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Abstract

In this paper we propose a dynamical low-rank strategy for the approximation of second order wave equa-
tions with random parameters. The governing equation is rewritten in Hamiltonian form and the approximate
solution is expanded over a set of 2S dynamical symplectic-orthogonal deterministic basis functions with time-
dependent stochastic coefficients. The reduced (low rank) dynamics is obtained by a symplectic projection of
the governing Hamiltonian system onto the tangent space to the approximation manifold along the approx-
imate trajectory. The proposed formulation is equivalent to recasting the governing Hamiltonian system in
complex setting and looking for a dynamical low rank approximation in the low dimensional manifold of all
complex-valued random fields with rank equal to S. Thanks to this equivalence, we are able to properly de-
fine the approximation manifold in the real setting, endow it with a differential structure and obtain a proper
parametrization of its tangent space, in terms of orthogonal constraints on the dynamics of the deterministic
modes. Finally, we recover the Symplectic Dynamically Orthogonal reduced order system for the evolution
of both the stochastic coefficients and the deterministic basis of the approximate solution. This consists of a
system of S deterministic PDEs coupled to a reduced Hamiltonian system of dimension 2S. As a result, the
approximate solution preserves the mean Hamiltonian energy over the flow.

Introduction

The last decades have witnessed a growing demand of mathematical modelling and uncertainty quantification
in applications across science and technology. The goal is to perform reliable numerical simulations which
accurately and effectively take into account the presence of variability and/or lack of precise characterization
of the input data. In this paper, we focus on second order wave equations with random parameters, such
as acoustic or elastic waves with uncertain/random speed and/or source terms. Applications are found for
instance in seismology, where the propagation of the seismic waves strongly depends on some epistemic
uncertainties as the location of the epicenter or the density and elastic modulus of the medium. In this context
the quantification of the uncertainty in the solution is particularly challenging for large-scale problems which
require long time integration. On the one hand sampling techniques, such as Monte Carlo, typically require
a lot of problem solves, leading to a very high and sometimes unaffordable computational cost. On the other
hand, spectral approximations of polynomial chaos type are negatively affected by the long-time integration
as the structure of the random solution might considerably change over time. In particular, the parameter-
to-solution map may become more and more complex in time, thus demanding a higher and higher number
of terms in the Polynomial Chaos expansion, as time evolves, to maintain an acceptable accuracy level (see
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e.g. [34]). A promising approach for uncertainty propagation in time dependent problems, which has been so
far applied to parabolic equations, is provided by the Dynamical Low Rank (DLR) method. [24, 25, 31, 32]. It
can be seen as a reduced order method, thus solvable at a relatively low computational cost, in which the
solution is a low rank function, i.e. it can be expanded at each time instant as a linear combination of few
spatial deterministic modes with linearly independent random coefficients. Its peculiarity is that both the
spatial and the stochastic bases are computed on the fly and are free to evolve, thus adjusting at each time to
the current structure of the random solution. From a variational point of view, DLR can be seen as a Galerkin
projection of the governing equation onto the tangent space to the manifold of functions of fixed rank. Our
goal is to extend the DLR method to second order wave equations. This approach is indeed very attractive in
this context since the solution manifold may strongly change during the propagation. The first question that
we address is how to adapt the DLR approach, originally designed for parabolic equations, to approximate
second order wave equations. Moreover, given the hyperbolic nature of the problem, a special attention has
to be paid to preserve the stability of the reduced system.
It has been shown in literature [28] that reduced order models obtained by projecting a hyperbolic system
on a fixed subspace constructed by Principal Orthogonal Decomposition (POD) may become unstable even if
the original system was not. To overcome this issue, in [14] the authors derive reduced order systems which
preserve the Lagrangian structure of the full order system, whereas in [5] the same strategy is combined with
the Gappy POD method to further reduce the computational cost. In the context of parametric Hamiltonian
systems, recent works [18,27] have proposed a reduced order method with symplectic basis, designed in analogy
to the POD technique, in which the standard Galerkin projection is replaced by a symplectic projection and
the solution is approximated in a low dimensional symplectic space. As a result, the reduced order system
consists of a Hamiltonian system of small size which preserves the symplectic structure of the full order
system, is energy conservative and preserve stability.
In this work we combine the ideas in [27] with the DLR approach and propose a Symplectic Dynamical
Low Rank (SDLR) method for wave equations rewritten in Hamiltonian form, which preserves the underlying
geometrical structure of the full order system. The SDLR method shares with the symplectic order reduction
the use of a symplectic deterministic basis, and, as the “classic” DLR approximation, allows both the stochastic
and the deterministic modes to evolve in time. As a result, the dynamical low rank approximate solution
preserves the expected value of the Hamiltonian which is a crucial property for stability preservation [27].
The main challenge in constructing the SDLR method is to find a correct characterization of the manifold
of approximate solutions and a parametrization of its tangent space at each point. To do so we restrict
our attention to a deterministic reduced basis which is at the same time symplectic and orthonormal. This
enables us to show that the approximation manifold of all functions that can be expanded over a set of 2S

symplectic-orthonormal deterministic modes with stochastic coefficients that are subject to a specific rank
condition on their second moment matrix, has the structure of a differential manifold and we are able to obtain
a proper parameterization of the tangent space, in terms of a orthogonal constraint on the variations of the
deterministic modes, from which the reduced system can be derived, which consists of a set of S equations
for the constrained dynamics of the deterministic modes, coupled with a reduced order Hamiltonian system
of dimension 2S for the evolution of the stochastic coefficients. Consequently, the approximation problem can
be defined as the symplectic projection of the governing Hamiltonian system into the tangent space to the
approximation manifold along the approximate trajectory. The characterization of the manifold and its tangent
space has been obtained by exploiting the isomorphism with the manifold of complex-valued random fields of
rank S. More precisely, we showed that, when recast in the complex setting, the SDLR variational principle
coincides with the dynamical low-rank approximation of the governing complex-valued Hamiltonian system,
into the low dimensional manifold of the complex-valued random fields with rank S.
The paper is organized as follows: in Section 1 we introduce the problem setting and the notation used
throughout; in Section 3 we review some standard results concerning symplectic manifolds which will be
used in Section 4 to redefine the problem in the Hamiltonian framework; in Section 2 and Section 5 we
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recall respectively the DLR approximation (in DO formulation) for a general parabolic problem and the
symplectic order reduction for Hamiltonian systems, and then in Section 6 we present the SDLR approximation,
both in real and complex setting, and we derive the reduced system. We conclude in Section 7 with some
numerical test cases.

1 Notation and problem setting

Let F stand for R or C, and D be an open bounded subset of Rd, 1 ≤ d ≤ 3, with a smooth boundary ∂D.
We denote by L2(D,F) (respectively H1(D,F)) the Hilbert space of square integrable functions (respectively
with square integrable partial derivatives) on D with values in F. When F is omitted we always refer to R.
As usual H1

0 (D,F) denotes the subspace of all functions in H1(D,F) which vanish on the boundary. We
denote by 〈·, ·〉 the real inner product in L2(D,R), and with 〈·, ·〉h the Hermitian inner product in L2(D,C),
which is defined as:

〈û, v̂〉h := 〈uq, vq〉+ 〈up, vp〉+ i(〈up, vq〉 − 〈uq, vp〉) ∀û = uq + iup, v̂ = vq + ivp ∈ L2(D,C), (1)

Hereafter, complex valued functions are denoted with the overhat symbol (û), with real and imaginary com-
ponents labeled with the apex q and p respectively (û = uq + iup).
We define the Stiefel manifold St(S,H1(D,F)), as the set of L2-orthonormal frames of S functions in
H1(D,F), i.e.:

St(S,H1(D,F)) =
{
V = (V1, ..., VS) : Vi ∈ H1(D,F) and 〈Vi, Vj〉∗ = δij ∀i, j = 1, ..., S

}
(2)

where 〈Vi, Vj〉∗ is the real L2 product if F = R and the hermitian product if F = C. We denote by
G(S,H1(D,F)) the Grassmann manifold of dimension S that consists of all the S−dimensional linear sub-
spaces of H1(D,F). The definition of Stiefel and Grassmann manifold can be generalized to vector-valued
functions in [H1(D,F)]d.
Let (Ω,A,P) be a complete probability space, where Ω is the set of outcomes, A a σ-algebra and P : A → [0, 1]

a probability measure. Let y : Ω→ F be an integrable random variable; we define the mean of y as:

ȳ = E[y] =

∫
Ω

y(ω)dP(ω).

L2(Ω,F) (respectively L2
0(Ω,F)) denotes the Hilbert space of square integrable random variables (respectively

with zero mean), that is:

L2(Ω,F) :=
{
y : Ω→ F : E[y2] =

∫
Ω

(y(ω))2dP(ω) <∞
}
,

L2
0(Ω,F) :=

{
y : Ω→ F : E[y] = 0, E[y2] =

∫
Ω

(y(ω))2dP(ω) <∞
}
.

We also recall that L2(D × Ω,F) denotes the space of all square integrable random fields, i.e.:

L2(D × Ω,F) :=
{
u : D × Ω→ F s.t. E

[
‖u‖2L2(D,F)

]
<∞

}
.

Observe that L2(D ×Ω,F) is isometrically isomorphic to the tensor product space L2(D,F)⊗ L2(Ω,F). We
denote by B(S,L2(Ω,F)) the set of all S frames of linearly independent random variables in L2(Ω,F), i.e.:

B(S,L2(Ω,F)) = {Y = (Y1, ..., YS)T ∈ [L2(Ω,F)]S s.t. rank(E[YY∗]) = S}, (3)
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where Y∗ is the complex conjugate of Y, which simply coincides with the transpose if Y is a real valued
random vector. Similarly, we denote by G(S,L2(Ω,F)) the Grassmann manifold of dimension S associated to
L2(Ω,F).

1.1 Wave equation with random parameters

We consider the following initial boundary value problem: find a random function u : D̄ × [0, T ] × Ω → R,
such that P-almost everywhere in Ω (almost surely) the following holds:

ü(x, t, ω) = ∇ ·
(
c(x, ω)∇u(x, t, ω)

)
+ f(u(x, t, ω), ω) x ∈ D, t ∈ (0, T ], ω ∈ Ω,

u(x, 0, ω) = p0(x, ω) x ∈ D, ω ∈ Ω,

u̇(x, 0, ω) = q0(x, ω) x ∈ D, ω ∈ Ω,

u(σ, t, ω) = 0 σ ∈ ∂D, t ∈ (0, T ], ω ∈ Ω,

(4)

For convenience we restrict in this work to homogeneous Dirichlet boundary conditions, although the de-
velopment hereafter generalizes easily to other types of boundary conditions, either homogeneous or non-
homogeneous with deterministic forcing terms. The case of non-homogeneous stochastic boundary conditions
can be treated as in [24] but will not be detailed in this work. For the well-posedness of problem (4), we
assume that the random wave speed c is bounded and uniformly coercive [23,33]:

0 < cmin ≤ c(x, ω) ≤ cmax <∞ ∀x ∈ D, a.s.,

and the initial data satisfy: q0 ∈ L2(Ω, H1
0 (D)), p0 ∈ L2(Ω, L2(D)). Here the randomness may affect the

wave speed c as well as the initial conditions p0, q0 and the (possibly non linear) source term f . Our goal is
to find a dynamical low rank approximation of the solution of problem (4).

2 DLR approximation

We recall that the Dynamical Low Rank approximation (DLR) [12, 25, 31] is a reduced basis technique used
for the approximation of parabolic equations with random parameters. Consider the following general real
valued problem: 

u̇(x, t, ω) = L(u(x, t, ω), t, ω), x ∈ D, t ∈ (0, T ], ω ∈ Ω,

u(x, 0, ω) = u0(x, ω) x ∈ D, ω ∈ Ω,

B(u(σ, t, ω), ω) = g(σ, t) σ ∈ D, t ∈ (0, T ], ω ∈ Ω,

(5)

where L is a linear or non-linear differential operator, x ∈ D is the spatial coordinate, t is the time variable
in [0, T ] and B a suitable boundary operator. Here ω ∈ Ω represents a random elementary event which may
affect the operator L (as e.g. a coefficient or a forcing term) or the initial conditions. Let us assume that the
solution u(·, t, ω) to problem (5) is in a certain real Hilbert space H ⊂ L2(D) for (almost) all t ∈ [0, T ] and
ω ∈ Ω and that L(u, t, ω) ∈ H′ for all u ∈ H and almost everywhere in [0, T ] and Ω. Hereafter, whenever no
confusion arises, we may write simply L(u) instead of L(u, t, ω). The approximation manifold consists of the
collection of all S rank random fields, i.e functions that can be exactly expressed as linear combination of S
linearly independent deterministic modes combined with S linearly independent stochastic modes.

4



Definition 2.1. We defineMS ⊂ H⊗ L2(Ω) the manifold of all S rank random fields, i.e.:

MS =
{
uS ∈ H ⊗ L2(Ω) : uS =

∑S
i=1 UiYi | span(U1, ..., US) ∈ G(S,H),

span(Y1, ..., YS) ∈ G(S,L2(Ω))
} (6)

The DLR approximate solution is sought inMS and satisfies the following variational principle:

DLR Variational Principle. At each t ∈ [0, T ], find uS(t) ∈MS such that: uS(0) = u0,S and

E [〈u̇S(·, t, ·) − L(uS(·, t, ·)), v〉] = 0, ∀v ∈ TuS(t)MS , t ∈ (0, T ] (7)

where TuS(t)MS is the tangent space toMS at uS(t).

The variational principle (7) enforces the approximate solution uS to satisfy the governing equation pro-
jected onto the tangent space to the approximation manifold along the solution trajectory. The initial datum
u0,S is a suitable S rank approximation of u0 by e.g. a truncated Karhunen-Loève expansion (best S rank
approximation in the L2(D) ⊗ L2(Ω) norm). In quantum mechanic this is known as Dirac-Frenkel time-
dependent variational principle (see e.g. [17]) and leads to the MCTDH method [4,7,13] for the approximation
of deterministic time-dependent Schrödinger equations.
There exist several possible parameterizations of a S rank random field. One option, which leads to the
so-called Dynamically Orthogonal (DO) method [31,32], consists in expanding the approximate solution over
a set of S L2(D)-orthonormal deterministic modes:

uS(x, ω) =

S∑
i=1

Yi(ω)Ui(x) = UY (8)

where:

• U ∈ St(S,H) is a row vector of L2−orthonormal deterministic functions,

• Y ∈ B(S,L2(Ω)) is a column vector of S random variables with full rank second moment matrix C =

E[YYT ].

