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term that minimizes the expected squared L2 misfit between the state (i.e. so-

lution to the PDE) and a target function, subject to a regularization for well
posedness. For the numerical treatment of this risk-averse Optimal Control

Problem (OCP) we consider a Finite Element discretization of the underly-

ing PDE, a Monte Carlo sampling method, and gradient-type iterations to
obtain the approximate optimal control. We provide full error and complex-

ity analyses of the proposed numerical schemes. In particular we investigate
the complexity of a conjugate gradient method applied to the fully discretized

OCP (so called Sample Average Approximation), in which the Finite Element

discretization and Monte Carlo sample are chosen in advance and kept fixed
over the iterations. This is compared with a Stochastic Gradient method on

a fixed or varying Finite Element discretization, in which the expectation in

the computation of the steepest descent direction is approximated by Monte
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1. Introduction

Many problems in engineering and science, e.g. shape optimization in aerody-
namics or heat transfer in thermal conduction problems, deal with optimization
problems constrained by partial differential equations (PDEs) [7, 13, 25, 27, 34].
Often, these types of problems are affected by uncertainties due to a lack of knowl-
edge, intrinsic variability in the system, or an imprecise manufacturing process.
These uncertainties could appear for instance in the material properties or bound-
ary conditions and are often described probabilistically in terms of random vari-
ables or random fields. Such Optimal Control Problems (OCPs) are sometimes also
referred to as problems of Optimization Under Uncertainty (OUU).

In this work we focus on the numerical approximation of the problem of con-
trolling the solution of an elliptic PDE with random coefficients by a distributed
unconstrained control. Specifically, the control acts as a deterministic volumetric
forcing term, so that the controlled solution is as close as possible to a given target
function. While there is a vast literature on the numerical approximation of PDE-
constrained optimal control problems in the deterministic case (see, e.g., [7, 27] and
the references therein), as well as on the numerical approximation of (uncontrolled)
PDEs with random coefficients (e.g. [3, 23, 35]), the analysis of PDE constrained
control problems under uncertainty is much more recent and incomplete, although
the topic has received increasing attention in the last few years.

The different frameworks of PDE-constrained OCPs under uncertainty consid-
ered in the literature can be roughly grouped in two categories.

In the first category, the control is random [1, 6, 10, 32, 41, 46]. This situation
arises when the randomness in the PDE is observable hence an optimal control can
be built for each realization of the random system. The corresponding optimality
system might still be fully coupled in the random parameters, e.g. if the random
objective function also involves some statistics of the state variables (e.g. devia-
tion from the nominal response). The dependence on the random parameters is
typically approximated either by polynomial chaos expansions or sampling-based
Monte Carlo (MC) techniques. This is, for example, considered in [32] where the
authors prove analytic dependence of the control on the random parameters and
study its best N -term polynomial chaos approximation for a linear parabolic PDE-
constrained OCP. In [10] the authors combine a stochastic collocation method with
a Finite Element (FE) based reduced basis method to alleviate the computational
effort. The works [6, 41, 46] address the case of a fully coupled optimality system
discretized by either Galerkin or collocation approaches and propose different meth-
ods, such as sequential quadratic programming or block diagonal preconditioning,
to solve the coupled system efficiently. Sampling-based Monte Carlo and Multilevel
Monte Carlo approaches are considered in [1] instead, where the case of random
coefficients with limited spatial regularity is addressed.

In the second category, the control is deterministic [2, 9, 22, 28, 29, 30, 47]. This
situation arises when randomness in the system is not observable at the time of
designing the control, so that the latter should be robust in the sense that it min-
imizes the risk of obtaining a solution which leads to high values of the objective
function. The precise notion of a risk is problem dependent and thus has to be
modeled appropriately. In this context, risk typically refers to a suitable statistical
measure of the objective function to be minimized, such as those involving expec-
tations, expectations plus variances, a quantile, or a conditional expectation above
a quantile (so called Conditional Value at Risk, CVaR [40]). The corresponding
OCP often leads to a fully coupled optimality system of equations in the random
parameters. It is noteworthy that the idea of minimizing a risk to obtain a solution
with favorable properties goes back to the origins of robust optimization [45].
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Numerical methods for OCPs of the second category typically depend on the
choice of the risk measure. For example, in [2] the authors consider a risk measure
based on the mean and variance of a scalar objective function and they use second
order Taylor expansions combined with randomized estimators to reduce the com-
putational effort. The work [47] contains a study of a risk measure that involves
the expected squared L2 misfit between the state and a target function, with an
additional penalty term involving the squared L2 deviation of the state form its
mean value. The authors propose a gradient type method in which the expecta-
tion of the gradient is computed by a Multilevel Monte Carlo method. In [9], the
authors also consider a similar risk measure and propose a reduced basis method
on the space of controls to significantly reduce the computational effort. A more
general class of risk measures (including the CVaR) for OCPs has been consid-
ered in [31], where also the corresponding optimality system of PDEs are derived.
The subsequent work [29] introduces a trust-region (Newton) conjugate gradient
algorithm combined with an adaptive sparse grid collocation as PDE discretization
in the stochastic space for the numerical treatment of these more general OCPs.
For the robust OCP with the CVaR as risk measure the study [30] introduces
derivative-based optimization methods that are build upon introducing smooth ap-
proximations to the CVaR. Finally, in [22] the authors consider a boundary OCP
where the deterministic control appears as a Neumann boundary condition.

In this work, we follow the second modeling category and consider a similar risk
averse OCP as in [9, 47] which consists in minimizing the expected squared L2 misfit
between the state and a given target function as objective function, additionally
equipped with an L2 regularization on the (deterministic) control. For this setting
we consider numerical gradient based methods, either deterministic or stochastic,
where adjoint calculus is used to represent the gradient of the objective function.
Both the primal problem and the adjoint problem are discretized by finite elements
and Monte Carlo estimators are used to approximate expectations defining the risk
measure. The reason for studying sampling-based Monte Carlo approximations
instead of polynomial chaos type methods is to develop methods that can potentially
handle many random parameters and possibly rough random coefficients.

Our main contribution is to provide a full error and complexity analysis for
the considered gradient based methods, accounting for the three sources of errors,
namely, the Finite Element approximation, the statistical Monte Carlo error, and
the error due to the finite number of gradient based iterations.

We note that other error analyses have been presented before, such as [10] for
the case of a random control with a discretization in the physical space by Finite
Elements and in probability by a stochastic collocation, as well as [22] for the case
of a deterministic boundary control that minimizes a quadratic risk measure, using
a Finite Element discretization both in physical space and in probability. Finally
we mention the recent work [24] where the authors consider as a risk measure the
same expected quadratic loss function as in this work and study a quasi-Monte
Carlo approximation (i.e., a deterministic quadrature in the probability space) of
the expected loss which may offer a further complexity improvement, provided that
the system’s state equation is sufficient regular with respect to the uncertain pa-
rameters. In contrast, here we focus on the subtle interplay of Finite Element
discretization errors, Monte Carlo sampling errors and different numerical opti-
mization techniques in the context of general-purpose methods.

The first method that we consider is a gradient based method (e.g. conjugate
gradient) on a fully discretized version of the OCP (so called Sample Average
Approximation – SAA), in which the Finite Element discretization and the Monte
Carlo sample are chosen initially and kept fixed over the iterations. If N is the
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sample size of the Monte Carlo estimator, this method entails the solution of N
state and N adjoint problems at each iteration of the gradient method, which could
be troublesome if a small tolerance is required, entailing a very large N and small
Finite Element mesh size.

We then turn to stochastic gradient methods in which the gradient is re-sampled
independently at each iteration and the Finite Element mesh size can be refined
along the iterations. At each iteration this corresponds to taking an independent
Monte Carlo estimator with only one realization (N = 1) or a very small, fixed
sample size (N = N̄) independently of the required tolerance, with possibly a
finer Finite Element mesh. We follow, in particular, the Robbins–Monro strategy
[37, 39, 42] of reducing progressively the step-size to achieve convergence of the Sto-
chastic Gradient iterations. These Stochastic Gradient (SG) techniques have been
extensively applied to machine learning problems [14, 16, 19, 33], but have not yet
been used much for PDE-constrained optimization under uncertainty. Here, we
show that a Stochastic Gradient method improves the complexity of the conjugate
gradient (or equivalent) method applied to the fully discretized OCP by a logarith-
mic factor. Although the computational gain is not dramatic, we see potential in
this approach as only one state problem and one adjoint problem have to be solved
at every iteration of the gradient method. Moreover, we believe that the whole
construction is more amenable to an adaptive version, which, in combination with
an appropriate error estimator, allows for a self-controlling algorithm. We leave
this for future work, but mention the related recent work [20] on mesh refinement
approaches in the context of a stochastic gradient method for PDE-constrained
OCPs subject to uncertainties.

The rest of the paper is organized as follows. In Section 2 we introduce the
optimal control problem under uncertainty and recall its well posedness as well as
the corresponding optimality conditions. In Sections 3, 4, and 5 we then intro-
duce the Finite Element discretization, the Monte Carlo approximation, and the
gradient based methods, respectively, including their full error analysis. In particu-
lar, Theorem 2 in Section 5 provides an error bound for the conjugate gradient (or
equivalent) method applied to the fully discrete OCP, whereas Corollary 1 gives the
corresponding computational complexity. In Section 6 we analyze the Stochastic
Gradient method with fixed finite element discretization over the iterations (with
error bound given in Theorem 3 and the corresponding complexity result in Corol-
lary 2), whereas in Section 7 we analyze the Stochastic Gradient version in which
the Finite Element mesh is refined over the iterations (the main result being stated
in Theorem 5 and Corollary 3). In Section 8, we discuss a 2D test problem and
confirm numerically the theoretical error bounds and complexities derived in the
preceding Sections. Finally, in Section 9 we draw some conclusions.

2. Problem setting

We start introducing the state problem that will be part of the OCP discussed in
the following. Specifically, we consider the problem of finding the solution y : D ×
Γ→ R of the elliptic random PDE

(1)

{
−div(a(x, ω)∇y(x, ω)) = φ(x, ω), x ∈ D, ω ∈ Γ,

y(x, ω) = 0, x ∈ ∂D, ω ∈ Γ,

where D ⊂ Rn is open and bounded, denoting the physical domain, (Γ,F , P ) is a
complete probability space, and ω ∈ Γ is an elementary random event. The diffusion
coefficient a is an almost surely (a.s.) continuous and positive random field on D,
and φ is a possibly stochastic source term (which could include a deterministic
control term).
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Before addressing the optimal control problem related to the random PDE (1), we
will first recall the well posedness results for (1). We begin by recalling some usual
functional spaces needed for the analysis that follows. Let Lp(D), 1 ≤ p ≤ +∞,
denote the space of p-Lebesgue integrable functions. Throughout this work, we
will denote by ‖ · ‖ ≡ ‖ · ‖L2(D) the L2(D)-norm induced by the inner product

〈f, g〉 =
∫
D
fgdx for any f, g ∈ L2(D). Furthermore, we introduce the Sobolev

spaces

H1(D) = {y ∈ L2(D), ∂xiy ∈ L2(D), i = 1, . . . , n}
and

H1
0 (D) = {y ∈ H1(D), y|∂D = 0},

on which a Poincaré inequality holds: ∃Cp > 0 : ‖y‖ ≤ Cp‖∇y‖, ∀y ∈ H1
0 (D).

