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Abstract In this work we compare numerically different families of nested
quadrature points, i.e. the classic Clenshaw–Curtis and various kinds of Leja
points, in the context of the quasi-optimal sparse grid approximation of ran-
dom elliptic PDEs. Numerical evidence suggests that the performances of
both families are essentially comparable within such framework.
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1 Introduction

While it is nowadays widely acknowledged that Uncertainty Quantifica-
tion problems can be conveniently tackled with polynomial approximation
schemes whenever the output quantities of interest depend smoothly on a
moderate number of random parameters, the search for algorithms whose
performance is resilient with respect to the number of such random parame-
ters is a very active research area.
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In the context of sparse grids approximation [1, 4, 13], this has lead on
the one hand to the development of more efficient sparse grid algorithms,
which exploit the anisotropic structure of the problem at hand (either via an
“a-priori” analysis, see e.g. [2, 3, 11], or with an “a-posteriori” adaptation,
see [6, 8, 12]), and on the other hand to the study of appropriate univariate
collocation points to be used as a basis for the sparse grids construction.

To maximize the efficiency of the sparse grids, such collocation points are
typically chosen to be nested. Clenshaw–Curtis points are a classical choice
in this sense; more recently, an increasing attention has been devoted to the
study of the performance of the so-called Leja points (see [5, 6, 10, 12]), which
are promising since the cardinality of Leja quadrature rules grows slower than
that of Clenshaw–Curtis rules when increasing the approximation level. In
the literature, Leja points have only been applied to “a-posteriori” adaptive
sparse grids [6, 12]: the aim of this work is to test their performance in the
context of the quasi-optimal “a-priori/a-posteriori” sparse grids that we have
proposed in a series of previous papers [2, 3, 11], focusing on the case of elliptic
PDEs with diffusion coefficients parametrized by uniform random variables.

The rest of this work is organized as follows. The general problem setting
will be introduced in Section 2, and quasi-optimal sparse grids in Section
3. Clenshaw–Curtis and Leja points will be discussed in Section 4, while
numerical tests and some conclusions will be presented in Section 5.

2 Problem setting

Let N ∈ N and Γ ⊂ RN be an N -variate hyper-rectangle Γ = Γ1× . . .×ΓN ,
and assume that each Γn is endowed with a uniform probability measure
%n(yn)dyn = 1

|Γn|dyn, so that %(y)dy =
∏N
n=1 %n(yn)dyn is a uniform prob-

ability measure on Γ and (Γ,B(Γ ), %(y)dy) is a probability space, B(Γ )
being the Borel σ-algebra on Γ . Given a convex polygonal domain D in Rd,
d = 1, 2, 3, we consider the following problem:

Problem 1. Find a real-valued function u : D × Γ → R, such that %(y)dy-
almost everywhere there holds:{

−div(a(x,y)∇u(x,y)) = f(x) x ∈ D,
u(x,y) = 0 x ∈ ∂D,

where the operators div and ∇ imply differentiation with respect to the phys-
ical coordinate only, and a : D × Γ → R is such that

0 < amin ≤ a(x,y) ≤ amax <∞ (1)

for some positive and bounded constants amin, amax.
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By introducing the Hilbert space V = H1
0 (D), the above problem is shown to

be well-posed in the Bochner space L2
%(Γ ;V ) =

{
u : Γ → V s.t.

∫
Γ
‖u(y)‖2V %(y)dy <∞

}
,

due to the boundedness assumption (1). Moreover, under additional assump-
tions on a (e.g. y-linearity or mild assumptions on the growth of its y-
derivatives), it can be shown that the map y → u(·,y) is analytic, see e.g.
[2, 7].

3 Quasi-optimal sparse grid approximation

Let Pr(Γn) be the set of polynomials of degree at most r over Γn, C0(Γn) the
set of continuous functions over Γn, and for a given interpolation level in let

Um(in)
n : C0(Γn)→ Pm(in)−1(Γn) be the lagrangian interpolant operator over
m(in) points, with m : N→ N a non-decreasing function, the so-called “level-
to-nodes” function. Next, for any multi-index with non-zero components i ∈
NN+ let us define the “hierarchical surplus” operator ∆m(i) =

⊗N
n=1(Um(in)

n −
Um(in−1)
n ), and let {I(w)}w∈N denote a nested sequence of index sets with

non-zero components, I(w) ⊂ NN+ , with I(0) = [1, 1, . . . , 1] and
⋃

w∈N I(w) =
NN+ . The sparse grid approximation of u is then written as

SmI(w)[u](y) =
∑

i∈I(w)

∆m(i)[u](y), (2)

where one usually requires the sets I(w) to be lower sets1, see e.g. [8]. In
practice, to build a sparse grid one has to specify (i) the family of interpolation
nodes, that should be chosen according to the probability measure over Γ
(as previously mentioned, in this work we will use Leja and Clenshaw–Curtis
points, which are suitable for uniform measures), (ii) the function m(·), and
(iii) the sequence of index sets I(w).

