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TENSOR TRAIN APPROXIMATION OF MOMENT EQUATIONS
FOR THE LOG-NORMAL DARCY PROBLEM∗

FRANCESCA BONIZZONI† , FABIO NOBILE‡ , AND DANIEL KRESSNER§

Abstract. We study the Darcy problem with log-normal permeability, modeling the fluid flow
in a heterogeneous porous medium. A perturbation approach is adopted, expanding the solution in
Taylor series around the nominal value of the permeability. The resulting recursive deterministic
problem satisfied by the expected value of the stochastic solution, analytically derived and studied
in [4], is discretized with a full tensor product finite element technique. To overcome the incurred
curse of dimensionality the solution is sought in a low-rank tensor format, the so called Tensor Train
format. We develop an algorithm for solving the recursive first moment problem approximately in
the Tensor Train format and show its effectiveness with numerical examples.

Key words. Uncertainty quantification, Elliptic PDE with random coefficient, Log-normal
distribution, Perturbation technique, Moment equations, Low rank approximation.
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1. Introduction. In this work we focus on the so called Darcy problem modeling
the single-phase fluid flow in a heterogeneous porous medium D ⊂ R

d, d = 1, 2, 3:

−div (a(ω, x)∇u(ω, x)) = f(x), x ∈ D,

where ω ∈ Ω denotes an elementary event in a suitable probability space. We describe
the uncertain permeability field a(ω, x) as a log-normal random field, that is, a(ω, x) =
eY (ω,x) where Y (ω, x) is a Gaussian random field. The log-normal model is frequently
used in geophysical and hydrological applications; see, e.g., [17, 18, 27, 30, 2, 13].
Recently, it has also been discussed in the mathematical literature; see [8, 15, 14].

Given complete statistical information on the Gaussian random field Y , the aim
of this paper is to compute the expected value E [u] of the random solution u(ω, x) or
other statistics of the solution.

In this work, under the assumption of small variability of the random field
Y , we adopt a perturbation approach based on the Taylor expansion of the ran-
dom solution u(Y ) : L∞(D) → H1(D) with respect to Y , and approximate the
expected value of u by the expected value of its K-th degree Taylor polynomial:

E [u(Y, x)] ≃ E
[
TKu(Y, x)

]
=

∑K
k=0

E[uk]
k! , where uk denotes the k-th order Gateaux

derivative of u with respect to Y .
In our previous works [5, 4] we have studied the approximation properties of

the Taylor polynomial, showing that TKu converges to u in a bounded open ball of
L∞(D) with sufficiently small radius, but in general, E

[
TKu

]
does not converge to

E [u] even for very small variances of Y . We point out the existence of an optimal
degree Kσ

opt (depending on the standard deviation σ of Y ) such that adding further
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2 F. BONIZZONI, F. NOBILE AND D. KRESSNER

terms to the Taylor polynomial will degenerate the accuracy instead of improving it.
Nevertheless, for small variances and small order K, the perturbation approach still
provides a good approximation of E [u].

One possible technique to compute E
[
TKu(Y, x)

]
is to expand the random field

Y in series, e.g., Fourier or Karhunen-Loéve (KL) expansion, and then truncate it.
In this finite-dimensional setting, the Taylor (multivariate) polynomial can be ex-
plicitly computed. However, this method suffers from the curse of dimensionality as
(
N +K
K

)

terms have to be computed if N variables are retained in the series ex-

pansion of the Gaussian field Y . Note that N can become fairly large when rough
fields are considered. Adaptive algorithms have been recently proposed [11, 12], how-
ever in the simpler case of a permeability coefficient expanded in a series of uniform
random variables, in which case E

[
TKu

]
does indeed converge to E [u] for sufficiently

small variance.

In this work we follow a different path and solve the so called “moment equations”,
that is, the deterministic equations satisfied by E

[
uk

]
for k ≥ 0. The moment equation

technique entails the solution of recursive high-dimensional boundary value problems
to compute the high order correlations between the random field Y and the derivatives
of the random solution u. The perturbation technique coupled with the moment
equations has already been used in the literature. In particular, we refer to [32],
where the permeability coefficient is modeled as a linear combination of countable
many bounded random variables, and to [10], where the authors consider a first order
approximation of the m-th moment problem (m ≥ 1).

To discretize the moment equations, a full tensor product finite element method
is used, so that the high-dimensional correlations are represented by high-dimensional
tensors. To tackle the curse of dimensionality, we perform all computations and
store the results in a low-rank format. Low-rank formats aim at representing high-
dimensional tensors approximately with a dramatically reduced number of parameters.
Recently, two formats based on the singular value decomposition for matrices have
been proposed: the Hierarchical Tucker (HT) format [16, 19, 20] and the Tensor Train
(TT) format [19, 26]. Both formats can be easily manipulated and express a given
tensor X ∈ R

n1×···×nd of order d in terms of contractions of d third-order tensors
(cores) of size (rl−1 × nl × rl), l = 1, . . . , d. The d-tuple (r1, . . . , rd) is called the rank
of the low rank representation of X .

As an alternative to a full tensor product approach and low rank formats, we
mention [9], where results concerning the construction and approximation properties
of sparse tensor product polynomial subspaces of Sobolev spaces with bounded mixed
derivatives are derived.

In this work we develop an algorithm based on the TT-format for solving the recur-
sive moment equations and computing the K-th order approximation E

[
TKu(Y, x)

]
.

The algorithm requires to access the global and local (element-wise) stiffness ma-
trices corresponding to the mean as well as a TT-representation of the k-points
(k = 1, 2, . . . ,K) correlations of the input Gaussian random field Y (see [23]). Even-
tually, everything comes down to the solution of a sequence of deterministic problems
with the same stiffness matrix and multiple right hand sides.

If Y is a smooth random field (e.g. with squared exponential covariance function),
then it can be well approximated using a number of random variables N sensibly
smaller than the number of elements Nh (intervals/triangles/tetrahedra) used in the
spacial finite element discretization. On the other hand, if Y is a rough Gaussian
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random field (e.g. with exponential covariance function) N = Nh random variables
are needed to properly catch the behavior of the random field. This fact reflects onto
the size of the ranks (r1, . . . , rk) of the TT-representation of the k-points correlation
of Y . In [23] the authors prove the theoretical upper bound rl ∼ N l. However,
the implementation provided in [31] and described in [23] offers the possibility to
dramatically reduce the ranks rl, and allows to handle high order correlations at
least when Y is a smooth random field. For rough random fields, the main limiting
factor of our approach for high order correlations is the effectiveness of the low rank
representations.

In our computations, the total error is the sum of two contributions: the trunca-
tion error of the Taylor series and the tolerance used during the approximate compu-
tations and recompressions within the TT-format. When these two errors are properly
balanced, we have numerically verified that our approach performs much better than
a standard Monte Carlo method, in terms of the number of deterministic problems
solved for a given accuracy level.

The outline of the paper is as follows. Section 2 introduces the problem at hand
and recalls existing results concerning the well-posedness of the log-normal Darcy
problem and approximations via Taylor polynomials. In Section 3 we analytically de-
rive the recursive problem solved by E

[
TKu(Y, x)

]
, and the finite element formulation

of the recursive problem is derived in Section 4. Section 5 introduces the Tensor Train
format and in Section 6 the recursive algorithm in Tensor Train format is described.
Section 7 studies the storage requirements of the algorithm we have developed. In
Section 8 some one-dimensional numerical tests are performed. Conclusions are given
in Section 9.

