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Abstract

We analyze the stability and accuracy of discrete least squares on multivariate poly-

nomial spaces to approximate a given function depending on a multivariate random

variable uniformly distributed on a hypercube. The polynomial approximation is cal-

culated starting from pointwise noise-free evaluations of the target function at low-

discrepancy point sets. We prove that the discrete least-squares approximation, in a

multivariate anisotropic tensor product polynomial space and with evaluations at low-

discrepancy point sets, is stable and accurate under the condition that the number of

evaluations is proportional to the square of the dimension of the polynomial space, up

to logarithmic factors. This result is analogous to those obtained in [7, 22, 19, 6] for

discrete least squares with random point sets, however it holds with certainty instead

of just with high probability. The result is further generalized to arbitrary polynomial

spaces associated with downward closed multi-index sets, but with a more demanding

(and probably nonoptimal) proportionality between the number of evaluation points

and the dimension of the polynomial space.

Keywords: approximation theory, discrete least squares, error analysis, multivariate

polynomial approximation, low-discrepancy point set, (t,m, s)-net, (t, s)-sequence,

nonparametric regression.
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1. Introduction

In recent years, an increasing interest has been dedicated to the various fields of ap-

plied mathematics graviting around the issue of uncertain knowledge of data in com-

putational models. The uncertainty can be treated by means of random variables
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distributed according to a given or unknown probability distribution. In the applica-

tions, the presence of multiple sources of uncertainties demands that a large number

of random variables be employed. Therefore, the underlying challenge is the approxi-

mation of target quantities of interest which functionally depend on a large number of

random variables. Starting from the classical Monte Carlo method, i.e. with random

sampling points, several approaches have been proposed. When the functional depen-

dencies on the random variables are smooth, polynomial approximation techniques [18]

such as stochastic Galerkin [2], stochastic collocation on sparse grids [5] and discrete

least squares with random evaluations [7, 22, 19, 6] have been proposed as an efficient

approximation tool. Another approach is the quasi-Monte Carlo method [24, 29, 10],

which relies on the careful development of specific sets of deterministic quadrature

points, so-called low-discrepancy points, to approximate multidimensional integrals.

The combination of random and deterministic points has proven advantageous as well.

In recent works, it has been proven that univariate discrete least squares on poly-

nomial spaces with random evaluations uniformly distributed on an interval are stable

and optimally convergent in expectation [7] and in probability [22], under the condi-

tion that the number of evaluations is proportional to the square of the dimension of

the polynomial space. The analysis has been extended to the multivariate case in [6],

for any dimension of the random variable, for polynomial spaces associated with any

arbitrary downward closed multi-index set, for the uniform and Chebyshev densities.

The same analysis can be extended to any tensorized densities on a hypercube in the

beta family using the results proven in [20].

In the present work we focus only on the case of uniform density, and we ana-

lyze discrete least squares on multivariate polynomial spaces with evaluations at low-

discrepancy point sets. We prove in Theorem 9 that, in multivariate anisotropic tensor

product polynomial spaces and using low-discrepancy point sets, the discrete least-

squares approximation of any uniformly continuous function is stable and accurate,

when the number of evaluation points is proportional to the square of the dimension

of the polynomial space (up to logarithmic factors). As in [6], accurate means that

the error of the discrete least-squares projection in the L2 norm is comparable with

the best approximation error in the L∞ norm. Therefore, with anisotropic tensor

product spaces, the use of low-discrepancy point sets leads to analogous theoretical

results as those with random points proven in [6]. The results with low-discrepancy

points hold with certainty, whereas the results with random points only hold with high

probability or in expectation. A closer look to the logarithmic factors reveals that

in the low-discrepancy case the stability condition contains a logarithmic dependence

which worsens as the dimension increases, whereas the same logarithmic dependence

is dimension-free in the random case.

In the multivariate case, when the polynomial space differs from the anisotropic

tensor product the quadratic growth worsens: in any case we have proven the sta-

bility and accuracy of discrete least squares in any polynomial space associated with
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arbitrary downward closed multi-index sets, if the number of evaluation points is pro-

portional to the quartic power of the dimension of the polynomial space. Notice that

this is a sufficient but not necessary condition. An analogous quartic proportionality

can be proven using probabilistic estimates for the star discrepancy of random points

independent and uniformly distributed.

A relevant quantity in our analysis is the superposition of star discrepancies of low-

order projections of point sets, which has proven to be related to the convergence of

quasi-Monte Carlo and to tractability issues, see [28, 32] and references therein.

