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MULTI INDEX MONTE CARLO: WHEN SPARSITY

MEETS SAMPLING

ABDUL–LATEEF HAJI–ALI, FABIO NOBILE, AND RAÚL TEMPONE

Abstract. We propose and analyze a novel Multi Index Monte Carlo
(MIMC) method for weak approximation of stochastic models that are
described in terms of differential equations either driven by random
measures or with random coefficients. The MIMC method is both a
stochastic version of the combination technique introduced by Zenger,
Griebel and collaborators and an extension of the Multilevel Monte
Carlo (MLMC) method first described by Heinrich and Giles. Inspired
by Giles’s seminal work, instead of using first-order differences as in
MLMC, we use in MIMC high-order mixed differences to reduce the
variance of the hierarchical differences dramatically. This in turn yields
new and improved complexity results, which are natural generalizations
of Giles’s MLMC analysis, and which increase the domain of problem
parameters for which we achieve the optimal convergence, O(TOL−2).

Moreover, we motivate the systematic construction of optimal sets of
indices for MIMC based on properly defined profits that in turn depend
on the average cost per sample and the corresponding weak error and
variance. Under standard assumptions on the convergence rates of the
weak error, variance and work per sample, the optimal index set turns
out to be of Total Degree (TD) type. In some cases, using optimal index
sets, MIMC achieves a better rate for the computational complexity than
does the corresponding rate when using Full Tensor sets. We also show
the asymptotic normality of the statistical error in the resulting MIMC
estimator and justify in this way our error estimate, which allows both
the required accuracy and the confidence in our computational results
to be prescribed. Finally, we include numerical experiments involving
a partial differential equation posed in three spatial dimensions and
with random coefficients to substantiate the analysis and illustrate the
corresponding computational savings of MIMC.
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2 Multi Index Monte Carlo

1. Introduction

The main concept of Multilevel Monte Carlo (MLMC) Sampling was first
introduced for applications in parametric integration by Heinrich [20, 21].
Later, for weak approximation of stochastic differential equations (SDEs) in
mathematical finance, Kebaier [24] used a two-level Monte Carlo technique,
effectively using a coarse numerical approximation as a control variate to
a fine one, thus reducing the variance and the required number of samples
on the fine grid. In a seminal work, Giles [12] extended this idea to mul-
tiple levels and gave it its familiar name: Multilevel Monte Carlo. Giles
introduced a hierarchy of discretizations with geometrically decreasing grid
sizes and optimized the number of samples on each level of the hierarchy.
This resulted in a reduction in the computational burden from O

(
TOL−3

)
of the standard Euler-Maruyama Monte Carlo method with accuracy TOL

to O
(

log (TOL)2TOL−2
)

, assuming that the work to generate a single re-

alization on the finest level is O
(
TOL−1

)
. More recently, [14] reduced this

computational complexity to O
(
TOL−2

)
by using antithetic control variates

with MLMC in multi-dimensional SDEs with smooth and piecewise smooth
payoffs. The MLMC method has also been extended and applied in a wide
variety of applications, including jump diffusions [33] and Partial Differen-
tial Equations (PDEs) with random coefficients [4, 8, 9, 13, 31, 10, 17]. The
goal in these applications is to compute a scalar quantity of interest that is a
functional of the solution of a PDE with random coefficients. In [31, Theo-
rem 2.5], it has been proved that there is an optimal complexity rate similar
to the previously mentioned one, but that depends on the dimensionality of
the problem, the relation between the rate of variance convergence of the
discretization method of the PDE and the work complexity associated with
generating a single sample of the quantity of interest. In fact, in certain
cases, the computational complexity can achieve the optimal rate, namely
O
(
TOL−2

)
.

More recently, sparse approximation techniques [6] have been coupled
with MLMC in other works. In [26], the MLMC sampler was combined
with a sparse tensor approximation method to estimate high-order moments
of the finite volume approximate solution of a hyperbolic conservation law
that has random initial data. Moreover, in [18, 32], new techniques were
developed using sparse-grid stochastic collocation methods instead of Monte
Carlo sampling in a multilevel setting that resembles that of MLMC.

In the present work, we follow a different approach by introducing a sto-
chastic version of a sparse combination technique [34, 16, 7, 5, 6, 19] in
the construction of a new Monte Carlo sampler, which we refer to as Multi
Index Monte Carlo (MIMC). MIMC can be seen as a generalization of the
standard Multilevel Monte Carlo Sampling method. This generalization de-
parts from the notion of one-dimensional levels and first-order differences
and instead uses multidimensional levels and high-order mixed differences
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to reduce the variance of the resulting estimator and its corresponding com-
putational work drastically. The goal of MIMC is to achieve the optimal
complexity of the Monte Carlo sampler, O

(
TOL−2

)
, in a larger class of

problems and to provide better convergence rates in other classes. The main
results of our work are summarized in Theorems 2.1 and 2.2. These theo-
rems contain the optimal work estimates of MIMC when using Full Tensor
index sets and Total Degree index sets, respectively. We show that the rate
of computational complexity of MIMC when using Total Degree index sets
is, in some cases, better than the corresponding rate when using Full Tensor
sets. In fact, we show that in some cases, the rate when using optimal index
sets is independent of the dimensionality of the underlying problem.

In the next section, we start by motivating the class of problems we
consider and we introduce some notation that is used throughout this work.
Section 2 introduces MIMC and lists the necessary assumptions. Section 2.1
presents the computational complexity of a full-tensor index set, and Sec-
tion 2.2 motivates an optimal total degree index set and shows the compu-
tational complexity of MIMC when using this index set. Next, Section 3
presents the numerical experiments to substantiate the derived results. Sec-
tion 4 summarizes the work in the conclusions and outlines future work.
Finally, Appendix A contains a proof of the asymptotic normality of the
MIMC estimator.

1.1. Problem Setting. Let S = Ψ(u) denote a real-valued functional ap-
plied to the unique solution, u, of an underlying stochastic model. We
assume that Ψ is a smooth functional with respect to u. Here, smoothness
is characterized by S satisfying Assumptions 1-2 as presented in the next
section. Our goal is to approximate the expected value of S, E[S], to a given
accuracy TOL and a given confidence level. We assume that individual out-
comes of the underlying solution, u, and the evaluation of the functional,
S, are approximated by a discretization-based numerical scheme character-
ized by a multidimensional discretization parameter, h. For instance, for
a multidimensional PDE, the vector h could represent the space discretiza-
tion parameter in each direction separately, while for a time dependent PDE,
the vector h could collect the space and time discretization parameters. The
value of the vector, h, will govern the weak error and variance of the ap-
proximation of S as we will see below. To motivate this setting, we now give
one example and identify the corresponding numerical discretizations, the
discretization parameter, h, and the corresponding rates of approximation.

Example 1. Let (Ω,F , P ) be a complete probability space and D =
∏d
i=1[0, Di]

for Di ∈ R+ be a hypercube domain in Rd. The solution u : D×Ω→ R here
solves almost surely (a.s.) the following equation:

(1)
−∇ · (a(x;ω)∇u(x;ω)) = f(x;ω) for x ∈ D,

u(x;ω) = 0 for x ∈ ∂D.
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This example is common in engineering applications like heat conduction and
groundwater flow. Here, the value of the diffusion coefficient and the forcing
are represented by random fields, yielding a random solution and a functional
to be approximated in the mean. Provided with the standard assumptions on
coercivity and continuity related to the random coefficients a and f , the
solution to (1) exists and is unique. Actually, u depends continuously on
the coefficients of (1). A standard approach to approximate the solution
to (1) is to use Finite Elements on Cartesian meshes. In such a setting,
the vector parameter h = (h1, . . . , hd) > 0 contains the mesh sizes in the
different canonical directions and the corresponding approximate solution is
denoted by uh(ω). Let r : D → R be a smooth function and let Ψ(u) =∫
D u(x)r(x)dx be a linear functional. Our goal here then is to approximate

E
[∫
D u(x)r(x)dx

]
.