We use the equivalent H1-norm on the space H1
0 (D) defined by ‖y‖H1

0 (D) = ‖∇y‖
for any y ∈ H1

0 (D), and we denote by H−1(D) =
(
H1

0 (D)
)∗

the topological dual

of H1
0 (D). For r ∈ N we further recall the subspace Hr(D) of L2(D) composed

of functions with all weak partial derivatives up to order r in L2(D) with norm
‖y‖Hr(D) and semi-norm |y|Hr(D) given by

‖y‖2Hr(D) =
∑
|α|≤r

∥∥∥∥∂|α|y∂xα

∥∥∥∥2

L2(D)

and |y|2Hr(D) =
∑
|α|=r

∥∥∥∥∂|α|y∂xα

∥∥∥∥2

L2(D)

,

respectively, where α = (α1, . . . , αn) ∈ Nn is a multi-index. Finally, we introduce
the Bochner spaces Lp(Γ,V), which are formal extensions of Lebesgue spaces Lp(Γ),
for functions with values in a separable Hilbert space V as

Lp(Γ,V) =

{
y : Γ→ V, y measurable,

∫
Γ

‖y(ω)‖pVdP (ω) < +∞
}
,

equipped with the norm ‖y‖Lp(Γ,V) =
(∫

Γ
‖y(ω)‖pVdP (ω)

) 1
p ; see, e.g., [18] for de-

tails.
As it is common for the well posedness of the elliptic PDE (1), we assume that

the diffusion coefficient a in (1) is uniformly elliptic.

Assumption 1. The diffusion coefficient a ∈ L∞(D × Γ) is bounded and bounded
away from zero a.e. in D × Γ, i.e.

∃ amin, amax ∈ R such that 0 < amin ≤ a(x, ω) ≤ amax a.e. in D × Γ.

Now we are in the position to recall the well posedness of the random PDE (1),
which is a standard result, see e.g. [4, 35].

Lemma 1 (Well posedness of (1)). Let Assumption 1 hold. If φ ∈ L2(Γ, H−1(D)),
then problem (1) admits a unique solution y ∈ L2(Γ, H1

0 (D)) s.t.

‖y(·, ω)‖H1
0 (D) ≤

1

amin
‖φ(·, ω)‖H−1(D) for a.e. ω ∈ Γ

and ‖y‖L2(Γ,H1
0 (D)) ≤

1

amin
‖φ‖L2(Γ,H−1(D)).

Finally, as we will occasionally need H2-regularity in the following Sections,
we also introduce the following sufficient conditions on the domain D and on the
gradient of a.

Assumption 2. The domain D ⊂ Rn is polygonal convex and the random field a
is such that a(·, ω) ∈ C0,1(D) for a.e. ω ∈ Γ with ess supω ‖a(·, ω)‖C0,1(D) <∞.

Then, using standard regularity arguments for elliptic PDEs, one can prove the
following result [18, 21].
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Lemma 2. Let Assumptions 1 and 2 hold. If φ ∈ L2(Γ, L2(D)), then problem
(1) has a unique solution y ∈ L2(Γ, H2(D)). Moreover there exists a constant C,
independent of φ, such that

‖y‖L2(Γ,H2(D)) ≤ C‖φ‖L2(Γ,L2(D)).

We are now ready to introduce the optimal control problem linked with the PDE
(1), which we will study in the rest of the paper.

2.1. Optimal Control Problem. We define the state problem for the OCP as
the elliptic PDE (1), by specializing its right hand side to:

(2)

{
−div(a(x, ω)∇y(x, ω)) = g(x) + u(x), x ∈ D, ω ∈ Γ,

y(x, ω) = 0, x ∈ ∂D, ω ∈ Γ,

with source term g ∈ L2(D) and control u ∈ L2(D). Hereafter, we use the notation
U = L2(D) to denote the set of all admissible (deterministic) control functions,
and Y = H1

0 (D) to denote the state space of solutions to (2). To emphasize the
dependence of the solution of the PDE on the control function and on a particular
realization a(·, ω) of the random field, we will use the notation yω(u). When the
particular realization of a is not relevant, or when no confusion arises, we will also
simply write y(u) from times. In this work, we focus on the objective functional

(3) J(u) = E[f(u, ω)] with f(u, ω) =
1

2
‖yω(u)− zd‖2 +

β

2
‖u‖2,

where zd is a given target function which we would like the state yω(u) to ap-
proach as close as possible, in a mean-square-error sense. The coefficient β > 0 is
a constant of the problem that models the price of energy, i.e. how expensive it is
to add some energy in the control u in order to decrease the first distance term
E
[
‖yω(u)− zd‖2

]
. The ultimate goal then is the unconstrained OCP, of determin-

ing the optimal control u? so that

(4) u? ∈ arg min
u∈U

J(u), s.t. yω(u) ∈ Y solves (2) a.s.

As we aim at minimizing the objective functional J , we will use the theory of
optimization and calculus of variations. Specifically, we introduce the optimality
condition for the OCP (4), in the sense that the optimal control u? satisfies

(5) 〈∇J(u?), v〉 = 0 ∀v ∈ U.
Here, ∇J(u) denotes the L2(D)-functional representation of the Gateaux derivative
of J at u ∈ U , namely∫

D

∇J(u)δu dx = lim
ε→0

J(u+ εδu)− J(u)

ε
∀ δu ∈ L2(D).

Existence and uniqueness results for the OCP (4) can be obtained as a particular
case of the more general results in, e.g., the work [31]. We state the result in the
next Lemma, without proof.

Lemma 3. Suppose Assumption 1 holds. Then the OCP (4) admits a unique
control u? ∈ U . Moreover

(6) ∇J(u) = βu+ E[pω(u)],

where pω(u) = p is the solution of the adjoint problem (a.s. in Γ)

(7)

{
−div(a(·, ω)∇p(·, ω)) = y(·, ω)− zd in D,

p(·, ω) = 0 on ∂D.
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One can derive a similar expression as (6) for the gradient of the functional f
for a.e. ω ∈ Γ, namely: ∇f(u, ω) = βu + pω(u). Consequently, in the setting of
problem (4), we have

∇J(u) = ∇E[f(u, ω)] = E [∇f(u, ω)] .

For notational convenience, we introduce the weak formulation of the state problem
(2), which reads

(8) find yω(u) ∈ Y s.t. bω(yω(u), v) = 〈g + u, v〉 ∀v ∈ Y for a.e. ω ∈ Γ,

where bω(y, v) :=
∫
D
a(·, ω)∇y∇vdx. Similarly, the weak form of the adjoint prob-

lem (7) reads:

(9) find pω(u) ∈ Y s.t. bω(v, pω(u)) = 〈v, yω(u)− zd〉 ∀v ∈ Y for a.e. ω ∈ Γ.

We can thus rewrite the OCP (4) equivalently as:

(10)

minu∈U J(u) = 1
2E[‖yω(u)− zd‖2] + β

2 ‖u‖2
s.t. yω(u) ∈ Y solves
bω(yω(u), v) = 〈g + u, v〉 ∀v ∈ Y for a.e. ω ∈ Γ.

3. Finite Element approximation in physical space

In this section we introduce the semi-discrete OCP obtained by approximating
the underlying PDE by a Finite Element (FE) method and recall an a-priori error
bound on the optimal control. Let us denote by {τh}h>0 a family of regular triangu-
lations of D. Furthermore, let Y h be the space of continuous piece-wise polynomial
functions of degree r over τh that vanish on ∂D, i.e. Y h = {y ∈ C0(D) : y|K ∈
Pr(K) ∀K ∈ τh, y|∂D = 0} ⊂ Y = H1

0 (D). Finally, we set Uh = Y h. We can then
reformulate (10) as a finite dimensional OCP in the FE space:

(11)

minuh∈Uh J
h(uh) := 1

2E[‖yhω(uh)− zd‖2] + β
2 ‖uh‖2

s.t. yhω(uh) ∈ Y h and
bω(yhω(uh), vh) = 〈uh + g, vh〉 ∀vh ∈ Y h for a.e. ω ∈ Γ.

Remark 1. The choice Uh = Y h is natural for this problem. In fact, one could
consider the OCP in which the PDE is discretized in Y h, whereas the control u ∈ U
is not discretized. It is not difficult to show that the optimal control for such OCP
is actually finite dimensional and belongs to Y h, thus leading to the equivalent
formulation (11).

For the discrete OCP (11) we have analogous well-posedness and optimality
results as those stated in Lemma 3 for the continuous problem.

Lemma 4. The discrete OCP (11) admits a unique solution uh? ∈ Uh and ∇Jh
can be characterized as

(12) ∇Jh(uh) = βuh + E[phω(uh)]

where phω(uh) is the solution of the FE adjoint problem

find phω(uh) ∈ Y h s.t. bω(vh, phω(uh)) = 〈yhω(uh)− zd, vh〉 ∀vh ∈ Y h.

Notice, in particular, that, since Uh = Y h, it follows that E[ph(uh)] ∈ Uh for
any uh ∈ Uh, hence ∇Jh(uh) = βuh + E[ph(uh)] ∈ Uh.

Following similar arguments as in [27, Thms. 3.4, 3.5] and using the optimality
condition and the weak form of the state and adjoint problems, we can prove the
following.
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Lemma 5. Let u? be the optimal control solution of problem (10) and denote by
uh? the solution of the discrete OCP (11). Then it holds that
(13)
β

2
‖u?−uh?‖2+

1

2
E[‖y(u?)−yh(uh?)‖2] ≤ 1

2β
E[‖p(u?)−p̃h(u?)‖2]+

1

2
E[‖y(u?)−yh(u?)‖2],

where, p̃h(u?) = p̃hω(u?) is such that

(14) bω(vh, p̃hω(u?)) = 〈vh, yω(u?)− zd〉 ∀vh ∈ Y h for a.e. ω ∈ Γ.

Moreover, there exists a constant C > 0 independent of h such that

(15) ‖u? − uh?‖2 + E[‖y(u?)− yh(uh?)‖2] + h2E[‖y(u?)− yh(uh?)‖2H1
0
]

≤ C{E[‖p(u?)− p̃h(u?)‖2] + E[‖y(u?)− yh(u?)‖2] + h2E[‖y(u?)− yh(u?)‖2H1
0
]}.

Proof. The result in the deterministic case is detailed in [27, Thms. 3.4, 3.5]. We
can thus write the inequalities (13) and (14) for almost every realization ω ∈ Γ,
and then take the expectation to conclude. �

The FE error ‖u? − uh?‖ on the optimal control is thus completely determined
by the FE approximation properties of the state and adjoint problems. The next
result also follows by standard arguments (see e.g. [27]) and shows that, for smooth
data, the L2 error ‖u? − uh?‖ on the optimal control converges at rate O(hr+1).

Lemma 6. Let Assumptions 1-2 hold and suppose that y(u?), p(u?) ∈ L2(Γ, Hr+1(D)).
Then we have

(16) ‖u? − uh?‖2 + E[‖y(u?)− yh(uh?)‖2] + h2E[‖y(u?)− yh(uh?)‖2H1
0
]

≤ Ch2r+2{E[|yω(u?)|2Hr+1 ] + E[|pω(u?)|2Hr+1 ]}.

