enough. In this work we always pick
P = 1, except in the one-dimensional scalar case, where P = 2 is considered. A graphical
representation of the global viscosity profile is reported in Figure 2.2 for the one-dimensional
case. We recall that more sophisticated techniques can be employed to perform the smoothing as

Dk−1 Dk Dk+1

Figure 2.2: A graphical representation of the smoothed viscosity profile using P = 1
in a one-dimensional framework. The blue lines denote the piecewise constant values,
while the (continuous) red line represents the final profile, after the smoothing process.

in, e.g., [22]. However, despite its simplicity, our algorithm guarantees good results, as well as a
low computational cost.

A final aspect that needs to be considered is the frequency at which the artificial viscosity has to
be estimated. Indeed, in theory the viscosity might change every time each Runge-Kutta substep
updates the solution vector U . Since a five-stage algorithm is used, we would need to estimate µ
for 5Niter times. However, for our purposes it is enough to assume that the viscosity changes only
at the beginning of the internal loop. Thus, we estimate µ for Niter times only. This choice can be
viewed as a good compromise between computational performances and precision in estimating the
viscosity.

2.2.2 Derivative-based (DB) model

The simplest shock sensor is based on first-order differential operators, which identify the regions where
the solution exhibits an abrupt variation. At a first glance, discontinuities (in particular shocks) can be
interpreted as high jumps in the solution located in small spatial regions. Thus, derivative operators
represent a good tool to estimate artificial viscosity. In a broad sense, the amount of dissipation will
be proportional to the intensity of the variation, measured in a suitable norm. A different treatment
for scalar equations and the (Euler) system is considered.
In the first scenario, we define the viscosity to be proportional, up to scaling factors, to the Rd euclidean
norm of the gradient as:

µβ = cβ

(
h

m

)2
‖∇u‖ . (2.26)

Indeed, the gradient is a good indicator of rapid variations of the solution and it can be computed
easily, since all the discrete derivative operators are assembled in the pre-processing phase. Practically,
its implementation mainly consists of matrix-vector multiplications. As an analogy with the field of
image processing, we can interpret the gradient norm as a simple edge detector [32]. In the context of
conservation laws, edges are essentially the discontinuities in the solution.
Although it is a rather simple model, its main drawback lies in the fact that µ is at most of order
2. Indeed, in equation (2.26) a second power of the grid spacing h is present. For this reason, the

2.2. Artificial viscosity models 15

accuracy of the viscous Discontinuous Galerkin scheme is limited to at most second order. In other
words, high order accuracy cannot be achieved, limiting the applicability of this viscosity model, at
least for scalar problems.
In the second scenario, a possible strategy consists in repeating the same reasoning by choosing u as a
suitable scalar variable. However, restricting our attention to Euler system, a better indicator is built
using the divergence of the velocity field:

µβ = cβ

(
h

m

)2
|∇ · v| . (2.27)

It achieves large absolute values in regions exhibiting strong compression or expansion. In particular,
the former is a good indicator of the presence of shocks. A similar indicator is built in [15], where
the authors propose to further add a sigmoid function in order to take into account compression only.
However, in this work we employ the standard formulation defined in (2.27). Note that this model,
and in particular equation (2.27), is a simplified version of the artificial bulk model presented in [13].
For systems, the second-order accuracy issue is still present. However, for solutions exhibiting low
compressibility, higher orders can be achieved. We refer to Chapter 5 for more concrete examples of
such a behavior.
The final value of the artificial viscosity is determined as

µDB = min {µβ , µmax} .

For both scalar equations and systems, we end up with a pointwise value for µDB . Thus, within each
element, we already have an in-built sub-cell resolution. In order to better demonstrate the sub-cell
nature of the model, we do not perform the C0 smoothing. As shown in Chapter 5, this choice does
not have a detrimental effect on the results, which are mainly affected by the second order accuracy of
the method. Note that the same choice was made in [14], at least for one-dimensional problems.

2.2.3 Highest modal decay (MDH) model

This model, presented in [16], identifies the decay of the modal expansion coefficients as a good indicator
for discontinuous solutions. We describe it first in the one dimensional scalar case. The starting point
is the following result on Fourier series [33]:
Theorem 1. If f(x) is a continuous, T -periodic function on [−T/2, T/2] with a piecewise continuous
first derivative, then the complex Fourier coefficients

{
f̂k

}
k∈Z

of f(x) satisfy

|f̂k| ≤
C

k2 ,

and the sequence of partial Fourier sums

fn(x) =
∑
|k|≤n

f̂k e
2π
T ikx,

converges uniformly to f(x).
More generally, if f(x) ∈ Cn([−T/2, T/2]) (n ≥ 0) with a piecewise (n+1)-th derivative, the coefficients{
f̂k

}
k∈Z

satisfy

|f̂k| ≤
C

kn+2 .

Now we rely on the modal expansion of the solution (see (2.7)) and we define the truncated representation
ũ as the expansion containing only the first Nm−1 = m terms. Comparing them, we have

u =
m∑
j=0

ûjφj , ũ =
m−1∑
j=0

ûjφj ,

16 Chapter 2. Mathematical framework

and we define the shock sensor as the fraction of energy of u contained in the highest mode, namely

Sk =
(u− ũ, u− ũ)2

L2(Dk)

(u, u)2
L2(Dk)

=
‖u− ũ‖2L2(Dk)

‖u‖2L2(Dk)
= |û|2m∑m

j=0 |û|2j
, (2.28)

where the last equality holds thanks to the orthonormality of the Legendre polynomials. We now
assume that the modal coefficients satisfy a result which is analogous to the Fourier ones, explained in
Theorem 1. Therefore, for continuous solutions, we expect the indicator Sk to behave as 1/m4, i.e.
Sk ' C/m4. In a logarithmic scale, such a requirement is cast as sk = logSk ' −cA − 4 logm = s0.
Then, if the solution is more regular, a higher decay rate is expected, and a smaller amount of viscosity
needs to be added. Vice versa, if the solution coefficients exhibit low decay, discontinuities are present
and smoothing is necessary.
Thus, according to the previous reasoning, we should add either zero dissipation in case sk < s0 or a
prescribed maximum viscosity in the opposite case. However, a suitable set of empirical parameters is
introduced in order to make the jump less abrupt, so that the final viscosity introduced by this model
is set as follows:

µMDH = µmax

0 if sk < s0 − cκ,
1
2 sin

(
1 + π(sk−s0)

2cκ

)
if s0 − cκ ≤ sk < s0 + cκ,

1 if s0 + cκ ≤ sk,
(2.29)

where µmax is defined in equation (2.25), and cA, cκ, together with cmax, are problem-dependent
parameters. As a side remark, we observe that the name of the model originates from the fact that Sk
relies only on the behavior of the highest modal coefficient.
The extension to Euler system is carried out by applying the previous framework using a representative
variable of the problem. This could be again an empirical choice, and in [14, 16] the authors rely on
density. A justification of this choice is that ρ is discontinuous across both contact and shock waves,
unlike velocity or pressure.
Finally, the previous reasoning can be ported to two dimensional problems. In this scenario, the
numerator in (2.28) is made of all the expansion coefficients of degree-m polynomials, but the analogy
with Fourier series still holds, observing that

Sk =

Nm−1∑
j=Nm−1

|û|2j
Nm−1∑
j=0

|û|2j
∼

 2
m4 +

m−1∑
k1,k2=1
k1+k2=m

1
k4

1k
4
2

 ,

at least for separable functions. An alternative scaling argument, more similar to the one-dimensional
setting, is

Sk ∼
1
m4 .

Both the approaches give similar results, so that we adopt the latter, which still depends on a few
empirical parameters.
We remark that the model estimates a constant viscosity value µMDH in each physical element,
resulting in a piecewise constant profile. Thus, we perform the C0 global smoothing.

2.2.4 Averaged modal decay (MDA) model

This model, which can be interpreted as an improved version of the MDH, is proposed in [17]. We
focus again on the one-dimensional case first. Considering the analogy with Fourier modes, we assume
that the coefficients of the modal expansion decay as |ûj | ' Cj−τ , converted in a logarithmic scales
as

log |ûj | ' logC − τ log j, j = 1, . . . , Nm − 1 = m,

2.2. Artificial viscosity models 17

where both C and τ need to be estimated. A simple strategy consists in determining the best parameters
in a least-squared sense by solving the following minimization problem:

min
C,τ

m∑
j=1

(log |ǔj | − (logC − τ log j))2
, (2.30)

where |ǔj | is a suitable modification of the modal coefficients |ûj |, since setting ǔj = ûj might lead to
an overestimation of the decay rate τ [17]. The modified modal coefficients can be obtained following
a two-step process:

• First step: add the sense of scale to the model. The objective function (2.30) ignores the scale of
the function, which is taken into account by the first modal coefficient (j = 0). If we consider
a scenario where a constant function is perturbed by white noise at a much smaller scale, the
previous model captures only the oscillations and predicts a low decay rate, resulting in a high
dissipation. Since this behavior is undesirable, we re-add the sense of scaling to the model by
considering the modified coefficients defined as

|ŭj |2 = |ûj |2 + ‖u‖2L2(Dk) |bj |2, |bj | =
j−m√∑m
l=1 l

−2m
.

• Second step: Skyline pessimization. This procedure is needed to recover a monotone decay.
Indeed, if we consider a scenario where there exist i, n such that |ŭi| � |ŭn|, then the smaller
coefficient is likely to be spurious and should be eliminated. This motivates the following definition

|ǔj | = max
i=min(j,m−1),...,m

|ŭi|

for the coefficients appearing in (2.30).

The solution of the unconstrained minimization problem can be easily found by solving a linear system
in (logC, τ)T arising from the first order optimality conditions. Once the decay rate is known, we
define the final viscosity of the model as

µMDA = µmax

1 if τ < 1,
1− τ−1

2 if 1 ≤ τ < 3,
0 if 3 ≤ τ ,

(2.31)

where µmax is defined in equation (2.25). In this way, we add the maximum (resp. minimum) dissipation
in presence of discontinuous (resp. C1) solutions characterized by a decay rate τ = 1 (resp. τ = 3), as
stated by Theorem 1.
It is worth observing that this model is designed for high discretization degrees. In particular, one can
verify that the optimization problem is not well posed when m = 1, 2 are considered. Thus, in this
work it is employed for m ≥ 3 only.
Extension to the Euler system is again performed by applying the previous framework using density
only.
In the two-dimensional scanario, a simple yet effective way to extend the previous reasoning is proposed
in [14] and can be summed up in three steps:

1. Extract the nodal values for a prescribed scalar quantity (e.g. the discrete solution in case of
scalar problem) on each edge of the triangular element.

2. Apply the one-dimensional reasoning on each edge, estimating three decay rates τe (e = 1, 2, 3)
for the three edges.

3. Find the minimum decay rate τ = mine τe and estimate the viscosity using (2.31).

Again, since this model predicts a piecewise constant viscosity, we need to apply the smoothing
technique.

18 Chapter 2. Mathematical framework

2.2.5 Entropy viscosity (EV) model

The last model we consider, presented in [18, 19], is based on the entropy behavior. Let (E(u),F (u)) be
an entropy pair for the inviscid continuous problem. It satisfies the following entropy inequality

∂E

∂t
+∇ · F ≤ 0,

for a physically relevant weak solution of the conservation law [34]. Moreover, for smooth solutions,
the equality holds. Therefore the entropy residual is a good shock sensor, since viscosity can be
added in a way proportional to the entropy production. In [19], the authors note that the entropy
residual is a reliable and robust choice, in the sense that in the continuous limit h→ 0, it converges to
δ-distributions supported in the shocks.
More precisely, we define

µE = cE

(
h

m

)2
B, (2.32)

where cE is an empirical parameter and B is defined as

B = 1
A

max
(

max
Dk
|R(u)|, max

∂Dk
|H(u)|

)
,

and consists of two contributions:

R = ∂E

∂t
+∇ · F ' E(un) + E(un−1)

∆t + ∇ · F (un) +∇ · F (un−1)
2 , (2.33a)

H =
(
h

m

)−1
JF K · n. (2.33b)

The former takes into account the entropy residual and the time derivative is discretized using a
Crank-Nicolson scheme. Since the right-hand-side of equation (2.33a) is based on the solution at the
current and the previous time step, the residual R can be computed explicitly. Following [19], R is set
to zero for the first temporal iteration. The latter introduces the effect of the jump of the entropy flux
along the element boundary. Finally, the scalar A acts as a normalization factor, which restores the
correct physical dimensions for the viscosity. Unless specified otherwise, it is set as

A = max
Ω

∣∣∣∣E − 1
|Ω|

∫
Ω
EdΩ

∣∣∣∣ .
The final viscosity is obtained as

µEV = min {µE , µmax} (2.34)

and smoothing the result.
As observed in [19], the (entropy) viscosity µE scales as µE ∼ h2(∆t2+hm). Indeed, the Crank-Nicolson
scheme is a second-order algorithm, while the accuracy of the divergence of the entropy flux depends on
the discretization degree. The first factor h2 comes from definition (2.32). As shown in Chapter 5, this
might limit the accuracy of the scheme to fourth order, which is anyway better compared to the DB
scheme. This issue could be overcome by using a higher order discretization for the above-mentioned
time derivative.
The last remark is devoted to the choice of the entropy pair. For scalar cases we select

E = u2

2 , Fi =
∫
f ′i(v)E′(v)dv (i = 1, . . . , d),

while for Euler system we consider

E = − ρ

γ − 1 log
(
p

ργ

)
, F = vE.

19

Chapter 3

Artificial neural networks

3.1 Background

In this Chapter we present the building blocks of our technique. We start by emphasizing the key
features that have to be taken into account and the motivation behind the use of artificial neural
networks. More precisely we aim to:

• estimate a relation exhibiting high degrees of complexity and nonlinearity. We want to approximate
the (optimal) local viscosity µ, whose exact dependence on local features cannot be explicitly
written. In particular, there is no practical rule to estimate the optimal amount of viscosity, i.e.
there is no clear one-to-one relation between the solution and the dissipation value.

• find a non-parametric model. One of our main goals is to eliminate the dependence on the
empirical parameters whose tuning might represent a bottleneck in the application of the standard
viscosity models. By definition, neural networks involve parameters, but they are tuned a priori
and their value is not changed when applying the technique.

• have a computationally simple and fast model. Since the estimation of the artificial viscosity has
to be carried out at least once per time step, it is desirable to develop a technique that is both
accurate and computationally inexpensive.

• construct a universal method. In principle, we want to build a ‘black box’ which is problem-
independent, aiming to apply the same model for different conservation laws.

The artificial neural networks are able to fulfil most of these requirements, by shifting the complexity
(and the computational cost) to an offline stage, which is done only once. On the contrary, the online
phase mainly consists of low-cost matrix-vector multiplications.

3.1.1 The model

Artificial neural networks (ANNs, or more simply NNs) are computational models which are able
to process information, learning from observational data. The name is inspired by their biological
counterpart, usually called biological neural networks [35]. Naively, the latter are connected sets
of a very large number of cells, called biological neurons, transmitting information by continuous
communication. A graphical representation of such cells is provided in Figure 3.1. Each neuron receives
signals from other cells by means of the dendrites. Such special connections among neurons are named
synapses. All the inputs are collected in a single signal, where each connection contributes differently
to the aggregate. In other words, the neural cell receives strong or weak stimuli. Thus, the synapse can
be interpreted as a weighted connection among neurons. Once the accumulated signal exceeds a certain
threshold, the neuron sends a pulse from its nucleus via the axon to other receptors. By continuously
repeating the same process, impulses are transmitted throughout the body. A neuron gains knowledge
by a training process, in which the synaptic connections are created or modified according to the
different environmental situations they are subjected to.
The structure of an artificial network is built mimicking the biological one and it can be described by
the triplet (N ,V,W). Here, N denotes the set of all artificial neurons in the network, while V is the
set of all directed connections (i, j), i, j ∈ N . Throughout this work, i denotes the sending neuron,

20 Chapter 3. Artificial neural networks

Figure 3.1: A simplified model of the biological neuron. The image has been taken
from [35].

while j is the receiving neuron. Finally, since the connections are weighted, the set W is the collection
of the weights, denoted by wi,j .
The way information is processed in a single artificial neuron is rather simple, coherently with our
requirements for an artificial viscosity model. To describe it, let us focus on a single unit, denoted
by the subscript j. Suppose that it receives k signals xs1 , . . . , xsk from a set {s1, . . . , sk} of sending
neurons. They are processed by means of a propagation function, which transforms a vectorial input
into a scalar one, usually named net(work) input, performing a combination with the corresponding
weights. Since it is common to adopt a weighted linear combination of the incoming signals, in this
work we adhere to this choice. Mathematically, we may thus write

qj = fprop(xs1 , . . . , xsk , ws1,j , . . . , wsk,j) =
k∑
i=1

wsi,jxsi .

Then, the neuron transmits a single pulse, provided that the net input exceeds a certain threshold −bj ,
usually named bias. Note that the minus sign in front of the term bj is purely conventional. More
precisely, we can define an activation function such that

aj = fact(qj , bj) = fact(qj + bj),

where aj is usually named activation state. Different choices are available for fact, the most popular
being the Heaviside function or the hyperbolic tangent. We refer to Section 3.2 for a discussion on
such a topic, explaining the choices for our model. It is worth observing that fact has to be nonlinear
with respect to its input, in order to avoid the model from collapsing to a linear mapping.
Finally, the resulting output is defined as a manipulation of the activation state aj by means of an
output function. Being the standard choice the identity function, we adopt the same convention, ending
up with

yj = fout(aj) = aj .

Thus, no distinction will be made between the output and the activation state, unless explicitly required.
A graphical representation of a neuron is reported in Figure 3.2. This mechanism is repeated in (almost)
all the neurons in the net, as the output yj is processed by some receiving neurons. Within a network
there exist also two special types of units, namely the input (source) and the output neurons. The
latter behave similarly to most of the neural units, but the corresponding output yj is not processed.
Indeed, it will constitute part of the global output of the network. The former do not process any
information, and their role is to supply input signal to the network [23]. Their output yj is equal to
xj , i.e. propagation and activation functions are the identity operators.

3.1. Background 21

xs1

xs2...
xsk−1

xsk

qj aj yj

ws1,j

ws2,j

wsk−1,j

wsk,j

bj

Figure 3.2: A graphical representation of a single neuron j receiving k input signals
{xsi}

k
i=1 with output yj .

3.1.2 Network topology

The way in which neurons are arranged and connected defines the topology of the network, namely its
architecture. Several design strategies have been proposed in the literature [35, 36]. Here, we focus
on feedforward neural networks, where the connections between the nodes do not form a cycle (i.e.
no recurrence is present) and both the input and the output are fixed. Among them, perceptrons are
the most common examples, in which the neurons are grouped in layers. The first one, made of NI
source neurons, is named input layer. By definition of input neurons, data are not processed in this
first phase. It is followed by L hidden layers made of N l

H neurons (l = 1 . . . L) each, which are invisible
from the outside. The last output layer is made of NO output neurons. Each layer can be composed
of a different number of neural units, i.e. NI , N l

H , NO can differ, and their choice is actually part of
the architectural design. Clearly, the connections are always directed from one layer to the next one,
towards the output. Therefore, perceptrons can be viewed as a map from the input to the output
space, say

f : RNI → RNO , x 7→ y = f(x). (3.1)

Furthermore, they can be classified based on the number of hidden layers, or equivalently by the
trainable weight layers. Single layer perceptrons (SLPs) have no hidden layers. The connection, which
is directly from the input to the output, is made by a single layer of trainable weights. Although they
constitute a simple model, they are not suited for concrete applications, since they are only capable of
representing linearly separable data [35]. Vice versa, multilayer perceptrons (MLPs) allow multiple
hidden layers and, in a broad sense, they are a composition of SLPs. This allows the model to have
more degrees of freedom, i.e. weights and biases, compared to a simple SLP.
MLPs can be regarded as universal function approximators. Intuitively, since a SLP can classify
linearly separable sets, a MLP with one hidden layer classifies convex polygons, being a combination
of different SLPs. Arguing in a similar way, a network with at least two hidden layers can classify any
set. The following theorem characterizes more rigorously the approximation properties of such class of
networks [26, 27]:
Theorem 2 (Cybenko). The following statements hold:

• MLPs with one hidden layer and continuous and differentiable activation functions can approxi-
mate any continuous function in a compact domain.

• MLPs with two hidden layers and continuous and differentiable activation functions can approxi-
mate any continuous function.

The main drawback of such a theorem lies in the fact that it does not provide any information on how
many neurons should the network be made of. Thus, for practical applications, it is common to employ
more than two layers. Estimating the number of hidden layers and neurons is an application-dependent

22 Chapter 3. Artificial neural networks

task, which is usually performed using a bottom-up approach.
A pictorial representation of a MLP with NI = 2 input neurons, L = 2 hidden layers made of
N1
H = N2

H = 5 neurons each, and an output layer with NO = 3 neurons is provided in Figure 3.3.

x0

x1

y0

y1

y2

Hidden
layer 1

Hidden
layer 2

Input
layer

Output
layer

Figure 3.3: A graphical representation of a MLP with NI = 2 input neurons, L = 2
hidden layers made of N1

H = N2
H = 5 neurons each and an output layer with NO = 3

neurons.

