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Abstract

We consider the numerical approximation of the stochastic Darcy problem with log-normal
permeability field and propose a novel Multi Level Monte Carlo approach with a control vari-
ate variance reduction technique on each level. We model the log-permeability as a stationary
Gaussian random field with a covariance function belonging to the so called Matérn family,
which includes both fields with very limited and very high spatial regularity. The control
variate is obtained starting from the solution of an auxiliary problem with smoothed perme-
ability coefficient and its expected value is effectively computed with a Stochastic Collocation
method on the finest level in which the control variate is applied. We analyze the vari-
ance reduction induced by the control variate, and the total mean square error of the new
estimator. To conclude we present some numerical examples and a comparison with the stan-
dard Multi Level Monte Carlo method, which shows the effectiveness of the proposed method.

Key Words: Log-normal random-fields, Multi Level Monte Carlo, Control Variate, Stochas-
tic Collocation, Matérn covariance, Stochastic Darcy Problem

AMS subject classification: 60H35, 65C05, 65N30, 65N15, 35R60

1 Introduction
We consider the numerical approximation of an elliptic Partial Differential Equation (PDE) with
random diffusion coefficients, modeled as a random field with limited spatial regularity. This
problem arises e.g. in the study of groundwater flows, and has a great importance in hydrology:
in this context the diffusion coefficient is given by the permeability of the subsoil and it is often
modeled as a lognormal random field.
Several models for its covariance function have been proposed in literature, which lead to realiza-
tions having different spatial smoothness. We consider in this work covariance functions belonging
to the so called Matérn family [21] which includes models having a whole range of possible regu-
larity. Among these, a widely used covariance model belonging to this family is the exponential
one which has realizations that are only Hölder continuous with exponent smaller than 1

2 , hence
not even differentiable and featuring the same roughness as a Brownian motion. On the other
extreme, the Matérn family also includes the “double exponential” (or Gaussian) covariance, which
has infinitely differentiable realizations.

In the case of smooth random fields, great attention has been devoted in the last decades
to methods emplying polynomial chaos expansions of the solution, either in their Galerkin or
Collocaition versions (see e.g. [1, 2, 4, 10, 12, 13, 14]). The first step in setting up these methods
∗CSQI - MATHICSE, Ecole Politechnique Fédérale Lausanne, Switzerland, email: fabio.nobile@epfl.ch
†CSQI - MATHICSE, Ecole Politechnique Fédérale Lausanne, Switzerland, email: francesco.tesei@epfl.ch
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consists in expanding the input random field in series; one could use, for instance, a Karhunen-
Loève or Fourier expansion. By this way, the random field is parametrized by a countable sequence
of (hopefully independent) random variables. In practice, the series expansion will have to be
truncated to high accuracy, so as to work only with a finite number of random variables, and a
global multivariate polynomial approximation of the solution to each one of the retained random
variables is sought. This approach has been shown to be very effective in the case of smooth highly
correlated random fields, when only a moderate number of random variables can be retained in
the expansion [3, 11]. On the other hand, the performace strongly degrades in the case of rough
random fields and/or fields with a short correlation length which require a very large numebr of
random variables to obtain accurate solutions. In such cases, a polynomial chaos approach may
not be competitive with other sampling methods such as Monte Carlo or Quasi Monte Carlo.

A more traditional approach, better suited to treat the rough case, is offered by Monte Carlo
type methods [5, 8, 17], which, however, feature a very slow convergence rate. Their computational
cost is often unaffordable since, to obtain an accurate solution, many PDE solves will be needed,
each one requiring a very fine mesh due to the roughness of the coefficient. Multi Level Monte
Carlo methods (MLMC) have been recently proposed in literature (see e.g. [6, 13, 16]) in order to
reduce the variance of the Monte Carlo estimator, and consequently reduce the number of solves
on the fine grid.
The goal of this work is to combine the power of polynomial chaos methods in treating the smooth
coefficient case, with the robustness of the MLMC approach in treating the rough coefficient case.
This will be done in the framework or a control variate technique. The control variate is obtained
as the solution of the PDE with a regularized version of the lognormal random field as input
random datum and its mean can be successfully computed with a Stochastic Collocation method,
using for instance the quasi optimal sparse grid procedure illustrated in [3]. The solution of this
regularized problem being highly positively correlated with the solution of the original problem,
allows us to achieve substantial variance reduction.
In our Multi Level Monte Carlo method with Control Variate (MLCV) the choice of a suitable
regularized version of the input random field is crucial: a highly smoothed problem will be easily
approximated by Stochastic Collocation but might fail to achieve good variance reduction. On
the other hand, a poorly smoothed problem will provide substantial variance reduction in MLMC
but will not be effectively approximated by Stochastic Collocation. In this work we regularize the
log-permeability field by convolution with a Gaussian kernel with properly tuned variance.
We analyze the mean square error of the estimator and the overall complexity of the algorithm.
We also propose possible choices of the regularization parameter and of the number of samples
per grid so as to equilibrate the space discretization error, the statistical error and the error in
the computation of the expected value of the control variate by Stochastic Collocation.
The outline of the paper is the following: after introducing some notation in Section 2, in Section
3 we present the problem setting and we recall the most important results concerning the well
posedness of the continuous problem and its finite elements approximation. In Section 4 we recall
the standard Multi Level Monte Carlo method and its associated mean square error. Section 5 is
the core of the paper. Here, we introduce the new MLMC method with control variate (MLCV)
and present a complete analysis of the statistical error associated to the MLCV estimator. We
also present the practical algorithm we have used to calibrate the parameters appearing in the
MLCV method and to optimize the number of samples per level as well as the size of the sparse
grid to use in the Stochastic Collocation to achieve a given tolerance; the main result is given in
Theorem 5.1; for easiness of exposition the most technical proofs have been confined to several
appendices to the paper. In Section 6 we present some numerical results and a comparison with
the standard MLMC method. Finally, we draw some conclusions in Section 7.

2 Notation
Given a bounded Lipschitz domain D ∈ Rd, we introduce the following notation. For any k ∈ N
we denote with Ck(D) the space of continuously k times differentiable functions with the usual
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norms. For any positive real α we set α = k+ s with k ∈ N and s ∈ (0, 1] and we indicate Cα the
Hölder space for which the following norm is bounded

‖v‖Cα(D) = ‖v‖Ck(D) + |v|Cα(D) =

k∑
j=1

max
|i|1=j

‖Div‖C0(D) + max
|i|1=k

sup
x,y∈D

∣∣Div(x)−Div(y)
∣∣

|x− y|s
,

where i is a multi-index of Nd with |i|1 =
∑d
k=1 ik, D

iv = ∂|i|1

∂x
i1
1 ···∂x

id
d

and | · | denotes the euclidean

norm in Rd. Notice that with this definition, the space C1 denotes the space of Lipschitz continuous
functions and not the usual space C1 of continuously differentiable functions. We will also use the
usual Sobolev spaces Hk(D), k ∈ N, characterized by corresponding norm and seminorm

|v|2Hk(D) =

∫
D

∑
|i|1=k

∣∣Div(x)
∣∣2 dx, ‖v‖2Hk(D) =

∫
D

∑
|i|1≤k

∣∣Div(x)
∣∣2 dx,

as well as the fractional Sobolev spaces Hα(D), α ∈ R, using the Sobolev-Slobodetskii seminorm
|v|Ha(D):

‖v‖2Hα(D) = ‖v‖2Hk(D) + |v|2Hα(D) = ‖v‖2Hk(D) +
∑
|i|1=k

∫
D×D

∣∣Div(x)−Div(y)
∣∣2

|x− y|d+2s
dxdy.

In the following, whenever possible, instead of the usual H1(D) norm, we will use the equivalent
H1

0 (D) norm, defined as

‖v‖H1
0 (D) =

∫
D

|∇v|2dx.

Given a Banach space B and a complete probability space (Ω,F ,P), it is also useful to introduce
the Bochner space LqP(Ω, B) as the Banach valued space of q-integrable functions equipped with
the norm ‖v‖LqP(Ω,B) = E[‖v‖qB ]

1
q , where E denotes the expectation operator E[v] =

∫
Ω
vdP .

Finally, to simplify the notation, sometimes we will use the symbol . to indicate a bound in which
the hidden constant is just a positive real number that does not depend on anything (mesh size
h, regularity of the random field a, etc.).

3 Problem setting
In this work we consider the groundwater flow problem in a highly heterogeneous saturated porous
medium which is well described by the Darcy law relating the velocity field to the pressure gradient,
together with a mass balance equation:

u = −a∇p in D,

div(u) = f in D,

p = gj on ΓDj , j = 1, ...,mD,

u · n = 0 on ΓNj , j = 1, ...,mN ,

(1)

where ΓD = ∪mDj=1ΓDj denotes the Dirichlet boundary, ΓN = ∪mNj=1ΓNj denotes the Neumann bound-
ary and ΓD ∪ ΓN = ∂D, Γ̊D ∩ Γ̊N = ∅. Here p is the pressure , u the velocity field and a = κ

µ
represents the intrinsic permeability, i.e. the ratio between the permeability of the medium κ and
the dynamic viscosity µ; f is an external source or sink term and D ∈ Rd a bounded open domain.
In the following, since the dynamic viscosity µ is assumed to be constant, we will refer to a as
a permeability. A key issue in the study of groundwater flows in heterogeneous media concerns
the characterization of the subsurfaces proprieties. In many cases we have only a very limited
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knowledge of the input data of the problem and particularly the permeability field. In order to
deal with this uncertainty the permeability is often modeled as a spatially correlated random field
depending on a random event ω of a suitable probability space (Ω,F ,P) [21]. Hence also the
solution (p,u) of (1) will depend on ω and the problem (1) is interpreted in a probabilistic sense
as 

u(x, ω) = −a(x, ω)∇p(x, ω) in D,

div(u(x, ω)) = f(x) in D,

p(x, ω) = gj(x) on ΓDj , j = 1, ...,mD,

u(x, ω) · n = 0 on ΓNj , j = 1, ...,mN ,

a.s. in Ω (2)

where a.s. means “almost surely” . A widely used model for the permeability field a describes it
as a lognormal random field [6, 3, 21], namely a(x, ω) = eγ(x,ω) with γ(x, ω) a Gaussian random
field having mean µ(x) = E[γ(x, ·)] and covariance function covγ(x1, x2) = E[γ(x1, ·)γ(x2, ·)] −
µ(x1)µ(x2). The choice of the covariance function is a delicate issue. It directly relates to the spa-
tial smoothness of the random field realizations and strongly influences the choice of the numerical
method to use. Equations (2) have been extensively studied during the last few years from both
the theoretical and numerical point of view. Denoting Vg = {v ∈ H1(D) : v = g on ΓD}, the
variational formulation associated to problem (2) is: find p ∈ Vg such that

bω(p, v) = L(v) ∀v ∈ V0, (3)

where the bilinear form bω (parametrized by ω) and the linear functional L are defined as:

bω(u, v) =

∫
D

a(x, ω)∇p(x, ω)∇v(x)dx, L(v) =

∫
D

f(x)v(x)dx.

Well posedness results for the problem (3) can be found in [5, 22, 23] where it is shown that the
solution p is unique in the space LqP(Ω, Vg), ∀q ∈ R+. Moreover, the following regularity result is
shown in [5, 6]:

Lemma 3.1. Let D be a convex Lipschitz domain and let f ∈ Hα−1(D) and g = 0 on ΓD = ∂D.
Let a(x, ω) be the input random field of problem (3) and denote amax(ω) = maxx∈D a(x, ω) and
amin(ω) = minx∈D a(x, ω). If

• amin(ω) ∈ LqP(Ω), ∀q ∈ R+,

• a(x, ω) ∈ LqP(Ω,Cα(D)) for some 0 < α ≤ 1 and ∀q ∈ R+;

then for the problem (3) the following regularity result holds:

‖p(·, ω)‖H1+β(D) .
1

α− β
C3.1(ω, α)‖f‖Hβ−1(D), ∀0 < β < α a.s. in Ω.

If the hypothesis hold also for α > 1 then

‖p(·, ω)‖H2(D) . C3.1(ω, α)‖f‖L2(D), a.s. in Ω,

where

C3.1(ω, α) =


amax(ω)‖a(·, ω)‖Cα(D)

a3
min(ω)

if α ≤ 1,

amax(ω)‖a(·, ω)‖C1(D)

a3
min(ω)

if α > 1.

(4)

Moreover the constant C3.1(ω, α) is q-integrable for any q ∈ R+, i.e. C3.1(ω, α) ∈ LqP(Ω) ∀q ∈ R+.
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Proof. The proof of this result follows the one given in [6] by replacing [6, Lemma A.2] with
Lemma B.1 in Appendix, in order to make explicit the dependence of the bound with respect to
the regularity α of the random filed a. �

Remark. This result may seem slightly different than the one presented in [6] but actually it is
not; in fact in our work we use the Cα norm instead of the usual Cα one: this makes possible to
recover a bound for the H2 norm only when α is strictly larger than one. Secondly here we explicitly
write the dependence of the constant with respect to the degenerating part which is O( 1

α−β ) when
β → α.