In view of the analysis that will be presented later, we state a Lipschitz and
a strong convexity result for the functional f(u, ω) for a.e. ω ∈ Γ, as well as its

discrete version fh(uh, ω) := 1
2‖yhω(uh)−zd‖2 + β

2 ‖uh‖2. Proofs of these results can
be found in [36].

Lemma 7 (Lipschitz condition). For the elliptic problem (2) and f(u, ω) as in (3)
it holds that:

(17) ‖∇f(u1, ω)−∇f(u2, ω)‖ ≤ L‖u1 − u2‖ ∀u1, u2 ∈ U and a.e. ω ∈ Γ,

with L = β +
C4
p

a2min
, where Cp is the Poincaré constant. For the corresponding

Finite Element approximation leading to (11) the same inequality holds with the
same constant:

‖∇fh(uh1 , ω)−∇fh(uh2 , ω)‖ ≤ L‖uh1 − uh2‖ ∀uh1 , uh2 ∈ Uh and a.e. ω ∈ Γ.

Lemma 8 (Strong Convexity). For the elliptic problem (2) and f(u, ω) as in (3)
it holds that

(18)
l

2
‖u1−u2‖2 ≤ 〈∇f(u1, ω)−∇f(u2, ω), u1−u2〉 ∀u1, u2 ∈ U and a.e. ω ∈ Γ,

with l = 2β. The same estimate holds for the corresponding Finite Element ap-
proximation that yields (11), namely:

l

2
‖uh1 − uh2‖2 ≤ 〈∇fh(uh1 , ω)−∇fh(uh2 , ω), uh1 − uh2 〉 ∀uh1 , uh2 ∈ Uh and a.e. ω ∈ Γ.
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4. Approximation in probability

In this section we consider the semi-discrete (i.e., approximation in probability
only) optimal control problem obtained by replacing the exact expectation E[·]
in (3) by a suitable quadrature formula Ê[·]. Specifically, for a random variable

X : Γ→ R, ω 7→ X(ω), let Ê[X] =
∑N
i=1 ζiX(ωi) be a quadrature formula, where

ζi denote the quadrature weights and ωi ∈ Γ the quadrature points. The semi-
discrete problem then reads:

(19)

minu∈U Ĵ(u) = 1
2 Ê[‖yω(u)− zd‖2] + β

2 ‖u‖2
s.t. yωi(u) ∈ Y and
bωi(yωi(u), v) = 〈g + u, v〉 ∀v ∈ Y i = 1, . . . , N.

The quadrature formula Ê[·] could either be based on deterministic quadrature
points or randomly distributed points leading, in this case, to a Monte Carlo type
approximation. In the following, we detail the case of a Monte Carlo type quad-
rature, whereas the case of a deterministic Gaussian-type quadrature is addressed
in Appendix A. It is noteworthy that, although we present the results only for the
semi-discrete problem (i.e., continuous in space, discrete in probability) for the sake
of notation, they extend straightforwardly to the fully discrete problem in probabil-
ity and physical space. Indeed, the fully discrete problem is obtained by replacing
the (spatial) functions and corresponding functions spaces in (19) by their finite
dimensional Finite Element approximations.

In the case of a Monte Carlo (MC) approximation, the quadrature formula reads

E
−→ω
MC [X] := 1

N

∑N
i=1X(ωi), where −→ω = {ωi}Ni=1 is a collection of independent

and identically distributed (i.i.d.) points drawn randomly on Γ according to the
probability measure P . We recall that the use of MC type approximations might
be advantageous over a quadrature/collocation approach in cases where the state
and adjoint solutions are rough or highly oscillatory, which is, for example, the
case when a(·, ·) is a rough random field and/or has a short correlation length.
Moreover, the Monte Carlo quadrature formula has always positive weights, which

is an important feature to guarantee that the approximate functional Ĵ preserves the
strong convexity property. We stress that, when using a Monte Carlo quadrature
formula, the optimal control û? is a stochastic function since it depends on the N
i.i.d. random points −→ω = {ωi}Ni=1. The next theorem gives an error bound on the
approximate optimal control of the OCP (19).

Theorem 1. Let û? be the optimal control of problem (19) with Ê = E
−→ω
MC and u?

be the exact optimal control of the continuous problem (10). Then we have

β

2
E[‖û? − u?‖2] + E[‖y(u?)− y(û?)‖2] ≤ 1

N

1

2β
E[‖p(û?)‖2].

Proof. The two optimality conditions for OCPs (10) and (19) read

(20) 〈∇J(u?), v〉 = 0, and 〈∇JMC(û?), v〉 = 0 ∀v ∈ U

respectively, where ∇JMC(û?) = βû? + E
−→ω
MC [p(û?)] and p(û?) = pω(û?) denotes

the solution of the adjoint problem

bω(v, pω(û?)) = 〈v, yω(û?)− zd〉 ∀v ∈ Y for a.e. ω ∈ Γ.

Choosing v = û? − u? in (20) and subtracting the two optimality conditions, we
obtain:

〈β(u? − û?) + E[p(u?)]− E
−→ω
MC [p(û?)], û? − u?〉 = 0,

9



which implies

β‖u? − û?‖2 =〈E[p(u?)]− E
−→ω
MC [p(u?)], û? − u?〉(21)

+ 〈E−→ωMC [p(u?)]− E
−→ω
MC [p(û?)], û? − u?〉.

The first term on the right hand side of (21) can be bounded as

〈E[p(u?)]− E
−→ω
MC [p(u?)], û? − u?〉 ≤

1

2β
‖E[p(u?)]− E

−→ω
MC [p(u?)]‖2 +

β

2
‖û? − u?‖2 .

To bound the second term, we first notice that for any i = 1, . . . , N

〈û? − u?, pωi(u?)− pωi(û?)〉 = bωi(yωi(û?)− yωi(u?), pωi(u?)− pωi(û?))
= 〈yωi(u?)− yωi(û?), yωi(û?)− yωi(u?)〉
= −‖yωi(u?)− yωi(û?)‖2 ,

which leads to

〈û? − u?, E
−→ω
MC [p(u?)]− E

−→ω
MC [p(û?)]〉 = −E−→ωMC [‖y(u?)− y(û?)‖2] .

Finally we take the expectation of (21) with respect to (w.r.t.) the random sample−→ω = {ωi}Ni=1 and exploit the fact that the Monte Carlo estimator is unbiased, that

is E[E
−→ω
MC [X]] = E[X] for any random variable X ∈ L1(Γ). We thus find

β

2
E[‖û? − u?‖2 + E[‖y(u?)− y(û?)‖2] ≤ 1

2β
E[‖E[p(û?)]− E

−→ω
MC [p(û?)]‖2]

=
1

2β
E[‖ 1

N

N∑
i=1

pωi(û?)− E[p(û?)]‖2]

=
1

2β
E[

1

N2

N∑
i=1

‖pωi(û?)− E[p(û?)]‖2]

=
1

2β

1

N
E[‖p(û?)− E[p(û?)]‖2]

≤ 1

2β

1

N
E[‖p(û?)‖2] ,

which concludes the proof. �

Theorem 1 shows that the semi-discrete optimal control û? converges at the
usual MC rate of 1/

√
N in the root mean squared sense, with the constant being

proportional to
√
E[‖p(û?)‖2].

5. Numerical solution of the fully discrete problem

Now we focus on a class of optimization methods to approximate the fully discrete
minimization problem obtained by using the Monte Carlo estimator to approximate
the expectation in (11) and a FE approximation of the state and adjoint equations,
as discussed in the previous two sections. That is, here we consider the fully discrete
OCP:

(22)

minuh∈Uh JMC(uh) = 1
2E
−→ω
MC [‖yhω(uh)− zd‖2] + β

2 ‖uh‖2
s.t. yhωi(u

h) ∈ Y h and
bωi(y

h
ωi(u

h), vh) = 〈g + uh, vh〉 ∀vh ∈ Y h, i = 1, . . . , N.

The N constraints in (22) can be written in algebraic form as

Aiyi = g +Mu ,

where u ∈ RNh is the vector of the Nh degrees of freedom corresponding to the
control uh ∈ Uh, yi ∈ RNh is the vector of degrees of freedom corresponding to the
finite element state solution yhωi(u

h) ∈ Y h, M ∈ RNh×Nh is the FE mass matrix, and
10



Ai ∈ RNh×Nh is the FE stiffness matrix corresponding to the diffusion coefficient
a(·, ωi). Defining the block matrices and vectors

A =

A1

. . .

AN

 , M =

M . . .

M

 , 1 =

 INh...
INh ,



~y =

y1

...
yN

 , ~p =

p1

...
pN

 , ~g = 1g, ~zd = 1zd,

where the pi solve the adjoint systems ATi pi = Myi− zd, the optimality condition

for (22) reads βMu + 1
N

∑N
i=1Mpi = 0, which leads to the coupled linear system

(23)

 A 0 −M1

−M AT 0

0 1
TM NβM


 ~y

~p
u

 =

 ~g

− ~zd
0

 .
By eliminating the state and adjoint unknowns, this can be recast into a linear
system in the control variable only

(24) Gu = χ ,

with G = NβM + 1
TMA−TMA−1M1 and χ = 1

TMA−T
(
~zd −MA−1~g

)
.

System (24) can, for example, be solved by an iterative method such as gradient
or conjugate gradient type methods. At each iteration, a matrix-vector multiplica-
tion will involve the solution of N state and N adjoint equations, resulting in 2N
PDE solves per iteration. Both iterative solvers are examples of solution schemes
that offer an exponential convergence in the number of iterations. Alternative to
the formulation (24) one could rewrite system (23) in the form

(25)

 C BT

B 0

[ ~w

~p

]
=

[
~v

~g

]
, with ~w =

[
~y
u

]
,

which could be solved, e.g. by GMRES or MINRES iterative methods. In the next
Theorem 2 we analyze the complexity of the fully discrete problem in terms of com-
putational work needed to achieve a given tolerance. Instead of particularizing the
result to one specific iterative solver, we make the assumption that an exponentially
convergent iterative solver is employed. More precisely:

Assumption 3. Let ûh? be the exact solution to (22). Furthermore, let ûhj denote
the approximate solution to the OCP (22) obtained after j iterations of the iterative
solver used to solve (22). We assume that the chosen iterative solver satisfies

(26) E[‖ûhj − ûh?‖2] ≤ C1e
−ρj , ∀j ∈ N ,

for some constants C1, ρ > 0 that are independent of h and N .

This assumption is sound since the condition number of the matrix G in (24)
can be bounded uniformly in h and N and scales as β−1. Similarly, the system (25)
can be optimally preconditioned, so that the exponential convergence rate does not
depend on the discretization parameters.

Based on Assumption 3 concerning the iterative solver, we now provide an error
bound for the approximate solution ûhj , as a function of all discretization parameters
j, h, and N .

11



Theorem 2. Let u? be the solution of the optimal control problem (10). Moreover,
let ûhj be the j-th iteration of a linear solver applied to (24) and suppose that the
solver satisfies Assumption 3. Then under the assumptions of Lemma 6, there exist
constants C1, C2, C3 > 0 independent of h and N such that

(27) E[‖ûhj − u?‖2] ≤ C1e
−ρj +

C2

N
+ C3h

2r+2 .