3.1.3 Training the network

In a nutshell, the result of the network design is the mapping (3.1) from the input to the output signal,
both identified as vectors. Such function depends on some parameters, named weights and biases,
corresponding to the biological synaptic connection weights and thresholds. The training procedure is
an algorithm, usually iterative, which tunes the network parameters in order to accurately predict
responses within a given dataset, usually called training set. We denote it by T, referring to the number
of training samples as NT = |T|. Its generation is far from being an easy task, since no theoretical
results are known in order to estimate its size. Practically, on one hand it has to be sufficiently rich in
order to capture the variability of the physical phenomenon of interest. In other words, the input space
has to be properly sampled, possibly guaranteeing the samples to be independent or unbiased. On the
other hand, collecting data might be rather expensive. Moreover, the number of training samples has
a large influence on the training time, which can turn out to be too large for concrete applications.
Several training strategies are known, depending on the available data. For regression problems, i.e.
when y varies continuously within its space, a good paradigm is named supervised learning. For this
strategy, the exact output for all the input samples is known. Thus, T is made of both input and
output data. Thus, in this framework the algorithm is designed in order to minimize the prediction
error, i.e. the error between the response of the network and the exact output.
Assume that the exact input-ouput relation is described as

ŷ = f̂(x),

while the network maps the input values to the output ones as in equation (3.1), namely

y = f(x) = f(x; (w, b)),

where in the second equality we emphasized the dependence on the trainable weights and biases. Thus,
the training set is defined as

T =
{

(xi, ŷi) : ŷi = f̂(xi)
}NT

i=1

Consider now a suitable measure of the error made when approximating ŷ with y, denoted by
C = C(y, ŷ). Typical choices of C are p-norms for regression problems or cross-entropy functions for
classification tasks [36].

3.2. A neural network to predict artificial viscosity 23

Taking into account all the samples in the training set, we define the cost function as an average of the
single errors, namely as

Ctot = 1
NT

NT∑
i=1
C(yi, ŷi) = 1

NT

NT∑
i=1
C(f(xi; (w, b)), f̂(xi)).

The goal is to solve an (unconstrained) optimization problem, aiming to find the parameters giving
the minimum cost

(w∗, b∗) = arg min
(w,b)

Ctot.

This minimization problem is usually solved via iterative algorithms, among which the (stochastic)
gradient descent and its variants are quite popular ones. According to this rule, the weights are
updated towards the steepest descent direction as

wn+1
i,j = wni,j + ∆wi,j , ∆wi,j = −η ∂Ctot

∂wi,j
, (3.2)

where η is a parameter known as learning rate. It has to be tuned in order to be small enough to
guarantee stability and not to miss possible minimum points, and high enough not to drastically slow
down the training time. We also note that if Ctot has vanishing gradients, the update ∆wi,j can be
minimal, leading to slow convergence. An update rule, equivalent to (3.2), holds also for the biases.
Linearity of the derivative operators implies that, in order to to estimate the gradient for the whole
dataset, one has to compute the gradients associated with a single sample, combining them together.
For large training sets, repeating this procedure at each iteration has a high computational cost [36].
Therefore, it is a good practice to randomly shuffle T and divide it in mini-batches at each iteration.
Then, each batch is used to perform one iteration of the optimization algorithm. Note that if the
size of such batches is (much) smaller than NT, we might not estimate perfectly the steepest descent
direction, but computing the total gradient is not time-consuming. When the training set is exhausted,
the dataset is reshuffled and the process is repeated. One pass over all the training samples is called
an epoch. The overall procedure is usually stopped after a certain number of epochs and/or by means
of a validation set, generated independently of the training set. We go back to these criteria in the
following Section.

3.2 A neural network to predict artificial viscosity

In the previous Section we provided a general overview of the concept of neural networks. Now we
adapt it to the artificial viscosity estimation problem, considering multilayer perceptrons only. First,
we focus on one-dimensional scalar problems, leaving extensions to both systems of conservation laws
and a multidimensional framework to the dedicated Sections. In this context, the prototype problem
is represented by the Burgers equation. It constitutes a good test case, due to nonlinearities in the
flux function. Both rarefaction and shock waves may develop, even with a smooth initial condition.
In order to enhance the capabilities of the neural network in capturing contact waves, as well as to
estimate the accuracy of the scheme, the linear advection problem is also considered. In the spirit of
most of the standard artificial viscosity models we described in Section 2.2, our strategy is to predict a
local (constant) artificial viscosity and perform a global smoothing afterwards.

3.2.1 A family of neural networks

We build a family of neural networks, i.e. we design one network for each discretization degree m.
This approach exploits all the available degrees of freedom in a mesh element. Thus, all the solution
features are taken into account by the model. Note that this choice is different from the one made
in, e.g., [11], where a single network is constructed. However, dealing with regression problems, we
believe that more precision and variability for both input and output are required as compared to a
classification task. The drawback of the adopted technique lies in the higher offline cost, since different
networks have to be built. However, the training process is performed only once.

24 Chapter 3. Artificial neural networks

In this work we focus on the cases m ∈ {1, . . . , 4}, but extending the technique to higher orders is
quite straightforward.

3.2.2 Choice of input and output

The primary idea is to estimate the viscosity values using the nodal values of a particular variable.
For instance, dealing with (one-dimensional) scalar problems a natural choice is given by the solution
values at the quadrature nodes. However, the following problem arises. Suppose that we provide as
input (resp. output) the nodal values of the numerical solution (resp. the artificial viscosity in the
corresponding nodes) for different mesh sizes h. Running some tests, we observe that the dependence
on h is lost, in the sense that the network is not capable of capturing the variability in the mesh
resolution. Indeed, for a given length h we have many different solution values, so that the network
grasps the variability of the latter, leaving only a weak dependence on h. Since one of the major goals
of neural networks is their ability to generalize their applicability range to samples not included in the
training set, this naive approach does not work. A similar issue is present even if h is added to the
input data, since no variability in the mesh resolution is captured.
However, we keep the idea of using as input and output some nodal values, but a scaling for all the
values has to be performed, motivated by two arguments. Firstly, we state the following result, which
is related to scaling arguments.
Proposition 1. The MDH, MDA, EV models predict an artificial viscosity µ which scales as

µ ∼ h max |f ′(u)|. (3.3)

Proof. Let us start by the MDH model. Then, µmax clearly satisfies (3.3). By definition, the model
adds a dissipation proportional to µmax, with the exact amount depending on the estimated highest
modal decay. Therefore, the scaling argument holds.
Similarly, the result is true even for the MDA model. Indeed, it predicts a viscosity which scales again
as µmax. The only difference lies in the way the exact amount is estimated, since this model predicts
it according to an averaged decay rate.
Concerning the EV model, we observe that the normalization factor A scales as the entropy E. This is
expected, due to physical dimensions arguments. Moreover, the entropy flux scales as F ∼ Ef ′(u).
Therefore, recalling equations (2.33a) and (2.33b) we find that

R ∼ 1
T

= f ′(u)
h

, H ∼ f ′(u)
h

,

according to the stability condition (2.18). Therefore, both µE (equation (2.32)) and µEV (equation
(2.34)) satisfy the scaling property.

We remark that the DB model does not satisfy the previous result, unless Burgers equation is considered.
Indeed, µβ scales linearly with the solution, which is consistent with equation (3.3) if and only if
f ′(u) = u. Thus, we do not rely on this model when constructing the training set. However, as we
noted in Section 2.2, the DB model limits the solution accuracy to a second order. In other words, for
scalar problems the DB model is never the best one, since it is usually more dissipative compared to
the others. Therefore, ignoring it in the construction of the required datasets is not an issue.
Secondly, we make a comment related to neural networks and optimization algorithms. It is common
practice to provide the input values in a standardized range. If this is not the case, large and small
values can have significantly different impacts on the results. Moreover, the optimization algorithms
converge faster if all the input data lie within the same range. As an example, consider the gradient
descent procedure. Dealing with different scales, the range of the step sizes ∆wi,j in equation (3.2)
might be very wide, making the algorithm slower and/or forcing a low learning rate in order to obtain
convergence. We can interpret the scaling of the samples as a way to reduce the curvature of the error
surface, forcing the gradient to point towards the optimal direction [37]. The standardization process is
usually a problem-dependent task. However, in our framework a consistent way is to scale any sample
with its maximum absolute value, resulting in a normalized input vector lying in [−1, 1].
These observations motivate our strategy, which is described in the following. Consider two variables

3.2. A neural network to predict artificial viscosity 25

U1, U2, or better their pointwise values. Then, the scaled version of U1 is provided as input to the
network, which returns a pointwise estimation of the non-dimensional scaled viscosity µ0 := µ

hmax |U2| .
In principle, the models we use to construct the dataset provide a constant viscosity value in each cell,
thus one could also prescribe a single constant output, instead of the pointwise values. However, to
make it more general, we prefer to adopt the latter choice. When one of the standard models returns a
constant dissipation coefficient, we assume µ to be equal to such constant in all the nodes. For a given
simulation, the target output is the viscosity predicted by the best model, chosen according to both
qualitative and quantitative criteria, as the estimation of the amplitude of the residual oscillations (see
Subsection 3.2.7). Note that the values are collected before the global smoothing is carried out. Then,
a double inverse scaling, i.e. a multiplication by h and max |U2| is applied to get the dimensional
dissipation value in the corresponding nodes. A pictorial representation is provided in Figure 3.4.
Therefore, the final outcome is a pointwise viscosity value. In principle sub-cell resolution is already

U1
U1

max |U1|
µ

h max |U2| µScale Predict
NN

Scale back
×2

Figure 3.4: A graphical representation of the strategy used to build the network.

partly embedded, since there is no guarantee that the all the output neurons return the same value.
However, in all the cases we considered, the variability in output nodal values is very low, resulting in a
constant viscosity, up to a small tolerance. Thus, the C0 smoothing is performed, using as elementwise
value for µ the maximum among the nodal values within a given cell. A pictorial representation is
provided in Figure 3.5.

Dk−1 Dk Dk+1

Figure 3.5: A graphical representation of the smoothed viscosity profile using P = 1
and m = 2 in a one-dimensional framework using the ANN. The green dots denote
the pointwise values obtained with the network. The blue lines denote the piecewise
constant values, obtained as the maximum value in each cell. The (continuous) red

line represents the final profile, after the smoothing process.

A key step is the choice of the variables U1 and U2. We consider three different strategies, which are
also reported in Table 3.1, where advantages and disadvantages are highlighted.

1. U1 = u, U2 = u. This is the easiest and the most naive approach. The advantage is that, beyond
its simplicity, both input and output are scaled by the same quantity. The main drawback is the
inconsistency with Proposition (1), since we would need to scale by max |f ′(u)|. However, for
parabolic flux functions, and particularly for Burgers equation, the argument holds.

2. U1 = f ′(u), U2 = f ′(u). This version is coherent with Proposition (1) and scales input and
output by the same quantity. We observed that in most of the cases, the numerical solution is
too smoothed compared to other strategies. This holds true in particular for (two-dimensional)
systems. Another issue is present when f ′(u) is constant, i.e. with the linear advection problem.
For a constant transport field β, the input to the network would be always the same, making the
model ignorant of the solution features.

3. U1 = u, U2 = f ′(u). Here, we are able to exploit the potential of the previous strategies, i.e. to
extract solution features and to satisfy the scaling arguments. The fact that input and output
are scaled by different quantities does not constitute an issue. Indeed, there are no results stating

26 Chapter 3. Artificial neural networks

that the same scaling has to be applied. For instance, in [11] the authors force the input to lie
in [−1, 1], while no scaling is performed at the output. As shown in Chapter 5, this approach
appears to be the best among the proposed ones.

U1 U2 Pros Cons

1st str. u u
captures u-variability, same I/O

scaling Prop. 1 does not hold

2nd str. f ′(u) f ′(u) same I/O scaling, ok with Prop.
1 too dissipative, linear advection

3rd str. u f ′(u) captures u-variability, ok with
Prop. 1 -

Table 3.1: Table which summarizes the different choices for the variables U1 and U2.

Coherently with the notation adopted in Figure 3.3, from here on we denote with x = (x0, . . . , xm) and
y = (y0, . . . , ym) the input and the output of the network. In all the scenarios we have NI = NO = m+1,
since the whole local cell information is provided.

3.2.3 Cost function

Dealing with a regression problem, natural choices for C are p-norms, among which p = 1, 2 are the
most common ones. We consider the latter.
Moreover, we add a regularization contribution to the cost function [38], to avoid overfitting the
training set. Indeed, it may happen that the model performs brilliantly on the training set but fails
to generalize well to other data. Such regularization term is usually expressed as a penalty for the
weights, while its practical effect is to create oscillations in the error decay as the algorithm proceeds.
Thus, the final form of the cost function is:

Ctot = Cerr+Creg = 1
2NT

NT∑
i=1
‖yi − ŷi‖2l2 + β

2 ‖w‖
2
l2 = 1

2NT

NT∑
i=1

NO−1∑
j=0

(yij − ŷij)2 + β

2
∑

(i,j)∈V
w2
i,j , (3.4)

where β ≥ 0 is a constant parameter which has to be properly tuned.

3.2.4 Activation functions

In order to choose proper activation functions, two aspects have to be recalled. Firstly, iterative
optimization algorithms might suffer when gradients vanish. In other words, the update (3.2) could be
very small when the corresponding gradients have low magnitude. By the chain rule, it can be observed
that the update of the parameters involves the gradients of the cost and the activation functions [35].
Secondly, nonlinear activation functions are mandatory to ensure that the network does not collapse to
a linear input-output mapping.
For MLPs, it is common practice to choose the same activation function for all the neurons belonging
to the same layer. In this work we adopt this strategy, choosing two types of activation functions. The
first is applied to all the hidden layers, while the second relates to the output neurons only. Note that
the input neurons are source neurons, therefore no activation function has to be specified.
Concerning the hidden layers, we use the leaky rectified linear unit (leaky ReLU) function [39], defined
as

fLReLU (t) = max {x, 0} − αmax {−x, 0} =
{
x if x ≥ 0,
αx if x < 0,

where α is a (small) nonnegative coefficient. If α = 0 the function is simply called rectified linear unit
(ReLU). Its main advantage is the fast computation of its derivative, which is always nonzero. This
avoids the problem of vanishing gradients and dying neurons [11, 39], which are critical issues when
using, e.g. logistic function, hyperbolic tangent or ReLU functions.
The leaky ReLU is not a viable option for the output layer. Indeed, the output of the network is by
definition proportional to the amount of dissipation. Thus, it has to be a nonnegative value. Even

3.2. A neural network to predict artificial viscosity 27

though the training set does not contain negative values, we have no guarantee that for any input data
the network predicts a nonnegative coefficient, unless we explicitly enforce it. This goal is achieved
by adopting a nonnegative activation function for the output layer. A possible strategy would be the
ReLU function, but we experienced the dying neuron problem. Consequently, the predicted dissipation
value was very low, as verified by some numerical tests. A better option is the softplus (SP) function
[40], defined as

fSP (t) = log(1 + ex),

which can be interpreted as a smooth positive approximation of the ReLU function. Figure 3.6 shows
a graphical representation of the activation functions. Finally, we refer to, e.g., [41] for a broader
discussion on their choice. To sum up, the activation functions we adopted are the leaky ReLU

x

y

(a) Leaky ReLU function

x

y

(b) Softplus function

Figure 3.6: Graphical representation of the activation functions used in this work.
The blue line represents the activation function itself, while the red one corresponds

to the ReLU function, which the both the LReLU and the SP approximate.

(α = 0.001) and the softplus for the hidden and output layers respectively.

3.2.5 Hyperparameters

The so-called hyperparameters are parameters which define higher level concepts about the model
such as complexity or capacity to learn [42]. Practically, they affect both the structure of the network
and the training process. They differ from the network parameters, i.e. weights and biases, since
hyperparameters are fixed a priori and cannot be learned via the dataset. Their optimal value is
problem-specific, thus they have to be properly tuned before the training process. Here, we focus on
the design of the hidden layers and the value of the regularization parameter β in equation (3.4).
Based on Theorem 2, it is good practice to start with two hidden layers and increase their number as
long as good estimated values are obtained. We recall that in this work both the input and the output
layers are made of m + 1 neurons, where m varies between 1 and 4. However, we can assume that
the number of hidden layers and the neurons therein is independent of m. Thus, both values can be
treated as constants for all the discretization degrees. There is no optimal rule for the choice of the
hyperparameters and, in a broad sense, our only practical criterion is provided by the accuracy of the
numerical simulations obtained with the ANN-based viscosity estimator. Specifically, we choose L = 5
hidden layers made of N l

H = 10 (l = 1, . . . , L) neurons each. Again, there is no theoretical motivation
behind such choice, but we observe that m+1 ≤ N l

H , i.e. the number of hidden neurons in each layer is
always greater than the input and output size. This guarantees that the input information is processed
by a large enough number of neurons, independent of the discretization degree we consider. At the
same time, we believe that N l

H = 10 is a value which is not too large to slow down both the training
time and the computational cost. In general, we having too many hidden neurons does not necessarily
improve the efficiency of the network. We have no guarantee that the same strategy continues to hold
when higher discretization degrees are considered, even though we believe that no issues should arise
for m . 7.

28 Chapter 3. Artificial neural networks

Finally, a choice for the regularization parameter β has to be made. Recalling the definition of the cost
function (3.4) an evident trade-off is present. If β is too large, in order to minimize Ctot the algorithm
will force the weights to be close to zero, ending up with incorrect estimations, i.e. underfitting. On
the other hand, if β is too small, not enough regularization is added and overfitting might still be
present. We observe that the range for Cerr is similar to the values of c2max appearing in equation
(2.25). Typical order of magnitudes are O1 = 10−2. The total number of weights is of order 103, so
that Creg has order (at most equal to) O2 = β · 103. Since we do not want the regularization term to
dominate over the error term we impose

O2 ≤ O1 =⇒ β ≤ 10−2−3 = 10−5.

Finally, for the whole family of networks we choose β = 10−5.

3.2.6 Optimization algorithm

A key role is played by the optimization algorithm. Good minimization schemes are based on the
gradient descent method, with random data shuffling. Improved versions exploit, e.g., second order
derivatives. For our purposes we rely on the Adam optimizer proposed in [43], a first-order gradient-
based optimization algorithm based on adaptive estimates of lower-order moments. A suitable value for
the learning rate η has to be picked. In this work, we adopt the value of η = 10−3, as proposed in [43].
Weights and biases are randomly initialized, selecting their values according to a normal distribution
with zero mean and unit variance. This is mandatory in order to break possible symmetries. For
instance, a zero initialization for all the variables might result in no change for the weights.
Vice versa, the stopping criterion is based on the need to both guarantee convergence and avoid
overfitting. Thus, it is built by controlling the:

1. Maximum number of epochs
We set up a maximum number of epochs, denoted by Nepochs, like in every standard iterative
algorithm. Clearly, if the batch size is fixed, this is equivalent to set a maximum number of
iteration of the optimization scheme. Usually, Nepochs lies between 1000 and 2000.

2. Validation error
Similarly to the training set, we create a validation set V, independent from the former, but
following the same philosophy. After each epoch, we compute the cost function using the
validation data, defined as in (3.4), after replacing the samples in the training with the ones from
the validation set. Then, we compare it with respect to its value at the previous epoch. If it
increases, it is an indicator that the network is losing its generalization properties. However, the
error decay is very oscillatory, thus we decide to allow the validation error to increase, stopping
the algorithm only when this phenomenon emerges for R = 10 consecutive times. Usually, the
(smoothed) behavior of the training and validation errors are as in Figure 3.7. We observe
that overfitting is present for a large number of iterations, and an early stopping criterion is
implemented.

Iter

Error

Train

Validation

Stop

Figure 3.7: Typical behavior for the train and validation errors with respect to the
number of iterations.

3.2. A neural network to predict artificial viscosity 29

Practically, for most of the networks we trained, the algorithm stopped because the maximum number
of epochs has been reached.

3.2.7 Training and validation sets

A key role is played by the construction of the training and the validation sets. In particular, we need
to guarantee that the network can capture many different solution features, keeping good generalization
properties. The procedure is summed up as follows:

1. Select a specific problem which has to be solved, by assigning the simulation setup. In particular,
both the boundary value problem and the discretization parameters have to be specified. They
include, for instance, the convective flux, the initial condition and the final simulation time, as
well as the grid spacing and the discretization degree.

2. At this point, an optimization with respect to the models and parameters has to be done. Firstly,
the models are analyzed separately, by selecting the parameters which give the best solution at
the final time. In a second phase we compare the best solution obtained by each model, ending
up with an optimal viscosity model with the best parameters.
The optimization is performed according to the following criteria:

• Overshoots and undershoots with respect to a reference solution have to be smoothed. Note
that small oscillations are still acceptable, since none of the models guarantees the solution
to be non oscillatory. The comparison is firstly done visually, and it is benchmarked by
numerically evaluating the amplitude of such oscillations.

• The solution must not be over dissipated, if compared to the reference solution. In most of
the cases, this is evaluated visually.

Note that the reference solution is either the exact analytical one (if available), a pseudo-analytical
one (using the method of the characteristics by numerically solving nonlinear equations) or a
numerical solution computed with one of the viscosity models using high order polynomials and a
very fine mesh. In this last scenario, the role played by the parameters is marginal. Since we are
approaching the continuous limit, the amount of dissipation is very small and a slight variation
of the parameters does not significantly alter the solution. Moreover, in most of the cases the
training samples are chosen from rather simple problems and initial conditions, so that the first
and the second options are used.

3. Once the optimal model is picked, we collect the required data from it. In particular, we track
the solution values u, the flux function values f(u) and the corresponding derivative f ′(u), the
grid spacing h and the artificial viscosity values µ for all the time steps. Here, we assume that the
optimal model and parameters do not vary in time. This makes the samples generation easier.

4. Repeat steps from 1 to 3 for different grid spacings h and initial conditions u0 in order to teach
the network several possible configurations and solution features. For instance, we need to
capture smooth solutions, discontinuities, points of non-differentiability and so on. In particular,
for a fixed initial condition we consider different mesh sizes in order to take into account the
spatial variability. For one-dimensional problems, we consider at least three different values of h.
Then, the initial condition is varied and the same process is carried out.

