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ANALYSIS OF STOCHASTIC GRADIENT METHODS FOR

PDE-CONSTRAINED OPTIMAL CONTROL PROBLEMS WITH

UNCERTAIN PARAMETERS

M. MARTIN, S. KRUMSCHEID, AND F. NOBILE

Abstract. We consider the numerical approximation of a risk-averse opti-
mal control problem for an elliptic partial differential equation (PDE) with

random coefficients. Specifically, the control function is a deterministic, dis-
tributed forcing term that minimizes the expected mean squared distance be-

tween the state (i.e. solution to the PDE) and a target function, subject to

a regularization for well posedness. For the numerical treatment of this risk-
averse optimal control problem, we consider a Finite Element discretization

of the underlying PDEs, a Monte Carlo sampling method, and gradient type

iterations to obtain the approximate optimal control. We provide full error
and complexity analysis of the proposed numerical schemes. In particular we

compare the complexity of a fixed Monte Carlo gradient method, in which the

Finite Element discretization and Monte Carlo sample are chosen initially and
kept fixed over the gradient iterations, with a Stochastic Gradient method in

which the expectation in the computation of the steepest descent direction is

approximated by independent Monte Carlo estimators with small sample sizes
and possibly varying Finite Element mesh sizes across iterations. We show in

particular that the second strategy results in an improved computational com-
plexity. The theoretical error estimates and complexity results are confirmed

by our numerical experiments.

Keywords. PDE constrained optimization, risk-averse optimal control, optimiza-
tion under uncertainty, PDE with random coefficients, stochastic approximation,
stochastic gradient, Monte Carlo
AMS subject classifications. 35Q93, 49M99, 65C05, 65N12, 65N30

1. Introduction

Many problems in engineering and science, e.g. shape optimization in aerody-
namics or heat transfer in thermal conduction problems, deal with optimization
problems constrained by partial differential equations (PDEs) [7, 12, 19, 21, 27].
Often, these types of problems are affected by uncertainties, due to a lack of knowl-
edge, intrinsic variability in the system, or an imprecise manufacturing process. For
instance, to determine the optimal cooling of a super-computing center, one should
take into account the fact that the heat source from the supercomputers could vary
considerably over time and also the heat conduction properties of the machines
might not be perfectly determined. As these material properties or boundary con-
ditions are not precisely known, it is reasonable to consider optimal control problems
(OCPs) constrained by PDEs with uncertain coefficients, which could be described
as random variables or random fields. This OCP is sometimes also referred to as
Optimization Under Uncertainty (OUU).

In this work we focus on the numerical approximation of the problem of con-
trolling the solution of an elliptic PDE with random coefficients by a distributed
unconstrained control. Specifically, the control acts as a volumetric forcing term,
so that the solution is as close as possible to a given target function.

Date: March 9, 2018.
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While there is a vast literature on the numerical approximation of PDE-constrained
optimal control problems (see e.g. [7, 21] and references therein) in the determin-
istic case, as well as on the numerical approximation of (uncontrolled) PDEs with
random coefficients (see e.g. [3, 18, 29] and references therein), the analysis of
corresponding PDE constrained control problem under uncertainty is much more
recent and incomplete, although the topic has received increasing attention in the
last few years.

The formulations of the PDE-constrained OCPs under uncertainty that can be
found in the literature can be roughly grouped in two categories.

In the first category, the control is random [1, 6, 10, 25, 35, 40]. This situation
arises when the randomness in the PDE is observable hence an optimal control can
be built for each realization of the random system. However, the corresponding
optimality system might still be fully coupled in the random parameters if the
objective function involves some statistics of the state variables. The dependence
on the random parameters is typically approximated either by polynomial chaos
expansions or Monte Carlo (MC) techniques.

The former approach is considered e.g. in [25], where the authors prove analytic
dependence of the control on the random parameters and study its best N -term
polynomial chaos approximation for a linear parabolic PDE-constrained OCP; the
work [10], combines a stochastic collocation with a Finite Element (FE) based re-
duced basis method to alleviate the computational effort; the works [6, 35, 40]
address the case of a fully coupled optimality system discretized by either Galerkin
or collocation approaches and propose different methods, such as sequential qua-
dratic programming, or block diagonal preconditioning to solve the coupled system
efficiently. Monte Carlo and Multilevel Monte Carlo approaches are considered in
[1] instead, where the case of random coefficients with limited spatial regularity is
addressed.

In the second category, the control is deterministic [2, 9, 17, 22, 23, 24, 41].
This situation arises when randomness in the system is not observable at the time
of designing the control, so that the latter should be robust in the sense that it
minimizes the risk of obtaining a solution which leads to high values of the objective
function. This situation is also referred to as risk-averse optimal control and always
leads to a fully coupled optimality system in the random parameters. The idea of
minimizing a risk to obtain a solution with favorable properties goes back to the
origins of robust optimization [39]. Here, risk refers to a suitable statistical measure
of the objective function to be minimized, such as its expectation, expectation
plus variance, a quantile, or a conditional expectation above a quantile (so called
Conditional Value at Risk (CVaR) [34]).

Numerical methods for OCPs of this category typically depend on the choice of
the risk measure. For example, the work [2] considers a risk measure that involves
the mean and variance of the objective function and uses second order Taylor ex-
pansions combined with randomized estimators to reduce the computational effort.
The work [41] considers a risk measure that involves only the mean of the objec-
tive function (hereafter named mean-based risk), with an additional penalty on the
variance of the state, and proposes a gradient type method, in which the expec-
tation of the gradient is computed by a Multilevel Monte Carlo method. In [9],
the authors also consider a mean-based risk problem and propose a reduced basis
method on the space of controls to dramatically reduce the computational effort.
In the work [22], the author presents a more general type of OCP, using the general
notion of a risk measure, and derives the corresponding optimality system of PDEs
to be solved. For its numerical solution, a trust-region Newton conjugate gradient
algorithm is proposed in [23], combined with an adaptive sparse grid collocation
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for the discretization of the PDE in the stochastic space. The work [24] considers
derivative-based optimization methods for the robust CVaR risk measure, which
are building upon introducing smooth approximations to the CVaR. Finally, in the
work [17], the authors consider a boundary OCP where the deterministic control
appears as a Neumann boundary condition.

In this work, we follow the second modeling category consider the (robust) OCP
of minimizing the mean-based risk of the objective function. We consider in partic-
ular gradient type methods where adjoint calculus is used to represent the gradient
of the objective function, and FE approximations of the primal and dual problems,
as well as a Monte Carlo approximation of the expectation in the risk measure
are employed. The reason for looking at Monte Carlo approximations, instead of
polynomial chaos ones, is to develop methods that can potentially handle many
random parameters and possibly rough random coefficients.

Our main contribution is to provide a full error analysis including the finite el-
ement, the Monte Carlo and the gradient iterations errors, as well as a complexity
analysis when all sources of errors are optimally balanced to achieve a given toler-
ance. The motivation for analyzing gradient type optimization methods is twofold.
First, their rather simple structure allows for a complete complexity analysis, which
is desirable in practice due to their wide-spread use. Second, our analysis reveals
that the cost due to the FE and the Monte Carlo approximations dominate the
overall computational complexity, in the sense that the gradient type method only
increases the cost by a logarithmic term.

It is noteworthy that other error analysis have been proposed in [10] in the
case of a random control, with a discretization in space by Finite Elements and in
probability by stochastic collocation, and in [17] in the case of a mean-based risk
for a deterministic boundary control problem, using a Finite Element discretization
both in space and in probability.

The first gradient method that we consider is the standard gradient method
(which we call fixed MC gradient), in which the Finite Element discretization and
the Monte Carlo sample are chosen initially and kept fixed over the iterations of
the gradient method. If N is the sample size of the Monte Carlo estimator, this
method entails the solution of N primal and N dual problems at each iteration of
the gradient method, which could be troublesome if a small tolerance is required,
entailing a very large N and small Finite Element mesh size.

We then turn to stochastic versions of the gradient method in which the gradient
is re-sampled independently at each iteration and the Finite Element mesh size can
be refined along the iterations. This corresponds to taking, at each iteration, an
independent Monte Carlo estimator with only one realization (N = 1) or a very
small and fixed sample size (N = N̄) independently of the required tolerance, with
possibly a finer Finite Element mesh. We follow, in particular, the Robbins-Monroe
strategy [30, 33, 36] of reducing progressively the step-size to achieve convergence
of the Stochastic Gradient iterations.

Stochastic Gradient (SG) techniques have been extensively applied to machine
learning problems [13, 14, 16, 26], but have not yet been used for risk-averse PDE-
constrained optimization problems. Here, we show that our Stochastic Gradient
method improves the complexity of the fixed MC gradient method by a logarithmic
factor. Although the computational gain is not dramatic, we see potential in this
approach as only one primal problem and one dual problem have to be solved
at every iteration of the gradient method. Moreover, we believe that the whole
construction is more amenable to an adaptive version, which, in combination with
an appropriate error estimator, allows for a self-controlling algorithm. We leave
this for future work.

3



The rest of the paper is organized as follows: in Section 2 we set the mean-based
risk-averse optimal control problem and recall its well posedness and the optimal-
ity conditions; in Sections 3, 4, 5 we introduce, respectively, the finite element
discretization, the Monte Carlo approximation, and the steepest descent (gradient)
method, including their full error analysis. In particular, Theorem 5 in Section 5
gives an error bound for the fully discrete solution of the fixed MC gradient method,
whereas Corollary 2 gives the corresponding computational complexity. In Section
6 we analyze the Stochastic Gradient method with fixed finite element discretization
over the iterations (with error bound given in Theorem 6 and the corresponding
complexity result in Corollary 3), whereas in Section 7 we analyze the Stochastic
Gradient version in which the Finite Element mesh is refined over the iterations
(Theorem 8 and Corollary 4). In Section 8, we discuss a 2D test problem and
confirm numerically the theoretical error bounds and complexities derived in the
preceding Sections. Finally, in Section 9 we draw some conclusions.

2. Problem setting

We start introducing the primal problem that will be part of the OCP discussed
in the following. Specifically, we consider the problem of finding the solution y :
D × Γ→ R of the elliptic random PDE

(1)

{
−div(a(x, ω)∇y(x, ω)) = φ(x, ω), x ∈ D, ω ∈ Γ,

y(x, ω) = 0, x ∈ ∂D, ω ∈ Γ,

where D ⊂ Rn is open and bounded, denoting the physical domain, (Γ,F , P ) is
a complete probability space, and ω ∈ Γ is an elementary random event. The
diffusion coefficient a is an almost surely (a.s.) continuous and positive random
field on D, and φ is a stochastic source term (that could contain, for example, a
deterministic control part).

Before addressing the optimal control problem related to the random PDE (1), we
will first recall the well posedness results for (1). We begin by recalling some usual
functional spaces needed for the analysis that follows. Let Lp(D) for 1 ≤ p < ∞
denote the space of functions for which the p-th power of their absolute value is
Lebesgue integrable, that is

Lp(D) = {y : D → R, f measurable, and

∫
D

|y|pdx < +∞},

and L∞(D) the space of measurable functions that are bounded almost everywhere
(a.e.) on D. Throughout this work, we will denote by ‖ · ‖ ≡ ‖ · ‖L2(D) the usual

L2(D)-norm induced by the inner product 〈f, g〉 =
∫
D
fgdx for any f, g ∈ L2(D).

Furthermore, we introduce the Sobolev spaces

H1(D) = {y ∈ L2(D), ∂xiy ∈ L2(D), i = 1, . . . , n}

and

H1
0 (D) = {y ∈ H1(D), y|∂D = 0}.