2. Problem setting. Let (Ω,F ,P) be a complete probability space, where Ω
is the set of outcomes, F the σ-algebra of events and P : Ω → [0, 1] a probability
measure. Let D be an open bounded domain in R

d (d = 1, 2, 3) with locally Lipschitz
boundary.

We study the Darcy boundary value problem with permeability modeled as a log-
normal random field: Given a centered (w.l.o.g) Gaussian random field Y : D×Ω→ R,
f ∈ L2(D) and g ∈ H1/2(ΓD), find u ∈ Lp

(
Ω;H1(D)

)
, p ≥ 1, s.t. u|ΓD

= g a.s. and

(2.1)

∫

D

eY (ω,x)∇u(ω, x) · ∇v(x) dx =

∫

D

f(x)v(x) dx ∀v ∈ H1
ΓD

(D), a.s. in Ω

where {ΓD, ΓN} is a partition of the boundary of the domain ∂D, and homogeneous
Neumann boundary conditions are imposed on ΓN . The limit situation ΓD = ∅ is
also admissible: in this case the solution will be unique up to a constant.

If the covariance function of the random field Y is Hölder regular, CovY ∈
C0,t(D ×D) for some 0 < t ≤ 1, then there exists a version of Y whose trajectories
belong to C0,α(D̄) a.s. for 0 < α < t/2 (see [4, 5]), and problem (2.1) is well-posed
(see [8]). This setting covers also the relevant case in applications of a permeability
field conditioned to point-wise measurements. Indeed, given an unconditioned random
field Y with Hölder continuous covariance function of exponent t, then the random
field Ycond conditioned to available measurements has a covariance function that is
Hölder continuous with the same exponent.

Let us define σ2 =
1

|D|

∫

D

Var [Y (ω, x)] dx, which coincides with the variance of

the field Y in the case of a stationary field. By abuse of notation, we refer to σ as the
standard deviation of Y also in the case when Y is non-stationary.
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Under the assumption of small standard deviation 0 < σ < 1, we perform a
perturbation analysis: we view the stochastic solution u as a map u : L∞(D)→ H1(D)
implicitly defined by (2.1), and approximate its expected value by the expected value
of its Taylor polynomial of degree K

(2.2) E [u(Y, x)] ≈ E
[
TKu(Y, x)

]
=

K∑

k=0

E
[
uk

]

k!
,

where uk is the k-th order Gateaux derivative of u with respect to Y . We refer to
E
[
uk

]
as the k-th order correction of the mean of u and to E

[
TKu(Y, x)

]
as the K-th

order approximation of the mean of u.

3. Recursion on the correlations: analytical derivation. In this section
we recall the main steps in the analytical derivation of the recursion satisfied by the
corrections of E [u] in increasing order. We refer to [4] for details.

The correction of order 0, u0, is deterministic and is given by the unique solution
of the following problem: Given f ∈ L2(D) and g ∈ H1/2(ΓD), find u0 ∈ H1(D) such
that u0 = g on ΓD and

(3.1)

∫

D

∇u0(x) · ∇v(x)dx =

∫

D

f(x)v(x)dx, ∀v ∈ H1
ΓD

(D).

For k ≥ 1, the k-th order correction E
[
uk

]
satisfies

(3.2)

∫

D

∇E
[
uk

]
(x) · ∇v(x) dx

= −
k∑

l=1

(
k
l

)∫

D

E
[
Y l∇uk−l

]
(x) · ∇v(x) dx ∀v ∈ H1

ΓD
(D).

To derive a recursion, we first note that the diagonal of E
[
Y ⊗l ⊗∇uk−l

]
on the

tensorized domain D×(l+1) contains the term E
[
Y l∇uk−l

]
on the right-hand side

of (3.2). The following definition allows us to formalize this statement.
Definition 3.1. Consider a function of n variables v(x1, . . . , xp, . . . , xq, . . . , xn),

for positive integers 1 ≤ p ≤ q ≤ n. Then the trace function Tr|p:qv is defined as

(
Tr|p:q

)
v(x1, . . . , xp, xq+1, . . . , xn) := v(x1, . . . , xp−1, xp, . . . , xp

︸ ︷︷ ︸

(q−p+1)−times

, xq+1, . . . , xn).

In particular, Definition 3.1 yields E
[
Y l∇uk−l

]
= Tr|1:l+1

E
[
Y ⊗l ⊗∇uk−l

]
.

We have E
[
Y ⊗l ⊗∇uk−l

]
=

(

Id⊗l ⊗∇
)

E
[
Y ⊗l ⊗ uk−l

]
, where E

[
Y ⊗l ⊗ uk−l

]

is the (l + 1)-point correlation function defined as

E
[
Y ⊗l ⊗ uk−l

]
(x1, x2 . . . , xl+1) :=

∫

Ω

Y (ω, x1)⊗ · · · ⊗ Y (ω, xl)⊗ u
k−l(ω, xl+1)dP(ω)

and the linear operator Id⊗l ⊗ ∇ applies the gradient operator to the last variable
xl+1 and the identity operator to all other variables. As a consequence, the k-th
order correction E

[
uk

]
can be obtained from the (l + 1)-point correlation functions

E
[
Y ⊗l ⊗ uk−l

]
for l = 1, . . . , k. The correlation functions themselves satisfy the

following recursion.
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Recursion on the correlations
(3.3)

Given all lower order terms

E

[

Y ⊗(s+l) ⊗ uk−l−s
]

∈
(
L2(D)

)⊗(s+l)
⊗H1

ΓD
(D) for s = 1, . . . , k − l,

find E
[
Y ⊗l ⊗ uk−l

]
∈
(
L2(D)

)⊗l
⊗H1

ΓD
(D) s.t.

∫

D×(l+1)

(

Id⊗l ⊗∇
)

E
[
Y ⊗l ⊗ uk−l

]
·
(

Id⊗l ⊗∇
)

v dx1 . . . dxl+1

= −
k−l∑

s=1

(
k − l
s

)∫

D×(l+1)

Tr|l+1:l+s+1
E

[

Y ⊗(s+l) ⊗∇uk−l−s
]

·
(

Id⊗l ⊗∇
)

v dx1 . . . dxl+1

∀ v ∈
(
L2(D)

)⊗l
⊗H1

ΓD
(D).

Note that problem (3.2) is a particular case of (3.3) for l = 0, since E
[
Y ⊗0 ⊗ uk−0

]
=

E
[
uk

]
.

To summarize, the problem at hand has a recursive structure. To obtain the K-th
order approximation of E [u] we perform the following algorithm:

for k = 0, . . . ,K do
Compute E

[
Y ⊗k ⊗ u0

]
.

for l = k − 1, k − 2, . . . , 0 do
Solve the boundary value problem (3.3) to obtain the (l+ 1)-point correlation
function E

[
Y ⊗l ⊗ uk−l

]
.

end for
The result for l = 0 is the k-th order correction E

[
uk

]
to the mean E [u].

end for

Table 1

K-th order approximation of the mean. The first column contains the input terms E
[

Y ⊗k ⊗ u0
]

and the first row contains the k-th order corrections E
[

uk
]

, for k = 0, . . . ,K. To compute

E
[

TKu(Y, x)
]

, we need all elements in the top left triangular part, that is, all elements in the
k-th diagonals for k = 0, . . . ,K.

u0 0 E
[
u2

]
0 E

[
u4

]
0

0 E
[
Y ⊗ u1

]
0 E

[
Y ⊗ u3

]
0 . .

.

E
[
Y ⊗2

]
⊗ u0 0 E

[
Y ⊗2 ⊗ u2

]
0 . .