5. Repeat step 4 for different problems, i.e. conservation laws. This is needed in order to guarantee
that different wave types are captured by the network. In particular, we need it to be able to
keep track of, and possibly distinguish between, rarefaction, shock, and contact waves. In order
to capture rarefactions and shocks, we rely on Burgers equation. On the other hand, we use the
linear advection problem as prototype for linear waves, i.e. contact discontinuities.

6. Repeat step 5 for different discretization degrees m, in order to build the required datasets for
all the networks we need to train.

After this procedure, we end up with a different dataset for each degree m. However, a post-processing
phase is required in order to construct the final training and validation sets. This procedure, carried
out separately for each m, can be summed up in three further steps:

30 Chapter 3. Artificial neural networks

• First, we need to create a balanced dataset. Indeed, suppose that we run two simulations using
two different element sizes, say h1 = h and h2 = h/2. Keeping all the data from both scenarios,
a rather strong bias towards the second simulation is present. Suppose that the sizes of the
above-mentioned dataset are N1 and N2 respectively. Each time step, the second simulation
provides twice the number of samples due to the larger number of mesh elements. Moreover, the
time step is directly proportional to the grid size, so that in the second scenario we approximately
perform twice the number of time iterations with respect to the first one. Consequently, we have
N2 ' 4N1. This behavior is clearly undesirable, since the contributions from the fine meshes
dominate.
Thus, to solve this issue we define hmin as the size of the coarsest mesh we use for a certain
initial condition. Then, we define a shrinking factor as

S = S(h) = round
(
hmin
h

)2
,

and we ignore the solutions at time steps which are not integer multiples of S.
Moreover, a further shrinkage is performed. Due to the different range of the solutions, the time
step my vary by orders of magnitude. Indeed, suppose that we run two simulations with Burgers
equation, whose initial condition ranges lie in U1 = [0, 1] and U2 = [0, 10] respectively. Then,
∆t1
∆t2 '

U2
U1
' 10 and the dataset will be biased towards the second simulation. Moreover, due to

different final times, the number of temporal iterations could be different, too. Thus, for each
initial condition we might need to remove some data to guarantee a good balancing. This is
performed by randomly shuffling the data and deleting a certain percentage of them. In general
this step might not be strictly necessary, but it helps in order to improve balancing.
As a side remark, we note that the first shrinkage is performed among the solutions having the
same initial condition and different mesh sizes. Vice versa, the second one involves an overall
inspection of the collected data. A more concrete example is provided in the following Subsection,
to which we refer for further details.

• Then, we compute the scaled variables used for both input and output.

• Finally, we check for data consistency. If two (scaled) samples (x1,y1), (x2,y2) have the same
input, then the output must be the same. That is, x1 = x2 implies y1 = y2. If this is not the
case, we claim the dataset to be inconsistent, and the training algorithm may fail to converge
properly. This issue is simply solved by setting the corresponding output to be the average along
the data having the same input. That is, if y1 6= y2 then we set y1,2 ← y1+y2

2 . We remark
that this check has to be performed with the scaled variables, i.e. the ones that are concretely
used for training. Moreover, the presence of different repeated inputs is not an issue. It can
be even seen as a desirable feature, since it forces the network to learn from these data. For
instance, a reasonable percentage of the data is given by constant samples, say x = (1, . . . , 1)T ,
characterized by a corresponding zero viscosity coefficient. Having many constant inputs, we
force the network to learn this behavior.

Ultimately, the training and validation sets generated. For each m, we first randomly shuffle all the
post-processed samples. Then, we assign the first 70% of the data to the training and the remaining
30% to the validation set.

3.2.8 An example

We provide a detailed example on the whole dataset generation procedure in the case m = 3. Obviously,
the strategy is similar for the other degrees.
The conservation laws we employed are Burgers and linear advection only. For simplicity, here we focus
on the former. We select different initial conditions u0(x) and final simulation times T . Then, for each
case we consider different values of h, by varying the number of elements. We collect the samples from
the best model and we perform the post-processing discussed in the previous Subsection. In Table 3.2
we list the simulations we consider, highlighting the number of training samples we obtain from each
scenario before the post-processing phase. The definitions of the corresponding initial conditions is
provided later in this Subsection.

3.2. A neural network to predict artificial viscosity 31

Test nb. T h Best model Nb. samples
1 0.15 2/40 MDH: cA = 2.5, cκ = 0.4, cmax = 0.6 6560

2/80 MDH: cA = 2.5, cκ = 0.5, cmax = 0.6 26240
2/120 MDH: cA = 2.4, cκ = 0.4, cmax = 0.5 58920
2/200 MDH: cA = 2.2, cκ = 0.4, cmax = 0.5 163400

2 0.08 1/40 EV: cE = 1.5, cmax = 0.5 4560
1/80 EV: cE = 1.2, cmax = 0.4 18480
1/120 EV: cE = 1.0, cmax = 0.3 41760

3 0.07 2/40 EV: cE = 1.8, cmax = 0.5 19360
2/80 EV: cE = 1.4, cmax = 0.5 78720
2/120 EV: cE = 1.5, cmax = 0.4 178080
2/200 EV: cE = 1.0, cmax = 0.6 497000

4 0.07 1/40 EV: cE = 2.0, cmax = 1.0 40600
1/80 EV: cE = 1.8, cmax = 0.8 162400
1/120 EV: cE = 1.6, cmax = 0.8 365400

5 (multiple) 0.03 1/40 MDH: cA = 2.5, cκ = 0.4, cmax = 0.8 30600
1/80 MDH: cA = 2.0, cκ = 0.4, cmax = 0.6 122160
1/120 MDH: cA = 2.0, cκ = 0.4, cmax = 0.4 274680

6 0.3 1/40 EV: cE = 1.8, cmax = 0.5 17280
1/80 EV: cE = 1.6, cmax = 0.6 69200
1/120 EV: cE = 1.6, cmax = 0.4 155880

7 0.08 1/40 MDH: cA = 2.0, cκ = 0.4, cmax = 0.6 4640
1/80 MDH: cA = 2.2, cκ = 0.4, cmax = 0.5 18560
1/120 MDH: cA = 2.0, cκ = 0.4, cmax = 0.4 41760

Table 3.2: A summary on how to generate the datasets for Burgers equation.

Some comments have to be made. Firstly, we observe that in the test cases we considered the best
model is always either the MDH or the EV. The DB model is always too dissipative (second order
accuracy), and does not satisfy the scaling arguments (see Proposition 1). At the same time, the MDH
model is better than its improved version (the MDA model) since the latter is specifically designed for
high order schemes. We believe that m = 3 is not high enough for the the MDA to show its potential.
Secondly, we note that the parameter values are not very sensitive to a change in the number of mesh
elements. However, it is important to capture small variations, in order to have a better precision
on the corresponding viscosity values which will constitute part of the training set. Vice versa, the
parameters show important variations when different initial conditions and/or discretization degrees
are considered. Thirdly, for most of the cases the final simulation times are generally small. This
choice is mainly dictated by practical reasons, since dealing with large times would result in a very
large dataset and higher training costs.
We provide now the analytical expression and a graphical representation of the test cases we consid-
ered.

• Test case nb. 1. It combines a rect function, a straight line and a quadrant of a circle.

u0(x) =

1.5 if 0.1 ≤ x < 0.25,
x if 0.5 ≤ x < 1,
0.5 +

√
1
4 − (x− 1)2 if 1 ≤ x < 1.5,

0.5 otherwise in [0, 2].

0.5 1 1.5 2

0.5

1

1.5

x

y

Figure 3.8: I.c. for test case nb 1.

32 Chapter 3. Artificial neural networks

• Test case nb. 2. It is simply a gaussian function with a reasonably low variance. It is required
to have negative solution values. Note that initially the solution is continuous, while a shock
appears after t ' 0.05.

u0(x) =
{
−e−400(x−0.5)2 if 0.3 ≤ x < 0.7,
0 otherwise in [0, 1].

0.25 0.5 0.75 1

−1

−0.75

−0.5

−0.25

x

y

Figure 3.9: I.c. for test case nb 2.

• Test case nb. 3. This hat function is needed to teach the network with data arising from points
of non-differentiability.

u0(x) =
{

20 (0.5− |x− 0.5|) if 0 ≤ x < 1,
0 otherwise in [0, 2].

0.5 1 1.5 2

2.5

5

7.5

10

x

y

Figure 3.10: I.c. for test case nb
3.

• Test case nb. 4. It is a combination of step functions which eventually collapse in a single shock
[11].

u0(x) =

10 if 0 ≤ x < 0.2,
6 if 0.2 ≤ x < 0.4,
0 if 0.4 ≤ x < 0.6,
−4 if 0.6 ≤ x < 1.0. 0.25 0.5 0.75 1

10

6

−4

x

y

Figure 3.11: I.c. for test case nb
4.

• Test case nb. 5. It is a rect function, which develops both a rarefaction and a shock wave. We
considered three different set of parameters (α, β) which define the maximum and the minimum
of the function respectively.

3.2. A neural network to predict artificial viscosity 33

u0(x) =
{
α if 0.25 ≤ x < 0.75,
β otherwise in [0, 1].

0.25 0.5 0.75 1

1

2

3

x

y

Figure 3.12: I.c. for test case nb
5.

• Test case nb. 6. It is one period of a sine wave. A shock develops around t ' 0.15.

u0(x) = sin(2πx)1[0,1](x) 0.25 0.5 0.75 1

−1

−0.5

0.5

1

x

y

Figure 3.13: I.c. for test case nb
6.

• Test case nb. 7. Similarly, it is a combination of sine waves having different frequencies. In
order to avoid shocks forming at the domain boundary, we assume that the initial condition is
compactly supported, with the support lying well within the computational domain.

u0(x) =

sin(4πx) if 0.25 ≤ x < 0.5,
sin(8πx) if 0.5 ≤ x < 0.75,
0 otherwise in [0, 1].

0.25 0.5 0.75 1

−1

−0.5

0.5

1

x

y

Figure 3.14: I.c. for test case nb
7.

The final phase is related to the post-processing of the data, which mainly consists in the balancing of
the dataset. The first step is responsible of eliminating data collected from finer meshes. Then, we
remove samples from the simulations having larger solution ranges or final times. Table 3.3 sums up
the procedure. Finally, note that the input-output consistency is already guaranteed. We believe that
it is related to floating point arithmetic.

A similar procedure is carried out for the linear advection equation, where both smooth (e.g. sine waves)
and discontinuous initial conditions (e.g. rect functions) are used, creating the final dataset.

34 Chapter 3. Artificial neural networks

Test nb. h Nb. samples Shrink 1 Shrink 2
1 2/40 6560 6560 6560

2/80 26240 6560 6560
2/120 58920 6547 6547
2/200 163400 6536 6536

2 1/40 4560 4560 4560
1/80 18480 4620 4620
1/120 41760 4640 4640

3 2/40 19360 19360 9680
2/80 78720 19680 9840
2/120 178080 19787 9894
2/200 497000 19800 9900

4 1/40 40600 40600 10150
1/80 162400 40600 10150
1/120 365400 40600 10150

5 (multiple) 1/40 30600 30600 7650
1/80 122160 30540 7635
1/120 274680 30520 7630

6 1/40 17280 17280 17280
1/80 69200 17300 17300
1/120 155880 17320 17320

7 1/40 4640 4640 4640
1/80 18560 4640 4640
1/120 41760 4640 4640

Table 3.3: A summary on how to post-process the data for Burgers equation.

3.3 Improved versions

In the previous Section we presented the building blocks of our new model for artificial viscosity. This
technique works quite well, at least for the test cases we analyzed, so that one could consider only this
model. However, in this Section we propose two different improvements.
The main drawback of the approach we described relates to the convergence rate for smooth problems.
We recall that the network predicts a scaled viscosity µ0, while the final value is obtained by multiplying
it with the grid spacing and a local wave speed. Here, the issue is contained in the former. Indeed, we
end up with a viscosity which scales almost linearly with h, since one can verify that the dependence
of µ0 and max |f ′(u)| on the mesh spacing is rather weak. This could represent a problem, since high
order accuracy is never obtained, even for smooth problems. We propose two different approaches to
fix it.

3.3.1 Two coupled neural networks

Consider the amount of dissipation added by the MDH model, defined in equation (2.29). Essentially,
the model adds an order-1 dissipation, unless the problem resolution and/or the solution smoothness
are high enough. In this scenario, no dissipation is added and high order accuracy is retained. Thus,
the model has an in-built regularity detector, in the sense that, provided that a certain regularity
condition is satisfied, no dissipation is injected.
In this spirit, we make use of a troubled-cell indicator. Its role is to identify the cells where the solution
loses regularity, and consequently dissipation has to be added. Ideally, such indicator has to be:

• Parameter-free. We recall that one of our goals is to obtain a non-parametric artificial viscosity
method. Thus, it makes no sense to add an indicator which depends on tunable variables.

• Computationally fast. Essentially, we do not want to create a performance bottleneck in order to
evaluate the troubled cells. Since the identification has to be done at least once per time step, it
has to be reasonably fast. As a rule of thumb, the computational time has to be comparable to
the cost required to estimate artificial viscosity.

3.3. Improved versions 35

Well-known methods are based on the minmod [8] or the minmod-type TVB [44] limiters. Despite
being popular choices, the former flags more cells than necessary, while the latter depends on a
problem-dependent parameter [45]. Therefore, both schemes are not suitable for our purposes. A good
alternative is the technique proposed in [11], where an ANN is used as troubled-cell indicator. Since it
satisfies both the above-mentioned requirements, we rely on this method.
Its application is rather simple. For a given mesh element Dk, the input of this network is defined
as:

x =
(
ūk−1, ūk, ūk+1, u

+(xkl), u−(xkr)
)T
,

where the overbar denotes the cell-average in the corresponding element. In particular, the solution
averages in the k-th element and its two neighbors have to be provided, as well as the pointwise values
at the cell boundaries for the k-th element. The output of the ANN-based indicator is:

y = (y1, y2)T ,

where both y1 and y2 lie in [0, 1]. In particular, the former is the probability of the k-th element to be
a troubled cell. Vice versa, the latter is simply y2 = 1− y1 and can be interpreted as the probability of
the element to be a good cell. Therefore, we flag the k-th element as troubled cell when

y1 ≥ 0.5. (3.5)

Practically, we first compute the artificial viscosity for all the mesh elements. Then, we set it to zero in
the cells where condition (3.5) is not met. Note that the application of the first network is done only
at the beginning of each temporal iteration. As already explained, this is motivated by performance
reasons. However, the ANN-based troubled-cell indicator is applied every time the solution vector is
updated, i.e. even in the Runge-Kutta internal loop. Indeed, we numerically verified it to be the best
technique. Good results can also be obtained by applying both networks once per time iteration. Of
course, computational efficiency turns out to be slightly affected by our choice. We refer to [11] for
further details and the numerical validation of the ANN technique.

3.3.2 A different scaling

In principle, the first strategy works well and smooth areas are correctly identified by the indicator.
However, we would like to let our ANN be able to automatically detect the regions where the solution
is smooth, without relying on an external tool. To achieve this goal, we need to find a different scaling
factor, say H, which satisfies the following property:

H =
{
O(hm+1) if u is smooth,
O(hα) otherwise,

(3.6)

for a certain α included in the interval [0, 1]. The value α = 1 is the one we obtain with the standard
artificial viscosity models, coherently with the definition of the maximum dissipation µmax (2.25).
Then, the final viscosity value is given by µ = µ0Hmax |f ′(u)|, since H replaces the linear scaling h.
A good choice, in compliance with the requirement (3.6), is provided by the solution jump. In particular,
one may choose

H̃ = max
e∈∂Dk

(|JuhKe|) = max
(
|u−h (xk−1

r)− u+
h (xkl)|, |u−h (xkr)− u+

h (xk+1
l)|

)
,

where we emphasized the fact that the jump is computed using the discrete solution uh. The requirement
(3.6) is then satisfied with α = 0. Indeed,

JuhK = uh,l − uh,r = ul +O(hq)− ur −O(hq).

For smooth solutions, q = m+ 1 and ul = ur so that the optimal accuracy is restored. On the other
hand, for discontinuous solutions, q < m+ 1 and the zero order term ul − ur dominates.
Since we would like to be compliant with (3.6) with α = 1 and with the standard models, we define
the final scaling factor as

H = min
{
C · H̃, h

}
, (3.7)

36 Chapter 3. Artificial neural networks

where C is set equal to 1 (in the correct physical units) throughout this work. Note that the choice
(3.7) does not influence the output of the ANN-based viscosity estimator. Thus, there is no need to
retrain the network using the improved scaling factor.

3.3.3 A remark

Throughout this work, we consider the above-mentioned improvements in an independent way. In
other words, we use either two ANNs keeping the standard scaling or a single ANN with the modified
scaling. We believe that the explanations of our results are clearer by keeping the improved versions
separated. At the same time, using the scaling-related improvement, we still get significant results,
even if no troubled-cell identification is carried out. However, we remark that these two approaches
can be combined. In this case, one may expect further improvements in the quality of the numerical
results. Implementing and validating this new approach represents one of the possible extensions of
this work.

3.4 Extension to systems

So far we described the strategy for one-dimensional scalar problems. Now, we extend the procedure
to systems of conservation laws and higher-dimensional problems. The former is quite straightforward,
at least from a theoretical point of view. Basically, the reasoning is rather similar to the MDH and
MDA models.
Let us start by observing that, since multiple equations are involved, one may think of adding a different
amount of dissipation in each of the equations. This approach treats each equation independently. For
instance, in the context of Euler system one may use the degrees of freedom of the density to estimate
the amount of dissipation to be added in the mass conservation equation. Similarly, one computes µ
for the momentum and energy equations using ρv and E respectively. Theoretically, one may expect it
to be the best strategy, but this is not observed in practice. In particular, some issues appear to be
present in terms of:

• Solution quality. The numerical results are not as good as expected. As a simple test case, which
is not reported here, one may consider the Sod problem for Euler equations [46]. It turns out
that the profile for density and energy is smoothed enough, while the momentum (or equivalently
the velocity) seems to be too oscillatory.

• Computational performances. This approach requires the application of the neural network for
n ·Niter times, with n denoting the number of equations. Thus, the increase in computational
cost is not negligible.

Our reasoning is coherent with [21], where the authors claim that “the shock-capturing technique
proved to be more robust and accurate if the same viscosity coefficient is used for every component of
the solution vector”. Therefore, we apply the same amount of dissipation to all the equations of the
system.
To pursue this goal, a possible idea would be to construct a separate family of networks to deal with
systems. In particular, for Euler equations, in the ideal scenario one should use density, momentum
and energy (or, similarly, density, velocity and pressure) as predictors for the artificial viscosity, i.e.
as input to the ANN. The design of such network should not be different from the scalar case. The
advantage lies in the fact that this technique grasps features from all the variables. For instance, it
would be able to correctly distinguish between shocks and contact waves, which we identify as one of
the main issues when dealing with systems. However, the main drawback is that we would end up with
a a problem-dependent network. It could not be applied to, e.g., shallow water equations and another
one should be constructed. Even though we believe that this approach gives optimal results for Euler
equations, we cannot rely on such a technique, at least in the general case. Indeed, we remind that one
of our main goals is to develop a universal black box to predict artificial dissipation.
Therefore, we mimic the idea of the MDH and MDA models, which apply the technique of scalar
equations using, in the context of Euler system, density. However, recalling the strategies identified in
Table 3.1, we note that both u and f ′(u) are present. In case of Euler equations, the latter is easily

3.5. Extension to two dimensional problems 37

replaced by the maximum absolute eigenvalue of the flux jacobian matrix, which turns out to be

|f ′(u)| = |v|+ c.

The safest choice for the former is the density, as it is done in the standard models based on modal
decay. Another viable option is the Mach number (2.23). Indeed, such variables are discontinuous
across both shocks and contact waves. Thus, the network is capturing these discontinuities, adding
dissipation in the system. We numerically observed that velocity (or pressure) might be used in place of
density. This approach provides better results when at least one shock wave is present in the problem,
but fails when a single contact wave is present. Again, since we aim to provide a general technique, we
stick to density and Mach. We believe that any variable which is discontinuous across a contact wave
could be used as predictor.
To provide an example of practical implementation, consider the third strategy presented in Table 3.1.
We give as input the scaled values of density (U1 = ρ), while the final viscosity value, to be applied to
all the equations is given by µ = µ0hmax(|v|+ c), obtained by setting U2 = |v|+ c.
The improved versions of the ANN can be easily generalized to systems. For Euler equations, the ANN
to detect the troubled cells is applied three times, using density, velocity and pressure separately. A
certain cell is flagged if condition (3.5) is met with at least one of these three variables. On the other
hand, the new version of the scaling that we denoted by H is simply obtained by using the maximum
absolute value of the jump of the predictive variable, i.e. density.

3.5 Extension to two dimensional problems

The last extension covers two-dimensional problems. Again, let us start by considering scalar equations.
Throughout this work, we consider two different strategies:

1. Rely on the one-dimensional family of networks.

2. Construct and train another family of networks, specifically designed for two-dimensional prob-
lems.

The former technique is inspired by the MDA model. In the two-dimensional scenario, the one-
dimensional framework is applied along each boundary and an element-wise constant viscosity coefficient
is estimated. Thus, our first technique consists of applying the previously described network along each
edge. This results in computing three different coefficients for each triangle. Then, the element-wise
viscosity is defined as an average of such values. Finally, the double inverse scaling and the global
smoothing are carried out.
To be more rigorous, consider the nodal values of a given variable U1 along each edge, denoted by
U1,e (e = 1, . . . , 3). Then, using the one-dimensional network, the scaled viscosity, say µ0,e (e = 1, . . . , 3),
is estimated along each edge. The scaled element-wise constant viscosity coefficient µ0 has to be a
suitable combination of the boundary values. A good definition is the following:

µ0 = wmean(µ0,e) =
3∑
e=1

we · µ0,e =
3∑
e=1

(
µ0,e∑3
i=1 µ0,i

)
µ0,e.