One easily sees that the representation (8) is not unique. For any orthogonal matrix O ∈ O(S) ⊂ RS×S one
can always find a new couple of bases W = UO ∈ St(S,H) and Z = OTY ∈ B(S,L2(Ω)) which represents
the same S rank random field: uS = UY = WZ. The uniqueness of the decomposition (8), in terms of
U ∈ St(S,H) and Y ∈ B(S,L2(Ω)), is recovered by imposing the following constraint on the dynamics of
U [12]:

〈U̇i(t), Uj(t)〉 = 0 i, j = 1, ..., S (9)

This condition represents a quotientation of St(S,H) with respect to the group of rotations O(S) and leads
to the diffeomorphic identification ofMS with

(
St(S,H)/O(S)

)
×B(S,L2(Ω)). In particular (9) implies that

the tangent bundle to
(
St(S,H)/O(S)

)
is parametrized in terms of the tangent vectors of St(S,H) which are

orthogonal to the equivalent classes of the quotientification. This procedure is based on classical results of
fiber bundle theory. We refer interested readers to [1, 11,15] for further details.
By means of (9), the tangent space toMS at uS = UY is parametrized as:

TuS
MS =

{
δu =

S∑
i=1

(
δYiUi + YiδUi

)
∈ H ⊗ L2(Ω) : 〈Ui, δUj〉 = 0, ∀i, j = 1, ..., S

}
(10)
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Then (7) leads to the DO reduced system [31,32]: find uS(t) = U(t)Y(t), t ∈ (0, T ] such that
S∑
i=1

U̇iCij = P⊥U
(
E[L(uS)Yj ]

)
∀j = 1, ..., S

Ẏj = 〈L(uS), Uj〉 ∀j = 1, ..., S

(11)

where C = E[YYT ] ∈ RS×S and P⊥U is the projection operator from the space L2(D) to the orthog-
onal complement of the S dimensional subspace U = span{U1, . . . , US}, i.e. P⊥U(v) = v − PU(v) =

v −
S∑
i=1

〈v, Ui〉Ui, ∀v ∈ L2(D). The projector P⊥U(·) can actually be defined on the larger space H′ by

interpreting 〈·, ·〉 as a duality pairing. The initial condition is given by the truncated Karhunen-Loève expan-
sion (the best S rank approximation in L2-norm) and the DO approximate solution is determined by solving
(11). The peculiarity of the DO method is that both the spatial and stochastic bases are computed on the fly
and are free to evolve in time, thus adjusting at each time to the current structure of the random solution.

3 Symplectic Manifolds

Symplectic manifolds are the natural setting for Hamiltonians systems, due to the intrinsic symplectic structure
of the canonical phase-space coordinates. We review in this section the main definitions and results concerning
symplectic manifolds. For a comprehensive treatment see e.g. [20, 22].

Definition 3.1. A symplectic manifold is a pair (V, ϑ) consisting of a differential manifold V and a 2-form:

ϑu : TuV × TuV → R
(y, z) → ϑu(y, z)

for any u ∈ V , which is:

• closed, i.e dϑ = 0 where d is the exterior derivative.

• non-degenerate, i.e. for any u ∈ V and y ∈ TuV , ϑu(y, z) = 0 for all z ∈ TuV if and only if y = 0.

The form ϑ is called symplectic form.

If V is a vector space, the requirement dϑ = 0 is automatically satisfied since the ϑu is constant in u and
Definition 3.1 is simplified as follows:

Definition 3.2. Let V be a vector space and ϑ a bilinear map: ϑ : V × V → R such that:

• ϑ is not degenerate, i.e. ϑ(y, z) = 0 for all z ∈ V if and only if y = 0,

• ϑ is antisymmetric, i.e. ϑ(y, z) = −ϑ(z, y) for any y, z ∈ V .

The pair (V, ϑ) is called symplectic vector space.

Definition 3.3. Let (V, ϑ) be a symplectic vector space. A smooth submanifold W ⊂ V is said symplectic if
the restriction of ϑ to W is not-degenerate.

Definition 3.4. Let (V, ϑ) be a symplectic vector space and U a subspace of V . The symplectic complement
of U is defined as:

U⊥,sym =
{
z ∈ V such that ϑ(z, y) = 0, ∀y ∈ U

}
(12)
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Unlike orthogonal complements, U⊥,sym∩U is not necessary trivial. We start by recalling some properties
of finite dimensional symplectic manifolds [16]. Afterwards, we look at the infinite dimensional case [20,35].

Proposition 3.1. All finite dimension symplectic vector spaces are even dimensional.

This can be verified by observing that real skew-symplectic matrices of odd dimension must have a non
trivial kernel. Since a symplectic form makes the tangent spaces into symplectic vector spaces, Proposition 3.1
actually applies to all finite dimension symplectic manifolds. Without further specification, in the following
V2N will always denote a finite dimensional manifold of dimension 2N .

Theorem 3.1 (Darboux’ theorem). Let (V2N , ϑ) be a symplectic manifold. For any u ∈ V2N there exists a
neighborhood Bu ⊆ V2N of u and a local coordinate chart in which ϑ is constant.

Definition 3.5. Let (V2N , ϑ) be a symplectic vector space. A basis (e1, ..., eN , f1, ..., fN ) of V2N is said
symplectic if:

• ϑ(ei, fj) = δij = −ϑ(fj , ei), ∀i, j = 1, ..., N ,

• ϑ(ei, ej) = 0 = ϑ(fi, fj), ∀i, j = 1, ..., N .

Darboux’ theorem implies that, for any u in the symplectic manifold (V2N , ϑ) there is a neighborhood
Bu ⊆ V2N and a symplectic basis with respect to which the symplectic form is written as ϑu(w,v) = wTJ2Nv

for all w,v ∈ Bu (column vectors), where J2N ∈ R2N×2N is the Poisson matrix, i.e.

J2N =

(
0 IN
−IN 0

)
and IN is the identity matrix in RN×N . It is easy to verify that J2NJT2N = JT2NJ2N = I2N and J2NJ2N =

JT2NJT2N = −I2N . When V2N is a vector space, ϑu is constant in u and Bu corresponds to the whole space,
namely ϑ(w,v) = wTJ2Nv for all v,w ∈ V2N . If this symplectic basis coincides with the canonical basis of
R2N we call ϑ canonical symplectic form and we denote by (V2N ,J2N ) the corresponding symplectic manifold.
A prototypical example of symplectic vector space arises from the identification of the complex space CN with
the real space R2N . Let us write elements of CN as N-tuples of complex numbers û = (û1, ..., ûN ), for each
term ûi = uqi + iupi , the apex q and p denoting respectively the real and the complex components. Let CN be
equipped with the usual Hermitian inner product:

〈û, v̂〉h =

S∑
i=1

ûiv̂
∗
i =

S∑
i=1

(uqi v
q
i + upi v

p
i ) + i

S∑
i=1

(vqi u
p
i − u

q
i v
p
i ),

for any û, v̂ ∈ CN . The realification, namely the identification of CN with R2N , consists in associating to any
û ∈ CN the elements u = (uq,up) ∈ R2N , where uq = (uq1, ..., u

q
N ) and up = (up1, ..., u

p
N ). In the following we

always use the overhat to distinguish complex elements (û) and corresponding real representations (u). One
can easily see that the canonical symplectic form of R2N coincides with the imaginary part of the Hermitian
product, with changed sign: uTJ2Nv = − Im〈û, v̂〉h, for all û, v̂ ∈ CN .
We call symplectic matrix any A ∈ R2N×2N such that ATJ2NA = J2N . The collection of all symplectic matrices
of R2N×2N forms a group, called symplectic group.

Definition 3.6. The symplectic group, denoted by Sp(2N,R2N ), is the subset of R2N×2N defined as:

Sp(2N,R2N ) := {A ∈ R2N×2N : ATJ2NA = J2N}.
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The unitary group is the subgroup of Sp(2N,R2N ) of all unitary matrices

Definition 3.7. The unitary group, denoted by U (N,R2N ), is the subset of R2N×2N defined as:

U (N,R2N ) := {A ∈ Sp(2N,R2N ) : ATA = AAT = I2N}.

In other words, U (N,R2N ) = Sp(2N,R2N ) ∩ O(2N,R2N ), where O(2N,R2N ) denotes the group of
orthogonal matrices in R2N×2N . Definitions 3.6 and 3.7 can be generalized to rectangular matrices A ∈
R2N×2S for any 0 < S < N :

Definition 3.8. We denote by Sp(2S,R2N ) the sub-manifold of R2N×2S defined as:

Sp(2S,R2N ) := {A ∈ R2N×2S : ATJ2NA = J2S}

and by U (S,R2N ), the submanifold of R2N×2S defined as:

U (S,R2N ) := {A ∈ Sp(2S,R2N ) : ATA = I2S}.

We call symplectic (respectively unitary) matrix any A ∈ Sp(2S,R2N ) (respectively A ∈ U (S,R2N )).

Definition 3.9. A linear map φ : R2S → R2N defined as:

φ : R2S → R2N

x 7→ φ(x) := Ax
(13)

is said symplectic if it preserves the canonical form, i.e

xTJ2Sx = φ(x)TJ2Nφ(x) = (Ax)TJ2NAx ∀x ∈ R2S

.

Observe that φ in (13) is symplectic if and only if A ∈ Sp(2S,R2N ).
In the same way as R2N admits a (canonical) symplectic structure associated to the Euclidean product, all
inner product vector spaces can be equipped with the symplectic form associated to their inner product, called
again canonical form. In particular, consider the (possibly infinite dimensional) Hilbert space H and the
product space H = [H]2, for which we use the notation u = (uq, up) to denote the first and second component
of any u ∈ H. Let H be equipped with the usual inner product: 〈u,v〉H := 〈uq, vq〉H + 〈up, vp〉H, for any
u,v in H; we denote by J2 : H→H the following linear operator:

J2 : H →H

u 7→ J2(u) :=

[
0 Id
−Id 0

] [
uq

up

]
=

[
up

−uq

]
where Id is the identity operator in H. Then, the canonical form of H is defined as

ϑ : H×H → R
(u,v) 7→ 〈u,J2(v)〉H = 〈uq, vp〉H − 〈up, vq〉H

The form ϑ is antisymmetric, being J2 ◦J2(u) = −u, for all u ∈H, and non degenerate since ϑ(J2(u),u) =

〈J2(u),J2(u)〉H = ‖u‖2H which is non zero for any 0 6= u ∈H. Hence (H, ϑ) is a symplectic vector space.
We generally write (V,J2) to refer to a symplectic manifold V ⊂H, when equipped with the canonical form
of H.
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Proposition 3.2. Let HC be a complex Hilbert space and H ×H its realification. The Hermitian product of
HC, defined as:

〈û, v̂〉HC := 〈uq, vq〉H + 〈up, vp〉H + i(〈up, vq〉H − 〈vp, uq〉H) ∀û = uq + iup, v̂ = vq + ivp ∈ HC,

satisfies:
〈(uq, up),J2(vq, vp)〉H×H = − Im(〈û, v̂〉HC)

for any u = (uq, up),v = (vq, vp) ∈ H ×H and û = uq + iup, v̂ = vq + ivp ∈ HC.

This construction applies straightforwardly to H = [L2(D)]2 equipped with the [L2(D)]2 inner product and
to H = [H1(D)]2 equipped either with the L2(D)×L2(D) or the [H1(D)]2 inner product. The identification
in complex setting leads to HC = L2(D,C) and HC = H1(D,C) for H respectively equal to H = [L2(D)]2

or H = [H1(D)]2.
In view of the Symplectic Dynamical Low Rank approximation of wave equations we need to recast problem
(4) into a Hamiltonian system, in terms of the phase-space coordinates (u, u̇) ∈ H1(D)×L2(D). For this aim,
we are interested to equip H = H1(D)× L2(D) with the symplectic form associated to the L2(D)× L2(D)

inner product and verify that what we obtain is still a symplectic space. The issue is due to the fact that now
H is a product of two different Hilbert spaces. With a little abuse of notation, we use the same symbol J2

to denote the restriction of J2 to H1(D)× L2(D) (respectively L2(D)×H1(D)), i.e. the linear operator:

J2 : H1(D)× L2(D) → L2(D)×H1(D)

u = (uq, up)T 7→ J2(u) :=

[
0 Id
−Id 0

] [
uq

up

]
=

[
up

−uq

]
(14)

where Id is the identity operator defined in L2(D) or restricted to H1(D). Then the bilinear form associated
to J2 is clearly antisymmetric and non degenerate in H1(D)×L2(D), thanks to the fact that H1(D) is dense
in L2(D). This allows us to conclude that H1(D) × L2(D) is a symplectic (pre-Hilbert) vector space when
endowed with the canonical form associated to the [L2(D)]2 inner product. On the other hand, in this case we
loose the identification in complex setting, namely Proposition 3.2 does not apply to H1(D) × L2(D) since
we are dealing with the cartesian product of two different spaces. We denote by ϑD the symplectic form of
H1(D)× L2(D) associated to the L2(D)× L2(D) inner product, i.e:

ϑD(u,v) = 〈u,J2v〉[L2(D)]2 , u,v ∈ H1(D)× L2(D). (15)

Hereafter, when confusion does not arise, we omit the subscript and we write < ·, · > to indicate the L2(D)×
L2(D)-product in H1(D) × L2(D) (or any other Sobolev space H ⊂ [L2(D)]2). The same considerations
apply to

(
H1(D)× L2(D)

)
⊗ L2(Ω) and [H1(D)]S × [L2(D)]S , for any S > 0.

In analogy with (2), one can define the Stiefel manifold Sp(2S,H1(D)×L2(D)) of all possible 2S dimensional
symplectic bases in H1(D)× L2(D) with respect to the symplectic form ϑD .

Definition 3.10. We denote with Sp(2S,H1(D)×L2(D)) the Stiefel manifold of all S dimensional symplectic
bases of (H1(D)× L2(D), ϑD), i.e.:

Sp(2S,H1(D)× L2(D)) :=
{
U = (U1, ...,U2S) ∈ [H1(D)× L2(D)]2S , such that

ϑD(Ui,Uj) = (J2S)ij , ∀i, j = 1, ..., 2S
}
.

(16)

We denote by Usym ⊂ H1(D)×L2(D) the subspace spanned by U, for any U ∈ Sp(2S,H1(D)×L2(D)),
and we call U a symplectic basis of Usym. Note that the symplectic form ϑD , when restricted to Usym, can
be identified with the canonical form of RS , that is for any R, G ∈ RS and u = UR, v = UG ∈ Usym:
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ϑD(u,v) =
∑2S
i,j=1 Ri〈Ui,J2Uj〉Gj = RTJ2SG. This implies that ϑD is non degenerate in Usym and

Usym, is a symplectic submanifold of H1(D) × L2(D). We define in Sp(2S,H1(D) × L2(D)) the following
equivalence relation:

W ∼ U ⇐⇒ Wsym = Usym

meaning that two equivalent elements span the same symplectic subspace.