.
0

0 E
[
Y ⊗3 ⊗ u1

]
0 . .

.
0 . .

.

E
[
Y ⊗4

]
⊗ u0 0 . .

.
0 . .

.
0

Table 1 illustrates the computational flow of our algorithm. Each non-zero correla-
tion E

[
Y ⊗l ⊗ uk−l

]
, with l < k, can be obtained only if we have previously computed

all the previous terms in the k-th diagonal. As a consequence, to derive the K-th
order approximation E

[
TKu(Y, x)

]
, we need to compute all elements in the top left

triangular part of the table. Notice that, since we assumed E [Y ] (x) = 0 w.l.o.g., all
the (2k + 1)-point correlations of Y vanish, and hence all odd diagonals are zero.

Remark 3.1.1. The well-posedness of problem (3.3) is proved in [4] under the
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assumption CovY ∈ C
0,t(D ×D) for some 0 < t ≤ 1. Moreover, in [4] it is shown

that further regularity assumptions on the domain and u0 guarantee a regularity result
for all E

[
Y ⊗l ⊗ uk−l

]
in Hölder spaces with mixed regularity.

4. Tensor Product Finite Element discretization. To simplify the presen-
tation, we suppose g = 0 from now on, that is, homogeneous Dirichlet boundary
conditions are imposed on ΓD in the stochastic Darcy problem. Let Th be a regular
partition of the domain D ⊆ R

d (d = 1, 2, 3) into intervals/triangles/tetrahedra, such
that the union of all the elements in Th is the closure of the domain and the intersec-
tion of any two elements is empty or is a common vertex or edge or face. Let us denote
with h the discretization parameter, i.e. the maximum diameter of the elements in
Th. To discretize the Hilbert spaces H1

ΓD
(D) and L2(D) we use piecewise linear and

piecewise constant finite elements (FE) respectively:

Vh = span {φn}
Nv

n=1 ⊂ H
1
ΓD

(D),(4.1)

Wh = span {ψi}
Ne

i=1 ⊂ L
2(D),(4.2)

where {φn}
Nv

n=1 is the Lagrangian P1 basis, {ψi}
Ne

i=1 is the piecewise constant basis
composed of the indicator functions for each element of the triangulation, Nv is the
number of vertices excluding those on ΓD, and Ne is the number of elements of the
triangulation. Having the two bases {φn} and {ψi}, we can construct the full tensor

product (FTP) basis for the tensor product space
(
L2(D)

)⊗l
⊗ H1

ΓD
(D) for every

integer l ≥ 1:

(Wh)
⊗l ⊗ Vh = span {ψi1 ⊗ . . .⊗ ψil ⊗ φn, n = 1, . . . , Nv, i1, . . . , il = 1, . . . , Ne} .

The resulting discretized representations of the terms E
[
Y ⊗l ⊗ uk−l

]
and

Tr|l+1:l+s+1
E
[
Y ⊗(s+l) ⊗∇uk−l−s

]
are given by

E
[
Y ⊗l ⊗ uk−l

]
(x1, . . . , xl+1)

=
∑

i1,...,il,n

Cl,k−l(i1, . . . , il, n)ψi1(x1)⊗ · · · ⊗ ψil(xl)⊗ φn(xl+1),

Tr|l+1:l+s+1
E

[

Y ⊗(s+l) ⊗∇uk−l−s
]

(x1, . . . , xl+1)

=
∑

i1,...,is+l,n

Cs+l,k−l−s(i1, . . . , is+l, n) · · ·

ψi1(x1)⊗ · · · ⊗ ψil(xl)⊗ ψil+1
(xl+1)⊗ · · · ⊗ ψis+l

(xl+1)⊗∇φn(xl+1),

where Cp,q ∈ R
Ne×···×Ne×Nv denotes the tensor of order p + 1 that contains the (yet

unknown) coefficients of the (p+1)-point correlation E [Y ⊗p ⊗ uq] in the chosen tensor
product FE basis.

We test the recursion relation (3.3) against v(x1, · · · , xl+1) = ψj1(x1) ⊗ · · · ⊗
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ψjl(xl)⊗ φm(xl+1) so that the left hand side in (3.3) becomes:
∑

i1,...,il,n

Cl,k−l(i1, . . . , il, n)

∫

D×(l+1)

(ψi1(x1)⊗ · · · ⊗ ψil(xl)⊗∇φn(xl+1)) · (ψj1(x1)⊗ · · · ⊗ ψjl(xl)⊗∇φm(xl+1))

=
∑

i1,...,il,n

Cl,k−l(i1, . . . , il, n)

(∫

D

ψi1(x1)ψj1(x1)dx1

)

· · ·

(∫

D

ψil(xl)ψjl(xl)dxl

)(∫

D

∇φn(xl+1) · ∇φm(xl+1)dxl+1

)

=
∑

i1,...,il,n

Cl,k−l(i1, . . . , il, n)M(i1, j1) · · ·M(il, jl)A(n,m),

where A is the stiffness matrix of the P1 basis and M is the mass matrix of the P0

basis. In a similar way, we write each term

I =

∫

D×(l+1)

Tr|l+1:l+s+1
E

[

Y ⊗(s+l) ⊗∇uk−l−s
]

·
(

Id⊗l ⊗∇
)

v dx1 . . . dxl+1

in the right hand side of (3.3) as

I =
∑

i1,...,is+l,n

Cs+l,k−l−s(i1, . . . , is+l, n)B
s(il+1, . . . , is+l, n,m)M(i1, j1) · · ·M(il, jl),

where Bs ∈ R
Ne×...×Ne×Nv×Nv is the tensor of order s+ 2 defined as

(4.3) Bs(il+1, . . . , is+l, n,m) :=

∫

D

ψil+1
(x) . . . ψil+s

(x) ∇φn(x) · ∇φm(x) dx.

Since we have discretized the space L2(D) with piecewise constant elements, we have

Bs(il+1, . . . , il+s, n,m) = δil+s−1,il+s
Bs−1(il+1, . . . , il+s−1, n,m)(4.4)

= · · · = δil+1,...,il+s
B1(il+1, n,m),

where δil+1,...,il+s
=

{
1, if il+1 = · · · = il+s

0, otherwise
. Hence, Bs is a highly sparse tensor

that represents the discrete analogue of the trace operator Tr|l+1:l+s+1
. Thanks to

relation (4.4), there is no need to explicitly compute Bs for s ≥ 2, and it is sufficient
to compute the tensor B1, representing the collection of local stiffness matrices.

The following definition represents the discrete analogue of Definition 3.1.
Definition 4.1. Let Y ∈ R

n1×···×np×···×nq×···×nr and X ∈ R
np×···×nq×h be

tensors of order r and q − p + 2, respectively, with 1 ≤ p ≤ q ≤ r. We define the
tensor of order p− q + r

(4.5) Z := X ×p:q Y ∈ R
n1×···×np−1×h×nq+1×···×nr

as the contraction of the first q−p+1 indices of X with the indices of Y from position
p until q:

Z(k1, . . . , kp−1, j, kq+1, . . . , kr)(4.6)

=

np∑

kp=1

· · ·

nq∑

kq=1

X (kp, . . . , kq, j)Y(k1, . . . , kp, . . . , kq, . . . , kr).
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In the case p = q we write ×p instead of ×p:p.
Remark 4.1.1. If p = q in Definition 4.1 then X (kp, j) is a matrix and Z :=

X ×p:p Y = X ×p Y coincides with the usual p-mode product of a tensor with a
matrix [22].