To particularize our set of discretizations, let us now introduce integer
multi indices, α ∈ Nd. Throughout this work, we use discretization vectors
of the form
(2)
hi = hi,0β

−αi
i with given constants h0,i > 0 and βi > 1 for i = 1, . . . , d.

Correspondingly, we index our discrete approximations to S by α, denoting
them as {Sα}α∈Nd . In addition, we make the standard assumption that
E[Sα] → E[S] as min1≤i≤d αi → ∞. Finally, for later use, we define |α| =∑d

i=1 αi.

2. Multi Index Monte Carlo

Here we introduce the MIMC discretization. To this end, we begin by
defining a first-order difference operator along direction 1 ≤ i ≤ d, denoted
by ∆i, as follows:

∆iSα =

{
Sα − Sα−ei , if αi > 0,

Sα if αi = 0,

with ei being the canonical vectors in Rd, i.e. (ei)j = 1 if j = i and zero
otherwise. For later use, we also define recursively the first-order mixed
difference operator, ∆ = ⊗di=1∆i = ∆1(⊗di=2∆i) = ∆d(⊗d−1

i=1 ∆i).

Example (d = 2). In this case, letting α = (α1, α2), we have

∆S(α1,α2) = ∆2(∆1S(α1,α2))

= ∆2 (Sα1,α2 − Sα1−1,α2)

= (Sα1,α2 − Sα1−1,α2)− (Sα1,α2−1 − Sα1−1,α2−1) .

Notice that in general, ∆Sα requires 2d evaluations of S at different dis-
cretization parameters, the largest work of which corresponds precisely to the
index appearing in ∆Sα, namely α = (α1, α2).
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Let ∆Sα be an unbiased estimator of ∆Sα. In the trivial case, ∆Sα =
∆Sα for all α ∈ Nd. However, ∆Sα can be taken to be more complicated
such that it has a smaller variance than that of ∆Sα, for example by con-
structing an antithetic estimator similar to [14]. In any case, the MIMC
estimator can be written as:

A =
∑
α∈I

1

Mα

Mα∑
m=1

∆Sα(ωα,m),(3)

where I⊂ Nd is an index set and Mα is an integer number of samples for
each α ∈ I. Here, ωα,m are independent, identically distributed (i.i.d.)
realizations of the underlying random inputs, ω. Denote Var[∆Sα] = Vα
and |E[∆Sα]| = |E[∆Sα]| = Eα. Moreover, denote by Wα the average work
required to compute a realization of ∆Sα. Then, the expected value of the
total work corresponding to the estimator, A, is

(4) Total work = W =
∑
α∈I

WαMα.

Moreover, by independence, the total variance of the estimator is

(5) Var[A] =
∑
α∈I

VαMα
−1.

The objective of the MIMC estimator, A, is to achieve a certain accuracy
constraint of the form

(6) P (|A − E[S]| ≤ TOL) ≥ 1− ε
for a given accuracy TOL and a given confidence level determined by 0 <
ε � 1. Here, we further split the accuracy budget between the bias and
statistical errors, imposing the following, more restrictive, two constraints
instead:

Bias constraint: |E[A− S]| ≤ (1− θ)TOL,(7)

Statistical constraint: P (|A − E[A]| ≤ θTOL) ≥ 1− ε.(8)

Throughout this work, the value of the splitting parameter, θ ∈ (0, 1), is
assumed to be given and remains fixed; satisfying (7) and (8) thus implies
that (6) is satisfied. We refer to [10, 17] for an analysis of the role of θ
on standard MLMC simulations. Moreover, motivated by the asymptotic
normality of the estimator, A, shown in Appendix A, we replace (8) by

(9) Var[A] ≤
(
θTOL

Cε

)2

.

Here, 0 < Cε is such that Φ(Cε) = 1− ε
2 , where Φ is the cumulative density

function of a standard normal random variable. Using the following notation

(10) TOLS =
θTOL

Cε
,
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and optimizing the total work (4) with respect to Mα ∈ R+ subject to the
statistical constraint (9) yields

(11) Mα = TOL−2
S

(∑
τ∈I

√
VτWτ

)√
Vα
Wα

, for all α ∈ I.

Thus, with this choice of Mα, the total work becomes

(12) W = TOL−2
S

(∑
α∈I

√
VαWα

)2

.

Of course, in numerical computations, we usually have to take the integer
ceiling of Mα in expression (11) or perform some kind of integer optimization
to find Mα ∈ N for all α, cf. [17]. In the current work, we assume the
following

• Assumption 1: The absolute value of the expected value of ∆Sα,
denoted by Eα, satisfies

Eα = |E[∆Sα]| ≤ QW
d∏
i=1

β−αiwii(13)

for constants QW and wi > 0 for i = 1 . . . d.
• Assumption 2: The variance of ∆Sα, denoted by Vα, satisfies

Vα = Var[∆Sα] ≤ QS
d∏
i=1

β−αisii ,(14)

for constants QS and 0 < si ≤ 2wi for i = 1 . . . d.
• Assumption 3: The average work required to compute a realization

of ∆Sα, denoted by Wα, satisfies

Wα ≤ Cwork

d∏
i=1

βαiγii ,(15)

for constants Cwork and γi > 0 for i = 1 . . . d.

Remark 2.1 (On Assumptions 1, 2 and 3). With sufficient coefficient reg-
ularity, Assumptions 1 and 2 hold for the random linear elliptic PDE in
Example 1 when discretized by piecewise multilinear continuous finite el-
ements. Indeed, there is extensive work on this problem based on mixed
regularity analysis, by several authors who have developed combination tech-
niques through the years. Here, we refer to the works [29, 30, 15] and the
references therein. In Example 1, it is enough to apply such estimates point
wise in ω and then to observe that they can be integrated in Ω, yielding the
desired moment estimates in (13) and (14). In Section 3.1, the numerical
example has isotropic behavior over d = 3 dimensions, the work exponent
appearing in Assumption 3 satisfies γi = γ ≈ 1.5, and the error exponents
are wi = si/2 = 2 for i = 1, . . . , 3, respectively. These exponents have also
been confirmed by numerical experiments cf. Figures 1, 5 and 6.
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Under Assumptions 2-3, we estimate the total work, W , by

(16) W (I) ≤ TOL−2
S QSCwork

(∑
α∈I

d∏
i=1

exp

(
αi log(βi)(γi − si)

2

))2

.

We define g ∈ Rd with entries gi = log(βi)(γi−si)
2 , for i ∈ {1, 2, . . . , d} and

estimate

(17)
TOLS

√
W (I)√

QSCwork
≤
∑
α∈I

exp (g ·α) = W̃ (I),

instead of estimating the total work W (I). We also minimize W̃ (I) instead
of minimizing W (I). One of our goals in this work is to motivate a choice

for the set of multi indices, I = I(TOL), to minimize W̃ (I) (or equivalently
the total work W (I)) subject to the constraint

(18) Bias(I) =

∣∣∣∣∣∑
α/∈I

E[∆Sα]

∣∣∣∣∣ ≤∑
α/∈I

Eα ≤ (1− θ)TOL.

