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Abstract

In this paper we propose a method for the strong imposition of random Dirichlet boundary conditions in
the Dynamical Low Rank (DLR) approximation of parabolic PDEs and, in particular, incompressible Navier
Stokes equations. We show that the DLR variational principle can be set in the constrained manifold of all S
rank random fields with a prescribed value on the boundary, expressed in low rank format, with rank smaller
then S. We characterize the tangent space to the constrained manifold by means of a Dual Dynamically
Orthogonal (Dual DO) formulation, in which the stochastic modes are kept orthonormal and the deterministic
modes satisfy suitable boundary conditions, consistent with the original problem. The Dual DO formulation is
also convenient to include the incompressibility constraint, when dealing with incompressible Navier Stokes
equations. We show the performance of the proposed Dual DO approximation on two numerical test cases:
the classical benchmark of a laminar flow around a cylinder with random inflow velocity, and a biomedical
application for simulating blood flow in realistic carotid artery reconstructed from MRI data with random
inflow conditions coming from Doppler measurements.

Introduction

Uncertainty quantification received a lot of attention in the last decades and is nowadays an active research
field [22,24,40,41,45]. Mathematical models and numerical methods for efficient propagation of uncertainties
are more and more needed in many application areas, from aerospace and mechanical engineering to life and
geosciences. Numerical techniques for uncertainty propagation typically require a lot of problem solves for
many values of the uncertain/random parameters and this may result in an unaffordable computational cost
for complex applications, mostly if the phenomenon under study is time dependent. In this context, the use
of reduced order models is very appealing as they reduce dramatically the computational cost of each solve,
provided they guarantee a certain accuracy level. Many techniques have been developed, specially in the de-
terministic parametric framework, starting from the “classical” Proper Orthogonal Decomposition (POD) [5,8]
and the Reduced Basis (RB) method [15,35]. All these techniques are based on the assumption that in many
situations the solution manifold can be well approximated by a small number of dominant modes extracted
from the covariance matrix of several snapshots precomputed in the offline stage, for different values of the
parameters and different time instants. By performing a Galerkin projection into the subspace spanned by the
dominant modes the size of the original problem is drastically reduced and the online stage simply consists
in low-cost reduced-order simulations for new instances of the input. The drawback of this approach is that
the solution manifold at time t, i.e. the collection U(t) = {u(t, ω), ω ∈ Ω} of all solutions at time t for all
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parameters ω ∈ Ω, may change significantly during the time evolution, which implies that the (fixed in time)
reduced basis has to be sufficiently rich to be able to approximate U(t) at all time. This may lead to a fairly
large reduced model thus compromising its efficiency.
An alternative approach that has been proposed in literature consists in expanding the solution on a fixed
basis in the probability space by assuming that the randomness can be accurately parametrized in terms of a
finite dimensional vector. For instance, in the Polynomial Chaos (PC) expansion, polynomial basis functions
are chosen, which are orthonormal with respect of the underlying probability measure of the input random
vector used to parametrize the stochastic space [22]. However, it has been reported in literature [43] that, for
certain classes of problems, long time integration might need an increasing number of terms in the expansion
to keep an acceptable accuracy level.
To overcome the limitations related to expansions of the solution on a fixed basis, either deterministic or
stochastic, here we propose a dynamical low rank approximation. In the UQ context this method has been
introduced in [38,39] and is known under the name of Dynamically Orthogonal Field equations (DO). Equiv-
alent formulations of the same approach can be found in [6,7] (Dynamically Bi-Orthogonal method or DyBO)
and [9, 10] (Bi-Orthogonal method or BO). The DO is a reduced oder method in which both the spatial and
random modes are computed on the fly and are free to evolve in time, thus adjusting at each time to the
current structure of solution. The approximate solution is sought on the manifold MS of S-rank functions
uS(x, t, ω) =

∑S
i=1 Ui(x, t)Yi(t, ω) with both {Ui} and {Yi} linearly independent and is obtained by Galerkin

projection of the governing equations onto the tangent space of MS along the solution trajectory. As the
manifold is parametrized in terms of dynamic constraints, one can derive evolution equations for both the
deterministic modes Ui and the random modes Yi, suitable for numerical computation. The same approach
was independently proposed in literature in different fields. In the context of deterministic time-dependent
Schrödinger equations its abstract formulation is known as Dirac-Frenkel time-dependent variational prin-
ciple [25] and leads to the derivation of the so called multi-configuration time-dependent Hartree (MCTDH)
method [2, 18, 30, 46]. In a finite dimensional setting the same is known as Dynamical Low Rank approxima-
tion [19, 21]. Extensions to tensor formats can be found in [11, 20, 27]. In [32] the link between the DLR, or
MCTDH, and the DO method has been exploited to derive a quasi optimal error bound for the approximation
of linear parabolic equations. More precisely the approximation error is bounded in terms of the best ap-
proximation error of the exact solution in MS , and holds in the largest time interval in which the best rank
S approximation remains full rank and continuously differentiable in time.
In this paper we focus on the approximation of parabolic PDEs and, in particular, incompressible Navier-
Stokes equations, with random Dirichlet boundary conditions. Our interest is motivated by the observation
that, in fluid dynamics problems, small variations on inflow boundary conditions can have a strong impact on
the dynamics of the flow. Applications can be found both in engineering and biomedical problems. A judicious
approximation of the problem by low rank techniques necessarily has to address the issue concerning which
boundary conditions should be satisfied by the approximate solution and if and how the randomness coming
from the boundary should be compressed. This problem has not been investigated in depth in the literature so
far, at least in the context of dynamically low rank approximation, and the answer is far from being straightfor-
ward. In fact it is not possible to say “a priori” which parameters have the strongest impact on the dynamics
of the solution and at which time. Moreover no results can be derived by the comparison with the truncated
Karhunen-Loève expansion which does not necessary approximate well the solution on the boundary. It is
clear that the truncated Karhunen-Loève expansion, being the result of a (volumetric) L2-projection at fixed
time, is not able to quantify the discrepancy on the boundary and, least of all, evaluate its impact on the
dynamics. We mention that in the first formulation of the DO method for random time dependent PDEs, as
introduced in [38], the source of randomness includes boundary terms. The strategy proposed there consists
in projecting the Dirichlet boundary conditions onto the subspace spanned by the stochastic modes at each
time. However, we observe that this subspace evolves in time and is part of the solution of the approximate
problem and not known “a priori”. It is then not clear which boundary conditions are actually satisfied by the
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approximate solution as times evolves and how the randomness arising from the boundary data is taken into
consideration. An alternative approach, common in the reduced basis community [17,35], consists in computing
explicitly a lift of the random boundary function, which needs to be written in separable form, and then solve
for the homogeneous part of the solution (zero on the boundary). In such case, the deterministic modes always
vanish on the boundary. However, on the one hand, the explicit construction of the lifting may be difficult and
time consuming for time dependent random boundary conditions, and the quality of the approximation may
be influenced by the choice of the lift. Theses issues are reflected in a similar way for the DO approximation
and in particular the latter concerns the difficulty in evaluating the lost of information in deriving the reduced
order system when the lift is projected in the tangent space.
In this work we investigate the possibility of strong imposition of the random boundary conditions in the
dynamical low rank approximation. We require that the approximate solution satisfies the same boundary
conditions as the eact solution, or a well controlled approximation of them. To do so we assume that the datum
on the boundary is “almost low rank”, which is not a too restrictive assumption in our context: since we are
looking for an approximate solution uS of rank S such that uS ≈ u, it is reasonable to ask that the boundary
value u|∂D

= g is properly approximated in separable form by gM =
∑M
i=1 Zi(ω)vi(t, x) with M ≤ S. In the

context of dynamical low rank approximation, an approximation gM of the boundary datum g in separable form
with M < S terms, will allow us to identify the proper boundary conditions to impose on each deterministic
mode at each time for the solution uS =

∑S
i=1 Ui(x, t)Yi(t, ω). Indeed the reduced system for the evolution

of the deterministic modes consists of S coupled PDEs of the same type as the original problem, which have
to be completed with suitable boundary conditions. Our strategy consits in seeking for a dynamically low
rank solution in the manifold MS of rank S functions constrained to take the approximate value gM on the
boundary. We show, in particular, that, as long as the datum gM has rank M , the constrained manifold is
indeed a manifold and we provide a characterization of its tangent space. To derive a proper set of equations
for the deterministic and stochastic modes, we propose a Dual-DO formulation, in which the stochastic modes
are kept orthonormal, instead of the deterministic modes as in the original DO formulation of [38]. It turns out
that such a formulation is very convenient for the “strong” imposition of random Dirichlet boundary conditions
and results in a set of S coupled PDEs for the evolution of the deterministic modes (M of which with non
homogeneous boundary conditions) coupled with S − M ODEs for the evolution of the stochastic modes.
Also when dealing with the incompressible Navier Stokes equations, the Dual-DO is also very convenient to
include the incompressibility constraint.
The Dual DO method has been tested on two fluid dynamics problems. In the first one our goal is to test
the performance of the Dual DO approximation in the challenging case in which the rank of the solution
continues to increase in time. We consider the classical benchmark 2D problem of an incompressible viscous
fluid flowing around a cylindrical obstacle in a channel at moderate Reynold numbers Re∈ [80, 120]. The chal-
lenge of this test is due to the inflow velocity that depends on some random parameters. The patterns of the
solutions correspond to flows with random vortex shedding frequency. Intuitively one can imagine the solution
manifolds U(t) as the collection of infinitely many flow patterns which become more and more out of phase,
one with respect to the others, as time evolves. The obtained numerical results show good performance of the
method, at least in the initial phase, in approximating the whole solution manifold at each time instant with a
relatively small number of time evolving modes. However, as one might expect, the performance deteriorates
for larger times due to the “phase” issue. To alleviate the problem, we introduce a simple time rescaling based
on an empirical linear relation between Reynolds number and shedding frequency considerably improves the
performance of the method as it allows to “rephase” all solutions. In this setting we were able to simulate the
transition phase and few shedding periods in the whole range Re∈ [80, 120] with good accuracy with S = 4

modes.
The second numerical problem addressed in this work aims at testing the possibility of applying the Dynam-
ical Low Rank method for biomedical applications. Indeed in this field, numerical simulations of parameter
dependent PDEs can be used as a virtual platform for the prediction of input/output response of biological
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values, and the speed up of the computational time is a crucial issue. We consider the problem of simulating
blood flow in a realistic carotid artery reconstructed from MRI data, where the inflow boundary conditions
are taken as random due to the uncertainty and large errors in Doppler measurements of the inflow velocity
profile [14,36]. The results highlight the remarkable potential of the Dual DO method for this type of problems.
The paper is organized as follows: in Section 1 we introduce the problem setting and the notations used
throughout, in Section 2 we recall the DO approach for a general parabolic problem with deterministic
boundary conditions, in Section 3 we describe the Dual DO formulation for a second order elliptic operator
with random Dirichlet boundary conditions and in Section 4 we applies the Dual DO to the Navier Stokes
equations. Section 5 presents the two numerical tests mentioned above.