Recently, in [34] an analysis of discrete least squares with deterministic points has

been presented in the case of the Chebyshev density, however, using techniques quite

different than those used here. The authors prove stability and accuracy under the con-

dition that the number of points scales as the square of the dimension of the polynomial

space associated with any downward closed multi-index set, with the proportionality

constant depending on the number of components of the multivariate random variable.

We point out that, the use of quasi-Monte Carlo and low-discrepancy point sets

for integration usually requires strong smoothness assumptions on the integrand, e.g.

existence of mixed derivatives, see [10]. However, in our case the discrete least-squares

approximation does not require any assumption of mixed regularity on the function to

approximate. The quasi-Monte Carlo estimates involving mixed derivatives are applied

here only on polynomial functions (which of course have enough regularity) to prove

the stability of the discrete least-squares approximation.

The outline of the paper is the following: in §2 we recall the approximation method-

ology based on discrete least squares on multivariate polynomial spaces. In §3 we in-

troduce the notion of star discrepancy of a point set, the latest developments of its

upper bounds for nets and sequences, and some estimates for the superposition of star

discrepancies of low-order projections of a point set. In §4 we prove a norm equiv-

alence on multivariate polynomial spaces using the star discrepancy. In §5 we prove

stability and accuracy of discrete least squares on multivariate polynomial spaces with

evaluations at low-discrepancy point sets. Finally in §6 we draw some conclusions.

2. Discrete least-squares approximation

Let Is ⊂ Rs be the s-dimensional hypercube Is := [0, 1]s in the Euclidean s-dimensional

space, with s ∈ N denoting the dimension. Consider a random variable Y ∈ Is dis-

tributed according to the probability density ρ : Is → R+
0 , and a target function

φ : Is → R that depends on the random variable. Throughout this article we consider

only the tensorized s-dimensional uniform density ρ = ρ(y) := ⊗sq=1I[0,1](yq)dyq, where

I[0,1] denotes the characteristic function on the interval [0, 1]. We would like to approx-

imate the function φ = φ(Y ) in the L2 probability sense, using pointwise noise-free

evaluations. The dependence of the function φ on the random variable Y is assumed

to be smooth, and this justifies the use of an approximation approach based on poly-
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nomial expansions. Given n distinct points y1, . . . , yn ∈ Is, we introduce the L2 scalar

product and its discrete counterpart,

〈f1, f2〉L2(Is) :=

∫
Is

f1(y)f2(y)dy, 〈f1, f2〉n :=
1

n

n∑
i=1

f1(yi)f2(yi),

and the associated norm ‖ · ‖L2(Is) := 〈·, ·〉1/2L2(Is) and seminorm ‖ · ‖n := 〈·, ·〉1/2n .

We denote by {ϕq}q≥0 the family of univariate Legendre polynomials orthonormal

w.r.t. the standard L2 scalar product on [0, 1], i.e. 〈ϕq, ϕt〉L2(0,1) = δqt, see [30]. Denote

by Λ ⊂ Ns
0 a finite multi-index set, and for any ν ∈ Λ define the multivariate Legendre

polynomials ψν as

ψν(y) :=
s∏
q=1

ϕνq(yq), y ∈ Is, (1)

by tensorization of the univariate L2-orthonormal Legendre polynomials {ϕq}q≥0. The

space of polynomials PΛ = PΛ(Is) associated with the multi-index set Λ is defined as

PΛ := span{ψν : ν ∈ Λ},

and of course it holds dim(PΛ) = #(Λ). Notice that the seminorm ‖ · ‖n becomes a

norm over any polynomial space PΛ, provided n is sufficiently large (n ≥ #Λ) and the

n points {yi}ni=1 are distinct. A particular class of multi-index sets, that we consider

in our analysis in §4–§5, is characterized by the following property.

Definition 1 (Downward closedness of the multi-index set Λ.). The finite multi-index

set Λ ⊂ Ns
0 is downward closed (or it is a lower set) if

(ν ∈ Λ and µ ≤ ν)⇒ µ ∈ Λ,

where µ ≤ ν means that µq ≤ νq for all q = 1, . . . , s.

According to this definition, the multi-index set Λ = {0}, which contains only the

null multi-index, is downward closed.

Denoting by w a nonnegative integer, common isotropic polynomial spaces PΛw are

Tensor Product (TP) : Λw =
{
ν ∈ Ns

0 : ‖ν‖`∞(Ns
0) ≤ w

}
,

Total Degree (TD) : Λw =
{
ν ∈ Ns

0 : ‖ν‖`1(Ns
0) ≤ w

}
,

Hyperbolic Cross (HC) : Λw =

{
ν ∈ Ns

0 :
s∏
q=1

(νq + 1) ≤ w + 1

}
.