Remark 4.1.2. Given a tensor Y of order p + s, let us set X = Bs and define
Z := Bs ×p:p+s Y. Then, using (4.4), we can write the elements of Z as

Z(i1, . . . , ip−1,m)

= (Bs ×p:p+s Y) (i1, . . . , ip−1,m)

=
∑

ip,...,is+p−1,n

Bs(ip, . . . , is+p−1, n,m)Y(i1, . . . , ip−1, ip, . . . , ip+s−1, n)

=
∑

ip,...,is+p−1,n

δip,...,ip+s−1
B1(ip, n,m)Y(i1, . . . , ip−1, ip, . . . , ip+s−1, n)

=
∑

i

∑

n

B1(i, n,m)Y(i1, . . . , ip−1, i, . . . , i
︸ ︷︷ ︸

s times

, n).(4.7)

We have already observed that to compute Z := Bs×p:p+sY it is sufficient to compute
the tensor B1. However, even the storage of the full tensor B1, which has size Ne×Nv×
Nv, is impractical for 2D and 3D meshes. In our algorithm, we do not compute the full
tensor B1, but we rather perform a loop over the elements of the mesh i = 1, . . . , Ne

and at each step of the loop the local (element-wise) stiffness matrix Bi := B
1(i, : . :)

is constructed and used to perform the operation in (4.7). See Algorithm 2 below
for more details. Notice that all local stiffness matrices can also be precomputed and
stored during the simulation.

Using Definition 4.1 and observing that M(i, j) = |Tj |δi,j , where |Tj | denotes
the area of the j-th element, we can write the FE formulation of problem (3.3) in a
compact way:

(4.8) A×l+1 Cl,k−l = −
k−l∑

s=1

(
k − l
s

)

Bs ×l+1:l+s+1 Cs+l,k−l−s.

Remark 4.1.3. As an alternative to the full tensor product discretization of the

tensor product space
(
L2(D)

)⊗l
⊗H1

ΓD
(D), we mention the possibility of using sparse

tensor product spaces, which considerably limit the number of degrees of freedom while
keeping almost the same accuracy. For more details, we refer, e.g., to [6, 29]. In
this paper, we follow the full tensor product technique and then represent the obtained
tensors in low-rank format. Notice that a sparse grid representation can be seen as a
particular case of low-rank representation with a fixed choice of bases [19].

5. Tensor Train format. The FE discretization of the k-th order problem (4.8)
involves high-order tensors. As the number of entries in a tensor grows exponentially
with the order, only low-order tensors can be stored explicitly. This phenomenon is
known as the curse of dimensionality. For higher-order tensors it is necessary to use
low-rank formats.

Classical low-rank formats for tensors include the CP (Canonical decomposi-
tion/Parallel factors) format [22, 7, 21] and the Tucker format [22, 33]. Note that
the latter format is restricted to tensors of moderate order. We refer to the Tensor
Toolbox [1] for a Matlab implementation of both formats.
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Recently, two other approaches have been proposed to address high-dimensional
problems in scientific computing: the Hierarchical Tucker (HT) format [16, 20] and
the Tensor Train (TT) format [26]; see [24, 25] for Matlab implementations. Both
formats are based on the singular value decomposition (SVD) and require the storage
of a collection of third-order tensors instead of the original higher-order tensor. The
simpler structure of the TT-format, which can be seen as a particular case of the
HT-format, makes it easier to handle compared to the HT-format. For this reason,
we have based our developments on the TT-format.

Definition 5.1. A tensor X ∈ R
n1×...×nd of order d is in TT-format if it is

represented as

(5.1) X (i1, . . . , id) =
r1∑

α1=1

. . .

rd−1∑

αd−1=1

G1(i1, α1)G2(α1, i2, α2) . . . Gd(αd−1, id).

The third-order tensors Gj ∈ R
rj−1×nj×rj for j = 1, . . . , d, with r0 = rd = 1, are

called the cores of the TT-format.

The tuple (r1, . . . , rd−1) critically determines the storage complexity of the TT-
format, which is given by O

(
(d− 2)nr2 + 2rn

)
where n = max{n1, . . . , nd}, r =

max{r1, . . . , rd}. The smallest possible tuple (r1, . . . , rd−1) admitting a representa-
tion (5.1) for a given tensor X is called the TT-rank of X . The TT-rank corresponds
to the ranks of certain matricizations (flattenings) of X . One of the most important
features of the TT-format is that the compression of a given tensor to a tensor with
prescribed (low) TT-rank can be performed by means of singular value decomposi-
tions within quasi-optimal accuracy [26]. The same holds for recompressing a tensor
in TT-format to lower TT-rank. Moreover, many linear algebra operations (like addi-
tion, scalar product, µ-th mode product, etc.) can be cast efficiently for such tensors
in terms of operations on the cores only. All these operations are implemented in the
Matlab TT-Toolbox [25].

To emphasize that a tensor X is given in terms of the TT-format (5.1), we will
write X TT instead of X .

6. The recursive TT-algorithm. In this section we describe our algorithm for
solving the recursive FE problem (4.8) in TT-format. Let us recall that the inputs of
the recursion are the k-point correlations E

[
Y ⊗k

]
, whereas the outputs consist of the

corrections E
[
uk

]
of increasing order.

6.1. Approximation of the inputs in TT-format. Before starting the recur-
sion, we need to represent the k-point correlations E

[
Y ⊗k

]
in an effective way. For

this purpose, we follow a technique proposed in [23] and use a tensor CTT

k in TT-format
to represent E

[
Y ⊗k

]
approximately. For completeness, we recall the main steps of

the construction from [23].

Step 1 Computation of the truncated KL-expansion for the field Y (ω, x):

(6.1) YN (ω, x) = σ

N∑

j=1

√

λj ηj(x) ξj(ω),

where {λj}
N
j=1 are the non-negative eigenvalues in decreasing order and {ηj}

N
j=1

are the corresponding eigenvectors of the covariance function. At this step,
N is chosen sufficiently large to lead to a negligible truncation error.
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Step 2 Given an even order k and the set {λj}
N
j=1, the correlation E

[
Y ⊗k
N

]
is given

by

E
[
Y ⊗k
N

]
(x1, . . . , xk) = σk

N∑

i1=1

. . .
N∑

ik=1

E

[
k∏

µ=1

√

λiµξiµ(ω)

]
k⊗

µ=1

ηiµ

= σk
N∑

i1=1

. . .

N∑

ik=1

N∏

l=1

λ
mi(l)/2
l E

[

ξl(ω)
mi(l)

]

︸ ︷︷ ︸

=:Gk(i1,...,ik)

k⊗

µ=1

ηiµ ,

where mi(l) := # {n : in = l} is the multiplicity of the integer l in the multi-
index i = (i1, . . . , ik). Even when exploiting its super-symmetry, the explicit
computation and representation of the entries Gk(i1, . . . , ik) in the core tensor
Gk becomes way too expensive already for moderately large values of k. To
avoid this, we approximate Gk by a tensor GTT

k in TT-format such that

(6.2) ‖Gk − G
TT

k ‖F ≤ tol

for a prescribed tolerance tol > 0. Note that ‖·‖F denotes the usual Frobenius
norm of a tensor. Since the basis {ηj}j is orthonormal in L2(D), we have
∥
∥E

[
Y ⊗k
N

]∥
∥
(L2(D))⊗k = σk ‖Gk‖F . The function constr_tt described in [23,

31] that attains (6.2) consists of successively pruning those columns from
the matricizations of Gk that only have a negligible impact on the overall
approximation quality. Exploiting the specific structure of the entries of Gk,
this procedure does not need to form Gk explicitly, which enables it to handle
relatively large values of k, such as k = 10 or k = 20.