Or equivalently, due to Assumption 1, we aim to satisfy the following:

(19) B̃(I) =
∑
α/∈I

exp(−w ·α) ≤ (1− θ)TOL

QW
,

where we define w ∈ Rd with entries log(βi)wi, for 1 ≤ i ≤ d. Moreover, we
introduce the following notation

(20) TOLB =
(1− θ)TOL

QW
.

For later use, we introduce the notation I = {1, 2, . . . , d} and we define
the following sets of dimension indices,

(21)

I1 = {i ∈ I : si > γi},
I2 = {i ∈ I : si = γi},
I3 = {i ∈ I : si < γi},
Î = I2 ∪ I3 = {i ∈ I : si ≤ γi}

to distinguish between dimensions based on the speed of variance conver-
gence in a dimension compared with the rate of the computational complex-
ity in that dimension. We define d̂ to be the size of Î. We also define di to
be the size of Ii for i = 1, 2, 3 and thus it is clear that d1 + d2 + d3 = d and
d̂ = d2 + d3.

2.1. Full Tensor Set. This section focuses on the special case of a full
tensor set. Namely, for a given vector L = (L1, L2, . . . , Ld) we consider
the set I(L) = {α ∈ Nd : αi ≤ Li for all i ∈ I}. Note that in this
case, E[A] = SL, since the sum telescopes. Under Assumptions 1-3, the
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following theorem outlines the total work of the MIMC estimator when using
a full tensor index set.

Theorem 2.1 (Full Tensor Work Complexity). Under Assumptions 1-3,
for I(L) = {α ∈ Nd : αi ≤ Li for i ∈ I} where Li ∈ R+ ∪ {0} for all i ∈ I,
the following choice of (Li)

d
i=1 satisfies the constraint (7)

(22) Li ≥
log(TOL−1

B ) + log(CB)

log(βi)wi
for all i ∈ I.

where CB = d

 d∏
j=1

(
1− β−wjj

)−1

.

Moreover, taking Li as the lower bound of (22), the optimal total work,
W (I), of the MIMC estimator, A, subject to constraint (9) satisfies

(23) lim sup
TOL↓0

W (I)

TOL−2
(∏d

i=1 ri

)2 ≤
C2
εQSCwork

θ2

d∏
i=1

K−2
i <∞,

where ri =


1 if si > γi,

log(TOL−1) if si = γi,

TOL
−(γi−si)

2wi if si < γi,

(24a)

and Ki =


1− β−

si−γi
2

i if si > γi,

log(βi)wi if si = γi,(
1− β−

γi−si
2

i

)(
CBQW
(1−θ)

)−(γi−si)
2wi if si < γi.

(24b)

Proof. First, for convenience, we introduce the following notation:

si = log(βi)si, wi = log(βi)wi, γi = log(βi)γi.(25)

Then, by Assumption 1, starting from (19), we have

B̃(I(L)) =
∑

α/∈I(L)

d∏
i=1

exp(−wiαi)

≤
d∑
i=1

∏
j 6=i

exp(wj)

exp(wj)− 1

 ∑
αi>Li

exp(−wiαi)

≤

 d∏
j=1

exp(wj)

exp(wj)− 1

 d∑
i=1

exp(−wiLi).

Recall (20). Then making each of the terms in the previous sum less than
TOLB/d to satisfy (19) yields (22). On the other hand, using definition



Multi Index Monte Carlo 9

(17), we have

(26)

W̃ (I(L))=
∑
α∈I

d∏
i=1

exp(giαi) ≤
d∏
i=1

bLic∑
αi=0

exp (giαi)

≤
∏
i∈I1

1

1− exp(gi)

∏
i∈I2

(Li + 1)
∏
i∈I3

exp(giLi)− exp(−gi)
1− exp(−gi)

.

The proof finishes by combining (22) with (26) and (17) and taking the limit
of the resulting expression as TOL ↓ 0. �

Remark 2.2 (Isotropic Full Tensor). Of particular interest is the case γi =
γ, si = s, wi = w and βi = β for all i ∈ I and for positive constants γ, s, w
and β. In this case, we have

Work of MIMC =


O
(
TOL−2

)
, s > γ,

O
(

TOL−2
(
log(TOL−1)

)2d)
, s = γ,

O
(

TOL
−
(

2+
d(γ−s)
w

))
, s < γ,

(27)

asymptotically as TOL → 0. When comparing (27) to the asymptotic work
of MLMC [8], we have

Work of MLMC =


O
(
TOL−2

)
, s > dγ,

O
(

TOL−2
(
log(TOL−1)

)2)
, s = dγ,

O
(

TOL
−
(

2+
(dγ−s)
w

))
, s < dγ.

(28)

We notice that the condition in (27) for the optimal convergence rate O
(
TOL−2

)
does not depend on the dimensionality of the underlying problem. Moreover,
for the case where the variance convergence is slower than the work in-
crease rate, the work complexity of the MIMC estimator is better than that
of MLMC whenever we work with multidimensional problems, i.e., d > 1.

It should be noted, however, that the MIMC results require mixed regu-
larity (in the sense of Assumptions 1,2) of certain order. On the other
hand, the MLMC results require only ordinary regularity of the same order.

Remark 2.3 (Lower mixed regularity). In some cases, we might have
enough mixed regularity in the sense of Assumptions 1-2 along some di-
rections but not along others. For example, assume that, out of d directions,
the first d̃ directions do not have mixed regularity among each other. Our
MIMC estimator can still be applied by considering all first d̃ directions as a
single direction. This is done by using the same discretization parameter, α̃,
for all d̃ directions, then finding the new rates, γ̃, s̃ and w̃, of the resulting
direction. This can be thought of as combining MLMC in the first d̃ direc-
tions with MIMC in the rest of the directions and in the case d = d̃, i.e.,
the problem has no mixed regularity, MIMC reduces to standard MLMC. All
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results derived in the current work can still be applied to this new setting,
which conceptually corresponds to d− d̃+ 1 directions in the MIMC results
presented here. In particular, if we assume that the first d̃ directions are
isotropic with the same variance convergence rate, s, and work rate, γ, then
the results in Theorem 2.1 deteriorate in the sense that for the grouped di-
rection, the conditions relating s and γ in (24) are replaced by the more

stringent conditions relating s and d̃γ.

2.2. Optimal Sets. We discuss in this section how to find optimal index
sets, I. The objective is to solve an optimization problem of the form

min
I⊂Nd

W̃ (I) such that B̃(I) ≤ TOLB,

where W̃ and B̃ were defined in (17) and (19) in terms of I, respectively.
Similar to [28], the problem of constructing an optimal index set, I, can

be recast into a knapsack problem where a “profit” indicator is assigned to
each index and only the most profitable indices are added to I. Let us define
the profit, Pα = εα

$α
, of a multi index, α, in terms of its error contribution,

denoted here by εα, and its the work contribution, denoted here by $α.
Moreover, define the total error associated with an index set I as

E(I) =
∑
α/∈I

εα

and the corresponding total work as

W(I) =
∑
α∈I

$α.

Intuitively, we may think of E(I) as a sharp upper bound for B̃(I), and

think of W(I) as a correspondingly sharp lower bound for W̃ (I). Then we
can show the following optimality result with respect to E(I) and W(I),
namely:

Lemma 2.1 (Optimal profit sets). The set I(ν) = {α ∈ Nd : Pα ≥ ν}
is optimal in the sense that any other set, Ĩ, with smaller work, W(Ĩ) <

W(I(ν)), leads to a larger error, E(Ĩ) > E(I(ν)).

Proof. We have that for any α ∈ I(ν) and α̂ /∈ I(ν)

Pα ≥ ν and Pα̂ < ν.