An anisotropic polynomial space, that will be used in the present paper, is the anisotropic

tensor product space with maximum degrees w1, . . . ,ws in each coordinate:

anisotropic Tensor Product (aTP) : Λw1,...,ws = {ν ∈ Ns
0 : νq ≤ wq, ∀q = 1, . . . , s} .
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In the remaining part of this section, the multi-index set Λ need not be downward

closed, but can be any finite multi-index set Λ ⊂ Ns
0. We consider a discrete least-

squares approximation of φ over the polynomial space PΛ. Given n points y1, . . . , yn,

we compute the noise-free evaluations of the target function φ in these points. The

discrete L2 projection Πn
Λφ of the function φ over the polynomial space PΛ is defined

as

Πn
Λφ := argmin

u∈PΛ

‖φ− u‖n, (2)

and corresponds to a minimization problem whose unknown is the coefficient vector β

in the expansion

(Πn
Λφ) (y) =

∑
ν∈Λ

βνψν(y), y ∈ Is.

We introduce the design matrix A and the right-hand side b defined element-wise

as [A]ij = ψj(y
i) and b(yi) = φ(yi), respectively, for all i = 1, . . . , n and j = 1, . . . ,#Λ.

From a linear algebra point of view, solving problem (2) is equivalent to finding the

solution β to the normal equations

n−1A>Aβ = n−1A>b.

Problem (2) approximates the continuous L2 projection

ΠΛφ := argmin
u∈PΛ

‖φ− u‖L2(Is),

which usually cannot be directly computed.

In any dimension s, for any multi-index set Λ and any set of n distinct points

y1, . . . , yn ∈ Is, we define the following nonnegative quantities as in [22]:

Q(n,Λ) := sup
u∈PΛ\{u≡0}

‖u‖2
n

‖u‖2
L2(Is)

and S(n,Λ) := sup
u∈PΛ\{u≡0}

‖u‖2
L2(Is)

‖u‖2
n

. (3)

In §4 we analyze these quantities using low-discrepancy point sets. In the case that

the n points y1, . . . , yn are realizations of the random variables Y 1, . . . , Y n iid∼ ρ, the

quantities Q = Q(n,Λ) and S = S(n,Λ) defined in (3) are two random variables

themselves. This framework has been analyzed in [7, 22, 6, 21, 19], and we report in

§5.2 the main results achieved.

In the remaining part of this section, the points y1, . . . , yn can be either deterministic

or random. In the following we report two results from [22], that give an insight into

the importance of the quantities (3) in the stability and convergence properties of the

discrete L2 projection (2).

Proposition 1. For any multi-index set Λ in any dimension s, with S(n,Λ) defined

as in (3) and n ≥ #Λ, it holds that

‖φ− Πn
Λφ‖L2(Is) ≤

(
1 +

√
S(n,Λ)

)
inf
u∈PΛ

‖φ− u‖L∞(Is), ∀φ ∈ C0(Is). (4)
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Proof. See [22, Proposition 1].

To quantify the stability of the least-squares problem (2), we define the spectral

condition number of its associated matrix A>A as

cond
(
A>A

)
:=

σmax

(
A>A

)
σmin

(
A>A

) , (5)

with σmax(·) and σmin(·) being the maximum and minimum singular values.

Proposition 2. For any multi-index set Λ and any dimension s, the spectral condition

number (2-norm) of the matrix A>A, as defined in (5), is equal to

cond
(
ATA

)
= Q(n,Λ)S(n,Λ), (6)

since σmax(A
TA) = Q(n,Λ) and σmin(ATA) = (S(n,Λ))−1.

Proof. See [22, Proposition 4].

Remark 1. In any dimension s and for any multi-index set Λ it holds that

S(n,Λ) = sup
u∈PΛ

‖u‖
L2(Is)

=1

1

‖u‖2
n

=

 inf
u∈PΛ

‖u‖
L2(Is)

=1

‖u‖2
n

−1

, Q(n,Λ) = sup
u∈PΛ

‖u‖
L2(Is)

=1

‖u‖2
n.

3. Low-discrepancy point sets

In this section we introduce the notions of local discrepancy and star discrepancy of

a given set of points, which aim at quantifying how well the points are uniformly

distributed in the domain Is. The topic is extensively introduced and covered in [24,

26, 11, 10], with complete lists of references.