We use the equivalentH1-norm on the spaceH1
0 (D) defined by ‖y‖H1(D) = ‖y‖H1

0 (D) =

‖∇y‖ for any y ∈ H1
0 (D). Moreover, we recall the Poincaré inequality for any func-

tion y ∈ H1
0 (D)

‖y‖ ≤ Cp‖∇y‖ = Cp‖y‖H1(D),

where Cp is the Poincaré constant, and that H−1(D) =
(
H1

0 (D)
)∗

is the topological

dual of H1
0 (D). For r ∈ N we further recall the space Hr(D) of L2(D) functions with
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all partial derivatives up to order r in L2(D) with norm ‖y‖Hr(D) and semi-norm
|y|Hr(D) given by

‖y‖2Hr(D) =
∑
|α|≤r

∥∥∥∥∂|α|y∂xα

∥∥∥∥2

L2(D)

and |y|2Hr(D) =
∑
|α|=r

∥∥∥∥∂|α|y∂xα

∥∥∥∥2

L2(D)

,

respectively, for the multi-index α = (α1, . . . , αn). Finally, we introduce the
Bochner spaces Lp(Γ,V), which are formal extensions of Lebesgue spaces Lp(Γ),
for functions with values in a separable Hilbert space V as

Lp(Γ,V) = {y : Γ→ V, y measurable,

∫
Γ

‖y(ω)‖pVdP (ω) < +∞},

equipped with the norm ‖y‖Lp(Γ,V) =
(∫

Γ
‖y(ω)‖pVdP (ω)

) 1
p , see, e.g., [15] for de-

tails.

As it is common for the well posedness of the elliptic PDE (1), we assume that
the diffusion coefficient a in (1) is uniformly elliptic.

Assumption 1. The diffusion coefficient a ∈ L∞(D × Γ) is bounded and bounded
away from zero a.e. in D × Γ, i.e.

∃ amin, amax ∈ R such that 0 < amin ≤ a(x, ω) ≤ amax a.e. in D × Γ.

Now we are in the position to recall the well posedness of the random PDE (1),
which is a standard result, see e.g. [4, 29].

Lemma 1 (Well posedness of (1)). Let Assumption 1 hold. If φ ∈ L2(Γ, H−1(D)),
then problem (1) admits a unique solution y ∈ L2(Γ, H1

0 (D)) s.t.

‖y(·, ω)‖H1
0 (D) ≤

1

amin
‖φ(·, ω)‖H−1(D) for a.e. ω ∈ Γ

and ‖y‖L2(Γ,H1
0 (D)) ≤

1

amin
‖φ‖L2(Γ,H−1(D)).

Finally, as we will occasionally need H2-regularity in the following Sections, we
also introduce a sufficient condition on the domain D and on the gradient of a.

Assumption 2. The domain D ⊂ Rn is polygonal convex and the random field
a ∈ L∞(D × Γ) is such that ∇a ∈ L∞(D × Γ),

Then, using standard regularity arguments for elliptic PDEs, one can prove the
following result [15].

Lemma 2. Let Assumptions 1 and 2 hold. If φ ∈ L2(Γ, L2(D)), then problem
(1) has a unique solution y ∈ L2(Γ, H2(D)). Moreover there exists a constant C,
independent of φ, such that

‖y‖L2(Γ,H2(D)) ≤ C‖φ‖L2(Γ,L2(D)).

We are now ready to introduce the optimal control problem linked with the PDE
(1), which we will study in the rest of the paper.

2.1. Optimal Control Problem. We define the primal problem for the OCP as
the elliptic PDE (1), by particularizing its right hand side to:

(2)

{
−div(a(x, ω)∇y(x, ω)) = g(x) + u(x), x ∈ D, ω ∈ Γ,

y(x, ω) = 0, x ∈ ∂D, ω ∈ Γ,

with g ∈ H−1(D) and u ∈ U , where U ⊂ L2(D) denotes the set of all admissible
(deterministic) control functions. We set the state space of the solution to (2) as
Y = H1

0 (D). To emphasize the dependence of the solution to the PDE on the
5



control function and on a particular realization a(·, ω) of the random field, we will
use the notation yω(u). When the particular realization of a is not relevant, or
when no confusion arises, we will also simply write y(u) from times. In this work,
we focus on the objective function

(3) J(u) = E[f(u, ω)] with f(u, ω) =
1

2
‖yω(u)− zd‖2 +

α

2
‖u‖2,

where zd is a given target function which we would like the state yω(u) to approach
as close as possible, in a mean-square-error sense. The coefficient α ≥ 0 is a
constant of the problem that models the price of energy, i.e. how expensive it is
to add some energy in the control u in order to decrease the first distance term
E
[
‖yω(u)− zd‖2

]
. The ultimate goal then is the OCP, of determining the optimal

control u∗, so that

(4) u∗ ∈ arg min
u∈U

J(u), s.t. yω(u) ∈ Y solves (2) a.s.

Remark 1. The optimal control u∗ in (4) is the one that provides the best fit
‖yω(u∗) − zd‖ on average not requiring too much control energy (induced by the
regularization term). In view of applications, one may consider a more general

objective function J(u) = σ
(

1
2‖yω(u)− zd‖2

)
+ α

2 ‖u‖
2, where σ(·) is a more robust

risk measure such as the Conditional Value at Risk [24]. In this paper, however,
we restrict to the simple expectation risk measure, namely σ(·) = E[·], for sake of
simplicity.

As we aim at minimizing the functional J , we will use the theory of optimization
and calculus of variations. Specifically, we introduce the optimality condition for
the OCP (4), in the sense that the optimal control u∗ satisfies

(5) 〈∇J(u∗), v − u∗〉 ≥ 0 ∀v ∈ Y.

Here, by ∇J(u) we denote the L2(D)-functional representation of the Gateaux
derivative of J , namely∫

D

∇J(u)δu dx = lim
ε→0

J(u+ εδu)− J(u)

ε
= DJ(u)(δu) ∀ δu ∈ L2(D).

In order to study the well posedness of problem (4), we introduce a further assump-
tion on α, U and g.

Assumption 3. The regularization parameter α is strictly positive, i.e. α > 0.
Moreover, the space of admissible control functions is U = L2(D) and the deter-
ministic source term is such that g ∈ L2(D).

It follows from the results in [22] that problem (4) is well posed. As a matter
of fact, problem (4) is even well posed for more general settings than the one
considered here. For completeness, we give a short proof for the particular setting
considered in this work, as many of the following results will build on it. For this
we first introduce the following solution operator corresponding to the elliptic PDE
(1):

S : L2(Γ, H−1(D)) −→ L2(Γ, Y )

φ 7−→ Sφ = y solution of (1).

Notice that the operator S is continuous in view of Lemma 1. In the case of φ =
g+u ∈ L2(D) deterministic, we will sometimes use the notation Sω(g+u) = yω(u)
to denote one ω-realization of y. As S is self-adjoint, we have S∗ = S. Moreover,
for any separable Hilbert space V, we denote by E the usual expectation operator
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with respect to (w.r.t.) the probability measure P acting on the space L2(Γ,V),
i.e. E : L2(Γ,V)→ V. Its adjoint operator is

E∗ : V ′ −→ L2(Γ,V ′)
v 7−→ v,

which associates the constant stochastic (i.e. deterministic) function v ∈ L2(Γ,V ′)
to each deterministic function v ∈ V ′. Finally we define the two operators

S̃ = SE∗ : L2(D)→ L2(Γ, Y ) and S̃∗ = ES∗ : L2(Γ, Y )→ L2(D).

Existence and uniqueness of the OCP (4) can then be stated as follows.

Theorem 1. Suppose Assumptions 1 and 3 hold. Then the OCP (4) admits a
unique control u∗ ∈ U . Moreover

(6) ∇J(u) = αu+ E[pω(u)],

where pω(u) = p is the solution of the adjoint problem (a.s. in Γ)

(7)

{
− div(a(·, ω)∇p(·, ω)) = y(·, ω)− zd in D,

p(·, ω) = 0 on ∂D.

Proof. Let us define the inner product � ·, · � on the Bochner space L2(Γ, U),
� u, v �= E [< u, v >] =

∫
Γ

∫
D
u(x, ω)v(x, ω)dx dP (ω). Using the linearity of the

introduced operators, we can write J(u) as

J(u) =
1

2
E
[
< S̃(g + u)− zd, S̃(g + u)− zd >

]
+
α

2
< u, u >

=
1

2
� S̃(g + u)− zd, S̃(g + u)− zd � +

α

2
< u, u >

=
1

2
� S̃u, S̃u� +� S̃g − zd, S̃u� +

1

2
� S̃g − zd, S̃g − zd � +

α

2
< u, u > .

Defining the bi-linear form A : U × U → R, A(u, v) =� S̃u, S̃v � +α < u, v >,

the linear form G : U → R, G(v) =� S̃g − zd, S̃v �, and the constant

k = 1
2 � S̃g − zd, S̃g − zd �∈ R, we find

J(u) =
1

2
A(u, u) +G(u) + k.

Thanks to Assumptions 1 and 3, it is easy to see that A is coercive and continuous
(cf. Lemma 1), that G is continuous, and that k < +∞. Then, applying Thm. 7.1
of [28], we conclude that there exists a unique solution u∗ ∈ U to problem (4).
Next, we compute the Gâteaux derivative of J at the point u in the direction δu:

DJ(u)(δu) =

∫
D

∇J(u)δudx = A(u, δu) +G(δu)

=� S̃u, S̃δu� +α < u, δu > +� S̃g − zd, S̃δu�

=< S̃∗(S̃(g + u)− zd), δu > + < αu, δu >

=< ES∗(S(g + u)− zd), δu > + < αu, δu >

=< αu+ E [S∗(S(g + u)− zd)] , δu > .

Defining pω(u) as pω(u) = S∗ (S(g + u)− zd) = S∗ (yω(u)− zd), which is the solu-
tion of equation (7), we get ∇J(u) = αu+ E [pω(u)]. �

Remark 2. By computing the gradient of f w.r.t. u, we can easily get ∇f(u, ω) =
αu+ pω(u). Consequently, the previous proof, also reveals that

∇J(u) = ∇E[f(u, ω)] = E [∇f(u, ω)] .

7



In Theorem 1, pω(u) = p is the so-called adjoint function associated to the
elliptic PDE (2) and satisfies the adjoint equation which depends on the solution
y = yω(u). As p depends on u through y, we will also write p(yω(u)) for pω(u) from
times.

For notational convenience, we introduce the weak formulation of (2), which
reads

(8) find yω ∈ Y s.t. bω(yω, v) = 〈g + u, v〉 ∀v ∈ Y for a.e. ω ∈ Γ,

where bω(y, v) :=
∫
D
a(·, ω)∇y∇vdx. Similarly, the weak form of problem (7) reads:

(9) bω(v, pω) = 〈v, yω − zd〉 ∀v ∈ Y for a.e. ω ∈ Γ.

We can thus rewrite the OCP (4) equivalently as:

(10)

minu∈U J(u) = 1
2E[‖yω(u)− zd‖2] + α

2 ‖u‖
2

s.t. yω ∈ Y solving
bω(yω, v) = 〈g + u, v〉 ∀v ∈ Y for a.e. ω ∈ Γ.

As we want to compute numerically the problem solution, we introduce in the
following Section a Finite Element approximation and different version of error
estimates.

3. Finite Element approximation in physical space

In this section we analyze the semi-discrete OCP obtained by approximating
the underlying PDE by a Finite Element method. In particular, we provide a
priori error bounds for the optimal control. Let us denote by {τh}h>0 a family
of regular triangulations of D. Furthermore, let Y h be the space of continuous
piece-wise polynomial functions of degree r over τh that vanish on ∂D, i.e. Y h =
{y ∈ C0(D) : y|K ∈ Pr(K) ∀K ∈ τh, y|∂D = 0} ⊂ Y = H1

0 (D). Finally, we set
Uh = Y h. We can then reformulate the OCP (10) as a finite dimensional OCP in
the FE space:

(11)

minuh∈Uh J
h(uh) := 1

2E[‖yhω(uh)− zd‖2] + α
2 ‖u

h‖2
s.t. yhω ∈ Y h and
bω(yhω(uh), vh) = 〈uh + g, vh〉 ∀vh ∈ Y h for a.e. ω ∈ Γ.

Analogously to the (continuous) solution operator S of (1) introduced in Section 2.1,
here we introduce its discrete version associated to problem (11). That is, let Shω :
U → Y h be such that yhω = Shω(g+ uh) solves bω(yhω, v

h) = 〈g+ uh, vh〉 ∀vh ∈ Y h.
We also introduce the L2-projection operator onto Uh, denoted by gh = ΠUh(g),
as

∀q ∈ U, 〈ΠUhq, v
h〉 = 〈q, vh〉 ∀vh ∈ Uh.

As mentioned before, we may suppress the index ω of Sω when no ambiguity arises,
we do so also for Shω = Sh. Moreover, we denote by

(
Sh
)∗

the corresponding adjoint

operator of Sh. From now on, and throughout the rest of this paper, we assume
that Assumptions 1, 2 and 3 are verified. Then we can state the following FE
approximation result.

