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ABSTRACT

Seismic design of standard structures is typically founded on a force-based design approach. Over the years this
approach has proven robust and easily applicable by design engineers and – in combination with capacity design
principles – it provides a good protection against premature structural failures. However, it is also known that
the force-based design approach as it is implemented in the current generation of seismic design codes suffers
from some shortcomings; among these is the fact that the base shear is computed using a pre-defined force
reduction factor, which is constant for a given structural system. Thus, for the same design input, structures of
an identical type but different geometry are subjected to varying ductility demands and may perform differently
during an earthquake. The objective of this research is to present an alternative formulation for computing force
reduction factors for RCwall and frame structures, using simple analytical models which only require input data
already available at the beginning of the design process. Such analytical models allow to link global to local
ductility demands and therefore to compute an estimate of the force ductility reduction factors that lead to equal
local ductility demands and expected damage levels. A series of pushover and nonlinear time history analyses
are run on simplified numerical models of a set of wall and frame structures. The results show that the proposed
alternative formulation yields a more accurate ductility reduction factor than the current Eurocode 8 design
approach.
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1. Introduction

Reinforced concrete (RC) structures are typically supported by walls or frames to resist both gravity and
horizontal loads. Nowadays, the Force-Based Design (FBD) approach is the standard method to design
structures for seismic loads. Because a linear elastic analysis is required, over the years this approach has
proven to be both robust and easily applicable by design engineers. Inelastic behavior is implicitly
considered through the force reduction factor or behavior factor.

In early earthquake engineering works, Biot [1] introduced the formulation of what would later become
known as the Response Spectrum Method (RSM), Housner [2] attempted to combine the response spectrum
and the dissipation of seismic energy through plastic deformations and Veletsos and Newmark [3] started
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to study inelastic spectra for elastic-perfectly plastic structures. To the authors’ knowledge, the force
reduction factor firstly appeared in the Blue Book [4] in an attempt to unify the design approaches providing
minimum safety standards for structures. Before the Blue Book [4], the Uniform Building Code [5]
computed the total base shear and the lateral force distribution without any consideration of the structural
system type. The 1959 edition of the Blue Book [4] introduced a force reduction factor called “K factor” to
account for the different structural system type and redefined the “C factor”, a horizontal force factor
depending on the structure fundamental period.

Seismic codes have been under constant evolution since 1959 and current building codes require a force-
based approach for limit state design. This allows structures’ performance to be verified on two levels of
seismic intensities, corresponding to the ultimate limit state (ULS) and the serviceability limit state (SLS).
Furthermore, the designer, via capacity design principles, can control the failure mechanism and avoid the
formation of local mechanisms and premature brittle failures of the structural elements [6]. The strength
and energy-dissipation capacity assigned to the structure are related to the exploitation of its non-linear
response.

The value of the force reduction factor depends on structure’s ductility, as well as its internal strength
reserves, in turn this depends mainly on its structural redundancy, on the individual members’ overstrength
and on the structure’s damping [7]. All these factors directly affect the structure’s energy dissipation
capacity. The ATC-19 [8] suggests a general definition of the force reduction factor in the following form:

R = 𝑅𝜇𝑅𝑠𝑅𝜁≈ 𝑅𝜇𝑅𝑠 (1)

where 𝑅𝜇 is the ductility-dependent component, 𝑅𝑠 the overstrength-dependent component, and 𝑅𝜁 the
damping-dependent component of the force reduction factor, which is usually neglected by codes unless
the structures have supplemental damping devices. A separate factor relating to the structural redundancy
only, 𝑅𝑟, is sometimes added, but it is usually included beforehand [8].

The ductility reduction factor for a SDOF system,𝑅𝜇,𝑆𝐷𝑂𝐹, is defined as the ratio between the peak force
in an elastic system 𝑉𝑏,𝑆𝐷𝑂𝐹(𝜇= 1) and the peak force 𝑉𝑏,𝑆𝐷𝑂𝐹(𝜇= 𝜇 ∗ ) in an elastic-perfectly plastic
oscillator with identical elastic period, damping and mass, for a given target displacement ductility, 𝜇 ∗ ([9],
[10]):

𝑅𝜇,𝑆𝐷𝑂𝐹=
𝑉𝑏,𝑆𝐷𝑂𝐹(𝜇 = 1)

𝑉𝑏,𝑆𝐷𝑂𝐹(𝜇 = 𝜇 ∗ )
(2)

The displacement ductility is defined as the ratio of the maximum displacement demand divided by the
yield displacement. In SDOF systems, the top displacement ductility 𝜇, the interstorey drift ductility 𝜇𝐼𝐷𝑅
and the storey displacement ductility 𝜇∆ are identical. Here below, the ductility of MDOF frame systems
will be defined as interstorey drift ductility 𝜇𝐼𝐷𝑅, where the interstorey drift ratio (IDR) is defined as the
difference between displacements at storeys 𝑖 and 𝑖 ‒ 1, ∆𝑢, divided by the storey height, ℎ𝑠. This solution
has been chosen as a more practical parameter for engineers than 𝜇∆. Other authors ([9], [10]) opted to
assess frame structures’ ductility by assuming the same values whereby the interstorey drift ratio is equal
to the storey displacement divided by the storey height. Thus:

𝜇𝐼𝐷𝑅=
𝐼𝐷𝑅𝑢
𝐼𝐷𝑅𝑦

=

∆𝑢
ℎ𝑠
∆𝑦
ℎ𝑠

=
∆𝑢
∆𝑦
=
𝑑𝑢,𝑖 ‒ 𝑑𝑢,𝑖 ‒ 1
𝑑𝑦,𝑖 ‒ 𝑑𝑦,𝑖 ‒ 1

= 𝜇∆
𝑆𝐷𝑂𝐹 𝑠𝑦𝑠𝑡𝑒𝑚

⇒ 𝜇𝐼𝐷𝑅= 𝜇∆= 𝜇 =
𝑑𝑢
𝑑𝑦

(3)

In a real MDOF building, higher mode effects induce a base shear demand, 𝑉𝑏,𝑀𝐷𝑂𝐹 larger than that of
its equivalent SDOF system, 𝑉𝑏,𝑆𝐷𝑂𝐹, with an elastic period corresponding to the MDOF system’s
fundamental persiod [11]. The ratio of the two base shears is the shear magnification factor, 𝜀:

𝜀 =
𝑉𝑏,𝑀𝐷𝑂𝐹(𝜇 = 𝜇 ∗ )

𝑉𝑏,𝑆𝐷𝑂𝐹(𝜇 = 𝜇 ∗ )
(4)
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Its inverse is the modification factor, 𝑅𝑀 [9], [10]:

𝑅𝑀=
1
𝜀 =

𝑉𝑏,𝑆𝐷𝑂𝐹(𝜇 = 𝜇 ∗ )

𝑉𝑏,𝑀𝐷𝑂𝐹(𝜇 = 𝜇 ∗ )
(5)

The force reduction factor of a MDOF system can thus be written as the product of the SDOF system’s
force reduction factor, 𝑅𝜇,𝑆𝐷𝑂𝐹, multiplied by the modification factor, 𝑅𝑀, that takes into account the base
shear’s amplification due to higher mode effects:

𝑅𝜇,𝑀𝐷𝑂𝐹=
𝑉𝑏,𝑆𝐷𝑂𝐹(𝜇 = 1)

𝑉𝑏,𝑀𝐷𝑂𝐹(𝜇 = 𝜇 ∗ )
=
𝑉𝑏,𝑆𝐷𝑂𝐹(𝜇 = 1)

𝑉𝑏,𝑆𝐷𝑂𝐹(𝜇 = 𝜇 ∗ )
⋅
𝑉𝑏,𝑆𝐷𝑂𝐹(𝜇 = 𝜇 ∗ )

𝑉𝑏,𝑀𝐷𝑂𝐹(𝜇 = 𝜇 ∗ )
= 𝑅𝑀𝑅𝜇,𝑆𝐷𝑂𝐹 (6)

This study does not address the overstrength-dependent component, 𝑅𝑠, of the force reduction factor
which for the purpose of this work is evaluated via nonlinear static analyses (pushover analysis) in Section
5. Detailed information on the overstrength of RC systems can be found in [12], [13], [14].

Several expressions have been proposed for the ductility reduction factor of SDOF systems; the most
relevant are found in [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27]. These studies
concluded that the two main parameters governing the ductility reduction factor are the displacement
ductility and the system’s fundamental period. A review and comparison of these works is presented in
detail by Miranda and Bertero [28].

Nassar and Krawinkler [20] proposed an expression for 𝑅𝜇,𝑆𝐷𝑂𝐹 that was derived from regression
analysis of the numerical responses of SDOF nonlinear systems when subjected to 15 ground motions. They
examined the ductility reductions factor’s sensitivity to the natural period, the yield force, the strain
hardening ratio and the hysteretic model was examined. The result was the following expression was given
for the mean value of the ductility reduction factor:

𝑅𝜇,𝑆𝐷𝑂𝐹= (𝑐(𝜇 ‒ 1) + 1)
1
𝑐; 𝑐 =

𝑇1𝑎

1 + 𝑇1𝑎
+
𝑏
𝑇1

(7)

where 𝑇1 is the fundamental period and parameters 𝑎 and 𝑏 are functions of the rate 𝛼, i.e. the ratio,
expressed as percentage, of the system’s post-yield stiffness to its initial stiffness. Parameters 𝑎 and 𝑏 are
given in [20].

To the current authors’ knowledge, the relationship between MDOF and SDOF system responses was
first studied by Veletsos and Vann [29]. Nassar and Krawinkler [20] examined three types of simplified
MDOF models. The goal was to estimate the modifications required to the inelastic strength demands
obtained from bilinear SDOF systems in order to limit, to a prescribed value, the storey ductility demand
in the first storey of the MDOF systems. The study concluded that MDOF ductility demands differ
significantly from those of the corresponding SDOF systems and that the failure mechanism strongly affects
the force reduction factor. The amplification of the base shear in MDOF systems with respect to that of
SDOF systems was studied by Chopra [11], who observed that: (i) the modification factor decreases as the
building fundamental period increases, and thus as the number of storeys increases; (ii) the modification
factor decreases as the system ductility increases. Other relevant works on this topic are [30], [31], [9], [10],
[32], [33].

