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Abstract: Compact, low loss flexible optical waveguides are crucial in optofluidic and 
microfluidic devices for a dense integration of optical functionalities. We demonstrate the 
fabrication of compact optical waveguides in polydimethylsiloxane through multiphoton laser 
direct writing using phenylacetylene as the photosensitive monomer. Our fabrication 
technique employs photo-induced radical chain polymerization initiated by the monomer 
molecule itself without a photoinitiator. Because of the dense π-electrons in phenylacetylene, 
we achieved a high refractive index contrast (Δn ≥ 0.06) between the waveguide core and the 
PDMS cladding. This allowed for efficient waveguiding with a core size of 1.3-µm with a 
measured loss of 0.03 dB/cm in the spectral band of 650-700 nm. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

Polydimethylsiloxane (PDMS) is an elastomer of great technological importance, having 
excellent elasticity and wide spectral range of transparency [1,2], and outstanding chemical 
[3] and thermal stability. It is widely used in the fabrication of microfluidic [4] and
optofluidic devices in particular [5]. Dense integration of optical and fluidic functionalities
becomes increasingly essential, calling for compact, low-loss, three-dimensional (3D) optical
waveguides in such devices. Prominent examples include biosensing [6], optogenetics [7–10],
microfluidic flow cytometry [11,12], wearable photonics [13], and optical printed circuit
boards [14–16]. Figure 1 illustrates an envisioned example PDMS hybrid photonic/fluidic
device where 3D optical waveguides in several different configurations and microfluidic
channels are tightly integrated.

Fig. 1. An envisioned example of 3D optical waveguides integrated in one flexible PDMS 
substrate with microfluidic channels. Blue wires illustrate an imaging waveguide bundle. Red 
wires exemplify optical communication channels. Green wires depict optical systems of flow 
cytometry or spectroscopy. 
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Femtosecond laser micromachining is a technique for the fabrication of complex 
structures inside glass and polymer based materials that exploits both additive and subtractive 
manufacturing strategies [17]. When a high laser intensity is reached inside a medium, 
nonlinear optical processes occur, one of which is the simultaneous absorption of multiple 
photons whose combined energy induces a molecular transition that leads to structural 
modifications in that material. A large number of works have focused on the structural 
modification through multiphoton laser direct writing (MP-LDW), particularly in dielectric 
materials. This has led to the development of processes for the fabrication of submicron fine 
systems, which are suitable for the realization of small photonic devices in glass [18,19], and 
polymer materials [20,21]. Besides submicron resolution, the nonlinearity of multi-photon 
absorption also enables the formation of an arbitrary 3D shape within a bulk material. 

Optical waveguides are one of the most important photonic components. More 
specifically, optical waveguides are a key element in the development of multifunctional 
platforms with tailored geometries, such as biomedical and biosensor platforms. Several 
techniques aiming at inducing a refractive index change in polymers have been developed. 
Electro-optic polymers show a change of the refractive index under photo-bleaching from 
femtosecond laser irradiation [22], and photosensitive resists have been investigated for the 
realization of stand-alone photonic wire bonding [23]. Because of the versatility of polymers, 
it is possible to combine standard microfabrication technologies with the advantage of 
embedding the desired pattern directly into a preformed material, where undoped PMMA is 
the most commonly used polymer for optical waveguide writing applications [24–26]. 

PDMS optical waveguides fabrication in a host-guest system has been previously reported 
[27,28]. When a preformed PDMS substrate is immersed into a high-refractive index liquid 
monomer formulation, the monomer molecules will permeate into the intermolecular space of 
the PDMS matrix. Selective photopolymerization of the permeated monomer by a laser focus 
can induce a local change of the refractive index in the substrate material. Waveguides with a 
diameter of 50 μm, a refractive index change of 0.01nΔ  , and an optical loss between 0.3 
and 0.6 dB/cm at a wavelength of 850 nm have been reported [28]. 

In photopolymerization, the energy of light upon absorption must be transformed into 
suitable chemical energy in the form of reactive intermediates, a process called 
photoinitiation. This conversion is usually achieved with a photoinitiator, since light 
absorption in most monomers is only efficient in deep ultraviolet (DUV) region. A 
photoinitiator is a compound that produces reactive species upon absorption of light in the 
designated spectral region. The reactive species then start a chain-growth polymerization by 
transferring the chemical energy to the monomer molecules. In certain circumstances, 
however, the addition of photoinitiators increases the chemical complexity of a polymer 
system. In particular, in biomedical applications where biocompatibility is a prerequisite, a 
great special design effort is required to ensure that the photoinitiator is nontoxic. Regardless 
of the biocompatibility of the final polymer product, reducing the chemical complexity by 
eliminating the photoinitiator would be beneficial in all biomedical applications, particularly 
implanted devices. Although photoinitiators were ubiquitously used in multiphoton 
photopolymerization [29–31], ultrafast lasers provide an opportunity to achieve this goal with 
multiphoton absorption without the use of photoinitiators. Given sufficient laser intensity, the 
DUV absorption peak of most monomers becomes accessible through two- or three-photon 
absorption at an appropriate laser wavelength and intensity. 