Lemma 3. The discrete OCP (11) is well posed and ∇Jh can be characterized as

(12) ∇Jh(uh∗) = ΠUh(αuh∗ + E[ph(uh∗)])

and

ph(uh∗) :=
(
Sh
)∗

(Sh(uh∗ + g)− zd) ∈ L2(Γ, Y h).

Remark 3. Notice that since we defined Uh = Y h, it follows that E[ph(uh∗)] ∈ Uh
and ∇Jh(uh∗) = αuh∗ + E[ph(uh∗)].
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Following similar arguments as in Thm. 3.4 of [21] and using the optimality
condition, and the weak form of the primal and dual problems, we can prove the
following.

Theorem 2. Let u∗ be the optimal control solution of problem (10) and denote by
uh∗ the solution of the approximated problem (11). Then it holds that
(13)
α

2
‖u∗−uh∗‖2+

1

2
E[‖y(u∗)−yh(uh∗)‖2] ≤ 1

2α
E[‖p(u∗)−p̃h(u∗)‖2]+

1

2
E[‖y(u∗)−yh(u∗)‖2],

where, p̃h(u∗) = p̃hω(u∗) is such that

(14) bω(vh, p̃hω) = 〈vh, yω − zd〉 ∀vh ∈ Y h for a.e. ω ∈ Γ.

Proof. It follows from Theorem 1 and Lemma 3 that the FE version of the opti-
mality condition (5) reads:

(15) 〈∇Jh(uh∗), vh − uh∗〉 ≥ 0 ∀vh ∈ Uh.

Choosing v = uh∗ ∈ Y h ⊂ Y in (5), vh = ΠUh(u∗) in (15), and observing that

0 ≤ 〈∇Jh(uh∗),ΠUh(u∗)−uh∗〉 = 〈∇Jh(uh∗),ΠUh(u∗−uh∗)〉 = 〈∇Jh(uh∗), u∗−uh∗〉,

since ∇Jh(uh∗) ∈ Uh, we obtain

〈α(u∗ − uh∗) + E[p(u∗)]− E[ph(uh∗)], uh∗ − u∗〉 ≥ 0.

Then introducing p̃h(u∗) =
(
Sh
)∗

(S(u∗+g)−zd), which belongs to L2(Γ, Y h) since

the two operators S and
(
Sh
)∗

are bounded, we obtain

(16) α‖u∗ − uh∗‖2 ≤ 〈E[p(u∗)]− E[p̃h(u∗)] + E[p̃h(u∗)]− E[ph(uh∗)], uh∗ − u∗〉.

In the following, we will repeatedly use the primal and dual weak formulations
(8),(9) and(14), for the continuous problem and its FE approximation, yielding

〈p̃hω(u∗)−phω(uh∗), uh∗ − u∗〉 = bω(yhω(uh∗)− yhω(u∗), p̃hω(u∗)− phω(uh∗))

=

∫
D

(yhω(uh∗)− yhω(u∗))︸ ︷︷ ︸
±yω(u∗)

(yω(u∗)− yhω(uh∗))dx

= −‖yω(u∗)− yhω(uh∗)‖2 +

∫
D

(yω(u∗)− yhω(u∗))(yω(u∗)− yhω(uh∗))dx

≤ −‖yω(u∗)− yhω(uh∗)‖2 +
1

2
‖yω(u∗)− yhω(u∗)‖2 +

1

2
‖yω(u∗)− yhω(uh∗)‖2

≤ −1

2
‖yω(u∗)− yhω(uh∗)‖2 +

1

2
‖yω(u∗)− yhω(u∗)‖2.

Taking the mean over all realizations ω ∈ Γ, using (16), and Fubini’s theorem we
have that

α‖u∗ − uh∗‖2 +
1

2
E[‖y(u∗)−yh(uh∗)‖2] ≤ E[〈p(u∗)− p̃h(u∗), uh∗ − u∗〉] +

1

2
E[‖y(u∗)− yh(u∗)‖2]

≤ 1

2α
‖p(u∗)− p̃h(u∗)‖2 +

α

2
‖uh∗ − u∗‖2 +

1

2
E[‖y(u∗)− yh(u∗)‖2],

which leads to the claim. �

The FE error ‖u∗ − uh∗‖ is thus completely determined by the approximation

properties of the discrete solution operators Sh and
(
Sh
)∗

. Using similar arguments

as in [21, Thm. 3.5], we can also control the FE error of the state variable in H1,
i.e. of ‖y(u∗)− yh(uh∗)‖H1

0
.
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Theorem 3. With the same notations as in Theorem 2, there exists a constant
C > 0 independent of h such that

(17) ‖u∗ − uh∗‖2 + E[‖y(u∗)− yh(uh∗)‖2] + h2E[‖y(u∗)− yh(uh∗)‖2H1
0
]

≤ C{E[‖p(u∗)− p̃h(u∗)‖2] + E[‖y(u∗)− yh(u∗)‖2] + h2E[‖y(u∗)− yh(u∗)‖2H1
0
]}.

Proof. From the uniform coercivity of the bi-linear form bω(·, ·), c.f. Assumption
1, it immediately follows

‖yω − yhω‖2H1
0
≤ 1

amin

{
bω
(
yω − yhω, yω − ỹhω

)
+ bω

(
yω − yhω, ỹhω − yhω

)}
,

where we have used the notation yω = yω(u∗), yhω = yhω(uh∗), and ỹhω = yhω(u∗).
Moreover

1

amin
bω
(
yω − yhω, yω − ỹhω

)
≤ amax
amin

‖yω − yhω‖H1
0
‖yω − ỹhω‖H1

0

≤ 1

4
‖yω − yhω‖2H1

0
+
a2
max

a2
min

‖yω − ỹhω‖2H1
0
,

as well as

1

amin
bω
(
yω−yhω, ỹhω − yhω

)
≤ 1

amin
〈u∗ − uh∗, ỹhω − yhω〉

≤ 1

amin
〈u∗ − uh∗, ỹhω − yω〉+

1

amin
〈u∗ − uh∗, yω − yhω〉

≤
C2
p

2amin
‖u∗ − uh∗‖2 +

1

2amin
‖yω − ỹhω‖2H1

0
+

C2
p

a2
min

‖u∗ − uh∗‖2 +
1

4
‖yω − yhω‖2H1

0
.

Finally, it follows that

‖yω − yhω‖2H1
0
≤ C{‖yω − ỹhω‖2H1

0
+ ‖u∗ − uh∗‖2}

and

h2E[‖yω − yhω‖2H1
0
] ≤ h2C{E[‖yω − ỹhω‖2H1

0
] + ‖u∗ − uh∗‖2},

which, combined with (13), completes the proof. �

We can now proceed and estimate the right hand side of (17), assuming the
primal and dual solutions are sufficiently smooth.

Corollary 1. Suppose that y(u∗), p(u∗) ∈ L2(Γ, Hr+1(D)), then we have

(18) ‖u∗ − uh∗‖2 + E[‖y(u∗)− yh(uh∗)‖2] + h2E[‖y(u∗)− yh(uh∗)‖2H1
0
]

≤ Ch2r+2{E[|yω(u∗)|2Hr+1 ] + E[|pω(u∗)|2Hr+1 ]}.

Proof. Under the assumptions of the corollary, the operators Sω, S
∗
ω : L2(D) →

H2(D)∩H1
0 (D) are bounded. Using first the Aubin-Nitsche duality argument and

then Céa’s Lemma (see e.g. [32]), for the first term on the right hand side of (17),
we find

E[‖p(u∗)− p̃h(u∗)‖2] ≤ CE[h2‖p(u∗)− p̃h(u∗)‖2H1
0
]

≤ CE[h2+2r|p(u∗)|2Hr+1 ].

A similar argument holds for the second term on the right hand side of (17). Finally
the third term on the right hand side of (17) can be bounded directly by

h2E[‖y(u∗)− yh(u∗)‖2H1
0
] ≤ Ch2E[Ch2r|y|2Hr+1 ].

All these inequalities added together lead to the claim. �
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4. Approximation in probability space

In this section we consider the semi-discrete (approximation in probability only)
optimal control problem obtained by replacing the exact expectation E[·] in (3)

by a suitable quadrature formula Ê[·]. The semi-discrete collocation problem then
reads:

(19)

minu∈U Ĵ(u) = 1
2 Ê[‖yω(u)− zd‖2] + α

2 ‖u‖
2

s.t. yωi(u) ∈ Y and
bωi(yωi(u), v) = 〈g + u, v〉 ∀v ∈ Y i = 1, . . . , N.

This quadrature formula could either be based on deterministic quadrature points
or randomly distributed points leading, in this case, to a Monte Carlo type ap-
proximation. In particular, if X : Γ → R, ω 7→ X(ω), is a random variable, let

Ê[X] =
∑N
i=1 ζiX(ωi) be the quadrature operator, where ζi are the quadrature

weights and ωi the quadrature knots. In the case of a Monte Carlo approximation,
we have ζi = 1

N for every i, and ωi being independent and identically distributed
(iid) points in Γ, all distributed according to the measure P .

In the next sub-sections we will particularize results for the cases of a Monte
Carlo type quadrature. Although for the sake of notation we present these results
for the semi-discrete problem (i.e. continuous in space, discrete in probability),
they extend straightforwardly to the fully discrete problem in probability and in
space, using a control ûh instead of û, a solution of (19). We study the deterministic
Gaussian-type quadrature method in the appendix.

4.1. Monte Carlo method. Consider a Monte Carlo approximation of the expec-
tation appearing in (10), namely the exact expectation E is replaced by E

−→ω
MC [X(ω)] :=

1
N

∑N
i=1X(ωi), whereN denotes the number of ωi, i = 1, . . . , N , of the random vari-

able ω and denote by −→ω = {ωi}Ni=1 the collection of these ωi. We recall that the use
of MC type approximations might be advantageous over a collocation/quadrature
approach in cases where p is rough, which is, for example, the case when a(·, ·) is a
rough random field w.r.t. the random parameter ω or has a short correlation length.

Remark 4. We stress here that û is a stochastic function because it depends on
the N iid realizations −→ω = {ωi}Ni=1 of the random variable ω.

Theorem 4. Let û∗ be the optimal control of problem (19) with Ê = E
−→ω
MC and u∗

be the exact optimal control of the continuous problem (10), then we have

α

2
E[‖û∗ − u∗‖2] + E[‖y(u∗)− y(û∗)‖2] ≤ 1

N

1

2α
E[‖p(û∗)‖2].

Proof. Similarly to the proof of Theorem 2, the two optimality conditions read

(20) 〈∇J(u∗), v1 − u∗〉 ≥ 0 ∀v1 ∈ U
and

(21) 〈∇JMC(û∗), v2 − û∗〉 ≥ 0 ∀v2 ∈ U
with

∇JMC(û∗) = αû∗ + E
−→ω
MC [p(û∗)] p(û∗) := S∗(Sû∗ − z).

Choosing v1 = û∗ in (20) and v2 = u∗ in (21) we obtain:

〈α(u∗ − û∗) + E[p(u∗)]− E
−→ω
MC [p(û∗)], û∗ − u∗〉 ≥ 0,

which implies

(22) α‖u∗− û∗‖2 ≤ 〈E[p(u∗)]−E
−→ω
MC [p(u∗)] +E

−→ω
MC [p(u∗)]−E

−→ω
MC [p(û∗)], û∗−u∗〉.

We can split the right hand side of (22) into two parts:
11



〈E[p(u∗)]− E
−→ω
MC [p(u∗)], û∗ − u∗〉 ≤ 1

2α
‖E[p(u∗)]− E

−→ω
MC [p(u∗)]‖2 +

α

2
‖û∗ − u∗‖2

Moreover, for every i = 1, · · · , N

〈û∗ − u∗, pωi(u∗)− pωi(û∗)〉 = bωi(yωi(û
∗)− yωi(u∗), pωi(u∗)− pωi(û∗))

= 〈yωi(u∗)− yωi(û∗), yωi(û∗)− yωi(u∗)〉
= −‖yωi(u∗)− yωi(û∗)‖2,

leading to

〈û∗ − u∗, E
−→ω
MC [p(u∗)]− E

−→ω
MC [p(û∗)]〉 ≤ −E

−→ω
MC [‖y(u∗)− y(û∗)‖2]

We finally take the expectation of (22), w.r.t. the random sample −→ω = {ωi}Ni=1 and

exploit the fact that the Monte Carlo estimator is unbiased, that is E[E
−→ω
MC [X(ω)]] =

E[X] for a random variable X : Γ→ R.