Step 3 Using the function tt_round from the TT-toolbox, the tensor GTT

k is com-
pressed further to lower TT-ranks while maintaining (6.2), possibly with a
different tolerance. Multiplying by σk, we finally obtain an approximation of
E
[
Y ⊗k
N

]
in TT-format represented in the KL-basis. This approximation will

be denoted by CTT

k .

Remark 6.0.1. For convenience we store CTT

k , representing the correlation
E
[
Y ⊗k
N

]
in the KL-basis. We then convert each core separately into the FE basis

when needed during the computations.

Algorithm 1 summarizes Steps 2 and 3 above; it can be applied to a d-dimensional
domain D, with d ≥ 1. Observe that the cost of computing CTT

k and its storage is
independent of the number of degrees of freedom Nh in the FE discretization and
depends only on the decay of the eigenvalues {λj} or, equivalently, the truncation

level Ñ ≤ N needed to achieve a prescribed accuracy by the KL expansion.

Algorithm 1 Function compute_moment_Y: Computes the k-point correlation
of a centered Gaussian random field, with k even.

Require: Order of the correlation k, standard deviation σ, eigenvector matrix η =
(η1, . . . , ηN ), eigenvalues λ = (λ1, . . . , λN ) and tolerances tol1, tol2

Ensure: Tensor CTT

k in TT-format approximating E
[
Y ⊗k
N

]

GTT

k = constr_tt(k, λ, tol1)
CTT

k = tt_round(GTT

k , tol2)
CTT

k ← σkCTT

k
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Remark 6.0.2. Note that the tensor E
[
Y ⊗k
N

]
is supersymmetric, i.e., it is in-

variant under any permutation of its indices. The compressions resulting in CTT

k do
not fully preserve these symmetries, but we still have

CTT

k (i1, . . . , ik/2, ik/2+1, . . . , ik) = C
TT

k (ik, . . . , ik/2+1, ik/2, . . . , i1).

6.2. Computation of the mean corrections in TT-format. Let K be even
and fixed. The computation of the K-th order correction requires to recursively solve
the linear systems (4.8) for k = 2, . . . ,K and l = k − 1, k − 2, . . . , 0; see also Table 1.
Starting from the tensor CTT

k computed above (which corresponds to l = k), we now
aim at carrying out these recursions in the TT-format. The main ingredients needed
to attain this goal are the implementation of contractions of the form Bs ×p:p+s X

TT,
with X TT being a TT-tensor of order p+ s, and the solution of linear systems of the
form A×p X

TT = YTT, with A being the FE stiffness matrix and YTT being a tensor
of order p in TT-format.

6.2.1. Contraction Bs ×p:p+s X
TT in TT-format. We have implemented the

function contraction (see Algorithm 2) which, for a given (p + s)-th order tensor
X TT in TT-format, with p, s ≥ 1, returns the p-th order tensor ZTT := Bs×p:p+sX

TT

element-wise defined by (4.7).
The first step of the algorithm consists of extracting the cores from the TT-format

of X TT. This operation is realized by the sub-routine extract_cores, which, given
the TT-tensor X TT, returns a cell array Xcores containing the cores of X TT. We then
initialize a cell array Zcores of length p. Since the contraction (4.7) does not affect
the first p − 1 modes of the tensor, the corresponding cores of X TT and ZTT are
identical. To compute the p-th core of ZTT we perform a loop over the elements
of the triangulation. In each step of the loop, the local stiffness matrix B1(i, :, :)
is constructed and multiplied with the (p + s)-th core Xcores{p + s}. The result is
then recursively multiplied with the j-th core of X TT for j = p, . . . , p + s − 1. Note
that the matrix B1(i, :, :) is highly sparse, since it coincides with the stiffness matrix
corresponding to the i-th element of the mesh. Finally, the tensor ZTT is assembled
in TT-format from its cores by calling the function tt_tensor from the TT-Toolbox.

Remark 6.0.3. Algorithm 2 assumes that the tensor X TT is represented in the
FE basis. On the other hand, if the tensor X TT is represented in the KL basis, each
core Xcores{j}(:, i, :) in the inner loop has to be recast in the FE basis before performing
the next operation. Note that the p-th core of ZTT will always be in FE basis, whereas
the first p− 1 cores will remain expanded in the KL basis.

6.2.2. Solution of the linear system A×pX
TT = YTT in TT-format. Given

a p-th order tensor YTT in TT-format and the Nv×Nv stiffness matrix A, the function
solve_linear_system described in Algorithm 3 returns the solution of the linear
system A×pX

TT = YTT in TT-format. The p-th core (the last one) of X TT is obtained
from the p-th core of YTT by applying A−1. This corresponds to solving rp−1 · rp
systems with the same matrix A. All other cores of X TT and YTT are identical. In
practice we have used the backslash Matlab operator to solve these linear systems.

6.2.3. Recursive first moment problem in TT-format. Using the ingredi-
ents discussed above, Algorithm 4 computes the corrections E

[
uk

]
for k = 0, . . . ,K

in TT-format.
After solving the 0-th order approximation problem, we compute the truncated

KL-expansion of the Gaussian random field Y . We then loop over the order k of
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Algorithm 2 Function contraction: Performs the contraction Bs ×p:p+s X
TT in

TT-format.
Require: Tensor X TT of order p + s in TT-format, and positive integers p, s with
p, s ≥ 1.

Ensure: Tensor ZTT = Bs ×p:p+s X
TT in TT-format, as defined in (4.7).

Set Xcores = extract_cores(X TT)
Initialize an empty cell array Zcores of length p
Set Zcores{j} = Xcores{j} for j = 1, . . . , p− 1
for i = 1, . . . , Ne do

Compute the matrix Bi = B
1(i, :, :)

Set tempi(αp+s−1,m, αp+s) =
∑

n Xcores{p+ s}(αp+s−1, n, αp+s)Bi(n,m)
for j = p+ s− 1 : −1 : p do

Extract the matrix Xi = Xcores{j}(:, i, :)
tempi(αj−1,m, αp+s) =

∑

αj
tempi(αj ,m, αp+s)Xi(αj−1, αj)

end for
Zcores{p} ← Zcores{p}+ tempi

end for
Set ZTT = tt_tensor(Zcores)

Algorithm 3 Function solve_linear_system: Solves A×p X
TT = YTT.

Require: Matrix A ∈ R
Nv×Nv and tensor YTT ∈ R

Ne×...×Ne×Nv of order p in TT-
format.

Ensure: Solution X TT ∈ R
Ne×...×Ne×Nv of A×p X

TT = YTT in TT-format.
Ycores = extract_cores(YTT)
Set Xcores = Ycores
Set Xcores{p} = A\Ycores{p}
Set X TT = tt_tensor(Xcores)

the correction. In each step we first compute the tensors CTT

k and CTT

k,0 in TT-

format, representing the k-point correlation functions E
[
Y ⊗k

]
and E

[
Y ⊗k ⊗ u0

]
,

respectively. For the latter, we use the function kron from the TT-toolbox for per-
forming the Kronecker product in the TT-format. In a nested loop over the index
l = k − 1, k − 2, . . . , 1, 0, we compute the right-hand side of (4.8) using the function
contraction described in Algorithm 2), and solve the linear system (4.8) using the
function solve_linear_system described in Algorithm 3. Finally, we compute the
K-th order correction E

[
TKu

]
by summing up all corrections.