In what follows we focus on the case in which the log-permeability Gaussian random field γ is
stationary and has a covariance function belonging to the Matérn family:

covγ(x, y) = c̃ovγ(|x− y|) =
σ2

Γ(ν)2ν−1

(√
2ν
|x− y|
Lc

)ν
Kν

(√
2ν
|x− y|
Lc

)
, ν ≥ 0.5, (5)

where σ2 is the pointwise variance , Lc is a correlation length, Γ is the gamma function, Kν is
the modified Bessel function of the second kind and ν is a parameter that governs the regularity
of the covariance function and, consequently, of the realizations of the random field. In particular
the following holds:

• the covariance function is Hölder continuous, namely c̃ovγ ∈ C2ν(D̄ × D̄) (see appendix C,
Lemma C.1),

• the realizations of the random field are a.s. Hölder continuous, γ(·, ω) ∈ Cα(D̄), ∀ 0 < α < ν
(see appendix C, Lemma C.2).

Hence for ν = 0.5 the covariance function is only Lipschitz continuous and the field is Hölder
continuous γ(·, ω) ∈ Cα(D̄) with α < 0.5. On the other hand, for ν →∞ the covariance function
as well as the field are continuous with all their derivates, namely c̃ovγ(·) ∈ C∞(D̄ × D̄) and
γ(·, ω) ∈ C∞(D̄) a.s. in Ω. It is important to notice that every log-normal random field a that can
be obtained starting from a Gaussian log-permeability γ having a covariance function belonging
to the Matérn family satisfies the hypothesis of Lemma 3.1.
The goal of the analysis is to compute statistics of some quantities of interest given by a linear
functional Q(p) ∈ R related to the solution of (2).

In order to numerically solve problem (3) we consider a piecewise linear finite element approx-
imation ph of p on a regular triangulation Th of the domain. The approximate solution ph ∈ Vh,g
solves the problem

bω(ph, v) = L(v) ∀v ∈ Vh,0, (6)

where Vh,g = {vh ∈ C0(D) : vh|K ∈ P1 ∀K ∈ Th and vh = Ihg on ΓD}, and Ihg is a suitable
interpolation of the Dirichlet boundary datum.
Concerning the finite element approximation error of the original problem (2) the following result
holds:

Lemma 3.2. Let D be a convex Lipschitz domain and let a(x, ω) be a log-normal stationary
random field with realizations a.s. in Cα(D), ΓD = ∂D, g = 0 and f ∈ L2(D). If α ≤ 1, by
using linear finite elements for the spatial discretization, and assuming all integrals are computed
exactly in (6), it holds:

‖p(·, ω)− ph(·, ω)‖H1
0 (D) .

1

α− β
C3.2(ω, α)‖f‖L2(D)h

β , ∀0 ≤ β < α a.s. in Ω.

where

C3.2(ω, α) =

√
amax(ω)

amin(ω)
C3.1(ω, α).
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If α > 1 it holds

‖p(·, ω)− ph(·, ω)‖H1
0 (D) . C3.2(ω, α)‖f‖L2(D)h a.s. in Ω.

Moreover the random variable C3.2(ω, α) is q-integrable for any q ∈ R+, i.e. C3.2(ω, α) ∈ LqP(Ω)
∀q ∈ R+.

Remark. Since C3.2(ω, α) ∈ LqP(Ω) ∀q ∈ R+, we deduce immediately from Lemma 3.2 in the case
α ≤ 1 the bound

‖p− ph‖LqP(Ω;H1
0 (D)) .

c3.2(α, q)

α− β
‖f‖L2(D)h

β , ∀0 ≤ β < α,

where c3.2(α, q) = ‖C3.2(·, α)‖LqP(Ω), and in the case α > 1 the bound

‖p− ph‖LqP(Ω;H1
0 (D)) . c3.2(α, q)‖f‖L2(D)h.

For the methods proposed in this work we need to expand the input random field in a countable
number of independent identically distributed standard normal random variables yn, namely

γ(x, ω) = µ(x) +

∞∑
n=1

√
λnyn(ω)bn(x), (7)

where λn are coefficients whose decay depends on the smoothness of the covariance function and
bn are suitably normalized functions in D, which may be for instance Fourier modes or Karhunen-
Loève modes, namely the eigenfunctions of the covariance operator Tγ : L2(D) → L2(D) given
by

Tγv(x) =

∫
D

v(y)covγ(x, y)dy.

In order to use numerical methods to solve the problem we will consider truncated versions of the
random field:

γN (x,y(ω)) = µ(x) +

N∑
n=1

√
λnyn(ω)bn(x) where y = (y1, .., yN ), (8)

with N chosen so that the error due to the truncation (see [7]) of the input random field is
sufficiently small compared to the space discretization error induced by the finite element approx-
imation. In the case of a random field with limited regularity, since the decay of the coefficients
λn in (7) is slow, many terms will have to be included in (8) to have a truncation error sufficiently
small. In the following, for simplicity we will write γ instead of γN every time we will be dealing
with a numerical discretization of equations (2).

4 Monte Carlo and Multi Level Monte Carlo Methods
In this section we review briefly the idea of Monte Carlo and Multi Level Monte Carlo sampling:
let us denote by Qh(ω) the quantity of interest computed by finite elements on the triangulation
Th and for the random elementary event ω ∈ Ω. The mean of the quantity of interest can be
approximated by generating a sufficiently large random sample of sizeM . To generate independent
realizations of the log-permeability we can use expansion (8), possibly with a very large N . Then
the Monte Carlo (MC) estimator Q̂MC

h,M of the mean of Q associated to a particular spatial mesh
of size h and a sample size M is defined as:

Q̂MC
h,M =

1

M

M∑
i=1

Qh(ωi), (9)

6



where Qih(ωi) are independent random variables all distributed as Qh. The mean square error of
this estimator is given by:

e(Q̂MC
h,M )2 := E[(Q̂MC

h,M − E[Q])2] =
Var(Qh)

M
+ (E[Qh −Q])

2
.

Hence the error naturally splits in two terms: a statistical error given by the variance of the
estimator and a bias term related to the finite element approximation of the PDE and the quantity
of interest. The Monte Carlo approach is straightforward to implement, but unfortunately presents
a rather slow convergence rate with respect to the sample size M which makes the computation
of accurate solutions very demanding.

Multi Level Monte Carlo methods [6, 8, 9, 13, 16] have been recently proposed and studied in
order to reduce the variance of the MC estimator and its overall computational cost needed to
meet a given tolerance. The basic idea is to consider a sequence of consecutive meshes of spatial
step size h0 > ... > hl > ... > hL and to use the linearity of the expectation operator to write
the mean of the quantity of interest on the finest grid hL as a telescopic sum of the mean of the
quantity of interest on the coarsest level plus a sum of correcting terms given by the difference on
two consecutive levels:

E[QhL ] = E[Qh0 ] +

L∑
l=1

E[Qhl −Qhl−1
].

Hence, the idea of independently estimating via standard MC estimators the terms on each level,
with suitably chosen sample sizes, in order to minimize the overall complexity. Given a sequence
{Ml}Ll=0 of sample sizes to be used on each level, the Multi Level Monte Carlo (MLMC) estimator
is given by

Q̂MLMC
{hl},{Ml} =

L∑
l=0

1

Ml

Ml∑
i=1

(
Qhl(ωl,i)−Qhl−1

(ωl,i)
)
, where Qh−1 = 0;

whose mean square error is:

e(Q̂MLMC
{hl},{Ml})

2 = E[(Q̂MLMC
{hl},{Ml} − E[Q])2] =

L∑
l=0

Var(Qhl −Qhl−1
)

Ml
+ (E[QhL −Q])

2
. (10)

In the construction of the method a key point is the choice of the sample sizes Ml on each
level and the choice of the mesh sizes hl. Several strategies have been proposed by different
authors. Just to mention a few, Giles, Scheichl et al. in their works [8, 16] consider a continuous
minimization problem in M0, ...,ML to determine the sample sizes on each level given the mesh
hierarchy {hl}Ll=0: the finest level of the hierarchy is chosen so that the bias term meets half of
the prescribed tolerance. Alternatively Schwab et al. in [13] select the samples sizes to equilibrate
all the L + 1 terms in the right hand side of (10). A global optimization of the MLMC strategy
has been investigated in [18] where the authors show that geometric sequences of hl = h0β

−l,
with β > 1, lead to nearly optimal MLMC samples; however, the corresponding meshes are in
general not nested. Also, optimal strategies might not split equally the prescribed tolerance into
the discretization error and the statistical one.

5 Multi Level Monte Carlo method with Control Variate
(MLCV)

As mentioned in the introduction, sparse grid collocation methods are very effective in solving
the stochastic Darcy problem (2) in case of smooth input random fields. On the other hand,
the Multi Level Monte Carlo method is more effective for problems with rough coefficients. We
discuss here how these two strategies can be combined to further improve the performance of the
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MLMC method in case of rough coefficients by exploiting the well known control variate variance
reduction technique ( see e.g. [26]). The idea is to introduce an auxiliary problem having a
smoothed coefficient, which can be effectively approximated by a deterministic method as, for
instance, a Stochastic Galerkin or a Stochastic Collocation one, and use the quantity of interest,
computed from the corresponding solution, as control variate in the Multi Level Monte Carlo
sampling.

Let γ(x, ω) and γε(x, ω) be the input random fields obtained respectively by considering a
covariance function of the Matérn family and the convolution of γ(x, ω) with a smooth kernel (e.g.
Gaussian), namely:

γε(·, ω) = γ(·, ω) ∗ φε(·) where φε(x) = e−
|x|2

2ε2 /(2πε2)
d
2 , (11)

analogously let aε = eγ
ε

and let p(x, ω) and pε(x, ω) denote the solutions corresponding to the two
(highly correlated) input random fields. Let us assume for the moment that we know exactly the

(a) Smoothed field aε, ε = 1/24. (b) Smoothed field aε, ε = 1/26.

(c) Smoothed field aε, ε = 1/28. (d) Original field a.

Figure 1: Three different regularizations of the same realization of a. ν = 0.5, Lc = 0.5, σ = 1.

mean of the control variate Qε = Q(pε(·, ω)) obtained starting from the solution of the auxiliary
problem having aε as input datum. We define

Q̃CV (ω) := Q(ω)−Qε(ω) + E[Qε].

This new variable is such that E[Q̃CV ] = E[Q] and

Var(Q̃CV ) = Var(Q) + Var(Qε)− 2cov(Q,Qε),

showing that the more positively correlated the two random fields are the more positively correlated
the corresponding quantities of interest are and the larger the variance reduction achievable. In
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order to apply this strategy to solve the stochastic Darcy problem we should know the exact
mean of Qε(ω). Actually we do not have this information available but, since aε(x, ω) has smooth
realizations, we can successfully use a sparse grids Stochastic Collocation method to compute it
accurately as long as the smoothing parameter ε remains sufficiently large. Denoting by ESC [Qε(·)]
the sparse grid approximation of the mean of Qε, the final variable on which we apply our MLMC
algorithm is

QCV (ω) := Q(ω)−Qε(ω) + ESC [Qε]. (12)

In this work we always consider a nested sequence of spatial grids that halves the mesh size at
each level, hl = h02−l. The mean of QCV on the finest mesh can be written as a telescopic sum
following the Multi Level idea:

E[QCVhL ] = E[QCVh0
] +

L∑
l=1

E[QCVhl −Q
CV
hl−1

],

and the Multi Level Monte Carlo estimator with control variate (MLCV) is then defined as

Q̂MLCV
{hl},{Ml} =

L∑
l=0

1

Ml

Ml∑
i=1

(
QCVhl (ωl,i)−QCVhl−1

(ωl,i)
)
,

with QCVh−1
= 0 and QCVhl (ωl,i) = Qhl(ωl,i)−Qεhl(ωl,i) +ESC [Qεhl ]. It can be equivalently rewritten

as

Q̂MLCV
{hl},{Ml} =

L∑
l=0

1

Ml

Ml∑
i=1

(
Qhl(ωl,i)−Qhl−1

(ωl,i)− (Qεhl(ωl,i)−Q
ε
hl−1

(ωl,i))
)

+ ESC [QεhL ], (13)

where again Qh−1
, Qεh−1

= 0. Concerning the mean square error associated to the estimator (13),
the following result generalizes (10):

Lemma 5.1. The mean square error of the estimator (13) can be bounded as

e(Q̂MLCV
hL,{Ml})

2 6
L∑
l=0

Var(QCVhl −Q
CV
hl−1

)

Ml
+ 2

(
E[QεhL ]− ESC [QεhL ]

)2
+ 2E[QhL −Q]2. (14)

Proof. The mean square error associated to this estimator naturally splits into a variance and a
bias term as

e(Q̂MLCV
{hl},{Ml})

2 = E[(Q̂MLCV
{hl},{Ml} − E[Q])2] =

L∑
l=0

Var(QCVhl −Q
CV
hl−1

)

Ml
+ E[QCVhL −Q]2.