Building codes typically define constant force reduction factors for a given structural system type. As a
result, for the same design input, structures of the same structural system type, but different plan and
elevation geometry, are subjected to different ductility demands and may, therefore, perform differently
during the same earthquake. Eurocode 8 [34] defines force reduction factors – or behavior factors 𝑞 – for
RC buildings as the product of a basic behavior factor 𝑞0 (that depends on the structural system type and
on its regularity in elevation) and the 𝛼𝑢/𝛼1 ratio that represents the overall structural overstrength. The
Italian Building Code [35] follows the same definition and the same values of Eurocode 8 [34] for RC
structures. The ASCE SEI 7-10 [36] prescribes force reduction factors for several structural systems. The
force reduction factors depend on the structural elements’ performance; ordinary, intermediate and special
elements are expected to withstand minimal, moderate and significant inelastic behavior, respectively. The
stringency of the detailing requirements is related to the expected behavior. It can be observed that the other
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main international building codes ([37], [38], [39]) approach the FBD seismic design method with similar
definitions of the force reduction factor.

This paper intends to present an alternative formulation for computing force reduction factors for RC
wall and frame structures, using simple analytical models that only require input data already available at
the beginning of the design process instead of the conventional numerical procedure, as shown in Section
3. The main goal of this study is to provide a more appropriate behavior factor to be used for design based
on linear analysis. The proposed formulation has the main advantage of being simpler and less costly than
more advanced design methods based on pushover and nonlinear time history analyses. This study is limited
to structures that are regular in plan and in elevation. Section 2 presents the proposed analytical models for
alternative formulation of force reduction factors concerning wall and frame systems. Section 3 describes
the numerical analyses for the validation of the alternative formulation and ductility reduction factor
computation. Section 4 reports the analyses’ results. Section 5 shows a comparison between the results of
the proposed formulation and the values provided by Eurocode 8 [34]. Finally, Section 6 presents the main
conclusions of this study.

2. Analytical models for alternative formulation of force reduction factors

The proposed analytical formulation is aimed to obtain the force reduction factors by means of a simplified
model, which is able to transform and simplify the real structure – an MDOF system – into an equivalent
SDOF system. Floors are considered as rigid diaphragms, thus the number of degrees of freedom is equal
to the number of storeys 𝑛𝑠. To obtain the properties of the equivalent SDOF the procedure followed is the
one proposed by Chopra [40], which is based on the following assumptions for the systems’ free vibration:
(i) equal elastic base shear; (ii) equal elastic base moment; (iii) equal kinetic energy; (iv) equal fundamental
period; (v) equal damping ratio between SDOF system and MDOF systems.

The present work only takes into consideration the equivalent SDOF system corresponding to the first
mode. To compensate for taking only one mode into account, the equivalent mass of the SDOF system,

, is defined as equal to the total mass of the MDOF system. This assumption follows [11], [9] for the𝑚 ∗
calculation of the modification factor, 𝑅𝑀. Thus, when regular buildings are considered, the SDOF system
better approximates the total base shear of MDOF system when regular buildings are considered. The
current study only examines structures that are regular in plan and elevation, so the first mode’s equivalent
mass is dominant compared to the equivalent mass of other modes and it is considered sufficient to represent
the system’s displacement response. Here it’s important to point out that most building codes use a similar
approach, i.e. they compute the base shear starting using the total weight of the structures in the simplified
linear static analysis.

The effective height of the equivalent SDOF system, ℎ ∗ , can be written as:

ℎ ∗ = ℎ1 ∗ =
∑𝑛𝑠

𝑖 = 1
𝑚𝑖𝜙𝑖ℎ𝑖

∑𝑛𝑠

𝑖 = 1
𝑚𝑖𝜙𝑖

(8)

where 𝑚𝑖, 𝜙𝑖, ℎ𝑖 are the storey mass, the first mode displacement, and the height from ground level,
respectively, of the i-th storey. The effective linear stiffness of the SDOF system, 𝑘 ∗ , is:

𝑘 ∗ =
4𝜋2𝑚 ∗

𝑇12
(9)

where𝑚 ∗ is the total mass and 𝑇1 is the fundamental period of the building

2.1. Wall structures
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The proposed analytical model for wall structures consists of a single linear elastic cantilever beam with a
rotational plastic hinge at the base. Wall structures are assumed to be dominated by flexural deformations.

For the sake of simplicity, this study assumes, in plan and elevation regular structures with a constant
storey mass, 𝑚𝑠,𝑤, and a constant storey height, ℎ𝑠, are assumed but the method is general and applicable
to structures with different storey weights and storey heights. The building has 𝑛𝑠 storeys and the total
building height is 𝐻𝑤. An analytical estimation of the fundamental period of a pure-flexural cantilever wall,

, can be found in [41]:𝑇1,𝑤

𝑇1,𝑤=
2𝜋
3.516

𝑚𝑙,𝑤
𝐸𝐼𝑤,𝑦

𝐻𝑤2 (10)

where 𝑚𝑙,𝑤 and 𝐸𝐼𝑤,𝑦 are the mass per unit height and the yield flexural stiffness of the wall, respectively.
The stiffness 𝐸𝐼𝑤,𝑦 is the effective flexural stiffness, defined as the ratio of the yield moment, 𝑀𝑦,𝑤, to the
yield curvature of the base section of the wall, 𝜑𝑦,𝑤.

The plastic hinge length, 𝐿𝑝,𝑤, is defined as suggested in [42] and recommended by [6]:

𝐿𝑝,𝑤=max {0.2(𝑓𝑢𝑓𝑦 ‒ 1)𝐿𝑠,𝑤+ 0.2𝑙𝑤+ 𝐿𝑠𝑝,𝑤;2𝐿𝑠𝑝,𝑤} (11)

with:

𝐿𝑠,𝑤= ℎ𝐺=

𝑛𝑠

∑
𝑖 = 1
𝐹𝑖ℎ𝑖

𝑛𝑠

∑
𝑖 = 1
𝐹𝑖

⇒
2𝑛𝑠+ 1
3𝑛𝑠

𝐻𝑤; 𝐿𝑠𝑝,𝑤= 0.022𝑓𝑦𝑑𝑏𝑙,𝑤 (12)

where: 𝐿𝑠,𝑤 and 𝐿𝑠𝑝,𝑤 are the shear span length and the strain penetration length, respectively; 𝑓𝑦 and 𝑓𝑢 are
the steel yield stress and the steel tensile strength, respectively; 𝑑𝑏𝑙,𝑤 is the maximum rebar diameter in the
base section of the wall and 𝑙𝑤 is the section length. The plastic hinge is graphically shown in Figure 1(a).
The shear span length calculated by Equation (12) assumes an inverse triangular load distribution of
horizontal forces, 𝐹𝑖, applied at storey heights, ℎ𝑖, as shown in Figure 1(b).

(a) (b)

Figure 1: (a): Assumed curvature distribution of a wall that formed a flexural plastic hinge at the
base, (b): Inverse triangular horizontal forces and corresponding wall displacement shape.
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Predicting the ductility reduction factor of the MDOF system requires estimates of the ductility
reduction factor of the corresponding SDOF system and the modification factor are needed. The following
calculation derives an analytical model for the equivalent SDOF system representing the wall system is
derived. The first-mode shape, necessary to define the equivalent SDOF system, is estimated using the
expression proposed by [42] and assuming an inverse triangular load distribution of horizontal forces, as
shown in Figure 1(b):

𝜙𝑖,𝑤=
3
2
ℎ𝑖2

𝐻𝑤2
(1 ‒ ℎ𝑖

3𝐻𝑤) (13)

where 𝜙𝑖,𝑤 is the wall structure first mode displacement at the i-th storey. The equivalent SDOF system’s
yield base shear, 𝑉𝑦,𝑤 ∗ , the ultimate base shear, 𝑉𝑢,𝑤 ∗ , the yield displacement, 𝑑𝑦,𝑤∗ , are, respectively:

𝑉𝑦,𝑤 ∗ =
𝑀𝑦,𝑤
ℎ𝑤 ∗

; 𝑉𝑢,𝑤 ∗ =
𝑀𝑢,𝑤
ℎ𝑤 ∗

; 𝑑𝑦,𝑤 ∗ =
𝑉𝑦,𝑤 ∗

𝑘𝑤 ∗
(14)

where 𝑀𝑦,𝑤 and 𝑀𝑢,𝑤 are the yield and ultimate moment of the wall base section, respectively; ℎ𝑤∗ and
are calculated using Equation (8) and (9). The equivalent yield curvature, 𝜑𝑦,𝑤 ∗ , for the equivalent𝑘𝑤 ∗

SDOF system is:

𝜑𝑦,𝑤 ∗ =
3𝑀𝑦,𝑤

𝑘𝑤 ∗ℎ𝑤 ∗
3 (15)

In order to obtain the same sectional ductility of wall’s plastic hinge, 𝜇𝜑,𝑤, in the SDOF and MDOF
systems, the ultimate curvature of the SDOF system, 𝜑𝑢,𝑤 ∗ , is written as:

𝜑𝑢,𝑤 ∗ = 𝜇𝜑,𝑤𝜑𝑦,𝑤 ∗ =
𝜑𝑢,𝑤
𝜑𝑦,𝑤

𝜑𝑦,𝑤 ∗ (16)

where 𝜑𝑦,𝑤 and 𝜑𝑢,𝑤 are the yield and ultimate curvature of the wall base section, respectively. The plastic
displacement, 𝑑𝑝,𝑤 ∗ , ultimate displacement, 𝑑𝑢.𝑤 ∗ , and displacement ductility, 𝜇𝑤 ∗ , for the SDOF system
are then given by:

𝑑𝑝,𝑤 ∗ = (𝜑𝑢,𝑤 ∗ ‒ 𝜑𝑦,𝑤 ∗ )𝐿𝑝,𝑤ℎ𝑤 ∗ ; 𝑑𝑢,𝑤 ∗ = 𝑑𝑦,𝑤 ∗
𝑉𝑢,𝑤 ∗

𝑉𝑦,𝑤 ∗
+ 𝑑𝑝,𝑤 ∗ (17)

𝜇𝑤 ∗ =
𝑑𝑢,𝑤 ∗

𝑑𝑦,𝑤 ∗
(18)

Once the structural ductility 𝜇𝑤 ∗ is known, the force reduction factor for the equivalent SDOF system,
, can be estimated from Equation (7). Finally, the ductility reduction factor for the MDOF system𝑅𝜇,𝑆𝐷𝑂𝐹,𝑤

wall structure, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤, is given by the following expression:

𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤= 𝑅𝑀,𝑤𝑅𝜇,𝑆𝐷𝑂𝐹,𝑤 (19)

where the modification factor 𝑅𝑀,𝑤 is introduced to take into account higher mode effects for wall
structures. Following Priestley et al. [42] the amplified base shear for walls is:
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𝑉𝑏,𝑀𝐷𝑂𝐹,𝑤= 𝜙0𝜔𝑣,𝑇𝑖𝑉𝑏,𝑆𝐷𝑂𝐹,𝑤= 𝜙0(1 + 𝜇𝑤 ∗𝜙0 𝑐2,𝑇𝑤)𝑉𝑏,𝑆𝐷𝑂𝐹,𝑤 (20)

𝑐2,𝑇𝑤 = 0.067 +0.4(𝑇1,𝑤 ‒ 0.5) {≤ 1.150≥ 0.067 (21)

where 𝜙0 is the overstrength factor that relates the maximum feasible flexural strength to the design
strength. 𝜙0 is set equal to 1 because this study assumes the mean values of the material properties instead
of the design ones are assumed. This method is validated by [42] for the following displacement ductility
and fundamental period ranges, respectively: 1 ≤𝜇𝑤 ∗ ≤ 7; 0.5 𝑠 ≤𝑇1,𝑤≤ 3.9 𝑠. The modification factor
for wall structures, 𝑅𝑀,𝑤, is thus assumed equal to:

𝑅𝑀,𝑤=
𝑉𝑏,𝑆𝐷𝑂𝐹,𝑤
𝑉𝑏,𝑀𝐷𝑂𝐹,𝑤

=
1

𝜙0𝜔𝑣,𝑇𝑖
(22)

2.2. Frame structures
The proposed analytical model for frame structures consists of a linear elastic one-storey/one-column shear
frame with two rotational plastic hinges, one at the base and one at the top of the column (Figure 2(a)).
Adjustments are made to account for higher mode effects.

Similarly to wall systems, frame structures are assumed to have a constant storey mass,𝑚𝑠,𝑓, and a
constant storey height, ℎ𝑠. An analytical estimation of the fundamental period of a pure-shear cantilever,

, can be found in [41]:𝑇1,𝑓

𝑇1,𝑓= 4
𝑚𝑙,𝑓
12𝐸𝐼𝑓,𝑦

ℎ𝑠𝐻𝑓 (23)

where 𝑚𝑙,𝑓 and 𝐸𝐼𝑓,𝑦 are respectively the mass per unit height and the base column yield flexural stiffness
defined as the ratio between the yield moment, 𝑀𝑦,𝑓, and the yield curvature of the frame’s base column,

; the total building height is 𝐻𝑓.𝜑𝑦,𝑓
The plastic hinge length, 𝐿𝑝,𝑓, is defined as suggested by [42]:

𝐿𝑝,𝑓= 0.08ℎ𝑠+ 𝐿𝑠𝑝,𝑓= 0.08ℎ𝑠+ 0.022𝑓𝑦𝑑𝑏𝑙,𝑓 (24)

where 𝐿𝑠𝑝,𝑓 is the strain penetration length; ℎ𝑠 is the storey height; 𝑑𝑏𝑙,𝑓 is the maximum rebar diameter in
the frame’s base columns, respectively. Plastic hinges are graphically shown in Figure 2(a). The case of
inverse triangular distribution of horizontal forces, 𝐹𝑖, applied at storey heights, ℎ𝑖, is shown in Figure 2(b).
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(a) (b)

Figure 2: (a): Plastic hinges for frames, (b): Inverse triangular horizontal forces and corresponding
frame displacement shape.

Similarly to wall systems, the analytical model for frame systems is based on an equivalent SDOF
system able to predict the ductility reduction factor of theMDOF system,𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓, through amodification
factor, 𝑅𝑀,𝑓. The elastic displacement shape of frame structures is estimated using the expression proposed
by [42] and assuming an inverse triangular distribution of horizontal forces, as shown in Figure 2(b). In this
case:

𝜙𝑖,𝑓=
4
3
ℎ𝑖
𝐻𝑓(1 ‒ ℎ𝑖4𝐻𝑓) (25)

where 𝜙𝑖,𝑓 is the frame’s firstmode displacement of the i-th storey. The yield base shear,𝑉𝑦,𝑓 ∗ , the ultimate
base shear, 𝑉𝑢,𝑓 ∗ , the yield displacement, 𝑑𝑦,𝑓 ∗ , of the equivalent SDOF system are:

𝑉𝑦,𝑓 ∗ =
𝑀𝑦,𝑓
ℎ𝑠/2

; 𝑉𝑢,𝑓 ∗ =
𝑀𝑢,𝑓
ℎ𝑠/2

; 𝑑𝑦,𝑓 ∗ =
𝑉𝑦,𝑓 ∗

𝑘𝑓 ∗
(26)

where 𝑀𝑦,𝑓 and 𝑀𝑢,𝑓 are the yield and ultimate moment of the frame base column, respectively; 𝑘𝑓 ∗ is
calculated using Equation (9). The yield displacement, 𝑑𝑦1,𝑓 ∗ , and the plastic displacement, 𝑑𝑝1,𝑓 ∗ , for the
first storey of the MDOF system are given by:

𝑑𝑦1,𝑓 ∗ =
𝑉𝑦,𝑓 ∗

12𝐸𝐼𝑓/ℎ𝑠3
; 𝑑𝑝1,𝑓 ∗ = (𝜑𝑢,𝑓 ‒ 𝜑𝑦,𝑓)𝐿𝑝,𝑓ℎ𝑠 (27)

where 𝜑𝑦,𝑓 and 𝜑𝑢,𝑓 are the yield and ultimate curvature of the base column of the frame, respectively. In
order to have the same plastic displacement for the equivalent SDOF system, 𝑑𝑝,𝑓 ∗ , the plastic displacement
first storey of the MDOF, 𝑑𝑝1,𝑓 ∗ , is:

𝑑𝑝,𝑓 ∗ =
𝑑𝑝1,𝑓 ∗

𝑑𝑦1,𝑓 ∗
𝑑𝑦,𝑓 ∗ (28)

The ultimate displacement, 𝑑𝑢.𝑓 ∗ , and the displacement ductility, 𝜇𝑓 ∗ , for the equivalent SDOF system
are then given by the following expressions:
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𝑑𝑢,𝑓 ∗ = 𝑑𝑦,𝑓 ∗
𝑉𝑢,𝑓 ∗

𝑉𝑦,𝑓 ∗
+ 𝑑𝑝,𝑓 ∗ = 𝑑𝑦,𝑓 ∗

𝑀𝑢,𝑓
𝑀𝑦,𝑓

+ 𝑑𝑝,𝑓 ∗ (29)

𝜇𝑓 ∗ =
𝑑𝑢,𝑓 ∗

𝑑𝑦,𝑓 ∗
(30)

Once the structural ductility, 𝜇𝑓 ∗ , is known, the force reduction factor for the equivalent SDOF system,
, can be estimated using (7). Finally, the ductility reduction factor for MDOF system of frame𝑅𝜇,𝑆𝐷𝑂𝐹,𝑓

structures, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓, is given by the following expression:

𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓= 𝑅𝑀,𝑓𝑅𝜇,𝑆𝐷𝑂𝐹,𝑓 (31)

where the modification factor, 𝑅𝑀,𝑓, accounts for the frame’s higher mode effects. A method to assess
higher mode effects for frame structures is proposed by Priestley et al. [42], defining the amplified base
shear for frames as:

𝑉𝑏,𝑀𝐷𝑂𝐹,𝑓=𝜔𝑣,𝜇𝑉𝑏,𝑆𝐷𝑂𝐹,𝑓= (𝜙0+ 0.1𝜇𝑓 ∗ )𝑉𝑏,𝑆𝐷𝑂𝐹,𝑓 (32)

where 𝜙0 is the overstrength factor relating the maximum feasible flexural strength to design strength; in
this work 𝜙0 is equal to 1 because mean values of material properties are assumed instead of design ones.
Equation (32) was obtained from nonlinear time history analyses of RC frame structures designed according
to the Direct Displacement Based Design, DDBD, [42], but it can be considered valid also for shear frames.
With regard to the failure mechanism that they form, shear frames differ from DDBD frames that are
developed using capacity design principles Shear frames represent weak column – strong beam structures
while capacity designed structures are designed to form a strong column – weak beam mechanism. The
modification factor for frame structures, 𝑅𝑀,𝑓, is defined equal to:

𝑅𝑀,𝑓=
𝑉𝑏,𝑆𝐷𝑂𝐹,𝑓
𝑉𝑏,𝑀𝐷𝑂𝐹,𝑓

=
1
𝜔𝑣,𝜇

(33)

3. Numerical analyses for the validation of the alternative formulation and ductility reduction
factor computation

In this section numerical analyses for the validation of the alternative formulation for wall and frame
structures are presented and the iterative procedure followed to compute the ductility reduction factor is
reported in detail. The software used to perform the numerical analyses is the open-source software
OpenSees [43], [44]. Pre-processing and post-processing of data were conducted with the software
MATLAB [45].

