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An adaptive sparse grid algorithm for elliptic
PDEs with lognormal diffusion coefficient

F. Nobile, L. Tamellini, F. Tesei and R. Tempone

Abstract In this work we build on the classical adaptive sparse grid algorithm (T.
Gerstner and M. Griebel, Dimension-adaptive tensor-product quadrature), obtaining
an enhanced version capable of using non-nested collocation points, and supporting
quadrature and interpolation on unbounded sets. We also consider several profit
indicators that are suitable to drive the adaptation process. We then use such algorithm
to solve an important test case in Uncertainty Quantification problem, namely the
Darcy equation with lognormal permeability random field, and compare the results
with those obtained with the quasi-optimal sparse grids based on profit estimates,
which we have proposed in our previous works (cf. e.g. Convergence of quasi-optimal
sparse grids approximation of Hilbert-valued functions: application to random
elliptic PDEs). To treat the case of rough permeability fields, in which a sparse grid
approach may not be suitable, we propose to use the adaptive sparse grid quadrature
as a control variate in a Monte Carlo simulation. Numerical results show that the
adaptive sparse grids have performances similar to those of the quasi-optimal sparse
grids and are very effective in the case of smooth permeability fields. Moreover,
their use as control variate in a Monte Carlo simulation allows to tackle efficiently
also problems with rough coefficients, significantly improving the performances of a
standard Monte Carlo scheme.
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1 Introduction

In this work we consider the problem of building a sparse grid approximation of
a multivariate function f (y) : Γ → V with global polynomials, where Γ is an N-
dimensional hypercube Γ = Γ1×Γ2× . . .×ΓN (with Γn ⊆ R, n = 1, ...,N), and V
is a Hilbert space [6, 3, 28, 25, 1]. We also assume that each Γn is endowed with
a probability measure ρn(yn)dyn, so that ρ(y)dy = ∏

N
n=1 ρn(yn)dyn is a probability

measure on Γ . This setting is common in many optimization and Uncertainty Quan-
tification problems, where sparse grids have been increasingly used to perform tasks
such as quadrature, interpolation and surrogate modeling, since they allow for trivial
parallelization and maximal reuse of legacy codes, with little or no expertise required
by the end-user. While very effective for moderate dimensions (say N ≈ 10), the
basic sparse grid algorithms show a significant performance degradation when N
increases (the so-called “curse of dimensionality” effect). The search for advanced
sparse grid implementations, ideally immune to this effect, has thus become a very
relevant research topic.

A general consensus has been reached on the fact that the “curse of dimensionality”
should be tackled by exploiting the anisotropy of f , i.e. by assessing the amount of
variability of f due to each parameter yi and enriching the sparse grid approximation
accordingly. Two broad classes of algorithms can be individuated to this end: those
that discover the anisotropy structure “a-posteriori”, i.e. at run-time, based on suitable
indicators, and those based on “a-priori” theoretical estimates, possibly aided by some
preliminary computations (we refer to the latter as “a-priori/a-posteriori” methods). A-
priori algorithms based on a sharp theoretical analysis save the cost of the exploration
of the anisotropy structure, while a-posteriori approaches are to a certain extent more
flexible and robust. Focusing on the field of Uncertainty Quantification, examples of
a-priori/a-posteriori algorithms can be found e.g. in [26, 4, 25], while the classical
a-posteriori algorithm originally proposed in [17] has been further considered e.g. in
[8, 27, 31].

A-posteriori sparse grid algorithms have always been used in the literature in
combination with nested univariate quadrature rules, since this choice eases the com-
putation of the anisotropy indicators, cf. [17]. In Uncertainty Quantification it is quite
natural to choose univariate quadrature points according to the probability measures
ρn(yn)dyn, see e.g. [1]: hence, one is left with the problem of computing good univari-
ate nested quadrature rules for the probability measures at hand. While the case of the
uniform measure has been thoroughly investigated and several choices of appropriate
nested quadratures are available, like Leja, Gauss–Patterson or Clenshaw–Curtis
points (see e.g. [24, 25] and references therein), non-uniform measures have been
less explored. In the very relevant case of normal probability distribution a common
choice is represented by Genz-Keister quadrature rules [16]; however, the cardinality
of such quadrature rules increases very quickly when moving from one quadrature
level to the following one, hence leading to an heavy computational burden when
tensorized in a high-dimensional setting. The very recent work [23] develops instead
generalized Leja quadrature rules for arbitrary measures on unbounded intervals: the
main advantage of such quadrature rules over the Genz-Keister points is that two
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consecutive quadrature rules differ by one point only, rendering the Leja points more
suitable for sparse grids construction. In this work we will approach the problem
from a different perspective and propose a slight generalization of the classical a-
posteriori adaptive algorithm that allows to use non-nested quadrature rules: this
immediately permits to build adaptive sparse grids using gaussian-type quadrature
nodes, which are readily available for practically every common probability measure.
We will also consider different profit indicators and compare the performances of the
corresponding adaptive schemes.

We will then test our version of the adaptive algorithm on a classical Uncertainty
Quantification test problem, i.e. an elliptic PDE describing a Darcy flow in a porous
medium, whose diffusion coefficient is modeled as a lognormal random field [5, 14,
7, 18, 9] and discretized by a Karhunen–Loève expansion. The covariance structure
of the random field will be described by a tensor Matérn covariance model [11],
which is a family of covariance structures parametrized by a scalar value ν that
governs the smoothness of each realization of the random field and includes the
Gaussian and the Exponential covariance structure as particular cases (ν = ∞ and
ν = 0.5, respectively); more specifically, we will first consider the case ν = 2.5, that
results in fairly smooth random field realizations, and then move to the rough case
ν = 0.5, which leads to continuous but not differentiable field realizations. In both
cases we will compare the performance of the adaptive sparse grid procedure with
the “a-priori/a-posteriori” quasi-optimal sparse grid proposed in [5] for the same
problem.

In the case ν = 2.5, the lognormal random field can be very accurately described
by including a moderate number of random variables in the Karhunen–Loève expan-
sion, and a sparse grid approach to solve the Darcy problem is quite effective. Note
however that we will not fix a-priori the number of random variables to be consid-
ered, but rather propose a version of the adaptive algorithm that progressively adds
dimensions to the search space, thus formally working with N = ∞ random variables.
Yet, even such dimension adaptive sparse grids (as well as the quasi-optimal ones)
may suffer from a deterioration of the performance when the lognormal random
field gets rougher. In particular, in the case ν = 0.5, numerical experience seems to
indicate that their performance might be asymptotically not better than a standard
Monte Carlo method. Thus, in this case we will actually compare the performances
of the adaptive and quasi-optimal sparse grids in the framework proposed in [29],
in which they will be applied to a smoothed version of the problem (where a sparse
grid approach can be effective), and the results used as control variates in a Monte
Carlo approach.

The rest of the paper is organized as follows. We start by introducing the general
construction of sparse grids in Section 2. Then, we discuss in detail the construction
of the quasi-optimal and adaptive sparse grids in Section 3: in particular, we will
setup a common framework for the two methods in the context of the resolution
of discrete optimization problems, and specify the details of the two algorithms in
Sections 3.1 and 3.2 respectively. The details of the Darcy problem are presented
in Section 4, and in particular we will describe the dimension adaptive algorithm
in Section 4.1 and the Monte Carlo Control Variate approach in Section 4.2. The
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numerical results are shown in Section 5, while Section 6 presents the conclusions of
this work.

In what follows, N will denote the set of integer numbers including 0, and N+

that of integer numbers excluding 0. Given two vectors v,w ∈ NN , |v|0, |v|1, |v|2
denote respectively the number of non-zero entries of v, the sum of their absolute
values and the euclidean norm of v, and we write v ≤ w if and only if v j ≤ w j
for every 1 ≤ j ≤ N. Moreover, 000 will denote the vector (0,0, . . . ,0) ∈ NN , 1 the
vector (1,1, . . . ,1) ∈ NN , and e j the j-th canonical vector in RN , i.e. a vector whose
components are all zero but the j-th, whose value is one. To close our introduction,
we recall the definition of some functional spaces that will be useful in the following.
In particular, we will need the weighted Lp spaces

Lp
ρ(Γ ;V ) =

{
f : Γ →V s.t.