1 Problem setting and Notation

Let D ⊂ Rd, 1 ≤ d ≤ 3, be an open bounded domain and (Ω,A,P) a complete probability space, where Ω is
the set of outcomes, A a σ-algebra and P : A → [0, 1] a probability measure. We consider a general time
dependent PDE of the type:

u̇(x, t, ω) = L(u(x, t, ω), x, t, ω), x ∈ D, t ∈ [0, T ], ω ∈ Ω, (1)

where L is a linear or non-linear differential operator, x ∈ D is the spatial coordinate and t is the time
variable in [0, T ]. For the ease of notation in what follows we omit to write the explicit dependence of L on
(x, t, ω) and use the shorthand notation L(u(x, t, ω)). The initial state of the system is described by

u(x, t = 0, ω) = u0(x, ω), x ∈ D, ω ∈ Ω, (2)

and equation (1) is complemented with suitable boundary conditions

B(u(x, t, ω), ω) = g(x, t, ω), x ∈ ∂D, ω ∈ Ω, t ∈ [0, T ].

Here ω ∈ Ω represents a random elementary event which may affect the operator L (as e.g. a coefficient or
a forcing term), the boundary conditions or the initial conditions. Specifically, in Section 4, we consider a
second order deterministic elliptic operator L completed with random Dirichlet boundary conditions and in
Section 4 we consider the Navier Stokes equations, with random viscosity and Dirichlet boundary conditions.
We introduce here some notation that will be used throughout. Let v : Ω → R be an integrable random
variable; we define the mean of v as:

v̄ = E[v] =

∫
Ω

v(ω)dP(ω),

and the variance as:
Var[v] = E[(v − v̄)2] =

∫
Ω

(v(ω)− v̄)2dP(ω).

We will use the shorthand notation: v∗ = v − E[v], and L2
0(Ω) will denote the set of all zero mean, square

integrable random variables. Let now v, u : D×Ω→ R be x-indexed random fields. We denote the L2 inner
product in the physical space by:

〈u(·, ω), v(·, ω)〉 =

∫
D

u(x, ω)v(x, ω)dx.
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We also recall that L2(D × Ω) denotes the space of all square integrable random fields, i.e.:

L2(D × Ω) :=
{
u : D × Ω→ R s.t.

∫
D

E
[
(u(x, ·)− ū(x))2

]
dx <∞

}
Observe that L2(D × Ω) is isometrically isomorphic to L2(D)⊗ L2(Ω).
A vector-valued random field will be denoted by small bold letters u := (u1, .., uN )T and is conventionally a
column vector. The L2(D) and the L2(D × Ω) norms are respectively defined as:

‖u(·, ω)‖2[L2(D)]N :=

N∑
i=1

‖ui(·, ω)‖2L2(D) and ‖u‖2[L2(D)]N⊗L2(Ω) :=

N∑
i=1

‖ui‖2L2(D)⊗L2(Ω).

In the following we will denote by ‖ ·‖ both the scalar and vector norm in L2(D×Ω). Capital bold letters will
be instead used for denoting a vector of deterministic scalar (or vector-valued) functions U = (U1, ..., US) (or
U = (U1, ...,US) in the case of vector valued functions) which will be written as row vector, and the notion
� U,V� denotes the S × S matrix with entries:

� U,V�ij=

∫
D

Vi(x)Uj(x)dx

(or � U,V�ij=
∫
D
Vi(x)TUj(x)dx if Ui,Vj are vector functions).

Lastly, we recall the well known Karhunen-Loève expansion. Let u ∈ L2(D × Ω) be a square integrable
random field, the covariance function Covu : D ×D → R is defined as:

Covu(x, y) = E [u∗(x, ·)u∗(y, ·)] , x, y ∈ D.

and defines a trace class operator Tu : L2(D)→ L2(D) as

Tuv(·) =

∫
D

Covu(x, ·)v(x)dx, ∀v ∈ L2(D); (3)

Then, u can be written as:

u(x, ω) = ū(x) +

∞∑
i=1

√
λiZ

KL
i (ω)V KLi (x)

where:

• (λi, V
KL
i ) are respectively the eigenvalues and the (L2(D)-orthonormal) eigenfunctions of the covari-

ance operator Tu,

• Zi are mutually uncorrelated real-valued random variables given by:

ZKLi (ω) :=
1√
λi

∫
D

u∗(x, ω)V KLi (x)dx ∀i ∈ N+, (4)

with zero mean, E[ZKLi ] = 0, and unit variance, E[ZKLi ZKLj ] = δij .

Assuming that the eigenvalues are sorted in decreasing order, it is well known (see e.g. [13, 16, 23]) that the
best L2-approximation of u∗ with S terms written in separable form is given by the truncated Karhunen-Loève
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expansion:

u(x, ω) ≈ uKLS (x, ω) := ū(x) +

S∑
i=1

√
λiZ

KL
i (ω)V KLi (x), (5)

Assuming Covu ∈ C0(D ×D) and D compact, by Mercer’s theorem [37], it follows that

lim
S→∞

sup
x∈D

E[(u(x, ·)− uKLS (x, ·))2] = lim
S→∞

sup
x∈D

∞∑
i=S+1

λi(V
KL
i (x))2 = 0.

All the previous definitions can be generalized to a time-varying random field u(x, t, ω) and in particular the
Karhunen-Loève expansion can either be defined at each fixed t ∈ [0, T ]:

uKLS (x, t, ω) = ū(x, t) +

S∑
i=1

√
λi(t)Z

KL
i (t, ω)V KLi (x, t), ∀S ∈ N+ (6)

with
〈
V KLi (·, t), V KLj (·, t)

〉
= δij for all t ∈ [0, T ], or as a global space-time approximation

ũKLS (x, t, ω) = ū(x, t) +

S∑
i=1

√
λi(t)Z̃

KL
i (ω)Ṽ KLi (x, t), ∀S ∈ N+,

provided u ∈ L2(D × [0, T ] × Ω). In what follows we refer always to (6) as the best S-terms approximation
of a space-time random field.
Let us also define the Stiefel manifold St(S,H), for a general Hilbert space H, as the set of orthonormal
frames of S vectors in H, i.e.:

St(S,H) =
{
V = (V1, ..., VS) : Vi ∈ H and < Vi, Vj >H= δij ∀i, j = 1, ..., S

}
where < ·, · >H is the inner product in H. We denote by G(S,H) the Grassmann manifold of dimension S
that consists of all the S−dimensional linear subspaces of H. Observe that the truncated Karhunen-Loève
expansion can be characterized as:

uKLS (x, t, ω) = ΠVKL
S (t)⊗ZKL

S (t)

[
uS(x, t, ω)

]
(7)

where Π is the L2(D × Ω) projector and VKLS (t) ∈ G(S,L2(D)), ZKLS (t) ∈ G(S,L2(Ω)) coincide respec-
tively to the span of the first S deterministic and stochastic modes: (V KL1 , ..., V KLS ) ∈ St(S,L2(D)) and
(ZKL1 , ..., ZKLS ) ∈ St(S,L2(Ω)), in the Karhunen-Loève expansion (6).
However we would like to emphasize that, in our context, the Karhunen-Loève decomposition (6) of the solu-
tion to problem (1), as well as the L2-orthogonal projector ΠVKL⊗ZKL in (7), are not available in practice. In
other words the optimality of the Karhunen-Loève approximation is suitable only for the purpose of analysis,
since it provides a lower bound for the approximation error of low rank methods.

2 Dynamical Low rank methods

The Dynamical Low rank approach [19, 25] is a reduced order method according to which the solution of the
governing equation is approximated in a low dimensional manifold of functions with fixed rank, written in
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separable form. The peculiarity of this reduced basis approach relies on the fact that both the deterministic
modes and the stochastic coefficients can evolve in time and are thus able to dynamically adapt to the features
of the solution. The approximate solution is obtained by performing a Galerkin projection of the governing
equations onto the (time-varying) tangent space to the approximation manifold along the solution trajectory.
Let us assume that the solution u(·, t, ω) to problem (1) is in a certain Hilbert space H ⊂ L2(D) for (almost)
all t ∈ [0, T ] and ω ∈ Ω and that L(u) ∈ H′ for all u ∈ H and almost everywhere in [0, T ] × Ω. Moreover
let us define S rank random field any function uS ∈ H ⊗ L2(Ω) which can be expressed as a sum of S (and
not less than S) linearly independent deterministic modes combined with S linearly independent stochastic
modes.

Definition 2.1. We defineMS ⊂ H⊗ L2(Ω) the manifold of all the S rank random fields, i.e.:

MS =
{
uS ∈ H ⊗ L2(Ω) : uS =

∑S
i=1 UiYi | span(U1, ..., US) ∈ G(S,H),

span(Y1, ..., YS) ∈ G(S,L2(Ω))
} (8)

Observe that the definition of S rank random field can be characterized in several different ways. We
recall in the following box few of the many possible representations that have been proposed and used in
literature. For simplicity we describe the different options for time independent random fields.

Representations of S rank random field:

• Double-Orthogonal decomposition (used e.g. in [19,21]), thereafter named DDO:

uS(x, ω) =

S∑
i=1

S∑
j=1

AijZi(ω)Vj(x) = VAZT (9)

where:
– Aij ∈ RS×S is a full rank matrix,
– V is a row vector of S L2(D)−orthonormal deterministic functions,
– Z is a row vector of S L2(Ω)−orthonormal random variables.

• Decomposition with orthonormal deterministic modes (used e.g. in [38, 39]), thereafter
named DO:

uS(x, ω) =
S∑
i=1

Ỹi(ω)Ũi(x) = ŨỸT (10)

where:
– Ũ = V is a row vector of L2(D)−orthonormal deterministic functions,
– Ỹ = ZAT is a row vector of S linearly independent random variables, hence with

full rank covariance matrix C = E[ỸT Ỹ].

• Decomposition with orthonormal stochastic modes (see Section 3), thereafter named Dual
DO:

uS(x, ω) =

S∑
i=1

Yi(ω)Ui(x) = UYT (11)

where:
– U = VA is a row vector of S linearly independent deterministic functions. Namely,

M ∈ RS×S , defined as Mij = 〈Uj , Ui〉, is a full rank matrix.
– Y = Z is a row vector of S L2(Ω)−orthonormal random variables.
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In this paper we adopt the decomposition with orthonormal stochastic modes that turns out to be more suitable
to approximate the incompressible Navier Stokes equations with random Dirichlet boundary conditions.
Observe, however, that none of the previous formats leads to a unique representation of uS . Namely it is
always possible to rewrite uS in the same format but with a different set of bases. This implies that the
Dynamical Low Rank solution (DLR solution), or generally any arbitrary continuously differentiable path
t → uS(t) from [0, T ] to MS , is not uniquely described in terms of time dependent bases, whatever the
format in which it is represented is. However, the uniqueness of the representation is recovered by imposing
dynamic constrains in the evolution of the bases. These constraints can be formally derived by exploiting the
geometrical differential structure of the approximation manifold, see Section 3 and [1, 25,29].