To detail the choice of the sequence I(w), let us now denote by ∆E(i)
the error decrease obtained by adding a given hierarchical surplus ∆m(i)

to the sparse grid approximation of u and by ∆W (i) its associated cost,
i.e. the number of interpolation points added to the sparse grid by ∆m(i),

and let us define the profit P (i) of each ∆m(i) as the ratio P (i) = ∆E(i)
∆W (i) .

The optimal sequence I(w) should then progressively add to the sparse grid
approximation of u the hierarchical surpluses ∆m(i) ordered by decreasing
profits, see [2, 8, 9, 11],

I(w) =
{
i ∈ NN+ : P (i) ≥ εw

}
, (3)

1 Also known as admissible sets or downward closed sets, i.e. such that ∀ i ∈ I(w) and
∀ j ∈ NN

+ s.t. j ≤ i, there holds j ∈ I(w), where the inequality is to be understood
component-wise.
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with {εw}w∈N positive sequence decreasing to 0. Note that I(w) in (3) may
not be a lower set, and this condition will have to be explicitly enforced.

The above criterion (3) can be implemented either by an “a-posteriori”
adaptive procedure (see e.g. [6, 8, 12]) that explores the space of hierarchical
surpluses and adds to I(w) the most profitable one, or, as we have previ-
ously detailed in [2, 3, 11], with a procedure based on a-priori estimates of
∆E(i) and ∆W (i), tuned to the problem at hand by some cheap preliminary
computations (“a-priori/a-posteriori” approach); in this work, we consider
this latter approach. Of course, if on the one hand the “a-priori/a-posteriori”
approach saves the computational cost of the exploration of the space of hier-
archical surpluses, on the other hand it will be effective only if the estimates
of ∆E(i) and ∆W (i) are sufficiently sharp.

The work contribution ∆W (i) can actually be computed exactly if the
points used in the sparse grid construction are nested (as it is the case in this
work) and I(w) is a lower set:

∆W (i) =

N∏
n=1

(m(in)−m(in − 1)). (4)

As for the error contribution ∆E(i), we propose to use certain problem-
dependent estimates, that we will specify later on.

4 Leja and Clenshaw–Curtis quadrature rules

A Leja sequence on a generic compact set X is defined recursively, by first
choosing x1 ∈ X and then letting xn = argminx∈X

∏n−1
k=1(x − xk), see e.g.

[5, 6, 10, 12], while the corresponding quadrature weights are computed by
enforcing the maximal degree of polynomial exactness. More specifically, we
will consider the following families of Leja points:

Line Leja: Let X = [−1, 1] and x1 = −1. Then x2 = 1, x3 = 0, and

xn = argmin(−1,1)
∏n−1
k=1(x− xk).

Sym-Line Leja: Let x1 = 0, x2 = 1, x3 = −1, xn = argmin(−1,1)
∏n−1
k=1(x−

xk) for n even, and xn+1 be the symmetric point of xn with respect to 0.
Observe that this is not a Leja sequence according to the definition above.

P-Disk Leja: Let xk = cosφk, with φ1 = 0, φ2 = π, φ3 = π/2, φ2k+2 =
φk+2

2 , and φ2k+3 = φ2k+2 + π. These points correspond to the projection
on the real axis (with no repetitions) of the Leja sequence obtained with
x1 = 1 and X the complex unit ball (see [5]), and are not a Leja sequence.

We will test the Leja families above with two different level-to-nodes func-
tions, i.e. ms(in) = in and mt(in) = 2(in−1) + 1. This latter “two-stepping”
rule has been introduced in the adaptive context (see e.g. [12]), where the
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error contributions ∆E(i) are estimated via successive differences of the in-
tegral of u (or an approximation of u by e.g. finite elements) over the pa-
rameter space: indeed, observe that whenever one point is added to a sym-
metric quadrature rule, the corresponding quadrature weight will be zero,
by symmetry; hence if one were using the “single-stepping” rule ms(in), two
consecutive integrals may be equal (up to numerical noise) and the algorithm
might prematurely stop.