The second term on the right hand side represents the bias and can further be bounded as

E[QCVhL −Q]2 = E[QhL −QεhL + ESC [QεhL ]−Q]2 6 2
(
E[QεhL ]− ESC [QεhL ]

)2
+ 2E[QhL −Q]2.

�

The first term on the right hand side of (14), represents the variance of the estimator Q̂MLCV
{hl},{Ml},

and it is expected to be smaller than the variance of the standard MLMC estimator thanks to the
presence of the control variate. The second term represents the error due to the approximation
of the mean of the smoothed quantity of interest via sparse grid Stochastic Collocation; the third
one represents the mean of the finite element error of the unsmoothed quantity of interest. When
ε goes to 0 the regularized input random field tends to the original one. Consequently the solution
pε tends to the solution p; this means that the variance associated to the estimator tends to 0. On
the other hand, according to the previous considerations, an accurate approximation of the mean
of the quantity of interest ESC [QεhL ] by a Stochastic Collocation scheme becomes extremely costly

9



and practically unfeasible for rough random fields. The parameter ε should therefore be chosen so
as to have a good variance reduction while still keeping a manageable sparse grid approximation
problem. The practical way in which we have chosen ε as well as the others parameters (finest
level L, sparse grid level, sample sizes {Ml}) in our numerical experiments will be discussed in
Section 5.3. How to optimally choose ε is still an open question and under investigation.

5.1 Sparse grid approximation of the mean of the Control Variate
In this section we review the Stochastic Collocation scheme used to compute the mean of the
control variate. As mentioned before, the log-permeability field γε, and hence the pressure pε,
depend on a sequence of random variables {yn}n∈N. First, we consider a truncated Karhunen-
Loève expansion of the log-permeability, according to (7), with a possibly arbitrarily largeN . Once
the problem has been parametrized with a finite number N of random variables {yn}n=1,...,N , we
compute the sparse grid approximation of the pressure p as in [3], namely

pε,wN (y1, ..., yn) =
∑

i∈I(w)

N⊗
n=1

∆m(in)
n [p](y1, ..., yN ), (15)

where i = (i1, ..., iN ) ∈ NN denotes a multi-index, I(w) an index set and w represents the poly-
nomial level used for the construction of the index set I(w); ∆

m(in)
n = Um(in)

n − Um(in−1)
n repre-

sents the difference between two consecutive interpolants in the variable yn that use respectively
m(in) and m(in − 1) points. In particular we use Kronrod-Patterson-Normal knots (KPN), see
[24, 25], which are numerically computed nested quadrature formulas with m(in) = 1, 3, 9, 19, 35
for in = 1, ..., 5 and maximal degree of exactness.
Following the strategy proposed in [3], we include in the index set I(w) only those indexes with
the largest profit, i.e. the ratio between the error contribution associated to the multi-index i and
the corresponding work, defined as the number of sparse grid knots associated to the multi-index
i. If {yj}MSC

j=1 denotes the collection of points composing the sparse grid and {qj}MSC
j=1 the corre-

sponding weights in the quadrature formula, the final approximation of the mean of the control
variate reads

ESC [Qε] =

MSC∑
j=1

Q(pε,wN (yj))qj . (16)

The numerical results presented in [3] (see also [15]) show that the convergence rate of this quasi-
optimal sparse grid procedure does not really depend on the number of random variables used
in the parametrization of the random field γε (i.e. it holds also for N → ∞). Moreover they
show numerically an algebraic decay of the error that justifies our use of the error model M−αSC to
compute the optimal number of samples {Ml}Ll=0 and MSC in the MLCV algorithm.

5.2 Error analysis of the MLCV method
In this section we study the statistical error of the MLCV estimator and give bounds on the
variance terms Var(QCVhl − QCVhl−1

) in the case of the Stochastic Darcy Problem (2) with log-
normal permeability. This, in particular, implies the study of the discretization error QCV −QCVhl
as a function of both the mesh size hl and the regularization parameter ε. The main result of
this section is given in Theorem 5.1.Before proceeding with the analysis, we define the random
variables

aεmax(ω) = max
x∈D

aε(x, ω), aεmin(ω) = min
x∈D

aε(x, ω).

and restrict ourself, in this section, to the case of a fully homogeneous Dirichlet problem (ΓD = ∂D,
g = 0) defined on a convex bounded domain D. Moreover, we assume that the Gaussian random
field γ is defined in Rd and for technical reasons, we consider the following smoothed version γε,
slightly different from the one given in (11). Let Dη = {x ∈ Rd s.t. dist(x,D) ≤ η} andconsider
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a function ϕ ∈ C∞(Rd), 0 ≤ ϕ ≤ 1, ϕ = 1 on Dnε and ϕ = 0 on Dc
1 for some n ∈ N such that

nε < 1. Then, we define the smoothed field γε as

γε(x) = (γ̃ ∗ φε)(x), where γ̃(x) = ϕ(x)γ(x) and φε(x) =
e−
|x|2

2ε2

(2πε2)
d
2

. (17)

Essentially, Dnε represents the domain upon which the convolution integral involved in the def-
inition (17) is computed up to an error that can be made arbitrarily small by increasing n. By
taking n > 3 we will have γε = γ̃ ∗ φε ≈ γ ∗ φε in D up to a very small error. On the other
hand, γ̃ has a compact support so that the quantities γ̃max(ω) = maxx∈D γ̃(x, ω), γ̃min(ω) =
minx∈D γ̃(x, ω), ‖γ̃(·, ω)‖Cα(Rd) are all LqP(Ω) functions, ∀q ∈ R+ and can be bounded by the
corresponding quantities on γ evaluated in the extended domain D1. In particular, we have that
|γ̃|Cα(Rd) ≤ ‖ϕ‖Cα(Rd)‖γ‖Cα(D1). We start with the following observation.

Lemma 5.2. Let γ(x, ω) be a Gaussian random field with realizations a.s. in Cα(D1) and γε(x, ω)
a smoothed version of γ(x, ω) as introduced in (17). Moreover set a = eγ and aε = eγ

ε

. For all
0 ≤ β ≤ min(α, 1) it holds:

‖a(·, ω)− aε(·, ω)‖Cβ(D) . C5.2(ω, α)εmin(α−β,2), a.s. in Ω,

where

C5.2(ω, α) = amax(ω)
∥∥∥1 + e(γε−γ)(·,ω)

∥∥∥
C0(D)

(
1 + |γ(·, ω)|Cmin(α,1)(D)

)
‖γ(·, ω)‖Cmin(α,3)(D1)‖ϕ(·, ω)‖Cmin(α,3)(D1).

Moreover, if α > 1, it holds also the following bound for the standard C1 norm

‖a(·, ω)− aε(·, ω)‖C1(D) . C̃5.2(ω, α)εmin(α−1,2), a.s. in Ω,

where

C̃5.2(ω, α) = amax(ω)
∥∥∥1 + e(γε−γ)(·,ω)

∥∥∥
C0(D)

(
1 + |γ(·, ω)|C1(D)

)
‖γ(·, ω)‖Cmin(α,3)(D1)‖ϕ(·, ω)‖Cmin(α,3)(D1).

The constants C5.2(ω, α) and C̃5.2(ω, α) are both LqP integrable ∀q ∈ R+.

Proof. See appendix A. �

Next we use this result to estimate how the distance between the solution of the original
problem (3) and that of the auxiliary one with smoothed coefficient aε in a given Sobolev norm,
namely ‖p− pε‖H1+β(D), depends on the regularization parameter ε. The following result holds:

Lemma 5.3. Let a(x, ω) and aε(x, ω) be as in Lemma 5.2 and f ∈ L2(D). A.s. in Ω it holds:

‖p(·, ω)− pε(·, ω)‖H1
0 (D) . C̃5.3(ω, α)‖f‖L2(D)ε

min(α,2),

‖p(·, ω)− pε(·, ω)‖H1+β(D) .
C5.3(ω, α)

(α− β)2√η
‖f‖L2(D) inf

0≤β<min(α,1)
0<η+β≤α

εmin(α−β−η,2) .

where
C̃5.3(ω, α) =

C5.2(ω, α)

amin(ω)aεmin(ω)
,

C5.3(ω, α) =

C5.2(ω, α)C3.1(ω, α)Cε3.1(ω, α) α ≤ 1,

C̃5.2(ω, α)C3.1(ω, α)Cε3.1(ω, α) α > 1.
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and Cε3.1(ω, α) as in (4) with a replaced by aε. If the assumptions hold also for α > 1 then it is
also valid the bound

‖p(·, ω)− pε(·, ω)‖H2(D) . C5.3(ω, α)‖f‖L2(D)ε
min(α−1,2),

Moreover, the constants C̃5.3(ω, α) and C5.3(ω, α) are LqP integrable ∀q ∈ R+.

Proof. We start by noticing that the original problem (2) satisfies the bound

‖p‖H1
0 (D) ≤

‖f‖L2(D)

amin
.

By considering the difference between the original and the regularized problem we get:∫
D

aε∇(p− pε)∇vdx = −
∫
D

(a− aε)∇p∇vdx; (18)

then, in order to prove the first bound, by choosing v = p− pε in (18), we directly get

‖p− pε‖H1
0 (D) ≤ ‖a− aε‖C0(D)

‖p‖H1
0 (D)

aεmin
,

which, from Lemma 5.2 and the above bound on ‖p‖H1
0 (D), implies the desired result. In order

to complete the proof we will use the result in Lemma B.1 in Appendix B that states that,
∀b ∈ Cα(D), and ∀v ∈ Hβ(D) for some 0 < β < min(α, 1), the following bound holds

‖bv‖Hβ(D) .
1
√
η
‖b‖Cβ+η‖v‖Hβ(D) ∀η ≤ α− β.

By integrating by parts (18) we obtain∫
D

aε∇(p− pε)∇vdx =

∫
D

div ((a− aε)∇p) vdx =

∫
D

f̃vdx.

In order to use the result given in Lemma 3.1 we need to ensure that f̃ is in Hβ−1. Indeed

‖div ((a− aε)∇p) ‖Hβ−1(D) . ‖(a− aε)∇p‖Hβ(D)

.
1
√
η
‖a− aε‖Cβ+η‖p‖Hβ+1(D) ∀0 < η ≤ α− β.

Hence for the difference p− pε the following estimate holds

‖p− pε‖H1+β(D) .
1

α− β
aεmax(ω)‖aε(·, ω)‖Cα(D)

(aεmin)3(ω)
‖f̃(·, ω)‖Hβ−1(D)

.
1

(α− β)
√
η

aεmax(ω)‖aε(·, ω)‖Cα(D)

(aεmin)3(ω)
C5.2(ω, α)‖p‖Hβ+1(D)ε

min(α− β − η, 2)

.
aεmax(ω)‖aε(·, ω)‖Cα(D)amax(ω)‖a(·, ω)‖Cα(D)

(α− β)2√η(aεmin)3(ω)(amin)3(ω)
C5.2(ω, α)‖f‖Hβ−1(D)ε

min(α− β − η, 2).

In the case α > 1 we use again the result given in Lemma 3.1

‖p(·, ω)‖H2(D) .
amax(ω)‖a(·, ω)‖C1(D)

a3
min(ω)

‖f(·, ω)‖L2(D);
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analogously we need to ensure that f̃ is in L2(D). Indeed

‖div ((a− aε)∇p) ‖L2(D) ≤ ‖∇(a− aε) · ∇p‖L2(D) + ‖(a− aε)div(∇p)‖L2(D)

. ‖∇(a− aε)‖C0(D)‖∇p‖L2(D) + ‖a− aε‖C0(D)‖∇p‖H1
0 (D) . ‖a− aε‖C1(D)‖p‖H2 .

Therefore it holds

‖p− pε‖H2(D) .
aεmax(ω)‖aε(·, ω)‖C1(D)

(aεmin)3(ω)

amax(ω)‖a(·, ω)‖C1(D)

(amin)3(ω)
C̃5.2(ω, α)‖f‖L2(D)ε

min(α−1,2).

�

We finally investigate how the H1+β-norm of the “double difference” p−ph− (pε−pεh) depends
on both the mesh parameter h and the regularization parameter ε.