∫
Γ

‖ f (y)‖p
V ρ(y)dy < ∞

}
, ∀p ∈ (0,∞),

and the space of continuous functions with weighted maximum norm

C0
π(Γ ;V ) =

{
f : Γ →V s.t. f is continuous and max

Γ
‖ f (y)‖V π(y)< ∞

}
,

where π = ∏
N
n=1 πn(yn),πn : Γn→ R, is a positive and smooth function. The reasons

for introducing two different weight functions ρ and π will be clearer later on. Ob-
serve in particular that since V and L2

ρ(Γ ) are Hilbert spaces, L2
ρ(Γ ;V ) is isomorphic

to the tensor space V ⊗L2
ρ(Γ ), and is itself an Hilbert space.

2 Sparse grid approximation of multivariate functions

As already mentioned in the introduction, we consider the problem of construct-
ing a sparse grid approximation with global polynomials of the V -valued mul-
tivariate function f , defined over the hypercube Γ with associated probability
measure ρ(y)dy = ∏

N
n=1 ρn(yn)dyn. More precisely, we will consider functions f

that are continuous with respect to y and with finite variance, i.e. belonging to
L2

ρ(Γ ;V )∩C0
π(Γ ;V ) for some suitable weight π (which can be often taken equal

to ρ , but not always, as indeed in certain instances of the stochastic Darcy prob-
lem we will consider in the numerical part of this paper, see e.g. [1, 19]). Observe
that approximating f with global polynomials is a sound approach if f is not just
continuous, but actually a smooth function of y, see [1, 25]. Sparse grids based on
piecewise polynomial approximations, which are suitable for non-smooth or even
discontinuous functions, have been developed e.g. in [20, 15].

To begin with the construction of the sparse grid, we consider a sequence
{Um(in)

n }in∈N of univariate Lagrangian interpolant operators along each dimension Γn
of the hypercube Γ ,

U
m(in)
n : C0

πn(Γn)→ Pm(in)−1(Γn),
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where m(in) denotes the number of collocation points used by the in-th interpolant,
and Pq(Γn) is the set of polynomials in yn of degree at most q. The function m :N→N
is called “level-to-nodes function” and is a strictly increasing function, with m(0) = 0
and m(1) = 1; consistently, we set U0

n[ f ] = 0. Next, for any i ∈ NN
+ we define the

tensor interpolant operator

Tm
i [ f ](y) =

N⊗
n=1

U
m(in)
n [ f ](y), (1)

and the hierarchical surplus operator

∆∆∆
m(i) =

N⊗
n=1

(
U

m(in)
n −U

m(in−1)
n

)
. (2)

A sparse grid approximation is built as a sum of hierarchical surplus operators; more
specifically, we consider a sequence of index sets I(w)⊂ NN

+ such that I(w)⊂ I(w+
1), I(0) = {1} and ∪w∈NI(w) = NN

+, and we define the sparse grid approximation of
f (y) at level w ∈ N as

Sm
I(w) : L2

ρ(Γ ;V )∩C0
π(Γ ;V )→ L2

ρ(Γ ;V ), Sm
I(w)[ f ](y) = ∑

i∈I(w)
∆∆∆

m(i)[ f ](y) . (3)

To ensure good approximation properties to the sparse approximation, the sum (3)
must be telescopic, cf. [17]: to this end we require that

∀ i ∈ I, i− e j ∈ I for 1≤ j ≤ N such that i j > 1.

A set I satisfying the above property is said to be a lower set or a downward closed
set, see e.g. [10]. The choice of the set I(w) plays a crucial role in devising effective
sparse grid schemes: the next section will be entirely devoted to the discussion of two
possible strategies to this end, namely the a-posteriori adaptive and the “a-priori/a-
posteriori” quasi-optimal procedures that have been mentioned in the introduction.

Further insight into the structure of sparse grid operators can be obtained by
rewriting (3) as a linear combination of tensor interpolant operators (1), see e.g. [30].
Assuming that I(w) is downward closed, we get indeed

Sm
I(w)[ f ](y) = ∑

i∈I(w)
ciT

m
i [ f ](y), ci = ∑

j∈{0,1}N
(i+j)∈I(w)

(−1)|j|. (4)

Observe that many of the coefficients ci in (4) may be zero: in particular ci is zero
whenever i+ j ∈ I(w) ∀j ∈ {0,1}N . The set of all collocation points needed by (4)
is actually called a sparse grid, and we denote its cardinality by WI(w),m. It is useful
to introduce the operator pts(S) that returns the set of points associated to a tensor /
sparse grid operator, and the operator card(S) that returns the cardinality of pts(S):
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Table 1 Common choices of univariate collocation points for sparse grids.

Collocation points

measure nested m(i)
Gauss–Legendre uniform no i
Clenshaw–Curtis uniform yes 2i−1 +1
Gauss–Patterson uniform yes 2i−1
Leja uniform yes m(i) = i or m(i) = 2i−1
Gauss–Hermite gaussian no i
Genz–Keister gaussian yes tabulated: m(i) = 1,3,9,19,35
generalized Leja gaussian yes i

card(Tm
i ) =

N

∏
n=1

m(in), card(Sm
I(w)) =WI(w),m . (5)

Finally, consider a sequence of univariate quadrature operators built over the same
set of points of {Um(in)

n }in∈N; it is then relatively straightforward to derive a sparse
grid quadrature scheme Qm

I(w)[·] starting from (4):

∫
Γ

f (y)ρ(y)dy≈
∫

Γ

Sm
I(w)[ f ]ρ(y)dy =

W m
I(w)

∑
j=1

f (y j)β j = Qm
I(w)[ f ], (6)

for suitable quadrature weights β j ∈ R.
Coming to the choice of the univariate collocation points used to build U

m(in)
n , as

mentioned in the introduction they should be chosen according to the probability
measure ρn(yn)dyn on Γn. Although the use of nested points seems to be particularly
indicated for the hierarchical construction (3), as the ∆∆∆

m(i) operator would entail
evaluations only on the new points added going from the tensor grid Tm

i−1 to Tm
i , at

this point any choice of univariate collocation points is allowed (see Table 1), and
in particular Gauss interpolation / quadrature points, associated to the underlying
probability density functions ρn(yn), have been widely used, cf. e.g. [2, 26, 13, 12].
Note however that non-nested interpolatory rules have not been used in the adaptive
context, for reasons that will be clearer in a moment; the aim of this work is to extend
the adaptive algorithm to non-nested quadrature rules.

3 On the choice of I(w)

In this section we detail two possible strategies to design the sequence of sets I(w).
To simplify the notation, let us assume that V = R, i.e. f is a real-valued N-variate
function over Γ , and that we are measuring the sparse grid approximation error by
some sublinear functional1 E [·], e.g. a semi-norm on Lp

ρ(Γ ) (we will give three such

1 A sublinear functional over a vector space X is a function Θ : X → R such that
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examples in the following). Furthermore, assume that the sparse grid approximation
converges ρ-a.e. to f , so that we can write f = Sm

NN
+
[ f ] = ∑i∈NN

+
∆∆∆

m(i)[ f ]. Then, we
have

E
[

f −Sm
I(w)[ f ]

]
= E

[
∑

i/∈I(w)
∆∆∆

m(i)[ f ]

]
≤ ∑

i/∈I(w)
E
[
∆∆∆

m(i)[ f ]
]
. (7)

Since the exact value of E
[
∆∆∆

m(i)[ f ]
]

may not be at disposal, we further define the
error contribution operator ∆E(i) as any computable (and hopefully tight) approxi-
mation of E

[
∆∆∆

m(i)[ f ]
]
, namely ∆E(i)≈ E

[
∆∆∆

m(i)[ f ]
]
. Moreover, we also introduce

the work contribution ∆W (i), i.e. the number of evaluations of f implied by the
addition of the hierarchical surplus operator ∆∆∆

m(i)[ f ] to the sparse grid approximation.
Observe that this is actually a quite delicate issue when using non-nested points as
discussed later on.