Now, take an arbitrary index set, Ĩ, such that W(Ĩ) <W(I(ν)) and set

J1 = I(ν) ∩ Ĩc, J2 = I(ν) ∩ Ĩ,
J3 = I(ν)c ∩ Ĩ, J4 = I(ν)c ∪ Ĩc.

where I(ν)c is the complement of the set I(ν). Then,

W(I(ν))−W(Ĩ) =
∑

α∈J1∪J2

$α −
∑

α∈J2∪J3

$α =
∑
α∈J1

$α −
∑
α∈J3

$α > 0,
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and

E(I(ν))− E(Ĩ) =
∑

α∈J3∪J4

εα −
∑

α∈J1∪J4

εα =
∑
α∈J3

Pα$α −
∑
α∈J1

Pα$α.

Then,

E(I(ν))− E(Ĩ) ≤ ν

∑
α∈J3

$α −
∑
α∈J1

$α

 < 0

�

For MIMC, under Assumptions 1-3, εα can be taken to be the bias
contribution of the term ∆Sα, i.e., εα = Eα. Additionally, the work con-
tribution can also be taken as $α =

√
VαWα. Using the estimates in As-

sumptions 1-3 as sharp approximations to their counterparts, the profits
in our problem are approximated correspondingly by

Pα ≈ CP
d∏
i=1

e−αi log(βi)(wi+
γi−si

2
),

for some constant CP . Therefore, ordering the profits according to level sets
as in Lemma 2.1, yields optimal sets of multi indices that are of anisotropic
Total Degree (TD) type. Let us introduce strictly positive normalized
weights defined by

(29)

δi =
log(βi)(wi + γi−si

2 )

Cδ
, for all i ∈ I,

where Cδ =
d∑
j=1

log(βj)(wj +
γj − sj

2
).

Observe that 0 < δi ≤ 1, since si ≤ 2wi and γi > 0. Then, for L = 0, 1, . . .,
introduce a family of TD index sets:

(30) Iδ(L) = {α ∈ Nd : α · δ =

d∑
i=1

δiαi ≤ L}.

In our numerical example, presented in Section 3, Figure 2 suggests that the
TD set is indeed the optimal index set in this case.

The current section continues by first considering a general vector of
weights, δ, and finding a value of L that satisfies the bias constraint in
Lemma 2.2, then deriving the resulting computational complexity in Lemma 2.3.
Next, we present our main result in Theorem 2.2 when using the optimal
weights of (29). Finally, we conclude this section with a few remarks about
special cases.

Lemma 2.2 (L of MIMC with general δ). Consider the multi-index sets
Iδ(L) = {α ∈ Nd : δ · α ≤ L} with given weights δ ∈ Rd+ such that |δ| = 1
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and L ∈ R+ ∪ {0}. Let

η = min
i∈I

δ−1
i wi, and η = min

i∈I
δ−1
i wi>η

δ−1
i wi.

Moreover, let l1 = #{i ∈ I : δ−1
i wi = η} and l2 = d− l1. If Assumption 1

holds, then, to satisfy the following bias inequality,

(31) lim
TOL↓0

B̃(Iδ(L))

TOLB
≤ 1,

it is enough to take L as follows:

(32) L ≥ 1

η

(
log(TOL−1

B ) + (l1 − 1) log

(
1

η
log(TOL−1

B )

)
+ log(CB)

)

where CB = exp(|w|)
(

d∏
i=1

δ−1
i

)[
η−l1η−l2

l1−1∑
j=0

ηj

j!

+
η−l2

(l1 − 1)!

(
2

η − η

)l2−1∑
j=0

exp(−j)
(

2j

η − η

)j ηj
j!

]

Proof. In this proof, we use the identity of Lemma B.1 and the following
bound that holds for any x ∈ R+, b > 0 and j ∈ N:

(33) xj ≤
(
j

b

)j
exp(−j) exp(bx).

For convenience, we reorder the indices so that

wi
δi

= η for i = 1, . . . , l1,

wi
δi
≥ η for i = l1 + 1, . . . , d.
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We have

B̃(Iδ(L)) =
∑

{α∈Nd :α·δ>L}

exp(−w ·α)

≤
∫
{x∈Rd+ : x·δ≥L}

exp(−w · (x− 1)) dx

= exp(|w|)
(

d∏
i=1

δ−1
i

)∫
{x∈Rd+ : |x|≥L}

exp

(
−

d∑
i=1

δ−1
i xiwi

)
dx

≤ exp(|w|)
(

d∏
i=1

δ−1
i

)∫
{x∈Rd+ : |x|≥L}

exp

−η l1∑
i=1

xi − η
d∑

i=l1+1

xi

 dx

= exp(|w|)
(

d∏
i=1

δ−1
i

)[∫
x∈Rd+

exp

−η l1∑
i=1

xi − η
d∑

i=l1+1

xi

−
∫
{x∈Rd+ : |x|≤L}

exp

−η l1∑
i=1

xi − η
d∑

i=l1+1

xi

 dx

]
,

where ∫
x∈Rd+

exp

−η l1∑
i=1

xi − η
d∑

i=l1+1

xi

 = η−l1η−l2 .

Now consider∫
{x∈Rd+ : |x|≤L}

exp

−η l1∑
i=1

xi − η
d∑

i=l1+1

xi

 dx

=

∫
{x2∈R

l2
+ : |x2|≤L}

exp
(
−η|x2|

)
(∫
{x1∈R

l1
+ : |x1|≤L−|x2|}

exp (−η|x1|) dx1

)
dx2

=
1

(l1 − 1)!

∫
{x2∈R

l2
+ : |x2|≤L}

exp
(
−η|x2|

)(∫ L−|x2|

0
exp(−ηt)tl1−1dt

)
dx2

=
1

(l1 − 1)!

∫ L

0
exp(−ηt)tl1−1

(∫
{x2∈R

l2
+ : |x2|≤L−t}

exp
(
−η|x2|

)
dx2

)
dt

=
1

(l1 − 1)!(l2 − 1)!

∫ L

0
exp(−ηt)tl1−1

(∫ L−t

0
exp(−ηz)zl2−1 dz

)
dt

=
η−l2

(l1 − 1)!

∫ L

0
exp(−ηt)tl1−1

1− exp(−η(L− t))
l2−1∑
j=0

(η(L− t))j
j!

dt
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= η−l1η−l2 − η−l1η−l2
exp(−ηL)

l1−1∑
j=0

(ηL)j

j!


−

η−l2

(l1 − 1)!

∫ L

0
exp(−ηt)tl1−1

exp(−η(L− t))
l2−1∑
j=0

(η(L− t))j
j!

 .dt

Here, we can bound

η−l1η−l2

exp(−ηL)

l1−1∑
j=0

(ηL)j

j!

 ≤ η−l1η−l2 exp(−ηL)Ll1−1
l1−1∑
j=0

ηj

j!
.

Recall that η > η and bound, using (33) for (L− t)j with b =
η−η

2 ,

η−l2

(l1 − 1)!

∫ L

0
exp(−ηt)tl1−1

exp(−η(L− t))
l2−1∑
j=0

(η(L− t))j
j!

 dt

≤
η−l2

(l1 − 1)!

l2−1∑
j=0

exp(−j)
(

2j

η − η

)j ηj
j!


exp

(
−L

(
η + η

2

))∫ L

0
exp

(
t
η − η

2

)
tl1−1dt

≤
η−l2

(l1 − 1)!

(
2

η − η

)l2−1∑
j=0

exp(−j)
(

2j

η − η

)j ηj
j!

 exp (−ηL)Ll1−1.

Substituting everything back, we can bound the bias as follows

B̃(Iδ(L)) ≤ CB exp (−ηL)Ll1−1.