E[
α

2
‖û∗ − u∗‖2 + E

−→ω
MC [‖y(u∗)− y(û∗)‖2] =

α

2
E[‖û∗ − u∗‖2 + E[‖y(u∗)− y(û∗)‖2]

≤ 1

2α
E[‖E[p(û∗)]− E

−→ω
MC [p(û∗)]‖2]

≤ 1

2α
E[‖ 1

N

N∑
i=1

pωi(û
∗)− E[p(û∗)]‖2]

≤ 1

2α
E[

1

N2

N∑
i=1

‖pωi(û∗)− E[p(û∗)]‖2]

≤ 1

2α

1

N
E[‖p(û∗)− E[p(û∗)]‖2]

≤ 1

2α

1

N
E[‖p(û∗)‖2]

what finishes the proof of the theorem. �

Theorem 4 shows that the semi-discrete optimal control û∗ converges at the
usual MC rate of 1/

√
N in the root mean squared sense, with the constant being

proportional to
√
E[‖p(û∗)‖2].

5. Steepest descent method for fully discrete problem

Now we focus on a class of optimization methods to approximate the fully dis-
crete minimization problem, using the Monte Carlo estimator to approximate the
expectation in (11)

(23)

minuh∈Uh JMC(uh) = 1
2E
−→ω
MC [‖yhω(uh)− zd‖2] + α

2 ‖u
h‖2

s.t. yhω(uh) ∈ Y h and
bω(yhω(uh), vh) = 〈g + uh, vh〉 ∀vh ∈ Y h, for a.e. ω ∈ Γ.

Specifically, we consider a simple gradient methods. The gradient method reads:

(24) ûhj+1 = ûhj − τE
−→ω
MC [∇fh(ûhj , ω)],

where fh(u, ω) = 1
2‖y

h
ω(u)− zd‖2 + α

2 ‖u
h‖2. Here, the index j represents the j-th

iteration in the optimization recursion (24), while the superscript h denotes that
we discretize the control u as well as the underlying PDE using Finite Elements on
a fixed mesh of characteristic size h.
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We first analyze the convergence of the continuous version of (24), i.e. of

(25) uj+1 = uj − τE[∇f(uj , ω)] .

For this we prove a Lipschitz and a strong convexity condition for the function
f(u, ω) for a.e. ω ∈ Γ; which is still valid when replacing f(u, ω) by its discrete
version fh(uh, ωi).

Lemma 4 (Lipschitz condition). For the elliptic problem (4) and f(u, ω) as in (3)
it holds that:

(26) ‖∇f(u1, ω)−∇f(u2, ω)‖ ≤ L‖u1 − u2‖ ∀u1, u2 ∈ U and a.e. ω ∈ Γ,

with L = α +
C4
p

a2min
, where Cp is the Poincaré constant. For the Finite Element

approximation as in (11) the same inequality holds with the same constant

‖∇fh(uh1 , ω)−∇fh(uh2 , ω)‖ ≤ L‖uh1 − uh2‖ ∀uh1 , uh2 ∈ Uh and a.e. ω ∈ Γ.

Proof. For a.e. ω ∈ Γ, and every u, u′ ∈ U we have that

(27) ∇f(u′, ω)−∇f(u, ω) = α(u′ − u) + pω(u′)− pω(u),

and

‖pω(u′)− pω(u)‖2 ≤ C2
p‖∇xpω(u′)−∇xpω(u)‖2

≤
C2
p

amin
bω
(
pω(u′)− pω(u), pω(u′)− pω(u)

)
≤

C2
p

amin
〈pω(u′)− pω(u), yω(u′)− yω(u)〉

≤
C2
p

amin
‖pω(u′)− pω(u)‖‖yω(u′)− yω(u)‖.

With same arguments we find that

‖yω(u′)− yω(u)‖2 ≤ C2
p‖∇xyω(u′)−∇xyω(u)‖2

≤
C2
p

amin
bω
(
yω(u′)− yω(u), yω(u′)− yω(u)

)
≤

C2
p

amin
〈yω(u′)− yω(u), u′ − u〉

≤
C2
p

amin
‖yω(u′)− yω(u)‖‖u′ − u‖.

Combining (27) with the two last estimates, we find

‖∇f(u′, ω)−∇f(u, ω)‖ ≤ α‖u′ − u‖+ ‖pω(u′)− pω(u)‖

≤
(
α+

C4
p

a2
min

)
‖u′ − u‖.

The proof in the FE setting follows verbatim the above one. �

Lemma 5 (Strong Convexity). For the elliptic problem (4) and f(u, ω) as in (3)
it holds that

(28)
l

2
‖u1−u2‖2 ≤ 〈∇f(u1, ω)−∇f(u2, ω), u1−u2〉 ∀u1, u2 ∈ U and a.e. ω ∈ Γ,

with l = 2α. The same estimate holds for the FE approximation as in (11), namely:

l

2
‖uh1 − uh2‖2 ≤ 〈∇fh(uh1 , ω)−∇fh(uh2 , ω), uh1 − uh2 〉 ∀uh1 , uh2 ∈ Uh and a.e. ω ∈ Γ.
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Proof. For every ω ∈ Γ, and every u, u′ ∈ U :

〈u′ − u,∇f(u′, ω)−∇f(u, ω)〉 = 〈u′ − u, α(u′ − u) + pω(u′)− pω(u)〉
= α‖u′ − u‖2 + 〈u′ − u, pω(u′)− pω(u)〉

= α‖u′ − u‖2 + bω
(
yω(u′)− yω(u), pω(u′)− pω(u)

)
= α‖u′ − u‖2 + 〈yω(u′)− yω(u), yω(u′)− yω(u)〉
= α‖u′ − u‖2 + ‖yω(u′)− yω(u)‖2

≥ α‖u′ − u‖2

The same proof applies to the FE case. �

Based on the results of Lemmas 4 and 5, it is straightforward to show the conver-
gence of the iterates. We state the result for the gradient method for the continuous
problem (25) in the following Lemma and the result for the fully discretized prob-
lem(24) in Theorem 5.

Lemma 6. Let u∗ be the optimal solution of the control problem (10) and {uj}j∈N
the iterations produced by (25). Then for any 0 < τ < l/L2 we have

(29) ‖uj+1 − u∗‖2 ≤ (1− τ l + τ2L2)‖uj − u∗‖2 ≤ (1− τ l + τ2L2)j+1‖u0 − u∗‖2,

and ‖uj − u∗‖ → 0 as j →∞.

Proof. Since u∗ satisfies the optimality condition ∇J(u∗) = 0 we have

uj+1 − u∗ = uj − u∗ − τE[∇f(uj , ω)−∇f(u∗, ω)].

Consequently,

‖uj+1 − u∗‖2 = ‖uj − u∗‖2 + τ2‖E[∇f(uj , ω)−∇f(u∗, ω)]‖2

− 2τ〈uj − u∗,E[∇f(uj , ω)−∇f(u∗, ω)]〉
≤ (1− τ l + τ2L2)‖uj − u∗‖2.

The condition 0 < τ < l/L2 guarantees that 0 < 1 − τ l + τ2L2 < 1 and the claim
follows. �

As mentioned before, we now provide an error bound for the approximate so-
lution ûhj defined in (24), as a function of the discretization parameters j, h, and
N .

Theorem 5. Let ûhj be the solution produced by (24) at the j-th iteration and
denote by u∗ the solution of the optimal problem (10). Then under the assumptions
of Corollary 1, there exist constants C1, C2, C3 > 0 such that

(30) E[‖ûhj − u‖2] ≤ C1e
−ρj +

C2

N
+ C3h

2r+2 ,

with ρ = − log(1− τ l + τ2L2) for 0 < τ < l/L2.

Proof. The global error can be decomposed as follows:

E[‖ûhj − u∗‖2] ≤ 3E[‖ûhj − ûh,∗‖2]︸ ︷︷ ︸
gradient

+3E[‖ûh,∗ − uh∗‖2]︸ ︷︷ ︸
MC

+3E[‖uh∗ − u∗‖2]︸ ︷︷ ︸
FE error

.

The first term E[‖ûhj − ûh,∗‖2] quantifies the convergence of the finite dimensional
steepest descent algorithm and can be estimated as in Lemma 6. In fact, for any
sample −→ω = {ωi}Ni=1 we have

‖ûhj − ûh,∗‖2 ≤ (1− τ l + τ2L2)j‖ûh0 − ûh,∗‖2 = e−ρj‖ûh0 − ûh,∗‖2.
14



with ρ = − log(1− τ l + τ2L2). Hence taking expectation w.r.t. −→ω ,

E[‖ûhj − ûh,∗‖2] ≤ e−ρjE[‖ûh0 − ûh,∗‖2].

The second term E[‖ûh,∗ − uh∗‖2] accounts for the standard MC error and can
be controlled as in Theorem 4 (applied on the FE approximation) leading to

E[‖ûh,∗ − uh∗‖2] ≤ 1

α2N
E[‖p(ûh)‖2].

Finally, the term E[‖uh∗ − u∗‖2] can be controlled by the result in Corollary 1,
namely by

‖uh∗ − u∗‖2 ≤ C
(
E[|yω(u∗)|2Hr+1 ] + E[|pω(u∗)|2Hr+1 ]

)
h2r+2,

so that the claim follows. �

We conclude this Section by analyzing the complexity of the Algorithm 1 based
on the optimization scheme (24). We assume that the primal and dual problems
can be solved, using a triangulation with mesh size h, in computational time Ch =
O(h−nγ). Here, γ ∈ [1, 3] is a parameter representing the efficiency of the linear
solver used (e.g. γ = 3 for a direct solver and γ = 1 up to a logarithm factor
for an optimal multigrid solver), while n is the dimension of the physical space.
Hence the overall computational work W of j gradient iterations is proportional to
W ' 2Njh−nγ .

Corollary 2. In order to achieve a given tolerance O(tol), i.e. to guarantee that
E[‖ûhj − u‖2] . tol2, the total required computational work is bounded by

W . tol−2− nγ
r+1 | log(tol)|.

Proof. To achieve a tolerance O(tol), we can equidistribute the precision tol2 over
the three terms in (30). This leads to the choices given in Algorithm 1:

jmax ' − log(tol), h ' tol
1
r+1 , N ' tol−2.

Hence the total cost for computing a solution ûhjmax that achieves the required

tolerance is W ' 2Njmaxh
−nγ = tol−2− nγ

r+1 | log(tol)| as claimed. �

We propose a description of the algorithm used in this Section, in Algorithm 1.
Algorithm 1: Steepest descent method for fully discrete problem

Data:
Given a desired tolerance tol:
Choose τ < l

L2 , jmax ' − log(tol), NMC ' tol−2, h ' tol
1
r+1

Generate NMC iid realizations of the random field ai = a(·, ωi),
i = 1, . . . , NMC .
initialization:
u = 0;

for j = 1, . . . , jmax do
p̂ = 0;

for i = 1, . . . , NMC do
solve primal problem by FE → y(ai, u)
solve dual problem by FE → p(ai, u)
update p̂ = p̂+ p(ai, u)/NMC

end

∇̂J = αu+ p̂

u = u− τ∇̂J
end

15



The second (MC) term in the error bound (30) C2/N is numerically a prob-
lem/limitation to compute efficiently a solution. That is why in the following
Section we combine the first two terms, using Stochastic Gradient techniques.

6. Stochastic Gradient with fixed mesh size.

As an alternative to the fixed MC gradient method (24) considered in Section
5, in which the sample size N is fixed beforehand and a full sample average is
computed at each iteration, here we consider a variant, known in literature as
Stochastic Approximation (SA) or Stochastic Gradient (SG) [14, 31, 33, 38, 39].

The classic version of such a method, the so-called Robbins-Monro method,
works as follows. Within the steepest descent algorithm the exact gradient ∇J =
∇E[f ] = E[∇f ] is replaced by∇f(·, ωj), where the random variable ωj is re-sampled
independently at each iteration of the steepest-descent method:

(31) uj+1 = uj − τj∇f(uj , ωj).