Upon having assigned an error and a work contribution to each hierarchical surplus
operator, the selection of the sequence of sets I(w) can be rewritten as a “binary
knapsack problem” [6, 22],

max ∑
i∈NN

+

∆E(i)xi s.t. ∑
i∈NN

+

∆W (i)xi ≤Wmax(w) and xi ∈ {0,1},

where Wmax(w) is the maximum computational work allowed for the approximation
level w. Note that we are not explicitly enforcing that the resulting sets I(w) be
downward closed (which will have to be verified a-posteriori).

While the binary knapsack problem is known to be computationally intractable
(NP-hard) its linear programming relaxation, in which fractional values of xi are
allowed, can be solved analytically by the so-called Dantzig algorithm [22]:

1. Assign a “profit” to each multi-index i,

P(i) =
∆E(i)
∆W (i)

; (8)

2. sort multi-indices by decreasing profit;
3. set xi = 1, i.e. add i to I(w), until the constraint on the maximum work is fulfilled.

In particular, whenever the multi-index 1+ en enters the set I(w) we say that the
random variable yn is activated.

Note that only the last multi-index included in the selection is possibly taken not
entirely (i.e. with xi < 1), whereas all the previous ones are taken entirely (i.e. with
xi = 1). However, if this is the case, we assume that we could slightly adjust the
computational budget, so that all xi have integer values; observe that such integer

• Θ(αx) = αΘ(x), ∀α > 0 and x ∈ X ;
• Θ(x+ y)≤Θ(x)+Θ(y), ∀x,y ∈ X .
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solution is also the solution of the original binary knapsack problem with modified
work constraint.

Both the quasi-optimal and the a-posteriori adaptive sparse grids strategies fit in
this general framework. What changes between the two schemes are just the choice
of the error indicator E [·] and the way ∆W (i) and ∆E(i) are computed.

3.1 Quasi-optimal sparse grids

In this section we briefly summarizing the quasi-optimal sparse grids construction,
see [25] for a thorough discussion. In this case, the error indicator E [·] is the L2

ρ -norm,
so that (7) becomes ∥∥∥ f −Sm

I(w)[ f ]
∥∥∥

L2
ρ

≤ ∑
i/∈I(w)

∥∥∥∆∆∆
m(i)[ f ]

∥∥∥
L2

ρ

,

and we need to provide a computable approximation
∥∥∥∆∆∆

m(i)[ f ]
∥∥∥

L2
ρ

≈ ∆E(i). Follow-

ing [25, 5, 4], this can be obtained by further introducing the spectral expansion
of f over a N-variate ρ̃-orthonormal polynomial basis ϕq(y) 2, with ρ̃ not neces-
sarily equal to ρ; for example, in the case where yn are uniform random variables,
ρn(yn) = 1/|Γn|, one is allowed to expand f on tensorized Chebyshev polynomials,
which are orthonormal with respect to ρ̃ = ∏

N
n=1 ρ̃n, with ρ̃n(yn) = 1/

√
1− y2

n. Next,
let us denote by fq the q-th coefficient of the ρ̃-expansion of f and by Mm(in)

n the
“C0

π → L2
ρ Lebesgue constant” of the univariate interpolant operators U

m(in)
n for a

suitable weight π , i.e.

Mm(in)
n = sup

‖ f‖
C0

π (Γn)
=1

∥∥∥Um(in)
n [ f ]

∥∥∥
L2

ρ (Γn)
.

Then, assuming that the coefficients fq are at least exponentially decreasing in each
yn, | fq| ≤C ∏n exp(−gnqn), and that ‖ϕq‖C0

π
≤C|q|0 , following [25] we have that

for a suitable constant C there holds∥∥∥∆∆∆
m(i)[ f ]

∥∥∥
L2

ρ

≤ ∆E(i) =C(N) | fm(i−1)|
N

∏
n=1

Mm(in)
n . (9)

Observe that in practical cases, the constant Mm(in)
n can be estimated numerically,

and computable ansatzes for fm(i−1) can be derived, so that it is possible to obtain
numerical estimates of the quantities ∆E(i). Such computable ansatzes depend on
the exponential coefficients g1, . . . ,gN , that can be conveniently precomputed with
a numerical procedure that requires O(N) evaluations of f . We will return on this

2 Here the n-th component of q denotes the polynomial degree with respect to yn.
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matter in the next sections, proposing an ansatz for the Darcy problem, as well as
giving details on the numerical procedure needed to estimate g1, . . . ,gN .

Concerning the work contributions ∆W (i), the definitions are different depending
on whether the family of nodes considered is nested or non-nested (see [25] for
details). In the former case, we can set

∆W (i) =
N

∏
n=1

(
m(in)−m(in−1)

)
, (10)

and there holds
WI(w),m = ∑

i∈I(w)
∆W (i),

i.e. the cardinality of the sparse grid is equal to the sum of the work contributions.
On the contrary, when considering non-nested points the number of new evaluations
of f needed by the addition of ∆∆∆

m(i) will depend in general on the set I to which
i is added to, i.e. if I,I′ are two index sets such that both I∪{j} and I′ ∪{j} are
downward closed, it can happen that

card(Sm
I∪{j}) 6= card(Sm

I′∪{j}), (11)

and nodes that are present in the sparse grid built over I are not necessarily present
in the one built over I∪{j}, i.e.

pts(Sm
I ) 6⊂ pts(Sm

I∪{j}). (12)

Therefore, we have to use the pessimistic estimate

∆W (i) =
N

∏
n=1

m(in) = card(Tm
i [ f ]), (13)

i.e. the cardinality of the entire tensor grid associated to i, which ensures

WI(w),m ≤ ∑
i∈I(w)

∆W (i).

Once the numerical values of ∆E(i) and ∆W (i) are available, the profits (8) and
the sequence of optimal sets I(w) can be computed right-away, and the sparse grid
construction can proceed. Thus, this algorithm is said to be “a-priori”/“a-posteriori”
since it relies on a-priori estimates whose constants g1 . . . ,gN need however to be
tuned numerically.
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3.2 An extended adaptive sparse grid algorithm

We now describe the adaptive sparse grid construction algorithm [17, 8, 27], and its
extension to non-nested points and unbounded intervals. To this end, we introduce
the concepts of margin and reduced margin of a multi-index set I, and the concept of
neighbors of a multi-index. The margin of I, which we denote by MI, contains all
the multi-indices i that can be reached within “one-step forward” from I, i.e.

MI = {i ∈ NN
+ : ∃ j ∈ I : |i− j|1 = 1}.

The reduced margin of I, denoted by R, is the subset of the margin of I containing
only those indices i such that “one-step backward” in any direction takes into I, i.e.

R = {i ∈ NN
+ : i− e j ∈ I, ∀ j = 1, . . . ,N : i j > 1} ⊂MI.

This means that the reduced margin of I contains all indices i such that I∪{i} is
downward closed, provided that I itself is downward closed. Furthermore, given an
index i on the boundary of I, we call neighbors of i with respect to I, neigh(i,I), the
indices j not included in I that can be reached with “one step forward” from i, so that
MI =

⋃
i∈I neigh(i,I).

Instead of computing the profits and the sets I(w) beforehand as in the quasi-
optimal algorithm, the idea of the adaptive algorithm is to compute the profits and
the sets I(w) at run-time, proceeding iteratively in a greedy way. More specifically,
given a multi-index set I and its reduced margin R, the adaptive algorithm operates
as follows:

1. the profits of i ∈ R are computed;
2. the index i with the highest profit is moved from R to I;
3. the reduced margin is updated and the algorithm moves to the next iteration, until

some stopping criterion is met (usually, a check on the number of evaluations of
f or on the values of the profits or error contributions of the multi-indices in R).