Lemma 3.1. Two symplectic bases W,U ∈ Sp(2S,H1(D)×L2(D)) are equivalent if and only if there exists
a symplectic matrix B ∈ Sp(2S,R2S) such that W = UB.

Proof. The sufficient condition is obvious: BTJ2SB = J2S implies 〈(W)i, (J2W)j〉L2(D) = (J2S)ij . On
the other hand, if U ∈ Sp(2S,H1(D) × L2(D)), then U1, ...,U2S are linearly independent. Hence, if
W,U ∈ Sp(2S,H1(D) × L2(D)) span the same subspace, there necessarily exists a (unique) full rank
matrix B ∈ R2S×2S such that W = UB. Then 〈(W)i, (J2W)j〉L2(D) = (J2S)ij implies that B belongs to
Sp(2S,R2S). �

4 Hamiltonian formulation of wave equations with random parameters

From a physics point of view, a Hamiltonian, denoted in the following by H , is a smooth function which
expresses the total energy of a dynamical system in terms of the position and the momentum of its particles.
In more abstract setting we can state the following [19]:

Definition 4.1. Let (V, ϑ) be a symplectic manifold. A vector field XH on V is called Hamiltonian if there is
a function H : V → R such that:

ϑu(XH(u),v) = dH(u) · v

where dH(u) ·v is the directional derivative of H along v. Hamilton’s equations are the evolution equations:

u̇ = XH(u) (17)

If (V2N , ϑ) is a symplectic vector space and (q,p) = (q1, ..., qN , p1, ..., pN ) denote the canonical coordi-
nates with respect to which ϑ has matrix J2N , the Hamiltonian equations become:

u̇ = J2N∇H(u).

Let φt denote the flow of the Hamiltonian XH , that is φt(u0) is the solution to (17) with initial condition
u0 ∈ V , we have that φt conserves the energy of H .

Proposition 4.1. Let φt be the flow of XH on the symplectic manifold (V, ϑ). Then H ◦ φt = H , where
defined.

Proof.
d
dt

(
H ◦ φt(u)

)
= dH(φt(u)) ·XH(φt(u))

= ϑφt(u)(XH(φt(u)), XH(φt(u))) = 0

�

The flow φt of a Hamiltonian vector field consists of symplectic transformations, namely φt (whenever it
is defined) preserves the symplectic form ϑ. Formally, for all u ∈ V and v, z ∈ TuV , we have:

ϑu(v, z) = ϑφt(u)(Du[φt](v), Du[φt](z)) (18)
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where Du[φt] is the differential of φt at u. It follows from Poincaré lemma [10, 20] that the flow φt of a
vector field X is symplectic if and only if it is locally Hamiltonian, that is there locally exists a Hamiltonian
function H such that ϑu(X(u),v) = dH(u) · v. The link between symplecticity and energy preservation
has been widely studied and exploited to derive numerical time discretization schemes that share the same
symplectic structure of the original system, in order to preserve the geometric properties. The same idea can
be used to formulate reduced order methods which preserve the symplectic structure underlying the original
full order Hamiltonian system, thus being energy conservative and preserving stability.
We start by looking for a suitable Hamiltonian formulation for wave equations with random parameters. As
shown in literature [23, 33], problem (4) admits a unique solution u ∈ L∞([0, T ], H1

0 (D) ⊗ L2(Ω)) with time
derivative u̇ ∈ L∞([0, T ], L2(D)⊗ L2(Ω)), provided that the random wave speed c is bounded and uniformly
coercive and the initial data (q0, p0) belong to

(
H1

0 (D) ⊗ L2(Ω)
)
×
(
L2(D) ⊗ L2(Ω)

)
. Let us introduce

the phase space variables (p, q) = (u, u̇), then problem (4) can be rewritten into a first order system in
H1(D)× L2(D) for almost all ω ∈ Ω:

q̇(x, t, ω) = p(x, t, ω) x ∈ D, t ∈ (0, T ], ω ∈ Ω,

ṗ(x, t, ω) = ∇ ·
(
c(x, ω)∇q(x, t, ω)

)
− f(q(x, t, ω), ω) x ∈ D, t ∈ (0, T ], ω ∈ Ω,

q(x, 0, ω) = q0(x, ω) x ∈ D, ω ∈ Ω,

p(x, 0, ω) = p0(x, ω) x ∈ D, ω ∈ Ω,

q(x, t, ω) = 0 x ∈ ∂D, t ∈ (0, T ], ω ∈ Ω,

(19)

analogously written in matrix form as:(
q̇

ṗ

)
= J2

(
−∇ ·

(
c∇ · q

)
+ f(q)

p

)
Problem (19) can be interpreted as a Hamiltonian system in the symplectic space (H1

0 (D) × L2(D), ϑD)

with symplectic form ϑD defined in (15). In this case, the Hamiltonian energy associated to (19) is defined
pointwise in ω as:

Hω(q, p) =
1

2

∫
D

(
|p|2 + c(ω)|∇q|2 + F (q)

)
, F ′(q) = f(q).

Thus, by denoting with ∇qHω , ∇pHω the functional derivatives of Hω with respect to q and p respectively,
i.e.:

〈∇qHω, δq〉 =
∫
D
c∇q∇δq +

∫
D
f(q)δq and 〈∇pHω, δp〉 =

∫
D
pδp.

=
∫
D

(
−∇ · (c∇ · q) + f(q)

)
δq,

for any δq ∈ H1
0 (D), δp ∈ L2(D), where the term

∫
D
−∇ · (c∇ · q)δq should be interpreted in distributional

sense, equation (4) is recast into the following canonical Hamiltonian system, written with respect to u = (q, p):{
u̇(x, t, ω) = J2∇Hω

(
u(x, t, ω), ω

)
,

u(x, 0, ω) = (q0(x, ω), p0(x, ω))T
(20)

for almost every x ∈ D and ω ∈ Ω. Observe that both the flow of the solutions and the Hamiltonian depend on
the random input, and that the conservation of energy applies point-wise in the parameter space, which means
that, for any realization ω, the flow φt of (20) with initial conditions evaluated in ω, conserves the Hamiltonian
evaluated in ω. This immediately implies that the expected value, and generally any finite moment of Hω , are
constant along the flow of the solutions.
Alternatively, in a setting more suited to our context, the conservation of energy can be derived directly in
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(
H1(D)⊗L2(Ω)

)
×
(
L2(D)⊗L2(Ω)

)
=
(
H1(D)×L2(D)

)
⊗L2(Ω) equipped with the following symplectic form:

ϑ(u,v) = E[〈u,J2v〉[L2(D)]2 ],

= E[〈uq, vp〉L2(D)]− E[〈up, vq〉L2(D)]
(21)

for any u = (uq, up), v = (vq, vp) ∈
(
H1(D) ⊗ L2(Ω)

)
×
(
L2(D) ⊗ L2(Ω)

)
, with uq, vq ∈ H1(D) ⊗ L2(Ω),

up, vp ∈ L2(D)⊗ L2(Ω). The pair (
(
H1(D)⊗ L2(Ω)

)
×
(
L2(D)⊗ L2(Ω)

)
) is the symplectic space that will

be used in Section 6 to derive the Symplectic Dynamical Low Rank method. In this setting the Hamiltonian
energy associated to (19) is defined as:

H(q, p) =
1

2
E
[ ∫

D

(
|p|2 + c(ω)|∇q|2 + F (q)

)]
, F ′(q) = f(q).

In particular, if XH(ω) denotes the Hamiltonian vector field associated to (20), for u sufficiently smooth, system
(20) can be rewritten as u̇ = XH(u) and the conservation of mean energy along the flow of the solutions can
be rederived in terms of the symplectic form (21) as:

d
dtH(u(t)) = 〈∇H(u(t)), u̇(t)〉

= 〈∇H(u(t)), XH(ω)(u(t))〉
= −ϑ

(
XH(ω)(u(t)), XH(ω)(u(t))

)
= 0

(22)

thanks to the antisymmetry of ϑ.

5 Symplectic Order Reduction

We recall here the symplectic order reduction for parametric Hamiltonian systems proposed in [27]. This
method is designed in analogy to the proper orthogonal decomposition where the standard inner product
is replaced by the symplectic form and leads to approximate solutions which belong to a low dimensional
symplectic space. This method has the desirable property of preserving the symplectic structure of the full
order system, which allows one to derive conservative schemes.

Definition 5.1. Let U ∈ Sp(2S,H1(D) × L2(D)), the symplectic inverse of U, denoted by U+, is the 2S

vector function written as:
U+ := J T2 UJ2S ∈ Sp(2S,L2(D)×H1(D)). (23)

If we write U component-wise, with Ui = (Uqi , U
p
i )T ∈ H1(D)× L2(D):

U =

[
Uq1 ... UqS UqS+1 ... Uq2S
Up1 ... UpS UpS+1 ... Up2S

]
QI,S = Uq1 , ..., U

q
S , QII,S = UqS+1, ..., U

q
2S ,

=

[
QI,S QII,S

PI,S PII,S

]
, PI,S = Up1 , ..., U

p
S , PII,S = UpS+1, ..., U

p
2S ,

then U+ is explicitly given by:

U+ =

[
PII,S −PI,S

−QII,S QI,S

]
It is straightforward to verify that 〈Ui,U

+
j 〉 = δij , ∀i, j = 1, ..., 2S. The notion of symplectic inverse is used

to define the symplectic Galerkin projection. Precisely:

Definition 5.2. Let v = (vq, vp)T be a square integrable random field in
(
H1(D)×L2(D)

)
⊗L2(Ω) and U ∈

Sp(2S,H1(D)×L2(D)) a symplectic basis, spanning Usym. The symplectic projection of v into Usym⊗L2(Ω)
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is defined as:

PsymU [v] :=

2S∑
i=1

〈v,U+
i 〉Ui, (24)

where U+ ∈ Sp(2S,L2(D)×H1(D)) is the symplectic inverse of U, defined in (23). Namely,

PsymU [v] = U(x)Y(ω) (25)

where Y = Y1, ..., Y2S is a vector of 2S square integrable random variables defined by Yi = 〈v,U+
i 〉 for

any i = 1, ..., S. Moreover we say that v is in the subspace spanned by U if v = PsymU [v], or namely
if there exists a vector of (square integrable) random variables Y, such that v = UY. Observe that Y is
uniquely determined by U by means of symplectic projection as Yi = 〈v,U+

i 〉. On the contrary, we say that
v ∈

(
H1(D)×L2(D)

)
⊗L2(Ω) is in the symplectic orthogonal complement of U if PsymU [v] = 0. We denote

by Psym,⊥U [·] = I− PsymU [·] the projection onto the symplectic orthogonal complement of U.

The Symplectic Order Reduction method consists of two steps:

• an off-line stage for computing the basis functions U = (U1, . . . ,U2S). They can be extracted by
means of Principal Symplectic Decomposition (PSD) procedures from snapshots u(·, tj , ωk) collected at
different times and for different values of the parameters [27], or following a greedy-PSD approach as
described in [18].

• an on-line stage which consists in low-cost reduced-order simulations for computing the coefficients
Y = (Y1, . . . , Y2S) at each time and for different values of the parameters. The reduced order system is
obtained by preforming a symplectic Galerkin projection of the governing Hamiltonian equations in the
subspace spanned by U.

The use of the symplectic Galerkin projection aims at preserving the symplectic structure of the original
problem, in order to ensure the stability of the reduced order system [14]. More precisely, the approximate
solution uS = (qS , pS)T to problem (20), which is written as:

uS(x, t, ω) = U(x)Y(ω, t),

satisfies the following variational principle at each time and for any ω ∈ Ω:〈
u̇S − J2∇Hω(uS , ω),J T2 v

〉
= 0, ∀v ∈ Usym, (26)

where Usym is the subspace spanned by U ∈ Sp(2S,H1(D) × L2(D)). This can be written formally as a
symplectic projection of the governing equation (20) into Usym:

u̇S(t) = PsymU [J2∇Hω(uS(t), ω)], ∀t, ω ∈ (0, T ]× Ω

where the definition of PsymU [·] is properly extended to all v ∈
(
L2(D) ×H−1(D)

)
⊗ L2(Ω) as PsymU [v] =

2S∑
i=1

Ui〈v,U+
i 〉 and 〈·, ·〉 denoting the H1

0 -H−1 duality pair. Moreover, let us define the following composite

function:
H̃ω := Hω ◦ φU : [L2(Ω)]2S → L2(Ω)

Y → Hω(
2S∑
i=1

UiYi, ω).

13



Then, if we write the solution component-wise, the position and momentum are respectively approximated as:

q(x, t, ω) ≈ qS(x, t, ω) =

2S∑
i=1

Uqi (x)Yi(ω, t), p(x, t, ω) ≈ pS(x, t, ω) =

2S∑
i=1

Upi (x)Yi(ω, t),

where the stochastic coefficients Y = (Y1, ..., Y2S), which belong to [L2(Ω)]2S , satisfy the following system
of ordinary differential equations (ODEs):

Ẏ(ω) = 〈PsymU [J2∇Hω(uS , ω)],U+〉
= 〈J2∇Hω(uS , ω),U+〉
= 〈∇Hω(uS , ω),UJT

2S〉 = J2S∇YH̃ω(Y, ω)

(27)

with initial conditions Yi(0) = 〈(q0, p0)T ,U+
i 〉 for all i = 1, ..., 2S, obtained by performing a symplectic projection

of the initial datum (19) on U.

Remark 1. The reduced system (27) consists of Hamiltonian equations in the symplectic Hilbert space
[L2(Ω)]2S equipped with the canonical form: E[YTJ2SZ], ∀Y,Z ∈ [L2(Ω)]2S .

Lemma 5.1 ( from [27]). Let U belong to Sp(2S,H1(D) × L2(D)) and φU be the linear map associated to
U, defined as:

φU : [L2(Ω)]2S → [H1(D)× L2(D)]⊗ L2(Ω)

Y 7→ φU(Y) := UY.

Then φU is a symplectic linear map between
(
[L2(Ω)]2S ,J2S

)
and

(
[H1(D)× L2(D)]⊗ L2(Ω),J2

)
, i.e. φU

preserves the symplectic form:
E[YTJ2SZ] = E[〈UZ,J2UY〉]

for any Y,Z ∈ [L2(Ω)]2S . Moreover, the function H̃ω , defined in (27), is a first integral, pointwise in ω, of
Y(t). This means that the flow of (27) preserves the energy of H̃ω at each time and for each ω.