Remark 6.0.4. We remark that the assembly of the right hand side of (4.8)
involves the sum of tensors in TT-format. Generically, the TT-ranks of the resulting
TT-tensor are given by the sum of the TT-ranks of all the terms in the sum. Recom-
pression needs to be performed to avoid this growth of the TT-ranks. More specifically,
the application of tt_round after each addition, with a tolerance tol3 ≤ tol2, can be
expected to lead to much smaller ranks, especially in the cores l and l + 1. On the
other hand, performing this procedure requires considerable amounts of memory.

For the particular situation at hand, it turns out that the summation in (4.8) can
be performed in a simpler way because all terms have the first l cores in common.
Hence, these cores will stay the same in the (exact) sum and only the (l + 1)-th core
needs to be computed, its rank being equal to the l-th rank rl of CTT

k,0. To benefit from
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this property, we do not perform compression during the summation as it would modify
also the first l cores.

Algorithm 4 Implementation of the recursion in Table 1.

Require: Order of the approximation K, standard deviation σ, covariance function
CovY of 1

σY , tolerances tolKL, tol1, tol2, tol3 load function f

Ensure: K-th order approximation of E [u] in TT-format, that is
∑K

k=0
1
k!C

TT

0,k

Solve the deterministic problem for C0,0
Given CovY , compute the truncated KL-expansion (6.1) of Y up to a prescribed
tolerance tolKL.
for k = 2 : 2 : K do

Construct CTT

k = compute_moment_Y(k, σ, η, λ, tol1, tol2)
Compute CTT

k,0 =kron(CTT

k , C0,0)
for l = k − 1, . . . , 0 do

Initialize YTT = 0
for s = 1, . . . , k − l do

Update YTT ← YTT −

(
k − l
s

)

Bs ×l+1:s+1 C
TT

s+l,k−l−s using the

function contraction
Recompress YTT ← tt_round(YTT, tol3)

end for
Set CTT

l,k−l = solve_linear_system(A,YTT)
end for

end for

Return
∑

k=0:2:K

CTT
0,k

k!

7. Storage requirement and complexity of the TT-algorithm. The stor-
age complexity of a tensor of order k in TT-format highly depends on its TT-rank
(r1, . . . , rk−1). Here we numerically study the storage complexity of the input data
of our algorithm, that is the k-point correlations of Y in TT-format for k = 0, . . . ,K,
with k even. We aim also at understanding how this complexity spreads throughout
the recursive problem described in Table 1. All our computations are performed in
the one dimensional case, D = [0, 1].

As described in Section 6.1, to compute the k-point correlation of Y in TT-format,
CTT

k , for k ≤ K even, we first have to perform the truncated KL-expansion (6.1) of
Y with a prescribed accuracy tolKL. Throughout this section we take tolKL = 10−16,
so that – up to machine precision – the complete KL-expansion corresponding to the
piecewise constant discretization Yh of the random field is considered.

Let N be the number of random variables parametrizing the field Yh. Then
N ≤ Ne, where Ne is the number of elements of the partition Th. In [23] it has been
shown that if CTT

k were to be computed exactly, its TT-rank would satisfy

(7.1) rp =

(
N + p− 1

p

)

for p = 1, . . . , k/2. Because of the symmetry in the construction of CTT

k (see Remark
6.0.2), rk−p = rp for p = 1, . . . , k/2. Clearly, the storage of the exact TT-format
CTT

k becomes costly for moderately large k. Using Algorithm 1, we construct an
approximation of this TT-tensor, which we still denote with CTT

k . Its TT-rank is
bounded by (7.1), but it is often observed to be significantly lower.
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As an example, let us consider the domain D = [0, 1] discretized with Nh = 100
(Nh = Ne) subintervals of length h = 1/Nh, and the squared exponential covariance
function

(7.2) CovY (x1, x2) = e−
‖x1−x2‖2

L2 , (x1, x2) ∈ D ×D

with correlation length L = 0.2. The field is parametrized by N = 26 random
variables. In Figure 1 we compare the upper bound in (7.1) ( black dashed line) with
the TT-ranks of CTT

6 computed using Algorithm 1 and imposing different tolerances
tol1 = tol2 = tol. Smaller tolerances lead to higher TT-ranks. In Figure 2 (left) the
same type of plot is done for k = 2, 4, 6.

Figure 2 (right) is obtained with Nh = 100 and the exponential covariance func-
tion

(7.3) CovY (x1, x2) = e−
‖x1−x2‖

L , (x1, x2) ∈ D ×D

with correlation length L = 0.2. N = 100 random variables are considered. In the
exponential case, the TT-ranks are observed to grow faster than in the Gaussian
setting. For more examples and details we refer to [23].
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Figure 1. Upper bound (7.1) (black dashed line) for the TT-ranks compared with the TT-ranks
of the approximation CTT

6 computed for different tolerances tol.

1 2 3 4 5 6 7
10

0

10
2

10
4

10
6

r
p

T
T

−
ra

nk
s

k−points correlation of Y, k=2,4,6 (Gaussian Cov function)

 

 

tol=10−1

tol=10−2

bound

1 2 3 4 5 6 7
10

0

10
2

10
4

10
6

r
p

T
T

−
ra

nk
s

k−points correlation of Y, k=2,4,6 (Esponential Cov function)

 

 

tol=10−1

tol=10−2

bound

Figure 2. Upper bound (7.1) (black dashed line) for the TT-ranks compared with the TT-
ranks of the approximation CTT

k
computed for different tolerances tol. Left plot: k = 2, 4, 6 and

CovY Gaussian. Right plot: k = 2, 4, 6 and CovY exponential.
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We perform a numerical test to study the storage complexity of the correlations
involved in the K-th order problem, that is, the entries in Table 1. As already empha-
sized in Remark 6.0.4, the most delicate operation in solving (4.8) is the sum of the
TT-tensors needed in the construction of the right hand side. We have implemented
and tested both ways described in Remark 6.0.4 for performing this operation:

1. We exploit that all terms in the sum have the first l cores in common and
only the (l + 1)-th core needs to be computed. No recompression is per-
formed. Figure 3 displays the resulting TT-ranks of the correlations needed
to compute the 6-th order correction term CTT

0,6. We have used tolerances
tol1 = tol2 = 10−10 in the function compute_moment_Y. Note that the
storage requirement is decreasing along each diagonal of Table 1, and the
biggest effort is actually required for storing the input term CTT

6,0.
2. We use the addition of TT-tensors implemented in the Matlab TT-Toolbox

[25]. After each addition, recompression using tt_round is performed (see
Algorithm 4). Figure 7 displays quantities analogous to Figure 3, with re-
compression tolerances tol3 = 10−13 (left plot) and tol3 = 10−6 (right plot).
Clearly, this procedure leads to smaller ranks, at the expense of higher mem-
ory requirements and the computational cost needed for the recompressions.
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Figure 3. Semilogarithmic plot of the TT-ranks of the correlations needed to solve the 6-th
order problem, with tolerances tolKL = 10−16 and tol1 = tol2 = 10−10. No compression is performed
in summing the TT-tensors in the right hand side of (4.8).
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Figure 4. Semilogarithmic plot of the TT-ranks of the correlations needed to solve the 6-th
order problem, with tolerances tolKL = 10−16 and tol1 = tol2 = 10−10. A recompression up to
tolerances tol3 = 10−13 (left) and tol3 = 10−6 (right) is performed is performed in summing the
TT-tensors in the right hand side of (4.8).
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Remark 7.0.5. Given a d-variate, 2π-periodic function f with mixed Sobolev
regularity s, the results in [28] show that the storage complexity for achieving accuracy
tol by representing f in HT-format satisfies worse rates than those obtained with sparse
grids. Actually, sparse grids are expressly constructed to approximate multivariate
functions with mixed Sobolev regularity. How sparse grid techniques compare with
low-rank approximations in other settings is still an open question and a matter of
research.