3.1. Wall structures
The MDOFwall system is modelled as a flexural cantilever beam. The numerical model takes a single wall
as representative of the entire wall system. The cantilever is modelled as an Euler-Bernoulli elastic beam
with rigid-plastic rotational springs at the wall base and at each storey level, as shown in Figure 3(a). Masses
are assigned to each floor level. The flexural stiffness of the wall is equal to the ratio of the yield moment,

, to the yield curvature, [42].𝑀𝑦,𝑤 𝜑𝑦,𝑤
The rotational springs’ moment-rotation relationship is assumed as bilinear for the sake of simplicity

and to limit the computational time. The rotational springs are modelled as zero-length elements in
OpenSees [43] with the uniaxial bilinear material “Steel01”. The rigid-plastic hinge is modelled with the
initial elastic tangent stiffness, 𝑘'𝜃= 1000𝑘𝜃, where 𝑘𝜃 is the flexural stiffness of the elastic cantilever
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(since OpenSees does not include rigid-elastic material), as well as with the post-yield hardening stiffness,
, which are calculated with correspondingmoment to rotation ratios. The assumed properties of the𝑏'𝜃= 𝑏𝜃

bilinear moment-rotation hinges are described here below and are illustrated in Figure 3(b).
The SDOF model consists in a single element of height, ℎ𝑤 ∗ , area, 𝐴𝑤, stiffness, 𝑘𝑤 ∗ , and mass,𝑚𝑤 ∗ ,

placed on top. The properties of the bilinear moment-rotation hinge are evaluated just like the MDOF
system’s hinge by replacing 𝜑𝑦,𝑤 and 𝜑𝑢,𝑤 with 𝜑𝑦,𝑤∗ and 𝜑𝑢,𝑤 ∗ , given by Equations (15) and (16). The
elastic equivalent SDOF system uses the nonlinear SDOF model with a rigid-plastic base hinge.

(a) (b)

Figure 3: (a): MDOF model of wall system, (b): Plastic hinges (one with a very high elastic
stiffness representative of a rigid-plastic hinge, the other elasto-plastic).

3.2. Frame structures
The MDOF frame structure is modelled as a shear frame with a single column/storey. The response of each
column is lumped into a single bilinear translational spring, as shown in Figure 4(a). Masses are assigned
to each floor level. Beams are defined as rigid by multiplying the material Young’s modulus by 1𝑒07, in
order to simulate a shear-type system.

The shear force-displacement relationship is assumed bilinear for the sake of simplicity and to limit
computational time of nonlinear analyses. The translational springs are modelled as zero-length elements
in OpenSees [43] using the uniaxial bilinear material “Steel01”. The elasto-plastic hinge is modelled with
the initial elastic tangent stiffness, 𝑘∆, the shear stiffness of the shear frame, and the post-yield hardening
stiffness, 𝑏∆, which are calculated with corresponding shear to displacement ratios. The assumed properties
of the bilinear shear force-displacement hinge are described here below and are illustrated in Figure 4(b).

The SDOF model consists of a single storey shear frame with height, ℎ𝑓 ∗ , stiffness, 𝑘𝑓 ∗ , and mass,
placed on top. The elastic equivalent SDOF system uses the nonlinear SDOF model with a linear𝑚𝑓 ∗

elastic shear-displacement hinge.
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(a) (b)

Figure 4: (a): MDOF model of frame system, (b): Bilinear moment-rotation hinge.

3.3. SDOF and MDOF ductility reduction factors computation
The procedure to calculate the reduction factor for wall and frame systems is defined by the following steps
and is graphically shown in the flowchart of Figure 5. It is based on Santa-Ana [9] and Wang et al. [10]
works.

1) The properties of the equivalent SDOF system are defined, Equation (8)-(10).
2) For a given groundmotion (GM), the base shear of the MDOF system at the maximum target ductility

capacity, 𝜇, 𝑉𝑏,𝑀𝐷𝑂𝐹,𝑤(𝜇 = 𝜇𝑤≡ 𝜇𝑤 ∗ ) or 𝑉𝑏,𝑀𝐷𝑂𝐹,𝑓(𝜇 = 𝜇𝑓≡ 𝜇𝑓 ∗ ), is computed by scaling the
intensity of the ground motion until the maximum rotation for walls, 𝜃𝑢,𝑤,𝑖= 𝜃𝑢,𝑤,𝑖,𝑚𝑎𝑥, or until the
maximum displacement for frames, 𝑑𝑢,𝑓,𝑖= 𝑑𝑢,𝑓,𝑖,𝑚𝑎𝑥, is attained in one of the 𝑛𝑠 hinges, within a 5%
tolerance. The scaling factor is obtained using an iterative procedure. The MDOF wall system
ductility, 𝜇𝑤, is defined as the displacement ductility evaluated at the effective modal height ℎ𝑤 ∗ . At
each iteration 𝜇𝑤 is computed as the ratio between the ultimate displacement, 𝑑𝑢(ℎ𝑤 ∗ ), and the yield
displacement, 𝑑𝑦(ℎ𝑤 ∗ ):

𝜇𝑤= 𝜇 =
𝑑𝑢(ℎ𝑤 ∗ )

𝑑𝑦(ℎ𝑤 ∗ )
(34)

The wall yield displacement, 𝑑𝑦(ℎ𝑤 ∗ ), is obtained from a pushover analysis of the MDOF system
subjected to an inverse triangular load distribution representative of the first mode displacement. If
the effective modal height is not a multiple of the storey height, displacements are evaluated through
linear interpolation between the displacements at the storeys immediately above and below ℎ𝑤 ∗ . The
ductility of the MDOF frame system, 𝜇𝑓, is defined as themaximum interstorey drift ductility. At each
iteration the interstorey drift ductility is calculated as the maximum ratio of the ultimate drift, 𝑑𝑢,𝑓,𝑖,
to the yield drift, 𝑑𝑦,𝑓,𝑖, among the 𝑛𝑠 storeys divided by the storey height, ℎ𝑠.

𝜇𝑓= 𝜇𝐼𝐷𝑅=𝑚𝑎𝑥 (𝑑𝑢,𝑓,𝑖ℎ𝑠𝑑𝑦,𝑓,𝑖
ℎ𝑠
)=𝑚𝑎𝑥 (𝑑𝑢,𝑓,𝑖𝑑𝑦,𝑓,𝑖) (35)
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The yield drift of frames for the i-th storey, 𝑑𝑦,𝑓,𝑖, is the analytical yield displacement given by:

𝑑𝑦,𝑓,𝑖=
𝑉𝑦,𝑓,𝑖

12𝐸𝑐,𝑓𝐼𝑓,𝑦
ℎ𝑠3

=

𝑀𝑦,𝑓,𝑖
ℎ𝑠/2

12𝐸𝑐,𝑓𝐼𝑓,𝑦
ℎ𝑠3

=
𝑀𝑦,𝑓,𝑖ℎ𝑠2

6𝐸𝑐,𝑓𝐼𝑓,𝑦
(36)

where 𝑉𝑦,𝑓,𝑖 and𝑀𝑢,𝑓,𝑖 are the yield shear and moment of the frame column at the i-th storey.
3) The base shear of the SDOF system at the maximum target ductility capacity, 𝑉𝑏,𝑆𝐷𝑂𝐹,𝑤(𝜇= 𝜇𝑤 ∗ ) or

, is computed by iteration on the yield moment of the SDOF system’s base hinge,𝑉𝑏,𝑆𝐷𝑂𝐹,𝑓(𝜇 = 𝜇𝑓 ∗ )
when subjected to the same ground motion and same scale factor of step 2, until the ductility, 𝜇, of
the SDOF structure is equal to the target ductility 𝜇𝑤 ∗ or 𝜇𝑓 ∗ within a 5% tolerance error. The yield
displacements, 𝑑𝑦(ℎ𝑤 ∗ ) and 𝑑𝑦,𝑓, are identified as the top displacement corresponding to the yield
moment,𝑀𝑦,𝑤, or the yield shear, 𝑉𝑦,𝑓, at the base hinge, respectively.

4) The elastic SDOF system’s base shear, 𝑉𝑏,𝑆𝐷𝑂𝐹,𝑤(𝜇 = 1) or 𝑉𝑏,𝑆𝐷𝑂𝐹,𝑓(𝜇 = 1), is computed for the
elastic SDOF system when subjected to the same ground motion and same scale factor of step 2.

5) The ductility reduction factor for the SDOF wall system, 𝑅𝜇,𝑆𝐷𝑂𝐹,𝑤, the ductility reduction factor for
the MDOF wall system, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤, and the modification factor for wall system, 𝑅𝑀,𝑤, are computed.

, , are computed by an approach similar to the wall system.𝑅𝜇,𝑆𝐷𝑂𝐹,𝑓 𝑅𝜇,𝑆𝐷𝑂𝐹,𝑓 𝑅𝑀,𝑓
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Figure 5: Flowchart for the calculation of the ductility reduction factor. NLTHA: NonLinear Time
History Analysis; THA: Time History Analysis; PGA: peak ground acceleration.

4. Analyses and results

Three series of analyses have been carried out for wall systems and three for frame systems. Each analysis
evaluated the ductility reduction factor for SDOF and MDOF system and the corresponding modification
factor.

The material properties used in the analyses, were: concrete compressive strength 𝑓𝑐= 38.0 𝑀𝑃𝑎; steel
yield stress 𝑓𝑦,𝑠 = 550.0𝑀𝑃𝑎; steel tensile strength 𝑓𝑢,𝑠 = 632.5𝑀𝑃𝑎; steel Young’s modulus 𝐸𝑠 = 200
𝐺𝑃𝑎; maximum rebar diameter 𝑑𝑏𝑙= 20 𝑚𝑚. Structural RCmember weight was assumed equal to 25.0 𝑘𝑁

. The mean mechanical properties were used in the analytical procedure./𝑚3

Storey gravity loads in the seismic load combination, 𝑞𝐸, was equal to 7.8 𝑘𝑁/𝑚2 on a influence area
of 25.0 𝑚2, assuming a bay length, 𝑙𝑏, of 5.0 𝑚 and a storey span, 𝑖𝑏, of 5.0 𝑚.