Note that the profits of the indices i ∈ R are computed by actually adding the
hierarchical surpluses to the sparse grid operator (as will be clearer in a moment),
hence the definition of “a-posteriori”; therefore, the outcome of the algorithm at each
iteration is the sparse gird approximation built on I∪R and not on I only.

In this work, we consider two different error indicators E [·], namely the absolute
value of the expectation of f −Sm

I(w)[ f ], which is a semi-norm on L1
ρ(Γ ), and the

weighted C0
π(Γ ) norm, so that (7) becomes∣∣∣∣E [ f ]−E [Sm

I [ f ]]
∣∣∣∣≤∑

i/∈I

∣∣∣E[∆∆∆ m(i)[ f ]
]∣∣∣,

‖ f −Sm
I [ f ]‖C0

π (Γ ) ≤∑
i/∈I

∥∥∥∆∆∆
m(i)[ f ]

∥∥∥
C0

π (Γ )
.
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To derive the error indicator ∆E(i) for the quantity E
[
∆∆∆

m(i)[ f ]
]
, let us consider an

arbitrary set I, and let J = I∪{i}, with both I,J downward closed index sets. For the
L1

ρ(Γ ) seminorm, we immediately have

E
[
∆∆∆

m(i)[ f ]
]
= E

[
Sm

J [ f ]−Sm
I [ f ]

]
= Qm

J [ f ]−Qm
I [ f ],

⇒ ∆E(i) = |Qm
J [ f ]−Qm

I [ f ]|. (14)

In the case of the C0
π(Γ ) norm, the computation is different for nested and non-nested

points. When using nested points we can set New = pts(Sm
J ) \ pts(Sm

I ), cf. eq. (5),
and, since the sparse grid operator is interpolatory (see e.g [3, Prop. 6]), we have
f (y) = Sm

J [ f ](y) for y ∈New. Thus∥∥∥∆∆∆
m(i)[ f ]

∥∥∥
C0

π (Γ )
=
∥∥∥ Sm

J [ f ]−Sm
I [ f ]

∥∥∥
C0

π (Γ )

≈ max
y∈New

∣∣∣(Sm
J [ f ](y)−Sm

I [ f ](y)
)

π(y)
∣∣∣

= max
y∈New

∣∣∣( f (y)−Sm
I [ f ](y)

)
π(y)

∣∣∣= ∆E(i). (15)

On the other hand, sparse grids built with non-nested points are not interpolatory, and
the set of points added to a sparse grid by ∆∆∆

m(i) is not unique, cf. eq. (11), as it depends
on the current index set I to which i is added. Thus, we define New = pts(Tm(i)) and
approximate∥∥∥∆∆∆

m(i)[ f ]
∥∥∥

C0
π (Γ )

=
∥∥∥ Sm

J [ f ]−Sm
I [ f ]

∥∥∥
C0

π (Γ )

≈ max
y∈New

∣∣∣(Sm
J [ f ](y)−Sm

I [ f ](y)
)

π(y)
∣∣∣= ∆E(i). (16)

We remark that the values of ∆E(i) defined in equations (14)-(16) do not depend on
the set I. This means that we can consider the indices of the reduced margin R in any
order, and that the values of ∆E(i) need not be recomputed at each iteration.

As for the work contribution ∆W (i), we consider the same indicators defined in
the quasi-optimal case, i.e. (10) for nested points and (13) for non-nested points,
which is equivalent to setting the work contributions equal to the cardinality of the
sets New introduced above. A third option is to consider ∆W (i) = 1, i.e. driving
the adaptivity only by the error contributions. This is the choice considered e.g. in
[8, 27], while [17, 21] combine ∆E(i) and ∆W (i) in a different way. To summarize,
we will drive the adaptive algorithm with any of the four profit definitions listed next,
whose formulas differ depending on whether nested or non-nested points are used:

• “deltaint”: set ∆E(i) as in (14) and ∆W (i) = 1;
• “deltaint / new points” combine ∆E(i) as in (14) with ∆W (i) in (10) for nested

points and in (13) for non-nested points;
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• “weighted Linf” set ∆E(i) as in (15) and ∆W (i) = 1 for nested points, and ∆E(i)
as in (16) and ∆W (i) = 1 for non-nested points;

• “weighted Linf / new points” combine ∆E(i) in (15) with ∆W (i) in (10) for
nested points and ∆E(i) in (16) with ∆W (i) in (13) for non-nested points.

The pseudo-code of the algorithm is listed in Algorithm 1. Since nodes that are
present in a given sparse grid are not necessarily present in the following ones when
using non-nested points, cf. eq. (12), the full work count in this case is not simply
pts(S) (as it would be for nested points), but should rather include all the points
“visited” to reach that grid in the adaptive algorithm, which motivates lines L1-L2
in Algorithm 1. Observe however that all Gaussian quadrature rules associated to a
symmetric weight (or probability density) are in a sense “partially nested”, meaning
that rules with odd number of points place a quadrature node in the midpoint of the
interval, implying that a non-negligible number of points can still be in common
between two grids (e.g., the grid with 3×5 Gauss–Legendre points shares 5 of its 15
points with the grid 1×5).

4 Darcy Problem

As mentioned in the introduction, in this work we are concerned with the application
of the adaptive sparse grid algorithm in the Uncertainty Quantification context. In
particular, we focus on the numerical approximation of the solution of the stochastic
version of the Darcy problem [5, 14, 7, 18] in which an unknown Darcy pressure
p is obtained as solution of an elliptic PDE having a lognormal random field a as
diffusion coefficient; a models the permeability of the medium in which the flow
takes place and, since it is a quantity that often can not be properly estimated, it is
modeled as a random field over a suitable probability space (Ω ,FΩ ,P), where Ω is
the set of possible outcomes ω , FΩ a σ -algebra and P : FΩ → [0,1] a probability
measure. The mathematical formulation of the problem is the following:

Problem 1 Given D ∈ Rd , find a real-valued function p : D×Ω → R, such that
P-almost surely (a.s) there holds:

−div(a(x,ω)∇p(x,ω)) = f (x) x ∈ D,

p(x,ω) = g(x) x ∈ ∂DD
j , j = 1, ...,kD,

∇p(x,ω) ·n = 0 x ∈ ∂DN
j , j = 1, ...,kN ,

where the operators div and ∇ imply differentiation with respect to the physical
coordinates only, a : D×Ω → R is a given random field, n is the outward normal to
the boundary, ∂DD = ∪kD

j=1∂DD
j denotes the Dirichlet boundary, ∂DN = ∪kN

j=1∂DN
j

denotes the Neumann boundary and ∂DD∪∂DN = ∂D, ˚∂DD∩ ˚∂DN = /0.