In conclusion, the original problem (19), set in (H1(D) × L2(D)) ⊗ L2(Ω), is reduced to a Hamiltonian
ODE system of dimension 2S, set in [L2(Ω)]2S , describing the evolution of the random coefficients Y1, ..., Y2S .

To verify that H̃ω is conserved by the solution of (27), note that d
dtH̃ω(Y(t)) =

2S∑
i=1

∇Yi(t)H̃ω(Y(t)) · Ẏi(t) =

(∇YH̃ω(Y(t)))TJ2S∇YH̃ω(Y(t)) = 0 a.s. in Ω. The energy of the approximate solution, that is H̃ω(Y(t)) =

Hω(UY(t)) = Hω(uS(t)), is not necessary equal to the exact one, namely the energy of the exact solution
Hω(u(t)), but the discrepancy between the exact and the approximate energy remains constant in time and
can be evaluated at initial time. The drawback of the Symplectic Reduced Order approach with a fixed basis
U, is that if the solution manifoldsM(t) = {u(·, t, ω), ω ∈ Ω} significantly change during the time evolution,
as it typically happens in wave propagation phenomena, the fixed reduced basis U = (U1, . . . ,U2S) has to
be sufficiently rich to be able to approximate such manifolds for all t ∈ [0, T ]. This leads to a fairly large
reduced model thus compromising its efficiency.

6 Symplectic Dynamical Low Rank approximation

In this paper we propose the Symplectic Dynamical Low Rank (Symplectic DO) approximation for wave
equations with random parameters which combines the Dynamically Orthogonal approach described in Section
2 with the Symplectic Order Reduction strategy summarized in Section 5. This method shares with the
symplectic order reduction the use of a symplectic deterministic basis, and, as the “classic” DO approximation,
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allows both the stochastic and the deterministic modes to evolve in time. This aims to both preserve the
Hamiltonian structure of the original problem and guarantee more flexibility to the approximation. The
approximate solution, indeed, preserves the (approximated) mean Hamiltonian energy and continuously adapts
in time to the structure of the solution. The reduced dynamical system consists of a set of equations for the
constrained dynamics of the deterministic modes in a submanifold of Sp(2S,H1(D)×L2(Ω)), coupled with a
reduced order Hamiltonian system for the evolution of the stochastic coefficients.

Definition 6.1. We denote U (S, [H1(D)]2) the submanifold of Sp(2S,H1(D) × L2(D)) consisting of all
L2-orthonormal symplectic bases in [H1(D)]2, i.e.:

U (S, [H1(D)]2) :=
{
U = (U1, ...,U2S) ∈ [H1(D)×H1(D)]2S such that

ϑD(Ui,Uj) = (J2S)ij and 〈Uj ,Ui〉L2(D) = δij , ∀i, j = 1, ..., 2S
}
,

with ϑD defined in (15).

The advantage in restricting Sp(2S,H1(D)×L2(D)) to U (S, [H1(D)]2) is the possibility to identify the
latter with the Stiefel manifold St(S,H1(D,C)) of all S-dimensional orthonormal complex bases in H1(D,C)

(while the same clearly does not applies to Sp(2S,H1(D)×L2(D))). We postpone this discussion to Section
6.1, and we go forward here with the construction of the approximation manifold.

Proposition 6.1. The following properties hold for any U ∈ U (S, [H1(D)]2):

a) let U ∈ Sp(2S,H1(D)× L2(D)), then U ∈ U (S, [H1(D)]2) if and only if:

U+ = J T2 UJ2S = J2UJT2S = U; (28)

b) U ∈ U (S, [H1(D)]2) if and only if:

U =

(
Q −P

P Q

)
(29)

with Q,P ∈ [H1(D)]S row vector functions such that:

〈Pi, Qj〉 = 〈Qi, Pj〉 and 〈Qi, Qj〉+ 〈Pi, Pj〉 = δji, (30)

for all i, j = 1, ..., S.

Proof. Here we use the notation� U,V� to denote the 2S×2S matrix with entries� U,V�ij= 〈Uj ,Vi〉,
for all U,V ∈ [H1(D)×H1(D)]2S (Analogous definition for U,V ∈ [H1(D)]S).

a) If (28) holds then � U,U �=� J T2 UJ2S ,U �=� U+,U �= I2S implies U ∈ U (S, [H1(D)]2).
Conversely, if U ∈ U (S, [H1(D)]2), then U is an orthonormal basis and PU[U+] = U. This implies
that U+ can be written as U+ = U + B with 〈Bi,Uj〉 = 0 for all i, j = 1, ..., 2S. By observing that
〈U+

j ,U
+
i 〉 = 〈(UJ2S)j , (UJ2S)i〉 = δij for all i, j = 1, ..., 2S, we necessarily have that B = 0 which

implies U+ = U.

b) If U ∈ U (S, [H1(D)]2) then � U,J2U�= J2S . Block-wise, this is written as:

U =

[
QI,S QII,S

PI,S PII,S

]
(31)
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with QI,S ,QII,S ,PI,S ,PII,S ∈ [H1(D)]S such that:

� PII,S ,QI,S � −� QII,S ,PI,S �= IS ,
� PI,S ,QI,S �=� QI,S ,PI,S � and � PII,S ,QII,S �=� QII,S ,PII,S �

(32)

From a) we have that U+ = U, i.e.:

U+ =

[
PII,S −PI,S

−QII,S QI,S

]
=

[
QI,S QII,S

PI,S PII,S

]
= U

which implies Q := QI,S = PII,S and P := PI,S = −QII,S . The proof is concluded by combining the
last relation with (32). The other implication is obvious.

�

From Proposition 6.1 it follows that the symplectic projection coincides with the standard projection:

Proposition 6.2. For any v = (vq, vp)T ∈
(
H1(D)×L2(D)

)
⊗L2(Ω) and U ∈ U (S, [H1(D)]2) it holds that:

PsymU [v] = PU[v] (33)

Additionally the following properties hold:

Proposition 6.3. Let v be a square integrable random field v = (vq, vp)T ∈ (H1(D)×L2(D))⊗L2(Ω). For
any U ∈ U (S, [H1(D)]2) we have that:

PsymU [v] = PU[v] = PJ2U[v] = PsymJ2U
[v]; (34)

where PU, PJ2U (respectively PsymU , PsymJ2U
) are the standard (respectively symplectic ) projections in the

subspace spanned by U and J2U respectively (which coincide in this case).

Proposition 6.4. Let v be a square integrable random field v = (vq, vp)T ∈ (H1(D)×L2(D))⊗L2(Ω). For
any U ∈ U (S, [H1(D)]2) we have that:

J2PsymU [v] = J2PU[v] = PU[J2v] = PsymU [J2v]. (35)

The same property is satisfied by the projector into the symplectic -orthogonal complement of U:

J2Psym,⊥U [v] = J2P⊥U[v] = P⊥U[J2v] = Psym,⊥U [J2v].

The Symplectic DO approximate solution of problem (19) is sought in the approximation manifold defined
as follows:

Definition 6.2. We call symplectic manifold of rank S, denoted byMsym
S , the collection of all random fields

uS = (qS , pS)T ∈ [H1(D)]2 ⊗ L2(Ω) that can be written as: uS = UY where

• U ∈ U (S, [H1(D)]2),

• Y = Y1, ..., Y2S is a 2S dimensional vector of square integrable random variables Yi ∈ L2(Ω), such that
rank(E[YYT ] + JT2SE[YYT ]J2S) = 2S.
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We call symplectic S rank random field any function uS ∈ Msym
S . This can be written component-wise as

follows:

qS(x, ω) =

S∑
i=1

Qi(x)Yi(ω)−
S∑
i=1

Pi(x)YS+i(ω), pS(x, ω) =

S∑
i=1

Pi(x)Yi(ω) +

S∑
i=1

Qi(x)YS+i(ω). (36)

In the following we denote by Bsym(2S,L2(Ω)) ⊂ [L2(Ω)]2S the set of all 2S-vectors Z = (Z1, ..., Z2S) ∈
[L2(Ω)]2S , that satisfy the full rank condition on E[ZZT] + JT2SE[ZZT]J2S . Observe that (29) implies that
the first S components of U ∈ U (S, [H1(D)]2) characterize the whole vectors U and U+, for all U ∈
U (S, [H1(D)]2) (which motivates the name of symplectic S rank random field instead of 2S). Hence, for (29)
to be verified, the same regularity has to be assumed for both the position and momentum components. This
means that, when we look for an approximate solution of problem (19) inMsym

S , we necessary have to assume
some extra-regularity on the approximate momentum. In other words, the orthonormality combined to the
symplectic condition forces to set the approximation problem in [H1(D)]2 ⊗ L2(Ω) while the more natural
setting would be (H1(D)× L2(D))⊗ L2(Ω).

Remark 2. The representation of uS ∈ Msym
S in terms of U ∈ U (S, [H1(D)]2) and Y ∈ Bsym(2S,L2(Ω))

(decomposition (36)) is not unique. Let uS = UY ∈Msym
S with U ∈ U (S, [H1(D)]2), Y ∈ Bsym(2S,L2(Ω)),

then for any B ∈ U (S,R2S) we have that W = UB ∈ U (S, [H1(D)]2), Z = (B+)TY = BTY ∈
Bsym(2S,L2(Ω)) and WZ = uS . Indeed:

• showing that W ∈ U (S, [H1(D)]2):

〈Wj , (J2W)i〉 = 〈(UB)j , (J2UB)i〉
= Bkj〈Uk, (J2U)l〉Bli

= BT
jk(J2S)klBli = (J2S)ij

〈Wj ,Wi〉 = 〈UlBli,UsBsj〉
= BT

il〈Ul,Us〉Bsj

= BT
ilδlsBsj = δij

;

Here the Einstein notation is used.

• showing that E[ZZT] + J2SE[ZZT]J2S is full rank:

E[ZZT] + J2SE[ZZT]J2S = BTCB + JT
2SBTCBJ2S

= BTCB + BTJT
2SCJ2SB

= BT
(
C + JT

2SCJ2S

)
B.

and B and (C + JT
2SCJ2S

)
are the both full rank.

A necessary condition for Z to belong to Bsym(2S,L2(Ω)) is that the second moments matrix E[ZZT ] has
rank at least equal to S. Indeed, since J2S is a full rank matrix, the rank of JT2SE[ZZT]J2S is equal to the
rank of E[ZZT]. Then the conclusion is drawn by recalling that the sum of ranks is greater or equal to the
rank of the sum (i.e. rank(A) + rank(B) ≥ rank(A + B), ∀A,B).

Remark 3. We recall that in the standard DO approximation of parabolic equations (Section 2) with rank
2S, one assumes that the second moments matrix C = E[YYT ] is full rank (rank(C) = 2S). Here we need
the weaker assumption rank(C + J2SCJ2S) = 2S. The motivation is related to the fact that we work in
the phase-space coordinates: we need to uniquely determine the couple (qS , pS) and not the position and
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the momentum separately. Namely asking Y1, ..., Y2S linearly independent is a too strong assumption in our
model, as emphasized by the following example:

q̈(x, t, ω) = ∆q(x, t, ω) x ∈ (0, 2π), t ∈ (0, T ], ω ∈ Ω

q(0, t, ω) = q(2π, t, ω) = 0 t ∈ (0, T ], ω ∈ Ω

q(x, 0, ω) = q0(x, ω) = Z1(ω) 1√
π

sin(x) x ∈ [0, 2π], ω ∈ Ω

q̇(x, 0, ω) = p0(x, ω) = 0 x ∈ [0, 2π], ω ∈ Ω

(37)

Here Z1 is a square integrable random variable. We start looking for a symplectic decomposition of the
initial data (q0, p0) in Msym

S . Problem (37) is linear with only one random variable that multiplies the
initial datum, which suggests to set S = 1. Hence we look for U = (U1,U2) ∈ U (1, [H1(D)]2) and
Y = (Y1, Y2)T ∈ Bsym(2, L2(Ω)) such that

∑2
i=1 UiYi = (Z1(ω) 1√

π
sin(x), 0)T (observe that, by working

with symplectic bases, we can not decrease further the number of modes). The solution can be obtained by
setting Y1 = Z1 and Y2 = 0. Then the deterministic basis U ∈ U (1, [H1(D)]2) is uniquely determined by:

U =
1√
π

(
sin(x) 0

0 sin(x)

)
. (38)

Conversely, we can not find a symplectic basis U ∈ U (1, [H1(D)]2), or more generally U ∈ Sp(2, H1(D)×

L2(D)), if we assume that E[YYT ] is full rank. Let us write U =

[
QI,1 QII,1
PI,1 PII,1

]
; if Y1, Y2 are linearly

independent, then PI,1(x)Y1(ω) + PII,1(x)Y2(ω) = p0(x, ω) = 0 implies PI,1 = PII,1 = 0 and hence
UTJ2U 6= J2. On the other hand we have seen that the symplectic decomposition of (q0, p0) in Msym

1 is
well defined when the assumption of linear independence of Y1, Y2 is relaxed to C + JT2 CJ2 full rank. This
consideration generally applies to the solution of (37) at any time. The solution, given by u1(t) = (q(t), q̇(t)) =

(Z1(ω) cos(t) 1√
π

sin(x),−Z1(ω) sin(t) 1√
π

sin(x)) ∈ Msym
1 , is characterized by a covariance matrix C(t) =

E[Y(t)YT(t)] with Y1(t) = Z1 cos(t) and Y2(t) = −Z1 sin(t) of defective rank while C(t)+JT2SC(t)J2S is full
rank at any time. (We will see in the following that for this particular case the symplectic DO approximation
degenerates to the Symplectic Proper Decomposition described in Section 5: the deterministic basis does
not evolve, the coefficients evolve according to (27) and the approximation (with S = 1) is exact).