Lemma 5.4. Let a(x, ω) and aε(x, ω) be as in Lemma 5.2 and f ∈ L2(D). By using linear finite
elements for the spatial discretization, a.s. in Ω it holds:

‖p(·, ω)− ph(·, ω)− (pε(·, ω)− pεh(·, ω))‖H1(D) . C5.4(ω, α)‖f‖L2(D) inf
0≤β<1

0<η+β≤α

hβεmin(α−β−η,2)

(α− β)2√η

where

C5.4(ω, α) =


1

aεmin
(C5.2(ω, α)C3.2(ω, α) + (aεmin + aεmax)C5.3(ω, α)) α ≤ 1,

1
aεmin

(
C̃5.2(ω, α)C3.2(ω, α) + (aεmin + aεmax)C5.3(ω, α)

)
α > 1.

If the assumptions hold also for α > 1 then the following bound holds as well

‖p(·, ω)− ph(·, ω)− (pε(·, ω)− pεh(·, ω))‖H1(D) . C5.4(ω, α)‖f‖L2(D)hε
min(α−1,2).

Proof. Let us consider the difference between the original problem and the auxiliary one in the
continuous and in the discretized case:∫

D

aε∇(p− pε)∇vdx = −
∫
D

(a− aε)∇p∇vdx ∀v ∈ H1
0 (D);∫

D

aε∇(ph − pεh)∇vdx = −
∫
D

(a− aε)∇ph∇vdx ∀v ∈ Vh,0

By taking the difference between these two equations we get∫
D

aε∇(p− pε − ph + pεh)∇vdx = −
∫
D

(a− aε)∇(p− ph)∇vdx ∀v ∈ Vh,0; (19)

by using this equality, ∀vh ∈ Vh,0, we can bound the term ‖pεh − ph − vh‖H1
0 (D) as

‖pεh − ph − vh‖2H1
0 (D) ≤

1

aεmin

∫
D

aε∇(pεh − ph − vh ± (pε − p))∇(pεh − ph − vh)dx

=
1

aεmin

(∫
D

aε∇(pεh − ph − (pε − p))∇(pεh − ph − vh)dx+

∫
D

aε∇(pε − p− vh)∇(pεh − ph − vh)dx

)
≤ 1

aεmin

(
−
∫
D

(a− aε)∇(p− ph)∇(pεh − ph − vh)dx+

∫
D

aε∇(pε − p− vh)∇(pεh − ph − vh)dx

)
≤ 1

aεmin

(
‖a− aε‖L∞(D)‖p− ph‖H1

0 (D) + aεmax‖p− pε + vh‖H1
0 (D)

)
‖pεh − ph − vh‖H1

0 (D),

so we finally get

‖pεh − ph − vh‖H1
0 (D) ≤

‖a− aε‖L∞(D)

aεmin
‖p− ph‖H1

0 (D) +
aεmax
aεmin

‖pε − p− vh‖H1
0 (D);
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using now the triangular inequality

‖pε − p− (pεh − ph)‖H1
0 (D) ≤ ‖pεh − ph − vh‖H1

0 (D) + ‖pε − p− vh‖H1
0 (D) ∀vh ∈ Vh,

and the arbitrariness of vh, for any 0 ≤ β < min(α, 1), 0 < η + β ≤ α, we obtain

‖pε − p− (pεh − ph)‖H1
0 (D) ≤

‖a− aε‖L∞(D)

aεmin
‖p− ph‖H1

0 (D) +

(
1 +

aεmax
aεmin

)
inf

vh∈Vh
‖p− pε − vh‖H1

0 (D)

.
‖a− aε‖L∞(D)

aεmin
‖p− ph‖H1

0 (D) +

(
1 +

aεmax
aεmin

)
‖p− pε‖H1+β(D)h

β

.
‖f‖L2(D)

(α− β)aεmin
C5.2(ω, α)C3.2(ω, α)εαhβ + ‖f‖L2(D)

(
1 +

aεmax
aεmin

)
C5.3(ω, α)

hβεmin(α−β−η,2)

(α− β)2√η

.
‖f‖L2(D)

aεmin

(
C5.2(ω, α)C3.2(ω, α) + (aεmin + aεmax)C5.3(ω, α)

)hβεmin(α−β−η,2)

(α− β)2√η

= C5.4(ω, α)‖f‖L2(D)
hβεmin(α−β−η,2)

(α− β)2√η
.

By taking the infimum we get the desired result. If the assumptions hold also for α > 1 then it
can be analogously shown that

‖p(·, ω)− ph(·, ω)− (pε(·, ω)− pεh(·, ω))‖H1(D) . C5.4(ω, α)‖f‖L2(D)hε
min(α−1,2)

�

The next theorem extends the previous result to a linear quantity of interest.

Theorem 5.1. Let a(x, ω) and aε(x, ω) be as in Lemma 5.2, f ∈ L2(D) and let Q(·) be a functional
on H1−r(D), i.e. Q ∈ Hr−1(D) with r = min(α, 1), representing our QoI. Then, by using linear
finite elements for the spatial discretization, a.s. in Ω it holds:

|Q(p−ph)(ω)−Q(pε−pεh)(ω)| . C5.1(ω, α)‖f‖L2(D)‖Q‖Hr−1(D) inf
0≤t<r

ht

α− t
inf

0≤β<r
0<η+β≤α

hβεα−β−η

(α− β)2√η
,

where

C5.1(ω, α, β) =


C3.2(ω, α)

(
C5.2(ω, α)C3.2(ω, α) + 2aεmax(ω)C5.4(ω, α)

)
α ≤ 1,

C3.2(ω, α)
(
C̃5.2(ω, α)C3.2(ω, α) + 2aεmax(ω)C5.4(ω, α)

)
α > 1.

If the assumptions hold also for α > 1 then, the following bound holds as well

|Q(p− ph)(ω)−Q(pε − pεh)(ω)| . C5.1(ω, α)‖f‖L2(D)‖Q‖L2(D)h
2εmin(α−1,2).

Proof. Let us consider the adjoint problems related to the original and the auxiliary problems
having Q(·) as right hand side∫

D

a∇v∇Φdx = Q(v),

∫
D

aε∇v∇Φεdx = Q(v), ∀v ∈ H1
0 (D)

where Φ and Φε are respectively the solutions of the two adjoint problems. Moreover, we denote
by Φh and Φεh their respective finite element approximation. By choosing v = p − ph in the first
problem and v = pε − pεh in the second problem and by taking the difference we get:

Q(p− ph)−Q(pε − pεh) =

∫
D

a∇(p− ph)∇Φdx−
∫
D

aε∇(pε − pεh)∇Φεdx.
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Using the Galerkin orthogonality and adding and subtracting some mixed terms we get:

Q(p− ph)−Q(pε − pεh) =

∫
D

a∇(p− ph)∇(Φ− Φh)dx−
∫
D

aε∇(pε − pεh)∇(Φε − Φεh)dx

±
∫
D

aε∇(p− ph)∇(Φ− Φh)dx±
∫
D

aε∇(p− ph)∇(Φε − Φεh)dx;

By properly grouping the terms above we obtain:

|Q(p− ph)−Q(pε − pεh)| ≤
∣∣∣∣∫
D

(a− aε)∇(p− ph)∇ (Φ− Φh) dx

∣∣∣∣∣∣∣∣∫
D

aε∇(p− ph − (pε − pεh))∇(Φε − Φεh)dx

∣∣∣∣
+

∣∣∣∣∫
D

aε∇ (p− ph)∇(Φ− Φh − (Φε − Φεh))dx

∣∣∣∣
≤ ‖a− aε‖L∞(D)‖p− ph‖H1

0 (D)‖Φ− Φh‖H1
0 (D)

+ ‖aε‖L∞(D)‖p− ph − (pε − pεh)‖H1
0 (D)‖Φε − Φεh‖H1

0 (D)+

+ ‖aε‖L∞(D)‖p− ph‖H1
0 (D)‖Φ− Φh − (Φε − Φεh)‖H1

0 (D).

Since for the solutions of the adjoint problems we have identical error bounds as for the the primal
ones we obtain the bound

|Q(p− ph)−Q(pε − pεh)| . C5.2(ω, α)C2
3.2(ω, α)‖f‖Hβ1−1(D)‖Q‖Hβ2−1(D)

hβ1+β2εmin(α,2)

(α− β1)(α− β2)

+aεmax(ω)C5.4(ω, α)C3.2(ω, α)‖f‖Hβ3−1(D)‖Q‖Hβ4−1(D)

hβ3+β4εmin(α−β3−η3,2)

(α− β3)2(α− β4)
√
η3

+aεmax(ω)C5.4(ω, α)C3.2(ω, α)‖f‖Hβ5−1(D)‖Q‖Hβ6−1(D)

hβ5+β6εmin(α−β6−η6,2)

(α− β5)(α− β6)2√η6

where βi, i = 1, .., 6 and ηj , j = 3, 6 are the parameters coming from the bounds of the primal and
adjoint problems. Since the bound is valid ∀βi < r , it is possible to choose β1 = β2 = β4 = β5 = t;
moreover the remaining part of the bound assumes its maximum value when β3 = β6 = β and
η3 = η6 = η; hence, ∀0 < t, β < r and and η > 0 such that β+ η ≤ α, the bound can be rewritten
as

|Q(p− ph)−Q(pε − pεh)| . C5.1(ω, α)‖f‖L2(D)‖Q‖Hr−1(D)
ht

α− t
hβεmin(α−β−η,2)

(α− β)2√η
.

By taking the first infimum over t and the second infimum over β and η we obtain the desired
result. If the assumptions hold also for α > 1 then it can be analogously shown that

|Q(p− ph)(ω)−Q(pε − pεh)(ω)| . C5.1(ω, α)‖f‖L2(D)‖Q‖L2(D)h
2εmin(α−1,2).

�

Proposition 5.1. Up to logarithmic terms, the infima in the previous estimates can be bound as
follows:

inf
0≤t≤min(α,1)

ht

α− t
. hmin(α,1) ∀h ≤ e− 1

α

inf
0≤β≤min(α,1)

0<η+β≤α

hβεmin(α−β−η,2)

(α− β)2√η
.

h
min(α,1)εmin(max(0,α−1),2), h ≤ e− 2

α ε

hmax(min(α−2,1),0)εmin(α,2), h ≥ e− 2
α ε
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The complete result can be found in Appendix D.

Corollary 5.1. Up to logarithmic terms, the bound in Theorem 5.1 becomes

|Q(p− ph)−Q(pε − pεh)| . C5.1(ω, α)‖f‖L2(D)‖Q‖L2(D)

h
2 min(α,1)εmin(max(0,α−1),2), h ≤ e− 2

α ε

hmin(α,1)hmax(min(α−2,1),0)εmin(α,2), e−
2
α ε ≤ h ≤ e− 1

α .

If we look at the bound given in Theorem 5.1, in light of the estimates presented in Proposition
5.1, we can see that the infimum is achieved for β, η close to 0 and t close to min(α, 1) when
h ≥ e−

2
α ε and for β, t close to min(α, 1) and η close to 0 when h ≥ e−

2
α ε . This means that, in

practice, there are two convergence regimes: for values of h larger than e−
2
α ε we have a slower

convergence rate with respect to h than the standard MLMC one, compensated however by the
presence of an ε term that makes the variance reduction with respect to the MLMC case significant;
on the contrary when h gets smaller than e−

2
α ε we recover the same h-convergence rate of the

standard MLMC case: in this regime we have a further variance reduction, given by the factor
εmin(α−1,2), only if the input random field is smooth enough (α > 1). In general we can state that
we get always an overall variance reduction with respect to the standard MLMC case and that
this variance reduction affects all the possible levels if the input random field is sufficiently smooth
(α > 1) and only the levels for which hl > e−

2
α ε otherwise.

In light of these results and considerations the mean square error associated to the MLCV estimator
satisfies the following

Theorem 5.2. Let a(x, ω) and aε(x, ω) be as in Lemma 5.2, f ∈ L2(D) and let Q and r be as in
Theorem 5.1 . The mean square error related to the estimator (13) can be bounded as

e(Q̂MLCV
{hl},{Ml})

2 . c25.1(α, 2)‖f‖2L2(D)‖Q‖
2
Hr−1(D)

L∑
l=0

(
inf0<t<r

htl
α−t inf 0≤β<r

0<β+η≤α

hβl ε
min(α−β−η,2)

(α−β)2
√
η

)2

Ml

+ 2
(
E[QεhL ]− ESC [QεhL ]

)2
+ 2E[QhL −Q]2

(20)

where c5.1(α, q) = ‖C5.1(ω, α)‖LqP (Ω). If the assumptions hold also for α > 1 then it is valid also
the bound

e(Q̂MLCV
{hl},{Ml})

2 . c25.1(α, 2)‖f‖2L2(D)‖Q‖
2
L2(D)

L∑
l=0

h4
l ε

2 min(α−1,2)

Ml

+
(
E[QεhL ]− ESC [QεhL ]

)2
+ 2E[QhL −Q]2.

(21)

Proof. The formula of the mean square error related to the estimator (13) is

e(Q̂MLCV
{hl},{Ml})

2 6
L∑
l=0

Var(QCVhl −Q
CV
hl−1

)

Ml
+ 2E[QεhL −Q

ε,SC
hL

]2 + 2E[QhL −Q]2.