Nonlinear Time History Analyses (NLTHA) were performed to compute the ductility reduction factor
in Section 4 and to compare the results of the proposed formulation and the values provided by Eurocode
8 in Section 5. For each structure, a set of 34 natural ground motions were run. A total of 1020 NLTHAs
were computed for wall and frame systems. The natural ground motions were the same as those used by
[46]. They were selected from the PEER [47] ground motion database. For the MDOF systems, Rayleigh
damping matrix was assigned by considering a damping coefficient 𝜁 = 5% to the first two modes [40].
For the SDOF systems, a damping coefficient 𝜁 = 5% was assigned through the initial stiffnessmatrix. The
analysis time step was defined as the minimum value between 20, the time step of the ground motion𝑇1
data and 0.02 seconds. The unconditionally stable Newmark method [48] with constant average
acceleration was used (𝛾 = 0.5 and 𝛽 = 0.25).

4.1. Wall structures
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Three series of wall structures were taken into consideration, and they are labeled “W1”, “W2” and “W3”,
respectively. Each series is composed of 10 systems, with a number of storeys, 𝑛𝑠, ranging from 3 to 12 in
storey height ℎ𝑠= 3.50 𝑚. They all had the same wall section sizes: section thickness 𝑏𝑤= 0.30 𝑚 and
section length 𝑙𝑤 =2.10 𝑚. The difference between the series lays in the sectional ductility, equal to 9.3,
11.7 and 14.0 for the three groups, respectively.

Results for wall systems W1, W2 and W3 are illustrated in Figure 6, where numerical results are
compared to the proposed analytical results. In the figures numerical results given by OpenSees [43] and
analytical predictions are indicated with “OS” and “AN” labels respectively. The Figures 6 graphs show
that the analytical prediction for ductility reduction factor, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤, modification factor, 𝑅𝑀,𝑤, and target
ductility, 𝜇𝑤 ∗ , were in adequate agreement with respective numerical mean values (OSmean); data dispersion
is evidenced through the range of entire population (100%) and the range of 68% coverage of population.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: Ductility reduction factor for walls (a): W1, (b): W2, (c): W3, modification factor for
walls (d): W1, (e): W2, (f): W3, target ductility for walls (d): W1, (e): W2, (f): W3.
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The ductility reduction factor for the MDOF systems, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤,𝑂𝑆, was overestimated by the proposed
analytical model, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤,𝐴𝑁, with an average error of 33%. The modification factor, 𝑅𝑀,𝑤,𝑂𝑆, was well
predicted by the proposed analytical model, 𝑅𝑀,𝐴𝑁, and it was underestimated with an average error of 5%.
The target ductility, 𝜇𝑤,𝑂𝑆 ∗ , was well predicted by the proposed analytical model, 𝜇𝑤,𝐴𝑁 ∗ , and it was
overestimated with an average error of 4%.

The data dispersion was considerable when all analyses are considered, but a lower scatter was
demonstrated when 68% coverage of population was considered. It’s noteworthy that some convergence
problems occurred during the numerical analysis due to convergence failures in the numerical procedure
used to calculate the ductility reduction factors, more specifically when the convergence errors exceeded
the 5% tolerance in the search for the ground motion scale factor (MDOF system) or the target ductility
(equivalent SDOF system) within 20 iterations. The percentage of successful analyses, which is the ratio
between successful and total number of analyses, was equal to 92%. Failed analyses are not included in the
results. Analyses failed randomly with the number of storeys and the ground motions; they didn’t show
systematic bias due to certain patterns.

It is evident from Figure 6 that the ductility reduction factor, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤, the modification factor, 𝑅𝑀,𝑤,
and the target ductility, 𝜇𝑤∗ decrease with the number of storeys; 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤 and 𝑅𝑀,𝑤 are not significantly
different among the groups W1, W2 and W3. This result follows the system’s loss of capability to exploit
the base sectional inelasticity and the increase in the increased importance of higher mode effects with the
number of storeys.

Also worthy to note for high numbers of storeys, the ductility reduction factor, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤, is less than
1, which means that the system is unable to exploit the base sectional inelasticity and the structure should
be designed elastically. Values of 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤 are ranging from 2.0 to 0.4; from 2.3 to 0.4 and from 2.4 and
0.4 for W1, W2 and W3, respectively.

The modification factor, 𝑅𝑀,𝑤, decreases with the number of storeys, which means that the higher mode
effects progressively increase the base shear in MDOF systems. Values of 𝑅𝑀,𝑤 are ranging from 0.8 to 0.2
for all groups of walls, then 𝑅𝑀,𝑤 is slightly affected by the wall’s sectional ductility capacity and is mainly
controlled by 𝑛𝑠.

The target ductility, 𝜇𝑤 ∗ , decreases with the number of storeys, i.e. the system is less efficient to exploit
the sectional ductility and to convert it into available ductility capacity, 𝜇𝑤 ∗ , as 𝑛𝑠 increases. Values of

, are ranging from 4.1 to 2.5, from 4.9 to 2.8 and from 5.7 and 3.2 for W1, W2 and W3, respectively.𝜇𝑤 ∗

The increase of 𝜇𝑤 ∗ from W1 to W3 groups is obvious because the sectional ductility of the walls are 9.3,
11.7 and 14.0 for W1, W2 and W3, respectively.

The comparison of fundamental periods given by the numerical model, 𝑇1,𝑤,𝑂𝑆, and the analytical
model, 𝑇1,𝑤,𝐴𝑁, given by Equation (10), is reported in Table 1. The analytical fundamental periods
underestimate the numerical ones by 14%on average. The scatter between numerical and analytical periods
is due to the fact that the analytical formula is developed for uniformly distributed mass systems; on the
contrary, the numerical period is computed for lumped mass systems.

Table 1: Fundamental period of wall structures.

3 4 5 6 7 8 9 10 11 12
[s]𝑇1,𝑤,𝑂𝑆 0.46 0.77 1.15 1.61 2.14 2.76 3.45 4.21 5.06 5.98
[s]𝑇1,𝑤,𝐴𝑁 0.34 0.61 0.96 1.38 1.87 2.45 3.10 3.82 4.63 5.51

Diff. -25% -20% -17% -14% -13% -11% -10% -9% -9% -8%

4.2. Frame structures
Concerning frame systems, three series of frame structures were taken into consideration and labeled “F1”,
“F2” and “F3”, respectively. Each series was composed of 10 systems, with a number of storeys, 𝑛𝑠, ranging
from 3 to 12 and a constant storey height ℎ𝑠= 3.50 𝑚. They had the same section sizes of the base columns:
section width 𝑏𝑐= 0.40 𝑚 and section depth ℎ𝑐= 0.40 𝑚. The difference between the series lay in the first
storey sectional ductility ranges between 3.4-9.2, 2.6-6.9 and 1.7-4.6 for number of storeys ranging from 3
to 12 for the three groups, respectively, due to the increasing axial load.
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Results of frame systems F1, F2 and F3 are illustrated below in Figure 7, where numerical results are
compared to the proposed analytical results. Numerical results given by OpenSees [43] and analytical
predictions are indicated with “OS” and “AN” labels respectively in the graphs. Figures 6 show that the
analytical prediction for ductility reduction factor,𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓, modification factor,𝑅𝑀,𝑓, and target ductility,

, are in good agreement with respective numerical mean values (OSmean); data dispersion was𝜇𝑓 ∗

demonstrated through the range of entire population (100%) and range of 68% coverage of population.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: Ductility reduction factor for frames (a): F1, (b): F2, (c): F3, modification factor for
frames (d): F1, (e): F2, (f): F3, target ductility for frames (d): F1, (e): F2, (f): F3.

The ductility reduction factor for the MDOF systems, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓,𝑂𝑆, was well predicted by the proposed
analytical model, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓,𝐴𝑁, and was overestimated with an average error of 2%. The modification
factor, 𝑅𝑀,𝑓,𝑂𝑆, was overestimated by the proposed model, 𝑅𝑀,𝑓,𝐴𝑁, with an average error of 25% and even
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higher scatter occurs for high number of storeys. The target ductility, 𝜇𝑓,𝑂𝑆 ∗ , was underestimated by the
proposed model, 𝜇𝑓,𝐴𝑁 ∗ , with an average error of 10%.

The data dispersion was considerable when all analyses are considered, but a lower scatter was
demonstrated when 68% coverage of population was considered. The percentage of successful analyses,
which is the ratio between successful and total number of analyses, was equal to 76%. Failed analyses are
not included in the results. Analyses failed randomly with the number of storeys and the ground motions;
they didn’t show systematic bias due to certain patterns.

It is evident from Figure 7 that the ductility reduction factors, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓, decrease with the number of
storeys following a linear trend, due to the loss of system’s capability to exploit the sectional inelasticity.
Furthermore, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓 is significantly higher than 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤, especially for a high number of storeys, and

decreases more rapidly than 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓. Values of 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓,𝑂𝑆 are ranging from 5.6 to 1.9, from𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤
4.1 to 1.6 and from 3.1 and 1.1 for F1, F2 and F3, respectively; 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓 is significantly different among
the F1, F2 and F3 groups, unlike what is observed for wall systems.

The modification factor, 𝑅𝑀,𝑓, does not significantly vary among the groups, unlike the case of wall
systems. 𝑅𝑀,𝑓, is basically constant and slightly affected by both the base column sectional ductility
capacity and the number of storeys. Values of 𝑅𝑀,𝑓 are ranging from 0.7 to 0.4 for all group of frames.

The target ductility, 𝜇𝑓 ∗ , decreases with the number of storeys, because the system is less efficient in
exploiting sectional ductility and in converting it into available ductility capacity, 𝜇𝑓 ∗ , with the increase of
. The decrease of 𝜇𝑓 ∗ follows the base column sectional ductility decrease from F1 to F3 groups. Values𝑛𝑠

of 𝜇𝑓 ∗ are ranging from 8.1 to 3.3, from 6.1 to 2.9 and from 4.1 and 2.1 for F1, F2 and F3, respectively.
Table 2 compares the fundamental periods given by the numerical model, 𝑇1,𝑓,𝑂𝑆, and the analytical

model, 𝑇1,𝑓,𝐴𝑁, given by Equation (23). The analytical fundamental periods overestimate the numerical
ones by 11% on average. The scatter between numerical and analytical periods is due to the analytical
formula which is developed for uniformly distributed mass systems. On the contrary, the numerical period
is computed for lumped mass systems.