More specifically, we set a(x,ω) = eγ(x,ω), being γ a mean-free stationary Gaussian
random field having a tensor covariance function belonging to the so-called Matérn
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Algorithm 1: Adaptive sparse grids algorithm.
Adaptive sparse grids(MaxPts, ProfTol, π , <ProfitName>)

I = {1}, G = {1}, R =∅, i = 1 ;
Sold = Sm

I [u], Qold =Qm
I [ f ] ;

H = pts(Sold), NbPts=card(Sold), ProfStop=∞ ;
while NbPts < MaxPts and ProfStop > ProfTol do

Ng = neigh(i,I)
for j ∈Ng and I∪{j} downward closed do

G = G∪{j} ; at the end of the for loop, G = I∪R
S= Sm

G[ f ] ; j must be added to S to evaluate its profit.
Q=Qm

G[ f ] ;
if using nested points then

New = pts(S)\pts(Sold) ; i.e. the points added by j to S

NbPts = NbPts + card(New) ;
v = evaluations of f on each y ∈New ; cf. eq. (15)

else
New = pts(Tm(i))

L1 H =H∪pts(S) ; add points of S to H (no repetitions)
L2 NbPts = card(H) ; for non-nested points, card(H)>card(S)

v = evaluations of S on each y ∈New ; cf. eq. (16)

vold = evaluations of Sold on each y ∈New ;
πππ = evaluations of π on each y ∈New ;
P(j) = Compute profit(New,v,vold ,πππ,Q,Qold ,<ProfitName>)
R = R∪{j}
Sold = S, Qold =Q ;

choose the i from R with highest profit;
I = I∪{i}, R = R\{i}
update ProfStop with a suitable criterion based on the values of P

return S,Q

Compute profit(New,v,vold ,πππ,Q,Qold ,<ProfitName>)
switch ProfitName do

case deltaint
profit(i) = |Q−Qold | ;

case deltaint/new points

profit(i) =
|Q−Qold |
card(New)

;

case Weighted Linf
profit(i) = max{|v−vold |�πππ} ; � denotes element-wise multiplication

case Weighted Linf/new points

profit(i) =
max{|v−vold |�πππ}

card(New)
;

return profit(i)

family [11], namely:

covν(x,x′) = σ
2

d

∏
i=1

(√
2ν
|xi−x′i|

Lc

)ν

Kν

(√
2ν
|xi−x′i|

Lc

)
Γ (ν)2ν−1 , ν ≥ 0.5, (17)
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where σ2 is the pointwise variance, Lc is a correlation length, Γ is the gamma
function, Kν is the modified Bessel function of the second kind and ν is a parameter
that governs the regularity of the covariance function and, in turn, of the realizations
of the random field. In particular, for ν=1/2 we obtain a tensor Exponential covariance
function covν(x,x′) = σ2exp{−|x− x′|1/Lc} which is only Lipschitz continuous
and produces realizations of the random field a(x,ωi), ωi ∈Ω , that are a.s. Hölder
continuous C0,s(D) with parameter s < 1/2 3; on the other hand when ν → ∞ we
obtain a Gaussian covariance function covν(x,x′) = σ2exp{−|x−x′|22/L2

c} which is
analytic and generates infinitely differentiable realizations; in between, depending on
ν , we have all the possible regularities; in general realizations with ν = n+α with
n ∈ N and α ∈ (0,1], are n times a.s. differentiable and have all the n-th derivatives
a.s. Hölder continuous C0,s(D) with parameter s < α (see e.g. [29, Lemma C.2]).
The well-posedness of Problem 1 has been studied e.g. in [7, 18]. The choice of the
diffusion coefficient a just detailed guarantees that Problem 1 has a unique solution
p ∈ L2

P(Ω ,V ), V = H1(D), see e.g. [7, 18] for details, under standard regularity
assumptions on f ,g, that will be fulfilled by the test case that we will detail later on.

To make Problem 1 suitable for the sparse grid methodology developed in the
previous sections, we consider a truncated Karhunen-Loève (KL) expansion of the
Gaussian random field γ(x,ω) with N i.i.d. standard normal random variables {yi}N

i=1
and approximate a(x,ω) = eγ(x,ω) accordingly, namely

γ(x,ω) =
∞

∑
n=1

√
λnψn(x)yn(ω)≈

N

∑
n=1

√
λnψn(x)yn(ω) = γ(x,y(ω)),

a(x,ω) = eγ(x,ω) ≈ eγ(x,y(ω)) = a(x,y(ω));

(18)

where the functions ψn(x) : D → R, n = 1,2,3..., and the positive coefficients
{λn}∞

n=1 are the solutions of the eigenvalue problem∫
D

covν(x,x′)ψ(x)dx = λψ(x′).

Once the random field has been (approximately) parametrized with a random vector
y = (y1, ...,yN) belonging to the probability space (Γ ,FΓ ,ρ(y)dy), where Γ = RN

is the image of y, FΓ is the Borel σ -algebra and ρ(y) = (2π)−
n
2 exp

(
− |y|

2
2

2

)
is the

probability density function of y, we can approximate Problem 1 with the following
finite dimensional parametric problem:

Problem 2 Find a real-valued function u : D×Γ → R, such that ρ(y)dy-almost
everywhere there holds:

3 A function f : D⊂Rd →R is said to be Hölder continuous with parameter s ∈ (0,1], f ∈C0,s(D),
if there exist non-negative real constants C and s such that

| f (x)− f (y)| ≤C|x−y|s2 ∀x,y ∈ D.
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−div(a(x,y)∇p(x,y)) = f (x) x ∈ D,

p(x,y) = g(x) x ∈ ∂DD
j , j = 1, ...,kD,

∇p(x,y) ·n = 0 x ∈ ∂DN
j , j = 1, ...,kN .

Consistently with what we said about the infinite dimensional case, Problem 2 ad-
mits a unique solution p ∈ L2

ρ(Γ ,V ), and it is now ready to be solved numerically.
In particular, in our analysis we will be interested in computing the expectation
of some quantity of interest (QoI) related to the solution p of the Darcy prob-
lem, defined as u(ω) = L(p(·,ω)), where L is a functional L : V → R that we will
detail later on. At this point it is also crucial to remark that solving the stochas-
tic Darcy problem with sparse grids is a sound approach since it can be shown
that the dependence of p on the random parameters y is smooth, and more pre-
cisely analytic, as shown in [1, 14]; moreover it can be shown that p ∈ C0

π(Γ ,V )
with π(y) = ∏

N
n=1 exp(−|yn|

√
λn ‖ψn‖L∞(D)), see [19]. Nonetheless, we will choose

ρ = ρ̃ = π in the computations, cf. equations (9), (15), (16). In particular, this means
that we can use Hermite polynomials ϕq in the quasi-optimal approach, for which
indeed ‖ϕq‖C0

π
≤C, and we will use the following ansatz for the Hermite coefficient

of u:

|uq| ≈C
N

∏
n=1

e−gnqn

√
qn!

, (19)

cf. [5]. Concerning the truncation of the Karhunen–Loève expansion of γ , it is
desirable to select the number of random variables N such that essentially the entire
spatial variability is taken into account (say more than 99.9%), in order to obtain a
negligible distance between the exact solution of Problem 1 p(x,ω) and the exact
solution of Problem 2 p(x,y), and, in turn, between u(ω) and u(y). As a consequence,
the problem will depend on a number of random variables N ranging from a few
tens (for choices of ν that yield smooth realizations of a) to several hundreds (for
ν → 1/2). This will require some adaptations of the adaptive algorithm introduced
earlier, that will be detailed in the following sections.

4.1 Dimension-adaptive sparse grid algorithm

When considering a large number of random variables, generating and exploring the
reduced margin of I might be computationally intensive. Thus, in the following we
present a modified version of the adaptive sparse grid algorithm that starts by working
over a parameter space Γ̃ with a moderate dimensionality Ñ and progressively
increases Ñ. Crucially, such strategy actually relieves us from fixing a-priori a
truncation for the Karhunen–Loève expansion, i.e. it allows to work with N = ∞

random variables.
To this end, we start by assuming that the importance of the random variables

in the approximation of the QoI u follows to a good extent the Karhunen–Loève
ordering: in other words, yn may contribute less than yn+1 to the variability of the
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QoI but there is a certain “dimensional buffer” Nb such that yn is guaranteed to
be more important than yn+Nb . Then, the adaptive algorithm starts by considering
Ñ = Nb random variables only, and whenever a variable yn with n < Ñ is activated (cf.
Section 3.2), the random variable yÑ+1 enters the approximation (i.e. the multi-index
i = 1+ eÑ+1 is included in the reduced margin) and the counter Ñ is increased by
one, so that there is always a buffer of Nb non-activated directions. This strategy is
detailed in Algorithm 2.