We get

Var(QCVhl −Q
CV
hl−1

) ≤ 2Var(QCVhl −Q
CV ) + 2Var(QCVhl−1

−QCV )

≤ 2‖Q(p− phl)−Q(pε − pεhl)‖
2
L2
P (Ω) + 2‖Q(p− phl−1

)−Q(pε − pεhl−1
)‖2L2

P (Ω)

. c25.1(α, 2)‖f‖2L2(D)‖Q‖
2
Hr−1(D)

 min
0<t<r

htl
α− t

min
0≤β<r

0<β+η≤α

hβl ε
α−β−η

(α− β)2√η

2

.

By replacing in the inequality of the mean square error we get the desired result. The result
concerning the case α > 1 can be shown analogously. �
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5.3 The MLCV Algorithm
In this section we present the algorithm used in order to guarantee a mean square error smaller than
a prescribed tolerance tol. In order to be efficient, the method requires a strategy to select properly
the number of levels L and the number of samplesMl to be taken on each level l = 0, 1, ..., L as well
as the degree of approximation of the Stochastic Collocation Method in order to get a sufficiently
accurate approximation of the mean of the control variate E[Q(pε)]. Before going into the details
let us start with this important consideration: depending on the smoothness of the input random
field a two possible strategies can be followed, namely:

• Strategy 1: if the input random field is smooth enough, i.e. if α > 1, then our theoretical
results predict a variance reduction on each level; therefore Var(QCVhl −Q

CV
hl−1

) < Var(Qhl −
Qhl−1

) ∀l = 0, ..., L and it is advantageous to apply the MLCV scheme as presented in (13),
keeping the control variate on each level;

• Strategy 2: if the random field is rough, i.e. if α ≤ 1, then our theoretical results predict a
variance reduction only on the coarsest levels and more precisely for all the levels such that
hl < e−

2
α ε; therefore the most effective strategy consists in selecting as coarsest level the

grid of mesh size hl0 such that hl0 ≈ e−
2
α ε, keep the control variate only on this level and

use a standard MLMC method on the subsequent levels; by doing this, we need to compute
the approximate mean of the control variate on the coarsest mesh and not anymore on the
finest one as in Strategy 1, namely:

Q̂MLCV
{hl},{Ml} =

1

Ml0

Ml0∑
i=1

(
Qihl0

−Qε,ihl0
)

+

L∑
l=l0+1

1

Ml

Ml∑
i=1

(
Qihl −Q

i
hl−1

)
+ ESC [Qεhl0

]. (22)

The general algorithm used to properly choose the parameters {Ml}, L and the sparse grid level
w is the following:

1. We run the deterministic problem for different mesh sizes, with a small number of samples,
to have an estimate of the finite element error, or in other terms the weak error, from which
we fit the constants cw, rw ∈ R+ of the error model |E[Qhl −Q]| = cwh

rw
l .

2. Given a prescribed tolerance tol we select the finest grid having mesh size hL in such a way
to guarantee the discretization error model, which does not depend on ε, smaller than tol.

3. We set h0 = O(Lc) and evaluate, again by taking a few samples on each level, Var(QCVhl −
QCVhl−1

), Var(Qhl − Qhl−1
) and Var(QCVhl ) on the levels in which, according to the selected

strategy, these quantities are needed. Based on the estimate (20) we fit the statistical
error in two different regions, namely V

(
QCVhl −Q

CV
hl−1

)
≈ cs1h

rs1
l for l = 0, ..., l? and

V
(
QCVhl −Q

CV
hl−1

)
≈ cs2h

rs2
l for l = l? + 1, ..., L.

4. We run the sparse grid on increasing approximation levels to estimate the sparse grid error.
In particular, we fit the constants c, δ ∈ R+ of the error model |E[Qε]− ESC [Qε]| = cM−δSC .

5. According to the selected strategy and the previously estimated convergence rates, we com-
pute the number of samples Ml for l = 0, ..., L and the number of knots MSC to be used
in the sparse grid approximation of the expected value of the control variate by solving an
optimization problem in such a way to have the sum between the sampling and the stochastic
collocation error smaller than tol2. This optimization is described in the next subsection.

6. Once all the parameters appearing in the equations have been estimated the method can be
run.

We remark that this algorithm requires a certain number of samples per level to estimate all the
parameters of the different error models. These extra samples might have actually an impact on the
overall complexity of the algorithm. A more efficient way of fitting the error models in a standard
MLMC algorithm has been proposed in [18]. Its extension to MLCV is under investigation.
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5.3.1 Optimization Problem

Once the sequence of increasingly fine grids Th0
, ..., ThL has been determined, we solve un op-

timization problem to find the optimal number of samples Ml for l = 0, ..., L and the optimal
number of knots MSC forming the sparse grid upon which the expected value of the control vari-
ate is computed. The optimization problem minimizes the computational cost needed to achieve
a prescribed tolerance in the mean square error. The computational cost needed to solve a single
deterministic problem of mesh size hl is assumed to be of the form Cl = kh−dρl where ρ is a factor
typically larger than 1 and smaller than 3/2 for optimal solvers. The model for the computational
cost associated to the MLCV estimator for the two strategies is:

• strategy 1:

C(Ml,MSC) = 2M0C0 + 2

L∑
l=1

Ml(Cl + Cl−1) +MSCCL, (23)

• strategy 2:

C(Ml,MSC) = 2Ml0Cl0 +

L∑
l=l0+1

Ml(Cl + Cl−1) +MSCCl0 , (24)

where the factor 2 in the above estimates comes from the fact that on each level on which the
control variate is used, we have to solve both the original problem and the regularized one. The
associated error, according to the selected strategy is:

• strategy 1: e(Ml,MSC)2 =
cs1

∑l?

l=0 h
rs1
l +cs2

∑L
l=l?+1 h

rs2
l

Ml
+ cM−δSC , where l

? ≈ − log2(ε)

• strategy 2: e(Ml,MSC)2 =
∑L
l=l?

cs2h
rs2
l

Ml
+ cM−δSC

Remark. In the estimate of the V
(
QCVhl −Q

CV
hl−1

)
, according to the selected strategy, we have

considered only the two extreme regimes β = 0, leading to Var
(
QCVhl −Q

CV
hl−1

)
∼ O

(
h
rs1
l

)
, and

β = min(α, 1), leading to Var
(
QCVhl −Q

CV
hl

)
∼ O

(
h
rs2
l

)
.

Remark. The parameters cs1 and cs2 strongly depend on the choice of ε.

Once all the constants appearing in the previous inequalities have been estimated, according to
the strategy selected, we perform a Lagrangian optimization by considering the Lagrange function

L(Ml,MSC , λ) = C(Ml,MSC)+λ(e(Ml,MSC)2 − tol2).

Here below we report the results of such optimization procedure in the case of Strategy 1, by
assuming hl = 2−(1+l):

• M0 = tol−2
√
λ

√
cs1h

rs1
0

2C0

• Ml = tol−2
√
λ

√
cs1h

rs1
l

3Cl
for l = 1, ..., l?

Ml = tol−2
√
λ

√
cs2h

rs2
l

3Cl
for l = l? + 1, ..., L

• MSC = tol−
4

1+δ (λ)
1

1+δ

(
δ c3CL

) 1
1+δ

where λ has to be computed from:

1√
λ

=
1

√
C0(
√

2v0 +
∑L
l=1

√
3vl2l) + c( 1√

λ
)
−1+δ
1+δ (+δ2−L c

C0
)
−δ
1+δ

,

where vl, l = 0, ..., L, are the fitted variances previously introduced.
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Remark. By looking at these results it is important to notice that an optimal solution can be
found only if δ ≥ 1; this means that using a stochastic collocation method in order to approximate
the mean of the control variate brings some advantages only if the stochastic collocation converges
at least like a Monte Carlo method.

6 Numerical Results
In this section we present some numerical results obtained using the proposed method. We under-
line that all the results presented hereafter are obtained in the case of a lognormally distributed
random field a(x, ω) such that log(a(x, ω)) has a covariance function belonging to the Matérn
family (5). The sampling from the random field a(x, ω) is done via FFT [20], e.g. by expanding
the field on a Fourier basis. On the other hand, in order to compute the expected value of the
control variate via Stochastic Collocation, we considered a KL expansion of the input random
field in order to keep the number of random variables considered in the expansion as small as
possible. We show some results obtained in the 2D case. We consider the physical domain D to
be (0, 1)2 and we are interested in the simulation of an undisturbed flow from left to right which
is represented by the equations

−div(a(x, y, ω)∇p(x, y, ω)) = 0 in D, a.s. in Ω,

p(0, y, ω) = 1, p(1, y, ω) = 0, y ∈ [0, 1],

py(x, 0, ω) = py(x, 1, ω) = 0, x ∈ (0, 1).

0 1 2 3 4 5
−25

−20

−15

−10

−5

QoI =integral ε =0.125, ν =0.5, LC =0.3, N=16641

level

V
a

r
(
Q

h
l−

Q
h

l−
1

)
2

 

 

Y
l
 MLCV

Q
l
 MLCV

Y
l
 ML

Q
l
 ML

(a) ε = 1/23.

0 1 2 3 4 5
−25

−20

−15

−10

−5

QoI =integral ε =0.0625, ν =0.5, LC =0.3, N=16641

level

V
a

r
(
Q

h
l−

Q
h

l−
1

)
2

 

 

Y
l
 MLCV

Q
l
 MLCV

Y
l
 ML

Q
l
 ML

(b) ε = 1/24.

0 1 2 3 4 5
−25

−20

−15

−10

−5

QoI =integral ε =0.03125, ν =0.5, LC =0.3, N=16641

level

V
a

r
(
Q

h
l−

Q
h

l−
1

)
2

 

 

Y
l
 MLCV

Q
l
 MLCV

Y
l
 ML

Q
l
 ML

(c) ε = 1/25.

Figure 2: Variance of the difference of the QoI Q =
∫
D
u(x, ω)dx between consecutive grids.

Yl = Ql −Ql−1, ν = 0.5, Lc = 0.5, σ = 1, h0=0.5.

Figure 2 shows the variance of Ql as well as the variance of the difference Ql − Ql−1 for the
standard MLMC approach and the MLCV, in the case of rough fields (ν = 1/2). As predicted by
the theory, the variance reduction in MLCV appears only on the coarsest levels and, starting from
a certain level l? ≈ − log2 ε for which hl? ≈ ε the variance of the difference of the QoI between
consecutive grids of the MLCV and MLMC methods are identical.
The second comparison, shown in Figure 3, demonstrates that, by considering a smoother random
field as input, the variance reduction with respect to the standard MLMC case appears on each
level, and, again, the more ε gets smaller the more the variance reduction is significant.
In Figure 4 and Figure 5 we show convergence plots for the two other sources of errors, namely
the Stochastic Collocation error committed when approximating the mean of the control variate
on a sparse grid, and the error coming from the spatial discretization, which determines the finest
mesh of our sequence of meshes.

19



0 1 2 3 4 5
−30

−25

−20

−15

−10

−5

QoI =integral ε =0.125, ν =2.5, LC =0.3, N=66049

level

V
a
r
(
Q

h
l−

Q
h

l−
1

)
2

 

 

Y
l
 MLCV

Q
l
 MLCV

Y
l
 ML

Q
l
 ML

(a) ε = 1/23.

0 1 2 3 4 5
−30

−25

−20

−15

−10

−5

QoI =integral ε =0.0625, ν =2.5, LC =0.3, N=66049

level

V
a
r
(
Q

h
l−

Q
h

l−
1

)
2

 

 

Y
l
 MLCV

Q
l
 MLCV

Y
l
 ML

Q
l
 ML

(b) ε = 1/24.

0 1 2 3 4 5
−30

−25

−20

−15

−10

−5

QoI =integral ε =0.03125, ν =2.5, LC =0.3, N=66049

level

V
a
r
(
Q

h
l−

Q
h

l−
1

)
2

 

 

Y
l
 MLCV

Q
l
 MLCV

Y
l
 ML

Q
l
 ML

(c) ε = 1/25.

Figure 3: Variance of the difference of the QoI Q =
∫
D
u(x, ω)dx between consecutive grids.

Yl = Ql −Ql−1, ν = 2.5, Lc = 0.5, σ = 1, h0=0.5.
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Figure 4: SC error computed as E[Qε,SChl
−Qε,SChL

]2. LC = 0.5, σ = 1.