Here, τj is the step-size of the algorithm and is decreasing as 1/j in the usual
approach. We consider a generalization of this method, in which the pointwise
gradient ∇f(·, ωj) is replaced by a sample average over Nj iid realizations which
are drawn independently of the previous iterations. More precisely, let −→ωj =

(ω
(1)
j , · · · , ω(Nj)

j ), then we define the recursion as

(32) uj+1 = uj − τjE
−→ωj
MC [∇f(uj , ω)],

where E
−→ωj
MC [∇f(u, ω)] = 1

Nj

∑Nj
i=1∇f(u, ω

(i)
j ) is the usual Monte Carlo estimator.

Notice that the Robbins-Monro method is a special case of this scheme, namely with
Nj = 1 for all j. In what follows, we investigate optimal choices of the sequences
{τj}j and {Nj}j , and the overall computational complexity of the corresponding
algorithm. First we analyze the continuous version (i.e. no Finite Element dis-
cretization).

Theorem 6. Let u∗ be the solution of the continuous OCP (10) and denote by uj
the j-th iterate of (32). Then it holds that

(33) E[‖uj+1 − u∗‖2] ≤ cjE[‖uj − u∗‖2] +
2τ2
j

Nj
E[‖∇f(u∗, ω)‖2],

with cj := 1− τj l + L2
(

1 + 2
Nj

)
τ2
j .

Proof. Using inequalities (26) and (28), we can formulate a recursive formula to
control the error between successive iterations. As each iteration uses an inde-
pendent sample, we need to keep track of the history of the sampling ω[j−1] =

{−→ω1, . . . ,
−−→ωj−1} to be able to define uj . Thus we introduce the conditional expecta-

tion G[·] = E[·|ω[j−1]]. Using E[∇f(u∗, ω)] = 0, we have:

uj+1 − u∗ = uj − u∗ − τjE
−→ωj
MC [∇f(uj ,

−→ωj)] + τjE[∇f(u∗, ω)]

= uj − u∗ − τjG[∇f(uj , ω)] + τjE[∇f(u∗, ω)] + τj
(
G[∇f(uj , ω)]− E

−→ωj
MC [∇f(uj ,

−→ωj)]
)

= uj − u∗ − τjT1 + τjT2,

with T1 := G[∇f(uj , ω)]−E[∇f(u∗, ω)] and T2 := G[∇f(uj , ω)]−E
−→ωj
MC [∇f(uj ,

−→ωj)].
Hence,

‖uj+1 − u∗‖2 =‖uj − u∗‖2 + τ2
j ‖T1‖2 + τ2

j ‖T2‖2

− 2τj〈uj − u∗, T1〉+ 2τj〈uj − u∗, T2〉 − 2τ2
j 〈T1, T2〉.
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Moreover, by definition of T1, we find:

‖T1‖2 = ‖G[∇f(uj , ω)]− E[∇f(u∗, ω)]‖2

= ‖G[∇f(uj , ω)−∇f(u∗, ω)]‖2 [−→ωj being independent of ω[j−1]]

=

∫
D

(
G[∇f(uj , ω)−∇f(u∗, ω)]

)2
dx

≤
∫
D

G[|∇f(uj , ω)−∇f(u∗, ω)|2]dx [Jensen′s inequality]

= G[‖∇f(uj , ω)−∇f(u∗, ω)‖2]

≤ L2G[‖uj − u∗‖2],

where we have used Jensen’s inequality for conditional expectation: φ(G[X]) ≤
G[φ(X)] for φ convex. See e.g.[42].
Then taking the expectation over all the history sampling ω[j−1], we have:

E[‖T1‖2] ≤ L2E[G[‖uj − u∗‖2]]

= L2E[‖uj − u∗‖2],

and

E[〈uj − u∗, T1〉] = E[〈uj − u∗, G[∇f(uj , ω)−∇f(u∗, ω)]〉]
= E[G[〈uj − u∗,∇f(uj , ω)−∇f(u∗, ω)〉]]

≥ E[G[
l

2
‖uj − u∗‖2]] [Strong Convexity (28)]

=
l

2
E[‖uj − u∗‖2].

Concerning the term T2, it holds that,

‖T2‖2 = ‖G [∇f(uj , ω)]− E
−→ωj
MC [∇f(uj , ω)] ‖2 =

∫
D

(
G[∇f(uj , ω)]− E

−→ωj
MC [∇f(uj , ω)]

)2

dx.

Again, taking the expectation w.r.t. ω[j] yields

E
[
‖T2‖2

]
= E

∫
D

 1

Nj

Nj∑
i=1

(
G[∇f(uj , ω)]−∇f

(
uj , ω

(i)
j

))2

dx


= E

∫
D

1

N2
j

Nj∑
i,l=1

(
∇f

(
uj , ω

(i)
j

)
−G [∇f (uj , ω)]

)(
∇f

(
uj , ω

(l)
j

)
−G [∇f (uj , ω)]

)
dx


=

∫
D

1

N2
j

Nj∑
i,l=1

E
[(
∇f

(
uj , ω

(i)
j

)
−G [∇f (uj , ω)]

)(
∇f

(
uj , ω

(l)
j

)
−G [∇f (uj , ω)]

)]
dx

=

∫
D

1

N2
j

Nj∑
i,l=1

E
[
G
[(
∇f

(
uj , ω

(i)
j

)
−G [∇f(uj , ω)]

)(
∇f

(
uj , ω

(l)
j

)
−G[∇f(uj , ω)]

)]]
dx.

Observe that, conditional upon ω[j−1], the random variables Yi = ∇f(uj , ω
(i)
j ) −

G[∇f(uj , ω)], i = 1, . . . , Nj , are mutually independent and have zero mean, i.e.
17



E
[
Yi|ω[j−1]

]
= G[Yi] = 0 and G(YiYj) = 0 when i 6= j. Therefore it follows that

E
[
‖T2‖2

]
=

∫
D

1

N2
j

Nj∑
i=1

E
[
G

[(
∇f

(
uj , ω

(i)
j

)
−G [∇f (uj , ω)]

)2
]]

dx

= E
[∫

D

1

Nj
G
[
(∇f (uj , ω)−G [∇f(uj , ω)])

2
]

dx

]
≤ E

[∫
D

1

Nj
G
[
∇f2(uj , ω)

]
dx

]
=

1

Nj
E
[
‖∇f(uj , ω)‖2

]
≤ 2

Nj
E
[
‖∇f(uj , ω)−∇f(u∗, ω)‖2 + ‖∇f(u∗, ω)‖2

]
[Lipschitz condition (26)]

≤ 2L2

Nj
E
[
‖uj − u∗‖2

]
+

2

Nj
E
[
‖∇f(u∗, ω)‖2

]
.

Finally, we have that

E[〈uj − u∗, T2〉] = E[G[〈uj − u∗, T2〉]]
= E[〈uj − u∗, G[T2]〉]

=
1

Nj

Nj∑
i=1

E[〈uj − u∗, G[Yi]〉]

= 0,

and, similarly, E[〈T1, T2〉] = E[G[〈T1, T2〉]] = E[〈T1, G[T2]〉] = 0, which concludes
the proof. �

We now consider the FE version of (32) and focus on the common setting
(τj , Nj) = (τ0/j,N), which is a generalization of Robbins-Monro method:

(34) uhj+1 = uhj −
τ0
j
E
−→ωj
MC [∇fh(uhj , ω)]

with −→ωj := (ω
(1)
j , · · · , ω(N)

j ).

Theorem 7. Suppose that the assumptions of Corollary 1 hold and let uhj denote

the j-th iterate of (34). For the choice (τj , Nj) = (τ0/j,N) with τ0 > 1/l we have

(35) E[‖uhj − u∗‖2] ≤ D1j
−1 +D2h

2r+2 ,

for suitable constants D1, D2 > 0 independent of j and h.

Proof. The factor cj in (33) becomes in this case

cj = 1− τ0l

j
+
τ2
0L

2

j2

(
1 +

2

N

)
.

We use the recursive formula (33) and set as before uh∗ the exact optimal control for
the FE problem defined in (11). We emphasize that (11) has no approximation in

the probability space. Setting aj = E[‖uhj − uh∗‖2] and βj =
2τ2
j

Nj
E[‖∇f(uh∗, ω)‖2],

18



from (33) applied to the sequence of Finite Element solutions {uhj }j>0 we find

aj+1 ≤cjaj + βj

≤cjcj−1aj−1 + cjβj−1 + βj

≤ · · ·

≤
( j∏
i=1

ci

)
︸ ︷︷ ︸

=κj

a1 +

j∑
i=1

βi

j∏
l=i+1

cl︸ ︷︷ ︸
=Bj

.(36)

For the first term κj , computing its logarithm, we have,

log(κj) =

j∑
i=1

log(1− τ0l

i
+
M

i2
) ≤

j∑
i=1

−τ0l
i

+

j∑
i=1

M

i2
,

where we have set M = τ2
0L

2
(
1 + 2

N

)
. Thus

log(κj) ≤ −τ0l log j +M ′, with M ′ =

∞∑
i=1

M

i2
,

and κj . j−τ0l. For the second term Bj in (36) we have:

Bj =

j∑
i=1

βi

j∏
k=i+1

ck ≤
j∑
i=1

S

i2

j∏
k=i+1

(
1− τ0l

k
+
τ2
0L

2

k2

)
︸ ︷︷ ︸

=Kij

, with S =
2τ2

0

N
E[‖∇f(uh∗, ω)‖2].

For the term Kij we can proceed as follow:

log(Kij) =

j∑
k=i+1

log

(
1− τ0l

k
+
M

k2

)

≤
j∑

k=i+1

(
− τ0l

k
+
M

k2

)
≤ −τ0l(log(j + 1)− log(i+ 1)) +M

(
1

i
− 1

j

)
,

which shows that

Kij ≤ (j + 1)−τ0l(i+ 1)τ0l exp

(
M

(
1

i
− 1

j

))
.

It follows that

Bj ≤ (j + 1)−τ0l exp

(
−M
j

)
︸ ︷︷ ︸

≤1

j∑
i=1

Siτ0l−2 exp

(
M

i

)
︸ ︷︷ ︸
≤exp(M)

≤ S exp(M)(j + 1)−τ0l
j∑
i=1

iτ0l−2 . j−1,

for τ0 > 1/l. Eventually, we obtain the following upper bound, for two constants
D3 > 0 and D4 > 0:

(37) aj+1 ≤ D3j
−τ0la1 +D4j

−1.

From the condition τ0 >
1
l , we conclude that

(38) aj+1 ≤ D1j
−1,
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with D1 possibly depending in ‖uh0 − uh∗‖. Finally splitting the error as

E[‖uhj − u∗‖2] ≤ 2E[‖uhj − uh∗‖2] + 2E[‖uh∗ − u∗‖2],

and using (18) to bound the second term, the claim follows. �

We propose a description of the SG algorithm 2 with fixed mesh size, used in
Section 6.
Algorithm 2: Stochastic Gradient with fixed mesh size algorithm, with N = 1.

Data:
Given a desired tolerance tol, choose 1

l < τ0, jmax ' tol−2, and h ' tol
1
r+1

initialization:
u = 0;

for j = 1, . . . , jmax do
sample one realization aj = a(·, ωj) of the random field
solve primal problem → y(aj , u) using FE on mesh h
solve dual problem → p(aj , u) using FE on mesh h

∇̂J = αu+ p(aj , u)

u = u− τj∇̂J
end

We conclude this section by analyzing the complexity of the Algorithm 2.

Corollary 3. To achieve a given tolerance O(tol), i.e. to guarantee that E[‖uhj −
u∗‖2] . tol2, the total required computational work is bounded by

W . tol−2− nγ
r+1 .

Here, we recall that the primal and dual problems can be solved, using a triangulation
with mesh size h, in computational time Ch = O(h−nγ), and r is the degree of the
continuous FE that we use.

Proof. To achieve a tolerance O(tol2) for the error E[‖uhj − u∗‖2], we can equidis-

tribute the precision tol2 over the two terms in (35). This leads to the choice:

jmax ' tol−2, h ' tol
1
r+1 .