2.1 DLR Variational Principle

We introduced here the Dynamical Low Rank (DLR) approach for a general problem (1), all details concerning
the boundary conditions conditions have been postponed to Section 3.2.
Consider problem (1): the solution u describes a path t→ u(t) from [0, T ] in H⊗L2(Ω). The idea behind the
DLR approach is to approximate this curve t → u(t) ≈ uS(t) by dynamically constraining the time derivative
u̇S to be in the tangent space to the manifold MS ⊂ H ⊗ L2(Ω) at uS(t) by Galerkin projection of the
governing equation (1). Precisely, the DLR variational principle for problem (1) reads as follows:

Proposition 2.1. At each t ∈ [0, T ], find uS(t) ∈MS such that:

E [〈u̇S(·, t, ·) − L(uS(·, t, ·)), v〉] = 0, ∀v ∈ TuS(t)MS (12)

where TuS(t)MS is the tangent space toMS at uS(t).

If L(uS(·, t, ·)) is in the tangent space itself at uS(t) for any uS ∈MS , and at any time, and u0 is a S rank
function, then the DLR approximation recovers the exact solution. If u0 is not S rank and the DLR method
is initialized with its best S rank approximation, uKL0S , then the DLR solution coincides with the truncated
Karhunen-Loève expansion (i.e. the best S rank approximation), under the assumption that the eigenvalues
considered in the approximation of u0 do not cross the ones that have been omitted at initial time [32].
Observe that the variational principle in (12) does not depend on the parametrization of the manifoldMS , as
long as the solution is full rank. Specifically, the tangent space TuS(t)MS is time dependent and depends
only on uS(t) and not on its representation. The variational principle in (12) provides indeed an unified
formulation for the DO method, as proposed by Sapsis [38], and similar approaches proposed in literature,
including the DyBO method [6] and the DDO method [11]. We refer to [32] for further details.
In order to numerically compute the approximate solution one needs to uniquely characterize uS in terms of
deterministic and stochastic bases (modes). This is achieved by locally characterizing the manifold by means
of a parametrization of the tangent space. This is detailed in the next section for the Dual DO formulation
with orthonormal stochastic modes.

3 Dual DO formulation

We have seen that from the variational point of view, the DLR approximate solution uS ∈ MS is defined as
a solution of the variational principle (12) at each time. However to numerically compute uS , we need to
parametrize the tangent space, hence the manifold, in terms of local charts, corresponding in our context to
the deterministic and stochastic modes. Once a parametrization has been fixed, one can easily derive a set of
equations that uniquely describe the dynamics of both the deterministic and stochastic modes. We emphasize
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that problem (12) leads to different sets of equations depending on the parametrization of the tangent space
and any of these parametrizations leads to a different reduced order system. Here we adopt the two fields
formulation (11) in which we assume the stochastic modes to be orthonormal. We will refer to it as Dual
DO Formulation (as opposed to (10) which keeps the deterministic modes orthonormal and was originally
proposed in [38]). This representation turns out to be computationally more efficient and more suitable for
dealing with random Dirichlet boundary conditions and solenoidal constraints. We define:

B[H]S = {U = (U1, ..., US) : Ui ∈ H with Mij =< Ui, Uj > s.t. rank(M) = S}

and the map:
π̃ :

(
B[H]S ,St(S,L

2(Ω))
)
→MS ⊂ H⊗ L2(Ω)

(U,Y) 7→ π̃(U,Y) =
∑S
i=1 UiYi =: uS

(13)

The image of π̃ is the manifold of S rank random fieldsMS defined in (8). Observe that:

• the DO variational principle (12) is defined inMS while we want to write the DLR approximate solution
in terms of (U,Y) ∈ B[H]S × St(S,L2(Ω));

• the map π̃ is not injective, indeed for any orthogonal matrix Q ∈ RS×S , π̃(UQ,QTY) = π̃(U,Y).

The uniqueness of the representation (13) can be recovered in terms of unique decomposition in tangent space
by imposing the following Gauge constraint [12, 29]:

E[δYiYj ] = 0 ∀i, j = 1, ..., S, (14)

which leads to the following parametrization of the tangent space at uS =
∑S
i=1 UiYi as [19,31]:

TuS
MS =

{
v̇ =

∑S
i=1

(
δUiYi + UiδYi

)
∈ H ⊗ L2(Ω), with δUi ∈ H,

δYi ∈ L2(Ω) s.t. E[δYiYj ] = 0 ∀i, j = 1, ..., S
}
.

(15)

Finally the variational problem (12) can be rewritten in terms of evolution equations for (U,Y).

Proposition 3.1. Let (U(t),Y(t)) ∈ B[H]S × St(S,L2(Ω)) be a solution of the following system:

∂Ui(x, t)

∂t
= E [L(uS(x, t, ·))Yi(t, ·)] i = 1, · · ·, S (16)

S∑
i=1

Mji(t)
∂Yi(t, ω)

∂t
= Π⊥Y 〈L(uS(·, t, ω)), Ui(·, t)〉 j = 1, · · ·, S (17)

then uS(t) = π̃(U(t),Y(t)) ∈MS satisfies the DLR variational principle (12) at any t ∈ [0, T ].

Note the symmetry with the DO system proposed in [38].

3.1 Isolating the mean

In our context of partial differential equations with random parameters, since we are usually interested in
computing the statistics of the solution, it may be worth approximating separately the mean of the solution.
This is achieved by adopting a slightly different definition of S-rank random field and leads to an approximation
closer to the Karhunen-Loève expansion of the solution (5) where the mean is treated separately in the
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expansion. The idea of isolating the mean and the corresponding DO formulation was introduced in [38] and
adopted in [39], [32], [6]. We detail here only the Dual DO formulation and re-define S rank random field as
follows.

Definition 3.1. We call S rank random field (with the isolating mean format) any function that can be exactly
expressed as:

uS = ūS +
∑S
i=1 UiYi

= U0Y0 +
∑S
i=1 UiYi = UYT

(18)

where:

• Y is a row vector of S + 1 L2(Ω)-orthonormal random variables such that Y0 = 1 and E[Yi] = 0 for all
i = 1, ..., S,

• U1, ..., US are linearly independent deterministic functions.

One can think that the difference with respect to definition (11) consists in fixing the first random variable
to be constant (Y0 = 1), with the zero mean condition of the remaining random variables coming simply from
the orthonormality of the random modes. However, observe that (18) is not necessarily a S + 1 rank function
since ūS is not assumed to be linearly independent of U1, ..., US , or more precisely the subspace spanned by
U does not have necessarily dimension S+ 1 (at most dimension S+ 1 and at least S). According to the new
definition of S rank random field given in (18) the Dual DO system derived in (16)-(17) becomes:

U̇0(x, t) = E [L(ũS(x, t, ·))] (19)
U̇i(x, t) = E [L(ũS(x, t, ·))Yi(t, ·)] i = 1, · · ·, S (20)

S∑
j=1

Mji(t)Ẏj(x, t) = Π⊥Y 〈L∗(ũS(·, t, ω), ω), Ui(·, t)〉 i = 1, · · ·, S (21)

= Π⊥Ỹ 〈L(ũS(·, t, ω), ω), Ui(·, t)〉 i = 1, · · ·, S (22)

where Y = span(Y1, ..., YS), L∗(ũS(x, t, ω), ω) := L(ũS(x, t, ω), ω) − E[L(ũS(x, t, ·))], Ỹ = span(Y0, ..., YS)

and Mij = 〈Uj , Ui〉, i, j = 1, ..., S.

Remark 1. Observe that definition (18) does not guarantee the optimality in the manifold of function with
rank S + 1. This is due to the fact that we do not assume U0 linearly independent of U1, ..., US and so
(18) may have a deficient rank. To clarify this point, just consider the function u(x, ω) = x + α(ω)x, with
E[α] 6= −1. This is clearly a 1-rank function, but representation (18) would require 2 modes.

The previous remark may appear quite obvious when we only want to isolate the mean, but it turns out to
be a crucial point when the number of constraints is larger. In the following we investigate the latter situation.
For this purpose, the main questions that we need to address are: how to define the low rank manifold with
constraints and which is the best approximation in this manifold.

3.2 Dual DO under boundary constraints

We now explicitly assume that L in (1) is a second order elliptic operator of the form L(u) = −div(A(x, ω)∇u)−
b(x, ω) · ∇u+ c(x, ω)u⊕ f(x, t, ω) where Aij(x, ω), bi(x, ω), c(x, ω), i, j = 1, ..., d, are bounded random vari-
ables in the open bounded Lipschitz domain D ⊂ Rd and under the assumptions that A(x, ω) is uniformly
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coercive almost surely and f ∈ L2([0, T ], L2(D × Ω)). The problem is set in H1(D)⊗ L2(Ω) and completed
with Dirichlet boundary conditions u|∂D

= g. If the boundary condition is deterministic it is reasonable to
adopt formulation (18) in which the first deterministic mode, that approximates the mean, is required to fulfill
the constraint on the boundary, while all other modes satisfy homogeneous conditions:

• U0(x, t) = g(x, t) for x ∈ ∂D,

• Ui(x, t) = 0 for x ∈ ∂D and for all i = 1, ..., S.

This is consistent with the Karhunen-Loève decomposition given in (5), for which we have:

λiV
KL
i (y)|∂D

=
[∫
D

Covu(x, y)V KLi (x)dx]
]
|y∈∂D

=
∫
D
E
[
u∗(x, ·)u∗(y, ·)|y∈∂D

]
V KLi (x)dx = 0 ∀i ∈ N+

(23)

since ū|∂D
= E[u]|∂D

= g and u∗|∂D
= u|∂D

− ū|∂D
= 0. The case in which the boundary data are random is

more cumbersome. The first question to be addressed is which boundary conditions should be satisfied by a
general low rank approximate solution. One can easily verify that the truncated Karhunen-Loève expansion
does not necessarily satisfy the same boundary conditions satisfied by the exact solution. Consider for example
the following toy problem in D ≡ (0, 2π):

u̇(x, t, ω)−∆u(x, t, ω) = 0

u(0, t, ω) = u(2π, t, ω) = α(ω)e−t

u(x, 0, ω) = α(ω) cos(x) + β(ω) sin(x)

(24)

where α, β are two uncorrelated zero mean random variables such that E[α2] < E[β2]. The exact solution is
u(x, t, ω) = e−t(α(ω)cos(x) + β(ω)sin(x)). It is clear that the Karhunen-Loève approximate solution of rank
1 is uKL1 (x, t, ω) = β(ω)e−t sin(x) and uKL1|∂D

6= u|∂D
. Generally the values of the truncated Karhunen-Loève

expansion on the boundary are unknown. Secondly, in the context of Dynamical Low Rank approximation, we
need to specify the boundary conditions to impose on each deterministic mode U1, ..., US . We remind that the
Dual DO reduced system consists of dynamic differential equations for all the factors in (11). In particular, in
the equations (16)-(17), boundary conditions for each deterministic mode Ui are needed to have a well posed
problem.