Concerning the Stochastic Collocation error we see that the fitted error model cM−δSC , actually
describes well the decay of the error; moreover, the convergence rate of the square of the error
remains larger than one, which guarantees the existence of an optimal number of sample points
Ml for each level and an optimal number of sparse grids knots MSC , as mentioned before.
Concerning the discretization error we see on Figure 5 that the weak error presents different

slopes depending on the smoothness of the input random field: in particular when a is rough (in
this case ν = 0.5) the convergence rate is close to 1; on the other hand when the random field
a has smooth realizations (in this case ν = 2.5 so the realizations are twice differentiable) the
convergence rate is close to 2.
To conclude the presentation of the numerical results we show a plot of the overall error; since
the finite element error is the same (up to a costant) in the mean square error associated to the
MLMC and MLCV estimators, in order to make the comparison between the two methods as
clear as possible, we select the finest mesh size hL in such a way to have the two finite element
errors comparable, i.e. a fraction of a prescribed tolerance tol2. Then we compare the other terms
coming from the mean square error associated to the MLMC and MLCV estimators. Of course,
other choices are possible concerning the algorithm (see e.g. [18, 19]) which will not be discussed
here. Hence, the error obtained with our model after having optimized all the parameters, thought
as sum of the Stochastic Collocation error and the statistical error, is shown against the estimated
CPU time, according to the computational cost model defined in (23) and (24) .
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Figure 5: Discretization error computed as E[Qhl −QhL ]2. LC = 0.5, σ = 1.

Figure 6 shows a remarkable improvement in terms of mean square error with respect to the case
of the standard MLMC method. In order to achieve the same accuracy of the MLMC method,
roughly speaking, the proposed MLCV method presents a gain in terms of computational time of
about one order of magnitude in the rough case and about two orders of magnitude in the smooth
case.

10
−2

10
0

10
2

10
4

10
6

10
8

10
−4

10
−2

error vs cpu time, ε =0.0625, ν =0.5, LC =0.5

work

e
rr

o
r

 

 

error MLCV

error MLMC

(a) ν = 0.5, ε = 1/24, LC = 0.5, σ = 1.

10
−2

10
0

10
2

10
4

10
6

10
8

10
−4

10
−2

error vs cpu time, ε =0.015625, ν =2.5, LC =0.5

work

e
rr

o
r

 

 

error MLCV

error MLMC

(b) ν = 2.5,ε = 1/28, LC = 0.5, σ = 1.

Figure 6: Error vs Computational cost. Error = SC error + Statistical error.

7 Conclusions and future work
In this work we have proposed a new Multi Level Monte Carlo algorithm with Control Variate and
applied it to solve elliptic partial differential equation with log-normal coefficients with covariance
function from the Matérn family, with particular focus on the case of rough coefficients. The
control variate is obtained by solving an auxiliary problem with a regularized coefficient and its
mean can be effectively computed by a Stochastic Collocation method.

The proposed strategy considerably improves the performance of the standard MLMC method
in terms of error versus computational cost, in both cases of rough and smooth coefficients, where
we have always observed a gain with respect to the standard MLMC method.

The choice of the regularization parameter ε is rather delicate in the case of rough coefficients,
as it should properly balance the variance reduction achievable in MLMC and the performance of
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the stochastic collocation.
So far this choice has been done heuristically; more analysis is needed to derive optimal values

of the regularization parameter.
We are also exploring the possibility of taking a level dependent ε, possibly in combination

with the general idea of Multi Index Monte Carlo introduced in [19]. Results will be reported in
a forthcoming work.

A Proof of Lemma 5.2
We consider a fixed ω ∈ Ω and we will not specify the dependence on ω in the proof. In order to
prove Lemma 5.2 we will need the following three preliminary lemmas.

Lemma A.1. Let γ(x) be a deterministic function in Cα(Rd) and, ∀h ∈ Rd, let us define Dh,βγ(x)
as

Dh,βγ(x) =
γ(x+ h)− γ(x)

|h|β
.

Then, ∀ 0 < β ≤ min(1, α) it holds

‖Dh,βγ‖Cα−β(Rd) ≤ (1 + 2
√
d)‖γ‖Cα(Rd).

and in particular
|Dh,βγ|Cα−β(Rd) ≤ 2

√
d|γ|Cα(Rd).

Proof. Let us denote α = A+ s, with A ∈ N and s ∈ (0, 1].
•We first consider the case 0 ≤ β ≤ α ≤ 1 so that A = 0 and s = α. The norm we want to bound
can be written as

‖Dh,βγ‖Cα−β(Rd) =‖Dh,βγ‖C0(Rd) + |Dh,βγ|Cα−β(Rd) =

= ‖Dh,βγ‖C0(Rd)︸ ︷︷ ︸
(i)

+ sup
x,t∈Rd

|(Dh,βγ)(x+ t)− (Dh,βγ)(x)|
|t|α−β︸ ︷︷ ︸

(ii)

.

The first term can be bounded as

(i) = sup
x∈Rd

|γ(x+ h)− γ(x)|
|h|β

≤ sup
x∈Rd

max

{
sup
|h|≥1

|γ(x+ h)− γ(x)|
|h|β

, sup
|h|≤1

|γ(x+ h)− γ(x)|
|h|β

}

≤ sup
x∈Rd

max

{
sup
|h|≥1

(|γ(x+ h)|+ |γ(x)|) , sup
|h|≤1

|γ(x+ h)− γ(x)|
|h|α

|h|α−β
}
≤ 2‖γ‖C0(Rd) + |γ|Cα(Rd).

The second term can be bounded as

(ii) = max

 sup
x,t∈Rd
|t|≥|h|

|γ(x+ t+ h)− γ(x+ t)− γ(x+ h) + γ(x)|
|h|β |t|α−β

, sup
x,t∈Rd
|t|≤|h|

|γ(x+ h+ t)− γ(x+ h)− γ(x+ t) + γ(x)|
|h|β |t|α−β


≤max

 sup
x,t∈Rd
|t|≥|h|

|γ(x+ t+ h)− γ(x+ t)|+ |γ(x+ h)− γ(x)|
|h|β |h|α−β

, sup
x,t∈Rd
|t|≤|h|

|γ(x+ t+ h)− γ(x+ h)|+ |γ(x+ t)− γ(x)|
|t|β |t|α−β


≤2|γ|Cα(Rd)

Hence we get ‖Dh,βγ‖Cα−β(Rd) ≤ 3‖γ‖Cα(Rd) and |Dh,βγ|Cα−β(Rd) ≤ 2|γ|Cα(Rd).
• Let us consider now the case 0 < β ≤ 1 < α so that α = A + s with A ≥ 1. The proof can be
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further divided in two parts: s > β and s < β since for s = β the result is obvious. We start with
the case s > β. The norm that we want to bound can be written as

‖Dh,βγ‖Cα−β(Rd) = ‖Dh,βγ‖C0(Rd) +

A∑
k=1

|Dh,βγ|Ck(Rd) + |Dh,βγ|Cα−β(Rd)

= ‖Dh,βγ‖C0(Rd)︸ ︷︷ ︸
(i)

+

A∑
k=1

max
|i|1=k

‖Di(Dh,βγ)‖C0(Rd)︸ ︷︷ ︸
(ii)

+ max
|i|1=A

sup
x,t

{
|Di(Dh,βγ)(x+ t)−Di(Dh,βγ)(x)|

|t|s−β

}
︸ ︷︷ ︸

(iii)

.

In what follows, we denote ξyx a point of the segment xy, i.d. ξyx = θx+(1−θ)y for some θ ∈ [0, 1].
The first term (i) can be bounded as

(i) = sup
x∈Rd

|γ(x+ h)− γ(x)|
|h|β

≤ sup
x∈Rd

max

{
sup
|h|≥1

|γ(x+ h)− γ(x)|
|h|β

, sup
|h|≤1

|γ(x+ h)− γ(x)|
|h|β

}

≤ sup
x∈Rd

max

{
sup
|h|≥1

(|γ(x+ h)|+ |γ(x)|) , sup
|h|≤1

|∇γ(ξx+h
x ) · h|
|h|β

}
≤ 2‖γ‖C0(Rd) +

√
d|γ|C1(Rd).

Each term of (ii), for k = 1, ..., A− 1, can be bounded as

max
|i|1=k

{
sup
x∈Rd

|Diγ(x+ h)−Diγ(x)|
|h|β

}
≤ max
|i|1=k

{
sup
x∈Rd

max

{
sup
|h|≥1

(
|Diγ(x+ h)|+ |Diγ(x)|

)
, sup
|h|≤1

|∇Diγ(ξx+h
i,x ) · h|
|h|β

}}
≤ 2|γ|Ck(Rd) +

√
d|γ|Ck+1(Rd).

The last term of (ii) for k = A, analogously to what we did in the case 0 < β ≤ α ≤ 1, can be
bounded as

|Dh,βγ|CA(Rd) ≤ 2|γ|CA(Rd) + |γ|Cα(Rd).

Hence the term (ii) can be bounded as

(ii) ≤ 2|γ|C1(Rd) + (2 +
√
d)

A∑
k=2

|γ|Ck(Rd) + |γ|Cα(Rd).

The last term (iii) can be bounded as

(iii) ≤ max
|i|1=A

max

 sup
x,t∈Rd
|t|≥|h|

|Diγ(x+ t+ h)−Diγ(x+ t)|+ |Diγ(x+ h)−Diγ(x)|
|h|β |t|s−β

,

sup
x,t∈Rd
|t|≤|h|

|Diγ(x+ t+ h)−Diγ(x+ t)|+ |Diγ(x+ h)−Diγ(x)|
|h|β |t|s−β


 ≤ 2|γ|Cα(Rd).

So the norm of ‖Dh,βγ‖Cα−β(Rd) can we bounded as

‖Dh,βγ‖Cα−β(Rd) ≤ (i)+(ii)+(iii) ≤ 2‖γ‖C0(Rd)+(2+
√
d)

A∑
k=1

|γ|Ck(Rd)+3|γ|Cα(Rd) ≤ (2+
√
d)‖γ‖Cα(Rd).

and ‖Dh,βγ‖Cα−β(Rd) ≤ 2|γ|Cα(Rd).
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• Let us consider now the case s < β. The quantity we want to bound becomes

‖Dh,βγ‖Cα−β(Rd) = ‖Dh,βγ‖C0(Rd) +

A−1∑
k=1

|Dh,βγ|Ck(Rd) + |Dh,βγ|Cα−β(Rd)

= ‖Dh,βγ‖C0(Rd)︸ ︷︷ ︸
(i)

+

A−1∑
k=1

max
|i|1=k

‖Di(Dh,βγ)‖C0(Rd)︸ ︷︷ ︸
(ii)

+ max
|i|1=A−1

sup
x,t

{
|Di(Dh,βγ)(x+ t)−Di(Dh,βγ)(x)|

|t|1+s−β

}
︸ ︷︷ ︸

(iii)

.

We have already derived a bound for the terms (i) and (ii). The term (iii) can be bounded as
follows:

(iii) = max
|i|1=A−1

max


sup
x,t∈Rd
|t|≥|h|

|Di(Dh,βγ)(x+ t)−Di(Dh,βγ)(x)|
|t|1+s−β

︸ ︷︷ ︸
(Ii)

, sup
x,t∈Rd
|t|≤|h|

|Di(Dh,βγ)(x+ t)−Di(Dh,βγ)(x)|
|t|1+s−β

︸ ︷︷ ︸
IIi


By bounding separately the two terms we get

Ii = sup
x,t∈Rd
|t|≥|h|

|Diγ(x+ t+ h)−Diγ(x+ t)−Diγ(x+ h) +Diγ(x)|
|h|β |t|1+s−β

= sup
x,t∈Rd
|t|≥|h|

|(∇Diγ(ξx+t+h
i,x+t )−∇Diγ(ξx+h

i,x )) · h|
|h|β |t|1+s−β

≤ sup
x,t∈Rd
|t|≥|h|

maxj=1,...,d |∂xj (Diγ(ξx+t+h
i,x+t ))− ∂xj (Diγ(ξx+h

i,x ))|
|ξx+t+h
i,x+t − ξ

x+h
i,x |s

√
d|h||ξx+t+h

i,x+t − ξ
x+h
i,x |s

|h|β |t|1+s−β

≤
√
d|γ|Cα(Rd) sup

x,t∈Rd
|t|≥|h|

|h|1−β(|h|s + |t|s)
|t|1+s−β ≤ 2

√
d|γ|Cα(Rd).