4.2 Monte Carlo method with Control Variate (MCCV)

For values of ν close to 1/2, the decay of the eigenvalues of the KL expansion of γ

is so slow that a very large number of random variables will equally contribute to the
variability of the QoI; therefore, even the dimension-adaptive sparse grid algorithm
detailed in the previous section may not be effective. In such a case we propose
to combine the sparse grid approximation with a Monte Carlo sampling following
the ideas proposed in [29]. More precisely, we will introduce an auxiliary problem
having a smoothed coefficient aε as random permeability, whose solution uε can be
effectively approximated by a quasi-optimal or an adaptive sparse grid scheme. Then
we will use uε as control variate in order to define a new QoI, namely uCV , upon
which we build a MC estimator.

The first step in order to apply this strategy is to define a proper smoothed random
field. Thus, let γ(x,ω) and γε(x,ω) be two random fields obtained respectively by
considering a covariance function of the Matérn family and the convolution of γ(x,ω)
with a smooth kernel (e.g. Gaussian),

γ
ε(·,ω) = γ(·,ω)∗φε(·) where φε(x) = e−

|x|2

2ε2 /(2πε
2)

d
2 ,

and let aε = eγε

. Using this definition, it is easy to see that the smoothed random
field γε has a covariance function defined as

covε
ν(x,x

′) = E[γε(x, ·)γε(x′, ·)] = φε(x)∗ covν(x,x′)∗φε(x′). (20)

Clearly, the smaller the parameter ε is, the more correlated the two random fields γ

and γε are, as it can be seen in Figure 1; consistently, uε → u when ε → 0.
Next, let us assume for the moment that we know exactly the mean of the control

variate E[uε ] and define
ũCV = u−uε +E[uε ].

This new variable is such that E[ũCV ] = E[u] and

Var(ũCV ) = Var(u)+Var(uε)−2cov(u,uε), (21)

showing that the more positively correlated the quantities of interest are, the larger
the variance reduction achievable. Although we do not have the exact mean of uε(y)
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Algorithm 2: Dimension Adaptive Algorithm
Note: To avoid ambiguities we write vN to make clear that the vector v has N components;
analogously IN indicates that the multi-index set I is composed of N-dimensional vectors.
Dimension adaptive sparse grids(MaxPts, ProfTol, π , <ProfitName>,Nb)

Ñ = Nb, AÑ = 000Ñ ; A is a Boolean vector indicating which variables are active

IÑ = {1Ñ}, GÑ = {1Ñ}, RÑ =∅, iÑ = 1Ñ , Sold = Sm
IÑ
[ f ], Qold =Qm

IÑ
[ f ] ;

H = pts(Sold), NbPts=card(Sold), ProfStop=∞ ;
while NbPts < MaxPts and ProfStop > ProfTol do

Ng = neigh(iÑ ,IÑ) ;

for j ∈Ng and IÑ ∪{j} is downward closed do
GÑ = GÑ ∪{j} ;
S= Sm

GÑ
[ f ] ;

Q=Qm
GÑ

[ f ] ;

if using nested points then
New = pts(S)\pts(Sold), NbPts = NbPts + card(New) ;
v = evaluations of f on each y ∈New ;

else
New = pts(Tm(i)), H =H∪pts(S), NbPts = card(H) ;
v = evaluations of S on each y ∈New ;

vold = evaluations of Sold on each y ∈New ;
πππ = evaluations of π on each y ∈New ;
P(j) = Compute profit(New,v,vold ,πππ,Q,Qold ,<ProfitName>)
RÑ = RÑ ∪{j}
Sold = S, Qold =Q ;

choose kÑ from RÑ with highest profit; iÑ = kÑ ;
if ∃n = 1, ..., Ñ s.t. An = 0 and kn > 1 then

An = 1, Ñ = Ñ +1 ; activate n-th variable and update Ñ
extend the containers I,R,G,k,A by adding the new direction.
GÑ = GÑ ∪{1Ñ + eÑ

Ñ
}; S= Sm

GÑ
[ f ]; Q=Qm

GÑ
[ f ] ;

if using nested points then
New = pts(S)\pts(Sold), NbPts = NbPts + card(New) ;
v = evaluations of f on each y ∈New ; cf. eq. (15)

else
New = pts(Tm(i)), H =H∪pts(S), NbPts = card(H);
v = evaluations of S on each y ∈New ; cf. eq. (16)

vold = evaluations of Sold on each y ∈New ;
πππ = evaluations of π on each y ∈New ;

P(1Ñ + eÑ
Ñ
) = Compute profit(New,v,vold ,πππ,Q,Qold ,<ProfitName>)

RÑ = RÑ ∪{1Ñ + eÑ
Ñ
},

iÑ = argmax(max(P(1Ñ + eÑ
Ñ
),P(kÑ))) ; select iÑ with highest profit

IÑ = IÑ ∪{iÑ}, RÑ = RÑ \{iÑ}
update ProfStop with a suitable criterion based on the values of P(j)

return S, Q
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(a) ε = 1/24. (b) ε = 1/26. (c) Original field.

Fig. 1 Three different regularizations of the same realization of a. ν = 0.5, Lc = 0.5, σ = 1.

at our disposal, we can successfully compute it with a sparse grid method, since
aε(x,y) has smooth realizations, and hence the coefficients of the KL expansion are
rapidly decreasing, as long as the smoothing parameter ε remains sufficiently large.
The final variable on which we will actually apply our MC algorithm is therefore

uCV = u−uε +Qm
I(w)[u

ε ], (22)

and the associated MC control variate estimator (MCCV) is defined as

ûMCCV
M =

1
M

M

∑
i=1

uCV (ωi) =
1
M

M

∑
i=1

(u(ωi)−uε(ωi))+Qm
I(w)[u

ε ], (23)

where uCV (ωi) are i.i.d. realizations of the control variate and M is the sample size.
Note that

Var(uCV ) = Var(ũCV ). (24)

Observe that care must be taken from a computational point of view when gen-
erating the samples ui(ω)− uε

i (ω). We propose to generate realizations of u− uε

starting from the Fourier expansions of γ and γε : indeed, the Fourier expansion is
very convenient when expansions over several random variables are needed, as the
basis functions are known analytically; moreover, the Fourier expansions of γ and
γε share the same basis functions and differ only by the coefficients. On the other
hand, to compute Qm

I(w)[u
ε ], it is more convenient to start from a Karhunen–Loève

expansion of γε , that needs less variables than a Fourier expansion but whose basis
functions need to be determined solving an eigenvalue problem (which is however
doable for γε given that it is a smooth field). In other words, two expansions of γε and
one expansion of γ will be used simultaneously. In particular, we have considered the
following truncated Fourier expansion over an hypercube of size (2L)d , containing
the domain D, with L = max(6Lc,diam(D)):

γ(x,y) = ∑
k∈K

√
ck ∑

n∈{0,1}d
yn

k(ω)
d

∏
l=1

cos
(

πkl

L
xl

)nl

sin
(

πkl

L
xl

)1−nl

,
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where K⊂ Nd is a suitable multi-index set having cardinality K, the resulting vector
of i.i.d. standard normal random variables is y = {yn

k, k ∈K, n ∈ {0,1}d}, and the
coefficients ck are the positive coefficients of the cosine expansion of the covariance
function covν(x,x′) on [−L,L]d , namely

covν(x,x′) = ∑
k∈Nd

ck

d

∏
l=1

cos
(

πkl

L
(xl− x′l)

)
.

Consistently, the realization uε
i (ω) will be computed starting from a truncated Fourier

expansion of γε over the same index-set K and using the same realization y(ωi) used
to generate ui(ω).