The cost for solving one deterministic PDE with the FE method is proportional to
h−nγ . Hence the total cost for computing a solution uhj that achieves the required
tolerance is

W ' 2Njh−nγ = O(tol−2− nγ
r+1 ),

as claimed. �

Remark 5. Other choices of (τj , Nj) have been investigated. For example we have
studied the SG with step-size τj = τ0/j, τ0l − 1 > 0 and increasing the MC sample
size Nj ∼ jτ0l−1. With this choice the estimate in (35) becomes

(39) aj+1 ≤ D4j
−τ0l log(j) ,

which leads to the choice jmax ' tol−
2
τ0l | log(tol)|

1
τ0l and a final complexity

W ' 2

j∑
i=1

iτ0l−1h−nγ ' 2jτ0lh−nγ = O(tol−2− nγ
r+1 | log(tol)|).

The proof of the bound (39) is detailed in Appendix B for completeness.
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Fixed MC gradient SG - Variable step-size SG - Variable step-size and Nj
τj = τ0 τj = τ0/j τj = τ0/j

N ' tol−2 Nj = N Nj = jτ0l−1

h ' tol
1
r+1 h ' tol

1
r+1 h ' tol

1
r+1

jmax ' − log(tol) jmax ' tol−2 jmax ' tol−
2
τ0l | log(tol)|

1
τ0l

W . tol−2− nγ
r+1 | log(tol)| W . tol−2− nγ

r+1 W . tol−2− nγ
r+1 | log(tol)|

Table 1. Complexity analysis overview for different optimization
methods

Remark 6. Since the constant l may be challenging to estimate in practice, it
is often difficult to fulfill the condition τ0 > 1/l. To bypass this difficulty, one
could consider the Averaged Stochastic Gradient method [38] instead, in which the
step size τj = τ0/j

η, η ∈ (0, 1) is chosen, with Nj = N and the averaged control
1
j

∑j
i=1 ui is considered. The analysis of this alternative method is postponed to a

future work.

Table 1 summarizes the results obtained in both the fixed sample size and in-
creasing sample size regimes. There, the total work (W ) to achieve a given tolerance
(tol) is presented. We see from the table that the two considered SG versions im-
prove the complexity only by a logarithmic factor compared to the fixed gradient
algorithm. The advantage we see in the SG version w.r.t. the fixed gradient, is that
we do not have to fix in advance the sample size N and we can just monitor the
convergence of the SG iteration until a prescribed tolerance is reached. However,
in Algorithm 2, we do have to choose in advance the FE mesh size. It is therefore
natural to look at a further variation of the SG algorithm in which the FE mesh is
refined during the iterations until a prescribed tolerance is reached. This is detailed
in the next Section.

7. Stochastic Gradient with variable mesh size

In this section, we refine the mesh used for our FE approximation, while running
the optimization routine. The new mesh size hj is now depending on the iteration

j. Here we study only sequences of nested meshes of size hj = 2−`(j) with ` : N→ N
being an increasing function. The optimization procedure then reads:

(40) u
hj+1

j+1 = u
hj
j − τjE

−→ωj
MC [∇fhj (uhjj , ω)],

with −→ωj := (ω
(1)
j , · · · , ω(Nj)

j ). Notice that if non-nested meshes are used, a projec-

tion operator should be added in (40) to transfer information from one mesh to
another. We first derive an error recurrence formula in the spirit of (33) for the
particular recurrence (40) with a decreasing mesh-size hj .

Theorem 8. Denoting by u
hj+1

j+1 the approximated control obtained using the recur-

sive definition (40), and u∗ the exact control for the continuous optimal problem
(10), we have:

(41) E[‖uhj+1

j+1 − u
∗‖2]

≤ cjE[‖uhjj − u
∗‖2] +

4τ2
j

Nj
E[‖∇f(u∗, ω)‖2] + 4τj

(
τj(1 +

2

Nj
) +

1

l

)
Ch2r+2

j ,

with cj = 1− τj l
2 + τ2

j L
2
(
2 + 2

Nj

)
.
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Proof. Subtracting the optimal continuous control u∗ from both sides of the recur-
rence formula (40), we get

u
hj+1

j+1 − u
∗ =u

hj
j − u

∗ − τjE
−→ωj
MC [∇fhj (uhjj , ω)]± τjE[∇fhj (u∗)]± τjG[∇fhj (uhjj )] + τjE[∇f(u∗)]

=u
hj
j − u

∗ + τj

(
E[∇fhj (u∗)]−G[∇fhj (uhjj )]

)
+ τj

(
G[∇fhj (uhjj )]− E

−→ωj
MC [∇fhj (uhjj , ω)]

)
+ τj

(
E[∇f(u∗)−∇fhj (u∗)]

)
.

Then setting as in proof of Theorem 6:

T1 := G[∇fhj (uhjj )]− E[∇fhj (u∗)],

T2 := G[∇fhj (uhjj )]− E
−→ωj
MC [∇fhj (uhjj , ω)],

T3 := E[∇f(u∗)−∇fhj (u∗)],

we can rewrite the last equality as:

u
hj+1

j+1 − u
∗ =u

hj
j − u

∗ − τjT1 + τjT2 + τjT3.

We compute the mean of the squared norm of u
hj+1

j+1 − u∗ as

(42) E[‖uhj+1

j+1 − u
∗‖2] = E[‖uhjj − u

∗‖2] + τ2
j E[‖T1‖2] + τ2

j E[‖T2‖2] + τ2
j E[‖T3‖2]

− 2τjE[〈uhjj − u
∗, T1〉] + 2τjE[〈uhjj − u

∗, T2〉] + 2τjE[〈uhjj − u
∗, T3〉]

− 2τ2
j E[〈T1, T2〉] + 2τ2

j E[〈T2, T3〉]− 2τ2
j E[〈T1, T3〉].

Next, we will bound each of these ten terms to find a recursive formula on E[‖uhjj −
u∗‖2]. First, the term τ2

j E[‖T1‖2] can be bounded as in the proof of Theorem 6
leading to:

τ2
j E[‖T1‖2] ≤ τ2

j L
2
hjE[‖uhjj − u

∗‖2],

with Lhj being the Lipschitz constant for the function fhj , which is bounded by L

(see Lemma 4). For the term τ2
j E[‖T3‖2], we find,

τ2
j E[‖T3‖2] = τ2

j ‖E[∇f(u∗)−∇fhj (u∗)]‖2

= τ2
j ‖E[p(u∗)− phj (u∗)]‖2

≤ τ2
j E[‖p(u∗)− phj (u∗)‖2]

≤ 2τ2
j E[‖p(u∗)− p̃hj (u∗)‖2] + 2τ2

j E[‖p̃hj (u∗)− phj (u∗)‖2]

≤ 2Cτ2
j E[|p(u∗)|2Hr+1 ]h2r+2 + 2Cτ2

j E[|y(u∗)|2Hr+1 ]h2r+2 [using Céa’s Lemma]

≤ 2τ2
j C(y(u∗), p(u∗))h2r+2.

Next, for τ2
j E[‖T2‖2] we use the same steps as in Theorem 6 to find

τ2
j E[‖T2‖2] ≤

2τ2
j L

2
hj

Nj
E
[
‖uhjj − u

∗‖2
]

+
2τ2
j

Nj
E
[
‖∇fhj (u∗, ω)‖2

]
.

Then we bound the second term of the right hand side uniformly w.r.t. hj by

‖∇fhj (u∗, ω)‖2 ≤ 2‖∇fhj (u∗, ω)−∇f(u∗, ω)‖2 + 2‖∇f(u∗, ω)‖2

≤ 4C(y(u∗), p(u∗))h2r+2 + 2‖∇f(u∗, ω)‖2,
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where we have used the same steps as for T3 to bound ‖∇fhj (u∗, ω)−∇f(u∗, ω)‖.
Finally, for the cross terms we have

2τjE[〈uhjj − u
∗, T1〉] = 2τjE[〈uhjj − u

∗, G[∇fhj (uhjj )−∇fhj (u∗)]〉]

= 2τjE[G[〈uhjj − u
∗,∇fhj (uhjj )−∇fhj (u∗)〉]] [using Strong convexity]

≥ τj lE[‖uhjj − u
∗‖2],

and as in Theorem 9,

2τjE[〈uhjj − u
∗, T2〉] = 2τ2

j E[〈T1, T2〉] = 2τ2
j E[〈T2, T3〉] = 0.

Moreover

2τjE[〈uhjj − u
∗, T3〉] ≤ 2τj

l

4
E[‖uhjj − u

∗‖2] +
2τj
l
E[‖T3‖2]

≤ 2τj
l

4
E[‖uhjj − u

∗‖2] +
4τj
l
C(y(u∗), p(u∗))h2r+2,

and finally

2τ2
j E[〈T1, T3〉] ≤ τ2

j E[‖T1‖2] + τ2
j E[‖T3‖2]

≤ τ2
j L

2
hjE[‖uhjj − u

∗‖2] + 2τ2
j C(y(u∗), p(u∗))h2r+2.

Putting everything together, we finally obtain (41), as claimed. �

A natural choice to tune the parameters τj , Nj and hj would be to set, guided

by the usual Robbins-Monro theory, τj = τ0/j, Nj = N and balancing all terms on
right hand side of (41).

Theorem 9. Suppose that the assumptions of Corollary 1 hold and let u
hj
j denote

the j-th iterate of (40). For the particular choice (τj , Nj , hj) = (τ0/j,N, h02−`(j)),

with `(j) = d ln2(j)−ln2(τ0l)
2r+2 e, and assuming τ0 > 1/l, we have:

(43) E[‖uhjj − u
∗‖2] ≤ F1j

−1

for a suitable constant F1 independent of j.

Proof. With the choice of τj , Nj and `(j) in the statement of the theorem, the two

last terms
4τ2
j

Nj
E[‖∇fhj (u∗, ω)‖2] and 4τj

(
τj(1 + 2

Nj
) + 1

l

)
Ch2r+2

j in the inequality

(41) have the same order O(j−2). Then, we apply the same reasoning as in Theorem
7 to conclude the proof. �

Now we present the idea of the SG algorithm 3 with variable mesh size.
Algorithm 3: Stochastic Gradient with variable mesh size algorithm

Data:
Given a desired tolerance tol, choose 1

l < τ0, h0 and jmax ' tol−2

initialization:
u = 0
for j = 1, . . . , jmax do

update mesh size to h = h02−d
ln2 j−ln2 τ0l

2r+2 e

sample one realization aj = a(·, ωj) or the random field
solve primal problem → y(aj , u) on mesh h
solve dual problem → p(aj , u) on mesh h

∇̂J = αu+ p(aj , u)

u = u− τj∇̂J
end
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Concerning the complexity of Algorithm 3, one can derive the following com-
plexity result.

Corollary 4. In order to achieve a given tolerance O(tol), i.e. to guarantee that

E[‖uhjj − u∗‖2] . tol2, the total required computational work W is bounded by:

W . tol−2− nγ
r+1

Proof. To achieve tol2 . j−1
max requires jmax ' tol−2. Then the total work required

is bounded by

W =

jmax∑
p=1

2Nh−nγp = 2N

jmax∑
p=1

2nγd
ln2 p−ln2 τ0l

2r+2 e

But as d ln2 p−ln2 τ0l
2r+2 e ≤ ln2 p−ln2 τ0l

2r+2 + 1, one can bound:

W ≤ 2N

jmax∑
p=1

2nγ
(

ln2 p−ln2 τ0l
2r+2 +1

)
≤ 2nγ+1N{τ0l}

−nγ
2r+2

jmax∑
p=1

p
nγ

2r+2

≤ 2nγ+1N{τ0l}
−nγ
2r+2

2r + 2

2r + 2 + nγ
(jmax + 1)

nγ
2r+2 +1

But as jmax ' tol−2, we finally bound the computational work by

W . tol−2− nγ
r+1 .

�

We notice that the asymptotic complexity remains the same as in the Stochastic
Gradient algorithm with fixed mesh size. However, as we only use computations
on coarse meshes for the first iterations, we thus expect an improvement due to re-
ducing the constant. We will compute this constant, based on numerical examples,
in the Section 8.