Similarly for the term IIi, we have:

IIi = sup
x,t∈Rd
|t|≤|h|

|Diγ(x+ t+ h)−Diγ(x+ h)−Diγ(x+ t) +Diγ(x)|
|h|β |t|1+s−β

= sup
x,t∈Rd
|t|≤|h|

|(∇Diγ(ξx+t+h
i,x+h )−∇Diγ(ξx+t

i,x )) · t|
|h|β |t|1+s−β

≤ sup
x,t∈Rd
|t|≤|h|

maxj=1,...,d |∂xj (Diγ(ξx+t+h
i,x+t ))− ∂xj (Diγ(ξx+h

i,x ]))|
|ξx+t+h
i,x+h − ξ

x+t
i,x |s

√
d|t||ξx+t+h

i,x+h − ξ
x+t
i,x |s

|h|β |t|1+s−β

≤
√
d|γ|Cα(Rd) sup

x,t∈Rd
|t|≤|h|

|t|β−s(|h|s + |t|s)
|h|β

≤ 2
√
d|γ|Cα(Rd).

and then the term (iii) can be bounded as (iii) ≤ 2
√
d|γ|Cα(Rd). Finally the norm of ‖Dh,βγ‖Cα−β(Rd)

can we bounded as

‖Dh,βγ‖Cα−β(Rd) ≤ (i)+(ii)+(iii) ≤ 2‖γ‖C0(Rd)+(2+
√
d)

A−1∑
k=1

|a|Ck(Rd)+
√
d|γ|CA(Rd)+(1+2

√
d)|γ|Cα(Rd).
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By comparing this expression with the one obtained in the previous case it is possible to conclude
that ∀h ∈ Rd, 0 < β ≤ min{α, 1} it holds

‖Dh,βγ‖Cα−β(Rd) ≤ (1 + 2
√
d)‖γ‖Cα(Rd), |Dh,βγ|Cα−β(Rd) ≤ 2

√
d|γ|Cα(Rd).

�

Lemma A.2. Let γ(x) ∈ Cα(Rd) be a deterministic function as in Lemma A.1, and let γε(x) be
a smoothed version of γ(x) as in (11). It holds:

‖γ − γε‖C0(Rd) ≤ C(α, d)|γ|Cmin(α,2)(Rd)ε
min(α,2),

where C(α, d) = 1√
2π
d

∫
Rd |y|

αe−
|y|2
2 dy.

Proof. By definition we have

|(γ − γε)(x)| =
∣∣∣∣∫

Rd
(γ(x+ y)− γ(x))φε(y)dy

∣∣∣∣ ∀x ∈ Rd.

• Let us start with the case 0 < α ≤ 1: if γ(x) ∈ Cα(Rd) then we obtain

|(γ−γε)(x)| ≤
∫
Rd

|γ(x+ y)− γ(x)|
|y|α

|y|αφε(y)dy ≤ |γ|Cα(Rd)

∫
Rd
|y|αφε(y)dy ≤ C(α, d)|γ|Cα(Rd)ε

α.

• If 1 < α ≤ 2 we consider a Taylor expansion of γ(x + y) around x and set α = 1 + s with
s ∈ (0, 1]. Since odd moments of a normal distribution vanish, we get:

|(γ − γε)(x)| =
∣∣∣∣∫

Rd

(
∇γ(x) · y + (∇γ(ξx+y

x )−∇γ(x)) · y
)
φε(y)dy

∣∣∣∣∫
Rd

max
|i|1=1

|Diγ(ξx+y
x )−Diγ(x)|
|ξx+y
x − x|s

√
d|y|1+sφε(y)dy ≤ C(α, d)

√
d|γ|Cα(Rd)ε

α.

• Finally by considering 2 < α and by expanding further the function γ, since the second moment
of a normal distribution does not vanish, we get:

|(γ − γε)(x)| =

∣∣∣∣∣∣
∫
Rd

∇γ(x) · y +

d∑
j,k=1

∂2γ

∂xj∂xk
(ξx+y
x )yjyk

φε(y)dy

∣∣∣∣∣∣
≤ C(α, d)|γ|C2(Rd)ε

2.

�

Lemma A.3. Let γ(x) ∈ Cα(D) and γε(x) ∈ Cα(D) be two deterministic functions and let
a(x) = eγ(x) and aε(x) = eγ

ε(x). For any 0 < β ≤ min(1, α) it holds

‖a− aε‖Cβ(D) ≤ ‖a‖C0(D)‖1 +
aε

a
‖C0(D)(1 + |γ|Cβ(D))‖γ − γ

ε‖Cβ(D).

Proof. We bound separately the terms coming from the definition of the Cβ norm, namely ‖a −
aε‖Cβ(D) = ‖a− aε‖C0(D) + |a− aε|Cβ(D). For the first one we simply observe that

‖a− aε‖C0(D) ≤ ‖e
γ + eγ

ε

‖C0(D)‖γ − γ
ε‖C0(D).

For the second term we start by considering the inequality

|a− aε|Cβ(D) ≤ ‖e
γ‖C0(D)

∣∣∣1− eγ−γε ∣∣∣
Cβ(D)︸ ︷︷ ︸

(i)

+ |eγ |Cβ(D)︸ ︷︷ ︸
(ii)

∥∥∥1− eγ−γ
ε
∥∥∥
C0(D)︸ ︷︷ ︸

(iii)

.
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The terms in the above equation can be bounded as follows:

(i) ≤
∥∥∥eγε−γ∥∥∥

C0(D)
|γε − γ|Cβ(D),

(ii) ≤ ‖eγ‖C0(D) |γ|Cβ(D),

(iii) ≤
∥∥∥1 + eγ

ε−γ
∥∥∥
C0(D)

‖γε − γ‖C0(D).

By putting everything together we obtain

‖a− aε‖Cβ(D) ≤
(
‖eγ + eγ

ε

‖C0(D) + ‖eγ‖C0(D) |γ|Cβ(D)

∥∥∥1 + eγ
ε−γ
∥∥∥
C0(D)

)
‖γ − γε‖C0(D)

+ ‖eγ‖C0(D)

∥∥∥eγε−γ∥∥∥
C0(D)

|γε − γ|Cβ(D)

≤‖eγ‖C0(D)‖1 + eγ
ε−γ‖C0(D)(1 + |γ|Cβ(D))‖γ

ε − γ‖Cβ(D)

which is the desired result. �

Thanks to these results we can prove Lemma 5.2.

Proof. (of Lemma 5.2.) From lemma A.1 we have that γ̃ ∈ Cα(Rd) implies Dh,β γ̃ ∈ Cα−β(Rd)
∀β ≤ min(α, 1). By using the definitions given in (17), thanks to Lemmas A.2 and A.1 we get

‖Dh,β γ̃ − (Dh,β γ̃)
ε‖C0(Rd) . |Dh,β γ̃|Cmin(α−β,2)(Rd) ε

min(α−β,2)

. |γ̃|Cmin(α,2+β)(Rd) ε
min(α−β,2)

Since Dh,βγ
ε = (Dh,β γ̃)

ε and thanks to the fact that the previous estimate is valid uniformly in h,
we can take the supremum of ‖Dh,βγ − (Dh,βγ)

ε‖C0(Rd) with respect to h. By doing this we get

|γ̃ − γε|Cβ(Rd) ≤ sup
h∈Rd

‖Dh,βγ − (Dh,βγ)
ε‖C0(Rd) . |γ̃|Cmin(α,2+β)(Rd) ε

min(α−β,2).

Now we get the desired result by observing that |γ̃|Cα(Rd) ≤ ‖ϕ‖Cα(D1)‖γ‖Cα(D1) . In fact, since
ϕ vanishes on Dc

1, we obtain

|γ̃|Cα(Rd) = max

 sup
x∈D1

y∈Rd

|γ(x)(ϕ(x)− ϕ(y)) + ϕ(y)(γ(x)− γ(y))|
|x− y|α

, sup
y∈D1

x∈Rd

|γ(y)(ϕ(y)− ϕ(x)) + ϕ(x)(γ(y)− γ(x))|
|x− y|α


≤ max

{
‖γ‖C0(D1)|ϕ|Cα(Rd) + sup

x,y∈D1

|ϕ(y)(γ(x)− γ(y))|
|x− y|α

, ‖γ‖C0(D1)|ϕ|Cα(Rd) + sup
x,y∈D1

|ϕ(x)(γ(y)− γ(x))|
|x− y|α

}
≤ ‖γ‖C0(D1)|ϕ|Cα(Rd) + ‖ϕ‖C0(D1)|γ|Cα(D1) = ‖γ‖C0(D1)|ϕ|Cα(D1) + ‖ϕ‖C0(D1)|γ|Cα(D1) ≤ ‖ϕ‖Cα(D1)‖γ‖Cα(D1).

Hence, by considering the inequality given in Lemma A.3:

‖a− aε‖Cβ(D) ≤ ‖a‖C0(D)‖1 +
aε

a
‖C0(D)(1 + | log(a)|Cβ(D))‖γ − γ

ε‖Cβ(D) a.s. in Ω;

since in D it holds γ = γ̃ we get ‖γ − γε‖Cβ(D) = ‖γ̃ − γε‖Cβ(D) ≤ ‖γ̃ − γε‖Cβ(Rd) and we can
conclude that

‖a− aε‖Cβ(D) . ‖a‖C0(D)‖1 +
aε

a
‖C0(D)(1 + |γ|Cβ(D))‖ϕ‖Cmin(α,2+β)(D1)‖γ‖Cmin(α,2+β)(D1)ε

min(α−β,2)

. C5.2(ω, α)εmin(α−β,2).
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To prove the second bound concerning the C1 norm when α > 1 we start again from the definition:

‖a− aε‖C1(D) = ‖a− aε‖C0(D) + max
|i|1=1

‖Di(a− aε)‖C0(D).

The first term, thanks to Lemma A.2, can be bounded as

‖a−aε‖C0(D) ≤ amax‖1+eγ
ε−γ‖C0(D)‖γ−γ

ε‖C0(D) . amax‖1+eγ
ε−γ‖C0(D)‖ϕ‖Cmin(α,2)(D1)‖γ‖Cmin(α,2)(D1)ε

min(α,2).

For the second term, since the derivatives and the convolution commute, we obtain

Di
(
eγ(1− eγ

ε−γ)
)
≤ |eγDi(γ)(1−eγ

ε−γ)|+|eγeγ
ε−γDi(γε−γ)| ≤ eγ

(
1 + eγ

ε−γ
) (
|Di(γ)||γε − γ|+ |Diγ − (Diγ)ε|

)
therefore we get

‖Di(a− aε)‖C0(D) ≤ amax
∥∥∥1 + eγ

ε−γ
∥∥∥
C0(D)

(
‖Diγ‖C0(D)‖ γ − γ

ε︸ ︷︷ ︸
∈Cα(D)

‖C0(D) + ‖Diγ − (Diγ)ε︸ ︷︷ ︸
∈Cα−1(D)

‖C0(D)

)
≤ amax

∥∥∥1 + eγ
ε−γ
∥∥∥
C0(D)

(
‖Diγ‖C0(D)‖γ̃‖Cmin(α,2)(Rd)ε

min(α,2) + ‖Diγ̃‖Cmin(α−1,2)(Rd)ε
min(α−1,2)

)
which implies

max
|i|1=1

‖Di(a−aε)‖C0(D) . amax
∥∥∥1 + eγ

ε−γ
∥∥∥
C0(D)

(
|γ|C1(D)‖γ̃‖Cmin(α,2)(Rd)+‖γ̃‖Cmin(α,3)(Rd)

)
εmin(α−1,2).

Finally, by putting everything together, and by recalling that |γ̃|Cβ(Rd) ≤ ‖ϕ‖Cβ(D1)‖γ‖Cβ(D1)

∀β ∈ R+, we get the desired result:

‖a−aε‖C1(D) . amax
∥∥∥1 + eγ

ε−γ
∥∥∥
C0(D)

(
1 + |γ|C1(D)

)
‖γ‖Cmin(α,3)(D1)‖ϕ‖Cmin(α,3)(D1)ε

min(α−1,2), a.s. in Ω.

�

B On products of Hölder and Sobolev functions
Lemma B.1. Let b ∈ Cα(D) and let v be a function in Hβ(D) for some 0 < β < α ≤ 1. It holds

‖bv‖Hβ(D) .
1
√
η
‖b‖Cβ+η‖v‖Hβ(D) ∀0 < η ≤ α− β.

Proof. By definition the Hβ norm of the function bv is

‖bv‖2Hβ(D) = ‖bv‖2L2(D) + |bv|2Hβ(D) = ‖bv‖2L2(D) +

∫
D×D

|b(x)v(x)− b(y)v(y)|2

|x− y|d+2β
dxdy.

The first term can be easily bounded as ‖bv‖2L2(D) ≤ ‖b‖
2
C0(D)

‖v‖2L2(D). For the second term we
obtain∫

D×D

|b(x)v(x)− b(y)v(y)|2

|x− y|d+2β
dxdy ≤ 2‖b‖2C0(D)

|v|2Hβ(D) + 2

∫
D×D

|b(x)− b(y)|2

|x− y|2(β+η)

v(y)2

|x− y|d−2η
dxdy

≤ 2‖b‖2C0(D)
|v|2Hβ(D) + 2‖b‖2

Cβ+η(D)

∫
D×D

v(y)2

|x− y|d−2η
dxdy.