Concerning the mean square error associated to the estimator (23), namely
e(ûMCCV

M )2 = E
[
(ûMCCV

M −E [u])2
]
, the following result holds:

Proposition 1. The mean square error of the estimator (23) can be split as

e(ûMCCV
M )2 =

Var(uCV )

M
+
(
E[uε ]−Qm

I(w)[u
ε ]
)2

. (25)

Proof. We have

e(ûMCCV
M )2 = E[(ûMCCV

M −E[u])2] = E
[( M

∑
i=1

ui−uε
i

M
+Qm

I(w)[u
ε ]±E[uε ]−E[u]

)2
]

= E
[( 1

M

M

∑
i=1

(ui−uε
i −E[u]+E[uε ])

)2
]
+E[(Qm

I(w)[u
ε ]−E[uε ])2]

=
Var(uCV )

M
+
(
E[uε ]−Qm

I(w)[u
ε ]
)2

. ut

The first term on the right hand side of (25) represents the variance of the estimator
ûMCCV

M , i.e. the error coming from the MCCV sampling, and it is expected to be
significantly smaller than the variance of the standard MC estimator thanks to the
presence of the control variate, cf. equation (24) and (21); the second term represents
instead the error due to the approximation of the mean of the smoothed quantity of
interest uε with a sparse grid scheme. As already hinted, when ε goes to 0 the term
Var(uCV )/M vanishes, and more precisely, the following result (which is a simplified
version of Theorem 5.1 in [29]) holds:

Proposition 2. Let γ and γε be two Gaussian random fields having covariance
functions respectively defined as in (17) and (20); assume ∂DD = ∂D, f ∈ L2(D)
and L ∈ H−1(D). Then, P-a.s. in Ω it holds

|u−uε |(ω)≤C(ν ,ω)εmin(2,ν),

where the constant C(ν ,ω) is Lq
P-integrable for any q > 0 so the bound can also be

expressed as
‖u−uε‖Lq

P(Ω) ≤C(ν ,q)εmin(2,ν).



20 F. Nobile, L. Tamellini, F. Tesei and R. Tempone

In particular, Var(uCV )≤C2(ν ,2)ε2min(2,ν).

On the other hand an accurate approximation of E[uε ] by a sparse grid scheme
might becomes non-advantageous if ε → 0. The parameter ε should therefore be
chosen so as to have a good variance reduction while still keeping a manageable
sparse grid approximation problem.

Remark 1 In this work we do not address the issue of the spatial approximation
of Problem 2. In general all the results previously presented still hold if a finite
dimensional subspace Vh ⊂V , e.g. a finite element space, is considered in order to
approximate functions in V .

5 Numerical results

In this section we present the convergence results obtained for the Darcy problem on
the unit square D = (0,1)2 with f = 0, Dirichlet boundary conditions g(x) = 1− x1
on ∂DD = {x ∈ ∂D : x1 = 0 or x1 = 1}, and homogeneous Neumann conditions on
the remaining part of ∂D; the spatial approximation of the Darcy problem is done by
piecewise linear finite elements defined on a structured mesh.

We will consider two cases: first we will solve Problem 2 with a smooth random
field a, corresponding to the choice ν = 2.5 in (17), and then we will move to the
rough random field corresponding to ν = 0.5, in which case we will consider the
MCCV approach. In both cases we set σ = 1 and Lc = 0.5, while the mesh over
D consists of 33×33 vertices in the case ν = 2.5 and 65×65 vertices in the case
ν = 0.5; both meshes have been verified to be sufficiently refined for our purposes. In
particular we will be interested in approximating the expected value of the functional

u(ω) =
∫ 1

0
a(1,x2,ω)

∂ p
∂x1

(1,x2,ω)dx2, (26)

which represents the mass flow on the outlet. The aims of this section are:

1. establish whether using non-nested points in an adaptive sparse grid framework
might be convenient or not;

2. verify the performance of adaptive sparse grids built with different profit indica-
tors;

3. compare the performance of the adaptive sparse grids with that of the quasi-
optimal sparse grids (note that our previous numerical experiences suggest that
indeed these two sparse grid constructions behave similarly when used to solve
UQ problems depending on uniform random variables if nested univariate points
are used, see [4, 25]);

4. test the effectiveness of using an adaptive (or quasi-optimal) sparse grid con-
struction as control variate in a MC framework in order to tackle also problems
depending on rough coefficients.
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Fig. 2 Case ν = 2.5, adaptive sparse grids error.
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Fig. 3 Case ν = 2.5, quasi-optimal sparse grids error (left) and a comparison between adaptive and
quasi-optimal schemes (right).

Smooth case: ν = 2.5

In this case we deal with an input random field with twice differentiable realizations;
therefore the eigenvalues of the Karhunen–Loève expansion decay quickly enough
to justify the use of the N-adaptive sparse grid algorithm to approximate the QoI.

For this test, we consider as a reference solution the approximation of the QoI
obtained with a quasi-optimal sparse grid with approximately 8300 quadrature points
base of Gauss–Hermite abscissas, for which 45 out of the first 50 random variables
of the KL expansion are active: observe that this is sufficient to take into account
99.99% of the total variability of the permeability field, i.e. there is essentially no
KL truncation error. We monitor the convergence of the error measured as

err(w)≈ |Qm
I(w)[u]−Qm

I(wre f )
[u]|,

i.e. the absolute value of the sparse grid quadrature error, where I(w),w = 0,1,2, . . . ,
are the sequences of multi-index sets generated either by the adaptive or the quasi-
optimal sparse grid scheme and I(wre f ) is the multi-index set corresponding to the
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above-mentioned reference solution. More specifically, the sets I(w) for the adaptive
strategies are obtained by stopping the algorithm as soon as at least Wmax(w) points
have been added to the sparse grid (including the points needed for the exploration
of the reduced margin), with Wmax(w) = {1,20,50,100,250,500,1000,2000,4000},
for w = 0, . . . ,8. As for the quasi-optimal sparse grids, the sets I(w) are defined as

I(w) =
{

i ∈ NN
+ : P(i)≥ e−w} (27)

with w = 0,1, . . . ,5, the reference solution being obtained with w = 6. We recall that
the profits P(i) are defined as the ratios between the error and work contributions,
P(i) = ∆E(i)/∆W (i), where ∆E(i) are estimated combining equations (19) and (9),
and ∆W (i) are defined either as (10) or (13).

The computational cost associated to each sparse grid is expressed in terms of
number of linear system solves. For the adaptive sparse grids, this count also includes
the cost of the exploration of the reduced margin. Moreover, when using non-nested
points we also take into account the system solves related to the points that have
been included and then excluded from the sparse grid, cf. equation (12). As for the
quasi-optimal sparse grids, their construction requires some additional solves to
estimate the parameters g1, . . . ,gN in (19), cf. [25, 4]. More precisely, the n-th rate is
estimated by fixing all variables but yn to their expected value, computing the value
of the QoI increasing the number of collocation points along yn and then fitting the
resulting interpolation error: in practice, this amounts to solving 25 linear systems
per random variable, which are included in the work count.

We start our discussion from Figure 2, where we show the convergence results
obtained with the dimension-adaptive Algorithm 2 varying the choice of profit
indicators (cf. Algorithm 1) and the choice of interpolation points, i.e. Genz–Keister
versus Gauss–Hermite points, the latter denoted by a suffix NN in the plot, as per
“non nested” (cf. Table 1); in this test, we have set the buffer size to Nb = 10. More
specifically, we used the “deltaint-based” profit indicators in Figure 2-(a) (D and
D/NP in the plots, where NP stands for “divided by number of points”) and “weighted
L∞-based” profit indicators in Figure 2-(b) (WLinf and WLinf/NP in the plots). In
both cases we observe that there is not much difference between the profit indicators
that take into account the number of points and the ones which do not; also the choice
of nested or non nested nodes does not seems to affect the convergence.