We emphasize that the full rank condition for C+JT2SCJ2S guarantees the uniqueness of the representation
on U once Y is fixed. Namely, let uS be in Msym

S ; if uS = UY = WY with U,W ∈ U (S, [H1(D)]2) and
Y ∈ Bsym(2S,L2(Ω)), then necessarily U = W. Indeed:

0 = (U−W)Y ⇒ (U−W)C = 0

= J2(U−W)JT2SY ⇒ (U−W)JT2SCJ2S = 0
(39)

By summing the two equations on the right, we get (U −W)(C + JT2SCJ2S) = 0, which implies U =

W thanks to the full rank condition on C + JT2SCJ2S . The same result does not apply if we extend the
submanifold U (S, [H1(D)]2) to the whole Sp(2S,H1(D) × L2(D)). Consider for instance the random field
u1 = (q, p) = (Z(ω) 1

2
√
π

sin(x), Z(ω) 1√
π

sin(2x)) with x ∈ [0, 2π] and Z ∈ L2(Ω). This can be represented,
for instance, as:

U =
1√
π

(
1
2 sin(x) − sin(2x)

sin(2x) 0

)
Y =

(
Z

0

)
(40)

or equivalently as:

W =
1√
π

(
1
2 sin(x) 0

sin(2x) 2 sin(x)

)
Y =

(
Z

0

)
(41)

18



where U,W ∈ Sp(2, H1(D)×L2(D)) and Y ∈ Bsym(2, L2(Ω)). This implies that, if we replace U (1, [H1(D)]2)

with Sp(2, H1(D)×L2(D)) in Definition 6.2, what we get is not a manifold anymore. Indeed, to get a manifold
we need that the decomposition of uS ∈ MS , even though it is not unique in terms of U,Y, is uniquely
characterized when one of the two bases is fixed. This implies that a stronger condition on C should be
required when U (1, [H1(D)]2) is extended to Sp(2, H1(D)× L2(D)).

6.1 Parametrization of the tangent space by means of complex representation

In this section we discus how to equipMsym
S with a differential manifold structure and parametrize the tangent

space. This is achieved by identifying Msym
S , i.e. the manifold of all real valued symplectic random fields of

rank S, with the manifold of all complex valued functions of rank S. To do so, let us introduce the complex
variable v̂ = q + ip and its complex conjugate v̂∗ = q − ip. The Hamiltonian system (20), written in terms of
the new variables (v̂, v̂∗), becomes:

i ˙̂v = 2∂v̂∗H(v̂, v̂∗, ω)

i ˙̂v∗ = −2∂v̂H(v̂, v̂∗, ω)
(42)

Observe that the second equation can be obtained from the first one by complex conjugation, thus it is
redundant. The Hamiltonian function in (42) is now expressed with respect to the new complex variables v̂
and v̂∗ and satisfies the reality condition:

H(v̂, v̂∗, ω) =
(
H(v̂, v̂∗ω)

)∗
=: H∗(v̂∗, v̂, ω)

where with the symbol ∗ we always denote the complex conjugate. We emphasize that the solution of (42),
which is completely characterized by solving only one of the two equations in (42), is a complex valued
function v̂ : D̄ × [0, T ]×Ω→ C, whose real and imaginary parts correspond respectively to the position and
momentum in system (20). In what follows, complex functions will be written as v̂ = vq + ivp, according to
which the apex q and p will denote respectively the real and the imaginary part.

Definition 6.3. We call complex S rank random field any function ûS ∈ H1(D,C)⊗ L2(Ω,C) which can be
exactly expressed as:

ûS(x, ω) =

S∑
i=1

Ŷi(ω)Ûi(x) =

S∑
i=1

(
Y qi (ω) + iY pi (ω)

)
(Uqi (x) + iUpi (x)) (43)

with:

• Û = (Û1, ..., ÛS) ∈ St(S,H1(D,C)),

• Ŷ = Ŷ1, ..., ŶS ∈ B(S,L2(Ω,C)).

Definition 6.4. We define complex manifold of dimension S the collection of all complex S rank random fields:

MC
S =

{
ûS =

S∑
i=1

ÛiŶi | span(Û1, ..., ÛS) ∈ G(S,H1(D,C)), span(Ŷ1, ..., ŶS) ∈ G(S,L2(Ω,C))
}

=
{
ûS = ÛŶ, Û ∈ St(S,H1(D,C)), Ŷ = (Ŷ1, .., ŶS) ∈ B(S,L2(Ω,C))}

Observe thatMC
S is the complex version of the manifoldMS , introduced in Section 2 to describe the DO

approximation of real parabolic equations. Hence, MC
S , as well as MS , can be equipped with a differential

manifold structure by means of the same standard tools of differential geometry, recalled in Section 2. Complex
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manifolds of fixed rank have been already used in literature e.g. for the approximation of deterministic
Schrödinger equations, see [7, 13]. Let us define the following map:

π : (St(S,H1(D,C)),B(S,L2(Ω,C)) →MC
S

(Û, Ŷ) →
S∑
i=1

ÛiŶi = ûS

This map is surjective, i.e. MC
S is the image of (St(S,H1(D,C)),B(S,L2(Ω,C)) by π, but clearly non

injective. The triple
(
St(S,H1(D,C)) × B(S,L2(Ω,C)),MC

S , π
)

defines a fiber bundle with fibers given by
the group of the unitary matrices U (S,CS) = {Ŵ ∈ CS×S : Ŵ∗Ŵ = ŴŴ∗ = I} and MC

S is isomorphic
to the quotient space (St(S,H1(D,C)/U (S,CS)) × B(S,L2(Ω,C)). The uniqueness of the representation
of ûS ∈ MC

S in terms of bases (Û, Ŷ) ∈ (St(S,H1(D,C)),B(S,L2(Ω,C)) is recovered in terms of unique
decomposition in the tangent space, by imposing the following Gauge constraints [8, 21]:

〈δÛi, Ûj〉h = 〈δUqi , U
q
j 〉+ 〈δUpi , U

p
j 〉+ i(〈δUpi , U

q
j 〉 − 〈δU

q
i , U

p
j 〉) = 0, ∀i, j = 1, ..., S (44)

for any δÛ = (δÛ1, ..., δÛS) ∈ TûS
MC

S and Û = (Û1, ..., ÛS) ∈MC
S . This leads to the following parametriza-

tion of the tangent space toMC
S at ûS =

S∑
i=1

ÛiŶi:

TûS
MC

S =
{
δ̂v =

S∑
i=1

(
δÛiŶi + ÛiδŶi

)
with δŶi ∈ L2(Ω,C) and δÛi ∈ H1(D,C),

s.t. 〈δÛi, Ûj〉h = 0, ∀i, j = 1, ..., S
} (45)

Remark 4. TûS
MC

S is a complex linear space, hence δv̂ belongs to TûS
MC

S if and only if iδv̂ belongs to
TûS
MC

S .

The complex Hilbert space H1(D,C) ⊗ L2(Ω,C), equipped with the usual hermitian L2 product, can be
identified with the real space [H1(D,R)⊗L2(Ω,R)]2, equipped with the complex structure associated to J2.
Namely the following map is bijective

H1(D,C)⊗ L2(Ω,C) → [H1(D,R)⊗ L2(Ω,R)]2

û = uq + iup → (uq, up)T =: u

and for all û, v̂ ∈ H1(D,C)⊗ L2(Ω,C) we have:

E[〈û, v̂〉h] = E[〈u,v〉]− iE[〈u,J2v〉], (46)

where 〈·, ·〉 is the standard L2 product in the real space. Observe that the imaginary part of the Hermitian
product (46) coincides with the canonical symplectic form of [H1(D,R) ⊗ L2(Ω,R)]2 defined in (21) with
changed sign:

Im(E[〈û, v̂〉h]) = −ϑ(u,v) = −E[〈u,J2v〉] (47)

Similarly [L2(Ω,C)]S can be identified with [L2(Ω,R)]2S , i.e:

[L2(Ω,C)]S → [L2(Ω,R)]2S

Ẑ = (Zq1 + iZp1 , ..., Z
q
S + iZpS) → (Zq1 , ..., Z

q
S , Z

p
1 , ..., Z

p
S)T =: (Zq,Zp)T = Z

and
E[Ẑ∗Ŷ] = E[YTZ]− iE[YTJ2SZ]

= E[YqTZq] + E[YpTZp] + i(E[YpTZq]− E[YqTZp]).
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Let GL
(
[L2(Ω,C)]S , H1(D,C) ⊗ L2(Ω,C)

)
be the set of all bounded linear maps from [L2(Ω,C)]S to

H1(D,C) ⊗ L2(Ω,C). We denote by φ̂Â the map of GL
(
[L2(Ω,C)]S , H1(D,C) ⊗ L2(Ω,C)

)
which can

be represented as:
φ̂Â : [L2(Ω,C)]S → H1(D,C)⊗ L2(Ω,C)

Ẑ 7→ φ̂Â(Ẑ) = ÂẐ
(48)

for any (row) vector of deterministic complex functions Â ∈ [H1(D,C)]S . Let [L2(Ω,C)]S and H1(D,C) ⊗
L2(Ω,C) be identified with [L2(Ω,R)]2S and [H1(D,R)⊗ L2(Ω,R)]2 respectively, and let φ be the function
φ̂Â in real setting. Then, φ must satisfies:

φ : [L2(Ω,R)]2S → [H1(D,R)⊗ L2(Ω,R)]2

Z 7→ φ(Z) = u ⇐⇒ û = ÂẐ
(49)

where Z and u are the realification of Ẑ and φ̂(Ẑ) respectively. The map φ is linear and can be written in
terms of a matrix of functions A ∈ [H1(D,R)×H1(D,R)]2S such that φ(Z) = AZ ⇐⇒ û = ÂẐ. Precisely
for any Â = (Aq + iAp) ∈ [H1(D,C)]S , the map φ̂Â is identified in real setting with φA : [L2(Ω,R)]2S →
[H1(D,R)⊗ L2(Ω,R)]2 where A is given:

A :=

(
Aq −Ap

Ap Aq

)
(50)

The proof is an exercise of linear algebra [29, 30]. We say that A is the real matrix representation of Â

and write Â ∼ A. This motivates the real identification of row-vector complex functions which will be used
in the following. Observe that in this setting the complex conjugate simply corresponds to the transpose:
Â∗ ∼ AT and the hermitian product 〈Aqi , B

q
j 〉+ 〈A

p
i , B

p
j 〉+ i(〈Api , B

q
j 〉−〈A

q
i , B

p
j 〉) can be computed by matrix

multiplication as:

〈Âi, B̂j〉h ∼ 〈
(
Aqi −Api
Api Aqi

)(
Bqi Bpi
−Bpi Bqi

)
〉

=

(
〈Aqi , B

q
j 〉+ 〈Api , B

p
j 〉 〈Aqi , B

p
j 〉 − 〈A

p
i , B

q
j 〉

〈Api , B
q
j 〉 − 〈A

q
i , B

p
j 〉 〈Aqi , B

q
j 〉+ 〈Api , B

p
j 〉

)

where the last matrix is indeed the real matrix representation of 〈Âi, B̂j〉h. Moreover the real multiplication
by J2 corresponds to the complex multiplication with the imaginary unit i. Namely if A is the real matrix
representation of Â, then J2A is the real matrix representation of iÂ. The same procedure in finite dimension
leads to representing a complex matrix by a real matrix of double dimension, i.e. Â = Aq + iAp ∈ CS×S is
represented by A ∈ R2S×2S , written as in (50), with Aq and Ap real matrices in RS×S .

Lemma 6.1. The manifold MC
S of all S rank complex random fields is isomorphic to the manifold Msym

S in
Definition 6.2.

Proof. The proof is based on the real representation of complex valued functions introduced before. Let
Û = (Û1, ..., ÛS) ∈ St(S,H1(D,C)) and Uqi , Upi denote respectively the real and imaginary part of Ûi for
any i = 1, ..., S. The orthonormality condition 〈Ûi, Ûj〉h = δij is written component-wise as:

〈Uqi , U
q
j 〉+ 〈Upi , U

p
j 〉 = δij , and 〈Upi , U

q
j 〉 − 〈U

q
i , U

p
j 〉 = 0, ∀i, j = 1, ..., S. (51)
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Let U be the real matrix representation of Û as defined in (50). This is written as:

Û ∼ U =

(
Q −P

P Q

)
with Q = (Q1, ..., QS) : Qi = Ûqi ∈ H1(D,R), ∀i = 1, ..., S,

P = (P1, ..., PS) : Pi = Ûpi ∈ H1(D,R), ∀i = 1, ..., S.

Observe that condition (51) coincides with condition (30). Thus, from Proposition 6.1 (point b) we have that
Û ∈ St(S,H1(D,C)) if and only if U ∈ U (S, [H1(D,R)]2). It follows that any element Û ∈ St(S,H1(D,C))

can be uniquely identified with an element U ∈ U (S, [H1(D,R)]2).
Consider now Ẑ ∈ [L2(Ω,C)]S and its realification Z = (Zq,Zp)T ∈ [L2(Ω,R)]2S . The components
(Ẑ1, ..., ẐS) of Ẑ are linearly independent if and only if the following matrix

E[ẐẐ∗] = E[ZqZqT ] + E[ZpZpT ] + i(E[ZpZqT ]− E[ZqZpT ]) ∈ CS×S (52)

has full rank. Observe that the real matrix representation of E[ẐẐ∗] is given by:(
E[ZqZqT ] + E[ZpZpT ] E[ZqZpT ]− E[ZpZqT ]

E[ZpZqT ]− E[ZqZpT ] E[ZqZqT ] + E[ZpZpT ]

)
=
(
E[ZZT ] + JT2SE[ZZT ]J2S

)
∈ R2S×2S (53)

This implies that (Ẑ1, ..., ẐS) are linearly independent if and only if E[ZZT ] + E[J2SZZTJT2S ] is full rank.
Observe also that E[ZZT ] + E[J2SZZTJT2S ] is the real matrix representation of E[ẐẐ∗], hence the two iden-
tifications are consistent. It follows that B(S,L2(Ω,C)) can be uniquely identified with Bsym(2S,L2(Ω,R)).
Finally any ûS = ÛŶ ∈ MC

S , with Û ∈ St(S,H1(D,C)) and Ŷ ∈ B(S,L2(Ω,C)), can be uniquely repre-
sented in real setting as uS = UY ∈ Msym

S where U ∈ U (S, [H1(D,R)]2) and Y ∈ Bsym(2S,L2(Ω,R))

are the real representations of Û and Ŷ respectively. �

We now rewrite Lemma 6.1 in real setting to recover a unique representation of S-rank random fields
uS ∈Msym

S in terms of the bases in (U,Y) ∈ (U (S, [H1(D)]2),B(S,L2(Ω,C))).

Proposition 6.5. In real setting, the orthogonal condition (44) is reinterpreted as:

〈δUi,U
+
j 〉 = 〈δUi,Uj〉 = 0 ∀i, j = 1, ..., 2S (54)

We mention that condition (54) can be directly derived, without making use of the isomorphism withMC
S ,

by quotienting U (S, [H1(D)]2) by U (S,R2S). This is perfectly consistent with the construction discussed
before, being U (S,R2S) isomorphic to O(S,C). Condition (54) can be seen as a symplectic orthogonality
condition: we ask that δU belongs to the symplectic orthogonal complement to U at each time:

PsymU [δU] = PU[δU] = 0

Observe that condition (54) preserves the orthogonal-symplectic structure of the basis, namely if U(t) is
an integrable curve passing through U(0) ∈ U (S, [H1(D)]2), of a vector field which satisfies (54), then
U(t) ∈ U (S, [H1(D)]2) at any time, as the following proposition shows.