Proof. The global error can be decomposed as follows:

E[‖ûhj − u?‖2] ≤ 3E[‖ûhj − ûh?‖2]︸ ︷︷ ︸
linear solver

+3E[‖ûh? − uh?‖2]︸ ︷︷ ︸
MC

+3E[‖uh? − u?‖2]︸ ︷︷ ︸
FE error

.

The first term E[‖ûhj − ûh?‖2] quantifies the convergence of the finite dimensional
optimization algorithm, which is exponential w.r.t. the iteration number thanks to
the hypotheses.

The second term E[‖ûh? − uh?‖2] accounts for the standard MC error and can be
controlled as in Theorem 1 (applied to the FE approximation) leading to

E[‖ûh? − uh?‖2] ≤ 1

β2N
E[‖p(ûh?)‖2].

Finally, the term E[‖uh? −u?‖2] can be controlled by the result in Lemma 6, namely
by

‖uh? − u?‖2 ≤ C
(
E[|yω(u?)|2Hr+1 ] + E[|pω(u?)|2Hr+1 ]

)
h2r+2,

so that the claim follows. �

We conclude this Section by analyzing the computational complexity of solving
the fully discrete OCP (22), or equivalently (24), using an exponentially convergent
iterative solver. We assume that the state and adjoint problems, using a triangu-
lation with mesh size h, can be solved in computational time Ch = O(h−nγ).
Here, γ ∈ [1, 3] is a parameter representing the efficiency of the linear solver used
(e.g. γ = 3 for a direct solver and γ = 1 up to a logarithm factor for an optimal
multigrid solver), while n is the dimension of the physical space. Hence the overall
computational work W of j gradient iterations is proportional to W ' 2Njh−nγ .

Corollary 1. In order to achieve a given tolerance O(tol), i.e. to guarantee that
E[‖ûhj − u?‖2] . tol2, the total required computational work W is bounded by

W . tol−2− nγ
r+1 | log(tol)|.

Proof. To achieve a tolerance O(tol), we can equidistribute the precision tol2 over
the three terms in (27). This leads to the choices:

jmax ' − log(tol), h ' tol 1
r+1 , N ' tol−2.

Hence the total cost for computing a solution ûhjmax that achieves the required

tolerance is W ' 2Njmaxh
−nγ = tol−2− nγ

r+1 | log(tol)| as claimed. �

6. Stochastic Gradient with fixed mesh size.

In the previous Section, we have considered an approach to approximately solve
the OCP (10) in which the Monte Carlo sample size N is fixed a-priori, based
on accuracy requirements, the sample is generate once and for all, and then the
coupled system (23) is solved by an iterative scheme, each iteration involving the
solution of N primal and N adjoint problems.

As an alternative, in this section we consider an approach based on stochastic
optimization ideas. Specifically, we will use randomized methods known in the
literature as Stochastic Approximation (SA) or Stochastic Gradient (SG) [16, 38,
39, 44, 45]. At the basis of these methods is a steepest decent algorithm to tackle

12



the optimization problem. For example, the classic version of such a method, the
so-called Robbins–Monro method, works as follows. Within the steepest descent
algorithm the exact gradient ∇J = ∇E[f ] = E[∇f ] is replaced by a single evalua-
tion ∇f(·, ωj), where the random variable ωj is re-sampled independently at each
iteration of the steepest-descent method:

(28) uj+1 = uj − τj∇f(uj , ωj).

Here, τj is the step-size of the algorithm (also called learning rate) and decreases
as 1/j, over the iterations, in the usual approach.

Alternatively, the single evaluation∇f(·, ωj) can be replaced by a sample average
over Nj i.i.d. realizations (so called mini-batches [12, 15, 17]) at every iteration,
which are drawn independently of the previous iterations. More precisely, let −→ωj =

(ω
(1)
j , · · · , ω(Nj)

j ) ∼ P⊗Nj , then we define the recursion as

(29) uj+1 = uj − τjE
−→ωj
MC [∇f(uj , ·)],

where E
−→ωj
MC [∇f(u, ·)] = 1

Nj

∑Nj
i=1∇f(u, ω

(i)
j ) is the usual Monte Carlo estimator

using a sample of size Nj at iteration j. Notice that the Robbins–Monro method
is a special case of this scheme, namely with Nj = 1 for all j. In what follows,
we investigate optimal choices of the sequences {τj}j and {Nj}j , and the overall
computational complexity of the corresponding algorithm. We first analyze the
convergence of the Stochastic Gradient algorithm (29) when applied to the OPC
(10) in the continuous setting, i.e. with no Finite Element discretization. The proof
of the next theorem follows closely the general one in [45, Sect. 5.9], although here
we do not assume uniform boundedness of E[‖∇f(u, ·)‖2] with respect to u, nor do
we project the control u onto a bounded set at each iteration, which leads to slight
technical modifications. For the sake of completeness, we give the full proof of the
theorem.

Theorem 3. Let u? be the solution of the continuous OCP (10) and denote by uj
the j-th iterate of (29). Then it holds that

(30) E[‖uj+1 − u?‖2] ≤ cjE[‖uj − u?‖2] +
2τ2
j

Nj
E[‖∇f(u?, ω)‖2],

with cj := 1 − τj l + L2
(

1 + 2
Nj

)
τ2
j and L, l the convexity and Lipschitz constants

defined in Lemmas 8 and 7, respectively.

Proof. Using inequalities (17) and (18), we can derive a recursive formula to con-
trol the error between successive iterations. Let us introduce the filtration Fj =
σ{−→ωk, k ≤ j − 1}, i.e. the sigma algebra generated by all random variables used
up to iteration j − 1. Notice that uj is measurable with respect to Fj . Moreover,
we introduce the notation E [·|Fj ] to denote conditional expectation with respect
to such filtration. Using the fact that E[∇f(u?, ·)] = 0, we have:

uj+1 − u? = uj − u? − τjE
−→ωj
MC [∇f(uj , ·)] + τjE[∇f(u?, ·)]

= uj − u? − τjE [∇f(uj , ·)|Fj ] + τjE[∇f(u?, ·)] + τj
(
E [∇f(uj , ·)|Fj ]− E

−→ωj
MC [∇f(uj , ·)]

)
= uj − u? − τjT1 − τjT2,

with T1 := E [∇f(uj , ·)|Fj ]−E[∇f(u?, ·)] and T2 := E
−→ωj
MC [∇f(uj , ·)]−E [∇f(uj , ·)|Fj ].

Hence,

‖uj+1 − u?‖2 =‖uj − u?‖2 + τ2
j ‖T1‖2 + τ2

j ‖T2‖2

− 2τj〈uj − u?, T1〉 − 2τj〈uj − u?, T2〉+ 2τ2
j 〈T1, T2〉.
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Concerning the terms containing T1, we find:

‖T1‖2 = ‖E [∇f(uj , ·)|Fj ]− E[∇f(u?, ·)]‖2

= ‖E [∇f(uj , ·)−∇f(u?, ·)|Fj ] ‖2

=

∫
D

(
E [∇f(uj , ·)−∇f(u?, ·)|Fj ]

)2
dx

≤
∫
D

E
[
|∇f(uj , ·)−∇f(u?, ·)|2|Fj

]
dx

= E
[
‖∇f(uj , ·)−∇f(u?, ·)‖2|Fj

]
≤ L2E

[
‖uj − u?‖2|Fj

]
,

where we have used Jensen’s inequality for conditional expectation: φ(E [X|Fj ]) ≤
E [φ(X)|Fj ] for φ convex; see, e.g., [48]. Taking now the full expectation yields:

E[‖T1‖2] ≤ L2E
[
E
[
‖uj − u?‖2|Fj

]]
= L2E[‖uj − u?‖2] ,

and

E[〈uj − u?, T1〉] = E[〈uj − u?,E [∇f(uj , ·)−∇f(u?, ·)|Fj ]〉]
= E [E [〈uj − u?,∇f(uj , ·)−∇f(u?, ·)〉|Fj ]]

≥ E
[
E
[
l

2
‖uj − u?‖2|Fj

]]
[Strong Convexity (18)]

=
l

2
E[‖uj − u?‖2].

We now focus on the term T2 and notice that it can be written as

T2 =
1

Nj

Nj∑
i=1

(
∇f(uj , ω

(i)
j )− E [∇f(uj , ·)|Fj ]

)
=

1

Nj

Nj∑
i=1

Yi,

with Yi = ∇f(uj , ω
(i)
j )− E [∇f(uj , ·)|Fj ]. We have then

E
[
‖T2‖2

]
= E

∫
D

 1

Nj

Nj∑
i=1

Yi

2
 = E

∫
D

1

N2
j

Nj∑
i,l=1

YiYl

 = E

∫
D

1

N2
j

Nj∑
i,l=1

E [YiYl|Fj ]

 .
Observe that, conditional upon Fj , the random variables Yi, i = 1, . . . , Nj , are
mutually independent and have zero mean, i.e. E [Yi|Fj ] = 0 and E [YiYj |Fj ] = 0
when i 6= j. Therefore it follows that

E
[
‖T2‖2

]
= E

∫
D

1

N2
j

Nj∑
i=1

E
[
Y 2
i |Fj

]
= E

[∫
D

1

Nj
E
[
(∇f (uj , ·)− E [∇f(uj , ·)|Fj ])2 |Fj

]
dx

]
≤ E

[∫
D

1

Nj
E
[
(∇f(uj , ·))2 |Fj

]
dx

]
=

1

Nj
E
[
‖∇f(uj , ·)‖2

]
≤ 2

Nj
E
[
‖∇f(uj , ·)−∇f(u?, ·)‖2 + ‖∇f(u?, ·)‖2

]
[Lipschitz condition (17)]

≤ 2L2

Nj
E
[
‖uj − u?‖2

]
+

2

Nj
E
[
‖∇f(u?, ·)‖2

]
.
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Finally, we have that

E[〈uj − u?, T2〉] = E[E [〈uj − u?, T2〉|Fj ]]
= E[〈uj − u?,E [T2|Fj ]〉]

=
1

Nj

Nj∑
i=1

E[〈uj − u?,E [Yi|Fj ]〉]

= 0,

and, similarly, E[〈T1, T2〉] = E[E [〈T1, T2〉|Fj ]] = E[〈T1,E [T2|Fj ]〉] = 0, which con-
cludes the proof. �

We now consider the FE version of (29):

(31) uhj+1 = uhj − τjE
−→ωj
MC [∇fh(uhj , ω)] ,

with−→ωj := (ω
(1)
j , · · · , ω(Nj)

j ), and focus on the particular setting (τj , Nj) = (τ0/j,N).

Theorem 4. Suppose that the assumptions of Lemma 6 hold and let uhj denote the

j-th iterate of (31) with τ0 > 1/l, τj = τ0
j and Nj = N, ∀j. Then we have

(32) E[‖uhj − u?‖2] ≤ D1j
−1 +D2h

2r+2,

for suitable constants D1, D2 > 0 independent of j and h.

Proof. It follows from Theorem 3 that the factor cj in (30) for the particular case

of (τj , Nj) = (τ0/j,N) becomes:

cj = 1− τ0l

j
+
τ2
0L

2

j2

(
1 +

2

N

)
.