We give, in what follows, some considerations on the complexity of our method.
Let N be the number of random variables we take into account in the KL-expansion,
so that the random field Y is parametrized by the Gaussian random vector Y =
(Y1 . . . , YN ).

In the approach proposed here, the first moment problem is derived and solved
in TT-format. To compute the K-th order approximation E

[
TKu

]
it is necessary to

compute E
[
uk

]
for k = 0, 2, . . . ,K, and to compute each k-th order correction E

[
uk

]

it is necessary to derive E
[
Y ⊗l ⊗ uk−l

]
, l = k−1, k−2, . . . , 0. Let (r0, r1, . . . , rk, rk+1)

be the TT-rank of E
[
Y ⊗k ⊗ u0

]
, with r0 = rk+1 = 1. At the computational level,

solving the PDE for E
[
Y ⊗l ⊗ uk−l

]
requires to solve a number of linear systems not

larger than rl (depending on whether a tt_round up to tolerance tol3 is used in
Algorithm 4). Hence, the computation of E

[
TKu

]
entails the solution of

M1 :=
∑

k=2:2:K

k−1∑

l=0

rl + 1

linear systems. If no compression in the construction of CTT

K,0 is used, M1 can be
bounded using (7.1) as

M1 =
∑

k=2:2:K

k−1∑

l=0

rl + 1 =
∑

k=2:2:K

k−1∑

l=0

(
N + l − 1

l

)

+ 1

=
∑

k=2:2:K

(
N + k − 1
k − 1

)

+ 1 ≤

(
N +K
K − 1

)

.

Using recompression in the construction of CTT

K,0, as implemented in Algorithm 1 (see
also [23]), the TT-format offers the possibility to dramatically reduce the ranks and
hence the computational cost. In Section 8.2 we will refer to this reduced computa-
tional cost as M ′

1.
The most natural alternative to the approach considered here is to directly com-

pute the Taylor polynomial, and use it to approximate E [u]. Since the number of

partial derivatives of order k of a function of N variables is

(
N + k − 1

k

)

, the

direct computation of TKu entails the solution of

M2 =
K∑

k=0

(
N + k − 1

k

)

=

(
N +K
K

)

linear systems. We note therefore that, even without recompression, M1 < M2. On
the other hand, M2 reduces since only even moments of Gaussian random variables are
non-zero, and can be further improved taking into account anisotropic Taylor poly-
nomials. How an optimally truncated Taylor expansion compares with our moment
equations approach with compressed TT-format is still an open question.
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8. Numerical tests. In this section we perform some numerical tests and solve
the stochastic Darcy problem with deterministic loading term f(x) = x in the one
dimensional domain D = [0, 1], both for a Gaussian and exponential covariance func-
tion. Homogeneous Dirichlet boundary conditions are imposed on ΓD = {0, 1}.

8.1. Analysis of the Taylor truncation error. Let Y (ω, x) be a stationary
centered Gaussian random field with squared exponential covariance function

CovY (x1, x2) = σ2 e−
‖x1−x2‖2

L2 , (x1, x2) ∈ D ×D

where 0 < σ < 1 and L = 0.2 are the standard deviation and the correlation length
of Y (ω, x), respectively. Let us take a uniform discretization of the spatial domain
D = [0, 1] in Nh = 10000 intervals (h = 1/Nh). As a first step, we perform the
truncated KL-expansion of Y (ω, x) with a tolerance tolKL = 10−4, so that N = 11
random variables are considered and 99% of the variance of the field is captured. Using
the algorithm described in Section 6.2 we then compute the 4-th order approximation
E
[
T 4u

]
of the expected value E [u]. A small tolerance tol = 10−10 is imposed in

all computations related to the TT-format, such that the loss of accuracy due to
recompression is negligible. As reference solution we consider the mean of u computed
via the collocation method on an isotropic total degree Smolyak sparse grid with 265
Gauss-Hermite collocation points (see e.g. [3]), on the same spatial discretization
(Nh = 10000), see Figure 5.
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Figure 5. E [u] computed via the collocation method, for different values of σ.

Note that the error made by our method stems from different contributions: the
truncation of the KL-expansion, approximations in the TT-format, the truncation of
the Taylor series and the FE approximation. Here, we start from the same truncated
KL-expansion both to compute the collocation solution and the TT solution; we use
the same FE grid, and all computations in the TT-format are done with high precision
(tol = 10−10). Hence, we observe only the error due to the truncation of the Taylor
series.

In [5] we have shown that
∥
∥E [u]− E

[
TKu

]∥
∥
L2(D)

= O(σK+1). Observe that,

since Y (ω, x) is centered, all the odd-point correlations of Y vanish, so that

(8.1)
∥
∥E [u]− E

[
TKu

]∥
∥
L2(D)

=

{
O(σK+2) if K is even,
O(σK+1) if K is odd.

This theoretical bound is numerically confirmed in Figure 6 (left), where the computed
error

∥
∥E [u]− E

[
TKu

]∥
∥
L2(D)

is plotted as a function of the standard deviation σ.
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Figure 6 (right) shows the computed error
∥
∥E [u]− E

[
TKu

]∥
∥
L2(D)

as a function of

K (at least up to K = 4) for different values of σ. It turns out that for σ < 1 it is
always useful to take into account higher order corrections at least up to K = 4. The
maximum precision that the method can reach is 10−10. We believe that this is due
to the precision in the TT computations.
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Figure 6. Plot of the computed error
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∥E [u]− E
[
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]
∥

∥

L2(D)
as a function of σ (left) and K

(right).

Suppose now that Y (ω, x) is a conditioned field to Nobs available point-wise obser-
vations. In this case, the covariance function CovY is non-stationary, but still Hölder
continuous, so that the well-posedness of the stochastic Darcy problem still holds.
Following the same steps as in Section 3, it is possible to derive the recursive first
moment problem, which now involves the (l+1)-point correlations E

[
uk−l ⊗ (Y ′)⊗l

]
,

where uk−l := Dk−lu(E [Y ])[Y ′]k−l is the Gateaux derivative of u in E [Y ] evaluated
along the vector (Y ′, . . . , Y ′)

︸ ︷︷ ︸

k−l times

, and Y ′(ω, x) is the centered Gaussian random field

Y ′(ω, x) := Y (ω, x)− E [Y ] (x).
Considering the case of Y (ω, x) conditioned to available observations is very rele-

vant in applications. Indeed, suppose the domain D contains an heterogeneous porous
medium. Although it is not possible to know its permeability everywhere, from the
practical point of view it is possible to measure it in a certain number of fixed points.
Hence, the natural model considered in the geophysical literature describes the per-
meability as a conditioned lognormal random field. See e.g. [27, 17, 18]. The more
observations are available, the smaller the total variance of the field will be. This,
actually, favors the use of perturbation methods.

As in the previous numerical test, let Nh = 10000 be the number of subintervals of
D, and tol = 10−4 the tolerance imposed in the truncation of the KL-expansion. The
Nobs observations available are evenly distributed in D = [0, 1]. To capture the 99%
of variability of the field, N = 9 and N = 8 random variables are needed in the cases
Nobs = 3 and Nobs = 5 respectively. Note that, the higher the number of observations
is, the smaller is the number of random variables needed to reach the same level of
accuracy in the KL-expansion. The reference solution is computed via the collocation
method (isotropic total degree Smolyak sparse grid with 181 and 145 Gauss-Hermite
collocation points for Nobs = 3 and Nobs = 5, respectively), see Figure 7.