Proposition 6.6. Let U(t) be a smooth curve in [H1(D)]2S such that:

1. U(0) ∈ U (S, [H1(D)]2),

2. ϑD(U̇i(t),Uj(t)) = 0, ∀i, j = 1, ..., 2S and ∀t ∈ [0, T ],

3. U̇(t) = J2U̇(t)J2S , ∀t ∈ [0, T ],

then U(t) ∈ U (S, [H1(D)]2) for all t.
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Proof. We start by showing that the orthogonality is preserved. First of all we combine condition 2 and
condition 3 and we get:

0 = ϑD(U̇i(t),Uj(t)) = 〈U̇i(t),J2Uj(t)〉 = 〈J T2 U̇i(t),Uj(t)〉 = 〈(U̇(t)JT2S)i,Uj(t)〉

which implies 〈U̇j(t),Ui(t)〉 = 0 for all i, j = 1, ..., 2S and t ∈ [0, T ]. Then

d

dt
〈Uj(t),Ui(t)〉 = 〈U̇j(t),Ui(t)〉+ 〈Uj(t), U̇i(t)〉 = 0

implies that 〈Uj(t),Ui(t)〉 = 〈Uj(0),Ui(0)〉 = δij , ∀i, j = 1, ..., 2S and ∀t ∈ [0, T ].
Similarly for the symplecticity:

d
dt 〈J

T
2 Ui(t),Uj(t)〉 = 〈J T2 U̇i(t),Uj(t)〉+ 〈J T2 Ui(t), U̇j(t)〉

= 〈(U̇(t)J2S)i,Uj(t)〉+ 〈Ui(t),J2U̇j(t)〉
= 〈(U̇(t)J2S)i,Uj(t)〉+ ϑD(Ui(t), U̇j(t)) = 0

which implies 〈Ui(t),J2Uj(t)〉 = 〈Ui(0),J2Uj(0)〉 = (J2S)ij , ∀i, j = 1, ..., 2S and ∀t ∈ [0, T ]. �

The dynamic condition (54) induces a bijection between (U (S, [H1(D)]2)/U (S,R2S))×Bsym(2S,L2(Ω,R)))

and Msym
S which allows to equip Msym

S with a differential manifold structure. In particular, for any
uS ∈Msym

S , the tangent space toMsym
S at uS = UY is parametrized as follows:

Lemma 6.2. For any uS = UY ∈ Msym
S , the tangent space to Msym

S at uS is the subspace of [H1(D)]2 ⊗
L2(Ω) given by:

TuS
Msym

S =
{
δuS = (δU)Y + UδY ∈ [H1(D)]2 ⊗ L2(Ω) : δY ∈ [L2(Ω,R)]2S ,

δU ∈ Usym⊥ : J T2 (δU)J2S = δU
}

=
{
δuS =

2S∑
i=1

(δUiYi + UiδYi) : δYi ∈ L2(Ω,R) and δUi ∈ [H1(D)]2,

s.t. J T2 δUJ2S = δU, 〈δUi,Uj〉 = 0, ∀i, j = 1, ..., 2S
}

(55)

The following property holds for any uS = UY ∈Msym
S :

Proposition 6.7. v ∈ TuS
Msym

S if and only if J2v ∈ TuS
Msym

S

Proposition 6.7 follows directly from the diffeomorphism between MC
S and Msym

S , see Remark 4 for the
same result in complex setting. We emphasize that this property does not apply to arbitrary symplectic manifolds,
and in particular, does not hold when the space of symplectic deterministic bases is not restricted to U (S, [H1(D)]2).
Observe that Proposition 6.7 implies that the symplectic form defined in (21) is not degenerate inMsym

S . In-
deed for any v ∈ TuS

Msym
S such that v 6= 0, ϑ(J2v,v) = E[〈J2u,J2v〉] = ‖v‖2[L2(D)]2⊗L2(Ω) > 0.

Lemma 6.3. Let uS ∈ Msym
S be written as uS = UY. For any v = (δU)Y + UδY ∈ TuS

Msym
S , δU and

δY are uniquely characterized as:

δY = 〈v,U〉
δU = P⊥,symU

[
E[vYT ] + J2E[vYTJT2S ]

]
(C + J2SCJT2S)−1 (56)

Proof. Let ṽ ∈ [H1(D)]2 ⊗ L2(Ω) and v = (δU)Y + UδY be the projection of ṽ in the tangent space
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TuS
Msym

S , that is:
E[〈ṽ,w〉] = E[〈v,w〉] ∀w ∈ TuS

Msym
S (57)

According to (55) this can be written as:

E[〈ṽ,WY + UZ〉] = E[〈(δU)Y + UδY,WY + UZ〉] (58)

for any Z ∈ [L2(Ω,R)]2S and W ∈ Usym⊥ which satisfies J T2 WJ2S = W. We need to verify that δU and
δY are uniquely characterized only in terms of ṽ, U and Y.

• By testing against UZ (i.e. setting W = 0), we easily recover the characterization of δY:

E[〈ṽ,UZ〉] = E[〈UδY,UZ〉],
⇒ E[〈ṽ,U〉Z] = E[ZT δY] ∀Z ∈ [L2(Ω,R)]2S ,

(59)

which leads to:
δY = 〈PU[ṽ],U〉.

• We now want to test against WY for W arbitrary in Usym⊥ and satisfying J T2 WJ2S = W. The
last condition can be replaced by setting W = 1

2

(
J T2 VJ2S + V

)
with arbitrary V ∈ Usym⊥. Observe

indeed that, for any V ∈ Usym⊥, we have that PsymU (J T2 VJ2S) = J T2 P
sym
U (VJ2S) = 0 which implies

W ∈ Usym⊥. Thus we have:

E[〈ṽ,J T2 VJ2SY + VY〉] = E[〈(δU)Y,J T2 VJ2SY + VY〉] ∀V ∈ Usym⊥ (60)

The left hand side can be rewritten as

E[〈ṽ,J T2 VJ2SY + VY〉] = 〈E[J2ṽYTJT2S ],V〉+ 〈E[ṽYT ],V〉,

while for the right hand side we have:

E[〈(δU)Y,J T2 VJ2SY + VY〉] = E[〈(δU)Y,J T2 VJ2SY〉] + E[〈(δU)Y,VY〉]
= E[〈J2(δU)Y,VJ2SY〉] + E[〈(δU)Y,VY〉]
= E[〈(δU)J2SY,VJ2SY〉] + E[〈(δU)Y,VY〉]
= 〈δU,V〉J2SCJT2S + 〈δU,V〉C

(61)

where we used the fact that J T2 δUJ2S = δU. By combining the two parts we get:

〈E[J2ṽYTJT2S ],V〉+ 〈E[ṽYT ],V〉 = 〈δU,V〉J2SCJT2S + 〈δU,V〉C (62)

for any V ∈ Usym⊥. By using Preposition 6.4 we finally obtain:

δU(C + J2SCJT2S) = P⊥,symU

[
E[ṽYT ] + J2E[ṽYTJT2S ]

]
. (63)

Observe that δU is completely characterized, thanks to the full rank assumption on C + J2SCJT2S .

It is worth checking that the term δU thus obtained does indeed satisfy the condition J2(δU)JT2S = δU. We
observe that J2(δU)JT2S = δU applies if and only if

δU(C + J2SCJT2S)JT2S = J2(δU)JT2S(C + J2SCJT2S)JT2S = −J2(δU)(J2SCJT2S + C).
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Then, from (63) and Proposition 6.4 follows that:

δU(C + J2SCJT2S)JT2S = P⊥,symU

[
E[ṽYT ] + J2E[ṽYTJT2S ]

]
JT2S

= P⊥,symU

[
E[ṽYTJT2S ] + J T2 E[ṽYT ]

]
= J T2 P

⊥,sym
U

[
J2E[ṽYTJT2S ] + E[ṽYT ]

]
= J T2 δU(C + J2SCJT2S)

= −J2δU(C + J2SCJT2S)

which concludes the proof. �

6.2 DLR Variational Principle in complex and real setting

Our goal is to find a dynamical low rank approximation uS ∈Msym
S of problem (4), which is written as:

uS(x, t, ω) =

2S∑
i=1

Ui(x, t)Yi(t, ω) (64)

To do so we exploit the diffeomorphism betweenMsym
S andMC

S .
We start by considering problem (42). In complex setting, since this is a first order PDE we can apply the
DO approximation described in Section 2. The DO variational principle for problem (42) reads as follows:
Complex DLR Variational Principle. At each t ∈ (0, T ], find ûS(t) ∈MC

S such that:

E
[〈
i ˙̂uS − 2∂û∗SHω(ûS , û

∗
S , ·), v̂

〉
h

]
= 0, ∀v̂ ∈ TûS(t)MC

S . (65)

with initial condition û0,S given by a suitable S rank approximation of û0 by e.g. a truncated Karhunen-Loève
expansion.

Since TûS(t)MC
S is a complex linear space (which means that v̂ ∈ TûS(t)MC

S if and only if iv̂ ∈ TûS(t)MC
S),

we get the same conditions if we take only the real part or the imaginary part of (65). Following the discussion
of Section 6.1, and in particular by means of (47) and Lemma 6.1, we can recast problem (65) in the real
setting as follows:
Symplectic DLR Variational Principle. At each t ∈ (0, T ], find uS(t) ∈Msym

S such that:

E
[〈
J2u̇S +∇Hω(uS , ·),v

〉]
= 0, ∀v ∈ TuS(t)Msym

S , (66)

with initial conditions given by the symplectic projection of the initial data ontoMsym
S .

The term E
[〈
∇Hω(uS , ·),v

〉]
in (66) is interpreted as d

dt |t=0
E[Hω(γS(t))], i.e. the directional derivative

along a curve γS(t) ∈Msym
S with γS(0) = uS and γ̇S(0) = v.

Observe that the variational principle (66) corresponds to a symplectic projection of the governing equation
onto the (time-dependent) tangent space to the manifold along the trajectory of the approximate solution. We
call symplectic dynamical low rank (or symplectic DO) approximation of problem (19) the solution to (66).
This belongs toMsym

S at any t and is written as:

uS(x, t, ω) =

(
qS(x, t, ω)

pS(x, t, ω)

)
=

2S∑
i=1

Ui(x, t)Yi(ω, t) =


S∑
i=1

QiYi −
S∑
i=1

PiYS+i

S∑
i=1

PiYi +
S∑
i=1

QiYS+i

 , (67)
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with U(t) ∈ U (S, [H1(D)]2), Y(t) ∈ Bsym(2S,L2(Ω)). The peculiarity of the symplectic dynamical low rank
approximation is the conservation of energy:

Lemma 6.4. Assuming that problem (66) admits a smooth solution uS , for all t ∈ [0, T ], the expected value of
the Hamiltonian is conserved along the approximate solution.

Proof. Equation (66) can be rewritten as

ϑ(u̇S ,v) = −E
[〈
∇Hω(uS , ·),v

〉]
.

where ϑ is the symplectic form defined in (21). Then, taking v = u̇S we get:

0 = ϑ(u̇S , u̇S) = −E
[〈
∇Hω(uS , ·), u̇S

〉]
= − d

dt |t=0

E[Hω(uS(t))],

which implies E[Hω(uS(t))] = E[Hω(uS(0))] for all t ∈ [0, T ]. �

Similarly to the Symplectic Order reduction, the energy that is conserved by the approximate solution, i.e.
H(uS(t)) = E[Hω(uS(t))], is not necessary equal to the energy of the exact solution H(u(t)) = E[Hω(u(t))].
However, such discrepancy is constant in time and depends only the approximation of the initial data:

|E[Hω(u(t))−Hω(uS(t))]| = |E[Hω(u(0))]−Hω(uS(0))]|.

Moreover, thanks to the analogy with the complex DO, the Symplectic Dynamical Low-rank approximation
has the same approximation properties as the standard DO approach. In particular, if the differential operator
is linear and deterministic, i.e. ∇H = L with L deterministic, linear and self-adjoint, the following holds:

Proposition 6.8. The symplectic dynamical low-rank approximation of linear deterministic Hamiltonian sys-
tems with random initial condition coincides with the exact solution, provided that the initial condition belongs
toMsym

S .

More generally, the symplectic dynamical low-rank approximation of linear deterministic Hamiltonian
systems is optimal in L2-sense provided that there is no crossing between the omitted and not omitted
singular values of the exact solution. As discussed in [25], this condition is an intrinsic limitation of dynamical
low rank methods, and generally can not be avoided without data-driven adaptivity strategies or closure
models: when such crossings occur, the neglected modes, which become dominant in the exact solution, can
not be tracked by the reduced system, which evolves only the modes that were dominant at initial time.
By using the parametrization of the tangent space in (55) we finally derive the symplectic DO reduced system.
The variational problem (66) is rewritten in terms of dynamic equations for (Y,U) as follows:

Proposition 6.9. Let (U(t),Y(t)) ∈ U (S, [H1(D)]2)×Bsym(2S,L2(Ω)) be a solution of the following system:
Ẏ = 〈J2∇Hω(uS),U+〉 = J2S∇YH̃ω(Y) (68a)
U̇(C + JT2SCJ2S) = P⊥U

[
∇H(uS)YTJ2S + J2∇H(uS)YT

]
= P⊥U

[
E[∇Hω(uS)YTJ2S ] + E[J2∇Hω(uS)YT ]

] (68b)

with initial conditions given by the complex SVD. Then uS(t) = U(t)Y(t) ∈ Msym
S satisfies the DO varia-

tional principle (66) at any t ∈ [0, T ].

Proof. The equations in (68a)-(68b) can be simply obtained by replacing ṽ with J2∇H(uS) in the proof of
Lemma 6.3. �
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Observe that system (68a)-(68b) consists of 2S random ODEs coupled to 2S deterministic PDEs. However,
exploiting the unitary structure of U (29), we actually need to solve only S PDEs to completely characterize
the deterministic basis at each time. Indeed, the dynamic condition (54) preserves at continuous level this
unitary structure (29), provided that U ∈ U (S, [H1(D)]2) at initial time. This can be directly verified by
looking at the set of equations for U̇ (68b). First of all, let A = C + JT2SCJ2S or A =

(
C + JT2SCJ2S

)−1,
in both cases, it holds: J2SAJT2S = JT2SAJ2S = A. The analogous property is satisfied by the term on the
right hand side of (68b):

J2

(
P⊥U
[
E[∇Hω(uS)YTJ2S ] + E[J2∇Hω(uS)YT ]

])
JT2S

=
(
P⊥U
[
E[J2∇Hω(uS)YT ]− E[∇Hω(uS)YTJT2S ]

])
where we use Proposition 6.4 and the properties of the Poisson matrix. This implies that the same property is
necessarily satisfied by U̇, i.e. J T2 U̇J2S = J2U̇JT2S = U̇ and the structure (29) is preserved by the dynamic
system. On the other hand at discrete level the time discretization scheme has to be carefully chosen to
preserve the unitary structure of U.