Next we use the recursive formula (30) and set, as in Section 3, uh? to be the
exact optimal control for the FE problem defined in (11). We emphasize that
(11) has no approximation in the probability space. Setting aj = E[‖uhj − uh?‖2]

and βj =
2τ2
j

N
E[‖∇f(uh? , ·)‖2], from (30) applied to the sequence of Finite Element

solutions {uhj }j>0 we find

aj+1 ≤cjaj + βj

≤cjcj−1aj−1 + cjβj−1 + βj

≤ · · ·

≤
( j∏
i=1

ci

)
︸ ︷︷ ︸

=κj

a1 +

j∑
i=1

βi

j∏
l=i+1

cl︸ ︷︷ ︸
=Bj

.(33)

For the first term κj , computing its logarithm, we have,

log(κj) =

j∑
i=1

log(1− τ0l

i
+
M

i2
) ≤

j∑
i=1

−τ0l
i

+

j∑
i=1

M

i2
,

where we have set M = τ2
0L

2
(
1 + 2

N

)
. Thus

log(κj) ≤ −τ0l log j +M ′, with M ′ =

∞∑
i=1

M

i2
,
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and κj . j−τ0l. For the second term Bj in (33) we have:

Bj =

j∑
i=1

βi

j∏
k=i+1

ck ≤
j∑
i=1

S

i2

j∏
k=i+1

(
1− τ0l

k
+
τ2
0L

2

k2

)
︸ ︷︷ ︸

=Kij

, with S =
2τ2

0

N
E[‖∇f(uh? , ω)‖2].

For the term Kij we can proceed as before

log(Kij) =

j∑
k=i+1

log

(
1− τ0l

k
+
M

k2

)

≤
j∑

k=i+1

(
− τ0l

k
+
M

k2

)
≤ −τ0l(log(j + 1)− log(i+ 1)) +M

(
1

i
− 1

j

)
,

which shows that

Kij ≤ (j + 1)−τ0l(i+ 1)τ0l exp

(
M

(
1

i
− 1

j

))
.

It follows that

Bj ≤ (j + 1)−τ0l exp

(
−M
j

)
︸ ︷︷ ︸

≤1

j∑
i=1

Siτ0l−2 exp

(
M

i

)
︸ ︷︷ ︸
≤exp(M)

≤ S exp(M)(j + 1)−τ0l
j∑
i=1

iτ0l−2 . j−1,

for τ0 > 1/l. Eventually, we obtain the following upper bound, for two constants
D3 > 0 and D4 > 0 independent of h and j:

(34) aj+1 ≤ D3j
−τ0la1 +D4j

−1.

From the condition τ0 >
1
l , we conclude that

(35) aj+1 ≤ D1j
−1,

with D1 possibly depending in ‖uh0 − uh?‖. Finally splitting the error as

E[‖uhj − u?‖2] ≤ 2E[‖uhj − uh?‖2] + 2E[‖uh? − u?‖2],

and using (16) in Corollary 1 to bound the second term, the claim follows. �

Algorithm 1 contains a detailed pseudo-code description of the SG method (31)
with a fixed FE mesh size h applied to the OCP (11).
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Data:
Given a desired tolerance tol, choose 1

l < τ0, jmax ' tol−2, and h ' tol 1
r+1

initialization:
u = 0;

for j = 1, . . . , jmax do

sample N realizations a
(i)
j = a(·, ω(i)

j ), i = 1, . . . , N , of the random field;

solve N state problems → y(a
(i)
j , u), i = 1, . . . , N , using FE on mesh h;

solve N adjoint problems → p(a
(i)
j , u), i = 1, . . . , N , using FE on

mesh h;

∇̂J = βu+ 1
N

∑N
j=1 p(a

(i)
j , u)

u = u− τ0
j ∇̂J

end
Algorithm 1: Stochastic Gradient algorithm with fixed mesh size.

We conclude this section by analyzing the complexity of the method described
in Algorithm 1.

Corollary 2. To achieve a given tolerance O(tol) in a root mean squared sense,
i.e. to guarantee that E[‖uhj − u?‖2] . tol2, the total required computational work
W is bounded by

W . tol−2− nγ
r+1 .

Here, we recall that the state and adjoint problems can be solved, using a triangu-
lation with mesh size h, in computational time Ch = O(h−nγ), γ ∈ [1, 3], and r is
the degree of the polynomial FE space.

Proof. To achieve a tolerance O(tol2) for the error E[‖uhj − u?‖2], we can equidis-

tribute the precision tol2 over the two terms in (32). This leads to the choice:

jmax ' tol−2, h ' tol 1
r+1 .

The cost for solving one deterministic PDE with the FE method is proportional to
h−nγ . Hence the total cost for computing a solution uhj that achieves the required
tolerance is

W ' 2Njh−nγ = O(tol−2− nγ
r+1 ),

as claimed. �

Remark 2. We have investigated also other choices for (τj , Nj) in the SG method

(31). However, among the cases considered, we have found that (τj , Nj) = ( τ0j , N)

leads to the best complexity. For example we have studied the SG with step-size
τj = τ0/j, τ0l > 1 and increasing the MC sample size as Nj ∼ jτ0l−1 across
iterations. With this choice the estimate in (32) becomes

(36) aj+1 ≤ D4j
−τ0l log(j) ,

which leads to the choice jmax ' tol−
2
τ0l | log(tol)| 1

τ0l and a final complexity

W ' 2

j∑
i=1

iτ0l−1h−nγ ' 2jτ0lh−nγ = O(tol−2− nγ
r+1 | log(tol)|),

which is analogous to that of the full optimization algorithm discussed in Section 5.
The proof of the bound (36) is detailed in Appendix B for completeness.

Remark 3. In general convex stochastic optimization problems, the constant l may
be challenging to estimate in practice, which makes it difficult to fulfill the condition
τ0 > 1/l. To bypass this difficulty, one could consider the so-called Averaged Sto-
chastic Gradient method [44] instead, in which the step size τj = τ0/j

η, η ∈ (0, 1),
17



MC with linear solver SG - Variable step-size SG - Variable step-size and Nj
τj = τ0 τj = τ0/j τj = τ0/j

N ' tol−2 Nj = N Nj = jτ0l−1

h ' tol 1
r+1 h ' tol 1

r+1 h ' tol 1
r+1

jmax ' − log(tol) jmax ' tol−2 jmax ' tol−
2
τ0l | log(tol)| 1

τ0l

W . tol−2− nγ
r+1 | log(tol)| W . tol−2− nγ

r+1 W . tol−2− nγ
r+1 | log(tol)|

Table 1. Complexity analysis overview for different optimization
methods

is chosen with Nj = N and the averaged control 1
j

∑j
i=1 ui is considered. The anal-

ysis of this alternative method is postponed to a future work. We remark, however,
that in our setting the constant l is directly related to the regularization parameter,
namely l = 2β, so the need for averaging the control is not so compelling.

Table 1 summarizes the complexity results for the SG method in both the fixed
sample size and increasing sample size regimes, as well as the complexity of a linear
solver (e.g. CG) applied to the fully discretized OCP. There, the total work (W )
to achieve a given tolerance (tol) is presented. We see from the table that the SG
version with fixed sample size N (second column) improves the complexity only
by a logarithmic factor compared to the MC method in conjunction with a linear
solver for the optimization problem (first column). The advantage we see in this
SG version compared to the MC method with linear solver is that we do not have to
fix the sample size N in advance and can, instead, simply monitor the convergence
of the SG iterations until a prescribed tolerance is reached. However, in Algorithm
1, we do have to choose the FE mesh size in advance. It is therefore natural to look
at a further variation of the SG algorithm in which the FE mesh is refined during
the iterations until a prescribed tolerance is reached. This is detailed in the next
Section.

7. Stochastic Gradient with variable mesh size

In this section, we discus a variant of the stochastic gradient (SG) method that
also refines the FE mesh size across iterations of the steepest decent optimization
routine. That is, the new mesh size hj is now depending on the current iteration j.

Here we study only sequences of nested meshes of size hj = 2−`(j) with ` : N→ N
being a non-decreasing function. The complete SG procedure with decreasing FE
mesh size then reads:

(37) u
hj+1

j+1 = u
hj
j − τjE

−→ωj
MC [∇fhj (uhjj , ·)],

with −→ωj := (ω
(1)
j , · · · , ω(Nj)

j ). Notice that if non-nested meshes are used across the

iterations, a projection operator has to be added in (37) to transfer information
from one mesh to another. We first derive a recurrence formula for the error in the
spirit of (30).

Theorem 5. Let u
hj+1

j+1 be the approximated control obtained from the SG with

variable mesh size (37) and u? the exact control for the continuous optimal prob-
lem (10). Then, under the assumptions of Lemma 6, we have:

(38) E[‖uhj+1

j+1 − u?‖2]

≤ cjE[‖uhjj − u?‖2] +
4τ2
j

Nj
E[‖∇f(u?, ·)‖2] + 4τj

(
τj(1 +

2

Nj
) +

1

l

)
Ch2r+2

j ,

18



where cj = 1 − τj l
2 + τ2

j L
2
(
2 + 2

Nj

)
, l and L are the convexity constant and the

Lipschitz constant of f , resp., and C > 0 is a constant that depends on the Hr+1-
seminorm of y(u?) and p(u?).

Proof. Subtracting the optimal continuous control u? from both sides of the recur-
rence formula (37), we get

u
hj+1

j+1 − u? =u
hj
j − u? − τjE

−→ωj
MC [∇fhj (uhjj , ·)]± τjE[∇fhj (u?, ·)]

± τjE
[
∇fhj (uhjj , ·)|Fj

]
+ τjE[∇f(u?, ·)]

=u
hj
j − u? + τj

(
E[∇fhj (u?, ·)]− E

[
∇fhj (uhjj , ·)|Fj

])
+ τj

(
E
[
∇fhj (uhjj , ·)|Fj

]
− E

−→ωj
MC [∇fhj (uhjj , ·)]

)
+ τj

(
E[∇f(u?, ·)−∇fhj (u?, ·)]

)
.

Then setting, similar as in the proof of Theorem 3,

T1 := E
[
∇fhj (uhjj , ·)|Fj

]
− E[∇fhj (u?, ·)],

T2 := E
−→ωj
MC [∇fhj (uhjj , ·)]− E

[
∇fhj (uhjj , ·)|Fj

]
,

T3 := E[∇f(u?, ·)−∇fhj (u?, ·)],

we can rewrite the last equality as

u
hj+1

j+1 − u? =u
hj
j − u? − τjT1 − τjT2 + τjT3 .

We compute the mean of the squared norm of u
hj+1

j+1 − u? as

(39) E[‖uhj+1

j+1 − u?‖2] = E[‖uhjj − u?‖2] + τ2
j E[‖T1‖2] + τ2

j E[‖T2‖2] + τ2
j E[‖T3‖2]

− 2τjE[〈uhjj − u?, T1〉]− 2τjE[〈uhjj − u?, T2〉] + 2τjE[〈uhjj − u?, T3〉]
+ 2τ2

j E[〈T1, T2〉]− 2τ2
j E[〈T2, T3〉]− 2τ2

j E[〈T1, T3〉] .