Dual DO under random boundary constraints
Our strategy consists in enforcing that the low rank approximation satisfies the same boundary conditions as
those of the exact solution. This is motivated by the fact that we can not say “a priori” which parameters
have the strongest impact on the dynamics and at which time the dynamic of the solution is influenced by
the uncertain parameters in the boundary data. It may therefore be important to impose these constraints as
accurately as possible. To do so we assume that the datum on the boundary is “almost low rank”, which is
not a too restrictive assumption in our context: since we are looking for an approximate solution uS ≈ u is
reasonable to ask that u|∂D

is properly approximated by a function of rank at most S. We start considering
Dirichlet boundary conditions that do not depend on time.

Assumption 1. The boundary function g can be properly approximated on the manifold of M-rank functions
for some M ≤ S:

u(x, t, ω) = g(x, ω) ≈ gM (x, ω) =

M∑
i=1

vi(x)Zi(ω) ∀x ∈ ∂D, a.s. (25)
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with:

• E[ZiZj ] = δij ,

• v1, ..., vM linearly independent.

We denote by R the difference S −M and by Z the subspace spanned by {Z1, ..., ZM}. Then in the DO
formulation (12), we impose strongly condition (25). Precisely we ask:

uS(x, t, ω) = gM (x, ω) ∀x ∈ ∂D, a.s. (26)

For the sake of clarity, we start considering a general Dual DO representation, as defined in (11). The similar
formulation with the isolation of the mean is discussed in Remark 2.

Definition 3.2. A S rank random field under constraint (26) is a S rank function that satisfies the boundary
condition in (25) and can be written as:

ugMS (x, ω) =

S∑
i=1

Ui(x)Yi(ω) = UYT (27)

with:

• uS|∂D
= gM a. s.,

• U1, ..., US linearly independent deterministic functions.

• Y1, ..., YS uncorrelated random variables.

We denote byMgM
S the set of all the S rank random fields under constraint (26).

For the sake of notation, we omit the superscript in ugMS in the following. However observe that definition
(27) strongly depends on the boundary conditions. Our first aim is to show that MgM

S is indeed a manifold.
and precisely we aim to show that MgM

S is the manifold of all random fields of rank S that satisfy the same
boundary condition as the solution, up to the approximation in (25). We now claim that any function inMgM

S

can be written in terms of the random modes Z1, ..., ZM in (25) and R = S −M “free” random variables, in
the orthogonal complement of Z .

Lemma 3.1. LetMR,M denote the manifold of all the functions uR,M written as:

uR,M (x, ω) =

R∑
i=1

Ui(x)Yi(ω) +

M∑
i=1

Vi(x)Zi(ω) (28)

where we assume:

• R+M = S,

• uR,M (x, ω) = gM (x, ω) =
∑M
i=1 vi(x)Zi(ω) for x ∈ ∂D a.s.,

• all the random variables are mutually L2(Ω)-orthonormal:

– E[ZiZj ] = δij for all i, j = 1, ...,M ;
– E[YiYj ] = δij for all i, j = 1, ..., R;
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– E[ZiYj ] = 0 for all i = 1, ...,M and for all j = 1, ..., R.

• U1, ..., UR are linearly independent.

Then, the setMgM
S coincides withMR,M , hence it is a manifold.

To prove this lemma we need a preliminary result:

Lemma 3.2. Given a random field uR,M ∈MR,M defined as in (28), it holds:

• Vi|∂D
= vi a.s. for all i = 1, ...,M ;

• Ui|∂D
= 0 a.s. for all i = 1, ..., R;

and in particular {U1, ..., UR, V1, ..., VM} are linearly independent.

Proof. To verify the values of Ui and Vi on the boundary is enough to observe that:

Vi|∂D
= E[uR,M |∂D

Zi] = E[gMZi] =
∑M
j=1 vjE[ZjZi] = vi

Ui|∂D
= E[uR,M |∂D

Yi] = E[gMYi] =
∑M
j=1 vjE[ZjYi] = 0

where we have used the fact that uR,M |∂D
= gM a.s. and the random modes are mutually orthogonal. Then the

fact that v1, ..., vM are linearly independent implies that {U1, ..., UR, V1, ..., VM} are linearly independent. �

Proof (Lemma 3.1). The fact thatMR,M ⊆MgM
S follows directly from Lemma 3.2. Now we need to show that

MgM
S ⊆MR,M . Let uS ∈MgM

S , we have that:

uS =
∑S
i=1 UiYi

=
∑S
i=1 UiΠZYi +

∑S
i=1 UiΠ

⊥
ZYi

=
∑M
j=1

(∑S
i=1 UiE[YiZj ]

)
Zj +

∑S
i=1 UiΠ

⊥
ZYi

=
∑M
j=1 VjZj +

∑S
i=1 UiΠ

⊥
ZYi

Since uS|∂D
= gM and Zi are orthogonal, we necessary have that Vj|∂D

= vj . Moreover, the fact that vi are
linearly independent implies that V1, ..., VM are linearly independent. We can write:

〈vj , uS|∂D
〉L2(∂D) = 〈vj ,

M∑
i=1

vi〉L2(∂D)Zi, (29)

that implies
S∑
l=1

〈vj , Ul|∂D
〉L2(∂D)Yl = 〈vj ,

M∑
i=1

vi〉L2(∂D)Zi. (30)

Let B ∈ RM×M , C ∈ RM×S denote respectively:

Bij = 〈vj , vi〉L2(∂D) and Cij = 〈vi, Uj|∂D
〉L2(∂D).

Then, equation (30) can be rewritten as:

CYT = MZT ⇒ ZT = M−1CYT (31)
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where we use the fact that v1, ..., vM are linearly independent. This shows that:

span(Z1, ..., ZM ) ⊂ span(Y1, ..., YS).

In particular there exist (Ỹ1, ..., ỸR) orthonormal random variables, orthogonal to the subspace spanned by
(Z1, ..., ZM ) such that:

span(Y1, ..., YS) = span(Z1, ..., ZM )⊕ span(Ỹ1, ..., ỸR).

Hence uS can be written according to (28), as:

uS =

M∑
j=1

VjZj +

R∑
i=1

ŨiỸi

where the linear independence of Ũ1, ..., ŨR follows form the fact that uS is a S-rank random field.

�

In view of Lemma 3.1 we can exploit representation (28) that enables us to derive the boundary conditions
for each mode in the DO reduced system. In particular any uS ∈MgM

S is written as:

uS =

S∑
i=1

UiYi

where

• {Y1, .., YS} are L2(Ω)-orthonormal random variables;

• {U1, ..., UR} are linearly independent;

• Ui|∂D
= 0 for all i = 1, ..., R (R = S −M ) and Ui|∂D

= vi for all i = R+ 1, ..., S;

• Yi = Zi for all i = R+ 1, ..., S;

Observe that:
MgM

S
∼=MR ⊕MgM

M (32)

where we recall that:

MgM
M =

{
u =

M∑
i=1

UiZi

∣∣∣u|∂D
= gM , Ui ∈ H1(D) linearly independent

}
⊂ H1(D)⊗ L2(Ω)

andMR is the manifold embedded in H1
0 (D)⊗Z⊥ of all the random fields of rank R. Observe that if M = 0

we recover the standard formulation without constraints according to which MS is the manifold of all the
random fields of rank S that vanish on the boundary. On the other hand, if M = S, MgS

S reduces to the S
dimensional affine subspace, spanned by Z1, ..., ZM and the Dynamical Low Rank approximation reduces to
a standard Galerkin projection.
We are now ready to define the Dynamical Low Rank variational principle in MgM

S , i.e. the manifold of all
the S rank random fields that satisfy the (approximate) boundary conditions (25). Observe that, in light of
(32), for any uS ∈MgM

S , we have that:

TuS
MgM

S
∼= TuR

MR ⊕
(
Z ⊗H1

0 (D)
)

(33)
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where uR = Π⊥Z [uS ]. Assuming that we adopt a parametrization of the manifold such that uS ∈ MgM
S

is represented as
∑S
i=1 UiYi where the last M random variables coincide with Z1, .., ZM in (25), then the

tangent space can be parametrized as:

TuS
MgM

S
∼=
{
u̇ =

∑S
i=1

(
δUiYi + UiδYi

)
∈ H1

0 (D)⊗ L2(Ω) s.t. E[δYiYj ] = 0 ∀i, j = 1, ..., S

δYi = 0 a.s. ∀i = R+ 1, ..., S
}
(34)

This construction of constrained approximation manifolds can be generalized to Dirichlet boundary conditions
which depend on time. In this case the decomposition (25) is time dependent and the approximation manifold
changes in time: MgM (t)

S
∼= MR ⊕MgM (t)

M . The tangent space is defined at each fixed time, according to
(34). Formally the LR variational principle reads the same as in (12). What changes is the definition of the
manifold. We project the governing equation into the tangent space to MgM (t)

S at uS(t) at each time where
nowMgM (t)

S is the manifold constrained to gM (t) which may change in time, hence the approximate solution
uS(t) automatically satisfies the Dirichlet boundary conditions of the original problem.
According to the parametrization of the tangent space in (34) the reduced order system for the Dual DO
formulation under random boundary constraints becomes:

U̇i(x, t) = E [L(uS(x, t, ·))Yi(t, ·)] x ∈ D, t ∈ (0, T ], i = 1, · · ·, S (35)
Ui(x, t) = 0 (x, t) ∈ ∂D × (0, T ], i = 1, · · ·, R (36)
Ui(x, t) = vi(x, t) (x, t) ∈ ∂D × (0, T ], i = R+ 1, · · ·, S (37)
R∑
j=1

Mji(t)Ẏj(t, ω) = Π⊥Y 〈L(uS(·, t, ω), ω), Ui(·, t)〉 (t, ω) ∈ (0, T ]× Ω, i = 1, · · ·, R (38)

Ẏi(t, ω) = 0 (t, ω) ∈ (0, T ]× Ω, i = R+ 1, · · ·, S (39)

where Y =span(Y1, ..., YS) and M ∈ RR×R is the correlation matrix of the first R deterministic modes
Mi,j =< Ui, Uj > for i, j = 1, ..., R. Observe that the system (38) consists of only R = S −M equations
since the last M random variables remain constant.