6.3 Isolating the mean

In our context of partial differential equations with random parameters, since we are usually interested in
computing the statistics of the solution, it may be worth approximating separately the mean of the solution,
as proposed by [31] and adopted in [32], [25], [6] for the DO approximation of parabolic equations. For this
aim we re-define S rank random field as follows.

Definition 6.5. We call S rank random field (in the isolated mean format) any function that can be exactly
expressed as uS = ūS + UY, where:

• ūS = E[uS ] ∈ [H1(D)]2 ⊗ L2(D).

• U ∈ U (S, [H1(D)]2),

• Y = (Y1, ..., Y2S) ∈ Bsym(2S,L2(Ω)) such that E[Yi] = 0 for any i = 1, ..., S.

We define M̊sym
S ⊂ (H1(D)×L2(D))⊗L2

0(Ω) the manifold of all symplectic S rank random fields with zero
mean.

In this setting, the symplectic Low Rank approximation of problem (4) is sought in ([H1(D)]2⊗L2(D))×
M̊sym

S and satisfies:
Ẏ = J2S∇YH̃

◦
ω(Y)

˙̄uS = E[J2∇Hω(uS)]

U̇(C + JT2SCJ2S) = P⊥U
[
E[∇H◦ω(uS)YTJ2S ] + E[J2∇H◦ω(uS)YT ]

] (69)

where H◦ω(·) = Hω(·)− E[Hω] and H̃◦ω = H̃ω ◦U.
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7 Numerical tests

7.1 Linear Deterministic Hamiltonian: validation test 1

For the validation of the Symplectic DO method we consider the following straightforward problem in the one
dimensional domain D = (0, 2π):

q̈(x, t, ω) = ∆q(x, t, ω) x ∈ (0, 2π), ω ∈ Ω, t ∈ (0, T ]

q(0, t, ω) = q(2π, t, ω) = 0 ω ∈ Ω, t ∈ (0, T ]

q(x, 0, ω) = Z(ω) 1√
π

sin(x) x ∈ (0, 2π), ω ∈ Ω

q̇(x, 0, ω) = 0 x ∈ (0, 2π), ω ∈ Ω

(70)

where Z is a uniformly distributed random variable in [−1, 1]. The analytical solution, given by:

q(x, t, ω) = Z(ω) cos(t)
1√
π

sin(x), p(x, t, ω) = −Z(ω) sin(t)
1√
π

sin(x)

is clearly a 1−rank symplectic function, namely u = (q, p) belongs toMsym
1 and can be written as u = UY

with:
U =

1√
π

[
sin(x) 0

0 sin(x)

]
∈ U(1, [H1

0 (D)]2), Y =

[
Z(ω) cos(t)

−Z(ω) sin(t)

]
∈ Bsym(2, L2(Ω)).

In particular, this means that the rank of the exact solution, which is equal to 1 at t = 0, remains constant in
time. The same generally applies to any solution of linear deterministic Hamiltonian systems with finite rank
initial condition. We start by rewriting problem (70) in Hamiltonian form:

u̇(x, t, ω) = J2Lu(x, t, ω)

u(x, 0, ω) = (Z(ω) 1√
π

sin(x), 0)

u1(0, t, ω) = u1(2π, t, ω) = 0

with L =

[
−∆ 0

0 I

]
. (71)

Then by following (68a)-(68b), one can easily derive the reduced Symplectic DO system, which is given by:{
Ẏ(t, ω) =< J2LU(·, t),U(·, t) > Y(t, ω) ω ∈ Ω, t ∈ (0, T ]

U̇(t)(C(t) + JT2 C(t)J2) = P⊥U(t)

[
J2LU(t)C(t) + LU(t)C(t)J2

]
x ∈ (0, 2π), t ∈ (0, T ]

(72)

with initial conditions:

U(0) =

[
Q(0) −P (0)

P (0) Q(0)

]
=

1√
π

[
sin(x) 0

0 sin(x)

]
, Y(0) =

[
Z(ω)

0

]
(73)

and completed with homogeneous Dirichlet boundary conditions: Q(0, t) = Q(2π, t) = P (0, t) = P (2π, t) =

0 for all t ∈ [0, T ]. After observing that U(0) is an eigenfunction of L with eigenvalue equal to 1, i.e.
LU(0) = U(0), we claim that the Symplectic DO system (72) recovers the exact solution of problem (70) and
keeps the deterministic modes constant in time. Namely we want to show that the exact solution, written
as u(t) = U(t)Y(t) with U(t) = U(0) and Y(t) = (Z(ω) cos(t),−Z(ω) sin(t))T , satisfies (72). To verify
this, we start by assuming that C + JT2 CJ2 has full rank, with C denoting the moments matrix, i.e. E[YYT ].
Under this assumption, one can easily see that equations (72) are automatically satisfied by U(t) = U(0),
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Figure 1: Left: the exact solution (solid line) and the symplectic DO approximate solution with S = 1 (dotted line) for
Z = 0.4058 at t = 0 and t = 1: the two solutions coincide. Right: the deterministic modes of the symplectic DO
approximate solution with S = 1 at t = 0 and t = 1: the modes are constant in time. Discretization parameters:
number of Gauss-Legendre collocation points Ny = 7, spatial discretization h = 0.01, time-step ∆t = 0.01.

by observing that
0 = U̇(C + JT2 CJ2) = P⊥U

[
J2UC−UCJT2

]
= P⊥U

[
U
]
(J2C−CJT2 )

= 0

since P⊥U
[
U
]

is clearly equal to zero. Thus, the Symplectic DO system, which is reduced to the Hamiltonian
system for the evolution of the coefficients Y, degenerates to the proper symplectic decomposition proposed
in [27]. Specifically we have Ẏ = J2Y with initial condition Y(0), which admits a unique solution given by
Y(t) = (Z(ω) cos(t),−Z(ω) sin(t))T . We finally verify that the assumption on the rank of C + JT2 CJ2 is

actually fulfilled, by observing that C + JT2 CJ2 =

(
E[Z2] 0

0 E[Z2]

)
at any time. This allows us to conclude

that the Symplectic DO method recovers the exact solution by keeping the deterministic basis constant in
time. The numerical results perfectly agree with the previous analysis, with the only care in choosing a
symplectic time discretization scheme, see Figure 1.

7.2 Linear Deterministic Hamiltonian: validation test 2

Next, we consider again a linear wave equation but with a more general initial condition:
q̈(x, t, ω) = c2∆q(x, t, ω) x ∈ (0, 1), ω ∈ Ω, t ∈ (0, T ]

q(0, t, ω) = q(1, t, ω) = 0 ω ∈ Ω, t ∈ (0, T ]

q(x, 0, ω) = Z(ω)h(10× |x− 0.5|) x ∈ (0, 1), ω ∈ Ω

q̇(x, 0, ω) = 0 x ∈ (0, 1), ω ∈ Ω

(74)

with c2 = 0.1 and:

h(s) =


1− 1.5s2 + 0.75s3 0 ≥ s ≤ 1

0.25(2− s)3 1 < s ≤ 2

0 s > 2

(75)
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Figure 2: The solution for two different realizations of Z ,i.e. Z = 0.906 and Z = 0.538, at t = 0 on the left and t = 0.8
on the right. The symplectic DO solution coincides with the reference solution computed with the Stochastic
collocation method. Discretization parameters: number of Gauss-Legendre collocation points Ny = 5, spatial
discretization h = 0.01, time-step ∆t = 0.01.

Since the Hamiltonian is linear and deterministic, the exact solution, which at time t = 0 is a symplectic 1-
rank function, has rank which is constant in time and can be written as u(x, t, ω) = Z(ω)(q(x, t), p(x, t)).
By observing that J2Lu and Lu belong to the tangent space Tu(t)Msym

1 at any time, we claim that the
Symplectic DO method recovers again the exact solution. In particular, the Symplectic DO approximate
solution, which is initialized as:

U0 =

[
h(10×|x−0.5|)
‖h(10×|x−0.5|)‖ 0

0 h(10×|x−0.5|)
‖h(10×|x−0.5|)‖

]
Y0 =

[
‖h(10× |x− 0.5|)‖Z

0

]
,

is expected to evolve as (U(t), Y (t) = ZX(t)), where X(t) is a rescaling factor, and satisfies U(t)Y(t) = u

at any time. The numerical results validate the exactness of the Symplectic DO method for the problem under
consideration, up to the numerical discretization error in time and space. The validation is done by comparing
the Symplectic DO approximate solution to the reference solution computed with the Stochastic Collocation
method with Gauss-Legendre points ( [3]). Figure 2 shows the solution for two different realizations of Z and
at two different times t = 0 and t = 0.6: we see that the DO solution and the reference solution coincide.
Contrary to the previous example (in which the deterministic basis remains fixed in time), Figure 3 shows
that in this case, the deterministic modes evolve in time by following the wave propagation. In particular, we
observe that the mode P1, initialized to zero, will be automatically activated by the method, which means
that the approximation will not be restricted to the diagonal structure of U0, used for the initialization. This
shows the potential of the Symplectic DO method with respect to a reduced order method with fixed (in time)
bases.

7.3 Wave equation with random wave speed

We now consider a linear wave equation with random speed and random initial data, in the 2-dimensional
physical domain D = (0, 1)2, with boundary ∂D = Γ̄N ∪ Γ̄D , Γ̄N = {(x, y) ∈ R2, x ∈ (0, 1), y = 1},
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Figure 3: The deterministic modes Q (left) and P (right) of the symplectic DO approximate solution at time t = 0 and
t = 0.8. We observe that both the modes evolve in time by following the variability spread of the solutions.
Discretization parameters: number of Gauss-Legendre collocation points Ny = 5, spatial discretization h =
0.01, timestep ∆t = 0.01.

ΓD = ∂D\ΓN . The problem reads as follows:

q̈(x, t, ω) = c2(ω)∆q(x, t, ω) x ∈ (0, 1)2, t ∈ (0, T ], ω ∈ Ω

q(x, t, ω) = 0 x ∈ ΓD, t ∈ (0, T ], ω ∈ Ω

∂nq(x, t, ω) = 0 x ∈ ΓN , t ∈ (0, T ], ω ∈ Ω

q(x, 0, ω) = α(ω)q0(x) x ∈ (0, 1)2, ω ∈ Ω

q̇(x, 0, ω) = 0 x ∈ (0, 1)2, ω ∈ Ω

(76)

with:

q0(x) =

e
−‖x−0.5‖2

2(0.1)2 ‖x− 0.5‖2 < 0.8

0 ‖x− 0.5‖2 ≥ 0.8
(77)

Here the randomness arises form both the diffusion coefficient and the initial data. We assume that the
uncertainty in the initial condition is independent from the randomness of the wave speed. The stochastic
space is parametrized in terms of 2 independent random variables Z1, Z2, affecting respectively the initial
condition q(0) and the diffusion coefficient. Specifically we assume α = (Z1+0.1)2 and c2 = 0.1+0.05Z2 with
Z1, Z2 linearly independent and uniformly distributed in [−1, 1]. The goal here is to test the symplectic DO
method on a problem in which the probability distribution (and consequently the rank) of the exact solution
changes over time. We start by rewriting problem (76) in Hamiltonian form:{

u̇(x, t, ω) = J2L(ω)u(x, t, ω)

u(x, 0, ω) =
(
(Z1(ω) + 0.1)2q0(x), 0

) with L =

[
−c2(ω)∆ 0

0 I

]
, (78)

Observe that the Hamiltonian explicitly depends on the random variable c2:

Hω(q, p, ω) =
1

2

∫
D

(|p|2 − c(ω)2|∇q|2).
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We look for an approximate solution uS ∈Msym
S written as:

uS(x, t, ω) =

(
qS(x, t, ω)

pS(x, t, ω)

)
=

2S∑
i=1

Ui(x, t)Yi(ω, t) =


2S∑
i=1

Qi(x, t)Yi(t, ω)−
2S∑
i=1

Pi(x, t)Yi(t, ω)

2S∑
i=1

Pi(x, t)Yi(t, ω) +
2S∑
i=1

Qi(x, t)Yi(t, ω)

 , (79)

which satisfies {
Ẏ =< J2LU,U > Y (80a)
U̇(C + JT2SCJ2S) = P⊥U

[
J2E[LUYYT ]− E[LUYYT ]JT2S

]
(80b)

at any time and for some S ≥ 1. Despite the initial condition is a 1-rank function, the rank of the exact
solution is expected to increase in time. Indeed, even if the governing equation is linear, the parameters-to-
solution maps is non-linear, due the randomness which affects the differential operator. Thus it is reasonable
to expect that the Symplectic DO approximation needs S > 1 modes to achieve good levels of accuracy.
We look for a Symplectic DO approximate solution inMsym

S for S > 1, and for the initialization of the modes
we adopt the same strategy used in [24,25]; namely the deterministic modes are initialized randomly and the
redundant stochastic coefficients are set to zero. Precisely, after setting Q̃1 = q0 and Ỹ1 = (Z1 + 0.1)2, we
initialize Q̃2, ..., Q̃S randomly with associated stochastic coefficients Ỹ2, ..., ỸS equal to zero. Then, in order
to get a symplectic orthogonal basis, we factorize Q̃ = (Q̃1, ..., Q̃S), by using the (real) QR factorization, in
Q̃ = QR and we initialize:

U =

[
Q 0

0 Q

]
, Yi =

S∑
j=1

Rij Ỹj and ỸS+i = 0, ∀i = 1, ..., S.

Roughly speaking, we use a number of modes larger then what needed to approximate the initial data (although
the approximate solution thus constructed has deficient rank), but we evolve in time only the “active” modes
(possibly after a suitable rotation of the basis), i.e. those corresponding to non vanishing singular values. The
problem of dealing with approximate solutions with deficient rank is however an issue which generally affects
the dynamically low rank approximation with fixed rank, at initial and successive times. To deal with it, we
implemented two alternative strategies: the first one simply consists in multiplying both sides of (80b) by the
pseudo inverse of (C + JT2SCJ2S); the second is based on the complex diagonalization of (C + JT2SCJ2S).
Detailing more the second strategy, let C̃ denotes the sum (C + JT2SCJ2S). Observe that C̃ satisfies

C̃ = JT2SC̃J2S , so it can be written as: C̃ =

[
C̃1 −C̃2

C̃2 C̃1

]
, with C̃1, C̃2 ∈ RS×S . This means that C̃ can be

identified by the complex hermitian matrix Ĉ = C̃1 + iC̃2 ∈ CS×S . Let D̂, V̂ be respectively the (complex)

eigenvalues and eigenvectors of Ĉ, and V the real matrix representation of V̂, i.e. V =

[
Re(V̂) −Im(V̂)

Im(V̂) Re(V̂)

]
.