Table 2: Fundamental period of frame structures.

3 4 5 6 7 8 9 10 11 12
[s]𝑇1,𝑓,𝑂𝑆 0.60 0.76 0.93 1.11 1.30 1.49 1.69 1.89 2.10 2.30
[s]𝑇1,𝑓,𝐴𝑁 0.63 0.84 1.05 1.26 1.47 1.68 1.89 2.10 2.31 2.53

Diff. 6% 10% 13% 14% 14% 13% 12% 11% 10% 10%

5. Comparison of the proposed formulations and Eurocode 8

Three couples of design examples for both wall and frame system structures have been developed to
compare the performance of the proposed analytical formulation and Eurocode 8 [34] design method.
Structures are designed following Eurocode 8 requirements for medium ductility class (DCM) but
employing different force reduction factors. Moreover, Eurocode 8 imposes capacity design rules in order
to avoid brittle mechanisms such as shear failure in walls, beams and columns.

To perform numerical analyses, the commercial FEM code Midas/Gen [49] was used. Concentrated
plasticity models are considered and bilinear diagrams for inelastic hinges are used.

The inelastic hinges’ capacity is evaluated at the life-safety limit state with a 10% probability of
exceedance in 50 years. The implemented demand spectrum is representative of an Italian seismic zone
with a high seismic hazard (𝑃𝐺𝐴 = 0.319𝑔 on bedrock).

All structural elements are checked for ductile failure modes only, because brittle failures should be
excluded by the capacity design. Ductile flexural failure is reached when the rotation of the end inelastic
hinges reaches the rotational capacity, defined as 75% of the ultimate chord rotation. Ultimate and yielding
chord hinge rotations are evaluated with the equations formulated by [50], [51], [52].

The seismic performance of structures is assessed by means of both Pushover according to the N2
method [53] and NLTHAs analyses.

The displacement performance ratio, 𝛾𝑑, provided by the N2 method is:
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𝛾𝑑=
𝑑𝑐 ∗

𝑑𝑑 ∗
(37)

where 𝑑𝑐 ∗ is the ultimate displacement of the bilinearised SDOF curve, which is the displacement capacity
of the system, and 𝑑𝑑 ∗ is the inelastic displacement demand computed from the Acceleration-Displacement
Response Spectrum.

The performance ratio in term of peak ground acceleration (PGA), 𝛼𝑁2 ∗ , provided by the N2 method
is given by:

𝛼𝑁2 ∗ =
𝑃𝐺𝐴𝑐,𝑁2
𝑃𝐺𝐴𝑑

(38)

where 𝑃𝐺𝐴𝑐,𝑁2 is the peak ground acceleration that yields the structure to failure and 𝑃𝐺𝐴𝑑 is the peak
ground acceleration demand required by the pseudo-acceleration spectrum. The 𝑃𝐺𝐴𝑐,𝑁2 is calculated
iteratively scaling the PGA and consequently the demand spectrum in order to reach the structural capacity
with an error tolerance of 1e-6. 𝛼𝑁2 ∗ , is herein introduced to obtain a coherent comparison with NLTHA
results. In fact, N2 method is a displacement-based approach and the introduction of 𝛼𝑁2 ∗ allows to convert
the displacement performance to PGA performance.

The performance ratio in terms of PGA, 𝛼𝑇𝐻 ∗ , provided by the NLTHA is given by:

𝛼𝑇𝐻 ∗ =
𝑃𝐺𝐴𝑐,𝑇𝐻
𝑃𝐺𝐴𝑑

(39)

where 𝑃𝐺𝐴𝑐,𝑇𝐻 is the peak ground acceleration that causes the structure to failure and 𝑃𝐺𝐴𝑑 is the peak
ground acceleration demand required by the pseudo-acceleration spectrum. The 𝑃𝐺𝐴𝑐,𝑇𝐻 is calculated
iteratively scaling the PGA and consequently the demand spectrum which is used to select the set of seven
compatible ground motions.

The ground motions used in this study are selected by REXEL software [54]. REXEL allows to search
for sets of 7 records compatible on the average with given design spectra, according to rules derived from
Eurocode 8 [34]. Records may also reflect the sources’ seismogenic features in terms of magnitude and
epicentral distance, ground motion intensity measures, and soil conditions appropriate to the site. The
datasets contained in REXELare the EuropeanStrong-motion Database (ESD), the ITalianACcelerometric
Archive (ITACA) and the Selected Input Motions for displacement-Based Assessment and Design
(SIMBAD).

The investigated structures present a number of storeys 𝑛𝑠= 4, 8, 12 with constant storey height ℎ𝑠
. Wall structures are labeled “W4”, “W8”, “W12” and frame structures “F4”, “F8”, “F12”,= 3.50 𝑚

respectively. Here below, structures designed using the force reduction factors provided by the proposed
analytical formulation and by Eurocode 8 [34] are labeled as “AN” and “EC”, respectively. Schematic
representations of the wall and frame structures are reported in Figure 8.

Material properties, gravity loads and storey dimensions have been described in Section 4 but material
safety factors of the design process were assigned according to Eurocode 8 [34].
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Schematic representations of the studied wall and frame structures, (a): W4, (b): F4, (c):
W8, (d): F8, (e): W12, (f): F12.

5.1. Wall structures
The RC wall structures are made of eight walls linked by pinned-pinned rigid beams. Geometrical
properties and reinforcement detailing are reported in Table 3, where 𝑏𝑤 is the base thickness, 𝑙𝑤 is the base
length of each wall, Ø is the implemented bars diameter, 𝑠 is the bar spacing and 𝑛 the number of bars. The
concrete cover is 50 mm for all walls. It is noted that the same section is used for the walls designed
following both Eurocode 8 [34]and the proposed formulation, while the reinforcement changes in order to
provide the required structural strength.

Force reduction factors provided by Eurocode 8 [34] and by the proposed formulation are reported in
Table 4. As mentioned above, the overstrength-dependent component, 𝑅𝑠, of the force reduction factor is
not addressed in this study and, for the purpose of this research, 𝑅𝑠 is evaluated by means of nonlinear static
analyses (pushover analysis). It is noted that when the force modification factor provided by the proposed
formulation is lower than 1, it means that the structure has to be designed elastically and 𝑅 = 1. When 𝑅 is
lower than 1, it is shown within round brackets in Table 4.

Performances of wall systems are reported in Table 5, where 𝛾𝑑, 𝛼𝑁2 ∗ and 𝛼𝑇𝐻 ∗ are defined by
equations (37), (38) and (39), respectively. A comparison of performance ratios for wall structures is listed
in Table 6. It is worth recalling that the structure is safely designed for performance ratios equal or higher
than 1.
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Table 3: Reinforcement of walls.

Dimensions Confined end vertical
reinforcement

Vertical
reinforcement

Horizontal
reinforcementID 𝑏𝑤

[𝑚]
𝑙𝑤
[𝑚] 𝑛 Ø

[𝑚𝑚]
𝑠

[𝑚𝑚]
Ø

[𝑚𝑚]
𝑠

[𝑚𝑚]
Ø

[𝑚𝑚]
𝑠

[𝑚𝑚]
W4AN 0.20 1.00 6 30 100 12 200 12 90
W4EC 0.20 1.00 4 20 100 12 200 12 90
W8AN 0.30 1.50 12 32 100 12 200 12 90
W8EC 0.30 1.50 4 24 100 12 200 12 90
W12AN 0.35 2.00 10 32 100 12 200 12 90
W12EC 0.35 2.00 8 26 100 12 200 12 90

Table 4: Force reduction factors for wall structures.

W4AN W4EC Diff. W8AN W8EC Diff. W12AN W12EC Diff.
,𝑅𝜇 𝑞0 1.39 3.00 +116% 0.68 3.00 +344% 0.66 3.00 +356%
,𝑅𝑠 𝛼𝑢/𝛼1 1.08 1.00 -8% 1.08 1.00 -8% 1.09 1.00 -9%

,𝑅 𝑞 1.50 3.00 +100% 1.00
(0.73) 3.00 +200% 1.00

(0.72) 3.00 +200%

Table 5: Performance ratios for wall structures.

W4AN W4EC Diff. W8AN W8EC Diff. W12AN W12EC Diff.
𝛾𝑑 0.92 0.59 -36% 1.20 0.62 -48% 1.08 0.81 -25%
𝛼 ∗𝑁2 0.88 0.50 -44% 1.43 0.54 -62% 1.07 0.82 -23%
𝛼 ∗𝑇𝐻 0.95 0.69 -27% 1.49 0.74 -50% 1.00 0.89 -11%

Table 6: Comparison of performance ratios for wall structures.

W4AN W4EC W8AN W8EC W12AN W12EC
(𝛼 ∗𝑁2 ‒ 𝛼 ∗𝑇𝐻)/𝛼 ∗𝑇𝐻 -7% -28% -4% -28% +8% -8%
(𝛾𝑑 ‒ 𝛼 ∗𝑁2)/𝛼 ∗𝑁2 +5% +19% -16% +15% +0% -2%

As clearly shown in Table 4, force reduction factors provided by Eurocode 8 [34] are significantly
higher than those calculated with the proposed formulation. Consequently, as reported in Table 5, the
Eurocode 8 yields unsafe and underdesigned structures, particularly for low and mid-rise buildings, these
have smaller fundamental periods falling in the constant acceleration plateau of the design spectrum, where
structures are subjected to the highest seismic demand. Value differences of 𝑅 lead to considerable
variations in performance ratios even with respect to structures with longer periods (that fall into the
descending branch of the design spectrum).