This is simply a weighted average of the boundary coefficients, where the weights are designed in such
a way that higher values make a greater contribution in the average. A similar option consists of
setting µ0 as the maximum of the edge coefficients. On the other hand, we have numerically observed
that taking the standard arithmetic mean seems not to add enough dissipation. The final element-wise
viscosity is then computed by scaling µ0 as

µ = µ0HΛ,

where Λ is the maximum wave speed, obtained by taking into account both the x and the y fluxes.
Again, the standard version is simply obtained by setting H = h, but the low-order accuracy issue
is still present. To restore high-order precision, only one of the two presented improvements can
be generalized to two-dimensional problems. Indeed, at the moment we write this thesis, there is
no available two-dimensional version of the ANN as troubled-cell indicator. One could rely on the
standard detectors, but the same issues of the one-dimensional case are present. Thus, we consider

38 Chapter 3. Artificial neural networks

only the new scaling H based on the jump, which can be easily extended to any spatial dimension.
Defining again

H̃ = max
e∈∂Dk

(|JuhKe|) ,

we set
H = min

{
C · H̃, h

}
,

where C is set equal to 1.
As shown in Chapter 5, for most of the considered test cases the approach based on the one-dimensional
ANN provides good results and captures most of the solution features. The main drawback of such
a technique lies in the fact that only the boundary degrees of freedom are taken into account. The
internal solution values are not used to predict the viscosity, which might represent a limitation for
high discretization degrees. As an example, consider m = 4, which is the highest degree employed
in this work. Then, the basis cardinality is N = 15 and only 12 degrees of freedom belong to the
boundary and are taken into account. The three remaining ones are ignored by the scheme. Since the
number of internal nodes is equal to

Nint = N −Nbd = (m+ 1)(m+ 2)
2 − 3m = (m− 1)(m− 2)

2 ,

the problem might become significant for higher orders. However, recalling the analysis with the MDA
model and its performances for high orders [14], we believe that this issue is rather controlled. Clearly,
this is not a concern when m = 1 or m = 2 are considered, since no internal nodes are present. A
second, less critical, issue relates to computational performances. Indeed, we need to apply the network
three times to estimate the local viscosity. Although this process is computationally efficient, this
multiple evaluation of the network might slow down the whole algorithm.
For these reasons, it makes sense to switch to the second strategy, designing another family of networks.
Even though the basic reasoning does not significantly differ from the one-dimensional case, further
issues arise:

• The complexity of the problem increases. Since two spatial variables are involved, the solution
can exhibit a more complex behavior. Waves propagating in different directions can interact,
resulting in finer structures which cannot exist for one-dimensional problems. As a concrete case,
consider a two-dimensional Riemann problem for the Euler system. As verified in [47], there
exist at least 15 different admissible configurations. Each of them is characterized by different
solutions features [48], which should be captured by the network.

• The mesh structure, as well its elements, exhibit more variability. For one-dimensional problems,
the elements are simply intervals, which are essentially characterized only by their length h.
Increasing the spatial dimension, the complexity increases. An obvious example is the orientation
of the triangles. Elements having the same shape may differ by the way they are rotated. This is
taken into account by the affine mapping Ψ from the reference element. A second, less trivial,
property is the element aspect ratio, defined as the ratio between the longest and the shortest
edge. It is a measure of the stretching of the element, and it is directly linked to mesh regularity
[49].
Note that for general cases one has no control on how the mesh is created. This usually depends
on the problem that has to be solved, since some features might have to be highlighted. A clear
example is the enhancing of boundary layers, where the mesh could be refined and/or stretched
close to this region. Thus, as in the one-dimensional scenario, the network should not rely on
a specific mesh structure, otherwise losing its generalization properties. In Figure 3.15 some
examples of different elements having the same diameter h are shown.

3.5. Extension to two dimensional problems 39

Figure 3.15: Graphical representation of different triangles having the same diameter
h.

• Another issue is related to node orientation, shown in Figure 3.16. Even if the node ordering in
the reference element is fixed, their mapping into each physical triangle might be different. In
particular, for a given mesh element, the nodes can be stored in six different configurations. Here,
we assume that a counterclockwise ordering of the vertexes, reducing the possible orientations to
three. Thus, the vector collecting the degrees of freedom is defined up to a node permutation.
Ideally, the way the neural network is built has to be invariant under such permutations, which
cannot be controlled by the user. Here, invariant means that the network should give similar
results independently of the orientation. Constructing an ANN whose input is the same even if a
permutation is applied would probably be more challenging, especially if nodal values have to
be the input variable. A possible way to tackle this issue is the following. At every time step,
each triangle gives three different samples to the dataset. Each of them corresponds to a possible
node orientation, with corresponding nodal viscosity values. Clearly, this phenomenon is not
present in one-dimensional contexts, since nodes are always ordered from the left to the right of
the interval.

6

4

1

5

2 3

3

5

6

2

4 1

1

2

3

4

5 6

Figure 3.16: A graphical representation of the orientation issue using m = 2. Even
if the shape is equal, the way the degrees of freedom are stored is different.

• Finally, the construction of the training set might suffer from memory issues. Consequently,
training times increase. As an example, consider a square domain whose edges are divided into
N intervals. Suppose that the associated (structured) mesh is obtained by dividing quadrilateral
elements into two triangles. Therefore, the total number of elements is 2N2. Thus, for a
frozen time step, we collect data from 2N2 elements, in comparison with the N generated in
the one-dimensional case with the same edge resolution. This results in a larger dataset and
consequently higher training times. In terms of order of magnitude, the dimension of the training
set has order of tens of Gigabytes and the corresponding training time has order of few days,
unless some further shrinkage is carried out.

We remark that, motivated by the reasoning illustrated in Section 3.4, the viscosity estimation for
two-dimensional systems is carried out using the networks trained for scalar problems. A representative
scalar variable has to be identified, acting as a predictor. In case of Euler equations, density is
used.

3.5.1 How to build a two-dimensional network

The strategy to construct a two-dimensional family of neural networks resembles the one-dimensional
one. Again, we consider scalar equations only.
The general structure is similar. In particular, we still rely on MLPs where input and output are
the scaled solution and artificial viscosity respectively. Since nodal values are still employed, their

40 Chapter 3. Artificial neural networks

size is equal to NI = NO = (m+1)(m+2)
2 . The same reasoning holds for cost and activation functions,

since there is no obvious reason to change them. Therefore, the former consists of the l2-norm of the
difference between predicted and exact output, to which we add a regularization term. The latter are
the Leaky ReLU and the softplus functions for the hidden and output layer respectively. Particular
attention has to be given to the choice of the hyperparameters, with a focus on the hidden layers. As
in the one-dimensional case, our main goal is to have a high enough number of neurons processing the
signals, possibly guaranteeing computational efficiency. For high orders, say m = 3, 4, the input size is
N = 10, 15 and exceeds the number of neurons in a single hidden layer, which was set to N l

H = 10 in
the one-dimensional framework. We numerically find that increasing the number of hidden units is
necessary. Therefore, we set N l

H = 20 neurons per hidden layer. Note that L = 5 is still a sufficient
number of hidden layers.
Again, a significant role is played by the generation of the training set. In principle, the strategy is
equal to the one-dimensional case, but memory issues arise. We report a summary of the main steps,
comparing them with the one-dimensional framework.

• Select a specific problem which has to be solved.

• Choose the best model. It is done in a way similar to the one-dimensional case, even though
the required cost is much higher. Several two-dimensional simulations have to be run, so
that obtaining very precise values for the parameters turns out to be more challenging and
time-consuming.

• Collect the data, storing the required values at each time iteration. As explained in the previous
Subsection, for each element Dk we add three samples to the dataset, which differ because of the
node permutation. Thus, for each simulation we collect 3NiterK samples.

• In principle, we need to repeat the previous steps for different mesh sizes and initial conditions.
The second procedure is compulsory to capture several solution patterns. The first one takes
care of the spatial variability, but, using different mesh resolutions, the number of samples
dramatically increases, ending up with a huge dataset. Thus, we generate the data relying
on a single unstructured mesh. We believe that most of the solution features can still be
captured, consequently taking into account the spatial variability. Therefore, data are collected
from simulations run with the same mesh, whose elements have different shapes. A pictorial
representation is provided in Figure 3.17.

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

Computational mesh

Figure 3.17: A graphical representation of the unstructured mesh we used to generate
the two-dimensional dataset.

3.5. Extension to two dimensional problems 41

• The previous steps are again repeated using different conservation laws. In this two-dimensional
framework, they are the extended version of Burgers equation and the linear advection problem.
Again, all the major types of waves can develop from suitably defined initial conditions.

• Repeat the procedure for different discretization degrees m.

The post-processing phase does not significantly change from the one-dimensional framework. We
make a single remark concerning the data balancing described in Subsection 3.2.7. Since we deal with
a single mesh, there is no need to carry out the first shrinkage. In other words, all the data resulting
from the simulations are kept in the training set. At the same time, even the second shrinkage is not
mandatory. Indeed, we deal with few simulations, so that guaranteeing a balanced dataset is much
easier and can be controlled by choosing final simulation times which do not affect the balancing itself.
However, due to memory issues, we need to get rid of some samples. Keeping all the data, we would
end up with a huge dataset, which is hard to handle without strong computing power. Thus, for a
given simulation, we simply shuffle the data and keep only a certain percentage, which decreases as m
is increased.

3.5.2 A two-dimensional example

To clarify the reasoning explained in the previous Subsection, we provide a quick example. Again, we
choose m = 3 and we focus on the two-dimensional Burgers equation only. A summary of both the
dataset generation and the post-processing step is reported in Table 3.4. Note that we keep only a
randomly selected 10% of the data. The considered tests are characterized as follows.

Test nb. T Best model Nb. samples Shrink
1 (multiple) 0.12 MDH: cA = 2, cκ = 0.5, cmax = 0.5 19313712 1931371

2 0.12 EV: cE = 1, cmax = 0.5 16763328 1676333
3 0.06 EV: cE = 1.5, cmax = 0.5 6036336 603634
4 0.12 MDH: cA = 2.5, cκ = 0.5, cmax = 1 18416592 1841659

Table 3.4: A summary on how to generate the datasets for Burgers equation in a
two-dimensional scenario.

• Test case nb. 1. It is a simple sine wave. Different frequencies ω are considered.

u0(x, y) = sin(πωx) sin(πωy)1[0,1]2(x, y)
0

0.5 1 0
0.5

1−1

0

1

x
y

Figure 3.18: I.c. for test case nb
1.

• Test case nb. 2. A piecewise constant initial condition is considered.

42 Chapter 3. Artificial neural networks

u0(x, y) =

0 if 0.5 < x < 1, 0.5 < y < 1,
1 if 0 < x < 0.5, 0.5 < y < 1,
2 if 0 < x < 0.5, 0 < y < 0.5,
1 if 0.5 < x < 1, 0 < y < 0.5. 0

0.5 1 0
0.5

10

1

2

x
y

Figure 3.19: I.c. for test case nb
2.

• Test case nb. 3. In a way similar to the one-dimensional case, a function containing points of
non-differentiability is considered here.

u0(x, y) = 3 + 6(0.25− |y − 0.5|)1[0.25,0.75](y)
0

0.5 1 0
0.5

13

4

x
y

Figure 3.20: I.c. for test case nb
3.

• Test case nb. 4. It is a (negative) cosine bell which eventually forms a shock. It is needed in
order to have negative samples.

u0(r) = −2
(

1 + cos
(π

0.5r
))

1[0,0.5](r)

where r =
√

(x− 0.5)2 + (y − 0.5)2. 0
0.5 1 0

0.5
1−4

−2

0

x
y

Figure 3.21: I.c. for test case nb
4.

43

Chapter 4

Practical implementation

In this Chapter we discuss the main algorithms needed to implement the technique described in
Chapter 3. We provide the pseudo-codes, in order to make the strategy more understandable. Note
that this Chapter adds no significant improvements to this work, and it can be skipped without any
loss in the discussion.
The main procedure is given in Algorithm 4.1, which computes the numerical solution using the
five-stage fourth-order low-storage Runge-Kutta scheme we described in Chapter 2. Note that the code
can be split into three parts. The first, named pre-processing phase, is dedicated to the construction of
the operators or storages which are constant in time. Examples are the mesh assembly (e.g. connectivity
matrix, identify the neighboring elements and degrees of freedom, determine the boundary elements,
. . .) and the computation of some numerical operators, namely matrices (e.g. mass matrix, advection
matrices, lifting operator, . . .). The second, the computation step, contains the implementation of the
time-advancing scheme. Most of the effort is spent in the computation of the right-hand-side, carried
out as described in equations (2.14a) and (2.14b) (or in a compact form in equations (2.15a), (2.15b)
and (2.15c)) for the one-dimensional case. Again, we observe that the artificial viscosity is estimated
outside the Runge-Kutta internal loop, while the troubled-cell indicator is applied at each substep.
The last phase, named post-processing step, is dedicated to the qualitative and quantitative analysis of
the numerical solution. Since the implementation is similar to most of the time-dependent problems,
we deliberately skip most of the details, which can be found in, e.g., [2].

Algorithm 4.1 Compute numerical solution.
Input: Problem definition (e.g. flux function f(u), initial condition u0(x), boundary conditions, . . .),
discretization parameters (grid spacing h, final time T , discretization degree m,. . .).

Output: Numerical solution u at time T .

Mesh construction.
Compute the constant-in-time discretization operators.
Initialize u by means of the initial condition.
while t < T do

Compute artificial viscosity µ according to a modelM.
for s← 1, . . . , SRK = 5 do

(Set µ = 0 in the genuine - not troubled - cells).
v ← Asu+ ∆t compute_RHS(t+ cs∆t,u,µ).
u← u+Bsv.

end for
t = t+ ∆t.

end while
Quantitative analysis of the numerical solution.

Instead, we focus on the algorithms related to artificial neural networks. Let us start by recalling
how to generate the dataset. The whole procedure is summed up in Algorithm 4.2, which relies on
Algorithm 4.3 to select the best artificial viscosity model for a given test case. The same strategy is
repeated for all the discretization degrees m ∈ {1, . . . , 4}.
Once we construct the training sets, the network for each m is trained according to Algorithm 4.4. It is
worth mentioning that the the implementation is carried out using TensorFlow, an open-source software

44 Chapter 4. Practical implementation

Algorithm 4.2 Generation of training and validation set for a given degree m.
Input: -
Output: Training set T, Validation set V.

Set S = ∅.
for each type of equation do

for each initial condition u0(x) do
for each grid spacing h, final time T do

Select the best artificial viscosity model (Algorithm 4.3).
Run the simulation and add collected data in S.

end for
end for

Post-process the data in S.
Randomly shuffle S and assign the first 70% elements to T and the remaining 30% to V.

end for

Algorithm 4.3 Select the best artificial viscosity model.
Input: Type of equation, initial condition, grid spacing, final time.
Output: Best modelMbest and parameters Pbest.

Mbest ← NaN, Pbest ← NaN, uMbest
← NaN.

forM∈ {DB, MDH, MDA, EV} do
uM ← NaN, PM ← NaN.
for each parameter P do

Run the simulation with the selected model and parameters, obtaining uM,P .
if uM,P � uM then
PM ← P, uM ← uM,P

end if
end for
if uM � uMbest

then
Mbest ←M, Pbest ← PM

end if
end for

Chapter 4. Practical implementation 45

library for machine learning [50], which makes usage of automatic differentiation [51] to differentiate
the network. In the context of machine learning, the technique used to calculate the gradients with
respect to the weights or biases is known as backpropagation. Practically, it is a simple application of
the standard multivariate chain rule to compute derivatives. More precisely, in order to compute the
derivatives at a layer l, only the quantities at the following layer l + 1 are needed. Thus, for a given
input one simply computes the network output (forward pass) and updates the weights at all layers by
using the error term, which is propagated backwards in the network (backward pass). Since we did not
directly implemented this procedure, we do not provide all the details. Further information can be
found in any machine learning text, such as [36, 52].

Algorithm 4.4 Train the Neural Network.
Input: Neural network (N ,V), learning rate η, LReLU parameter α, cost function C, training set
T, validation set V, maximum number of epochs Nepochs, stopping parameter M , mini-batch size
Sbatch, number of restarts R.

Output: Optimal weights Wopt and biases bopt.

V opterr = +∞.
for r ← 1, . . . , R do

V rerr = +∞, l = 0, n = 1.
Randomly initialize W and b and set V olderr = +∞.
while n ≤ Nepochs, l < L do

Update weights and biases according to Algorithm 4.5.
Evaluate validation error, say V newerr .
if V newerr > V olderr then

l← l + 1.
else

l← 0.
end if
V olderr ← V newerr , n← n+ 1.

end while
Evaluate final validation error, say V rerr using weights and biases at epoch n− l.
if V rerr < V opterr then

Set (Wopt, bopt) equal to weights and biases at epoch n− l.
end if

end for

Algorithm 4.5 Minibatch optimization.
Input: Neural network (N ,V), learning rate η, LReLU parameter α, cost function C, training set T,
mini-batch size Sbatch, number of restarts R, weights and biases to be updated (W , b)old.

Output: Updated weights and biases (W , b)new.

Randomly shuffle T and set ids = 0.
while ids < |T| do

Construct a minibatch B = T(ids+ 1 : min {ids+ Sbatch, |T|}).
Perform an iteration of the optimization algorithm and update weights and biases, using data

from B.
ids← ids+ Sbatch.

end while

So far we focused on the offline phase only. The dataset generation, as well as the training procedure,
is carried out only once, even if it is quite time-consuming. Once the optimal weights and biases are
stored, the final user can exploit the trained network as a black box. The final Algorithm 4.6 describes
the online stage, also known as network evaluation. It coincides with a single forward pass of the
network for a given input which is not necessarily in the training set. We observe that the scaling for
input and output variables is performed outside the algorithm, and it is not reported here.

At this point, is worth discussing the computational time of the ANN-based technique. As we already
clarified, two stages are involved, with different costs. The offline phase requires a considerably large

46 Chapter 4. Practical implementation

Algorithm 4.6 Apply the Neural Network.

Input: Pointwise values for a variable x, in matrix form X ∈ Rm+1,K . Network weights {Wi}L+1
i=1

and biases {bi}L+1
i=1 . Parameter α for the LReLU function.

Output: Predicted values for a variable y, in matrix form Y ∈ Rm+1,K .

X = XT .
for i← 1, . . . , L do
X ←XWi + bi
X ← LReLU(X, α)

end for
. i = L+ 1 corresponds to the output layer.

X ←XWL+1 + bL+1
Y ← Softplus(X)
Y = Y T .

time. Suppose that the computational complexity to evaluate the updates ∆w and ∆b for weights
and biases for a single mini-batch is denoted by θ. It depends on the optimization algorithm, the
cost function, the mini-batch size and so on. The total complexity for a single epoch is therefore
O(θNT/Sbatch), plus an additional cost to compute the error function using the validation set. Since
several gradient computations are involved and NT/NV = 7/3 > 2, the former term dominates.
Supposing that the stopping criterion is the maximum number of epochs Nepochs and the algorithm is
restarted R times, the total offline cost is given by

Offline_cost ∼ O
(
RNepochsθ

NT

Sbatch

)
,

On the other hand, the online phase is computationally cheap, since mainly matrix-vector multiplications
are performed. We recall that the cost required to multiply a matrix A ∈ Rm×n by a vector v ∈ Rn is
m (2n− 1), while summing two vectors v1,v2 has a lower cost, which is neglected here. Thus, the cost
for the propagation function is O(mn), and it has to be repeated for all the hidden layers plus the
output layer. The activation functions have to be applied, too. Their cost can be estimated as mn
and mn (cexp + 1 + clog) for the Leaky ReLU and Softplus respectively. Here, cexp and clog denote the
computational cost to compute the exponential and the logarithmic functions respectively. Therefore
the global cost of the online phase is

Online_cost ∼ K((m+ 1) · 10 + (m+ 1) + 4 · (10 · 10 + 10)
+ 10 · (m+ 1) + (m+ 1) · (cexp + 1 + clog))

= O(K · 6 · (10 · 10 + 10))
= O(103 ·K),

where we consider m+ 1 = O(10), as well as cexp and clog. Good values for cexp and clog are 40 and
20 flops respectively [53]. Clearly, it is way lower than the offline computational time. Finally, we note
that the cost is linear in the number of mesh elements K.

47

Chapter 5

Numerical results

In this Chapter we provide several numerical results to show the capabilities of the proposed techniques.
Both one-dimensional and two-dimensional problems are considered. In the first case, a comparison
with a reference solution is shown. As described in Section 3.2, it is generated using the exact solution
(if available) or a numerical one (using a very fine mesh and a high polynomial degree). The pseudo-
analytical solution is not used, unless explicitly stated. The final Section of this Chapter is dedicated
to a performance analysis.

5.1 One-dimensional scalar problems

Firstly, consider one-dimensional scalar problems. They represent a significant way to validate the
performances of the proposed viscosity models. Basically, most of the techniques give good results for
the considered problems.

5.1.1 A smooth problem

The first test we propose is used to assess the ability of the artificial viscosity models to maintain
the expected solution accuracy. Consequently, a comparison among the standard techniques and the
ANN-based one can be conducted. Let us consider the linear advection problem with a constant
transport field β = 1. We choose Ω = [0, 1] as the computational domain, while the initial condition is
a single period of a sine wave, i.e.

u0(x) = B +A sin(2πx),

where A and B are real numbers chosen equal to 1 and 2 respectively. The problem is completed by
periodic boundary conditions. By following the characteristic method, one easily finds that the exact
solution is given by

u(x, t) = u0(x− βt) = B +A sin(2π(x− t)).