Remark 2. Again, since in our context of partial differential equations with random parameters we are usually
interested in computing the statistics of the solution it may be worth approximating separately the mean of
the solution as in (18). Observe that we can distinguish two cases:

• (non homogeneous) deterministic boundary conditions. In this case isolating the mean only reduces to
a special case of the Dual DO formulation under boundary constraints with S + 1 modes and M = 1

constraint: ūS+1 satisfies the constraints and all other deterministic modes are homogeneous on the
boundary. The approximation manifold can be defined including the mean, by taking US+1 = ūS+1 and
YS+1 = 1. Observe that the non homogeneous boundary conditions guarantee that US+1 and Ui are
linearly independent for any i = 1, ..., S. In practice we work in a manifold of rank S + 1 under one
constraint given by YS+1 = 1 at each time.

• random boundary conditions. Consider a boundary datum g = ḡ +
∑M
i=1 viZi, with E[Zi] = 0 and

ḡ = E[g], if ḡ is linearly independent from {v1, ..., vM} we fall back to the first case, namely isolating
the mean coincides with defining the constrained approximation manifold by including the mean: we
have S + 1 linearly independent modes and M + 1 constraints. On the other hand in the general
case, isolating the mean does not guarantee any kind of orthogonality for ūS with respect to the other
deterministic modes, thus the constrained set which includes the mean is not necessarily a manifold. If
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ḡ is not linearly independent from v1, ..., vM , we can either isolate the mean and work in a manifold of
dimension S embedded in H1(D)⊗ L2

0(Ω), either not and write gM as in 25. Observe that in the first
case the approximate solution is in H1(D)⊕MgM

S and has rank at least equal to S.

An alternative strategy for dealing with random boundary conditions was proposed in [38], [39] and consists
in projecting the boundary conditions g(x, t, ω) onto Y(t) = span < Y1, ..., YS > at each t. Combining this
approach to the Dual DO framework would imply enforcing:

Ui(x, t)|∂D
= E[g(x, t, ·)Yi(t, ·)] ∀x ∈ ∂D, ∀t ∈ (0, T ], ∀i = 1, ..., S

which further implies:

uS(x, t, ·)|∂D
=

S∑
i=1

E[g(x, t, ·)Yi(t, ·)]Yi(t, ω) ∀x ∈ ∂D, ∀t ∈ (0, T ], ∀i = 1, ..., S.

However, note that the subspace spanned by Y1, ..., YS evolves in time and it is implicitly determined by
the approximate solution itself. It is not clear then at time t � 0 which boundary conditions are actually
satisfied by uS and how the randomness arising from the boundary data is taken into consideration. The
two different strategies are numerically compared in Section 5. The results for the problems under analysis
show that strong imposition of boundary constrains leads to better performances in terms of accuracy versus
number of modes, especially for long time intervals.

3.3 Best S rank approximation

We now look at the problem of finding the best S rank approximation inMgM (t)
S at any fixed time t ∈ [0, T ].This

can be seen as an optimization problem under constraints.

Definition 3.3. Fix t ∈ [0, T ] and let u(t) ∈ H1(D) ⊗ L2(Ω) be a square integrable random field with rank
greater or equal to S and such that u(x, t, ω) = gM (x, t, ω) for all x ∈ ∂D a.s.. We define best rank S

approximation a solution of the following problem: find uKLS (t) ∈MgM (t)
S such that

uKLS (t) = argmin
vS∈M

gM (t)

S

‖u(t)− vS‖L2(D)⊗L2(Ω) (40)

Lemma 3.3. The solution to problem (40) is given by:

uKLS (x, t, ω) =
∑R
i=1

√
λi(t)V

KL
i (x, t)ZKLi (t, ω) +

∑M
i=1 Vi(x, t)Zi(ω, t)

= uKLR (t) +

M∑
i=1

Vi(x, t)Zi(t, ω)︸ ︷︷ ︸
u∗M (t)

(41)

where

• u∗M (t) ∈MgM (t)
M is the Galerkin projection of u(t) inH1(D)⊗Z(t). Specifically Vi(x, t) = E[u(x, t, ·)Zi(t, ·)];

• uKLR (t) is the best approximation withR terms of Π⊥Z(t)[u(t)] = u(t)−u∗M (t): (λi(t), V
KL
i (t), ZKLi (t))Ri=1

are the first R terms of the Karhunen-Loève expansion of Π⊥Z(t)[u(t)].
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Proof. Observe that MgM (t)
S ⊂ H1(D)⊗ L2(Ω) while the minimization in (40) is defined in L2(D)⊗ L2(Ω).

In order to formally recover the constraint (26), i.e. uKLS (x, t, ω) = gM (x, t, ω), ∀x ∈ ∂D a.s., we set problem
(40) in the larger space V ⊂ L2(D)⊗ L2(Ω) defined as:

V = L2(D)⊗Z(t)⊕MR(L2(D)⊗Z⊥(t))

where MR(L2(D)⊗ Z⊥(t)) is the manifold of R rank random fields embedded in L2(D)⊗ Z⊥(t). Now let
us define the following problem: F ind ũKLS (t) ∈ V such that

ũKLS (t) = argmin
vS∈V

‖u(t)− vS‖L2(D)⊗L2(Ω) (42)

The problem (42) reduces to two well known problems: a Galerkin projection in Z(t) plus an optimization
problem without constraints inMR(L2(D)⊗Z⊥(t)). This implies that problem (42) is well posed and admits
a solution ũKLS (t) that can be written as in (41). Moreover observe that ũKLS (t) ∈MgM (t)

S ⊂ V , which implies
that ũKLS (t) = uKLS (t) is a solution of problem (42). �

In the following we call best S rank approximation uKLS (t) the solution to problem (40).

Remark 3. The error analysis derived in [32] for linear parabolic equations with random parameters applies
as well to the Dual DO approximation under constraints. In this case the DLR approximation error is bounded
in term of the best approximation (41), i.e. the solution of the optimization problem under constraints (40).
The proof follows very closely the one derived in [32].

4 Application to Navier Stokes equations

In this Section we focus on fluid flow dynamics governed by the non-stationary Navier Stokes equations for
incompressible, constant-density fluids. In this setting the uncertainty may arise from the parameters of the
equations such as the fluid viscosity, or from the forcing term or initial or boundary conditions. The general
problem, in a open, bounded Lipschitz domain D ⊂ Rd, with d = 2, 3, reads a.s. in Ω as:

u̇(x, t, ω)− ν(x, t, ω)∆u(x, t, ω) + u(x, t, ω) · ∇u(x, t, ω) +∇p(x, t, ω) = f(x, t, ω) (x, t) ∈ D × (0, T ]

∇ · u(x, t, ω) = 0

u(x, 0, ω) = u0(x, ω) x ∈ D
u(x, t, ω) = g(x, t, ω) x ∈ ΓD, t ∈ (0, T ]

ν∂nu(x, t, ω)− p(x, t, ω) · n = h(x, t, ω) x ∈ ΓN , t ∈ (0, T ]

(43)
where u is the velocity (column) vector field, p is the scalar pressure and ν is the kinematic viscosity that may
eventually be modeled as a random variable or random field. ΓD and ΓN are disjointed parts of the boundary
∂D, such that ΓD ∪ΓN = ∂D, on which we impose Dirichlet and Neumann boundary conditions respectively.
Our goal is to find a low rank approximation of the velocity field. We apply the Dual DO method described
in Section 3 and we derive evolution equations for all the factors (U,Y) of the approximate velocity vector
field. We start by recalling the definition of Karhunen-Loève expansion for a square integrable random vector
field.

Definition 4.1. Let u ∈ L2
(
Ω, [L2(D)]d

)
be a square integrable random field with covariance function Covu :

D ×D → Rd×d, defined as:
Covu(x,y) = E[u∗(x, ·)u∗T(y, ·)]
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with u∗ = u− E[u].
Then u can be written as:

u(x, ω) = ū(x, ω) +

∞∑
i=1

√
λiV

KL
i (x)ZKLi (ω)︸ ︷︷ ︸
u∗

(44)

where:

• {λi,VKL
i } are respectively the (non-zero) eigenvalues and eigenfunctions (column vectors of scalar

functions) of the covariance operator Tu : [L2(D)]d → [L2(D)]d defined as

TuV(x) =

∫
D

Covu(y,x)V(y)dy, V ∈ [L2(D)]d (45)

TuV
KL
i = λiV

KL
i (46)

• ZKLi are mutually uncorrelated scalar random variables given by:

ZKLi (ω) :=
1√
λi

∫
D

(u∗(x, ω))TVKL
i (x)dx ∀i ∈ N+, (47)

with zero mean and unit variance.

Observe that the deterministic modes are vector valued functions while the stochastic modes are scalar
functions. We denote by H1

div(D) and H1
ΓD

(D) the following spaces:

H1
div(D) :=

{
v ∈ [H1(D)]d : ∇ · v = 0

}
,

H1
g(D) :=

{
v ∈ [H1(D)]d : v|ΓD

= g
}
, H1

ΓD
(D) :=

{
v ∈ [H1(D)]d : v|ΓD

= 0
}
.

Remark 4. Let u be in H1
div(D) ⊗ L2(Ω), then the mean and all the deterministic eigen-modes in (44) are

divergence free. Indeed

∇ · ū = ∇ · E[u] = E[∇ · u] = 0, λi∇ ·VKL
i = ∇ · E[uZKLi ] = E[

(
∇ · u

)
ZKLi ] = 0

In light of Remark 4, we look for a Dynamical Low Rank approximation written as a linear combination
of divergence free modes. We consider the general case of problem (43) with random Dirichlet boundary
conditions, and detail the Dual DO formulation introduced in Section 3.1 in which we also isolate the mean.
Following the discussion in Section 3.2, we assume that the datum on the Dirichlet boundary can be properly
approximated by a M rank random field, with M ≤ S. In particular, for consistency with the approximate
solution, the boundary constraint is decomposed according to Definition (18), by isolating the mean:

u(x, t, ω) = g(x, t, ω) ≈ gM (x, t, ω) = ḡ(x, t) + g∗M (x, t, ω), x ∈ ΓD, t ∈ [0, T ], a.s. (48)

Hence ḡ(x, t) is the deterministic Dirichlet boundary condition for the mean, while g∗M (x, t, ω), written as a
linear combination of M ≤ S zero mean random variables, is the constraint of the approximation manifold. To
be precise:

gM (x, t, ω) = ḡ(x, t) +

M∑
i=1

vi(x, t)Zi(t, ω), ∀x ∈ ΓD, t ∈ [0, T ], a.s. (49)

with:
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• Z1, ..., ZM zero mean L2(Ω)-orthonormal random variables: E[Zi(·, t)] = 0, E[Zi(·, t)Zj(·, t)] = δij for
all i, j = 1, ...,M

• v1, ...,vM linearly independent vector valued deterministic functions.

and the approximation manifold of zero mean S rank random fields constrained to g∗M (t) is parametrized as
follows:

Mg∗M (t)
S,div =

{
u∗S =

∑S
i=1 UiYi s.t. uS|ΓD

= g∗M (t), and Ui ∈ H1
div(D),

E[Yi] = 0, E[YiYj ] = δij , rank(M) = R
} (50)

where R = S −M and M =� U,U �∈ RR×R is again the full rank correlation matrix of the first R
deterministic modes: Mij =< Ui,Uj >=

∑d
k=1 < Ui,k, Uj,k >. Thus, the DLR approximate solution is

written at each time as:
uS(t) = ūS(t) + u∗S(t)

with:

• ūS(t) ∈ H1
div(D) ∩H1

ḡ(t)(D),

• u∗S(t) ∈Mg∗M (t)
S,div .