The comparison between 𝛼 ∗ and 𝛼 ∗ reported in Table 6, generally shows small differences. It can be𝑁2 𝑇𝐻
concluded that for regular wall structures the N2 method is an effective tool to assess the structural
performance. Furthermore, the comparison between 𝛾𝑑 and 𝛼 ∗ shows that displacement ratios are very𝑁2
close to ratios in terms of PGA, thus 𝛾𝑑 provides a reliable performance assessment and the calculation of

can be avoided.𝛼 ∗𝑁2

5.2. Frame structures
The RC frames have seven bays. Geometrical properties and reinforcement details are listed in Table 7 and
Table 8, where 𝑏𝑐 and ℎ𝑐 are the base columns’ width and depth, respectively; 𝑏𝑏 and ℎ𝑏 are the beams
width and depth, respectively, Ø is the implemented bars diameter, 𝑠 is the bar spacing, 𝑛 the number of
bars. 𝑛 total is the total number of bars in the column section and 𝑛 top-bottom is the number of bars along
, which are the section sides perpendicular to flexure direction. Finally, concrete cover is 60 mm for all𝑏𝑐

beams and columns.
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Force reduction factors provided by Eurocode 8 [34] and by the proposed formulation are reported in
Table 9. The performances of frame systems are reported in Table 10. A comparison of performance ratios
for frame structures is listed in Table 11.

Table 7: Reinforcement of columns.

Dimensions Longitudinal reinforcement Stirrups
ID 𝑏𝑐

[𝑚]
ℎ𝑐
[𝑚] total𝑛 Ø

[𝑚𝑚] top-bottom𝑛 𝑛 Ø
[𝑚𝑚]

s
[𝑚𝑚]

F4AN 0.40 0.40 12 22 4 3 10 100
F4EC 0.40 0.40 16 22 5 3 10 100
F8AN 0.45 0.45 20 22 6 3 10 50
F8EC 0.45 0.45 20 22 6 3 10 50
F12AN 0.50 0.50 24 22 7 3 10 60
F12EC 0.50 0.50 24 22 7 3 10 60

Table 8: Reinforcement of beams.

Dimensions Top reinf. Bottom reinf. Stirrups
ID 𝑏𝑏

[𝑚]
ℎ𝑏
[𝑚] 𝑛 Ø

[𝑚𝑚] 𝑛 Ø
[𝑚𝑚] 𝑛 Ø

[𝑚𝑚]
s

[𝑚𝑚]
F4AN 0.40 0.30 8 18 8 18 2 10 50
F4EC 0.40 0.30 8 20 8 20 2 10 50
F8AN 0.40 0.30 9 22 9 22 2 10 50
F8EC 0.40 0.30 9 22 9 22 2 10 50
F12AN 0.40 0.35 8 24 8 24 2 10 60
F12EC 0.40 0.35 8 24 8 24 2 10 60

Table 9: Force reduction factors for frame structures.

F4AN F4EC Diff. F8AN F8EC Diff. F12AN F12EC Diff.
,𝑅𝜇 𝑞0 4.30 3.00 -30% 3.93 3.00 -24% 3.02 3.00 -1%
,𝑅𝑠 𝛼𝑢/𝛼1 1.93 1.30 -34% 1.49 1.30 -12% 1.22 1.30 +6%
,𝑅 𝑞 8.48 3.90 -54% 5.84 3.90 -33% 3.68 3.90 +6%

Table 10: Performance ratios for frame structures.

F4AN F4EC Diff. F8AN F8EC Diff. F12AN F12EC Diff.
γd 0.86 0.99 +14% 0.98 0.98 0% 1.87 1.87 0%
α ∗N2 0.80 0.98 +22% 0.98 0.98 0% 1.77 1.77 0%
α ∗TH 1.00 1.04 +5% 1.05 1.05 0% 1.91 1.91 0%

Table 11: Comparison of performance ratios for frame structures.

F4AN F4EC F8AN F8EC F12AN F12EC
(𝛼 ∗𝑁2 ‒ 𝛼 ∗𝑇𝐻)/𝛼 ∗𝑇𝐻 -19% -6% -7% -7% -7% -7%
(𝛾𝑑 ‒ 𝛼 ∗𝑁2)/𝛼 ∗𝑁2 +7% +1% 0% 0% 0% 0%

As clearly shown in Table 9, force reduction factors provided by Eurocode 8 [34] are lower or similar
to those calculated with the proposed formulation, suggesting that the Eurocode 8 option should yield
overdesigned structures. However, capacity design rules don’t allow exploitation of the higher force
reduction factor provided by the proposed formulation. Consequently, as reported in Table 10, the design
of frame structures – except for low-rise buildings – is mainly controlled by beam design and therefore
demand for columns is straightforward following the “weak beam / strong column” capacity design rule.

Similarly to wall structures, the comparison of 𝛼 ∗ with 𝛼 ∗ reported in Table 11 generally shows slight𝑁2 𝑇𝐻
differences and demonstrates that for regular frame structures the N2 method is an effective simplified tool
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to assess the structural performance. Furthermore, the comparison of 𝛾𝑑 with 𝛼 ∗ shows that displacement𝑁2
ratios are very close to ratios in terms of PGA, thus 𝛾𝑑 provides a reliable performance assessment and the
calculation of 𝛼 ∗ can be avoided.𝑁2

6. Summary and conclusions

In the present work, an analytical formulation to estimate the ductility force reduction factor is proposed for
wall and frame structures. Key points of the study are summarised in the following:

1) The proposed analytical models for wall and frame structures consist of a single linear elastic
cantilever beam with a rotational plastic hinge at the base and a linear elastic one-storey/one-column
shear frame with two rotational plastic hinges, one at the base and one at the top of the column,
respectively. The wall and frame systems are modelled as a flexural beam and a shear frame with a
single column/storey, respectively.

2) In terms of input data, the proposed analytical models only require the structural yield and ultimate
displacements, geometry and general material properties. The computed displacement ductility is
taken as proxy of the ductility reduction factor. Such analytical models allow linking global to local
ductility demands and therefore the computed estimate of the force ductility reduction factors. These
properties are used to define an equivalent SDOF system [40] in order to achieve the ductility
reduction factor. The modification factor is estimated by analytical expressions [42], which take into
account higher mode effects on the base shear. Once the modification factor is known, the ductility
reduction factor of MDOF systems is obtained from the ductility reduction factor of SDOF systems.

3) Three levels of sectional ductility are investigated for both wall and frame structures. Structures with
a number of storeys ranging from 3 to 12 are considered, representative of low- to mid-rise buildings.
To validate the applicability of the proposed formulation, a database of 34 natural ground motions was
selected and a total of 1020 nonlinear time history analyses were carried out. An iterative procedure
was implemented in order to calculate the ductility reduction factors and the modification factors.
Results of wall and frame systems show good agreement between ductility reduction factors provided
by the analytical model and by numerical analyses.

4) For wall systems, the ductility reduction factors for MDOF systems and modification factors decrease
with the number of storeys. The study highlights the loss of system’s capability to exploit the base’s
sectional ductility capacity as well as the importance of higher mode effects with the number of
storeys. Finally, the proposed formulation accurately appraises numerical results of ductility reduction
factors for wall systems.

5) For frame systems, the ductility reduction factors for MDOF systems decrease with the number of
storeys, similarly to wall systems. On the other hand, the modification factor is basically constant and
slightly affected by both the sectional ductility capacity of the base column and the number of storeys.
Finally, the proposed formulation accurately appraises numerical results of ductility reduction factors
for frame systems.

6) Applications to three design examples of wall structures and three of frame structures show that the
force reduction factors provided by Eurocode 8 [34] for wall structures are significantly higher than
those computed with the proposed formulation and that the force reduction factors provided by
Eurocode 8 [34] for frame structures are lower or similar than those calculated with the formulation
method. Moreover, the comparison of the three type of performance ratios, 𝛾𝑑 ∗ , 𝛼𝑁2 ∗ , 𝛼𝑇𝐻 ∗ , show
small differences and it can be concluded that for regular structures the N2 method is an effective
simplified tool to assess the structural performance.

The force reduction factormainly depends on the structure’s ductility and on the structural overstrength.
The current generation of seismic design codes suffers from a several shortcomings; Among these, the fact
that the base shear is computed using a pre-defined force reduction factor, which is constant for a given
structural system type. Consequently, for the same design input, structures of the same type but different
geometry are subjected to different ductility demands and perform differently during an earthquake. The
work presented in this paper intends to contribute to the development of revised force-based design
guidelines for the next generation of seismic design codes.
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Following the developments regarding the ductility reduction factor, future research will be necessary
to identify an analytical methods able to assess the overstrength factor in both its main terms of ductility
and overstrength. Additional design examples have to be computed to assess reliability of the proposed
method application to real case studies and provide a complete statistical comparison to current building
codes. Herein, the choice of selecting basic structures is conditioned by the need to perform simple analysis
to allow the understanding of the obtained results. Applying the proposed formulation to existing buildings,
which are often inadequate with respect to the seismic performance required by modern codes, is
recommended in order to assess these structures’ seismic vulnerability. The majority of existing buildings
were designed for gravity loads only, lacking both earthquake resistance criteria and adequate detailing.
Seismic upgrading is fundamental to obtain safer structures, particularly for public buildings strategic to
social purposes. A design method applicable to existing structures could lead to suitable retrofit solutions
([55], [56], [57], [58]).

Acknowledgements

The authors wish to acknowledge the support provided by FAR funding from the University of Ferrara,
2016-2017, “Force-Based Seismic Design of Dual System Structures”. The first author wishes also to
acknowledge the the support provided by “Call for Young Researchers - contributo 5 per mille assegnato
all’Università degli Studi di Ferrara - dichiarazione dei redditi dell'anno 2012”.

References
[1] Biot MA. Transient Oscillations in Elastic Systems. Ph.D. Thesis No. 259. Aeronautics Department, Calif. Inst. of

Tech., Pasadena, CA, US, 1932.
[2] Housner GW. Behaviour of structures during earthquakes. J. Eng. Mech. Div. ASCE 1959; 4:109-129.
[3] Veletsos AS, Newmark NM. Effect of inelastic behaviour on response of simple system to earthquake motion. Proc.