Choosing L as in (32) yields

lim
TOL↓0

B̃(Iδ)
TOLB

≤ 1 + lim
TOL↓0

(l1 − 1) log
(

1
η log(TOL−1

B )
)

+ log(CB)

log
(
TOL−1

B

)
l1−1

= 1,

which finishes the proof. �

Lemma 2.3 (Work estimate of MIMC with general δ). Let the approxima-
tion set be Iδ(L) = {α ∈ Nd : δ · α ≤ L} for a given δ ∈ Rd+ with |δ| = 1
and take L as the lower bound in (32). Under Assumptions 2-3, denoting

χ = max
i∈I

log(βi)(γi − si)
2δi

= max
i∈I

gi
δi
,(34)

the total work, W (Iδ), of the MIMC estimator, A, subject to constraint (9)
satisfies the following cases:
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Case A) If χ ≤ 0, then

(35) lim sup
TOL↓0

W (Iδ)
TOL−2

(
log
(
TOL−1

))2d2 ≤ C2
εQSCwork

θ2C1
2C2

2 <∞,

(36)

where C1 =
∏
i∈I1

(
1− β−

si−γi
2

i

)

and C2 = ηd2d2!

∏
j∈I2

δj

 .

Case B) If χ > 0, let

χ = max
i∈Î

0≤ log(βi)(γi−si)
2δi

<χ

log(βi)(γi − si)
2δi

.

Moreover, denote n1 = #{i ∈ I : δ−1
i gi = χ}, n2 = d2 +d3−n1, and

j = 2(n1−1)χ+2(l1−1)η
η . Then, we have

(37)

lim sup
TOL↓0

W (Iδ)
TOL

−2−2χ
η
(
log
(
TOL−1

))j ≤ C2
εQSCworkC3

2

ηjC1
2θ2

(
CBQW
1− θ

)2χ
η

<∞,

where

(38) C3 =

∏
i∈Î δ

−1
i

(n1 − 1)!(n2 − 1)!
exp(1− n2)

(
2(n2 − 1)

χ− χ

)n2−1 4 exp (χ)

χ2 − χ2
.

Proof. Define δ̃1 = (δi)i∈I1 and g̃1 = (gi)i∈I1 to be the entries of δ and g

corresponding to I1, respectively. Similarly define δ̂ and ĝ to be the entries
of δ and g corresponding to Î, respectively. Then, starting from (17), we
have

(39)

W̃ (Iδ(L)) =
∑
α∈Iδ

exp(g ·α)

≤

 ∑
α∈Nd1 ,α·δ̃1≤L

exp(g̃1 ·α)


︸ ︷︷ ︸

:=P1

 ∑
α∈Nd̂,α·δ̂≤L

exp(ĝ ·α)


︸ ︷︷ ︸

:=P̂

.

Now, for the term P1, since gj < 0, ∀j ∈ I1, we have

(40) P1 ≤
1∏

j∈I1(1− egj ) .

For the term P̂ , we distinguish between two cases:
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Case A) If χ ≤ 0, then maxi gi ≤ 0 and I3 = ∅ and Î = I2. Then, since gj = 0
for all j ∈ I2, we have

P̂ =
∑

{α∈Nd2 : δ̃2·α≤L}

1

≤
∫
{x∈Rd2+ : x·δ̃2≤L+|δ̃2|}

1 dx

≤ 1∏
j∈I2 δj

∫
{y∈Rd+ : |y|≤L+|δ̃2|}

1 dy

=
1∏

j∈I2 δj

(L+ |δ̃2|)d2
d2!

.

The proof finishes for this case by combining the previous inequality
with (39), (40), (17) and (32) and taking the limit of the resulting
expression as TOL ↓ 0.

Case B) If χ > 0, then using the identity of Lemma B.1 and the bound (33),
we have

P̂ ≤
∫
{x∈Rd̂+ : x·δ̂≤L+|δ̂|}

exp(ĝ · x)dx

≤

∏
i∈Î

δ−1
i

∫
{x2∈R

n2
+ : |x2|≤L+|δ̂|}

exp(χ|x2|)(∫
{x1∈R

n1
+ : |x1|≤L+|δ̂|−|x2|}

exp(χ|x1|)dx1

)
dx2

=

∏
i∈Î δ

−1
i

(n1 − 1)!

∫
{x2∈R

n2
+ : |x2|≤L+|δ̂|}

exp(χ|x2|)(∫ L+|δ̂|−|x2|

0
exp(χt)tn1−1dt

)
dx2

=

∏
i∈Î δ

−1
i

(n1 − 1)!

∫ L+|δ̂|

0
exp(χt)tn1−1(∫

{x2∈R
n2
+ : |x2|≤L+|δ̂|−t}

exp(χ|x2|)dx2

)
dt

=

∏
i∈Î δ

−1
i

(n1 − 1)!(n2 − 1)!

∫ L+|δ̂|

0
exp(χt)tn1−1

(∫ L+|δ̂|−t

0
exp(χz)zn2−1dz

)
dt

≤ C

∫ L+|δ̂|

0
exp(χt)tn1−1

(∫ L+|δ̂|−t

0
exp

(
z
χ+ χ

2

)
dz

)
dt,
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where C =

∏
i∈Î δ

−1
i

(n1 − 1)!(n2 − 1)!
exp(1− n2)

(
2(n2 − 1)

χ− χ

)n2−1

,

continuing

P̂ ≤ C exp

(
χ+ χ

2

(
L+ |δ̂|

)) 2

χ+ χ

∫ L+|δ̂|

0
tn1−1 exp

(
t
χ− χ

2

)
dt

≤ C exp

(
χ+ χ

2

(
L+ |δ̂|

)) 2
(
L+ |δ̂|

)n1−1

χ+ χ

∫ L+|δ̂|

0
exp

(
t
χ− χ

2

)
dt

≤
2C exp

(
χ|δ̂|

)
χ− χ exp (χL)

2
(
L+ |δ̂|

)n1−1

χ+ χ

≤ 4C exp (χ)

χ2 − χ2
exp (χL) (L+ 1)n1−1 .

The proof finishes for this case by combining the previous inequality
with (39), (40), (17) and (32) and taking the limit of the resulting
expression as TOL ↓ 0.

�

Theorem 2.2 (Work estimate with optimal weights). Let the approximation
set be Iδ(L) = {α ∈ Nd : δ · α ≤ L} for δ ∈ Rd+ given by (29) and
take L as the lower bound in (32) to satisfy the bias constraint (18) under
Assumption 1. Then, under Assumptions 2-3 and using the following
notation:

(41) ζ = max
i∈I

γi − si
2wi

,

the total work, W (Iδ), of the MIMC estimator, A, subject to constraint (9),
satisfies the following cases:

Case A) If ζ ≤ 0, then

(42) lim sup
TOL↓0

W (Iδ)
TOL−2

(
log
(
TOL−1

))2d2 ≤ C2
εQSCwork

θ2C1
2C2

2 <∞,

where C1 and C2 are from (36).
Case B) if ζ > 0, then let k1 = #{i ∈ I : γi−si2wi

= ζ}, and k = 2(k1−1)(ζ+1).
Then, we have

(43)

lim sup
TOL↓0

W (Iδ)
TOL−2−2ζ

(
log
(
TOL−1

))k ≤ C2
εQSCworkC3

2

ηkC1
2θ2

(
QWCB

1− θ

)2ζ

<∞,

where C3 is from (38).
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Proof. We prove this theorem by using Lemma 2.3 and proving that using
δ in (29) yields k1 = l1 = n1 and

ζ =
χ

η
=

maxi∈I
(
giδ
−1
i

)
mini∈I

(
wiδ
−1
i

) .
Recall that δj =

wj+gj
Cδ

. Then

l1 = #{i ∈ I : δ−1
i wi = min

j∈I
δ−1
j wj}

= #{i ∈ I :
wi

wi + gi
= min

j∈I

wj
wj + gj

}

= #{i ∈ I : 1 +
gi
wi

= 1 + max
j∈I

gj
wj
} = k1

n1 = #{i ∈ I : δ−1
i gi = max

j∈I
δ−1
j gj}

= #{i ∈ I :
gi

wi + gi
= max

j∈I

gj
wj + gj

}

= #{i ∈ I : 1 +
wi
gi

= 1 + min
j∈I

wj
gj
} = k1.