To validate the scheme, we introduce a possible way to compute the discretization error. Several options
are available, but for simplicity we focus on the spatial L2(Ω)-norm of the error vector evaluated at
the final simulation time. Thus, let

ε = ‖uh(·, T)− u(·, T)‖L2(Ω) .

Since u has an analytical expression, ε can be easily computed. Given an element Dk, let uh, u
be the finite dimensional vectors collecting the local degrees of freedom for the numerical and the
(V kh -projection of the) analytical solution respectively. We again omit the superscript k to ease the

48 Chapter 5. Numerical results

notation. Therefore,

ε2 = ‖uh(·, T)− u(·, T)‖2L2(Ω) =
K∑
k=1
‖uh(·, T)− u(·, T)‖2L2(Dk) =

K∑
k=1

∫
Dk

(uh|k − u|k)2

=
K∑
k=1

∫
Dk

m∑
i,j=0

(uh,i − ui)li(uh,j − uj)lj =
K∑
k=1

(uh − u)TM(uh − u),

where M is the (internal) mass matrix defined in (2.13). The last equality holds thanks to linearity of
the integral operator. Theoretical results for hyperbolic problems [5, 30] suggest that the following
optimal estimate holds:

ε ≤ C1h
m+1 (1 + C2T) , (5.1)

provided that u is sufficiently smooth. The constants C1, C2 depend on the discretization degree m.
Note that the estimate (5.1) holds for the inviscid problem, i.e. with µ = 0. Here, we are instead
adding an extra dissipation term. Theoretically, we would like to keep the same optimal convergence
rate by adding a dissipative term which preserves the scaling. As we have already observed in Section
2.2, that is not always the case. In order to numerically estimate the convergence rate, we compute the
discretization error using two different meshes with characteristic mesh sizes h1, h2 (or equivalently
with number of elements equal to K1, K2). Then, the estimated order, denoted by p, is computed
as

p ' log(ε1)− log(ε2)
log(h1)− log(h2) = log(ε1)− log(ε2)

log(K2)− log(K1) .

We report the results obtained at time T = 0.2 for different mesh sizes with degrees m = 1 (Table 5.1),
m = 2 (Table 5.2), m = 3 (Table 5.3) and m = 4 (Table 5.4). The parameters we adopt here are not
meant to be the optimal ones for this specific problem. They affect the magnitude of the error, but
the behavior is not drastically altered by the parameter values, at least from a qualitative point of
view.

K
Inviscid DB EV MDH
ε p ε p ε p ε p

10 1.3386e−2 - 2.8271e−1 - 3.1848e−1 - 1.9595e−1 -
20 3.3576e−3 1.99 1.1451e−1 1.30 8.9574e−2 1.83 1.1561e−1 0.76
40 8.3953e−4 2.00 3.7073e−2 1.63 1.3176e−2 2.77 7.1512e−2 0.69
80 2.0987e−4 2.00 1.0390e−2 1.83 2.1677e−3 2.60 4.2553e−2 0.75
160 5.2465e−5 2.00 2.6940e−3 1.94 3.0662e−4 2.82 2.4201e−2 0.81
320 1.3116e−5 2.00 6.8108e−4 1.98 4.1720e−5 2.88 1.3184e−2 0.88

Table 5.1: L2 convergence errors and estimated rate in the inviscid case and using
standard artificial viscosity models. Linear advection problem, m = 1.

K
Inviscid DB EV MDH
ε p ε p ε p ε p

10 1.0519e−3 - 1.2734e−1 - 6.2039e−2 - 1.0519e−3 -
20 1.3298e−4 2.98 3.8678e−2 1.72 3.8533e−3 4.00 1.3298e−4 2.98
40 1.6664e−5 3.00 1.0582e−2 1.87 2.9406e−4 3.71 1.6664e−5 3.00
80 2.0844e−6 3.00 2.7157e−3 1.96 1.9935e−5 3.88 2.0844e−6 3.00
160 2.6059e−7 3.00 6.8357e−4 1.99 1.3089e−6 3.92 2.6059e−7 3.00
320 3.2575e−8 3.00 1.7119e−4 2.00 8.7767e−8 3.81 3.2575e−8 3.00

Table 5.2: L2 convergence errors and estimated rate in the inviscid case and using
standard artificial viscosity models. Linear advection problem, m = 2.

As expected, the DB method has maximum second order accuracy. For coarse meshes, the first order
term dictated by µmax comes into play, so that orders lower than two are found. Thus, the expected
order of convergence is obtained asymptotically as h → 0. The EV scheme is able to to achieve
high accuracy orders, even though the numerical error is obviously larger with respect to the inviscid
problem. Some issues seem to arise for m > 3, possibly due to the Crank-Nicolson discretization of the

5.1. One-dimensional scalar problems 49

K
Inviscid DB EV MDH MDA
ε p ε p ε p ε p ε p

10 3.1021e−5 - 6.3532e−2 - 3.4710e−4 - 3.1021e−5 - 8.3751e−2 -
20 2.2845e−6 3.76 1.8334e−2 1.79 1.3637e−5 4.67 2.2845e−6 3.76 4.3327e−2 0.95
40 1.5260e−7 3.90 4.7945e−3 1.94 4.9179e−7 4.79 1.5260e−7 3.90 2.2260e−2 0.96
80 9.3750e−9 4.02 1.2131e−3 1.98 1.7742e−8 4.79 9.3750e−9 4.02 1.1304e−2 0.99
160 5.8609e−10 4.00 3.0420e−4 2.00 7.5682e−10 4.55 5.8609e−10 4.00 5.6980e−3 0.99
320 3.6631e−11 4.00 7.6108e−5 2.00 4.0744e−11 4.22 3.6631e−11 4.00 2.8609e−3 0.99

Table 5.3: L2 convergence errors and estimated rate in the inviscid case and using
standard artificial viscosity models. Linear advection problem, m = 3.

K
Inviscid DB EV MDH MDA
ε p ε p ε p ε p ε p

10 9.9474e−7 - 3.8582e−2 - 1.4982e−4 - 9.9474e−7 - 9.9474e−7 -
20 3.1481e−8 4.98 1.0581e−2 1.87 3.6170e−6 5.37 3.1481e−8 4.98 3.1481e−8 4.98
40 1.0073e−9 4.97 2.7157e−3 1.96 1.1971e−7 4.92 1.0073e−9 4.97 1.0073e−9 4.97
80 3.3036e−11 4.93 6.8358e−4 1.99 5.7002e−9 4.39 3.3036e−11 4.93 3.3036e−11 4.93
160 1.0925e−12 4.92 1.7119e−4 2.00 3.3235e−10 4.10 1.0925e−12 4.92 1.0925e−12 4.92

Table 5.4: L2 convergence errors and estimated rate in the inviscid case and using
standard artificial viscosity models. Linear advection problem, m = 4.

time derivative in (2.33a). The MDH model has an interesting behavior. For low degrees (m = 1),
the scheme has order less than one. Indeed, it adds a viscosity which scales linearly with h, thus
preventing higher orders. On the other hand, for high orders (m ≥ 2), the shock sensor detects the
solution as regular enough not to add dissipation. Thus we return to the inviscid scheme, which has
optimal accuracy. A similar reasoning holds for the MDA model.
We focus now on the estimated convergence rates using the ANN-based method. The results are
reported in Table 5.5 for m = 1, Table 5.6 for m = 2, Table 5.7 for m = 3 and Table 5.8 for m = 4.
They are obtained using the third strategy defined in Table 3.1, which turns out to be the most
efficient one for general cases. The first one produces an inconsistency, since no scaling with the local
wave speed is carried out, while the second one completely ignores the solution features, generating a
uniform-in-space viscosity value. We will provide a more concrete example in Subsection 5.1.4, which
completely clarifies the reason for our choice. We report the values obtained using the original version
and the two proposed improvements, namely both using an ANN as troubled-cell indicator and using
a different scaling.

K
Inviscid NN (orig.) NN (× 2) NN (scaling)
ε p ε p ε p ε p

10 1.3386e−2 - 1.1163e−1 - 3.3173e−2 - 4.8874e−2 -
20 3.3576e−3 1.99 5.0214e−2 1.10 3.3576e−3 3.30 1.1627e−2 2.07
40 8.3953e−4 2.00 2.2317e−2 1.22 8.3953e−4 2.00 3.4402e−3 1.76
80 2.0987e−4 2.00 8.3278e−3 1.42 2.0987e−4 2.00 5.7626e−4 2.58
160 5.2465e−5 2.00 1.9344e−4 5.43 5.2465e−5 2.00 5.2756e−5 3.45
320 1.3116e−5 2.00 2.6979e−5 2.84 1.3116e−5 2.00 1.3126e−5 2.00

Table 5.5: L2 convergence errors and estimated rate in the inviscid case and using
the ANN-based method. Linear advection problem, m = 1.

The original version of the ANN method is not able to get high order accuracy, due to the linear
scaling in the element size. For high orders, its asymptotic convergence rate is one. Spurious effects
are present in the linear case m = 1, possibly due to insufficient mesh resolution. Note that for m ≥ 2
the absolute value of the error is usually much larger compared to the inviscid problem, at least with
a sufficiently fine mesh. The proposed improvements seem to overcome these issues. Theoretically,
the ANN-based troubled-cell indicator should flag no elements, since the solution is smooth. This is
the observed behavior, even though for very low resolutions some cells might be flagged as troubled.
Finally, the new scaling relying on the solution jump gives error values which are almost equal to the
inviscid problem, together with an optimal rate. The estimated rate for m = 1 approaches the optimal

50 Chapter 5. Numerical results

K
Inviscid NN (orig.) NN (× 2) NN (scaling)
ε p ε p ε p ε p

10 1.0519e−3 - 8.8847e−3 - 1.0519e−3 - 1.0586e−3 -
20 1.3298e−4 2.98 1.5650e−3 2.42 1.3298e−4 2.98 1.3383e−4 3.02
40 1.6664e−5 3.00 3.1335e−4 2.40 1.6664e−5 3.00 1.6684e−5 3.00
80 2.0844e−6 3.00 1.0179e−4 1.62 2.0844e−6 3.00 2.0854e−6 3.00
160 2.0659e−7 3.00 4.4963e−5 1.18 2.0659e−7 3.00 2.6069e−7 3.00
320 3.2575e−8 3.00 2.1500e−5 1.06 3.2575e−8 3.00 3.2587e−8 3.00

Table 5.6: L2 convergence errors and estimated rate in the inviscid case and using
the ANN-based method. Linear advection problem, m = 2.

K
Inviscid NN (orig.) NN (× 2) NN (scaling)
ε p ε p ε p ε p

10 3.1021e−5 - 2.8484e−3 - 3.1021e−5 - 3.1263e−5 -
20 2.2845e−6 3.76 5.4942e−4 2.37 2.2845e−6 3.76 2.2864e−6 3.77
40 1.5260e−7 3.90 2.0007e−4 1.46 1.5260e−7 3.90 1.5268e−7 3.90
80 9.3750e−9 4.02 6.8944e−5 1.54 9.3750e−9 4.02 9.3778e−9 4.03
160 5.8609e−10 4.00 2.8957e−5 1.25 5.8609e−10 4.00 5.8621e−10 4.00
320 3.6631e−11 4.00 1.2258e−5 1.29 3.6631e−11 4.00 3.6687e−11 4.00

Table 5.7: L2 convergence errors and estimated rate in the inviscid case and using
the ANN-based method. Linear advection problem, m = 3.

K
Inviscid NN (orig.) NN (× 2) NN (scaling)
ε p ε p ε p ε p

10 9.9474e−7 - 1.1133e−3 - 9.9474e−7 - 9.9572e−7 -
20 3.1481e−8 4.98 1.7106e−4 2.70 3.1481e−8 4.98 3.1487e−8 4.98
40 1.0073e−9 4.97 7.8974e−5 1.12 1.0073e−9 4.97 1.0075e−9 4.97
80 3.3036e−11 4.93 3.2356e−5 1.29 3.3036e−11 4.93 3.3040e−11 4.93
160 1.0925e−12 4.92 1.5723e−5 1.04 1.0925e−12 4.92 1.0927e−12 4.92

Table 5.8: L2 convergence errors and estimated rate in the inviscid case and using
the ANN-based method. Linear advection problem, m = 4.

5.1. One-dimensional scalar problems 51

one only asymptotically.
The convergence analysis motivates the choice to consider only the third NN version (i.e. with the
improved scaling) for all the following examples, unless stated otherwise.

5.1.2 Burgers equation: a simple test

After validating the new technique, we need to test its ability to capture shocks, adding a larger
amount of dissipation in spatial regions where discontinuities develop. We do it first with Burgers
equation. The motivation lies in the fact that smooth initial conditions may lead to discontinuities
(shock and rarefaction waves), due to a nonlinear flux function. Moreover, since the training set was
generated using mainly this conservation law, this test represents a simple benchmark case to test the
generalization properties of the ANN to initial conditions which were not included in the training set.
Consider Ω = [0, 1], divided in K = 160 equal intervals and a final time T = 0.4. The initial condition
is a compactly supported sine wave, that is set as

u0(x) = − sin(6πx)1[1/6,5/6](x),

observing that its frequency is different from the ones considered in the dataset. The initial condition is
shown in Figure 5.1, while the problem is completed with periodic (or Dirichlet) boundary conditions.
By following the characteristic method, one observes that two shocks are formed at x = 1/3 and

0.25 0.5 0.75 1

−1

−0.5

0.5

1

x

y

Figure 5.1: Initial condition for the second test case, Burgers equation.

x = 2/3, after a time t = 1/(6π). Let us consider linear basis functions first, namely m = 1. The
parameter values for the standard viscosity methods are reported in the corresponding column of Table
5.9, which have been tuned to be (pseudo-)optimal for this specific test case. The numerical results
are reported in Figure 5.2.

Model m = 1 m = 4
DB cβ = 3, cmax = 1.5 cβ = 2, cmax = 1
EV cE = 2, cmax = 1 cE = 1, cmax = 0.5

MDH cA = 2.5, cκ = 0.4, cmax = 1 cA = 2, cκ = 0.4, cmax = 0.5
MDA - cmax = 1

Table 5.9: Parameter values for the standard artificial viscosity models for the second
test case.

By looking at the overall solution, no significant differences among the models are present. In particular,
the numerical oscillations caused by the shocks are smoothed enough. Zooming close to the first shock,
it appears that the network outperforms the other models, in the sense that the solution seems to be
sharper. In other words, the added dissipation appears to be minimal with respect to the other cases.
As expected, the drawback lies in the fact that overshoots and undershoots have a marginally larger
amplitude. However, both appear to be controlled enough. Of course, where the solution is smooth,

52 Chapter 5. Numerical results

0 0.2 0.4 0.6 0.8 1

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(a) Overall result.

0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(b) Zoom close to the first shock.

Figure 5.2: Numerical results for the second test case, Burgers equation, m = 1.

all the models follow the exact solution profile. To provide a more quantitative analysis, in Figure 5.3
we report the temporal history of artificial viscosity for all the models.

Theoretically, the viscosity models should not add dissipation at the initial times, where the solution
is still smooth. After the shocks forms, viscosity has to be added in the spatial regions close to the
discontinuities. Among the standard models, only the EV one achieves this goal. The DB model, due
to its second-order nature, adds a viscosity which is less localized in space. On the other hand, the
MDH should be capable of recognizing the solution at initial instants as smooth enough not to add
dissipation. This failure might depend on the choice of the parameters, but mostly on the fact that
a low discretization degree is used. This is probably not high enough to trigger the whole potential
of the MDH model. The NN technique adds a localized viscosity in space, with the maximum value
appearing to be lower compared to all the other models, at least from a global perspective.
A similar analysis can be carried out using higher degrees, like m = 4. The parameters for the standard
models are reported in the corresponding column of Table 5.9. The solution, together with a zoom
close to one of the discontinuities, is reported in Figure 5.4, while the corresponding viscosity profile is
shown in Figure 5.5.

The qualitative behavior for the solution is similar to the linear case. In Figure 5.4(b) we observe
that the profile obtained with the MDH and EV models is essentially the same. Since they are the
two main models we relied on during the construction of the training set, the network is mimicking
their behavior, so that NN-based solution is very close to both of them. Concerning the profile for the
artificial viscosity, we note that all the models except the DB recognize the initial smoothness, and
consequently they add essentially no dissipation before the shock appears. Again, the derivative-based
technique continues adding dissipation in regions where it is not strictly necessary. The NN method
seems to add an oscillating amount of dissipation, which is also observed (not reported here) for
the some standard models (the MDH and the EV) for certain values of the parameters. This is also
confirmed by looking at the maximum amount of dissipation in space, which is reported in Figure 5.6
as a function of time.

A possible explanation is found by noting that viscosity is added only when oscillations become too
strong, while a lower amount is injected when their amplitude is not large enough. This oscillatory
behavior is not a critical issue and it is perfectly acceptable. However, it might have a marginal effect
on the time step, which is set proportionally to the inverse of the maximum viscosity.
In general, it is evident that the solution quality improves from m = 1 to m = 4 and the region where
artificial viscosity is added is thinner. The absolute values of the dissipation values are lower, too. A
final remark is related to the symmetry breaking, which is more evident as the discretization degree
increases. In particular, one may expect a symmetry with respect to x = 0.5. However, since we use
K = 160 elements and m + 1 = 5 nodal values per cell, one can verify that the two shocks fall in
different locations within the cell. In particular x = 1/3 falls between the second and the third node in
the 54th cell, while x = 2/3 lies between the third and the fourth node of the 107th element. Thus, it

5.1. One-dimensional scalar problems 53

(a) DB (b) EV

(c) MDH (d) NN

Figure 5.3: Temporal history of the artificial viscosity for the second test case,
Burgers equation, m = 1.

0 0.2 0.4 0.6 0.8 1

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(a) Overall result.

0.32 0.325 0.33 0.335 0.34 0.345

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

(b) Zoom close to the first shock.

Figure 5.4: Numerical results for the second test case, Burgers equation, m = 4.

54 Chapter 5. Numerical results

(a) DB (b) EV

(c) MDH (d) NN

(e) MDA

Figure 5.5: Temporal history of the artificial viscosity for the second test case,
Burgers equation, m = 4.

5.1. One-dimensional scalar problems 55

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
10

-3

Figure 5.6: Infinity norm of the artificial viscosity with respect to time, second test
case, Burgers equation, m = 4.

makes sense to expect a slightly different response from the network, since such symmetries have not
been taken into account in the training set.

5.1.3 Burgers equation: a compound wave

The test case we proposed in Subsection 5.1.2 had an initial condition similar to those in the training
set. Here, we show that the network is able to provide good results even for more general functions.
Consider Ω = [−4, 4], divided in K = 200 equal intervals and a final time T = 0.4. We define the
initial condition as a composition of smooth and discontinuous data [11] as

u0(x) =

sin(πx) if 1 ≤ |x| ≤ 4,
3 if −1 < x ≤ −0.5 or 0 < x ≤ 0.5,
1 if −0.5 < x < 0,
2 if 0.5 < x ≤ 1,

while the problem is completed with periodic boundary conditions. The initial condition is plotted in
Figure 5.7. Note that the domain, the number of elements, the grid spacing and the initial condition
were not included in the training set.

−4 −3 −2 −1 1 2 3 4

−1

1

2

3

x

y

Figure 5.7: Initial condition for the third test case, Burgers equation.

Finally, the parameter we adopt for the standard model are reported in Table 5.10.

56 Chapter 5. Numerical results

Model m = 1 m = 4
DB cβ = 4, cmax = 2 cβ = 2, cmax = 1
EV cE = 2.5, cmax = 1.5 cE = 2, cmax = 1

MDH cA = 2.6, cκ = 0.4, cmax = 1 cA = 2, cκ = 0.4, cmax = 0.5
MDA - cmax = 1

Table 5.10: Parameter values for the standard artificial viscosity models for the third
test case.

As the solution evolves, both shocks and rarefaction waves develop. We report the results obtained for
low (m = 1) and high (m = 4) degrees in Figure 5.8 and Figure 5.9 respectively, while the history of
the viscosity is shown, only for the latter case, in Figure 5.10.

-4 -3 -2 -1 0 1 2 3 4

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

(a) Overall result.

-3.4 -3.3 -3.2 -3.1 -3 -2.9 -2.8 -2.7 -2.6

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b) Zoom close to the first shock.

0 0.5 1 1.5

1

1.5

2

2.5

3

3.5

4

(c) Zoom close to the middle region.

Figure 5.8: Numerical results for the third test case, Burgers equation, m = 1.

Again, we observe that the overall results obtained with all the considered models are similar. In the
linear case, the EV and the NN models appear to provide better results. In particular, the former
gives a better resolution of the shock originating from the sine wave, located at x = −3. Here, the
NN model outperforms both the DB and the MDH ones, but it creates a low-amplitude overshoot.
On the other hand, in the middle region of the solution profile, the NN model appears to resolve the
solution features better than the others. Small oscillations are present, but the associated peaks never
exceed the bounds provided by the reference solution. Increasing the polynomial order, the differences
in all the models become less evident, even though the EV and the NN models are the best performers.
Note that in this scenario, the NN resolves the first shock as accurately as the EV model.

5.1. One-dimensional scalar problems 57

-4 -3 -2 -1 0 1 2 3 4

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

(a) Overall result.

-3.2 -3.15 -3.1 -3.05 -3 -2.95 -2.9 -2.85 -2.8 -2.75

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b) Zoom close to the first shock.