In this work, we demonstrate, for the first time, the fabrication of compact (1.3 μm wide) 
PDMS optical waveguides through MP-LDW in PDMS without using a photoinitiator. Our 
characterization shows a high refractive index contrast of 0.06nΔ ≈  and a low transmission 
loss of 0.03 dB/cm in the 650-700 nm spectral region. We expect our technique to find 
applications in biosensors, microfluidic flow cytometry, electro-elastic optical modulators, 
flexible optical circuit boards, wearable and implanted photonic devices, and optical neuron 
stimulation. 
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2. Methodology and fabrication process

The host-guest system we describe in this paper includes a PDMS matrix as the host and a 
liquid monomer permeated into the PDMS intermolecular space as the guest. Besides being 
polymerizable with good reactivity, requirements on the monomer formulation include: 1. 
The refractive index of the monomer must be higher than that of the PDMS host matrix; 2. 
The monomer molecule must be small and nonpolar to allow for a high solubility in PDMS 
and an easy extraction after laser exposure. 3. The absorption spectrum of the monomer must 
not overlap with the PDMS host. The first requirement generally necessitate π-electron rich 
phenyl group in the monomer formulation. Acrylate group, one of the most reactive 
polymerizable group, fails to meet the second requirement due to its slight polar nature and 
poor solubility in PDMS. The third requirement is usually satisfied in most nonpolar small-
molecule monomer formulations. Based on these considerations, we identified styrene and 
phenylacetylene as the best candidates. Despite being a widely used building block for 
polymers, styrene did not show meaningful polymerization without a photoinitiator in our 
tests. Phenylacetylene, on the other hand, readily achieves photoinitiator-free multiphoton 
polymerization in PDMS, which is in consistency with the heuristics from previous studies in 
multiphoton photoinitiators [31]. 

In this work, we fabricate poly(phenylacetylene) waveguides in platinum-cured PDMS 
slabs, since it is the only form of PDMS that is medically approved and suits many of our 
target applications. Condensation cured PDMS should also work in a similar fashion, 
although we did not test it specifically. Our fabrication technique (Fig. 2) employs photo-
induced radical chain polymerization initiated by the phenylacetylene monomer molecule 
itself without a photoinitiator [Fig. 2 (f)]. The fabrication procedure of the waveguides 
consists of four steps [Fig. 2(a)-(d)]: 1. the preparation of a pristine platinum-cured PDMS 
slab (NuSil MED 6215); 2. the permeation of the monomer into the PDMS matrix by 
immersing the PDMS slab in the phenylacetylene liquid formulation (used as purchased from 
Sigma Aldrich) for 24 hours [27] [32] to ensure the concentration of phenylacetylene in the 
PDMS slab reaches the saturation point, after which the PDMS slab gains more than 40% in 
weight; 3. the exposure of the monomer-permeated PDMS slab to a focused ultrashort laser 
irradiation to induce polymerization of phenylacetylene and form waveguide structures; and 
4. the removal of the unreacted monomer through an ethanol washing followed by a heating
step at 100-130 °C for two hours. Figure 2(e) shows the UV absorption spectrum measured
with a UV-visible spectrophotometer (Cary 100), which reveals an absorption peak in the
spectral range of 215-250 nm. The reaction scheme of the multiphoton polymerization is
illustrated in the inset in Fig. 2(e).
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suggested that the absorption loss is highly chromatic, as shown in Fig. 8(e) – (h). The 
transmissivity measured using a long pass filter cut at 532 nm is 85% at 1 cm length, 
corresponding to a loss of 0.7 dB/cm. Three waveguides were measured with a standard 
deviation of 0.07% in the transmissivity, confirming the consistency of the measurements and 
the waveguide property. Furthermore, the transmissivity measured at 592 nm and 800 nm 
using band pass filters of 40 nm bandwidth is nearly zero [orange and black bars in Fig. 8(i), 
respectively], suggesting that the 85% transmission is mainly located in the 600 – 800 nm 
wavelength range, as shown in Fig. 8(i) (light blue bar). In particular, within a narrower band 
of 650-700 nm, the measured transmissivity becomes 99.3% at 1 cm length, corresponding to 
a transmission loss of 0.03 dB/cm, as shown in Fig. 8(i) (dark red bar). 

4. Discussion

Due to the high peak intensity at the focus, nonlinear self-focusing is expected to play a role 
in the high aspect ratio of the waveguide and the occasional spots of material damage. 
Previous reports have shown that the nonlinear refractive index of electronic origin in 
poly(phenylacetylene) is on the order of 2.8 × 10−14cm2/W [34], which leads to a critical 
power for self-focusing on the order of 1.5 × 104 W. Furthermore, the concentration of the 
photo-induced polymer, and thus the refractive index of the region concerned, is a power 
function of the laser intensity. This gives an additional intensity-dependent refractive index 
contribution of a chemical origin with a response time possibly at the level of ms. The 
quantification of this chemical contribution is beyond the scope of this paper, although we 
expect it to be much greater than the electronic contribution. The writing peak power used in 
our system, on the other hand, was around 5.4 × 103 W, which is below the critical power for 
self-focusing by electronic contribution but very probably above the critical power for self-
focusing by chemical contribution. Therefore, material damages always take place when the 
writing speed is low due to uncontrollable beam collapse. At optimal writing speed, the 
polymerization tends to grow along the depth direction, causing an elongated shape in the 
fabricated waveguides, but beam collapse does not happen due to the slow response time of 
the reaction. 

5. Conclusions

We have demonstrated that compact optical waveguides can be fabricated in PDMS through 
multi-photon laser direct writing and photopolymerization. We achieved for the first time 
photoinitiator-free polymerization by tuning the writing laser wavelength to 680 nm such that 
the absorption band of the monomer is reached via multi-photon absorption. The fabricated 
waveguides we characterized are approximately 1.3 μm wide with 0.06nΔ ≥  and a 
transmission loss of 0.03 dB/cm in the spectral range of 650 – 700 nm. We expect such 
waveguides will receive a wide range of applications in biosensors, microfluidic flow 
cytometry, wearable photonic devices, electro-elastic optical modulators, flexible optical 
circuit boards, and optical neural networks. 
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