Next, observe that, on the one hand, by setting σj = gj/wj , we have

1

η
= max

j∈I

δj
wj

=
1

Cδ
max
j∈I

(
1 +

gj
wj

)
=

1

Cδ

(
1 + max

j∈I
σj

)
and, on the other hand, we have

χ = max
j∈I

gj
δj

= Cδ max
j∈I

σj
1 + σj

= Cδ
maxj∈I σj

1 + maxj∈I σj
,

since f(x) = x/(1 + x) is a monotone increasing function. Then,

χ

η
= max

i∈I
σi = ζ.

�

Remark 2.4 (Choice of δ). Notice that other choices of δ may achieve the
same optimal rate stated in Theorem 2.2. For instance, when gi > 0 for all
i ∈ I, we can choose δi ∝

√
giwi. With this choice of weights, we achieve

the optimal rate but expect the corresponding constants to be sub-optimal,
due to Lemma 2.1.

Remark 2.5 (On isotropic directions). In the isotropic case of Remark 2.2,
we have k1 = d and the TD set becomes

I(L) = {α ∈ Nd : |α| ≤ L}.
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The same rates of Theorem 2.2 can be obtained, with slightly different con-
stants, namely:

CB = exp(|w|)
(

d∏
i=1

δ−1
i

)
η−d

d−1∑
j=0

ηj

j!

and C3 =
1

χ(d− 1)!

∏
i∈Î

δ−1
i


Also, in this case, ζ = γ−s

2w and k = 2(d − 1)(ζ + 1). Most importantly,
in Case B the computational complexity of MIMC with a TD set would be

O
(

TOL−2(1+ζ)
(
log(TOL−1)

)k)
. Compare this computational complexity to

the one of MIMC based on a full tensor set, namely O
(

TOL−2(1+dζ)
)

.

Remark 2.6 (A unique worst direction). In Theorem 2.2, consider the
special case when k1 = 1, i.e. when the directions are dominated by a single
direction with the maximum difference between the work rate and the rate of
variance convergence. In this case, the value of L becomes

L =
1

η

(
log(TOL−1

B ) + log(CB)
)

and MIMC with a TD set achieves a better rate for the computational com-
plexity, namely O

(
TOL2−2ζ

)
. In other words, the logarithmic term disap-

pears in the computational complexity.
The same results also holds when the variance convergence is faster than

algebraic in all but one direction and, in this case, the overall complexity
is dictated by the only direction with an algebraic convergence rate. In this
case, the optimal set might be no longer of TD type but it can still be con-
structed by using the same method and the same profit definition presented
in Section 2.2.

3. Numerical Example

This section presents a numerical example illustrating the behavior of the
MIMC, which is in agreement with our theoretical analysis. For the sake of
comparison, we show the results of applying three different approximations
to the same problem: MLMC as outlined in [8], MIMC with a full tensor set
as outlined in Section 2.1, and MIMC with a Total Degree index set as out-
lined in Section 2.2. We begin by describing the numerical example. Then
we present the solvers and algorithms and finish by showing the numerical
results.

3.1. Example overview. The numerical example is adapted from [17] and
is based on Example 1 in Section 1.1 with some particular choices that
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satisfy the assumptions therein and Assumptions 1-3. First, the domain
is chosen to be D = [0, 1]3 and the forcing is

f(x;ω) = f0 + f̂
K∑
i=0

K∑
j=0

K∑
k=0

Φijk(x)Zijk,

where
Φijk(x) =

√
λiλjλkφi(x1)φj(x2)φk(x3),

and

φi(x) =

{
cos
(

5Λi
2 πx

)
i is even,

sin
(

5Λ(i+1)
2 πx

)
i is odd,

λi = (2π)
7
6 Λ

11
6


1
2 i = 0,

exp
(
−2
(

Λi
4 π
)2)

i is even,

exp

(
−2
(

Λ(i+1)
4 π

)2
)

i is odd,

for given parameters 0 < Λ and K ∈ N+, and Z = {Zijk} a set of (K + 1)3

i.i.d. standard normal random variables. Moreover, the diffusion coefficient
is chosen to be a function of two random variables as follows:

a(x;ω) = a0 + exp
(

4Y1Φ121(x) + 40Y2Φ877(x)
)
.(44)

Here, Y = {Y1, Y2} is a set of i.i.d. standard normal random variables, also
independent of Z. Finally, the quantity of interest, S, is

S = (2πσ)
−3
2

∫
D

exp

(
−‖x− x0‖22

2σ2

)
u(x)dx,

and the selected parameters are a0 = 0.01, f0 = 50, f̂ = 10,Λ = 0.2√
2
,K =

10, σ2 = 0.02622863 and x0 = [0.5026695, 0.26042876, 0.62141498]. Since
the diffusion coefficient, a, is independent of the forcing, f , a reference so-
lution can be calculated to sufficient accuracy by scaling and taking the
expectation of the weak form with respect to Z to obtain a formula with
constant forcing for the conditional expectation with respect to Y . We then
use stochastic collocation [3] with a sufficiently accurate quadrature to pro-
duce the reference value, E[S]. Using this method, the reference value 1.6026
is computed with an error estimate of 10−4.

3.2. Solvers and Algorithms.

3.2.1. Solving the underlying PDE problems. To solve the underlying PDE
problems, uniform meshes with a standard trilinear finite element basis are
used to discretize the weak form of the model problem. The number of
elements in each dimension is a positive integer, Ni, to give a mesh size
of hi = N−1

i for all i = 1, 2, 3 . Moreover, we use the same β = 2 in all
dimensions. In other words, given a multi index α, we use Ni = 2αi in each
dimension and the resulting problem is isotropic with wi = 2 and si = 4
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Figure 1. Average running time of the MUMPS linear solver versus
the number of degrees of freedom. This shows that, for our numerical
example, γi in (15) is the same for i = 1 . . . d and ranges from 1 to
2.

for all i = 1, 2, 3 (the same case as Remarks 2.2 and 2.5). The linear solver
MUMPS [1, 2] was used for solving the linear problem. For the mesh sizes
of interest, the running time of MUMPS varies from quadratic to linear in
the total number of degrees of freedom (cf. Figure 1). As such, γi in (15) is
the same for all i = 1, 2, 3 and ranges from 1 to 2. We use a value of γi = 1.5
to predict the rates of computational complexity in (28) and Theorems 2.1
and 2.2.

3.2.2. MIMC Algorithm. The algorithm used to generate the results pre-
sented in the next section is a slight modification and extension of the MLMC
algorithm first outlined in [12]. Specifically, the sample variance was used
to calculate the required number of samples on each level in MIMC, with
a minimum of three samples per level. Moreover, we used fixed tolerance-
splitting, θ = 0.66. This is the asymptotic optimal choice for the MLMC
method in discussed in [17]. Note that this choice might be sub-optimal for
MIMC and further work needs to be done in this case. In summary, the
algorithm can be summarized as follows:

Step 1. Start with empty index set I
Step 2. Expand index set I
Step 3. Ensure that at least M0 samples are calculated for all α ∈ I.
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Step 4. Using sample variances as estimates for Vα; calculate (11) for all
α ∈ I.