8. Numerical results

In this section we verify the assertions of Theorems 5, 8, and 9, as well as the
computational complexity derived in the corresponding Corollaries. Specifically, we
illustrate the order of convergence for the three versions of the steepest descent al-
gorithm presented in Sections 5, 6, and 7 respectively. For this purpose, we consider
the optimal control problem (19) with a MC approximation of the expectation. We
consider problem (2) in the domain D = (0, 1)2 with g = 1 and the random diffusion
coefficient

(44) a(x1, x2, ξ) = 1+0.1
(
ξ1 cos(πx2)+ξ2 cos(πx1)+ξ3 sin(2πx2)+ξ4 sin(2πx1)

)
,

with (x1, x2) ∈ D and ξ = (ξ1, . . . , ξ4) with ξi
iid∼ U([−1, 1]). Figure 2 shows three

typical realizations of the random field. The target function zd has been chosen
as zd(x, y) = sin(2πx) sin(2πy) (see Fig. 1 b) and we have taken α = 0.1 in the
objective function J(u) in (3). For the FE approximation, we have considered a
structured triangular grid of size h (see Fig. 1 a) where each side of the domain
D is divided into 1/h sub-intervals and used piece-wise linear FE (i.e. r = 1). All
calculations have been performed using the FE library Freefem++[20].
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(a) Structured mesh triangulation with
h = 2−3

IsoValue
-1.10526
-0.947368
-0.842105
-0.736842
-0.631579
-0.526316
-0.421053
-0.315789
-0.210526
-0.105263
0
0.105263
0.210526
0.315789
0.421053
0.526316
0.631579
0.736842
0.842105
1.10526

z_d

(b) Target function zd for the optimal
control problem

Figure 1. Mesh and target function zd.

(a) Y1 = 0.0327973
Y2 = 0.10508
Y3 = 0.141335
Y4 = 0.905369

(b) Y1 = 0.370554
Y2 = 0.0682218
Y3 = 0.667794
Y4 = −0.421315

(c) Y1 = −0.943052
Y2 = 0.968895
Y3 = −0.656957
Y4 = −0.997339

Figure 2. Three realizations of the diffusion random field (44).

Reference solution. To compute a reference solution of problem (2), we use a full
tensorized Gaussian Legendre (GL) quadrature grid with 5 points in each direction
and a fine triangulation with h = 2−8 (see, e.g., references [8, 37] and Appendix A.2
for a formal error estimate). As this approximated problem is now deterministic
with fixed Gaussian nodes, we used a stopping condition on the gradient. In Figure
3 we show the optimal control obtained after j = 6 iterations when the stopping
criterion ‖EGL(5,5,5,5)[∇J(uhj )]‖ ≤ 10−8 was met, where uhj is the j-th iterate of (19)

and Ê in (19) is a full tensorized Gaussian Legendre (GL) quadrature approximation
of the expectation. The steepest descent step size was chosen as τ0 = 10. The L2-

norm of the final control using this Gaussian quadrature is ‖ûh=2−8

j=6 ‖ = 0.0663345.

8.1. Steepest descent algorithm with fixed discretization. We investigate
here the convergence of the method defined in (24), for which we recall the error
bound (30) in the case of piece-wise linear FE (i.e. r = 1):

E[‖ûhj − u‖2] ≤ C1e
−ρj +

C2

N
+ C3h

4 .
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IsoValue
-0.161436
-0.141347
-0.127954
-0.114561
-0.101169
-0.0877757
-0.0743829
-0.0609901
-0.0475973
-0.0342045
-0.0208117
-0.00741885
0.00597396
0.0193668
0.0327596
0.0461524
0.0595452
0.072938
0.0863308
0.119813

optimal control

Figure 3. Optimal control reference solution computed with h =
2−7 on tensorized Gauss-Legendre quadrature formula withN = 94

nodes.

For each tolerance tol, using formula (30), we compute the optimal mesh size
h = f1(tol), the optimal sample size in the MC approximation N = f2(tol), and,
finally, the minimum number of iterations we need in the steepest descend method,
jmax = f3(tol). Here, the three functions fi are introduced to emphasize that
these parameters are completely determined by the prescribed tolerance goal tol.
In what follows, we compare the actual error on the optimal control obtained from
the algorithm (measured w.r.t. the reference solution) with the prescribed tolerance.

Estimation of the constants C1, C2, C3. To have a precise idea of the functions
fi, we have estimated the constants in (30) numerically.

• In order to estimate C1 we used the same finest mesh as the one used
to compute our reference solution with h = 2−8, and we used also the
same Gaussian 5 points for the quadrature. We computed numerically
the squared error between the optimal control after i iterations and the
reference solution computed above. We then only see the first term in (30),
and running the algorithm for the first 10 iterations of the steepest descent
method, we estimated a constant C1 ≈ 10−3 and ρ ≈ 3.2.
• To estimate the second constant C2, we used again the same finest mesh

as the one used to compute our reference solution with h = 2−8. We ran
the steepest descent method up to 10 iterations, using a MC estimator for
the mean of the gradient with a sample size NMC of NMC = 20, 21, · · · , 25.
Finally, for every sample size NMC of the MC estimator, we averaged the
final error squared on the control over 10 independent realizations. As we
go up to 10 iterations, the error term is of order C1e

−3.2×10 = 1.27×10−17.
That is, as long as the term C2/N stays bigger than 10−15, i.e. C2 > 10−14,
we effectively only see the C2/N term. We numerically found C2 ≈ 3.16×
10−5, what is coherent with the last condition.
• Finally, to compute the third term, we used different mesh sizes h =

2−1, · · · , 2−5, and we used a steepest descent algorithm with sufficiently
26



10
-2

10
-1

h: mesh size

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

n
u
m

e
ri
c
a
l 
e
rr

o
r

E|| u-u *  || 2

h 4

Figure 4. Steepest descent Algorithm 1 with fixed discretization
over iterations. Error E[‖u − u∗‖2] as a function of the mesh size
h. Blue circles: estimated mean over 20 repetitions. Error bars:
one estimated standard deviation.

many iterations with a Gaussian quadrature with 5 points in each direc-
tion. We found C3 ≈ 5.01× 10−1.

Figure 4 shows the convergence of the error on the control (in the L2-norm), versus
the discretization parameter h (that is directly linked to N and jmax using the
functions fi, i = 1, 2, 3). The bars denote plus one standard deviation, estimated
by repeating the simulation 20 times. We observe a convergence rate of h−4 on the
squared error, which is consistent with the theoretical result (30). Figure 5 shows
the corresponding computational complexity. Here we have used the theoretical
computational cost W = 2Njmaxh

−2 (which assumes an optimal linear algebra
solver with γ = 1). The observed slope is consistent with our theoretical result
W ∼ tol−3 up to logarithmic terms.

8.2. Stochastic Gradient with fixed mesh size h. We implemented here the
Stochastic Gradient method described in Section 6 using N = 1 sample at each
iteration (recall that the complexity does not depend on N). As the error result
(35) is in the mean squared sense, we ran the simulation 10 times and averaged the
obtained errors, in order to estimate this mean.

Estimation of the constants D1, D2. Also for the SG method with a fixed mesh
size we have estimated the constants in (35).

• To numerically estimate the constant D1, we simply used the finest mesh
of size h = 2−8 and plotted the squared error on the control versus the i-th
iteration using a Stochastic Gradient technique. We repeated the procedure
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Figure 5. Steepest descent Algorithm 1 with fixed discretization
over iterations. Error E[‖u− u∗‖2] as a function of the theoretical
computational work W . Blue circles: estimated mean over 20 rep-
etitions (only 2 repetition in the last two points). Error bars: one
estimated standard deviation.

10 times to compute a MC estimator of the expectation of this squared
error. We found effectively a slope of −1 and the constant D1 ≈ 2.51×10−6.
• Again as for the fixed MC procedure, to estimate the second term constant
D2, we used different mesh sizes h = 2−1, · · · , 2−5, and a Stochastic Gradi-
ent algorithm with sufficiently many iterations. We found D2 ≈ 6.31×10−1,
which is very close to the C3 constant, estimated earlier.

Figures 6 presents the squared error on the control for different desired tolerances
tol, i.e. different mesh sizes, using the SG steepest descent method with resampling.
The theoretical rate is thus verified for r = 1 and d = 2. Figure 7 and 8 show the
estimated mean squared error, using Algorithm 2, as a function of the theoretical
cost W = 2jmaxh

−2. The slope is the one expected, namely W . tol−3.

8.3. Stochastic Gradient with decreasing mesh size hj. We illustrate here
the Stochastic Gradient method described in Section 7. As the error result (43) is
in mean-squared sense, we ran the simulation 20 times up to iteration jmax = 4000.
We then average every error at every iteration over these 20 simulation. In Figure
9 we plot the averaged errors obtained versus the iteration of the SG recursion.
In fact, the plot shows the mean squared errors and the mean squared errors plus
one standard deviation, both obtained using once more all the 20 simulations. As
we refine using only embedded mesh, we do see a refinement drop at iterations
j = 16, 256, 4096. Notice that the next refinement would be at iteration j = 65536,
which however is computationally prohibitive.
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Figure 6. SG Algorithm 2 with fixed space discretization over
iterations. Error E[‖u−u∗‖2] as a function of the mesh size h. Blue
circles: estimated mean over 10 repetitions (only 2 repetitions in
the last two points). Error bars: one estimated standard deviation.

Estimation of the initial mesh size h0. In practice, in order to estimate the
parameter h0, we set a desired final tolerance tol, which is directly related to hfinal
through the constants D1 and D2 estimated previously. Based on jmax linked to
the tolerance tol and expression (43), we can thus determine the initial mesh size
h0. That is, with the initial mesh size h0 fixed, we then run the algorithm with this
h0, ensuring that the algorithm will terminate at iteration jmax with final mesh
size hjmax .

In Figure 10 we plot the averaged numerical error versus the computational
cost W for the three algorithm studied in the previous Sections: the fixed MC
gradient, the SG with fixed mesh, and the SG with variable mesh size. For the
fixed MC gradient and the SG with fixed mesh, we ran 20 iid simulations for every
tolerance (i.e. every point and every square in the Figure) and then averaged them
to estimate the mean. For the SG with variable mesh size we show 3 different
realization of error versus computational work (with the same initial mesh size
h0). As discussed before, the SG is more efficient than the fixed MC gradient,
but only by a logarithmic factor (which is difficult to observe in Figure 10). All
three algorithms follow a slope of tol2 ∼ W−2/3, as predicted by our theoretical
complexity analysis. The proportionality constant is smaller for the SG compared
to the fixed MC gradient, and seems to further reduce for the variable mesh size SG
version at least in the range of computational works considered. This is consistent
with our intuition that computational work is saved in the earlier iterations in this
version of the SG method.
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Figure 7. SG Algorithm 2 with fixed space discretization over
iterations. The error E[‖u− u∗‖2] as a function of the theoretical
computational work W is plotted. Blue circles: estimated mean
over 10 repetitions (only 2 repetitions in the last two points). Error
bars: one estimated standard deviation.

9. Conclusions

In this work, we have analyzed and compared the complexity of three versions of
the gradient method for the numerical solution of a mean-based risk-averse optimal
control problem for an elliptic PDE with random coefficients, where a Finite Ele-
ment discretization is used to approximate the underlying PDEs and a Monte Carlo
sampling is used to approximate the expectation in the risk measure. In the first
version the FE mesh and Monte Carlo sample are chosen initially and kept fixed
over the iterations. In the second version, a Stochastic Gradient method, the finite
element discretization is still kept fixed over the iterations, however the expecta-
tion in the objective function is re-sampled independently at each iteration, with a
small (fixed) sample size. Finally, the third version is again a stochastic gradient
method, but now with successively refined FE meshes over the iterations. We have
shown in particular, that the stochastic versions of the gradient method improve
the computational complexity by log factors. Our complexity analysis is based on
a priori error estimates and a priori choices of the FE mesh size, the Monte Carlo
sample size, and the gradient iterations to obtain a prescribed tolerance.

Beside the improved complexity, another interest in looking at stochastic versions
of the gradient method is that they are more amenable to adaptive versions, in
which the mesh size and possibly the Monte Carlo sample size are refined over
the iterations based on suitable a posteriori error indicators. The study of such
adaptive versions is postponed to future work.
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Figure 8. SG Algorithm 2 with fixed space discretization over
iterations. The error E[‖u−u∗‖2] as a function of the average CPU
time is plotted. Blue circles: estimated mean over 10 repetitions
(only 2 repetition in the last two points). Error bars: one estimated
standard deviation.