Next, we bound each of these ten terms on the right-hand side. First, the term
τ2
j E[‖T1‖2] can be bounded as in the proof of Theorem 3 leading to:

τ2
j E[‖T1‖2] ≤ τ2

j L
2
hjE[‖uhjj − u?‖2],

with Lhj being the Lipschitz constant for the function fhj , which is bounded by L

(see Lemma 7). For the term τ2
j E[‖T3‖2], we find,

τ2
j E[‖T3‖2] = τ2

j ‖E[∇f(u?, ·)−∇fhj (u?, ·)]‖2

= τ2
j ‖E[p(u?)− phj (u?)]‖2

≤ τ2
j E[‖p(u?)− phj (u?)‖2]

≤ 2τ2
j E[‖p(u?)− p̃hj (u?)‖2] + 2τ2

j E[‖p̃hj (u?)− phj (u?)‖2]

≤ 2Cτ2
j E[|p(u?)|2Hr+1 ]h2r+2 + 2Cτ2

j E[|y(u?)|2Hr+1 ]h2r+2 [using Lemma 6]

≤ 2τ2
j C(y(u?), p(u?))h

2r+2.

Next, for τ2
j E[‖T2‖2] we use the same steps as in Theorem 3 to find

τ2
j E[‖T2‖2] ≤

2τ2
j L

2
hj

Nj
E
[
‖uhjj − u?‖2

]
+

2τ2
j

Nj
E
[
‖∇fhj (u?, ·)‖2

]
.
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The second term of the right hand side can be further bounded uniformly w.r.t. hj
as

E[‖∇fhj (u?, ·)‖2] ≤ 2E[‖∇fhj (u?, ·)−∇f(u?, ·)‖2] + 2E[‖∇f(u?, ·)‖2]

≤ 4C(y(u?), p(u?))h
2r+2
j + 2E[‖∇f(u?, ·)‖2],

where we have used the same steps as for T3 to bound E[‖∇fhj (u?, ·)−∇f(u?, ·)‖2].
Finally, for the cross terms we have

2τjE[〈uhjj − u?, T1〉] = 2τjE[〈uhjj − u?,E
[
∇fhj (uhjj , ·)−∇fhj (u?, ·)|Fj

]
〉]

= 2τjE[E
[
〈uhjj − u?,∇fhj (u

hj
j , ·)−∇fhj (u?, ·)〉|Fj

]
]

≥ τj lE[‖uhjj − u?‖2], [using Strong convexity]

and as in Theorem 9,

2τjE[〈uhjj − u?, T2〉] = 2τ2
j E[〈T1, T2〉] = 2τ2

j E[〈T2, T3〉] = 0.

Moreover

2τjE[〈uhjj − u?, T3〉] ≤ 2τj
l

4
E[‖uhjj − u?‖2] +

2τj
l
E[‖T3‖2]

≤ 2τj
l

4
E[‖uhjj − u?‖2] +

4τj
l
C(y(u?), p(u?))h

2r+2,

and finally

2τ2
j E[〈T1, T3〉] ≤ τ2

j E[‖T1‖2] + τ2
j E[‖T3‖2]

≤ τ2
j L

2
hjE[‖uhjj − u?‖2] + 2τ2

j C(y(u?), p(u?))h
2r+2.

Putting everything together, we finally obtain (38), as claimed. �

A natural choice to tune the parameters τj , Nj and hj would be to set, guided

by the usual Robbins–Monro theory, τj = τ0/j, Nj = N and balancing all terms
on right hand side of (38). This leads to the following.

Theorem 6. Suppose that the assumptions of Lemma 6 hold and let u
hj
j denote the

j-th iterate of the SG method with variable mesh size (37). For the particular choice

(τj , Nj , hj) = (τ0/j,N, h02−`(j)), with `(j) =
⌈

ln2(j)
2r+2

⌉
, and assuming τ0 > 1/l, we

have:

(40) E[‖uhjj − u?‖2] ≤ F1j
−1

for a suitable constant F1 independent of j.

Proof. With the choice of τj , Nj and `(j) in the statement of the theorem, the two

last terms
4τ2
j

Nj
E[‖∇fhj (u?, ·)‖2] and 4τj

(
τj(1+ 2

Nj
)+ 1

l

)
Ch2r+2

j in the inequality (38)

have the same order O(j−2). Then, we apply the same reasoning as in Theorem 4
to conclude the proof. �

20



Algorithm 2 details the SG Robbins–Monro method with variable mesh size (37)
applied to the OCP (10).

Data:
Given a desired tolerance tol, choose τ0 >

1
l , h0 and jmax ' tol−2

initialization:
u = 0
for j = 1, . . . , jmax do

update mesh size to h = h02−d
ln2 j
2r+2 e

sample N realizations a
(i)
j = a(·, ω(i)

j ), i = 1, . . . , N , of the random field

solve N state problems → y(a
(i)
j , u), i = 1, . . . , N , on mesh h

solve N adjoint problems → p(a
(i)
j , u), i = 1, . . . , N , on mesh h

∇̂J = βu+ 1
N

∑N
i=1 p(a

(i)
j , u)

u = u− τ0
j ∇̂J

end
Algorithm 2: Stochastic Gradient algorithm with variable mesh size.

Concerning the complexity of the Algorithm 2, one can derive the following
complexity result.

Corollary 3. With the choice (τj , Nj , , hj) = (τ0/j,N, h02−`(j)) as in Theorem 6,
in order to achieve a given tolerance O(tol) in a root mean squared sense, i.e. to

guarantee that E[‖uhjj − u?‖2] . tol2, the total required computational work W is
bounded by:

W . tol−2− nγ
r+1 .

Proof. To guarantee that the mean squared error tolerance is met, in view of The-
orem 6 it suffices to ensure that tol2 . j−1

max, which holds for jmax ' tol−2. Then
the total work required is bounded by

W =

jmax∑
p=1

2Nh−nγp = 2N

jmax∑
p=1

2nγd
ln2 p
2r+2 e .

But since d ln2 p
2r+2e ≤

ln2 p
2r+2 + 1, one can bound:

W ≤ 2N

jmax∑
p=1

2nγ
(

ln2 p
2r+2 +1

)
≤ 2nγ+1N

jmax∑
p=1

p
nγ

2r+2

≤ 2nγ+1N
2r + 2

2r + 2 + nγ
(jmax + 1)

nγ
2r+2 +1

.

As jmax ' tol−2, we finally bound the computational work by

W . tol−2− nγ
r+1 .

�

Notice that the asymptotic complexity remains the same as for the Stochastic
Gradient algorithm with fixed mesh size (31); cf. Corollary 2. However, as the
SG method with variable mesh size uses computations on coarser meshes for the
first few iterations, we nonetheless expect a practical improvement due to reduc-
ing the proportionality constant. We will assess such improvement by numerical
experimentation in the next Section.
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(a) Structured mesh triangulation with
h = 2−3.

IsoValue
-1.10526
-0.947368
-0.842105
-0.736842
-0.631579
-0.526316
-0.421053
-0.315789
-0.210526
-0.105263
0
0.105263
0.210526
0.315789
0.421053
0.526316
0.631579
0.736842
0.842105
1.10526

z_d

(b) Target function zd for the optimal
control problem.

Figure 1. Mesh and target function zd.

8. Numerical results

In this section we verify the assertions of Theorems 2, 4, and 6, as well as
the computational complexity derived in the corresponding Corollaries 1, 2 and
3. Specifically, we illustrate the order of convergence for the three versions of the
iterative optimization method presented in Sections 5, 6, and 7 respectively. For
this purpose, we consider problem (2) in the domain D = (0, 1)2 with g = 1 and
the random diffusion coefficient

(41) a(x1, x2, ξ) = 1 + exp (var (ξ1 cos(1.1πx1) + ξ2 cos(1.2πx1)

+ξ3 sin(1.3πx2) + ξ4 sin(1.4πx2))) ,

with (x1, x2) ∈ D, var = exp(−1.125) and ξ = (ξ1, . . . , ξ4) with ξi
i.i.d.∼ U([−1, 1]).

Figure 2 shows three typical realizations of the random field. The target function
zd has been chosen as zd(x1, x2) = sin(πx1) sin(πx2) (see Fig. 1 b) and we have
taken β = 10−4 in the objective function J(u) in (3). For the FE approximation,
we have considered a structured triangular grid of size h (see Fig. 1 a) where each
side of the domain D is divided into 1/h sub-intervals and used piece-wise linear
finite elements (i.e. r = 1). All computations have been performed using the FE
library Freefem++[26]. This relatively simple setting, with only 4 uniform random
variables, has been chosen to be able to compute an accurate reference solution by
a stochastic collocation method on a fine FE mesh.

Reference solution. To compute a reference solution of problem (2), we use a full
tensorized Gauss-Legendre (GL) quadrature formula with 9 points in each direction
(i.e. with a total number of knots N = 94) and a fine triangulation with h = 2−9;
see, e.g., references [8, 43] and Appendix A for estimates of the quadrature error.
As this approximated problem with fixed Gauss nodes is now deterministic, we
have used a stopping condition based on the norm of the gradient, and have chosen
the conjugate gradient (CG) algorithm applied on the linear system (24) as the
iterative optimization scheme. In Figure 3 we show the optimal control obtained
after j = 16 iterations when the stopping criterion ‖EGL(9,9,9,9)[∇J(uhj )]‖ ≤ 10−8 was

met, where uhj is the j-th CG iterate and Ê = EGL(9,9,9,9) denote the tensor Gaussian

quadrature used in (19) to approximate the true expectation. The L2-norm of the

final control using this Gaussian quadrature is ‖ûh=2−8

j=16 ‖ = 16.4128.
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(a) ξ1 = 0.0327973
ξ2 = 0.10508
ξ3 = 0.141335
ξ4 = 0.905369

(b) ξ1 = 0.370554
ξ2 = 0.0682218
ξ3 = 0.667794
ξ4 = −0.421315

(c) ξ1 = −0.943052
ξ2 = 0.968895
ξ3 = −0.656957
ξ4 = −0.997339

Figure 2. Three realizations of the diffusion random field (41).

IsoValue
-0.161436
-0.141347
-0.127954
-0.114561
-0.101169
-0.0877757
-0.0743829
-0.0609901
-0.0475973
-0.0342045
-0.0208117
-0.00741885
0.00597396
0.0193668
0.0327596
0.0461524
0.0595452
0.072938
0.0863308
0.119813

optimal control

Figure 3. Optimal control reference solution computed with h =
2−8 on tensorized Gauss-Legendre quadrature formula withN = 94

nodes.

8.1. Conjugate gradient on fully discretized OCP. We investigate here the
convergence of the method described in Section 5, with the particular choice of the
CG method applied to the linear system (24) as iterative solver. We recall the error
bound (27) in the case of piece-wise linear FE (i.e. r = 1):

(42) E[‖ûhj − u‖2] ≤ C1e
−ρj +

C2

NMC
+ C3h

4 .

For each tolerance tol, using formula (42), we compute the optimal mesh size h =
h(tol), the optimal sample size in the MC approximation NMC = NMC(tol), and,
finally, the minimum number of iterations required in the iterative optimization
method, j = j(tol). To optimally balance the error contributions in (42), we need
further to estimate the constants C1, C2, C3, ρ. This is detailed hereafter.
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E[
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u
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E[‖u− u?‖]
E[‖u− u?‖] + std(‖u− u?‖)
fit: error ≈ 10−0.18321N−0.4659

MC

Figure 4. L2-error on the optimal control of the fully discretized
OCP with mesh size h = 2−9 and increasing MC sample size NMC .
Mean and std of the error estimated by sample averages over 10
independent realizations.