If we extend v by 0 in Rd \ D, and denote ṽ this extension and ρ = maxx∈D |x|, the integral
appearing in the right hand side of the above inequality can be bounded as∫

D×D

v(y)2

|x− y|d−2η
dxdy ≤

∫
Rd×Rd

ṽ(y)2

|x− y|d−2η
1{|x−y|≤2ρ}dxdy ≤

∥∥∥∥ṽ2(x) ∗
1{|x|≤2ρ}

|x|d−2η

∥∥∥∥
L1(Rd)

≤
∥∥ṽ2
∥∥
L1(Rd)

∥∥∥∥1{|x|≤2ρ}

|x|d−2η

∥∥∥∥
L1(Rd)

.
ρ2η

η
‖v‖2L2(D) .
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By putting everything together we obtain

‖bv‖Hβ(D) .
1
√
η
‖b‖Cβ+η(D)‖v‖Hβ(D),

which is the desired result. �

C Regularity of Gaussian random fields with Matérn Covari-
ance

Lemma C.1. Let c̃ovγ(|x − y|) be a covariance function belonging to the Matérn family defined
in (5) on an open bounded convex domain D. Then, if ν is not an integer, c̃ovγ ∈ C2ν(D̄ × D̄),
otherwise c̃ovγ ∈ Cα(D̄ × D̄) for any α < 2ν if ν ∈ N+ .

Proof. By definition we have

covγ(x1, x2) = c̃ovγ(|x1 − x2|) =
σ2

Γ(ν)2ν−1

(√
2ν
|x1 − x2|

Lc

)ν
Kν

(√
2ν
|x1 − x2|

Lc

)
;

Kν : R+ → R+ is given byKν(ρ) = π
2 sinπν (I−ν(ρ)−Iν(ρ)) where Iα(ρ) =

∑∞
m=0

1
m!Γ(m+α+1)

(
ρ
2

)2m+α.
This formula is valid when ν is not an integer, i.e. ν = n + s with n ∈ N and s ∈ (0, 1). Since
∀ε > 0 the function Kν ∈ C∞[ε,+∞), and consequently c̃ovγ as well, in order to prove the result
we focus on the asymptotic behavior of the function c̃ovγ(|x−y|) in a neighborhood of |x−y| = 0.
By denoting λν =

√
2ν

2Lc
and by recalling that, for any x ∈ R \Z it holds Γ(−x) = −π

sinπxΓ(x+1) , it is
possible to obtain

c̃ovγ(|x1 − x2|) =
σ2π

Γ(ν) sinπν

( ∞∑
m=0

λ2m
ν |x1 − x2|2m

m!Γ(m− ν + 1)
−
∞∑
m=0

λ
2(m+ν)
ν |x1 − x2|2(m+ν)

m!Γ(m+ ν + 1)

)

= σ2

(
n∑

m=0

(−1)mΓ(ν −m)λ2m
ν

m!Γ(ν)
|x1 − x2|2m −

λ2ν
ν |x1 − x2|2ν

Γ(ν)Γ(ν + 1) sin(πν)

)

+
σ2

Γ(ν) sinπν

( ∞∑
m=1

λ
2(m+n)
ν |x1 − x2|2(m+n)

(m+ n)!Γ(m+ n− ν + 1)
− λ

2(m+ν)
ν |x1 − x2|2(m+ν)

m!Γ(m+ ν + 1)

)
.

Hence, the asymptotic behavior is

c̃ovγ(|x1 − x2|) ∼ σ2

{
n∑

m=0

(−1)mΓ(ν −m)λ2m
ν

m!Γ(ν)
|x1 − x2|2m −

λ2ν
ν |x1 − x2|2ν

Γ(ν)Γ(ν + 1) sin(πν)

}
. (25)

Since the function f(z) = |z|2ν : Rd → R belongs to the space C2ν(D̄) we can conclude that
c̃ovγ ∈ C2ν(D̄ × D̄).

When ν = n ∈ N+ the previous definition gives removable indeterminate values of the form 0
0 ;

in this case the Bessel function Kν can be defined through the limit Kn(ρ) = limν→nKν(ρ). The
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covariance function becomes:

c̃ovγ(|x1 − x2|) = lim
ν→n

σ2π

Γ(ν) sinπν

( ∞∑
m=0

λ2m
ν |x1 − x2|2m

m!Γ(m− ν + 1)
−
∞∑
m=0

λ
2(m+ν)
ν |x1 − x2|2(m+ν)

m!Γ(m+ ν + 1)

)

= σ2
n−1∑
m=0

(−1)m(n−m− 1)!λ2m
n

m!Γ(n
|x1 − x2|2m

+ lim
ν→n

σ2

Γ(ν) sinπν

( ∞∑
m=0

λ
2(m+n)
ν |x1 − x2|2(m+n)

(m+ n)!Γ(m+ n− ν + 1)
− λ

2(m+ν)
ν |x1 − x2|2(m+ν)

m!Γ(m+ ν + 1)

)

= σ2
n−1∑
m=0

(−1)m(n−m− 1)!λ2m
n

m!Γ(n
|x1 − x2|2m

+ lim
ν→n

σ2

Γ(ν) sinπν

( ∞∑
m=0

λ
2(m+n)
ν |x1 − x2|2(m+n)

(m+ n)!Γ(m+ n− ν + 1)m!Γ(m+ ν + 1)

(
m!
(
Γ(m+ ν + 1)− Γ(m+ n+ 1)

)
+

(m+ n)!
(
Γ(m+ 1)− Γ(m+ n− ν + 1)

)
+m!(m+ n)!

(
1− λ2(ν−n)

ν |x1 − x2|2(ν−n)
)))

= σ2
n−1∑
m=0

(−1)m(n−m− 1)!λ2m
n

m!(n− 1)!
|x1 − x2|2m

+
(−1)nσ2

(n− 1)!

∞∑
m=0

λ2(m+n)
n

(
m!Γ′(m+ n+ 1) + (m+ n)!Γ′(m+ 1)

((m+ n)!)2(m!)2
− 2 log (λn|x− y|)

(m+ n)!m!

)
|x1 − x2|2(m+n)

Again we focus on the asymptotic behavior of the function c̃ovγ(|x1 − x2|) in a neighborhood of
|x1 − x2| = 0. We obtain

c̃ovγ(|x1−x2|) ∼ σ2

{
n−1∑
m=0

(−1)m(n−m− 1)!λ2m
n

m!(n− 1)!
|x1 − x2|2m −

(−1)n2λ2n
n

n!(n− 1)!
|x1 − x2|2n log (λn|x1 − x2|)

}
(26)

Since the function f(z) = |z|2n log(|z|) : Rd → R belongs to the space Cα(D̄) for any α < 2ν we
can conclude that c̃ovγ ∈ Cα(D̄ × D̄) for any α < 2ν.

�

Remark. Let covγ(|x−y|) be a covariance function belonging to the Matérn family defined in (5)
and let γ(x, ω) be a centered Gaussian random field defined on D̄. Denote ν = n+ α with n ∈ N
and α ∈ (0, 1]. Then, for any multi-index i ∈ Nd such that |i|1 ≤ n, it holds:

E[Diγ(x, ·)Diγ(y, ·)] =
∂2|i|1

∂xi11 · · · ∂x
id
d ∂y

i1
1 · · · ∂y

id
d

covγ(|x− y|).

Lemma C.2. Let γ(x, ω) be a centered Gaussian random field with covariance function c̃ovγ as
in Lemma C.1. Then γ admits a version with trajectories a.s. in Cα form any 0 < α < ν.

Proof. Let us start with the case in which ν is not an integer. Lemma C.1 tells us that c̃ovγ ∈
C2ν(D̄). Therefore, thanks to (26), by writing ν = n + s with n ∈ N and s ∈ (0, 1), for any
multi-index i ∈ Nd such that |i|1 = n, we obtain

E[(Diγ(x, ·)−Diγ(y, ·))2] = E[(Diγ(x, ·))2] + E[(Diγ(y, ·))2]− 2E[Diγ(x, ·)Diγ(y, ·)] =

= 2

(
∂2|i|1 c̃ovγ

∂xi11 · · · ∂x
id
d ∂y

i1
1 · · · ∂y

id
d

(0)− ∂2|i|1 c̃ovγ
∂xi11 · · · ∂x

id
d ∂y

i1
1 · · · ∂y

id
d

(|x− y|)

)
≤ C(ν)|x− y|2s,
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where the last inequality comes from the fact that the coefficients appearing in the covariance func-
tion decay sufficiently fast. Since for any positive integer p it holds E[(Diγ(x, ·)−Diγ(y, ·))2p] ≤
cpE[(Diγ(x, ·)−Diγ(y, ·))2]p with cp = 1√

2π

∫
R x

2pe−
x2

2 dx we have

E[(Diγ(x, ·)−Diγ(y, ·))2p] ≤ cpC(ν)p|x− y|2ps.

Thanks to the Kolmogorov continuity theorem (see e.g. [27]) we can deduce that there exists a
version of Diγ which belongs to Ca(D̄) for any a < 2ps−d

2p ; by taking the limit for p → +∞ we
can conclude that there exist a version of Diγ which belongs to Ca(D̄) for any a strictly smaller
than s. Consequently, since this reasoning can be repeated for every k < n, k ∈ N, by picking 1
instead of s, we deduce that there exist a version of γ which belongs to Cα(D̄) for any α strictly
smaller than ν. The proof in the case ν ∈ N is similar. By writing ν = n+ 1 in this case, thanks
to (26), for any ε > 0 and for any multi-index i ∈ Nd such that |i|1 = n we obtain

E[(Diγ(x, ·)−Diγ(y, ·))2] ≤ C̃(ν)
∂2|i|1 |x− y|2n log(|x− y|)
∂xi11 · · · ∂x

id
d ∂y

i1
1 · · · ∂y

id
d

≤ Cε(ν)|x− y|2−ε.

Again, thanks to the Kolmogorov continuity theorem we can deduce that there exists a version
of Diγ which belongs to Ca(D̄) for any a < p(2−ε)−d

2p ; thanks to the arbitrariness of ε by taking
the limit for p→ +∞ we can conclude that there exist a version of Diγ which belongs to Ca(D̄)
for any a strictly smaller than 1. Consequently we deduce that there exist a version of γ which
belongs to Cα(D̄) for any α strictly smaller than ν. �

D Optimal rates in Theorem 5.1

Here we present a sharper bound for the infimum inf0≤β≤min(α,1)
0<η+β≤α

hβεmin(α−β−η,2)

(α−β)2
√
η than the one

presented in Proposition 5.1 that can be obtained with very tedious calculations.

Lemma D.1. Let ε ≤ e− 1
2α ; the following bounds hold:

• 1/2 ≤ α ≤ 1:

inf
0≤β<α

0<η+β≤α

hβεα−β−η

(α− β)2√η
.




hα
∣∣∣∣log

h

ε

∣∣∣∣2 | log ε| 12 , h ≥ ε5,

hα| log h| 52 , h ≤ ε5
, h ≤ e− 2

α ε,

εα| log ε| 12 h ≥ e− 2
α ε.

• 1 < α ≤ 2:

inf
0≤β≤1

0<η+β≤α

hβεα−β−η

(α− β)2√η
.



hεα−1| log h| 12 , h ≤ min(e−
5

2(α−1) , e−
2

α−1 ε),

hα| log h| 52 , min(e−
5

2(α−1) , e−
2

α−1 ε) ≤ h ≤ e−
2

α−1 ε,


hα| log h| 52 , h ≤ ε5,

hα
∣∣∣∣log

h

ε

∣∣∣∣2 | log ε| 12 , h ≥ ε5,
, if e−

2
α−1 ≤ ε5,

hα
∣∣∣∣log

h

ε

∣∣∣∣2 | log ε| 12 , if e−
2

α−1 ≥ ε5,

, e−
2

α−1 ε ≤ h ≤ e−
2

α−1 ε,

εα| log ε| 12 , h ≥ e− 2
α ε.
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• 2 < α ≤ 3:

inf
0≤β≤1

0<η+β≤α

hβεα−β−η

(α− β)2√η
.



hεα−1| log h| 12 , h ≤ min(e−
5

2(α−1) , e−
2

α−1 ε),

hα| log h| 52 , min(e−
5

2(α−1) , e−
2

α−1 ε) ≤ h ≤ e−
2

α−1 ε,


hα| log h| 52 , h ≤ ε5,

hα
∣∣∣∣log

h

ε

∣∣∣∣2 | log ε| 12 , h ≥ ε5,
, if e−

2
α−1 ≤ ε5,

hα
∣∣∣∣log

h

ε

∣∣∣∣2 | log ε| 12 , if e−
2

α−1 ≥ ε5,

, e−
2

α−1 ε ≤ h ≤ e−
2

α−1 ε,

ε
α| log ε| 12 , if ε ≥ e−

1
2(α−2) ,

hα−2ε2| log ε| 12 , if ε ≤ e−
1

2(α−2) ,
h ≥ e− 2

α ε.

• α > 3:

inf
0≤β≤1

0<η+β≤α

hβεα−β−η

(α− β)2√η
. hε2.
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