2nd World Conference on Earthquake Engineering 1960, Tokyo, Japan, 855-912.
[4] Structural Engineers Association of California (SEAOC). Seismic Design Recommendations, Blue Book. SEAOC:

Sacramento, CA, US, 1959.
[5] International Conference of Building Officials (ICBO). Uniform building code (UBC). 2nd ed., Vol. 1. ICBO: Los

Angeles, CA, US, 1958.
[6] Paulay T, Priestley MJN. Seismic design of reinforced concrete and masonry buildings. New York, NY, US: John

Wiley & Sons, Inc.; 1992. 768 p.
[7] Kappos AJ. Evaluation of behaviour factors on the basis of ductility and overstrength studies. Eng. Struct. 1999;

21(9):823-835.
[8] Applied Technology Council (ATC). Structural response modification factors (ATC-19). ATC: Redwood City, CA,

US, 1995.
[9] Santa-Ana PR. Estimation of strength reduction factors for elastoplastic structures: modification factor. 13th WCEE,

no. 126. Vancouver, BC, Canada, 2004.
[10] Wang HY, Cai J, Bu GB. Influence of high mode effects on ductility reduction factors for MDOF shear-type

structures. International Journal of Advancements in Computing Technology (ĲACT) 2013; 5(9):1150-1157.
[11] Chopra AK. Dynamics of Structures: Theory and Applications to Earthquake Engineering, First Edition. Englewood

Cliffs, NJ, US, Pearson Prentice-Hall; 1995. 761 p.
[12] Mwafy AM, Elnashai AS. Calibration of force reduction factors of RC buildings. J. Earthq. Eng. 2002; 6(2):239-273.
[13] Elnashai AS, Mwafy AM. Overstrength and force reduction factors of multistorey reinforced-concrete buildings.

Struct. Design. Tall. Build. 2002; 11:329-351.
[14] Aydemir ME, Aydemir C. Overstrength factors for SDOF and MDOF systems with soil structure interaction. Earthq.

Struct. 2016; 10(6):1273-1289.
[15] Newmark NM, Hall WJ. Seismic design criteria for nuclear reactor facilities. Report No. 46. Building Practices for

Disaster Mitigation, National Bureau of Standards (NBS), Department of Commerce, Gaithersburg, MD, US,
1973:209-236.

[16] Riddel R, Newmark NM. Statistical analysis of response of nonlinear systems subjected to earthquakes. Structural
Research Series No. 468. Dept. Of Civ. Engrg., University of Illinois, Urbana, IL, US, 1979.

[17] Lai SP,Biggs JM. Inelastic response spectra for a seismicbuilding design.ASCE J. Struct. Div. 1980; 106(ST6):1995-
1310.

[18] Riddel R, Hidalgo P, Cruz E. Response modification factors for earthquake resistant design of short period structures.
Earthq. Spectra. 1989; 5(3):571-590.

[19] Hidalgo PA, Arias A. New chilean code for earthquake-resistant design of buildings. Proc. 4th U.S. Nat. Conf.
Earthquake Engrg. 1990, Palm Springs, CA, US, Vol. 2, 927-936.



24

[20] Nassar A,Krawinkler K. Seismic Demands for SDOFand MDOF.Report No.95.Dept. ofCivil Engineering, Stanford
University, Stanford, CA, US, 1991.

[21] Miranda E. Site-dependent strength reduction factors. J. Struct. Eng. 1993; 119(12):3503-3519.
[22] Vidic T, Fajfar P, Fischinger M. Consistent inelastic design spectra: strength and displacement. Earthq. Eng. Struct.

D. 1994; 23(5):507-521.
[23] Elghadamsi FE, Mohraz B. Inelastic earthquake spectra. Earthq. Eng. Struct. D. 1987; 15:91-104.
[24] Watanabe G, Kawashima K. An evaluation of the force reduction factor in the force based seismic design. NIST

special publication SP 2002. National Institute of Standards and Technology (NIST), Department of Commerce,
Gaithersburg, MD, US, 201-218.

[25] Borzi B, Elnashai AS. Refined force reduction factors for seismic design. Eng. Struct. 2000; 22:1244-1260.
[26] Ordaz M, Perez-Rocha LE. Estimation of strength-reduction factors for elastoplastic systems: A new approach.

Earthq. Eng. Struct. D. 1998; 27(9):889-901.
[27] Vamvatsikos D, Cornell CA. Direct estimation of the seismic demand and capacity of oscillators with multi-linear

static pushovers through IDA. Earthq. Eng. Struct. D. 2006; 35(9):1097-1117.
[28] Miranda E, Bertero VV. Evaluation of strength reduction factors for earthquake-resistant design. Earthq. Spectra.

1994; 10(2):357-379.
[29] Veletsos AS, Vann WP. Response of ground-excited elasto-plastic systems. J. Struct. Div. ASCE. 1971; 97(4):1257-

1281.
[30] Moghaddam H,Mohammadi RK.Ductility reduction factor ofMDOF shear-building structures. J. Earthq. Eng. 2001;

5(3):425-440.
[31] Santa-Ana PR, Miranda E. Strength reduction factors for multi-degree-of-freedom systems. 12th WCEE, no. 1446.

Auckland, AUK, New Zealand, 2000.
[32] Wang H, Cai J, Zhou J. Comparison of ductility reduction factors for MDOF flexure-type and shear-type systems.

International Journal of Vibroengineering 2014; 16(1):231-239.
[33] Gerami, M., Siahpolo, N. and Vahdani, R. Effects of higher modes and MDOF on strength reduction factor of

elastoplastic structures under far and near-fault ground motions. Ain Shams Engineering Journal 2017; 8(2):127-143.
[34] European Committee for Standardization (CEN). Eurocode 8: Design of Structures for Earthquake Resistance. Part

1: General Rules, Seismic Actions and Rules for Buildings (UNI EN 1998-1), CEN: Brussels, Belgium, 2013.
[35] Ministry of Infrastructure and Transport (MIT). Norme tecniche per le costruzioni (DM 14/1/2008). MIT: Rome,

Italy, 2008.
[36] American Society of Civil Engineers (ASCE). Minimum design loads for buildings and other structures (ASCE SEI

7-10). ASCE: Reston, VA, US, 2010.
[37] Standards NewZealand. Structural design actions - Part 5: Earthquake actions (NZS1170.5). StandardsNew Zealand:

Wellington, WGN, New Zealand, 2004.
[38] Building Center of Japan (BCJ). Building Standard Law. BCJ: Tokyo, Japan, 2013.
[39] National Research Council of Canada (NRCC). National Building Code of Canada. NRCC: Ottawa, ON, Canada,

2015.
[40] Chopra AK. Dynamics of Structures: Theory and Applications to Earthquake Engineering, Third Edition. Englewood

Cliffs, NJ, US, Pearson Prentice-Hall; 2006. 914 p.
[41] Goel RK, Chopra AK. Period formulas for concrete shear wall buildings. J. Struct. Eng. 1998; 124(4):426-433.
[42] Priestley MJN, Calvi GM, Kowalsky M. Displacement-based seismic design of structures. Pavia, Italy: IUSS Press;

2007. 721 p.
[43] OpenSees. Open System for Earthquake Engineering Simulation, Version 2.4.5. Pacific Earthquake Engineering

Research Center (PEER), CA, US, 2015. http://opensees.berkeley.edu/.
[44] Mazzoni S, McKenna F, Scott MH, Fenves GL. OpenSees command language manual. Open System for Earthquake

Engineering Simulation (PEER), University of California, Berkeley, CA, US, 2007. http://opensees.berkeley.edu.
[45] MATLAB. Version R2013a. The MathWorks, Inc., MA, USA, 2013. https://it.mathworks.com/.
[46] Karavasilis TL, Bazeos N, Beskos DE. Bahavior factor for performance-based seismic design of plane steel moment

resisting frames. J. Earthq. Eng. 2007; 11:531-559.
[47] Pacific Earthquake Engineering Research Centre (PEER). Strong Motion Database. PEER: University of California,

Berkeley, CA, US, 2005. http://peer.berkeley.edu/.
[48] Bathe KJ. Finite Element Procedures. Upper Saddle River, NJ, US: Pearson Prentice-Hall; 1996. 1037 p.
[49] Midas/Gen, Integrated design system for buildings and general structures, Version 2.1. MIDAS Information

Technology Co., Ltd., Seongnam, KR-41 Korea, 2016. https://www.midasuser.com/.
[50] Biskinis D, Fardis MN. Deformations at flexural yielding of members with continuous or lap-spliced bars. Struct.

Concrete 2010; 11(3):127-138.
[51] Biskinis D, Fardis MN. Flexure-controlled ultimate deformations of members with continuous or lap-spliced bars.

Struct. Concrete 2010; 11(2):93-108.
[52] Panagiotakos TB, Fardis MN. Deformations of reinforced concrete members at yielding and ultimate. ACI Struct. J.

2001; 98(2):135-148.
[53] Fajfar P. A nonlinear analysis method for performance based seismic design. Earthq. Spectra 2000 16(3):573-592.
[54] Iervolino I, Galasso C, Cosenza E. REXEL: computer aided record selection for code-based seismic structural

analysis. B. Earthq. Eng. 2010; 8(2):339-362.
[55] Biskinis D, Fardis MN, Upgrading of resistance and cyclic deformation capacity of deficient concrete columns.

Geotechnical, Geological and Earthquake Engineering 2009; 10:307-328.



25

[56] Biskinis D, Fardis MN. Models for FRP-wrapped rectangular RC columns with continuous or lap-spliced bars under
cyclic lateral loading. Eng. Struct. 2013; 57:199-212.

[57] Fardis MN, Schetakis A, Strepelias E. RC buildings retrofitted by converting frame bays into RC walls, Bull. Earthq.
Eng. 2013; 11(5):1541-1561.

[58] Zerbin M, Aprile A. Sustainable retrofit design of RC frames evaluated for different seismic demand. Earthq. Struct.
2015; 9(6):1337-1353.