Step 5. Calculate extra samples to have at least Mα samples for each α.
Step 6. Estimate the bias as

∑
α∈∂I Eα, where ∂I is the outer boundary of

I.
Step 7. Stop if the error estimate is less than TOL; otherwise, go to Step 2.

This algorithm is general and can be used for MIMC with both TD and
full tensor sets. For TD sets, we simply increase the value of L in (30) to
expand the set in Step 2. For full tensor sets, we successively increase the
value of Li for i = 1 . . . d allowing for anisotropic full tensor sets.

3.3. Results. Three methods were tested: MLMC as outlined in [8], MIMC
with full tensor sets (referred to as “FT” in the figures), and MIMC with
isotropic total degree set (referred to as “TD” in the figures). In this
isotropic example, following Remark 2.5, the total degree sets defined in
Section 2.2 becomes

I(L) = {α ∈ N3 : |α| ≤ L}.

Figures 2 and 3 provide numerical evidence that this TD set is indeed (at
least for sufficiently small TOL) a nearly optimal index set for MIMC ap-
proximation. On the other hand, Figures 5 and 6 show numerical results
that are in agreement with the convergence rates claimed in Remark 2.1.
Specifically, these figures show consistent results with the values si = 4 and
wi = 2 for all i = 1, 2, 3. Moreover, Figure 4 shows numerical evidence of
the normality of the statistical error of the MIMC estimator.

Figure 7 shows the running time for different tolerances. The MIMC
method with a full tensor set or a total degree set seems to exhibit the
expected rate of TOL−2 in the computational time. On the other hand,
MLMC seems to exhibit a rate closer to TOL−2.25, in agreement with (28).
Recall that in this example, d = 3, γi = 1.5, si = 4 and wi = 2 for all
i = 1, 2, 3. The increase in running time for certain tolerances in MLMC
and MIMC with a full tensor set is due to two effects: a) In MIMC with a full
tensor set, the optimal number of samples according to (11) is less than 1 for
most α for certain tolerances, and taking the ceiling of these values increases
the work. b) For both methods, the increase in running time corresponds
to the discrete increments of the maximum number of degrees of freedom
per level (cf. Figure 9). Since a fixed tolerance-splitting parameter, θ, was
used, this means that the statistical constraint is not relaxed when the bias
becomes smaller and the algorithm ends up solving for a slightly smaller
tolerance than the required TOL (cf. Figure 8). Notice that although the
fixed tolerance splitting parameter was also used for MIMC with total degree
sets, the running time does not exhibit the same jumps. This is because the
discrete increments in the number of degrees of freedom are not as significant
in this method (cf. Figure 9).
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sample mean (left) and variance (right) of mixed differences used in
MIMC for a slice of multi indices. The parallel lines, asymptotically,
suggest that isotropic TD sets are nearly optimal in this example.

1 2 3 4 5
α2

1

2

3

4

5

α
3

Pα,α = (1, α2, α3)

−1.2

−0.8

−0.4

0.0

0.4

0.8

1.2

1.6

Figure 3. Numerical example,
rate verification: contour plots of
profits used in MIMC for a slice
of multi indices. Numerical results
indicate that, asymptotically, the
isotropic TD sets are nearly optimal
in this example.

0.0 0.2 0.4 0.6 0.8 1.0

Empirical CDF

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

C
D

F

TOL = 0.01

TOL = 0.005
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sor sets. This is in agreement with
Lemma A.1.

4. Conclusions

We have proposed and analyzed a novel Multi Index Monte Carlo (MIMC)
method for weak approximation of stochastic models that are described in
terms of differential equations either driven by random measures or with
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Figure 6. Numerical example, rate verification: sample mean (left)
and variance (right) of mixed differences used in MIMC. Notice that
the observed rates are consistent with Remark 2.1 and are better
than those observed for MLMC, cf. Figure 5.

random coefficients. The MIMC method uses a stochastic combination tech-
nique to solve the given approximation problem, generalizing the notion of
standard MLMC levels into a set of multi indices that should be properly
chosen to exploit the available regularity. Indeed, instead of using first-
order differences as in standard MLMC, MIMC uses high-order differences
to reduce the variance of the hierarchical differences dramatically. This in
turn gives a new improved complexity result that increases the domain of
the problem parameters for which the method achieves the optimal con-
vergence rate, O(TOL−2). We have outlined a method for constructing an
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Carlo method. Notice that the rate of MIMC is the optimal Monte
Carlo rate of O

(
TOL−2

)
for this example, while MLMC is closer to

O
(
TOL−2.25

)
, in agreement with the results listed in Remark 2.2

for d = 3, γi = 1.5, si = 4 and wi = 2 for all i = 1, 2, 3.

optimal set of indices for our MIMC method. Moreover, under our standard
assumptions, we showed that the optimal index set turns out to be of To-
tal Degree (TD) type. Using optimal index sets, MIMC achieves a better
rate for the computational complexity than when using Full Tensor sets; in
fact, in some cases, the rate does not depend on the dimensionality of the
underlying problem. We also presented numerical results to substantiate
some of the derived computational complexity rates. In Appendix A, using
the Lindeberg-Feller theorem, we also show the asymptotic normality of the
statistical error in the MIMC estimator and justify in this way our error
estimate that allows both the required accuracy and confidence in the final
result to be prescribed.

Our method requires more regularity of the underlying solution than does
MLMC. If the underlying solution is sufficiently regular only in some direc-
tions, then one can still combine MIMC with MLMC by applying mixed
first-order differences to the sufficiently regular directions, while applying a
single first-order difference to less regular directions.
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In future work, more has to be done to improve the MIMC algorithm,
using the variance convergence model to estimate the variances instead of
relying on sample variance only; for example, by applying ideas as those in
[10]. Also, a better choice of the splitting parameter, θ, can be derived to
improve the computational complexity up to a constant factor; similar to
the work done in [17]. Moreover, MIMC can be used to improve the com-
putational complexity rate in the case of PDEs with random fields that are
approximated by converging series, such as a Karhunen-Loéve decomposi-
tion, cf. [31]. By treating the number of terms in the decomposition as an
extra discretization direction and applying MIMC, we might be able to im-
prove the computational complexity. Also, the use of either a priori refined
non-uniform discretizations or adaptive algorithms based on a posteriori er-
ror estimates for non-uniform refinement as introduced in [22, 23, 27] can be
combined with MIMC to improve efficiency. Finally, ideas from [32] and [18]
can be extended by replacing the Monte Carlo sampling of mixed differences
in MIMC by a sparse-grid stochastic collocation, effectively including inter-
polation levels along the different random directions into the combination
technique together with the other discretization parameters. Similarly, we
can apply Quasi Monte Carlo to replace Monte Carlo sampling of the mixed
differences in MIMC as outlined in [25] for a multilevel setting. Provided
that there is enough mixed regularity in the problem at hand, we expect to
improve again the optimal complexity further from O(TOL−2) in MIMC to
O(TOL−r) with r < 2.
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Appendix A. Asymptotic Normality of the MIMC estimator

Lemma A.1 (Asymptotic Normality of the MIMC Estimator). Consider
the MIMC estimator introduced in (3), A, based on a set of multi indices,
I(TOL), and given by

A =
∑
α∈I

Mα∑
m=1

∆Sα(ωα,m)

Mα
.