• In order to estimate the constant C2, we used the same finest mesh as
the one used to compute our reference solution, namely h = 2−9, and ran
the CG method up to 20 iterations on the linear system (24) discretized
by Monte Carlo with a sample of increasing size NMC = 20, 21, · · · , 210.
For every sample size NMC we repeated the simulation 10 times (with 10
independent MC samples) and averaged the final L2(D) error on the con-
trol. We numerically found C2 ≈ 0.430527. Figure 4 presents these results,
where the mean and standard deviation (std) of the L2 error have been
approximated by sample averages using the 10 independent realizations.

• To estimate the constant C3, we have discretized the OCP by a Gauss-
ian quadrature with N = 24 knots (2 Gauss-Legendre points per random
variable) and a sequence of decreasing mesh sizes h = 2−1, . . . , 2−8. The
optimal control has been computed by sufficiently many CG iterations and
the error estimated with respect to a reference solution with h = 2−9 and
the same Gaussian quadrature with N = 24 knots. We found C3 ≈ 436.516.
Figure 5 shows the convergence of the error on the control (in the L2-norm),
versus the discretization parameter h. We observe a convergence rate of h2,
which is consistent with the theoretical result in (42).

• To estimate the constants C1 and ρ, we have discretized the OCP by a
Gaussian quadrature with N = 54 tensorized Gauss-Legendre knots and
h = 2−9. We have run the CG algorithm and recorded the L2 error on the
control, computed with respect to a converged solution, over the iterations.
We found ρ = 4.941 and C1 = 17.9140.
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Figure 5. L2-error on the optimal control of the fully discrete
OCP with N = 24 Gauss-Legendre quadrature knots and decreas-
ing mesh sizes.

Figure 6 shows the computational complexity of the considered method, i.e. the
fully discretized OPC solved by the CG algorithm, with optimally chosen parame-
ters NMC , h, and j. Here we plot the mean L2 error on the optimal control versus
the computational cost model W = 2NMCj(

1
h − 1)2 (which assumes an optimal

linear algebra solver with γ = 1 for the FE discretized PDE). The mean error and
its standard deviation have been estimated by repeating the whole procedure 20
times. The observed slope is consistent with our theoretical result W ∼ tol−3 up
to logarithmic terms.

8.2. Stochastic Gradient with fixed mesh size. We implement here the Sto-
chastic Gradient method described in Section 6 using N = 1 samples at each itera-
tion (recall that the complexity does not depend on N) and learning rate τj = τ0

j+10 ,

with τ0 = 2
β . We have first assessed the convergence of the SG iterations on the FE

discretized OCP (11), using a mesh size h = 2−4. The reference solution was com-
puted using the same FE mesh size, a Gaussian quadrature with N = 54 knots to
approximate the expectation and CG iterations up to convergence. Figure 7 clearly
shows the 1√

j
convergence rate of the SG algorithm w.r.t. the iteration counter j,

as predicted by Theorem 4.
We have then studied the complexity of the SG Algorithm (where the error is

computed with respect to the solution of the continuous OCP (10)). For conve-
nience, we recall the error bound (32):

E[‖uhj − u?‖2] ≤ D1j
−1 +D2h

2r+2.
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Figure 6. Mean relative L2-error on the optimal control versus
the computational work model W = 2NMCj(

1
h − 1)2 for the fully

discretized OPC solved by the CG algorithm (with optimally cho-
sen parameters NMC , h, j). Mean and standard deviation of the
error estimated over 20 repetitions.

To optimally balance the two error contributions, we have estimated the constants
D1 and D2 as described next.

• The constant D1 can be inferred from the results in Figure 7. A least
squares fit of the mean L2 error versus the iteration counter j gives D1 ≈
2.143.
• The constant D2 is the same as the constant C3 in (42), hence we kept the

same estimate D2 ≈ 436.5.

With these constants estimated, for a given required tolerance tol we can estimate
the correct number of SG iterations j(tol) and mesh size h(tol) to fulfill the accuracy
requirement. Figure 8 shows the estimated mean L2 error, using SG Algorithm 1,
as a function of the computational cost model W = 2j( 1

h − 1)2. The slope is the

one predicted in Corollary 2 (with r = 1 and γ = 1), namely W . tol−3.

8.3. Stochastic Gradient with variable mesh size. We present here the results
for the Stochastic Gradient method described in Section 7 with N̄ = 1 and learning
rate τj = τ0

j+15 , with τ0 = 2
β . The mesh refinement strategy over the iterations is

the one described in Algorithm 2 with h0 = 2−4.
The rational behind this choice of h0 is the following: from (38) we have that

E[‖uhj+1

j+1 − u?‖2] ≤ cjE[‖uhjj − u?‖2] +MC + FE
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Figure 7. SG Algorithm applied to the FE discretized OPC (11)
with h = 2−4. Mean L2 error as a function of iteration counter,
estimated by sample average over 100 independent realizations.

where the Monte Carlo error behaves asymptotically for j →∞ asMC =
4τ2
j

N̄
E[‖∇f(u?, ·)‖2] ∼

4τ2
0

j2 C2 with C2 ≈ 0.43 estimated in Section 8.1, and the Finite Element error be-

haves as FE = 4τj
(
τj(1 + 2

N̄
) + 1

l

)
C3h

2r+2
j ∼ 4τ0(3τ0+ 1

l )

j2 C3h
4
0, with C3 ≈ 436.5

estimated in Section 8.1. Equilibrating the two error contributions MC and FE,
leads to an h0 of the order of the chosen one .

We have run the algorithm for jmax = 10000 iterations, and repeated the simu-
lation 100 times to estimate the mean error and its standard deviation.

Figure 9 shows the mean L2 error computed with respect to the same reference
solution described at the beginning of this section, versus the iteration counter.
Figure 10 shows, instead, the mean L2 error at iteration j versus the computa-

tional cost model Wj =
∑j
k=1 2( 1

hk
− 1)2, as well as one particular realization of

the algorithm. In both plots, the observed convergence rate of the mean error is
consistent with the results in Theorem 6 and Corollary 3, resp. In Figure 10 we
have also added, for comparison purposes, the complexity results of the other two
methods, namely CG on the fully discretized OCP and SG on the semi-discretized
OCP, with optimal choices of discretization parameters. It is clear from this plot
that all methods perform very similarly for the problem at hand.

9. Conclusions

In this work, we have analyzed and compared the complexity of three gradient
based methods for the numerical solution of a risk-averse optimal control prob-
lem involving an elliptic PDE with random coefficients, where a Finite Element
discretization is used to approximate the underlying PDEs and a Monte Carlo
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Figure 8. Mean relative L2 error on the optimal control versus
the computational work model W = 2j( 1

h − 1)2 for the SG Algo-
rithm 1 (with optimally chosen parameters j and h). Mean and
standard deviation of the error estimated over 20 repetitions.

sampling is used to approximate the expectation in the risk measure. The first ver-
sion considered is when the OCP is discretized upfront, using a fixed finite element
mesh and a fixed Monte Carlo sample, and then solved by an efficient iterative
method such as a Conjugate Gradient. The second version is a Stochastic Gradient
method in which the finite element discretization is still kept fixed over the itera-
tions, but the expectation in the objective function is re-sampled independently at
each iteration, with a small (fixed) sample size. Finally, the third version is again
a Stochastic Gradient method, but now with successively refined FE meshes over
the iterations. We have shown in particular, that the stochastic gradient methods
improve the computational complexity by log factors, compared to applying the
CG (or equivalent) linear solver to the fully discretized OCP. Our complexity anal-
ysis is based on a-priori error estimates and a-priori choices for the FE mesh size,
the Monte Carlo sample size, and the gradient iterations to obtain a prescribed
tolerance.

In addition to the improved complexity, another benefit of the stochastic gradient
methods is that they are more amenable to adaptive versions, in which, e.g., the
mesh size and possibly the Monte Carlo sample size are refined over the iterations
based on suitable a-posteriori error indicators. The study of such adaptive versions
is postponed to future work.

Another interesting direction for future work is the extension of stochastic gra-
dient methods to more general risk measures. For example, we mention that Sto-
chastic Gradient methods have been already used in combination with the CVaR
risk measure [5], although not in the context of PDE-constrained optimal control
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Figure 9. SG Algorithm with variable mesh size, and initial step-
size τ0 = 2/β. Mean L2 error E[‖u − u?‖], averaged over 100
experiments, as a function of the iteration counter j.

problems. One way of introducing more general risk mesures in our context could
be to consider the objective functional

J(u) =
1

2

∫
D

σ
(
yω(u)(x)− zd(x)

)
dx+

β

2
‖u‖2.

In this work we have focuced on the “mean-squared” risk measure σ(·) = E[(·)2]
but this could be replaced by any other coherent and more risk averse measure.
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Appendix A. Reference solution by Stochastic Collocation

In this appendix, we briefly describe the computation of the reference solution
used in the numerical result of Section 8, which is based on a stochastic colloca-
tion method on a tensor grid of Gauss Legendre points. Moreover, we provide an
error estimate for such an approximation based on stochastic collocation. While
the numerical example in Section 8 only depends on 4 random variables, here we
show that the stochastic collocation approximation is exponentially convergent and
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Figure 10. Comparison between the three different solution
methods: CG with fixed mesh and MC sample; SG with fixed
mesh, SG with variable mesh. The estimated mean relative L2

error E[‖u − u?‖] is plotted as a function of the theoretical com-
putational work W . Upper error bar corresponds to 3 standard
deviations. For the latter method, also one particular realization
is shown.

that a highly accurate solution can be obtained with a moderate number of col-
location points; recall that 94 points were used in the numerical experiments. We
suppose that quadrature to approximate the expectation is not random, but uses
deterministic points ξi, for i = 1, . . . , N . The estimated optimal control û is then
deterministic as well. The following theorem then provides an error bound.

Theorem 7. Denoting by u? the optimal control solution of the exact problem
(10) and by û the solution of the semi-discrete collocation problem (19) using a

deterministic quadrature formula Ê as approximation for E, we have

(43)
β

2
‖û− u?‖2 + E[‖y(u?)− y(û)‖2] ≤ 1

2β
‖E[p(û)]− Ê[p(û)]‖2.

Proof. The expressions of the gradient of J and Ĵ are given by ∇J(u?) = βu? +

E[p(u?)], ∇Ĵ(û) = βû + Ê[p(û)], respectively, and the corresponding optimality
conditions read

(44) 〈∇J(u?), v〉 = 0, 〈∇Ĵ(û), v〉 = 0, ∀v ∈ U.
Then choosing v = û− u? in (44), and combining both we find

〈β(u? − û) + E[p(u?)]− Ê[p(û)], û− u?〉 = 0,
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that is,

(45) β‖u? − û‖2 = 〈E[p(u?)]− E[p(û)] + E[p(û)]− Ê[p(û)], û− u?〉.
In order to bound the first part of the error in (45), 〈E[p(u?)]−E[p(û)], û− u?〉,

we can write for any ω ∈ Ω

〈û− u?, pω(u?)− pω(û)〉 = bω(yω(û)− yω(u?), pω(u?)− pω(û))

= 〈yω(u?)− yω(û), yω(û)− yω(u?)〉
= −‖yω(u?)− yω(û)‖2.

Then, taking expectation, we find

〈E[p(u?)]− E[p(û)], û− u?〉 = −E[‖y(u?)− y(û)‖2].