0 0.5 1 1.5 2

0.5

1

1.5

2

2.5

3

3.5

(c) Zoom close to the middle region.

Figure 5.9: Numerical results for the third test case, Burgers equation, m = 4.

58 Chapter 5. Numerical results

(a) DB (b) EV

(c) MDH (d) NN

(e) MDA

Figure 5.10: Temporal history of the artificial viscosity for the third test case,
Burgers equation, m = 4.

5.1. One-dimensional scalar problems 59

By looking at the temporal history of the artificial viscosity, the oscillatory evolution of the dissipation
values is evident for the MDH, EV and NN models. This can be perhaps explained by observing that
the shocks have no fixed location in space, but they move at a certain speed. Thus, a different behavior
is found when the discontinuity is located close to the extrema of the intervals or in the inner part.
Again, we observe that the DB method is the most dissipative model.

5.1.4 A degree-4 flux function

The previous tests were mainly needed as a validation for our technique. In particular, we tested the
convergence rate of the discretization error and the ability to capture shocks, as well as to resolve the
solution features at different mesh resolutions. Now, we switch to conservation laws defined by flux
functions which were not included in the training set. We start by choosing f(u) = u4

4 , in the domain
Ω = [0, 1] with K = 160 elements. The initial condition is simply a rect function defined as

u0(x) =
{

1 if 0 < x ≤ 0.25 or 0.75 < x ≤ 1,
3 otherwise in [0, 1],

while the problem is completed using Dirichlet boundary conditions. Since the flux function is convex,
its behavior is not far from Burgers equation. In particular, shocks and rarefaction waves develop. For
small times, the analytical solution can be computed exactly using the characteristic method:

u(x, t) =

1 if 0 < x ≤ 0.25 + 1t or 0.75 + ṡt < x ≤ 1,
3 if 0.25 + 27t < x ≤ 0.75 + ṡt,
R
(
x−0.25

t

)
if 0.25 + 1t < x ≤ 0.25 + 27t,

where
ṡ = f(1)− f(3)

1− 3 = 10

is the shock speed obtained through the Rankine-Hugoniot condition [54], and R(·) = (f ′)−1(·) = (·)1/3

is the inverse function of the first derivative of the flux function. Note that R exists due to the strict
convexity of the flux function f(u) within the considered solution range. The previous reasoning holds
as long as the shock and rarefaction waves do not meet, namely for t ≤ 1/34 ' 0.029. For successive
instants, one could still rely on the characteristic method, but a simple analytical expression is no
longer available, since a nonlinear ordinary differential equation has to be solved. However, for our
purposes it is enough to consider T = 0.02 < 1/34.
Before showing the numerical results, it is worth spending a word on the choice of the three network
strategies reported in Table 3.1. Indeed, for Burgers equation we have f ′(u) = u, so that all the
previous techniques collapse into a single one. Here we have f ′(u) = u3, so that significant differences
start to appear among the proposed strategies, as we partially noted even for the linear advection
problem analyzed in Subsection 5.1.1. In Figure 5.11 we show the results obtained with the three
different approaches.

Clearly, the first strategy underestimates the required viscosity. This is expected, since the inverse
scaling is done by multiplying by a scaling factor of u ∈ [1, 3] instead of u3 ∈ [1, 27]. In other words, the
first strategy predicts a viscosity value which is approximately 9 times smaller compared to the others,
at least in regions where u is close to its maximum value. Thus, oscillations are observed. On the
other hand, the second and third strategies are similar, although the latter resolves the shocks slightly
better. Moreover, as we already pointed out, the second approach is not well suited for linear advection
problems and the Euler system. Therefore it makes sense to consider the third technique as the best
one, together with the improved version with the H-scaling. Our reasoning is confirmed by looking at
the artificial viscosity added by the models. From Table 5.11, which reports the time-averaged infinity
norm of µ, it is evident that the dissipation added with the first strategy is clearly not enough to
stabilize the problem.

Finally, we carry out an analysis similar to the previous test cases, with parameters defined in Table
5.12. For simplicity, in Figure 5.12 and Figure 5.13 we show only the results for m = 4, in comparison
with the EV model.

60 Chapter 5. Numerical results

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3

3.5

(a) Overall results.

0.93 0.935 0.94 0.945 0.95 0.955

1

1.5

2

2.5

3

3.5

(b) Zoom close to the shock.

Figure 5.11: Comparison of the three different strategies for the NN technique,
f(u) = u4/4, m = 4.

Model mean(||µ||∞)
EV 1.6826e−2

NN1 (u-u) 1.2848e−3
NN2 (f ′-f ′) 2.0254e−2
NN3 (u-f ′) 1.5518e−2

Table 5.11: Comparison of the time-averaged infinity norm of the artificial viscosity
of the three different strategies for the NN technique, m = 4.

Model m = 4
DB cβ = 8, cmax = 5
EV cE = 2, cmax = 1

MDH cA = 2.5, cκ = 0.4, cmax = 0.8
MDA cmax = 1

Table 5.12: Parameter values for the standard artificial viscosity models for the
fourth test case.

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3

3.5

(a) Overall result.

0.935 0.94 0.945 0.95 0.955 0.96 0.965

0.5

1

1.5

2

2.5

3

(b) Zoom close to the shock.

Figure 5.12: Numerical results for the fourth test case, f(u) = u4/4, m = 4.

5.1. One-dimensional scalar problems 61

(a) EV (b) NN

Figure 5.13: Temporal history of the artificial viscosity for the fourth test case,
f(u) = u4/4, m = 4.

We observe that the DB model is not able to smoothen the solution as expected, resulting in a quite
oscillatory profile. Despite the values for cβ and cmax are very high compared to the previous tests, we
found no better result in this scenario, at least in the parameter range we considered. Once more, this
demonstrates that the DB technique does not provide good results. The results with the other models
are comparable.

5.1.5 Buckley-Leverett problem

The goal of this final test is to demonstrate the performances of the NN technique for non-convex flux
functions. We recall that the problem is set by defining

f(u) = u2

u2 + 0.5(1− u)2 .

Consider the test case presented in [11]. In particular, we select Ω = [0, 1.5] and a final time T = 0.4.
Again, we pick K = 160 elements. The initial condition is a step function, defined as

u0(x) =
{

0.95 if 0 ≤ x < 0.5,
0.1 if 0.5 ≤ x ≤ 1.5,

and finally the problem is completed with Dirichlet boundary conditions. It evolves into a compound
wave consisting of a shock and a rarefaction. We recall that this phenomenon is present only with
non-convex flux functions, where the slope of the characteristics f ′(u) is not monotone. In particular,
for Riemann problems, a number of waves greater than the number of equation might develop starting
from two different left and right values [31], as in this scenario.
Once more, the network provides good results, as shown for m = 4 in Figure 5.14.

Model m = 4
DB cβ = 4, cmax = 2
EV cE = 2, cmax = 1
MDH cA = 2, cκ = 0.4, cmax = 0.6
MDA cmax = 1

Table 5.13: Parameter values for the standard artificial viscosity models for the fifth
test case.

Compared to Burgers equation, the NN does not clearly outperform the other methods, even though
significant differences are not present among all the models. In particular, the upper part of the shock

62 Chapter 5. Numerical results

0 0.5 1 1.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Overall result.

1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2 1.22

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

(b) Zoom close to the shock.

Figure 5.14: Numerical results for the fifth test case, Buckley-Leverett problem,
m = 4.

is not well resolved by the network. This behavior could be related to the specific problem we chose or,
more generally, by the network trained only with Burgers equation. We believe the former to be the
more probable reason. The temporal history of the artificial viscosity is once more coherent with the
previous analysis.

(a) EV (b) NN

Figure 5.15: Temporal history of the artificial viscosity for the fifth test case,
Buckley-Leverett problem, m = 4.

5.1.6 Remarks

In this Section we numerically tested the performances of the network for one-dimensional scalar
conservation laws. Both qualitative and quantitative analyses validate the model. In particular, the
network is able to perform well for problems which were not in the training set, obtained by varying
the mesh resolution and/or the flux function.
Due to the test case in Subsection 5.1.4, we verified that the best strategy is to use the solution as
input variable, scaled in the reference interval [−1, 1]. The inverse scaling is performed by multiplying
by a local wave speed and a scaling factor. We recall that all the results we showed, except in the
linear advection case, were obtained using the improved scaling based on the solution jump. However,
considering the original factor h, the qualitative results are rather similar, excluding again the linear
advection problem.
We also stress on the fact that, in all the problems, an optimized set of parameters for the classical

5.2. One-dimensional Euler system 63

models was chosen. In other words, a parameter tuning was performed. Thus, even though it may
happen that one standard model provides better results than the ANN for a specific problem, for a
generic set of parameters it is not the case. Thus, if no criterion is given to choose them, we claim that
the ANN is the best technique, since it is parameter-free.
We finally report that all the simulations were run using a value of 0.1 for the CFL constant in equation
(2.18). We recall that its dependence on m is weak, in the sense that it is already taken into account
by the terms m2 and m4 in its definition. Thus, picking an m-independent value does not create
instabilities as the discretization degree is varied.

5.2 One-dimensional Euler system

Beyond different scalar conservation laws, the first natural extension of the previous framework goes
in the direction of systems of equations, with a particular focus on Euler system. As described in
Section 3.4, the adopted strategy is rather simple. Motivated by a reasoning similar to the scalar case,
we consider only the third network strategy presented in Table 3.1, using the density ρ as predicting
variable and scaling with the local wave speed max(|v| + c). On the other hand, the h-scaling still
suffers from the accuracy issue. We can again rely on the ANN as troubled-cell indicator or we modify
the factor by taking into account the solution jump. Here, we adopt the latter approach, unless stated
otherwise.

5.2.1 A smooth problem

As in the scalar case, we first need to validate the standard models, as well as the ANN technique.
Choosing Ω = [0, 1], the initial condition [55] is set as

(ρ, v, p)0 = (ρ∞ +A sin(2πx), v∞, p∞) ,

which is converted in the conserved variables as using the ideal gas law (2.22). Periodic boundary
conditions are applied. Here, we consider ρ∞ = 1, A = 0.5, v∞ = 1, p∞ = 1. The problem turns out to
be a simple advection equation for the density variable, leading to the following exact solution:

(ρ, v, p) = (ρ∞ +A sin(2π(x− v∞t)), v∞, p∞) .

Again, in order to measure the discretization error, we rely on the L2(Ω)-norm at a fixed time T , which
we choose to be equal to T = 0.2. Dealing with multiple variables, we define

ε2 = ‖uh(·, T)− u(·, T)‖2L2(Ω) =
n∑
i=1
‖uh,i(·, T)− ui(·, T)‖2L2(Dk)

=
n∑
i=1

K∑
k=1

(uh,i − ui)TM(uh,i − ui) =
K∑
k=1

(uh − u)TM̃(uh − u),

where we set M̃ = blkdiag({M}ni=1). For the one-dimensional Euler system we have n = 3 equations.
Essentially, the scalar L2(Ω)-norm is computed separately for each conserved variable, and all the
contributions are added together. Since all the equations are discretized with the same polynomial
degree, for the inviscid problem we expect the optimal scaling ε ∼ hm+1, provided that the solution is
smooth enough. We can now show the convergence results for the viscous equation, focusing only on
m = 1 and m = 4 in Tables 5.14 and 5.15 respectively. The behavior for m = 2, 3 is similar and it is
not reported here.

Here, high accuracy is obtained even with the DB model. Indeed, recalling its definition for Euler
system (2.27), the dissipation is proportional to the divergence of the velocity field. Since for this
test case v = v∞ = const, no viscosity is added and the inviscid scheme is retained. This is a general
behavior for Euler equations, where the DB model may outperform the others, especially when weak
compressibility is present. As shown in the following Subsection, issues may arise when contact
discontinuities are present. Concerning the other methods, the comments made for the scalar case are
still valid. In particular, the EV is always able to get a good convergence rate, while the MDH has a

64 Chapter 5. Numerical results

K
Inv DB EV MDH NN

ε p ε p ε p ε p ε p
10 4.1094e−3 - 4.1094e−3 - 1.9135e−1 - 3.1188e−1 - 1.5711e−2 -
20 9.6045e−4 2.10 9.6045e−4 2.10 3.0750e−2 2.64 1.4719e−1 1.08 2.7337e−3 2.52
40 2.3664e−4 2.02 2.3664e−4 2.02 4.6967e−3 2.71 1.5970e−2 3.20 6.9356e−4 1.98
80 5.8947e−5 2.01 5.8947e−5 2.01 6.9346e−4 2.76 5.8947e−5 8.08 1.2840e−4 2.43
160 1.4723e−5 2.00 1.4723e−5 2.00 9.4459e−5 2.88 1.4723e−5 2.00 1.4767e−5 3.12
320 3.6800e−6 2.00 3.6800e−6 2.00 1.2614e−5 2.90 3.6800e−6 2.00 3.6813e−6 2.00

Table 5.14: L2 convergence errors and estimated rate in the inviscid case, using
standard artificial viscosity models and with the ANN model using the improved

scaling. Smooth problem, m = 1.

K
Inv DB EV MDH MDA NN

ε p ε p ε p ε p ε p ε p
10 1.2192e−6 - 1.2192e−6 - 2.7605e−5 - 1.2192e−6 - 1.2192e−6 - 1.2194e−6 -
20 4.6135e−8 4.72 4.6135e−8 4.72 6.0809e−7 5.50 4.6135e−8 4.72 4.6135e−8 4.72 4.6135e−8 4.72
40 1.5494e−9 4.90 1.5494e−9 4.90 1.2528e−8 5.60 1.5494e−9 4.90 1.5494e−9 4.90 1.5494e−9 4.90
80 5.0248e−11 4.94 5.0248e−11 4.94 2.7371e−10 5.52 5.0248e−11 4.94 5.0248e−11 4.94 5.0248e−11 4.94
160 1.5892e−12 4.98 1.5892e−12 4.98 8.9280e−12 4.94 1.5892e−12 4.98 1.5892e−12 4.98 1.5894e−12 4.98

Table 5.15: L2 convergence errors and estimated rate in the inviscid case, using
standard artificial viscosity models and with the ANN model using the improved

scaling. Smooth problem, m = 4.

linear scaling for low degrees and resolutions and goes back to the inviscid scheme for high orders or
sufficiently fine meshes. With the improved scaling, the NN is able to achieve the correct convergence
rate. Note that the magnitude of the discretization error for the inviscid case and the NN model is
essentially the same.

5.2.2 Single waves

We consider now a couple of test cases with discontinuous initial conditions. Both are defined by
assigning a left and a right state which can be connected by a single wave [56]. For both examples, we
consider Ω = [0, 1], K = 200 elements and T = 0.25.
Let us set

(ρ, v, p)0 =
{

(1, 1, 1) if 0 ≤ x ≤ 0.2,
(0.4, 1, 1) if 0.2 < x ≤ 1,

and complete the problem with Dirichlet boundary conditions. Note that both velocity and pressure
are constant and continuous. It can be verified that left and right states can be connected by a single
contact wave, moving with a speed ṡ = v = 1. The exact solution is

(ρ, v, p) =
{

(1, 1, 1) if 0 ≤ x ≤ 0.2 + ṡt,
(0.4, 1, 1) if 0.2 + ṡt < x ≤ 1.

This problem resembles the scalar linear advection equation with a discontinuous initial condition.
Here, to simplify the analysis we focus on the case m = 1. The parameters used for the standard
models are reported in Table 5.16, while the final density profile is plotted in Figure 5.16.

Model Contact Shock
DB cβ = 2, cmax = 1 cβ = 4, cmax = 2
EV cE = 2, cmax = 0.5 cE = 5, cmax = 2.5
MDH cA = 3.2, cκ = 0.5, cmax = 1.2 cA = 3, cκ = 0.5, cmax = 2.5

Table 5.16: Parameter values for the standard artificial viscosity models for the
single wave case.

Here, the DB model adds no dissipation. As in the smooth problem 5.2.1, the reason is that the
velocity variable is constant in space and time. In particular, it is continuous across the contact wave.

5.2. One-dimensional Euler system 65

0 0.2 0.4 0.6 0.8 1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

(a) Overall result.

0.4 0.45 0.5 0.55

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Zoom close to the contact wave.

Figure 5.16: Numerical results for the single contact wave case, m = 1.

Thus, the scheme is equivalent to the inviscid problem, so that Gibbs phenomenon is triggered and
numerical oscillations appear. We note that they are not destructive, in the sense that they do not
force the solution to become unstable. This is a typical behavior of contact waves. Ignoring the DB
method, which fails to smoothen the solution, the other models work similarly among them. The MDH
is the most dissipative model and the contact wave is not well resolved. The EV and NN techniques
behave similarly, with the former being slightly better.
On the other hand, setting

(ρ, v, p)0 =
{

(1, 0.8276, 1) if 0 ≤ x ≤ 0.2,
(0.5313, 0.1, 0.4) if 0.2 < x ≤ 1,

together with Dirichlet boundary conditions, a single shock moves at a speed

ṡ = ρlvl − ρrvr
ρl − ρr

= 0.8276− 0.05313
1− 0.5313 ' 1.65,

leading to an exact solution equal to

(ρ, v, p) =
{

(1, 0.8276, 1) if 0 ≤ x ≤ 0.2 + ṡt,
(0.5313, 0.1, 0.4) if 0.2 + ṡt < x ≤ 1.

The parameters are again reported in Table 5.16, leading to the final density profile plotted in
Figure 5.17.

This single shock problem can be interpreted in a way similar to Burgers equation, thus analogous
comments hold. Here, the DB model performs quite well, since the velocity is discontinuous across the
shock. The EV seems again to be the best one, even if a low-amplitude undershoot is present. The
others perform similarly, with the NN resolving the donwstream profile slightly better than the MDH
and DB. The bumps observed at x ' 0.1 and x ' 0.4 appear to be numerical artefacts that exist for
this problem, and they have also been observed in [56].

5.2.3 Sod problem

Obviously, systems of conservation laws exhibit a higher degree of complexity with respect to scalar
problems. In particular, two different states can be connected by multiple waves, generating intermediate

66 Chapter 5. Numerical results

0 0.2 0.4 0.6 0.8 1

0.5

0.6

0.7

0.8

0.9

1

1.1

(a) Overall result.

0.58 0.59 0.6 0.61 0.62 0.63 0.64

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

(b) Zoom close to the shock wave.

Figure 5.17: Numerical results for the single shock wave case, m = 1.

states [54]. A popular test case is the Sod (shock-tube) problem [46]. The initial state is given by

(ρ, v, p)0 =
{

(1, 0, 1) if 0 ≤ x ≤ 0.5,
(0.125, 1, 0.1) if 0.5 < x ≤ 1,

in the domain Ω = [0, 1], completed with Dirichlet boundary conditions. Three different waves are
generated. A left-moving rarefaction fan, where no dissipation should be added, and right-moving
contact and shock waves. In principle, the contact wave should be smoothed only initially not to
generate oscillations, while for large times no dissipation has to be added. On the other hand, viscosity
should be continuously injected in the region close to the shock. A pseudo-analytical solution is
available, obtained by (numerically) solving a single nonlinear equation [57]. To generate the results,
we consider K = 160 elements, a discretization degree m = 1 and T = 0.2, and the parameters listed
in Table 5.17. The final solution profile for all the conserved variables is reported in Figure 5.18. The
corresponding viscosity profile is shown in Figure 5.19.

Model m = 1
DB cβ = 2, cmax = 1
EV cE = 5, cmax = 1.5

MDH cA = 2.5, cκ = 0.5, cmax = 1.5

Table 5.17: Parameter values for the standard artificial viscosity models for the Sod
problem.

Again, all the models perform similarly. A small overshoot in the profile of the momentum is present
close to the shock, with a comparable amplitude present in all the models. Looking at the temporal
history of the artifical dissipation, we observe that all the models keep track of the shock by adding
high dissipation in that region. At the same time, the viscosity amount close to the contact and the
rarefaction wave is less compared to the one injected where the shock is present. Here, we note that
the DB model adds dissipation in the rarefaction area, which is not highly desirable, since the solution
is smooth there. Moreover, since all the waves start from the same point, it is enough to track the
position of the shock. This is somehow similar to [11], where most of the troubled cells are in the
initial instants. Qualitatively equivalent results are obtained for higher discretization degrees and are
not reported here.

5.2. One-dimensional Euler system 67

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

(a) Overall result for density.

0.62 0.64 0.66 0.68 0.7 0.72 0.74

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

(b) Zoom close to the contact wave.

0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

(c) Zoom close to the shock wave.

0 0.2 0.4 0.6 0.8 1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(d) Overall result for momentum.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

(e) Overall result for energy.

Figure 5.18: Numerical results for the Sod problem, m = 1.

68 Chapter 5. Numerical results

(a) DB (b) EV

(c) MDH (d) NN

Figure 5.19: Temporal history of the artificial viscosity for the Sod problem, m = 1.

5.3. Two-dimensional scalar problems 69

5.2.4 Shu-Osher problem

The next problem we tackle is the Shu-Osher test case [58]. Consider Ω = [−5, 5], K = 200 and
T = 1.8. The initial condition is defined as

(ρ, v, p)0 =
{

(3.857143, 2.629369, 10.333333) if −5 ≤ x ≤ −4,
(1 + 0.5 sin(5x), 0, 1) if −4 < x ≤ 5,

with Dirichlet-Neumann boundary conditions. Combination of smooth and discontinuous data are
present, making this case well suited to test the capabilities to both capture shocks, i.e. numerical
oscillations, and physical oscillations. The results for m = 1, 2, 3, 4 are shown in Figures 5.20, 5.21,
5.22, 5.23 respectively and are obtained with the parameters listed in Table 5.18.