Let S := {1, . . . , s} be the set containing all the s directions, and let R and T

be subsets of S satisfying T ⊆ R ⊆ S. Unless explicitly mentioned otherwise, the

empty sets R = ∅ and T = ∅ are allowed as well. The ordering of the directions

is not taken into account, and will not play any role in this paper. We denote the

cardinalities of the sets S,R, T by |S|, |R|, |T | rather than by the hash symbol used for

the cardinalities of multi-index sets. Of course s = |S|. Following the notation Is to

denote the s-dimensional hypercube, for any ∅ 6= R ⊆ S we denote by I|R| := [0, 1]|R|

the |R|-dimensional hypercube. In the one-dimensional case we simplify the notation

I1 to I := [0, 1].

Given a point y ∈ Is, we denote by (yR, 1) ∈ Is the point with the same values as

y in the coordinates corresponding to the elements of R, and with values equal to 1

in the remaining coordinates in the set S \ R. In the following discussion, the value 1

could be replaced by any other arbitrary (but fixed) value in I. Also, we often use the
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notation y = (yR, yS\R) to denote the point y ∈ Is, to emphasize its components in R

and S \R, respectively.

We introduce the anchored Sobolev space Hs
mix(Is) with inner product

〈f1, f2〉Hs
mix(Is) :=

∑
R⊆S

∫
I|R|

∂|R|

∂yR
f1(yR, 1)

∂|R|

∂yR
f2(yR, 1)dyR, (7)

where ∂|R|f(yR, 1)/∂yR denotes the mixed first derivative of f in the directions specified

by the elements of the set R, and evaluated in the point 1 in all the remaining directions

contained in the set S\R. The inner product (7) induces the norm ‖f‖Hs
mix

:= 〈f, f〉1/2Hs
mix

over the space Hs
mix, which contains all the functions with square-integrable mixed first

derivatives and with finite Hs
mix norm. These spaces can be characterized by means of

reproducing kernels, see e.g. [10].

Given a set of n points y1, . . . , yn ∈ Is and any subset ∅ 6= R ⊆ S, we introduce the

anchored local discrepancy

∆n,R(tR, 1) :=
1

n

n∑
i=1

∏
q∈R

I[0,tq ](y
i
q)−

∏
q∈R

tq, tR ∈ I|R|, (8)

and the anchored star discrepancy

Dn
R := sup

tR∈I|R|
|∆n,R(tR, 1)|, (9)

that quantifies how much the empirical distribution of the components in R of the n

points differs from the uniform distribution, while the remaining |S \ R| components

are frozen to 1. On the one hand, a well uniformly distributed set of points has a small

star discrepancy. On the other hand, large values of the star discrepancy imply a poor

uniformity of the empirical distribution. The quantifiers “small” and “large” will be

made more precise in the next section.

The star discrepancy Dn
R corresponds to the L∞ norm of the local discrepancy

∆n,R. Similarly, the Lp discrepancy can be defined by means of the Lp norm with any

p ≥ 1. Notice that, when R = S, ∆n,S and Dn
S correspond to the usual anchored

local discrepancy and anchored star discrepancy. These notions of (unweighted) dis-

crepancies can be extended to their weighted counterparts [29], by introducing suitable

weights that specify the mutual importance of combinations of coordinates. Several

types of weights have been proposed, e.g. product weights, finite-order weights, order-

dependent weights and general weights, see [11]. However, in this work, we restrict

ourselves to “unweighted” discrepancies.

3.1. Upper bounds for the star discrepancy

In this section we recall upper bounds for the star discrepancy. We make use of the

same distinction introduced in [10], where “closed” set of points refers to a finite set
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of say n points, and “open” set of points refers to the first, say, n points of an infinite

sequence.

Concerning the upper bound for the star discrepancy, there exist sequences of points

such that

Dn
S ≤ Bs

(lnn)s

n
, s ≥ 1, for all n ≥ 1, (10)

where the constant Bs depends only on the sequence and on the dimension s but not

on n. Notice that, for fixed s, the function n 7→ n−1(lnn)s increases w.r.t. n unless

n ≥ exp(s). Therefore one has to take at least n ≥ exp(s) points to make the right-

hand side in (10) lower than Bs. Common low-discrepancy sequences are by Sobol’,

Niederreiter, Faure, van der Corput, Halton, see e.g. [11].

A “closed” point set with n points sometimes allows a further decrease of the

exponent of the logarithm: e.g. in the case of (t,m, s)-nets the star discrepancy satisfies

Dn
S ≤ Bs

(lnn)s−1

n
, s ≥ 1. (11)

As remarked in [10, Example 2.5], typically the upper bounds for “closed” point sets

are better than those for “open” point sets. On the other hand, “open” point sets

allow to arbitrarily increase the number of points n keeping all the previously chosen

points in the set. In general this does not hold for “closed” point sets, and a different

number of points n corresponds to a completely different set of points.