For the second contribution, 〈E[p(û)]−Ê[p(û)], û−u?〉, Cauchy-Schwarz and Young’s
inequalities yield

〈E[p(û)]− Ê[p(û)], û− u?〉 ≤
1

2β
‖E[p(û)]− Ê[p(û)]‖2 +

β

2
‖û− u?‖2,

from which the claim follows. �

The quantification of the quadrature error E[p(û)]− Ê[p(û)], i.e., the right hand
side in (43), heavily depends on the smoothness of the adjoint function in the sto-
chastic variables. The numerical example considered in Section 8 has a diffusion
coefficient that is a particular version of the more general class of diffusion coeffi-
cients of the form

a(x, ξ) = a0(x) +

M∑
i=1

√
λiξibi(x) ,

with a0 > 0 a.e. in D, ‖bi‖L∞(D) = 1,
∑M
i=1

√
λi < ess infx∈D a0(x), and ξi ∼

U([−1, 1]) i.i.d. uniform random variables. We denote by ξ = (ξ1, · · · , ξM ) the
corresponding random vector. Hence, in this case the probability space (Γ,F , P ) is

Γ = [−1, 1]M , F = B(Γ) the Borel σ-algebra on Γ, and P(dξ) = ⊗Mi=1
dξi
2 the uniform

product measure on Γ. Moreover, as ξi ∼ U([−1, 1]) here, we chose as a quadrature
formula the tensor Gaussian quadrature built on Gauss-Legendre quadrature points.
In particular, we consider a tensor grid with qi points in the i-th variable and denote
the corresponding quadrature by EGLq [·], where q = (q1, · · · , qM ) ∈ NM is a multi-
index.

To any vector of indexes (k1, . . . , kM ) ∈ {1, · · · , q1}× · · · × {1, · · · , qM} we asso-
ciate the global index

k = k1 + q1(k2 − 1) + q1q2(k3 − 1) + . . . ,

and we denote by yk the point yk = [y1,k1 , y2,k2 , ..., yM,kM ] ∈ Γ. We also introduce,
for each n = 1, 2, . . . , N , the Lagrange basis {ln,j}qnj=1 of the space Pqn−1

,

ln,j ∈ Pqn−1
(Γn), ln,j(yn,k) = δjk, j, k = 1, . . . , qn,

where δjk is the Kronecker symbol, and Pq−1(Γ) ⊂ L2(Γ) is the span of tensor
product polynomials with degree at most q − 1 = (q1 − 1, . . . , qM − 1), that is,

Pq−1(Γ) =
⊗M

i=1 Pqi−1(Γi). Hence the dimension of Pq−1 is Nq =
∏N
i=1 qi. Finally

we set lk(y) =
∏N
n=1 ln,kn(yn).

For any continuous function g : Γ → R we introduce the Gauss Legendre quad-
rature formula EGLq [g] approximating the integral

∫
Γ
g(y) dy as

(46) EGLq [g] =

Nq∑
k=1

ωkg(yk), ωk =

M∏
n=1

ωkn , ωkn =

∫
Γn

l2kn(y) dy .
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We now analyze the error introduced by the quadrature formula. The first step
is to investigate the smoothness of the map ξ 7→ p(û, ξ). For this, it is convenient
to extend the state and adjoint problems to the complex domain. To do so, with
slight abuse of notation let

a(x, z) = a0(x) +

M∑
i=1

√
λizibi(x)

with z = (z1, · · · , zM ) ∈ CM and let

U0 = {z ∈ CM : Re(a(x, z)) > 0 a.e. in D}.
We consider the state and adjoint problems extended to the complex domain: ∀z ∈
U0 find y(·, z) ∈ H1

0 (D;C) such that

(47)

∫
D

a(x, z)∇y(x, z)∇v(x)dx =

∫
D

(û(x) + g(x))v(x)dx ∀v ∈ H1
0 (D;C) ,

and find p(·, z) ∈ H1
0 (D;C) s.t.

(48)

∫
D

a(x, z)∇p(x, z)∇v(x)dx =

∫
D

(y(x, z)− zd(x))v(x)dx ∀v ∈ H1
0 (D;C) .

It is well known that problem (47) and (48) are well posed in U0. Let now Σ ⊂ U0

be

Σ := {z ∈ CN :

M∑
i=1

√
λi|zi| ≤

amin
2
}

with amin = essinfx∈D a0(x). The next Lemma states that both z 7→ y(·, z) and
z 7→ p(·, z) are holomorphic functions in U0 with uniform bounds on Σ. The result
for z 7→ y(·, z) is well known and can be found in reference [11] for example, so that
we only give the proof for z 7→ p(·, z).

Lemma 9. Both functions z 7→ y(·, z) and z 7→ p(·, z) are holomorphic on U0, and
both have a uniform bound on Σ, in the sense that

(49) max
z∈Σ
‖y(·, z)‖H1

0
≤ CP

‖g + û‖
amin

and

(50) max
z∈Σ
‖p(·, z)‖H1

0
≤ CP

‖zd‖
amin

+ C3
P

‖g + û‖
a2
min

.

Proof. It is well known (see e.g. [11]) that the function z 7→ y(·, z) is holomorphic on
U0 with bound (49). This property translates to the adjoint function z 7→ p(·, z) ∈
H1

0 (D;C) which is holomorphic in U0 as well with bound

max
z∈Σ
‖p(·, z)‖H1 ≤ CP max

z∈Σ

‖y(·, z)− zd‖
amin

≤ CP
‖zd‖
amin

+ CP max
z∈Σ

‖y(·, z)‖
amin

≤ CP
‖zd‖
amin

+ C3
P

‖g + û‖
a2
min

.

�

Based on the last regularity result and following [3], we can state the following
error estimate for the quadrature error.
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Theorem 8. Denoting by û the solution of the semi-discrete (in probability) optimal

control problem (19) with Ê = EGLq [·] and p(û) the corresponding adjoint function,
there exist C > 0 and {r1, · · · , rM} independent of q s.t.

‖E[p(û)]− EGLq [p(û)]‖2 ≤ C
M∑
n=1

e−rnqn ,

with qn the number of points used in the quadrature in direction n.

Appendix B. Proof for increasing Monte Carlo sampling in SG

Here we detail the proof of the bound (36) in Remark 2. In that case the factor
cj in (30) becomes

cj := 1− τj l + L2
(

1 +
2

Nj

)
τ2
j = 1− τ0l

j
+ L2

(
1 + 2j1−τ0l

)τ2
0

j2
,

for τj = τ0/j and Nj ∼ jτ0l−1 with τ0l − 1 > 0. We use the recursive formula (30)
and set, as before, uh? to be the exact optimal control for the FE problem defined in
(11). We emphasize that (11) has no approximation in probability space. Setting

aj = E[‖uhj −uh?‖2] and βj =
2τ2
j

Nj
E[‖∇f(uh? , ω)‖2], we have from (30) applied to the

sequence of FE solutions {uhj }j>0 that

aj+1 ≤cjaj + βj

≤cjcj−1aj−1 + cjβj−1 + βj

≤ · · ·

≤
( j∏
i=1

ci

)
︸ ︷︷ ︸

=κj

a1 +

j∑
i=1

βi

j∏
l=i+1

cl︸ ︷︷ ︸
=Bj

.(51)

For the first term κj , computing its logarithm, we have

log(κj) ≤
j∑
i=1

log(1− τ0l

i
+
M ′

i2
) ≤

j∑
i=1

−τ0l
i

+

j∑
i=1

M ′

i2
,

where we have set M ′ = 3τ2
0L

2 as we have 1− τ0l < 0 and thus j1−τ0l ≤ 1 for every
j ≥ 1. Therefore

log(κj) ≤ −τ0l log j +M ′′, with M ′′ =

∞∑
i=1

M ′

i2

and κj . j−τ0l. For the second term Bj in (51) we have

Bj =

j∑
i=1

βi

j∏
k=i+1

ck ≤
j∑
i=1

S′i−τ0l−1

j∏
k=i+1

(
1− τ0l

k
+

3τ2
0L

2

k2

)
︸ ︷︷ ︸

=Kij

,
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with S′ = 2τ2
0E[‖∇f(uh? , ω)‖2]. For the term Kij we find that

log(Kij) =

j∑
k=i+1

log

(
1− τ0l

k
+
M ′

k2

)

≤
j∑

k=i+1

(
− τ0l

k
+
M ′

k2

)
≤ −τ0l(log(j + 1)− log(i+ 1)) +M ′

(
1

i
− 1

j

)
,

which shows that

Kij ≤ (j + 1)−τ0l(i+ 1)τ0l exp

(
M ′
(

1

i
− 1

j

))
.

It follows that

Bj ≤ (j + 1)−τ0l exp

(
−M

′

j

)
︸ ︷︷ ︸

≤1

j∑
i=1

S′i−τ0l−1(i+ 1)τ0l exp

(
M ′

i

)
︸ ︷︷ ︸
≤exp(M ′)

≤ S′ exp(M ′)(j + 1)−τ0l
j∑
i=1

(i+ 1)−1 . j−τ0l log(j),

for τ0 > 1/l. Eventually, we obtained the following upper bound for two constants
D3 > 0 and D4 > 0:

(52) aj+1 ≤ D3j
−τ0la1 +D4j

−τ0l log(j).

We conclude that

(53) aj+1 ≤ D4j
−τ0l log(j),

with D4 possibly depending on ‖uh0 − uh?‖. Finally, splitting the error as

E[‖uhj − u?‖2] ≤ 2E[‖uhj − uh?‖2] + 2E[‖uh? − u?‖2]

and using (16) to bound the second term, the claim follows.
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Fédérale de Lausanne, 2019, Thesis n. 7233.

[37] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, Robust stochastic approx-
imation approach to stochastic programming, SIAM Journal on Optimization
19 (2009), no. 4, 1574–1609.

[38] B. T. Polyak and A.B. Juditsky, Acceleration of stochastic approximation by
averaging, SIAM Journal on Control and Optimization 30 (1992), no. 4, 838–
855.

[39] H. Robbins and S. Monro, A stochastic approximation method, Ann. Math.
Statist. 22 (1951), no. 3, 400–407.

[40] R. T. Rockafellar and S. Uryasev, Conditional value-at-risk for general loss
distributions, J. Bank. Financ. 26 (2002), no. 7, 1443–1471.

[41] E. Rosseel and G. N. Wells, Optimal control with stochastic PDE constraints
and uncertain controls, Comput. Methods Appl. Mech. Engrg. 213/216
(2012), 152–167. MR 2880511

[42] D. Ruppert, Efficient estimations from a slowly convergent Robbins-Monro
process, Tech. report, Cornell University Operations Research and Industrial
Engineering, 1988.

[43] C. Schillings, S. Schmidt, and V. Schulz, Efficient shape optimization for cer-
tain and uncertain aerodynamic design, Computers & Fluids 46 (2011), no. 1,
78 – 87, 10th ICFD Conference Series on Numerical Methods for Fluid Dy-
namics (ICFD 2010).

36



[44] M. Schmidt, N. Le Roux, and F. Bach, Minimizing finite sums with the stochas-
tic average gradient, Mathematical Programming 162 (2017), no. 1-2, 83–112.

[45] A. Shapiro, D. Dentcheva, and A. Ruszczyński, Lectures on stochastic program-
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