Figure 8 shows the behavior of the error
∥
∥E [u]− E

[
TKu

]∥
∥
L2(D)

as a function of

σ, with Nobs = 3 (left) and Nobs = 5 (right). The same rate as for Nobs = 0 (see
(8.1)) is observed. In Figure 9 we plot the error as a function of K. The error is about
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Figure 7. E [u] computed via the collocation method, with Nobs = 3 (left) and Nobs = 5 (right).

1 order of magnitude smaller for Nobs = 3 (compared to Nobs = 0) and 2 orders of
magnitude smaller for Nobs = 5.
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(left) and Nobs = 5 (right).
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Figure 9. Plot of the computed error
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as a function of K, with Nobs =

3 (left) and Nobs = 5 (right).

8.2. Influence of the TT-format recompression. Let us consider a station-
ary Gaussian random field Y (ω, x) with squared exponential covariance function of
correlation length L = 0.2. Let Nh = 100. Instead of truncating the KL-expansion
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Figure 10. Logarithmic plot of the computed error
∥

∥E [u]− E
[

TKu
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∥

L2(D)
as a function of

the standard deviation σ, for different tolerances.

as done before, we consider the complete KL, that is we compute the expansion up
to machine precision (tolKL = 10−16). To reach this accuracy, N = 26 random vari-
ables have to be considered. We run our implementation imposing different tolerances
in the function compute_moment_Y. In this way, we can observe how the error
∥
∥E [u]− E

[
TKu

]∥
∥
L2(D)

depends on the approximation of E
[
Y ⊗K

]
in the TT-format.

Figure 10 shows the computed error
∥
∥E [u]− E

[
TKu

]∥
∥
L2(D)

as a function of the

standard deviation σ, for different tolerances, with K = 2, 4, 6. A tolerance 10−1 is
clearly too large; the predicted behavior (8.1) is not observed, even for K = 2. In
contrast, the tolerance 10−8 guarantees the predicted behavior for K = 2, K = 4 and
K = 6.

In Figure 11 we plot the error as a function of K, for different tolerances, with
σ = 0.05 (left), σ = 0.25 (right) and σ = 0.85 (down). The total error is the sum
of two contributions: the truncation of the Taylor expansion and the tolerance used
in the TT-format, which should ideally be balanced. In Figure 11 we see that, the
smaller σ is, the smaller the tolerance in the TT-format computations has to be to
equilibrate the truncation error.

Now, we attempt to investigate the complexity of our approach, i.e. how the
total error depends on the computational cost of the algorithm. In particular, we
numerically study the dependance of the error on the computational cost under the
assumption that the computational cost of the recursive algorithm is dominated by
the number M ′

1 of linear systems we have to solve in the recursion.

Figure 12 shows the logarithmic plot of the error
∥
∥E [u]− E

[
TKu

]∥
∥
L2(D)

as a

function of the complexityM ′
1 for different tolerances in the function compute_moment_Y,
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Figure 11. Semilogarithmic plot of the computed error
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of K, for different tolerances.
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Figure 12. Logarithmic plot of the computed error
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the computational cost (number of linear systems to solve) for different tolerances in the TT-format
computations. The dashed black line gives an idea of the behavior a Monte Carlo estimator.
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with σ = 0.05, 0.25, 0.85. To give an idea of the behavior of the Monte Carlo estimate,

we compare the computed error with the quantity
σMC
√

M ′
1

(dashed black line), where

σMC =

∥
∥
∥
∥

(

E [u− E [u]]
2
)1/2

∥
∥
∥
∥
L2(D)

has been estimated by the Monte Carlo method

with 10000 samples. Note that, for small σ (e.g. σ = 0.05), the smaller the tolerance
imposed is, the higher the accuracy reached. This is not the case if we let σ grow.
Indeed, the error from the TT-format is not anymore the most influencing component
of the error, which is dominated, instead, by the truncation of the Taylor series. For
a fixed truncation level, there is therefore an optimal choice tolopt of the tolerance,
depending both on σ and K. Figure 12 shows that, if the optimal tolerance is chosen,
the performance of the moment equations is far superior to a standard Monte Carlo
method. The question of how to determine a priori the optimal tolerance as a function
of K and σ is still open and under investigation.

8.3. Exponential covariance function: a comparison with Monte Carlo.
In the previous numerical examples we have considered a very smooth random field
with squared exponential covariance. We show in this section the performance of our
algorithm for a non-smooth random field.

Let Y (ω, x) be a stationary centered Gaussian random field with exponential
covariance function

CovY (x1, x2) = σ2 e−
‖x1−x2‖

L , (x1, x2) ∈ D ×D

with 0 < σ < 1, L = 0.2 and D = [0, 1]. Let Nh = 10000. We compute the
KL-expansion with tolerance tol = 10−4, so that N = 6429 random variables are con-
sidered and nearly the 100% of variance of the field is captured. Then, we compute
the second order correction of E [u] with our proposed method. Since N = 6429,
a collocation method becomes unfeasible. We compare, therefore, our method with
a Monte Carlo simulation with M = 10000 samples. See Figure 13, where the sec-
ond order correction is compared with the Monte Carlo method for σ = 0.05 (left)
and σ = 0.25 (right). In plotting the Monte Carlo solution, we have also added er-
ror bars representing ±σMC , where σMC is the estimated standard deviation of the
Monte Carlo estimator. We observe that the TT-solution is always contained in the
confidence interval of the Monte Carlo solution.
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Figure 13. Second order correction computed via our proposed method, and E [u] computed
via the Monte Carlo method (M = 10000 samples) for σ = 0.05 (left) and σ = 0.25 (right). The TT
solution compares well with the Monte Carlo solution.
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9. Conclusions. We have derived the full tensor product finite element for-
mulation of the recursive problem solved by the (l + 1)-point correlation functions
E
[
Y ⊗l ⊗ uk−l

]
, for k = 0, . . . ,K and l = 0, . . . , k. Since the number of entries of

a tensor is exponential in its order, we have introduced a low rank format (the TT-
format) to store the tensors and make computations. We have developed an algorithm
in TT-format that computes the K-th order approximation E

[
TKu

]
.

We have studied the storage requirements of our algorithm. The parameter we
have taken into account is the TT-rank. We have performed some numerical tests to
understand how the TT-rank of the input correlations CTT

k (k = 0, . . . ,K) depends on
the precision of the TT computations. Moreover, we have shown the evolution of the
TT-rank along the recursion, i.e. along each diagonal of Table 1.

We have run our code both in the case of an unconditioned and conditioned
Gaussian random field Y (ω, x). The more observations are available, the less the
variability of the field is, so that the use of perturbation methods is favorable.

We have numerically studied how the error
∥
∥E [u]− E

[
TKu

]∥
∥
L2(D)

depends on

both the truncation of the Taylor series, the tolerance imposed in the TT computations
and the standard deviation σ of the Gaussian random field Y .

When a squared exponential covariance function is considered, we have compared
our approach with the collocation method. On the other hand, when the collocation
method in unfeasible (e.g. if an exponential covariance function is considered), our
algorithm still provides a valid solution, which we have qualitatively compared with
a standard Monte Carlo solution.

In this paper only one-dimensional computations have been performed. Neverthe-
less, we emphasize that spatial discretizations up to Nh = 10000 elements are consid-
ered. Hence, we believe that our algorithm can also easily deal with two-dimensional
domains.
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