Model m = 1 m = 2 m = 3 m = 4
DB cβ = 0.8, cmax = 0.2 cβ = 0.8, cmax = 0.2 cβ = 0.8, cmax = 0.2 cβ = 0.8, cmax = 0.2
EV cE = 0.5, cmax = 0.2 cE = 0.5, cmax = 0.2 cE = 1.5, cmax = 0.5 cE = 2, cmax = 0.5

MDH cA = 2, cκ = 0.4, cmax = 1 cA = 3, cκ = 0.5, cmax = 1.5 cA = 3, cκ = 0.5, cmax = 1.5 cA = 2, cκ = 0.4, cmax = 0.5
MDA - - cmax = 0.25 cmax = 0.2

Table 5.18: Parameter values for the standard artificial viscosity models for the
Shu-Osher problem.

The NN model shows better solution profiles compared to the MDH and EV ones, while the DB
technique appears to outperform the other methods for all the discretization degrees. Zooming close to
the (physical) oscillations, we note that for m = 1 the resolution is not high enough to capture them,
while, increasing the degree, all the models do not suppress them. Focusing on the region where the
solution deviates from the constant value of 3.857143, some numerical oscillations are present, even
though most of the models are able to reduce their amplitude. Even considering high discretization
degrees, the NN technique is the one with more significant bumps. This can be explained by recalling
that the simulations using standard models have been run using optimized values for the parameters,
designed in a way that such oscillations are fully suppressed. Finally, note that the overall solution
quality improves when m is increased, so that the added dissipation does not destroy the benefits of
choosing higher discretization degrees.
The artificial viscosity profile is shown in Figure 5.24. For simplicity, only the case m = 1 is
reported.

Qualitatively, no significant differences among the models are present. Dissipation is added in the
same spatial regions, with slightly different values.

5.2.5 Remarks

In this Section we observed how the network technique generalizes well to capture discontinuities
even for the Euler system. Compared to scalar problems, it seems that the ANN does not clearly
outperform the standard models, even though the overall solution profile is not significantly different.
Recalling that the results obtained with the classical models are generated with optimized sets of
parameters, using generic values for them, their performances may drop. In this scenario, due to the
presence of problem-dependent parameters, it might happen that the positivity property of density
and/or pressure is lost, leading to non-physical results. We never experienced this issue using the ANN
technique, at least in the reported test cases.
Finally, note that the CFL constant in equation (2.18) has a value of C = 0.2 independently of the
discretization degree.

5.3 Two-dimensional scalar problems

The second extension relates to two-dimensional problems (scalar equations and systems). Since
we already validated the classical artificial viscosity methods and the network capabilities in the
one-dimensional scenario, we can skip part of the details, since most of the comments are still valid.
It is worth recalling that in this context two different strategies are available. The first one relies on

70 Chapter 5. Numerical results

-5 0 5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(a) Overall result for density.

-3.2 -3 -2.8 -2.6 -2.4 -2.2

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

(b) Zoom close to the first peak.

0.5 1 1.5 2 2.5

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

(c) Zoom close to the oscillations.

-5 0 5

-2

0

2

4

6

8

10

12

(d) Overall result for momentum.

-5 0 5

0

5

10

15

20

25

30

35

40

45

(e) Overall result for energy.

Figure 5.20: Numerical results for the Shu-Osher problem, m = 1.

5.3. Two-dimensional scalar problems 71

-5 0 5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(a) Overall result for density.

-2.8 -2.7 -2.6 -2.5 -2.4 -2.3

3.6

3.7

3.8

3.9

4

4.1

4.2

(b) Zoom close to the first peak.

1 1.5 2 2.5

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

(c) Zoom close to oscillations.

-5 0 5

-2

0

2

4

6

8

10

12

(d) Overall result for momentum.

-5 0 5

0

5

10

15

20

25

30

35

40

45

(e) Overall result for energy.

Figure 5.21: Numerical results for the Shu-Osher problem, m = 2.

72 Chapter 5. Numerical results

-5 0 5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(a) Overall result for density.

-2.9 -2.8 -2.7 -2.6 -2.5 -2.4 -2.3 -2.2 -2.1 -2

3.6

3.7

3.8

3.9

4

4.1

4.2

(b) Zoom close to the first peak.

0.5 1 1.5 2 2.5

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

(c) Zoom close to oscillations.

-5 0 5

-2

0

2

4

6

8

10

12

(d) Overall result for momentum.

-5 0 5

0

5

10

15

20

25

30

35

40

45

(e) Overall result for energy.

Figure 5.22: Numerical results for the Shu-Osher problem, m = 3.

5.3. Two-dimensional scalar problems 73

-5 0 5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(a) Overall result for density.

-3 -2.9 -2.8 -2.7 -2.6 -2.5 -2.4 -2.3 -2.2 -2.1

3.6

3.7

3.8

3.9

4

4.1

4.2

(b) Zoom close to the first peak.

0.5 1 1.5 2 2.5

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

(c) Zoom close to oscillations.

-5 0 5

-2

0

2

4

6

8

10

12

(d) Overall result for momentum.

-5 0 5

0

5

10

15

20

25

30

35

40

45

(e) Overall result for energy.

Figure 5.23: Numerical results for the Shu-Osher problem, m = 4.

74 Chapter 5. Numerical results

(a) DB (b) EV

(c) MDH (d) NN

Figure 5.24: Temporal history of the artificial viscosity for the Shu-Osher problem,
m = 1.

5.3. Two-dimensional scalar problems 75

the one-dimensional ANN, estimating a different coefficient along each edge of a given triangle. The
second one is based on a two-dimensional network. Again, let us start with scalar equations.

5.3.1 A smooth problem

The smooth problem we consider here is the two-dimensional extension of the linear advection equation.
Let us pick a constant transport field, say β = (βx, βy) = (1, 1). The computational domain is
Ω = [0, 1]2, whereas the problem is completed by assigning the initial condition

u0(x, y) = 1 + sin(2πx) sin(2πy),

periodic boundary conditions and a final time T = 0.2. The exact solution is simply given by

u(x, y, t) = u0(x− βxt, y − βyt) = 1 + sin(2π(x− t)) sin(2π(y − t)),

and the discretization error ε is computed as in the one-dimensional case, since the definition of the
mass matrix is not (formally) altered. The convergence results are reported in Tables 5.19 and 5.20
for degrees m = 1 and m = 4 respectively, skipping the details for m = 2 and m = 3. They are
generated using a structured mesh built starting from a mesh of quadrilaterals (in particular squares),
and separating each element into two triangles. Supposing that each domain edge is divided into N
elements, we have K = 2N2 total triangles, as reported in Figure 5.25.

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

Computational mesh

Figure 5.25: A graphical representation of the structured mesh we employ in this
work.

N
Inviscid DB EV MDH NN1D NN2D
ε p ε p ε p ε p ε p ε p

10 1.8672e−2 - 3.4792e−1 - 3.0321e−1 - 4.1350e−1 - 1.6452e−1 - 1.1511e−1 -
20 4.5400e−3 2.04 2.1094e−1 0.72 1.1735e−1 1.37 2.9138e−1 0.51 4.8747e−2 1.75 2.9692e−2 1.95
40 1.1194e−3 2.02 8.0485e−2 1.39 1.3438e−2 3.13 1.5561e−2 0.91 1.1152e−2 2.13 6.1154e−3 2.28
80 2.7864e−4 2.01 2.3854e−2 1.75 1.7744e−3 2.92 8.1373e−2 0.94 2.8707e−3 1.96 1.0747e−3 2.51
160 6.9578e−5 2.00 6.3178e−3 1.92 2.3654e−4 2.91 4.1920e−2 0.96 5.3736e−4 2.42 1.6979e−4 2.66

Table 5.19: L2 convergence errors and estimated rate in the inviscid case and using
standard artificial viscosity models and with both the 1D and 2D ANNs. Linear

advection problem, m = 1.

76 Chapter 5. Numerical results

N
Inviscid DB EV MDH MDA NN1D NN2D
ε p ε p ε p ε p ε p ε p ε p

10 1.1961e−5 - 8.0957e−2 - 4.2204e−3 - 1.3695e−2 - 1.1961e−5 - 2.5591e−5 - 1.2135e−5 -
20 3.5969e−7 5.06 2.3887e−2 1.76 1.2057e−5 8.45 3.5969e−7 15.22 3.5969e−7 5.06 4.3844e−7 5.37 3.6035e−7 5.07
40 1.0980e−8 5.03 6.3190e−3 1.92 2.1698e−7 5.80 1.0980e−8 5.03 1.0980e−8 5.03 1.8223e−8 5.29 1.0989e−8 5.04
80 3.4094e−10 5.01 1.6049e−3 1.98 3.9194e−9 5.79 3.4094e−10 5.01 3.4094e−8 5.01 3.4149e−10 5.04 3.4107e−10 5.00

Table 5.20: L2 convergence errors and estimated rate in the inviscid case and using
standard artificial viscosity models and with both the 1D and 2D ANNs. Linear

advection problem, m = 4.

Essentially, all the results are coherent with their one-dimensional counterpart and meet our expectations.
We refer to Subsection 5.1.1 for a more detailed comment. We just observe that both the 1D and
the 2D ANNs (using the versions with the H-scaling) give low errors and guarantee optimal accuracy
rates.

5.3.2 2D Burgers equation: a Riemann problem

We can now switch to the two-dimensional extension of Burgers equation, choosing fx = fy = u2/2.
The physical domain we consider is Ω = [0, 1]2, whereas the initial condition is defined as

u0(x, y) =

−1 if 0.5 < x < 1, 0.5 < y < 1,
−0.2 if 0 < x < 0.5, 0.5 < y < 1,
0.5 if 0 < x < 0.5, 0 < y < 0.5,
0.8 if 0.5 < x < 1, 0 < y < 0.5.

Compared to the one-dimensional case, here discontinuities are present even at the physical boundaries.
To avoid spurious effects from the boundary itself, we extend the domain to Ω = [−1, 2]2, we apply
periodic boundary conditions and we analyze the solution in the physical domain only. A pictorial
representation is provided in Figure 5.26. Only shocks and rarefaction waves are present in the problem,

0 1

−1 2

0 1

Figure 5.26: A graphical representation of the domain extension. The blue lines
separate the four sectors in which the domain is divided into.

as in its one-dimensional counterpart. An exact solution is also available [18]. For our simulations,
we divide each edge into N = 40 · 3 elements, corresponding to K = 3200 triangles in the physical
domain. The numerical results at T = 0.25, generated with the set of parameters listed in Table 5.21,
are reported in Figure 5.27 with degree m = 4. For lower degrees, similar comments hold.

Here, the worst model is the DB, which is clearly too dissipative close to the shocks. The MDA, on the
other hand, appears to be the least dissipative, since some wiggles are present close to discontinuities.
All the other models are similar. The one-dimensional neural network seems to be slightly more

5.3. Two-dimensional scalar problems 77

Model m = 4
DB cβ = 2, cmax = 1
EV cE = 1, cmax = 0.25
MDH cA = 2, cκ = 0.4, cmax = 0.5
MDA cmax = 0.8

Table 5.21: Parameter values for the standard artificial viscosity models for 2D
Riemann problem.

(a) DB (b) EV

(c) MDH (d) MDA

(e) NN1D (f) NN2D

Figure 5.27: Numerical results for the 2D Riemann problem, m = 4.

78 Chapter 5. Numerical results

dissipative than its two-dimensional counterpart, and it looks similar to the EV. Since the 1D network
does not take into account the internal degrees of freedom and the final viscosity coefficient is computed
as a weighted average of the edge values, this smoother result is not unexpected. To finalize the
analysis, in Figure 5.28 we report the spatial infinity norm of the artificial viscosity. Except for the
highly-dissipative DB model, the maximum viscosity added by the other models is comparable.

0 0.05 0.1 0.15 0.2 0.25

t

1

2

3

4

5

6

7

8

9

10

11

||
µ
||
L
∞
(Ω

)

×10
-3 Infinity norm of the artificial viscosity

DB
EV
MDH
MDA
NN1D
NN2D

Figure 5.28: Infinity norm of the artificial viscosity with respect to time, 2D Riemann
problem, m = 4.

In all the cases, the CFL constant was set to C = 0.8.

5.3.3 KPP rotating wave problem

We now switch to a conservation law which has non-convex x and y components of the flux function.
More precisely they are set equal to fx = sin(u) and fy = cos(u) respectively. Here Ω = [−2, 2],
K = 2 · 1202 and T = 1. The initial condition is

u0(x, y) =
{

3.5π if x2 + y2 < 1,
0.25π otherwise,

and periodic boundary conditions are considered. This is a rather challenging test case, since a two-
dimensional composite wave structure is present [18]. In Figure 5.29 we report the results, generated
with the parameters listed in Table 5.22. Finally, the maximum artificial viscosity as a function of
time is shown in Figure 5.30.

Model m = 4
DB cβ = 2, cmax = 1
EV cE = 1, cmax = 0.25

MDH cA = 2, cκ = 0.4, cmax = 0.5
MDA cmax = 0.8

Table 5.22: Parameter values for the standard artificial viscosity models for the KPP
problem.

It appears that that the best models are the DB, EV and the 2D ANN ones. The decay-based
techniques are not well suited for such a problem, since a lot of wiggles are present. This phenomenon
is present independently of the chosen parameter values. Even the 1D network exhibits some spurious
oscillations, yet they are less evident compared to the MDH and MDA models. The artificial viscosity
profile confirms our reasoning. The 2D NN adds more dissipation in comparison with the 1D version,
which results in a smoother solution profile. However, the time evolution for all the models looks
rather similar. The CFL constant was set to C = 0.8.

5.3. Two-dimensional scalar problems 79

(a) DB (b) EV

(c) MDH (d) MDA

(e) NN1D (f) NN2D

Figure 5.29: Numerical results for the KPP problem, m = 4.

80 Chapter 5. Numerical results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

0

0.005

0.01

0.015

||
µ
||
L
∞
(Ω

)

Infinity norm of the artificial viscosity

DB
EV
MDH
MDA
NN1D
NN2D

Figure 5.30: Infinity norm of the artificial viscosity with respect to time, KPP
problem, m = 4.

5.4 Two-dimensional Euler system

In this Section we focus on the two-dimensional Euler system. For practical reasons, we skip the
convergence analysis, which turned out to be very similar to the one-dimensional one. In particular,
both the 1D and the 2D networks are able to achieve optimal convergence rates. Instead, we prefer
to focus on two-dimensional Riemann problems, whose detailed description is provided in [47, 48].
Different combinations of rarefaction, shock and contact waves lead to at least 15 different admissible
configurations.
The physical domain is again Ω = [0, 1]2, which is enlarged to Ω = [−1, 2]2 to avoid any effect from
the boundaries (see Subsection 5.3.2). Periodic boundary conditions are applied. Then, we divide
each edge into N = 40 · 3 intervals. Each configuration is determined by cutting the domain in four
equal parts, in which a different initial value for u = (ρ, ρvx, ρvy, E) is assigned. As it was done in the
one-dimensional scenario, we instead assign conditions for (ρ, vx, vy, p), that are again converted in the
conserved variables using the ideal gas law (2.24).
The results presented in this Section are obtained using different CFL constants as m is varied. In
particular, C = 0.2, 0.6, 0.6, 1.5 are set for m = 1, 2, 3, 4 respectively. For the sake of simplicity, we
report the contour lines for the density variable only. Their number is always set to 30.

5.4.1 Riemann problem case 4

In this scenario, only shock waves are present. We set T = 0.25 and

(ρ, vx, vy, p)0 =

(1.1, 0, 0, 1.1) if 0.5 < x < 1, 0.5 < y < 1,
(0.5065, 0.8939, 0, 0.35) if 0 < x < 0.5, 0.5 < y < 1,
(1.1, 0.8939, 0.8939, 1.1) if 0 < x < 0.5, 0 < y < 0.5,
(0.5065, 0, 0.8939, 0.35) if 0.5 < x < 1, 0 < y < 0.5.

The results, generated with the set of parameters listed in Table 5.23, are reported in Figure 5.31 for a
degree m = 4 only.

Model m = 4
DB cβ = 2, cmax = 0.5
EV cE = 1, cmax = 0.25

MDH cA = 2.5, cκ = 0.2, cmax = 0.5
MDA cmax = 0.5

Table 5.23: Parameter values for the standard artificial viscosity models for Riemann
problem (case 4), Euler system.

5.4. Two-dimensional Euler system 81

(a) DB (b) EV

(c) MDH (d) MDA

(e) NN1D (f) NN2D

Figure 5.31: Numerical results for the 2D Riemann problem, configuration 4, m = 4.

82 Chapter 5. Numerical results

Again, the DB is the most dissipative model and the MDA the least dissipative one. Both of them are
not acceptable models in this framework. The best technique seems to be the EV, since the contour
lines appear more smoothed and less wiggles are present. Both the NN-based profiles look rather
similar, with the 1D version exhibiting a slightly more oscillatory behavior.

5.4.2 Riemann problem case 12

This problem is characterized by the presence of both contact waves and shocks. We set T = 0.25
and

(ρ, vx, vy, p)0 =

(0.5313, 0, 0, 0.4) if 0.5 < x < 1, 0.5 < y < 1,
(1, 0.7276, 0, 1) if 0 < x < 0.5, 0.5 < y < 1,
(0.8, 0, 0, 1) if 0 < x < 0.5, 0 < y < 0.5,
(1, 0, 0.7276, 1) if 0.5 < x < 1, 0 < y < 0.5.

Since it is a rather challenging problem, we choose to provide the results for all the discretization
degrees. They are obtained with parameters listed in Table 5.24, and are reported in Figures 5.32,
5.33, 5.34 and 5.35 for degrees m = 1, 2, 3, 4 respectively.

Model m = 1 m = 2 m = 3 m = 4
DB cβ = 2, cmax = 0.8 cβ = 2, cmax = 0.8 cβ = 2, cmax = 0.8 cβ = 2, cmax = 0.5
EV cE = 1.5, cmax = 1 cE = 1, cmax = 1 cE = 1, cmax = 1 cE = 1, cmax = 0.5
MDH cA = 2.5, cκ = 0.2, cmax = 1.2 cA = 2.5, cκ = 0.2, cmax = 1.2 cA = 2.5, cκ = 0.2, cmax = 1.2 cA = 2.5, cκ = 0.2, cmax = 1.2
MDA - - cmax = 0.5 cmax = 0.5

Table 5.24: Parameter values for the standard artificial viscosity models for Riemann
problem (case 12), Euler system.

A simple yet effective way to show the robustness of a model is to evaluate how the fine structure
close to (x, y) = (0.5, 0.5) is captured. For low degrees, the resolution is too low to fully resolve it,
with all the models smoothing the solution too much around the center of the domain. Increasing the
discretization degrees, the results improve a lot. The MDA model is very dissipative for m = 3, while
the contact waves seem to show some non-physical oscillations for m = 4. The DB model is rather
dissipative, as expected. The MDH and EV models provide good results, as well as both the proposed
NN-based techniques. In particular, the solutions obtained with the 2D networks seems to be the best
among all the models, with this trend holding for all the considered degrees.

5.4.3 Riemann problem case 6

The final test exhibits four contact waves. We set T = 0.3 and

(ρ, vx, vy, p)0 =

(1, 0.75,−0.5, 1) if 0.5 < x < 1, 0.5 < y < 1,
(2, 0.75, 0.5, 1) if 0 < x < 0.5, 0.5 < y < 1,
(1,−0.75, 0.5, 1) if 0 < x < 0.5, 0 < y < 0.5,
(3,−0.75,−0.5, 1) if 0.5 < x < 1, 0 < y < 0.5.

The results, generated with the set of parameters listed in Table 5.25, are reported in Figure 5.36 for a
degree m = 4 only.

Model m = 4
DB cβ = 2, cmax = 0.5
EV cE = 1, cmax = 0.25

MDH cA = 2.5, cκ = 0.2, cmax = 0.5
MDA cmax = 0.5

Table 5.25: Parameter values for the standard artificial viscosity models for Riemann
problem (case 6), Euler system.

5.4. Two-dimensional Euler system 83

(a) DB (b) EV

(c) MDH

(d) NN1D (e) NN2D

Figure 5.32: Numerical results for the 2D Riemann problem, configuration 12, m = 1.

84 Chapter 5. Numerical results

(a) DB (b) EV

(c) MDH

(d) NN1D (e) NN2D

Figure 5.33: Numerical results for the 2D Riemann problem, configuration 12, m = 2.

5.4. Two-dimensional Euler system 85

(a) DB (b) EV

(c) MDH (d) MDA

(e) NN1D (f) NN2D

Figure 5.34: Numerical results for the 2D Riemann problem, configuration 12, m = 3.

86 Chapter 5. Numerical results

(a) DB (b) EV

(c) MDH (d) MDA

(e) NN1D (f) NN2D

Figure 5.35: Numerical results for the 2D Riemann problem, configuration 12, m = 4.

5.4. Two-dimensional Euler system 87

(a) DB (b) EV

(c) MDH (d) MDA

(e) NN1D (f) NN2D

Figure 5.36: Numerical results for the 2D Riemann problem, configuration 6, m = 4.

88 Chapter 5. Numerical results

Unlike its one-dimensional counterpart consisting of a single contact wave, the DB adds dissipation
in the problem. It happens because the velocity variable does not stay constant in time, so that
dissipation is injected, at least after the initial states. The EV appears to provide the smoothest
solution. This could be a parameter issue, in the sense that there might be a better set of parameters
in a range we did not explore, but it is coherent with [14], where the EV model turned out to be quite
dissipative for complex flow structures. All the other models seems to provide similar results, with the
networks performing well even with contact waves only. The 2D NN appears to be better than the 1D
one, and it turns out to be the best model for this test case.