We define Ũi = (ŨQi , Ũ
P
i )T =

∑2S
j=1 UjVji and we rewrite equations (80b) with respect to the rotated basis

Ũ (by neglecting the time variation on V). Observe that the complex diagonalization guarantees that the
rotated basis Ũ belongs to U (S, [H1(D)]2), since the product of symplectic orthogonal matrices is as well
symplectic orthogonal. Then we actually solve only the equations corresponding to not vanish eigenvalues,
i.e. the equations in ˙̃Ui for which Dii (which is real) is larger then a prescribed tolerance, for any i = 1, ..., S.
Denoting by r the rank of D, the remaining modes Ũr+1, ..., ŨS are kept constant to the previous time
iteration. Finally, by exploiting the unitary structure in (29), we reconstruct the complete basis as:

Ũ =

[
ŨQ −ŨP

ŨP ŨQ

]
(81)
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Figure 4: Evolution in time of the approximation error of the Symplectic DO method with different number of modes
(S=3,4,5,6). The error is computed in norm H1(D)⊗L2(Ω) with respect to a reference solution computed with
the Stochastic Collocation method. On the left the approximation error with the Strang splitting combined with
the symplectic Euler scheme. On the right the Lie-Trotter splitting combined with the implicit midpoint scheme
(right). Discretization parameters: stochastic tensor grid with Gauss-Legendre collocation points, number of
points: Ny = 49, spatial discretization: triangular mesh with edge h = 0.04, uniform time-step ∆t = 0.001.

and we get the updated modes in the original coordinates by multiplying by VT . Despite the two strategies
lead to comparable numerical results, the technique based on the complex diagonalization, has the compu-
tational advantage of solving the minimum number of equations required. In practice, in the results reported
here, the rank r is computed with respect to a threshold ε that is weighted by the largest eigenvalue of D at
each time, specifically we set the threshold equal to ε = 10−15 max

i=1,...,S
Dn
ii at any tn = n∆t.

7.4 Numerical Discretization

The implementation of all numerical tests in this Section has been developed within the open source Finite
Element library FEniCs [2]. The Finite Element method is used for the discretization in the physical space,
namely for solving (80b) and for computing the L2(D)-projection in (80a). Specifically we use P1 finite
elements on a uniform triangular grid of equal edges h = 0.04. For what concerns the discretization of the
random modes, we parametrize the stochastic space in terms of a uniformly distributed random vector η, in
accordance with the distribution of the input random data. Thus the stochastic space (Ω,A,P) is replaced
by (Λ,B(Λ), f(η)dη) where here Λ = [−1, 1]2, B(Λ) and f = 1

4 denote respectively the domain, the Borel
σ-algebra and the density function of η. Then, equations (80a) are solved with the Stochastic Collocation
method on Gauss-Legendre collocation points with tensorized Gaussian grid [3]. The corresponding quadrature
formula is used to compute the covariance matrix and any expected value in (80b). However, the use of sparse
stochastic collocation grids is recommended for problems in higher dimensional stochastic spaces. For details
see e.g. [3, 26,36].
The time discretization scheme has to be carefully chosen in order to preserve the symplectic structure of
the problem. For a complete review of symplectic schemes we refer to [10] and references therein. Moreover,
since numerical symplectic schemes do not necessarily preserve the orthogonal structure (29) at the discrete
level, especially for approximate solutions with deficient rank, special attention has been paid to preserve
both the orthogonal and symplectic structure of the deterministic modes. We propose two possible time
discretization strategies, described hereafter, both finalized to preserve the symplecticity of the flow and
guarantee the orthogonality of the deterministic basis. Based on the linear reversibility of wave equations,
which states that the time reversed solution of a wave equation is also solution to the same wave equation, we
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Figure 5: Reference solution (left) and Symplectic DO approximate solution with S = 5 (right) for α = 1 and c2 = 0.121
at t = 0, t = 1, t = 1.5, and t = 2. Discretization parameters: stochastic tensor grid with Gauss-Legendre
collocation points, number of points: Ny = 49, spatial discretization: P1 finite elements over a triangular mesh
with edge h = 0.04, uniform time-step ∆t = 0.001 (with implicit midpoint scheme).
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Figure 6: Reference solution (left) and Symplectic DO approximate solution with S = 5 (right) for α = 0.4 and c2 = 0.063
at t = 0, t = 1, t = 1.5, and t = 2. Discretization parameters: stochastic tensor grid with Gauss-Legendre
collocation points, number of points: Ny = 49, spatial discretization: triangular mesh with edge h = 0.04,
uniform time-step ∆t = 0.001 (with implicit midpoint scheme).
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look for a numerical scheme which, when applied to a reversible differential equation, produces a reversible
numerical flow, in order to get a consistent long-time behavior. Based on the link between reversibility and
symmetric schemes [10], we propose two possible symplectic time discretization methods based respectively
on a symmetric splitting and on the implicit midpoint rule (which is a symmetric scheme). The two procedures
can be summarized as follows:

• Strang splitting in U,Y combined with the symplectic Euler scheme. Starting from unS = UnYn at
t = tn:

– we compute Yn+1/2 ≈ Y(tn+ ∆t
2 ) by solving system (80a) discretized in time with the Symplectic

Euler scheme for half time step;
– we compute Un+1 ≈ U(tn + ∆t) by solving system (80b) with the Symplectic Euler scheme and

the updated coefficients Yn+1/2;
– we re-orthogonalize Un+1 by using the complex QR factorization;
– we compute Yn+1 ≈ Y(tn + ∆t) by solving system (80a) for half time step, with initial val-

ues Yn+1/2 and the updated deterministic basis. The equations are discretized by the adjoint
Symplectic Euler scheme with respect to the one used in the first half-step.

• Standard Lie-Trotter splitting in U,Y combined with the implicit midpoint scheme for the time dis-
cretization of both system (80a) and system (80b). We apply the complex diagonalization strategy to
(80b) and we denote by unS = UnYn = ŨnỸn the approximate solution at time tn = n∆t in standard
and rotated bases respectively. Equations (80a)-(80b) are discretized in time as follows:

1
∆t

Yn+1 − 1
2
< J2LU

n,Un > Yn+1 = 1
∆t

Yn + 1
2
< J2LU

n,Un > Yn

1
∆t

Ũn+1
i D̂n+1

ii − 1
2
P⊥

Un

[
J2E[LŨn+1

i Ỹn+1
i Ỹn+1

i ] + E[LŨn+1
i Ỹn+1

i Ỹn+1
S+i ]

]
= 1

∆t
Ũn

i D̂
n+1
ii

+ 1
2
P⊥

Un

[
J2E[LŨn

i Ỹ
n+1
i Ỹn+1

i ] + E[LŨn
i Ỹ

n+1
i Ỹn+1

S+i ]
]

+P⊥
Un

[
J2E[

2S∑
j=1
j 6=i

LŨn
j Ỹ

n+1
j Ỹn+1

i ] + E[
2S∑
k=1

k 6=S+i

S∑
j=1

LŨn
j Ỹ

n+1
j Ỹn+1

k (J2S)ki]
]

(82)
Observe that the time discretization in (82) allows decoupling the equations in U1, ...,US which are
then solved separately. Concerning the re-orthogonalization of the deterministic modes in the second
strategy, we recall that the midpoint rule has the convenient property of conserving quadratic invari-
ants and in particular the implicit midpoint scheme is a unitary integrator [9]. We numerically observe
that the implicit midpoint scheme helps in preserving the symplectic orthogonal structure of the de-
terministic basis, thus reducing the number of the (computationally expensive) re-orthogonalizations.
However, we emphasize that the midpoint scheme proposed here does not preserve exactly the unitary
structure of U and reorthogonalization is still needed for approximate solutions with deficient rank. In
particular, the unitary structure is slightly compromised by the explicit treatment of the coupling terms
in (82). However for the problem under consideration, this scheme allows us to apply a complex QR
re-orthogonalization only in the very first time steps, when the solution has deficient rank, and then
around every 100 iterations (one possibility is to apply the complex QR decomposition only when the
error in the orthonormalization of U is larger then a prescribed tolerance). Figure 4 shows the time
evolution of the approximation error of the Symplectic DO approximate solution, implemented with the
Strang splitting combined with Symplectic Euler method on the left, and with the Lie-Trotter splitting
combined with the midpoint scheme on the right, with different numbers of modes. The error is computed
in norm H1(D)⊗ L2(Ω) with respect to a reference solution computed with the Stochastic Collocation
method on Gauss-Legendre points using 7 points in each direction and the same discretization parame-
ters in time and space, i.e. a triangular mesh with edge h = 0.04 and uniform time-step ∆t = 0.001. We
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observe that a good level of accuracy can be reached with only a few modes and in particular, for S = 6

the magnitude of error tends to stay constant in time and lower than 10−4. Despite the two strategies
lead to comparable numerical results, we point out that the second one is generally computationally
more efficient since a smaller number of re-orthogonalizations is required. We conclude by reporting
here same qualitative results to show the effectiveness of the Symplectic DO method in reproducing the
exact flow of the solutions. In Figure 5 and Figure 6 we compare the exact and the approximate solution
with S = 5, evaluated in α = 1, c2 = 0.121 and α = 0.4, c2 = 0.063 respectively, at different times.
One can see that, even if the two realizations ( i.e. for α = 1, c2 = 0.121 and α = 0.4, c2 = 0.063) are
quite different, the Symplectic DO is able to effectively reproduce both of them at the same time.

7.5 Conservation of energy

We consider again a linear wave equation with random speed and random initial data as in Section 7.3, but
in the 1-dimensional domain [0, 1]. The goal here is to validate that the expected value of the Hamiltonian
is conserved along the DO symplectic approximate solution, as theoretically derived in Lemma 6.4, and verify
how the numerical scheme may affect this result. The problem reads as in (74), where here the wave speed
is random, i.e. c2(ω) = 0.06 + 0.02Z2(ω) with Z2 uniformly distributed in [−1, 1]. The initial condition
is given by (q(x, 0, ω), q̇(x, 0, ω)) = ((Z1(ω) + 2)2h(10 × |x − 0.5|), 0) with h defined in (75) and Z1, Z2

independent and identically uniform distributed. We derive the symplectic DO reduced system (68a)-(68b).
Observe that the equations for the deterministic modes are all coupled. To verify the conservation of energy
we first discretize the symplectic DO reduced system by applying the Lie-Trotter splitting in U, Y combined
with the implicit midpoint scheme for the discretization in time but, differently to what done in the previous
examples, we solve the system of S deterministic PDEs without decoupling the equations in U. Figure 7
(left) shows that the expected value of the Hamiltonian is exactly conserved, up to machine precision. Observe
that, since there is no truncation error in the initial datum, the conservation of energy does not depend on the
number of modes. Secondly, we apply the discretization scheme described in (82), which allows to decouple
the equations for the deterministic modes and considerably reduce the computational cost. Figure 7 (left)
shows that the conservation of the expected value of the Hamiltanian is slightly affected by the discretization
and it also depends on the number of modes. In Figure 7 (right) we compare the approximation errors of the
two discretization schemes with number of modes S = 4 and S = 6. As expected, better level of accuracy
can be reached without decoupling the system. However for large scale problems this leads to a very large
computational cost. On the other hand, the discretization scheme (82) is substantially cheaper and still able
to reach a good level of accuracy. Moreover the conservation of energy may be considered as an indicator in
the quality of the approximation and in the number of modes to use.
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Figure 7: Left: Evolution in time of error in the expected value of the Hamiltonian. The dashed (solid) line corresponds to
approximation error obtained by solving the coupled (decoupled) system for the evolution of the deterministic
modes. Right: Evolution in time of the approximation error of the Symplectic DO method with number of modes
S = 4 and S = 6. The dashed (solid) lines correspond to approximation error obtained by solving the coupled
(decoupled) system of the evolution of the deterministic modes. The error is computed in norm H1(D) ⊗
L2(Ω) with respect to a reference solution computed with the Stochastic Collocation method. Discretization
parameters: stochastic anisotropic tensor grid with Gauss-Legendre collocation points, 7 in the first and 13
in the second dimension, spatial discretization: triangular mesh with edge h = 0.02, uniform time-step ∆t =
0.001.

8 Conclusion

In this paper, we developed a dynamical low-rank technique for the approximation of wave equations with
random parameters, which combines the DLR approach with the use of symplectic deterministic (dynamic)
bases. The governing equation is rewritten in the Hamiltonian form in a suitable symplectic space, and the
approximate solution is sought in the set of all random fields which can be expanded, in separable form,
over a symplectic-orthogonal deterministic basis of dimension 2S. After deriving the proper conditions on
the stochastic coefficients to equip this set, denoted by Msym

S , with a manifold structure, we formulated the
Symplectic DLR variational principle as the symplectic projection of the Hamiltonian system onto the tangent
space toMsym

S along the approximate trajectory. We showed that this coincides with rewriting the governing
Hamiltonian system in complex variables and looking for a DLR approximation in the manifoldMC

S of all the
complex-valued random fields with rank S. We used the analogy between the complex manifold MC

S and its
real representation Msym

S to determine a suitable parametrization of the tangent space to Msym
S (in real

form). After deriving the associated orthogonal constraints on the dynamics of the deterministic modes, we
recovered the reduced dynamical system which, in the real framework, consists of a set of equations for the
constrained dynamics of the deterministic modes, coupled with a reduced order Hamiltonian system for the
evolution of the stochastic coefficients. The Symplectic DO shares with the symplectic order reduction the
use of symplectic deterministic bases, and, as the “classic” DO approximation, allows both the stochastic and
the deterministic modes to evolve in time. As a result, the approximate solution preserves the (approximated)
mean Hamiltonian energy and continuously adapts in time to the structure of the solution. Open question
remains instead the well-posedness of the Symplectic DLR problem. To prove the existence and uniqueness
of the approximate solution a possible strategy to be investigated, may consist in exploiting the conservation
of energy. Envisaged future investigations concern also the generalization of the Symplectic DLR approach
to dynamical low-rank approximations with arbitrary (not necessarily orthonormal) symplectic bases.
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