Finally, the DLR variational principle (12) applied to the Navier Stokes problem in (43) becomes:

Proposition 4.1. At each time t, find (ūS(t),u∗S(t)) ∈ (H1
div(D) ∩ H1

ḡ(t)(D)) ×Mg∗M (t)
S,div such that uS(t) =

ūS(t) + u∗S(t) = ūS(t) +
∑S
i=1 Ui(t)Yi(t) satisfies:

E
[
< u̇S + uS · ∇uS − f , v > + < ν∇uS ,∇v > − < h,v >ΓN

]
= 0 (51)

∀v ∈ (H1
div(D) ∩H1

ΓD
(D))× TuS(t)M

g∗M (t)
S,div .

with initial condition given by ū(0) +u∗S(0), where ū(0) = E[u0] and u∗S(0) is the best S rank approximation
of u0 − ū(0) in Mg∗M (0)

S,div , provided u0 ∈ H1
div ⊗ L2(Ω).

Observe that the term < h,v >ΓN
derives from the integration by part of −ν < ∆uS ,v > + < ∇p,v >

combined with the Neumann boundary conditions in ΓN . Again, by imposing condition (14), we can equip
Mg∗M (t)

S,div with a differential manifold structure and derive the Dual DO reduced order system for Navier Stokes
equations with random parameters (including boundary conditions).

Proposition 4.2. Let (ūS ,U,Y) be a smooth solution of

< ˙̄uS + E
[
uS · ∇uS − f

]
, δU > + < E

[
ν∇uS

]
, ∇δU > − < E

[
h], δU >ΓN

= 0

ūS|ΓD
= ḡ

< U̇i + E
[(
uS · ∇uS − f

)
Yi
]
, δU > + < E

[
ν∇uSYi

]
, ∇δU > − < E

[
hYi], δU >ΓN

= 0

Ui|ΓD
= 0 ∀i = 1, ..., R

Ui|ΓD
= vi ∀i = R+ 1, ..., S

∑R
k=1 MjkE[ẎkδY ] =< Uj ,E

[(
f − uS · ∇uS

)
δY
]
> − < ∇Uj ,E

[
ν∇uSδY

]
> + < Uj ,E

[
hδY

]
>ΓN

∀j = 1, ..., R

(52)
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Figure 1: Left: mesh used for the simulation, 2592 number of vertices, hmax= 0.055, hmin=0.006.

∀δU ∈ H1
div(D)∩H1

ΓD
(D) and ∀δY ∈ Y⊥0 (the orthogonal complement of Y in L2

0(Ω)), with initial conditions
given by ū(0) and the best S rank approximation of u0 − ū(0) in Mg∗M (0)

S,div . Then uS = ūS +
∑S
i=1 UiYi is

solution of (51), at each time.

We treat the divergence free constraint, that is imposed on each deterministic mode, by introducing S + 1

Lagrange multipliers p̄, p1, ..., pS . Then, by reintegrating by part, we finally get:

Proposition 4.3. Let (ūS ,U,Y) be a smooth solution of

˙̄uS +∇p̄ = E
[
ν∆uS − uS · ∇uS + f

]
∇ · ūS = 0

U̇i +∇pi = E
[(
ν∆uS − uS · ∇uS + f

)
Yi
]

∇ ·Ui = 0 ∀i = 1, ..., S∑R
k=1 MikẎk =< Ui,Π

⊥
1∪Y
[
ν∆uS − uS · ∇uS + f

]
> ∀i = 1, ..., R

(53)

then uS = ūS + UY is solution of (51), at each time.
The initial conditions are given by ū(0) and the best S rank approximation of u0 − ū(0) in Mg∗M (0)

S,div , while
the boundary conditions are the following:

ūS(x, t) = ḡ(x, t) (x, t) ∈ ΓD × [0, T ],

Ui(x, t) = vi(x, t) (x, t) ∈ ΓD × [0, T ], ∀i = 1, ..., R

Ui(x, t) = 0 (x, t) ∈ ΓD × [0, T ], ∀i = R+ 1, ..., S

ν∂nUi(x, t)− pi(x, t) · n = E[h(x, t, ·)Yi] (x, t) ∈ ΓN × [0, T ], ∀i = 1, ..., S.

In conclusion, the Navier Stokes equations with random parameters in (43) is reduced to S deterministic
problems of Navier Stokes type, coupled to a system of R stochastic ODEs.

5 Numerical Test

5.1 Flow around a cylinder: stochastic boundary condition

In this section we consider a two-dimensional incompressible flow over a circular cylinder at moderate
Reynold’s Numbers for which a periodic vortex shedding phenomenon is observed around the obstacle. The
geometry and the mesh used for the simulations are shown in Figure 1. The height and length of the channel
are respectively H = 0.41 and l = 2.2. The cylinder hole has radius r = 0.05 and is slightly uncentered,
the coordinate of the center being (0.2, 0.2) with respect to the origin located on the lower-left corner of the
channel. We consider homogeneous initial conditions and we assume a parabolic inflow profile with random
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peak velocity Umax that varies in the range [1.2, 1.8]. More precisely we have:

u(x, ω, t) = (4 (Ū + σZ(ω))︸ ︷︷ ︸
Umax

x2(H − x2)/H2, 0) x = (x1, x2) ∈ Γin

= (4Ūx2(H − x2)/H2, 0) + (4σZ(ω)x2(H − x2)/H2, 0)

= ḡ(x) + Z(ω)v1(x)︸ ︷︷ ︸
g1

(54)

where Ū = 1.5, σ = 0.1 and Z is a uniform random variable with zero mean and unit variance. An initial
ramp is applied on the boundary data to guarantee consistency with the homogeneous initial conditions. We
use a cubic polynomial smoothing function that reaches 1 at time t=1. No slip conditions are applied on
the top, bottom and cylinder side-walls, Neumann homogeneous conditions at the outlet. We recall that
for this problem the Reynold’s number (that can be computed as Re = UmD

ν where here ν = 10−3 is the
kinematic viscosity and Um = 2

3Umax is the mean inflow velocity) determines the frequency of the vortex
shedding and the length of the recirculation region. Observe that the random boundary condition at the
inflow directly influences the Reynold’s Numbers, that here varies in the range Re ∈ [80, 120]. It follows that
the pattern of the solutions corresponds to flows with random vortex shedding frequency. Before presenting
the numerical results we remark that even if we have only one random variable as input, the problem is not
straightforward, since the solution depends non-linearly on it. Indeed the test case under consideration is
challenging for model order reduction techniques, which are unable to approximate the solution manifold with
a relatively small number of modes. This is due to the fact that each value of the input parameter leads to
a vortex shedding with different frequency and characteristic length. Somehow we can imagine the manifold
of solutions to be constituted of infinitely many flow patterns which become more and more out of phase one
with respect to the others as time evolves. Consequently, even if we start with a low rank initial condition
(or even deterministic) the rank of the solution will significantly increase in time. This can be verified by
looking at the evolution of the eigeinvalues of the covariance operator in Figure 8 (left). Consider for instance
the POD method [3] [5], in which the approximate solution is sought as a linear combination of (deterministic
and fixed in time) precomputed modes. For a fixed value of Reynold’s number the solution is periodic and
the vortex shedding can be well reproduced as a linear combination of few pairs of modes with alternating
symmetry properties: the dynamics of the solution is approximately low rank (or well approximated in a low
dimensional manifold), at least once the vortex shedding is fully developed. On the other hand it has been
shown (see for instance [33] [28] for details), that the span of the eigen-modes changes significantly with the
Reynold’s number, making the POD approach very sensitive to the choice of the parameters used to compute
the snapshots. Indeed POD techniques may fail to capture the dynamics for values of the Reynold’s number
different from those used to pre-compute the modes. We are interested in understanding if the dynamical
approach of the DLR method can, at least partially, overcome this problem. In particular we analyze the
performance of the Dual DO method in describing both the transient period and the long term periodic
dynamics.

5.1.1 Dual DO system and numerical discretization

We apply the Dual DO formulation to the Navier Stokes (NS) equations derived in Section 4. By isolating
the mean, the Dual DO approximate solution is written as:

uS(x, t, ω) = ūS(x, t) +

S−1∑
i=1

Ui(x, t)Yi(t, ω) + US(x, t)Z(ω)
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where Z is the random variable in (54), and u∗S = uS − ūS belongs to the low dimensional manifold:

Mg1(t)
S,div =

{
uS =

S∑
i=1

UiYi s.t. uS|Γin
= g1(t), Ui ∈ H1

div, Yi ∈ L2
0(Ω), E[YiYj ] = δij , rank(M) = S − 1

}

Let B denote the third order tensor defined as Bijk := E[YiYjYk], the Dual DO system for this problem
reads:

˙̄uS − ν∆ūS + ūS · ∇ūS +
S∑
i=1

Ui · ∇Ui +∇p̄S = 0

∇ · ūS = 0

ūS|Γin
= ḡ

(55)


U̇k − ν∆Uk +

S∑
i=1

S∑
j=1

BijkUi · ∇Uj + Uk · ∇ūS + ūS · ∇Uk +∇pk = 0 k = 1, ..., S

∇ ·Uk = 0

U1|Γin
= v1 Uk|Γin

= 0 for k 6= 1

(56)

S−1∑
i=1

MkiẎi + Π⊥1∪Y < Uk,

S∑
i=1

S∑
j=1

Ui · ∇Uj > YiYj = 0 k = 1, ..., S − 1 (57)

YS = Z (58)

No slip conditions on the top, bottom and cylinder side-walls and homogeneous Neumann boundary
conditions on the outflow are applied for ūS ,U1, ...,US . Observe that the Dual DO system (55)-(58) reduces
to S + 1 (coupled) Navier Stokes equations, plus a system of S − 1 ODEs. However playing with the time
discretization it is possible to decouple the system to save computational time and effectively compute the
approximate solution without losing the stability. In particular we used a splitting scheme of “Gauss-Seidel”
type to linearize and completely decouple the system of ODEs from the system of PDEs. Specifically both
the third order tensor B and the projection operator Π⊥1∪Y(·) are treated explicitly whereas the update of
the random variables {Yi} is done on the newly computed basis {Ui}. In particular, denoting by unS =
ūnS + Un(Yn)T the approximate solution at time tn = n∆t, equations (55) and (56) are discretized in time
as follows:

1
∆t

ūn+1
S − ν∆ūn+1

S + ūn
S · ∇ūn+1

S +∇p̄n+1
S = 1

∆t
ūn
S −

S∑
i=1

Un
i · ∇Un

i

1
∆t

Un+1
k − ν∆Un+1

k + (ūn
S +

S∑
i=1

Bn
ikkU

n
i ) · ∇Un+1

k +∇pn+1
k = 1

∆t
Un

k −
S∑

j=1
j 6=k

S∑
i=1

Bn
ijkU

n
i · ∇Un

j −Un
k · ∇ūn

S

In conclusion at each time step we first solve in parallel S+1 decoupled deterministic NS equations and then
a system of S − 1 ODEs. We chose to discretize functions defined in the physical space by a Finite Element
method, with P2 elements for the velocity and P1 for the pressure, to ensure that the inf-sup condition is
satisfied at the discrete level. Then each of the S + 1 deterministic NS equations system is solved by using
the Chorin-Teman projection scheme with rotational incremental pressure correction [42]. The system of ODEs
is instead discretized by using the Stochastic Collocation method with Gauss-Legendre points (the stochastic
space has been parametrized by a uniform random variable, according with the input data).
The first difficulty in applying the Dual DO method concerns the initialization of the modes. Indeed, the
initial condition is deterministic, i.e. a zero rank random field, but the rank is expected to increase in time,
due to the randomness in the boundary data and the non linearity of the problem. It follows that we may
expect S > 1 modes to be needed to effectively describe the dynamics of the solutions. In practice we look
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Figure 2: Left: time evolution of the approximation error in norm H1(D) ⊗ L2(Ω) with S = 7 modes (and S = 11,
dashed lines). In blue the best approximation error, in red the approximation error of DO method with projected
boundary conditions ( [38] [39]), in green approximation error of the Dual DO with strong imposition of boundary
constraints. Right: The second stochastic mode of the KL decomposition of the reference solution (green) and
the DO approximate solution (red dashed line) with S = 5 at time T = 1, T = 2, T = 3

for the Dual DO approximate solution uS even if the initial condition has clearly defective rank. We initialize
the last random mode to Z in (54) and the first S − 1 to an orthonormal polynomial basis in Z⊥, whereas
the deterministic modes are set to zero. Observe that uS does not belong to the approximation manifold
Mg1(t)

S,div at least at the initial time steps. This is a common problem of DLR methods and may arise even if
the initial solution is full rank, because nothing prevent the DLR solution to become rank deficient at some
point in time. To treat the case of rank deficiency here we used the same strategy proposed in [32] that
consists in diagonalizing the correlation matrix M at each time step and solving the equations only for the
eigen-modes with eigenvalues larger than a prescribed (small) tolerance, whereas the other modes are kept
constant in time. By this way, the stochastic coefficients associated to deterministic modes with L2 norm
below the threshold, have a negligible influence on the approximation of the solution. However, they are kept
in the approximation and may become active again at a later time when the rank of the solution increases.
See [32] for more details. We mention that an alternative strategy to treat rank deficiency is proposed in [26],
in the context of time dependent matrices, which makes use of a projector splitting integrator.

Numerical results

First of all we assess the accuracy of the Dual DO formulation with constraints according to which the
random boundary conditions are imposed strongly. This technique is compared to the one proposed in [38]
that consists in projecting the boundary data in the subspace spanned by the random modes at each time.
The approximation error is calculated with respect to the reference solution computed by using the Stochastic
Collocation method with Gauss-Legendre points and with the same discretization parameters in time and
space. In Figure 2 (left) we compare the approximation error in norm H1(D)⊗ L2(Ω) for the two strategies
with S (number of modes) equal to 7 and 11. We observe that for the problem under consideration the strategy
proposed here exhibits a smaller error for long time integration. We stress that for this problem the first
random mode is fixed and distributed as Z in (54) while the other S−1 random modes, initialized to a arbitrary
orthonormal basis in the orthogonal complement to Z , “automatically” adapt to the structure of the solution.
In Figure 2 (right) and Figure 3 we compare the random modes of the Dual DO approximate solution to the
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Figure 3: Left: The third stochastic mode of the (constrained) KL decomposition (green) of the reference solution and of
the Dual DO approximate solution (red dashed line) with S = 5 at time T = 1, T = 2, T = 3 seconds (left)
and S = 11 at time T = 3, T = 4, T = 5 (right). seconds

random modes of the best rank S approximation at different times. We recall that we denote by uKLS the
solution to problem (40), namely the best S rank approximation in Mg1(t)

S,div , the approximation manifold with
constraints. As expected the accuracy in the evolution of the random basis depends on the number of modes
used to compute the Dual DO approximate solution: the modes stay closer and closer to the optimal ones
(and for longer time interval) as S increases. In the first part of the transition phase the stochastic modes
properly adapt in time also when very few modes are used, whereas the effectiveness of the method tends
to decrease for long time intervals, see Figure 2 (right) and Figure 3 (left). Better agreement for longer
times is achieved by increasing the number of modes, Figure 3 (right). Similar conclusions can be drawn by
analyzing the deterministic modes, see Figure 4 and Figure 5.
We conclude this section by analyzing the rate of convergence of the Dual DO method with respect to the
number of modes. The Dual DO approximation error is again computed in norm H1(D)⊗L2(Ω) with respect to
the reference solution computed by using the Stochastic Collocation method and with the same discretization
parameters in time and space. In Figure 6 and Figure 7 we compare the Dual DO approximation error to the
best approximation error as S increases and at different times. First of all we observe that the approximation
error increases in time, due to the intrinsic nature of the exact solution whose rank quickly increases until
reaching a stable level when the vortex shedding is fully developed. In particular during the initial phase, for
a fixed number of modes, both the DO and the Karhunen-Loève approximation error increase in time, which
means that an increasing number of modes are needed to achieve a certain level of accuracy. We observe,
however, in Figure 6 that the Dual DO approximation error stays very close the best approximation error and
exhibits the same rate of convergence with respect to the number S of modes, until T ≈ 2.4. On the other
hand, Figure 7 shows that the difference between the Dual DO and the best approximation error tends to
increase in time when the solution finally reaches the periodic phase. At this stage we observe that the best
approximation error stabilizes in time (or slightly decreases). On the other hand, the error of the Dual DO
approximation is considerably larger and the convergence rate with respect to S seems to be worse than the
one of the best approximation. This result is consistent with the quasi optimal error estimate derived in [32]
for linear parabolic problems in which the proportionality constant increases in time.
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Figure 4: The first deterministic mode of the Dual DO approximate solution with S = 11 (on the left) and the first KL
eigen-mode of the reference solution (on the right) at t = 0.6, t = 1.6, t = 2, t = 2.4 and t = 5.2.

Figure 5: The second deterministic mode of the Dual DO approximate solution with S = 11 (on the left) and the second
KL eigen-mode of the reference solution (on the right) at t = 0.6, t = 1.6, t = 2, t = 2.4 and t = 5.2.
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Figure 6: The Dual DO approximation error (red) and the KL truncation error (blue) in norm H1(D)⊗L2(Ω) with respect
to the number of modes, at different time steps (transition phase).
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Figure 7: The Dual DO approximation error (red) and the KL truncation error (blue) in norm H1(D)⊗L2(Ω) with respect
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points. Middle: Decay of the eigenvalues of the Karhunen-Loève decomposition of the reference solution
without (red dashed line) and with (blue solid line) time rescaling at different times. Right: the time evolution
of the eigenvalues of uKL, i.e. the Karhunen-Loève decomposition of the reference solution with time rescaling.
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5.1.2 Time rescaling

The poor performance of the Dual DO method, as any other reduced order method, in efficiently approximate
the problem in Section 5.1 for long times, is justified by the intrinsic nature of the solution whose structure
is not apt to be well approximated in low rank format. This can be verified by looking at the evolution of
the eigenvalues of the covariance operator in Figure 8 (Left): the eigenvalues increase fast and many of them
reach not negligible values. Figure 7 shows the rate of convergence for the Karhunen-Loève approximation,
i.e. the best approximation with respect to the number of modes in norm L2(D)⊗L2(Ω). We observe that the
decay of the singular values is relatively slow. Moreover we see that the decay significantly changes in time,
meaning that the problem is not apt to be approximated by low rank methods with fixed rank. To overcome
these problems we propose here a strategy aiming at reformulating the original problem in a new coordinate
system in order to obtain a solution that can be suitably approximated in low-rank format. First of all we
recall that, for deterministic values of the input parameter, namely for a fixed value of the Reynold’s number,
the flow features a periodic vortex shedding. In this case POD procedures from snapshots properly collected
at different time instants, leads to accurate reconstructions of the solution with few modes. However, as
numerically shown e.g. in [33] [28], the accuracy of these methods rapidly deteriorates as one slightly moves
away from the parametric value used for the construction of the basis. This is because the input parameters
affect the frequency and the length of the recirculation region. In particular when the boundary conditions at
the inflow are modeled as in (54), the solutions are velocity fields with varying vortex shedding frequencies
which become more and more “out of phase” as time evolves (this explains the increasing rank of the solution
in time). In light of that, our goal is to find a transformation which realigns all the solutions and keeps the
rank small. For this purpose, we make use of an empirical formula [44] that linearly relates the vortex shedding
frequency to the maximum velocity at the inflow: fs ∝ Umax

D (where D here is the diameter of the cylinder).
We recall that for the problem under consideration Umax = Um + σz(ω) so we claim that the frequency is
linear in the random parameter z. Then, let us consider the fluid motion from a Lagrangian point of view. We
define X(x, s; t) the trajectory of the particle that at the instant t = s passes through the point x, and we
denote by τ = t − s the interval of time that the same particle needs to go from x to x1 = X(x, s; t). We
recall that the Navier Stokes equations can be written in Lagrangian form as:{

Du
Dt − ν∆u +∇p = f

∇ · u = 0
(59)

Observe, however, that in our case the motion is a random field. This implies that, depending on the realization
ω, the same particle will need a random interval of time to go from x to x1. Because of that we define
X(x, s; τ(ω)) the trajectory of the particle that for the realization ω was in x at time s. Observe that now the
time is function of the random variable as also the period of the vortex shedding, defined T = 1

fs
. Our purpose

is to find an explicit formula relating T to ω and recover the Eulerian formulation of the motion expressed in
terms of the new (random) time variable τ , with respect to which, the period of motion is almost deterministic.
By using the empirical formula fs ∝ Um+σz(ω)

D , we define the new time variable as:

(t, ω)→ τ(t, ω) :=
Um + σz(ω)

Um
t

(in the following we denote with α(ω) = Um+σz(ω)
Um

) and we denote with û the velocity field as a function of
τ (instead of t): {

û(x, τ(t, ω)) = ∂X
∂τ (x, s; τ(t, ω))

X(x, s; τ(s, ω)) = x(ω)
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Figure 9: Left: H1(D) ⊗ L2(Ω) approximation error with time rescaling. The Dual DO approximation error (red) is
compared to the best approximation error (blue) as the number of modes increases and at different time steps.
Right: the Dual DO approximation error without (red) and with rescaling (blue, denoted by DOT ) and the
best approximation error, all computed in norm H1(D)⊗L2(Ω) and w.r.t. the reference solution in the original
coordinates.