5.5 Performance analysis

In this Section, we provide more detailed comments on the performances of the proposed methods,
highlighting strengths and weaknesses of the techniques. We choose to keep the analysis separated
from the numerical results in order not to deviate from the main goal of the previous Sections, i.e.
showing the capabilities of the schemes in terms of accuracy and shock-capturing. Moreover, this is
not meant to be a fully rigorous analysis, which is left as a future work. Firstly, we make a few general
comments, while a couple of quantitative results is shown afterwards.
The computational cost per temporal iteration is rather similar among all the considered models.
This fact can be explained due to a couple of arguments. Firstly, the viscosity estimation procedure
is similar among most of the models, aiming to compute a local dissipation value. The differences
among the techniques do not play a significant role, and cache effects might contribute to reduce such
discrepancies. Secondly, the computational cost required by the assembly of the right-hand-side F
in (2.16) is much larger than the one required by the viscosity estimation procedure. When dealing
with systems of conservation laws, this phenomenon is enhanced. Moreover, the computation of the
artificial viscosity is carried out once per time iteration, while the right-hand-side has to be assembled
five times, since a five-stage time-advancing scheme is employed (see Algorithm 4.1).
On the other hand, the total execution time can exhibit significant variations. Indeed, we recall that
the time step is chosen adaptively according to (2.18). Thus, different viscosity values have an impact
on ∆t, consequently altering the number of iterations and the computational time. Qualitatively, large
viscosities result in a large number of iterations, even though a trade-off between µ and the maximum
wave speed is present. The variations in the elapsed time become more evident for two-dimensional
problems, where the solution exhibits more complex features.
Now, we provide more a quantitative analysis. For one-dimensional problems, the selected test case is
the Shu-Osher problem presented in Subsection 5.2.4, to which we refer for the numerical setup. Table
5.26 reports the computational times, number of iterations and the time per iteration for different
models and discretization degrees.

Model m = 1 m = 2 m = 3 m = 4
Time Iter TpI Time Iter TpI Time Iter TpI Time Iter TpI

DB 3.6271 850 4.27e−3 13.0587 3439 3.80e−3 28.4422 7763 3.66e−3 55.3077 13825 4.00e−3
EV 3.1480 839 3.75e−3 14.4412 3382 4.27e−3 31.5348 7676 4.11e−3 60.0911 13688 4.39e−3
MDH 3.3275 843 3.95e−3 12.4094 3393 3.65e−3 28.5726 7696 3.71e−3 55.0017 13722 4.01e−3
MDA - - - - - - 30.1544 7593 3.97e−3 58.1663 13763 4.23e−3
NN 4.1515 843 4.92e−3 14.3815 3408 4.22e−3 30.9583 7703 4.02e−3 60.1432 13735 4.38e−3

Table 5.26: Computational times, iterations and time per iteration for the Shu-Osher
problem. Both the total time and the time per iteration are expressed in seconds.

Essentially, the time per iteration can be considered constant for all the models and degrees. From one
side, the slight differences among the models are explained due to the different techniques employed
to estimate the viscosity. On the other hand, increasing the degree m one may expect the time
per iteration to increase. This is not the case, possibly due to memory optimizations. The total
computational time and iterations are essentially independent of the chosen model. In most of the
cases, the MDH model appears to be the fastest.
A prototype problem for two-dimensional cases is the Riemann problem for Euler system (configuration
12), described in Subsection 5.4.2. The results of the performance analysis are reported in Table
5.27.

5.5. Performance analysis 89

Model m = 1 m = 2 m = 3 m = 4
Time Iter TpI Time Iter TpI Time Iter TpI Time Iter TpI

DB 393.49 258 1.52e0 927.33 416 2.23e0 3811.26 1231 3.10e0 6384.41 1482 4.31e0
EV 267.87 174 1.54e0 516.42 228 2.27e0 1885.91 597 3.16e0 2937.97 696 4.23e0
MDH 280.82 186 1.51e0 721.20 331 2.18e0 3542.61 1162 3.05e0 6482.58 1516 4.27e0
MDA - - - - - - 3102.84 1000 3.10e0 6262.62 1470 4.26e0
NN1D 260.27 165 1.58e0 496.40 222 2.24e0 2094.54 672 3.12e0 3179.92 744 4.27e0
NN2D 236.26 152 1.55e0 476.21 213 2.24e0 2013.19 648 3.11e0 3522.84 822 4.29e0

Table 5.27: Computational times, iterations and time per iteration for the 2D
Riemann problem (configuration 12). Both the total time and the time per iteration

are expressed in seconds.

The time per iteration is constant among the models, while it clearly increases with m. Since more
degrees of freedom are present, such a behavior is expected. The total computational time is very
different. The DB appears to be the slowest one, possibly due to the impact of high dissipation values
on the time step. The MDH and MDA seem to become less efficient for high orders. Both the 1D
and the 2D NN-based techniques are computationally fast, with performances comparable to the EV
model.
To sum up, we claim that the new technique does not negatively impact on the computational cost. The
performances per iteration are comparable with most of the models, with no significant overhead caused
by the application of the neural networks. Moreover, the new model is a parameter-free method, so that
a possibly larger computational cost is compensated by eliminating the tuning of the parameters. A
more extensive performance evalutation would consists of choosing a constant, i.e. non-adaptive, time
step, fixed a priori in compliance with condition (2.18) and independent of the viscosity model. Based
on our results, in this scenario we expect the elapsed time to be similar among the models.

91

Chapter 6

Conclusion

In this work we addressed the problem of estimating an optimal artificial viscosity amount in high-order
numerical solvers for conservation laws. The focus was given to the Runge-Kutta Discontinuous
Galerkin method. An overview of some classical artificial viscosity models was first provided. Despite
showing great potential, they suffer from the dependence on empirical parameters. Since no optimal
rule is available to obtain the best values, their tuning has to be done in a problem-dependent fashion,
creating additional computational cost.
Thus, we proposed a new approach based on artificial neural networks. The multilayer perceptron
model was the chosen architecture. The networks have been trained in an offline time-consuming
process by means of a robust dataset, constructed by collecting data from simulations run using
the classical models with optimal parameters. The online evaluation was then performed inside the
Runge-Kutta time-advancing loop. A few versions of the MLP, which mainly differ in the choice of
input and output variables, have been proposed, highlighting their potential and drawbacks. Coherently
with our expectations, we found that the best strategy is to estimate a scaled viscosity coefficient using
a suitable scaled scalar quantity as predictor. An inverse scaling is carried out by multiplying with a
local wave speed and a factor which takes into account the solution jump and the grid spacing. With
this choice, we are able to predict the viscosity based on the solution features, keeping a consistent
behavior in terms of scaling and guaranteeing high-order accuracy. Moreover, such a technique is
parameter-free and acts as a black box, i.e. a very general tool to estimate the required amount of
dissipation.
A significant part of this work was devoted to demonstrate the capabilities of the new model. We
showed that, despite training the NN using rather simple problems, it can be applied to more general
contexts (different mesh resolutions, non-convex flux functions, . . .). We benchmarked the models
using smooth problems, observing that the DB and the MDH models might fail to get high-order
accuracy, while the NN often guarantees an optimal convergence rate. However, more emphasis was
given to non-smooth cases, in order to present the shock-capturing properties of the model. The NN
technique guarantees results comparable to (or better than) the optimal model among the classical
ones, and does not suffer from issues that might be present with standard models. For instance, the
DB might fail in problems with a constant velocity field, and the EV model can be too dissipative
when complex structures are present. A further advantage of the new method lies in the fact that,
unlike the parameter-dependent techniques, positivity constraints in Euler system were always satisfied.
A performance analysis was also carried out, showing that no computational overheads are present
when applying the neural networks. The cost appears to comparable with other models.
Thus, we conclude that the trade-off among accuracy in the results, universality of the method and
computational cost clearly goes in the direction of the NN-based models.
Among the possible extensions to this work, we highlight three possible directions. The first relates
to port it to three-dimensional problems. No significant issues should arise switching from 2D to 3D
cases, and we believe that the proposed technique could be easily extended. The second involves
a generalization to polynomial orders greater than four. Again, the implementation should not
substantially vary, although the network hyperparameters might have to be tuned again. Finally, a
more extensive performance analysis can be carried out, starting from the presented results.

93

Bibliography

[1] Z. J. Wang, K. Fidkowski, R. Abgrall, F. Bassi, D. Caraeni, A. Cary, H. Deconinck, R. Hartmann,
K. Hillewaert, H. T. Huynh, et al. High-order CFD methods: Current status and perspective.
2013. arXiv: fld.1 [DOI: 10.1002].

[2] J. S. Hesthaven, T. Warburton. Nodal discontinuous Galerkin methods. Vol. 54 TS - C. 2008.
[3] B. L. Rozhdestvenskii. “Discontinuous solutions of hyperbolic systems of quasilinear equations”.

Russ. Math. Surv. 15.53 (1960).
[4] D. Gottlieb, C.-W. Shu. “On the Gibbs Phenomenon and Its Resolution”. SIAM Review 39.4

(1997), pp. 644–668.
[5] J. S. Hesthaven. Numerical Methods for Conservation Laws: From Analysis to Algorithms. SIAM

Publishing, 2018, p. 555.
[6] B. Cockburn, C.-W. Shu. “The Runge–Kutta Discontinuous Galerkin Method for Conservation

Laws V”. Journal of Computational Physics 141.2 (1998), pp. 199–224. arXiv: arXiv:1011.
1669v3.

[7] C.-W. Shu. “Discontinuous Galerkin Methods: General Approach and Stability”. Numerical
solution of partial differential equations (2009), pp. 149–202.

[8] B. Cockburn, S. Y. Lin, C. W. Shu. “TVB runge-kutta local projection discontinuous galerkin finite
element method for conservation laws III: One-dimensional systems”. Journal of Computational
Physics 84.1 (1989), pp. 90–113.

[9] J. Qiu, C.-W. Shu. “Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters”.
SIAM Journal on Scientific Computing 26.3 (2005), pp. 907–929.

[10] J. Zhu, J. Qiu, C. W. Shu, M. Dumbser. “Runge-Kutta discontinuous Galerkin method using
WENO limiters II: Unstructured meshes”. Journal of Computational Physics 227.9 (2008),
pp. 4330–4353.

[11] D. Ray, J. S. Hesthaven. “An artificial neural network as a troubled-cell indicator”. Journal of
Computational Physics 367 (2018), pp. 166–191.

[12] A. W. Cook, W. H. Cabot. “Hyperviscosity for shock-turbulence interactions”. Journal of
Computational Physics 203.2 (2005), pp. 379–385.

[13] A. Mani, J. Larsson, P. Moin. “Suitability of artificial bulk viscosity for large-eddy simulation of
turbulent flows with shocks”. Journal of Computational Physics 228.19 (2009), pp. 7368–7374.

[14] J. Yu, J. S. Hesthaven. “A comparative study of shock capturing models for the discontinuous
Galerkin method”. EPFL-Article 231188 (2017), pp. 1–42.

[15] D. Moro, N. C. Nguyen, J. Peraire. “Dilation-based shock capturing for high-order methods”.
International Journal for Numerical Methods in Fluids 82.7 (2016), pp. 398–416.

[16] P.-O. Persson, J. Peraire. “Sub-Cell Shock Capturing for Discontinuous Galerkin Methods”. 44th
AIAA Aerospace Sciences Meeting and Exhibit. 2006.

[17] A. Klöckner, T. Warburton, J. S. Hesthaven. “Viscous Shock Capturing in a Time-Explicit
Discontinuous Galerkin Method”. Mathematical Modeling of Natural Phenomena 6.3 (2011),
pp. 57–83. arXiv: 1102.3190.

[18] J. L. Guermond, R. Pasquetti, B. Popov. “Entropy viscosity method for nonlinear conservation
laws”. Journal of Computational Physics 230.11 (2011), pp. 4248–4267.

[19] V. Zingan, J. L. Guermond, J. Morel, B. Popov. “Implementation of the entropy viscosity
method with the discontinuous Galerkin method”. Computer Methods in Applied Mechanics and
Engineering 253 (2013), pp. 479–490.

[20] R. Hartmann. “Adaptive discontinuous Galerkin methods with shock-capturing for the compress-
ible NavierStokes equations”. International Journal for Numerical Methods in Fluids 51.9-10
(2006), pp. 1131–1156.

https://arxiv.org/abs/fld.1
https://arxiv.org/abs/arXiv:1011.1669v3
https://arxiv.org/abs/arXiv:1011.1669v3
https://arxiv.org/abs/1102.3190

94 Bibliography

[21] F. Bassi, A. Crivellini, A. Ghidoni, S. Rebay. “High-order discontinuous Galerkin discretization
of transonic turbulent flows”. 47th AIAA Aerospace Sciences Meeting including the New Horizons
Forum and Aerospace Exposition January (2009).

[22] G. E. Barter, D. L. Darmofal. “Shock capturing with PDE-based artificial viscosity for DGFEM:
Part I. Formulation”. Journal of Computational Physics 229.5 (2010), pp. 1810–1827.

[23] S. Haykin. “A comprehensive foundation”. Neural Networks 2.2004 (2004), p. 41. arXiv: arXiv:
1312.6199v4.

[24] K. Rudd, S. Ferrari. “A constrained integration (CINT) approach to solving partial differential
equations using artificial neural networks”. Neurocomputing 155 (2015), pp. 277–285.

[25] J. Hesthaven, S. Ubbiali. “Non-intrusive reduced order modeling of nonlinear problems using
neural networks”. Journal of Computational Physics 363 (2018), pp. 55–78.

[26] G. Cybenko. Continuous Valued Neural Networks with Two Hidden Layers are Sufficient. Tech.
rep. Department of Computer Science, Tufts University, 1988.

[27] G. Cybenko. “Approximations by superpositions of sigmoidal functions”. Approximation Theory
and its Applications 9.3 (1989), pp. 17–28.

[28] A. Quarteroni, R. Sacco, F. Saleri. Numerical Mathematics. 2007, p. 655.
[29] M. H. Carpenter, a. Kennedy. “Fourth-Order Kutta Schemes”. Nasa Technical Memorandum

109112 (1994), pp. 1–26.
[30] J. S. Hesthaven. “From Electrostatics to Almost Optimal Nodal Sets for Polynomial Interpolation

in a Simplex”. SIAM Journal on Numerical Analysis 35.2 (1998), pp. 655–676.
[31] R. J. LeVeque. Finite Volume Methods for Hyperbolic Problems. 2002, pp. 129–138. arXiv:

9809069v1 [arXiv:gr-qc].
[32] http://www.cse.psu.edu/~rtc12/CSE486/lecture05_6pp.pdf. [Online; accessed 29-Jun-

2018].
[33] http://www2.lawrence.edu/fast/GREGGJ/Math400/Section_12_5.pdf. [Online; accessed

22-May-2018].
[34] C. M. Dafermos. Hyperbolic Conservation Laws in Continuum Physics. Springer-Verlag Berlin

Heidelberg, 2010.
[35] D. Kriesel. A Brief Introduction to Neural Networks. 2007. arXiv: arXiv:1011.1669v3.
[36] I. Goodfellow, Y. Bengio, A. Courville. Deep Learning. MIT Press, 2016.
[37] https://www.robertoreif.com/blog/2017/12/16/importance-of-feature-scaling-in-

data-modeling-part-1-h8nla. [Online; accessed 03-Jul-2018].
[38] A. Krogh, J. A. Hertz. “A Simple Weight Decay Can Improve Generalization”. Advances in

Neural Information Processing Systems 4 (1992), pp. 950–957.
[39] A. L. Maas, A. Y. Hannun, A. Y. Ng. “Rectifier Nonlinearities Improve Neural Network Acoustic

Models”. Proceedings of the 30 th International Conference on Machine Learning 28 (2013), p. 6.
[40] C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, R. Garcia. “Incorporating second-order functional

knowledge for better option pricing”. Advances in Neural Information Processing Systems January
2002 (2001), pp. 472–478.

[41] https://en.wikipedia.org/wiki/Rectifier_(neural_networks). [Online; accessed 30-May-
2018].

[42] https://www.quora.com/What- are- hyperparameters- in- machine- learning. [Online;
accessed 04-Jul-2018].

[43] D. Kingma, J. Ba. “Adam: a method for stochastic optimization”. arXiv:1412.6980 (2014),
pp. 1–13. arXiv: 1412.6980.

[44] B. Cockburn, C.-W. Shu. “TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite
Element Method for Conservation Laws II: General Framework”. Mathematics of Computation
52.186 (1989), p. 411.

[45] J. Qiu, C.-W. Shu. “A Comparison of Troubled-Cell Indicators for Runge-Kutta Discontinuous
Galerkin Methods Using Weighted Essentially Nonoscillatory Limiters”. SIAM Journal on
Scientific Computing 27.3 (2005), pp. 995–1013.

[46] G. A. Sod. “A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic
Conservation Laws”. Journal of Computational Physics 27 (1978), pp. 1–31.

[47] A. Kurganov, E. Tadmor. “Solution of Two-dimensional Riemann Problems for Gas Dynamics
without Riemann Problem Solvers”. Numerical Methods for Partial Differential Equations 18.5
(2002), pp. 584–608.

[48] C. W. Schulz-Rinne. “Classification of the Riemann problem for two-dimensional gas dynamics”.
SIAM J. Math. Anal. 24.1 (1993), pp. 76–88.

https://arxiv.org/abs/arXiv:1312.6199v4
https://arxiv.org/abs/arXiv:1312.6199v4
https://arxiv.org/abs/9809069v1
http://www.cse.psu.edu/~rtc12/CSE486/lecture05_6pp.pdf
http://www2.lawrence.edu/fast/GREGGJ/Math400/Section_12_5.pdf
https://arxiv.org/abs/arXiv:1011.1669v3
https://www.robertoreif.com/blog/2017/12/16/importance-of-feature-scaling-in-data-modeling-part-1-h8nla
https://www.robertoreif.com/blog/2017/12/16/importance-of-feature-scaling-in-data-modeling-part-1-h8nla
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://www.quora.com/What-are-hyperparameters-in-machine-learning
https://arxiv.org/abs/1412.6980

Bibliography 95

[49] A. Quarteroni. Numerical Models for Differential Problems. Springer, 2014.
[50] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. Corrado, A. Davis, J. Dean,

M. Devin, et al. “TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
Systems”. None 1.212 (2015), p. 19. arXiv: 1603.04467.

[51] M. Bartholomew-Biggs, S. Brown, B. Christianson, L. Dixon. “Automatic differentiation of
algorithms”. Journal of Computational and Applied Mathematics 124.1-2 (2000), pp. 171–190.
arXiv: arXiv:1011.1669v3.

[52] J. Schmidhuber. “Deep Learning in Neural Networks: An Overview”. Neural Networks 61 (2015),
pp. 85–117.

[53] https://github.com/tminka/lightspeed. [Online; accessed 09-Jul-2018].
[54] S. Salsa. Partial Differential Equations in Action. 2008, p. 568. arXiv: arXiv:1011.1669v3.
[55] D. Ghosh, J. D. Baeder. “Compact Reconstruction Schemes with Weighted ENO Limiting for

Hyperbolic Conservation Laws”. SIAM Journal on Scientific Computing 34.3 (2012), A1678–
A1706.

[56] G. Puppo, M. Semplice. “Numerical Entropy and Adaptivity for Finite Volume Schemes”.
Communications in Computational Physics 10.05 (2011), pp. 1132–1160.

[57] http://www.ita.uni-heidelberg.de/~dullemond/lectures/num_fluid_2012/Chapter_6.
pdf. [Online; accessed 17-Jul-2018].

[58] C. W. Shu, S. Osher. “Efficient implementation of essentially non-oscillatory shock-capturing
schemes, II”. Journal of Computational Physics 89 (1989), pp. 32–78.

https://arxiv.org/abs/1603.04467
https://arxiv.org/abs/arXiv:1011.1669v3
https://github.com/tminka/lightspeed
https://arxiv.org/abs/arXiv:1011.1669v3
http://www.ita.uni-heidelberg.de/~dullemond/lectures/num_fluid_2012/Chapter_6.pdf
http://www.ita.uni-heidelberg.de/~dullemond/lectures/num_fluid_2012/Chapter_6.pdf

	Abstract
	Abstract (Italiano)
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Mathematical framework
	Numerical discretization
	Spatial discretization: definitions
	Discontinuous Galerkin approximation
	Algebraic formulation
	Time discretization
	Boundary conditions
	Extension to two-dimensional problems
	Extension to systems of equations
	Test cases

	Artificial viscosity models
	Overview
	Derivative-based (DB) model
	Highest modal decay (MDH) model
	Averaged modal decay (MDA) model
	Entropy viscosity (EV) model

	Artificial neural networks
	Background
	The model
	Network topology
	Training the network

	A neural network to predict artificial viscosity
	A family of neural networks
	Choice of input and output
	Cost function
	Activation functions
	Hyperparameters
	Optimization algorithm
	Training and validation sets
	An example

	Improved versions
	Two coupled neural networks
	A different scaling
	A remark

	Extension to systems
	Extension to two dimensional problems
	How to build a two-dimensional network
	A two-dimensional example

	Practical implementation
	Numerical results
	One-dimensional scalar problems
	A smooth problem
	Burgers equation: a simple test
	Burgers equation: a compound wave
	A degree-4 flux function
	Buckley-Leverett problem
	Remarks

	One-dimensional Euler system
	A smooth problem
	Single waves
	Sod problem
	Shu-Osher problem
	Remarks

	Two-dimensional scalar problems
	A smooth problem
	2D Burgers equation: a Riemann problem
	KPP rotating wave problem

	Two-dimensional Euler system
	Riemann problem case 4
	Riemann problem case 12
	Riemann problem case 6

	Performance analysis

	Conclusion
	Bibliography