Another interesting direction is the extension of stochastic gradient methods to
more general risk measures. We mention that Stochastic Gradient methods have
been already used in combination with the CVaR risk measure [5], although not in
the context of PDE-constrained optimal control problems.
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Appendix A. Reference solution by Stochastic Collocation

A.1. Optimal Control Problem with quadrature. In this appendix, we de-
scribe the computation of the reference solution used in the numerical result of
Section 8, by the Stochastic Collocation method on a tensor grid of Gauss Le-
gendre points and provide an error estimate for such reference solution. In the
setting of Section 8, with only 4 random variables, we show here that the Sto-
chastic Collocation approximation is exponentially convergent and a very accurate
solution can be obtained with a moderate number of collocation points (54 were
used in the numerical results). We suppose here that our expectation estimator
is not random, but uses deterministic points ξi, for i = 1, . . . , N . The estimated
optimal control û is then deterministic as well. The following theorem derives an
error bound when we estimate the exact expectation E in (3) by a deterministic

quadrature formula Ê.
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Theorem 10. Denoting by u∗ the optimal control solution of the exact problem
(10) and by û the solution of the semi-discrete collocation problem (19), we have

(45)
α

2
‖û− u∗‖2 + E[‖y(u∗)− y(û)‖2] ≤ 1

2α
‖E[p(û)]− Ê[p(û)]‖2.

Proof. The expressions of the gradient of J and Ĵ are given by ∇J(u∗) = αu∗ +

E[p(u∗)], ∇Ĵ(û) = αû+Ê[p(û)]. From the optimality condition (5) for J , we derive

the optimality condition for Ĵ as:

(46) 〈∇Ĵ(û), v′ − û〉 ≥ 0 ∀v′ ∈ U.
Then choosing v = û in (5) and v′ = u∗ in (46) and combining both, we have

〈α(u∗ − û) + E[p(u∗)]− Ê[p(û)], û− u∗〉 ≥ 0,

that is,

(47) α‖u∗ − û‖2 ≤ 〈E[p(u∗)]− E[p(û)] + E[p(û)]− Ê[p(û)], û− u∗〉.
In order to bound the first part of the error in (47), 〈E[p(u)] − E[p(û)], û − u〉,

we take one random realization ω and we use the primal-dual equations to obtain:

〈û− u∗, pω(u∗)− pω(û)〉 = bω(yω(û)− yω(u∗), pω(u)− pω(û))

= 〈yω(u∗)− yω(û), yω(û)− yω(u∗)〉
= −‖yω(u∗)− yω(û)‖2.

Then taking the (exact) expectation over all the realizations ω, we find:

〈E[p(u∗)]− E[p(û)], û− u∗〉 = −E[‖y(u∗)− y(û)‖2].
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Figure 10. Comparison between Algorithm 1, 2, 3. The esti-
mated mean squared error E[‖u− u∗‖2] is plotted as a function of
the theoretical computation work W for Fixed MC gradient and
SG with fixed mesh, versus 3 different realization of the SG with
variable mesh size algorithm.

For the second contribution, 〈E[p(û)] − Ê[p(û)], û − u∗〉, we simply use Young’s
inequality, yielding

〈E[p(û)]− Ê[p(û)], û− u∗〉 ≤ 1

2α
‖E[p(û)]− Ê[p(û)]‖2 +

α

2
‖û− u∗‖2,

from which the claim eventually follows. �

A.2. Collocation on tensor grid of Gauss points (Gaussian Legendre quad-

rature). The quantification of the quadrature error E[p(û)]−Ê[p(û)], i.e. the right
hand side in (45), heavily depends on the smoothness of the dual function in the
stochastic variables. The numerical example considered in Section 8 has a diffusion
coefficient of the form

a(x, ξ) = a0(x) +

M∑
i=1

√
λiξibi(x) ,

with a0 > 0 a.e. in D, ‖bi‖L∞(D) = 1,
∑M
i=1

√
λi < essinfx∈D a0(x) and ξi ∼

U([−1, 1]) iid uniform random variables. We denote by ξ = (ξ1, · · · , ξM ) the cor-
responding random vector. Hence, in this case the probability space (Γ,F , P ) is

Γ = [−1, 1]M , F = B(Γ) the Borel σ-algebra on Γ, and P(dξ) = ⊗Mi=1
dξi
2 the uniform

product measure on Γ. In this case we chose as a quadrature formula the tensor
Gaussian quadrature built on Gauss-Legendre quadrature points. In particular, we
consider a tensor grid with qi points in the i-th variable and denote the correspond-
ing quadrature by EGLq [·], where q = (q1, · · · , qM ) ∈ NM is a multi-index.

33



To any vector of indexes [k1, . . . , kM ] ∈
∏M
i=1{1, · · · , qi} we associate the global

index

k = k1 + q1(k2 − 1) + q1q2(k3 − 1) + . . . ,

and we denote by yk the point yk = [y1,k1 , y2,k2 , ..., yM,kM ] ∈ Γ. We also introduce,
for each n = 1, 2, . . . , N , the Lagrange basis {ln,j}qnj=1 of the space Pqn−1 ,

ln,j ∈ Pqn−1
(Γn), ln,j(yn,k) = δjk, j, k = 1, . . . , qn,

where δjk is the Kronecker symbol, and Pq−1(Γ) ⊂ L2(Γ) is the span of tensor
product polynomials with degree at most q−1 = (q1−1, . . . , qM−1); i.e., Pq−1(Γ) =⊗M

i=1 Pqi−1(Γi). Hence the dimension of Pq−1 is Nq =
∏N
i=1(qi). Finally we set

lk(y) =
∏N
n=1 ln,kn(yn).

For any continuous function g : Γ → R we introduce the Gauss Legendre quad-
rature formula EGLq [g] approximating the integral

∫
Γ
g(y) dy as

(48) EGLq [g] =

Nq∑
k=1

ωkg(yk), ωk =

M∏
n=1

ωkn , ωkn =

∫
Γn

l2kn(y) dy

We now analyze the error introduced by the quadrature formula. The first step
is to investigate the smoothness of the map ξ 7→ p(û, ξ). For this, it is convenient
to extend the primal and dual problems to the complex domain. To do so, let us
define

a(x, z) = a0(x) +

M∑
i=1

√
λizibi(x)

with z = (z1, · · · , zM ) ∈ CM and let

U0 = {z ∈ CM : Re(a(x, z)) > 0 a.e. in D}.

We consider the primal and dual problems extended to the complex domain: ∀z ∈
U0 find y(·, z) ∈ H1

0 (D;C) s.t.

(49)

∫
D

a(x, z)∇y(x, z)∇v(x)dx =

∫
D

(û(x) + g(x))v(x)dx ∀v ∈ H1
0 (D;C) ,

and find p(·, z) ∈ H1
0 (D;C) s.t.

(50)

∫
D

a(x, z)∇p(x, z)∇v(x)dx =

∫
D

(y(x, z)− zd(x))v(x)dx ∀v ∈ H1
0 (D;C) .

It is well known that problem (49) and (50) are well posed in U0. Let now Σ ⊂ U0

be

Σ := {z ∈ CN :

M∑
i=1

√
λi|zi| ≤

amin
2
}

with amin = ess infx∈D a0(x). The next Lemma states that both z 7→ y(·, z) and
z 7→ p(·, z) are holomorphic functions in U0 with uniform bounds on Σ. The result
for z 7→ y(·, z) is well known and can be found in reference [11] fro example, so that
we only give the proof for z 7→ p(·, z).

Lemma 7. Both functions z 7→ y(·, z) and z 7→ p(·, z) are holomorphic on U0, and
both have a uniform bound on Σ, in the sense that

(51) max
z∈Σ
‖y(·, ξ)‖H1

0
≤ CP

‖g + û‖
amin

and

(52) max
z∈Σ
‖p(·, z)‖H1

0
≤ CP

‖zd‖
amin

+ C3
P

‖g + û‖
a2
min

.
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Proof. It is well known (see e.g. [11]) that the function z 7→ y(·, z) is holomorphic
on U0 with bound (51). This property translates to the dual function z 7→ p(·, z) ∈
H1

0 (D;C) which is holomorphic in U0 as well with bound

max
z∈Σ
‖p(·, z)‖H1 ≤ CP max

z∈Σ

‖y(·, z)− zd‖
amin

≤ CP
‖zd‖
amin

+ CP max
z∈Σ

‖y(·, z)‖
amin

≤ CP
‖zd‖
amin

+ C3
P

‖g + û‖
a2
min

.

�

Based on the last regularity result and following [3], we can state the following
error estimate for the quadrature error.

Theorem 11. Denoting by û the solution of the semi-discrete (in probability) op-

timal control problem (19) with Ê = EGLq [·] and p(û) the corresponding adjoint
function, there exists C > 0 and {r1, · · · , rM} independent of q s.t.

‖E[p(û)]− EGLq [p(û)]‖2 ≤ C
M∑
n=1

e−rnqn ,

with qn the number of points used in the quadrature in direction n.

Appendix B. Proof for increasing Monte Carlo sampling in SG

Here we detail the proof of the bound (39) in remark 5. The factor cj in (33)
becomes

cj := 1− τj l + L2
(

1 +
2

Nj

)
τ2
j = 1− τ0l

j
+ L2

(
1 + 2j1−τ0l

)τ2
0

j2
,

for τj = τ0/j and Nj ∼ iτ0l−1 with τ0l − 1 > 0. We use the recursive formula (33)
and set, as before, uh∗ to be the exact optimal control for the FE problem defined
in (11). We emphasize that (11) has no approximation in probability space. Setting

aj = E[‖uhj − uh∗‖2] and βj =
2τ2
j

Nj
E[‖∇f(uh∗, ω)‖2], we have from (33), applied to

the sequence of FE solutions {uhj }j>0,

aj+1 ≤cjaj + βj

≤cjcj−1aj−1 + cjβj−1 + βj

≤ · · ·

≤
( j∏
i=1

ci

)
︸ ︷︷ ︸

=κj

a1 +

j∑
i=1

βi

j∏
l=i+1

cl︸ ︷︷ ︸
=Bj

.(53)

For the first term κj , computing its logarithm, we have

log(κj) ≤
j∑
i=1

log(1− τ0l

i
+
M ′

i2
) ≤

j∑
i=1

−τ0l
i

+

j∑
i=1

M ′

i2
,

where we have set M ′ = 3τ2
0L

2 as we have 1− τ0l < 0 and thus j1−τ0l ≤ 1 for every
j ≥ 1. Therefore

log(κj) ≤ −τ0l log j +M ′′, with M ′′ =

∞∑
i=1

M ′

i2
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and κj . j−τ0l. For the second term Bj in (53) we have

Bj =

j∑
i=1

βi

j∏
k=i+1

ck ≤
j∑
i=1

S′i−τ0l−1

j∏
k=i+1

(
1− τ0l

k
+

3τ2
0L

2

k2

)
︸ ︷︷ ︸

=Kij

, with S′ = 2τ2
0E[‖∇f(uh∗, ω)‖2] .

For the term Kij we find that

log(Kij) =

j∑
k=i+1

log

(
1− τ0l

k
+
M ′

k2

)

≤
j∑

k=i+1

(
− τ0l

k
+
M ′

k2

)
≤ −τ0l(log(j + 1)− log(i+ 1)) +M ′

(
1

i
− 1

j

)
,

which shows that

Kij ≤ (j + 1)−τ0l(i+ 1)τ0l exp

(
M ′
(

1

i
− 1

j

))
.

It follows that

Bj ≤ (j + 1)−τ0l exp

(
−M

′

j

)
︸ ︷︷ ︸

≤1

j∑
i=1

S′i−τ0l−1(i+ 1)τ0l exp

(
M ′

i

)
︸ ︷︷ ︸
≤exp(M ′)

≤ S′ exp(M ′)(j + 1)−τ0l
j∑
i=1

(i+ 1)−1 . j−τ0l log(j),

for τ0 > 1/l. Eventually, we obtained the following upper bound for two constants
D3 > 0 and D4 > 0:

(54) aj+1 ≤ D3j
−τ0la1 +D4j

−τ0l log(j).

We conclude that

(55) aj+1 ≤ D4j
−τ0l log(j),

with D4 possibly depending on ‖uh0 − uh∗‖. Finally, splitting the error as

E[‖uhj − u∗‖2] ≤ 2E[‖uhj − uh∗‖2] + 2E[‖uh∗ − u∗‖2]

and using (18) to bound the second term, the claim follows.
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