Observe that û = 1
α(ω)

∂X
∂t = 1

α(ω)u. Then we can rewrite the first equation in (59) with respect to û and τ
and we obtain:

α2Dû

Dτ
− αν∆û +∇p = f

or equivalently
∂û

∂τ
+ û · ∇û− 1

α
ν∆û +∇p̂ = f̂

In conclusion the problem becomes:{
∂û
∂τ + û · ∇û− 1

αν∆û +∇p̂ = 0

∇ · û = 0
(60)

with deterministic boundary conditions at the inflow:

û(x, ω, τ) = (4Ūx2(H − x2)/H2, 0) x = (x1, x2) ∈ Γin

Observe that now the diffusion coefficient is a random variable. We now apply the Dual DO method to problem
(60) and we recover the approximate solution of the original problem as uS(x, ω, t) = α(ω)ûS(x, ω, τ(t, ω)).
The advantage is that û can be more easily approximated in low rank format. Indeed the rate of decay of the
singular values of û is significantly faster that the one of u, see Figure 8 (Middle). Figure 8 (Right) shows
instead the time evolution of the eigenvalues of the covariance function of û. In Figure 9 (Left), the Dual DO
approximation is compared to the optimal one. The error is computed in H1(D)⊗L2(Ω) norm for û, so before
recovering the approximate solution in the original coordinates. We see that good levels of accuracy can be
achieved with very few modes.
We conclude by analyzing the accuracy of the time rescaling technique, once the approximate solution uS =

αûS in the original coordinates is recovered. The performances of the time rescaled Dual DO are compared
to the Dual DO method applied directly to the original problem (Section 6.2). In Figure 9 (Right) we compare
the approximation error of the two approaches: Dual DO approximation without or with time rescaling. Both
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Figure 10: Left: Computational mesh of the carotid artery, having 171123 cells and 34246 vertices. Right: The flow rate
at the center of the inflow surface. The data correspond to two heart beats, with an initial quadratic ramp to
go smoothly from zero flow rate to the physiological one.
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Figure 11: Left: Time evolution of the maximum flow rate in the stochastic collocation points. It corresponds to two
heart beat (plus an initial smoothing to agree with the uniform initial condition). Right: Inlet profile in the
stochastic collocation points.

the approximate solutions are compared to the reference solution in the original coordinates and the error is
computed in H1(D)⊗L2(Ω) norm. We see that remarkable advantages are obtained by the second approach.
Good levels of accuracy can be obtained with very few modes and the error appears to be also smaller than the
optimal approximation error of u (solution without time rescaling) with the same number of modes. However
we remark that the error tends to increases for long time, probably due to the fact that we use an empirical
formula to approximate the frequency of the solution, quantity that also is very sensitive to computational
errors. However this problem seems to be overcome by increasing the number of modes. For the example
under consideration, 5 modes are enough to achieve very good levels of accuracy which remains approximately
constant in time for the whole computational time interval.

5.2 Hemodynamic application

We now consider the Dual DO method for a hemodynamic problem with real data. Here the Dual DO
method has been applied to simulate the blood flow in a realistic carotid artery reconstructed from MRI data
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Figure 12: Left: Dual DO approximation error (blue) compared to the best approximation error under boundary con-
straints. The error is computed in norm [H1(D)]3 ⊗ L2(Ω) with a number of modes S = 5. Right: Dual DO
approximation error of the mean in norm [H1(D)]3 with a number of modes S = 5.

(MRI images from the Vascular-surgery and Radiology Divisions at Fondazione IRCSS Ca’ Granda, Ospedale
Maggiore Policlinico, Milan): in Figure 10 (left) the mesh used in the numerical simulation, having 171123

cells and 34246 vertices; Figure 10 (right) shows the physiological pulse wave velocity imposed at the inlet,
which corresponds to two heart beats. We apply a non-homogeneous Dirichlet boundary condition at the
inflow, a homogeneous Neumann condition at the outflow and non-slip conditions at the arterial walls. We
assumed random inflow conditions due to possible errors in the Doppler measurements of the axial blood
velocity at the inflow section. Specifically at the inlet we consider a parabolic velocity profile perturbed by
two uniform and independent random variables Z1 and Z2 in [−1, 1] that vary the maximum flow rate and
slightly the shape:

u|Γin
(x, t, ω) =

(
0, 0, (fb(t)+Z1(ω))(1−(

x1 − x1
c

R
)2−(

x2 − x2
c

R
)2)+Z2(ω) cos(

9(x1 − x1
c)

2R
π) cos(

9(x2 − x2
c)

2R
)
)

(61)
(x1
c , x

2
c) are the coordinates of the center of the inflow section, R is the radius and fb is the flow rate in figure

10 (right). In Figure 11, the maximum flow rate (left) and the inlet profile (right) for different values of Z1 and
Z2 is shown. We refer to [4, 34] for the details about the typical numerical and physiological parameters.
We consider the Dual DO formulation with the isolation of the mean describe in Section 4. Let us write the
boundary conditions at the inflow as:

u(x, t, ω) = ḡ(x, t) + g2(x, t, ω) x ∈ Γin

g2(x, t, ω) =
(

0, 0, (Z1(ω))(1− (
x1−x1

c

R )2 − (
x2−x2

c

R )2) + Z2(ω) cos(
9(x1−x1

c)
2R π) cos(

9(x2−x2
c)

2R )
)

and let Mg2(t)
S,div denote the manifold of all the divergence free S rank random fields that satisfy the boundary

condition g2(t) in ΓD for a fixed t ∈ [0, T ]. Hence the approximate solution is sought in the form:

uS(x, t, ω) = ūS(x, t) +

S−2∑
i=1

Ui(x, t)Yi(t, ω) +

2∑
i=1

Ui(x, t)Zi(ω)︸ ︷︷ ︸
u∗S

where u∗S(·, t, ·) = uS − ūS belongs to Mg2(t)
S,div and ūS is equal to ḡ on ΓD . The Dual DO reduced system

is as in (55). By using the same discretization technique discussed in Section 5.1.1, at each time step we
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Figure 13: On the left the standard deviation of the solution at time t = 1.6 during the second simulated heart beat. On
the right we compare the mean of the Dual DO approximate solution computed with 5 modes (right) (S = 5)
to the mean of the reference solution at the same time. We observe that the approximate solution effectively
describes the dynamic and allow to accurately quantify the variability of the solutions.

solve S + 1 decoupled deterministic PDEs and S − 2 ODEs. We report here the results obtained for S = 5.
In Figure 12 (left) we compare the Dual DO and the best approximation error in norm [H1(D)]3 ⊗ L2(Ω) as
time evolves. We observe that the two errors are proportional and the Dual DO approximate solution stays
close to the best S rank approximation. The same conclusions can be drawn by comparing the Dual DO
approximation of the mean to the mean of the reference solution, see Figure 12 (right) and Figure 13. Finally
in Figure 14,15, 16 we compare the Dual DO modes to the modes of the best approximation. We see that
the Dual DO modes adapt properly to describe the variability of the solution. In conclusion for this case the
Dual DO method leads to very good results, in term of accuracy versus computational cost.

Figure 14: The first deterministic mode of the Dual DO approximate solution with S = 5 (on the top) compared and the
first eigen-mode of the best approximate solution (on the bottom) at different time
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Figure 15: The second deterministic mode of the Dual DO approximate solution with S = 5 (on the top) compared and
the first eigen-mode of the best approximate solution (on the bottom) at different time

Figure 16: The third deterministic mode of the Dual DO approximate solution with S = 5 (on the top) compared and the
first eigen-mode of the best approximate solution (on the bottom) at different time
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6 Conclusion

In this work we have proposed a convenient strategy to strongly impose random Dirichlet boundary conditions
in the dynamically low rank approximation of parabolic PDEs with random parameters. We showed that the set
of S rank random fields, constrained to satisfy an approximation of the boundary datum of the exact solution,
can be equipped with a structure of differential manifold, allowing for a parametrization of its tangent space
in terms of dynamical constraints on the stochastic coefficients. To do so we proposed a Dual DO formulation
in which the stochastic modes are kept orthonormal. Under the assumption that the boundary datum g can
be properly approximated by a linear combination gM of M < S terms written in separable form, we fixed
M stochastic modes in the approximate solution equal to those in the decomposition of gM . This allowed
us to identify the proper boundary conditions for each (time dependent) deterministic mode and guarantees
that the boundary constraint is fulfilled at each time. We obtained a reduced system which consists of a
set of S coupled PDEs for the evolution of the deterministic modes, M of which with non homogeneous
boundary conditions, coupled with S −M ODEs for the evolution of the stochastic modes. This resulted in
an efficient dynamical low rank approximation which accurately takes into account the randomness arising
from the boundary data at the price of a slightly reduced flexibility in the evolution of the random modes.
Furthermore, we observed that Dual DO formulation is also very convenient to include the incompressibility
constraint, when dealing with incompressible Navier Stokes equations. Indeed we were able to effortlessly
imposed the solenoidal constraint in each deterministic mode, facilitated by the fact that in the Dual DO
formulation no numerical orthonormalization or dynamic constraint is required in the deterministic modes. In
conclusion Navier Stokes equations with random parameters, including random Dirichlet boundary conditions,
has been reduced to S coupled deterministic PDEs of Navier Stokes type and a system of S −M stochastic
ODEs.
We tested the potential and limitations of the proposed method on the classical benchmark 2D problem of an
incompressible viscous fluid flowing around a cylindrical obstacle in a channel at moderate Reynold numbers
Re∈ [80, 120], by adding some randomness in the inflow velocity. The numerical results obtained show good
performance of the method, at least at the initial phase, but a loss of accuracy for long time integration. We
observed that this is intrinsically due to the fact that the flow patterns become more and more out of phase one
with respect to the others, as time evolves, requiring an increasing rank in time to keep a prescribed accuracy
level. We numerically showed that a simple time rescaling based on an empirical linear relation between
Reynolds number and shedding frequency considerably improves the performance of the method and allows
to “rephase” all solutions. Finally we highlighted the potentiality of the Dual DO method for biomedical
applications, by simulating blood flows in a realistic carotid artery reconstructed from MRI data, with random
inflow boundary conditions. The numerical results reported here, show that good level of accuracy can be
achieved with only few modes.
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