Finally, the Clenshaw–Curtis points (cf. e.g. [11]) are defined as

xj = cos

(
(j − 1)π

m(in)− 1

)
, 1 ≤ j ≤ m(in),

together with the following level-to-nodes relation md(in), that ensures their
nestedness2: md(0) = 0, md(1) = 1, md(in) = 2in−1 + 1. Observe md(in)
grows exponentially in in, while ms(in) and mt(in) grow linearly; quoting
[10], we say that Leja points have a much finer “granularity”.

5 Numerical tests

In this section we consider two different examples of Problem 1; in both cases,
we will introduce a bounded linear functional Θ : V → R, and monitor the
convergence of the quantity

ε =

√
E
[(
Θ(SmI(w)[u])−Θ(u)

)2]
, (5)

with respect to the number of sparse grid points, that will converge with the

same rate as the full error E
[(
SmI(w)[u]− u

)2]1/2
, given the linearity of Θ.

In practice, we have estimated (5) with a Monte Carlo sampling (see Figure
1 for the sample size for each test); we underline that the sample sizes have
been verified to be sufficient for our purposes.

In the first test, we consider Γn = [−1, 1], D = (0, 1) and two different
expressions of a(x,y), both complying with equation (1), that is a1(x,y) =
4 + y1 + 0.2 sin(πx)y2 + 0.04 sin(2πx)y3 + 0.008 sin(3πx)y4, and a2(x,y) =
exp

(
a1(x,y)

)
. We also set f(x) = 1 and Θ(u) = u(0.7). For this case, the

estimate for the error contribution ∆E(i) in (3) is (cf. [2])

∆E(i) ≤ Ce−
∑N

n=1 gnm(in−1)

(
N∏
n=1

Lm(in)
n

)
|m(i)|!
m(i)!

,

2 When 2m + 1 p-Disk Leja points are computed, they coincide with the Clenshaw–Curtis

points.
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where C is a positive constant, Lm(in)
n is the Lebesgue constant associated to

the interpolation scheme Um(in)
n that can either be computed numerically or

estimated a-priori (cf. [11]), m(i)! =
∏
nm(in)!, |m(i)| =

(∑
nm(in)

)
!, and

gn can be tuned with cheap preliminary computations, see e.g. [2].
In the second test, we consider instead Γn = [−0.99, 0.99], D = [0, 1]2 and

a(x,y) = 1 +
∑N
n=1 γnχn(x)yn, for N = 4, 8. Here χn(x) are the indicator

functions of the disjoint circular sub-domains Dn ⊂ D as in Figure 1, and γn
are real coefficients such that (1) holds true; more specifically, we consider
both an isotropic setting, γn = 1 for each subdomain, and an anisotropic
setting, see Figure 1 for the values of γn in this latter setting. Finally, we set
f(x) = 100χF (x) and Θ(u) =

∫
F
u(x)dx. In this case, the estimate for the

error contribution ∆E(i) in (3) is

∆E(i) = Ce−
∑N

n=1 gnm(in−1)

(
N∏
n=1

Lm(in)
n

)
,

see [11], where we also provide a convergence estimate for the resulting sparse
grid.

Numerical results are shown in Figure 2. It can be seen that sym-line Leja
points with “two-stepping” seems to have the same (or slightly better) per-
formance than Clenshaw–Curtis points, while the other families present non-
negligible improvements in some cases but underperform in other tests. Addi-
tional tests carried on monitoring the quadrature error for Θ(u) rather than
the interpolation error (5) (see Figure 3), show again that the performance of
sym-Leja points with two-stepping is comparable to that of Clenshaw–Curtis,
while other families this time always show a slight performance deterioration.
This is likely due to the fact that Leja points are designed to minimize the
Lebesgue constant, hence more suited for interpolation than for quadrature.

In conclusion, these tests seem to suggest that Leja points do not exhibit
significative advantages over Clenshaw–Curtis points in the framework of the
quasi-optimal sparse grids; also, in both cases the resulting sparse grids do
not suffer from an excessive increase of points as we raise the level (at least
for moderate dimensions) despite the improved granularity of Leja points,
likely due to the fact the quasi-optimal construction adds only one or few
hierarchical surpluses per level.
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Fig. 2: Convergence of error (5) vs. sparse grids cardinality. The suffix “2s”
refers to the “two-stepping” function for Leja points.
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