Assume that for 1 ≤ i ≤ d there exists 0 < Li(TOL) such that

(45) I(TOL) ⊂ {α ∈ Nd : αi ≤ Li(TOL), for 1 ≤ i ≤ d}.

Denote Yα = |∆Sα − E[∆Sα]| and assume that the following inequalities

QS

d∏
i=1

exp(−αisi) ≤ E
[
Y 2
α

]
,(46a)

E
[
Y 2+ρ
α

]
≤ QR

d∏
i=1

exp(−αiri),(46b)

hold for strictly positive constants ρ, {si, ri}di=1, QS and QR. Choose the
number of samples on each level, Mα(TOL), to satisfy, for strictly positive
sequences {s̃i}di=1 and {Hτ}τ∈I(TOL) and for all α ∈ I(TOL),

Mα ≥ TOL−2CM

(
d∏
i=1

exp(−αis̃i)
)
H−1
α

 ∑
τ∈I(TOL)

Hτ

 .(47)

Denote, for all 1 ≤ i ≤ d,

pi = (ρ/2)s̃i − ri + (1 + ρ/2)si
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and choose 0 < ci such that whenever 0 < pi, the inequality ci < ρ/pi holds.
Finally, if we take the quantities Li(TOL) in (45) to be

Li(TOL) = ci log(TOL−1) + o
(
log(TOL−1)

)
, for all 1 ≤ i ≤ d,

then we have

lim
TOL↓0

P

[
A− E[A]√

Var[A]
≤ z
]

= Φ (z) ,

where Φ(z) is the normal cumulative density function of a standard normal
random variable.

Proof. We prove this theorem by ensuring that the Lindeberg condition [11,
Lindeberg-Feller Theorem, p. 114] (also restated in [10, Theorem A.1]) is
satisfied. The condition becomes in this case

lim
TOL↓0

1

Var[A]

∑
α∈I(TOL)

Mα∑
m=1

E

[
Y 2
α

M2
α

1 Yα
Mα

>ε
√

Var[A]

]
︸ ︷︷ ︸

=F

= 0,

for all ε > 0. Below we make repeated use of the following identity for
non-negative sequences {aα} and {bα} and q ≥ 0:

(48)
∑
α

aqαbα ≤
(∑

α

aα

)q∑
α

bα.

First, we use the Markov inequality to bound

F =
1

Var[A]

∑
α∈I(TOL)

Mα∑
m=1

E

[
Y 2
α

M2
α

1
Yα>ε
√

Var[A]Mα

]

≤ ε−ρ

Var[A]1+ρ/2

∑
α∈I(TOL)

M−1−ρ
α E

[
Y 2+ρ
α

]
.

Using (48) and substituting for the variance Var[A] where we denote Var[∆Sα] =

E
[
(∆Sα − E[∆Sα])2

]
by Vα, we find

F ≤
ε−ρ

(∑
α∈I(TOL)M

−1
α Vα

)1+ρ/2

(∑
α∈I(TOL) VαM

−1
α

)1+ρ/2

∑
α∈I(TOL)

V
−1−ρ/2
α M

−ρ/2
α E

[
Y 2+ρ
α

]
= ε−ρ

∑
α∈I(TOL)

V
−1−ρ/2
α M

−ρ/2
α E

[
Y 2+ρ
α

]
.
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Using the lower bound in (47) on the number of samples, Mα, and (48),
again yields

F ≤ C−ρ/2M ε−ρTOLρ

 ∑
α∈I(TOL)

V
−1−ρ/2
α

(
d∏
i=1

exp

(
ραis̃i

2

))
H
ρ/2
α E

[
Y 2+ρ
α

]
 ∑
τ∈I(TOL)

Hτ

−ρ/2

≤ C−ρ/2M ε−ρTOLρ

 ∑
α∈I(TOL)

V
−1−ρ/2
α

(
d∏
i=1

exp

(
ραis̃i

2

))
E
[
Y 2+ρ
α

] .

Finally, using the bounds (46a) and (46b),

F ≤ C−ρ/2M ε−ρQ
−1−ρ/2
S QR︸ ︷︷ ︸

=CF

TOLρ

 ∑
α∈I(TOL)

(
d∏
i=1

exp (piαi)

) .

Next, define three sets of dimension indices:

(49)

Î1 = {1 ≤ i ≤ d : pi < 0},
Î2 = {1 ≤ i ≤ d : pi = 0},
Î3 = {1 ≤ i ≤ d : pi > 0}.

Then, using (45) yields

F ≤CFTOLρ
d∏
i=1

(
Li∑
αi=0

exp (piαi)

)

≤CFTOLρ
∏
i∈Î1

1

1− exp(pi)

∏
i∈Î2

Li
∏
i∈Î3

1− exp(pi(Li + 1))

1− exp(pi)
.

To conclude, observe that if |Î3| = 0 then limTOL↓0 F = 0 for any choice of

Li ≥ 0, 1 ≤ i ≤ d. Similarly, if |Î3| > 0, since we assumed that cipi < ρ

holds for all i ∈ Î3 then limTOL↓0 F = 0. �

Remark. The lower bound on the number of samples per index (47) mirrors
the choice (11), the latter being the optimal number of samples satisfying
constraint (9). Specifically, Hα =

√
VαWα and s̃i = si. Furthermore,

notice that the previous Lemma bounds the growth of L from above, while
Theorem 2.1 and Theorem 2.2 bound the value of L from below to satisfy
the bias accuracy constraint.
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Appendix B. Integrating an exponential over a simplex

Lemma B.1. The following identity holds for any L > 0 and a ∈ R

(50)

∫
{x∈Rd+ : |x|≤L}

exp(a|x|)dx = (−a)−d

1− exp(La)
d−1∑
j=0

(−La)j

j!


=

1

(d− 1)!

∫ L

0
exp(at)td−1 dt.

Proof. ∫
{x∈Rd+ : |x|≤L}

exp(a|x|)dx = Ld
∫
{x∈Rd+ : |x|≤1}

exp(aL|x|)dx.

Then, we prove, by induction on d and for b = aL, the following identity∫
{x∈Rd+ : |x|≤1}

exp(b|x|) = (−b)−d
1− exp(b)

d−1∑
j=0

(−b)j
j!

 .

First, for d = 1, we have∫ 1

0
exp(bx)dx =

exp(b)− 1

b
.

Next, assuming that the identity is true for d− 1, we prove it for d. Indeed,
we have∫
{x∈Rd+ : |x|≤1}

exp(b|x|)dx

=

∫ 1

0
exp(by)

(∫
{x∈Rd−1

+ : |x|≤1−y}
exp(b|x|)dx

)
dy

=

∫ 1

0
exp(by) (1− y)d−1

(∫
{x∈Rd−1

+ : |x|≤1}
exp((1− y)b|x|)dx

)
dy

=

∫ 1

0
exp(by)

(1− y)d−1

(−(1− y)b)d−1

1− exp((1− y)b)
d−2∑
j=0

(−(1− y)b)j

j!

 dy

=

∫ 1

0

 exp(by)

(−b)d−1
− exp(b)

(−b)d−1

d−2∑
j=0

(−(1− y)b)j

j!

dy

=
(−1)d−1

bd
(exp(b)− 1)− (−1)d−1 exp(b)

bd−1

d−2∑
j=0

(−b)j
(j + 1)!

=
(−1)d

bd
− (−1)d

bd
exp(b)− (−1)d exp(b)

bd

d−1∑
j=1

(−b)j
(j)!
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= (−b)−d
1− exp(b)

d−1∑
j=0

(−b)j
j!

 .

Finally, the second equality in (50) follows by repeatedly integrating by
parts. �
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