The numbers next to each point give information about the shape of the multi-index
sets I(w) generated by the adaptive algorithm, and consequently on the distribution
of the sparse grid points on the Ñ-dimensional parameter space. The first number (out
of the brackets) indicates the number of active directions, while the second number
(in the brackets) denotes the highest dimensionality of the tensor grids composing
the sparse grid, cf. equation (4). Here and in the following, green labels refer to grids
with nested points, while red labels to grids with non-nested points: we show only
two series of labels per plot, due to the fact that accounting for the work contributions
in the profit definition does not seem to play a role in this test and, consequently, the
sequences of sets I(w) generated by AD-D and AD-D/NP are essentially identical
(and the same for ADNN-D and ADNN-D/NP). Observe that after ≈ 20 problems
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solves the algorithm has activated “only” 1 variable due to the fact the at the beginning
of the algorithm Nb variables must be explored, requiring 1+2Nb = 21 solver calls,
in order to decide which variable should be activated as second; moreover the number
of “active” variables is always smaller than N = 45, which is the number of “active”
variables for the reference solution. In Figure 2-(a) and 2-(b) we have also added
the convergence curve for a plain MC approximation. This has been generated as√
Var(u)/M(w), with Var(u) estimated as Var(u)≈ Qm

I(wre f )
[u2]− (Qm

I(wre f )
[u])2.

In Figure 3-(a) we show instead the errors obtained by using quasi-optimal sparse
grid approximations of the QoI built on Genz–Keister and Gauss–Hermite knots
(labeled OPT and OPT NN respectively). Observe that since we build the sets I(w) in
(27) again with a “buffered” procedure analogous to the one described in Section 4.1,
the rate gn is computed only at the level w for which yn enters the buffer of random
variables, and such work is thus accounted for at level w; this explains the initial
plateau that can be seen in the convergence. Again, the labels next to each point
represent the number of active variables (outside the brackets) and the number of
variables activated at the same time (in the brackets). These numbers suggest that, for
the same work, the adaptive sparse grids seem to activate a slightly smaller number
of variables than the quasi-optimal ones, while the tensor grids dimensionality seems
to be comparable. Also for the quasi-optimal sparse grids the number of “active”
variables is always smaller than N = 45.

Finally, Figure 3-(b) shows a comparison between the quasi-optimal and the
adaptive schemes; among the adaptive schemes presented we take into account for
this comparison the profit indicators deltaint and Weighted Linf / new points. We can
observe that, except for small values of work for which the cost needed to compute
the parameters gi in eq. (19) largely dominates the cost needed to actually compute
the quasi-optimal sparse grid approximation, the quasi-optimal and the adaptive
schemes behave similarly.

Rough case: ν = 0.5

In this case we deal with a rough input random field a that has realizations which
are not even differentiable: thus, the slow decay of the eigenvalues of the Karhunen–
Loève expansion may render unfavorable a sparse grid approach, even considering
advanced techniques like the adaptive or the quasi-optimal schemes. Therefore we
now solve the problem by the MCCV approach introduced in the Subsection 4.2,
using ε = 2−5 as smoothing parameter.

At each sparse grid approximation level w we use M(w) =WI(w),m samples in the
MCCV estimator, i.e. we balance the work of the sparse grid and that of the MC
sampling so that the total work is 2WI(w),m; other work splitting, e.g. balancing the
two error contributions of the method detailed in Proposition 1, could be considered
as well.

In practice, we will approximate the sparse grid component of the error by consid-
ering a reference solution obtained with a quasi-optimal sparse grid built with approx-
imately 86500 nodes based on Gauss–Hermite abscissas with N = 163 active random
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Fig. 4 Case ν = 0.5, MCCV-adaptive sparse grid mean error. Bars represent 3 standard deviation
of the sampling error.
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variables, that takes into account 99.99% of the total variability of the smoothed

field, and the sampling component by estimating Var(ũCV )≈ û2
MCCV
M(w) − (ûMCCV

M(w) )2;
as mentioned in Section 4.2, the sampling component is based on a Fourier expansion
of the non-smoothed field γ , that has been truncated after 129×129 = 16641 random
variables. To summarize, we have

err(w)≈

√√√√ û2
MCCV
M(w) − (ûMCCV

M(w) )2

M(w)
+
∣∣∣Qm

I(w)[u
ε ]−Qm

I(wre f )
[uε ]
∣∣∣.

In Figure 4 we show the performance of the MCCV algorithm with adaptive sparse
grids. Since we are running a sampling method, we also add to the plot error bars
indicating the interval spanning ±3 standard deviations of the error from its average
value, assessed over 4 runs of the method. The considerations that can be made by
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looking at these plots are similar to the ones we did in the case ν = 2.5, i.e. there
is basically no difference between the profit indicators that take into account the
number of points and those which do not; also changing the family of nodes does
not seem to have a substantial impact on the quality of the approximation. Observe
that since we are balancing the works of the Monte Carlo sampling and of the sparse
grid, the observed convergence rate is larger than the MC rate 1/2 for little values of
work, where the sparse grid error dominates the sampling error and converges with a
faster rate than 1/2 (remember that the sparse grid is applied to a smoothed problem).
For large w, the sampling error dominates the sparse grid error and one essentially
recovers the MC rate 1/2, however with a much smaller constant than MC due to the
presence of the control variate.

Figure 5-(a) shows the convergence of the MCCV method combined with quasi-
optimal sparse grids and compares the results obtained with the adaptive sparse
grids procedures. Again, among the adaptive schemes presented we consider the
profit indicators deltaint and Weighted Linf / new points. For both quasi-optimal
and adaptive schemes we only plot the average error of the Quantity of Interest
over four runs. As in the smooth case, for sufficiently large values of work, all
the schemes perform similarly. Note that in the quasi-optimal case, the quantities
gn are actually computed for the first 50 random variables only, after which we
instead set gn =

√
λn, cf. equation (18), i.e. we approximate gn with the value of

the corresponding coefficient of the KL expansion. Indeed, these random variables
have a moderate impact on the solution and numerical cancellations effects may
significantly affect the results of the fitting procedure.

Finally, 5-(b) shows the convergence of the quasi-optimal sparse grid error
|Qm

I(w)[u
ε ]−Qm

I(wre f )
[uε ]| for different values of ε . It is clearly visible that the conver-

gence rate deteriorates as ε decreases, thus motivating the introduction of the MCCV
approach. Observe that for the sake of comparison, in this plot the work needed to
determine the rates (that would cause an initial plateau in the convergence plot) has
been neglected. We also observe that in this case there is a significant difference
between the number of random variables activated by the quasi-optimal and adaptive
sparse grid schemes. In fact, the latter tends to activate less variables than the former,
adding conversely more points on the activated ones.

6 Conclusions

In this work we have proposed an improved version of the classical adaptive sparse
grid algorithm, that can handle non-nested collocation points and unbounded domains,
and can be used for an arbitrary large number of random variables, assuming that a
“rough ordering” of the variables according to their importance is available. We have
also implemented several indicators to drive the adaptation process.

We have then used this algorithm to solve a Darcy equation with random log-
normal permeability, and compared the results obtained by changing collocation
points and adaptivity indicators against those obtained by the quasi-optimal sparse
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grids algorithm. The computational analysis has been performed first on a case with
smooth permeability realizations, and then in the case of rough realizations: in the
latter case, we have actually considered the sparse grid in a Monte Carlo Control
Variate approach, in which the sparse grids are applied to a smoothed problem and
the results serve as control variate for a Monte Carlo sampling for the rough problem.
The numerical results seem to suggest that

1. using non-nested points in an adaptive sparse grid framework yields results that
are comparable to those obtained by nested points, at least in the log-normal
context;

2. changing the indicator driving the adaptivity process does not have a dramatic
impact on the quality of the solution; this however may be due to the specific
choice of the QoI considered here, and more testing should be performed;

3. the adaptive and the quasi-optimal sparse grids perform similarly on lognormal
problems, in agreement with our previous findings on uniform random variables;

4. in the case of smooth log-permeability fields the adaptive and the quasi-optimal
sparse grids give quite satisfactory results;

5. in the case of rough fields the adaptive / quasi-optimal sparse grids alone have a
performance asymptotically similar to a standard MC (with just a slight improve-
ment on the constant) and we do not advocate their use in such a case; on the other
hand the results are satisfactory if the sparse grids are used as control variate in a
MC sampling.
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