In the next section, we introduce two classes of low-discrepancy point sets: nets

and sequences. A net is a “closed” point set, and the first say n points of a sequence

is an “open” point set.

3.1.1. Nets and sequences

In this article, we focus on so-called (t,m, s)-nets and (t, s)-sequences, see [23, 24, 11]

and references therein. We start by introducing the notion of (t,m, s)-net, following

[11].

Definition 2 ((t,m, s)-net in base b). Let s ≥ 1, b ≥ 2, t ≥ 0 and m ≥ 1 be integers

with t ≤ m. A (t,m, s)-net in base b is a point set consisting of bm points in [0, 1)s

such that every elementary interval of the form

s∏
i=1

[
ai
bdi
,
ai + 1

bdi

)
with integers di ≥ 0, 0 ≤ ai < bdi, and d1 + . . .+ ds = m− t, contains exactly bt points

of the net.

Here b is an integer denoting the base of the net, t is the quality parameter, and m

specifies the total number of points in the net given by n = bm. It is known that for

every prime base b there exist (0,m, s)-nets in base b for all s ≤ b + 1, see [11, page

198]. Moreover, we have the following theorem.
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Theorem 1 ([11, Theorem 5.28]). For every dimension s there is a (t,m, s)-net in base

b = 2 consisting of 211s points in [0, 1)s whose star discrepancy is less than s/21.09s.

In [12, Theorem 1] an upper bound for the star discrepancy of a (t,m, s)-net in base

b is proven. For any positive integer k and any integer v, we denote by
(
k
v

)
the usual

binomial coefficient with
(
k
v

)
= 0 whenever k < v or v < 0.

Theorem 2 ([12, Theorem 1]). Let s ≥ 2, m ≥ t ≥ 0, and let b ≥ 2. The star

discrepancy of a (t,m, s)-net in base b with n = bm points satisfies

Dn
S ≤

bt

n

s−1∑
v=0

a
(s)
v,bm

v, (12)

with

a
(s)
v,b :=

(
s− 2

v

)(
b+ 2

2

)s−2−v
(b− 1)v

2v v!

(
a

(2)
0,b + s2 − 4

)
+

(
s− 2

v − 1

)(
b+ 2

2

)s−1−v
(b− 1)v−1

2v−1 v!
a

(2)
1,b ,

for any 0 ≤ v ≤ s− 1, with

a
(2)
0,b =


b+ 8

4
, if b is even,

b+ 4

2
, if b is odd,

and a
(2)
1,b =


b2

4(b+ 1)
, if b is even,

b− 1

4
, if b is odd.

We report in the following a corollary of this result. Throughout the article τb is

defined for any integer b ≥ 2 as

τb :=


b2

b2 − 1
, if b is even,

1, if b is odd.

Notice that, for any b ≥ 2, it holds that 1 ≤ τb ≤ 4/3.

Corollary 1 ([12, Corollary 1]). Given a (t,m, s)-net in base b with n = bm points,

then it holds that

Dn
S ≤

btτb
2(s− 1)!

(
b− 1

2 ln b

)s−1
(lnn)s−1

n
+O

(
(lnn)s−2

n

)
. (13)

The term O ((lnn)s−2/n) in (13) can be precisely quantified taking into account all

the terms in the right-hand side of (12).

A (t, s)-sequence, according to [11], is defined as in the following.

Definition 3 ((t, s)-sequence in base b). Let t ≥ 0 and s ≥ 1 be integers. A (t, s)-

sequence in base b is a sequence of points (y1, y2, . . .) in [0, 1)s such that for all integers

m > t and l ≥ 0, every block of bm points

ylb
m+1, . . . , y(l+1)bm

in the sequence (y1, y2, . . .) forms a (t,m, s)-net in base b.
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As an example, the Sobol’ sequence is a special kind of a (t, s)-sequence in base

b = 2. An analogous result of [12, Theorem 1] has been proposed in [12, Theorem 2]

for a (t, s)-sequence in base b, which we report here, as well as its corollary.

Theorem 3 ([12, Theorem 2]). Let s ≥ 2, m ≥ t ≥ 0, and let b ≥ 2. The star

discrepancy of a (t, s)-sequence in base b satisfies

Dn
S ≤

bt

n

s∑
v=0

A
(s)
v,b (logb n)v , (14)

for any n ≥ max{b, bt}, and with

As0,b :=
b+ 2

2
a

(s)
0,b,

Asv,b :=

(
2v +

b− 1

2

)
a

(s)
v,b +

b− 1

2v
a

(s)
v−1,b, for 1 ≤ v ≤ s− 1,

Ass,b :=
b− 1

2s
a

(s)
s−1,b,

where the coefficients a
(s)
v,b are the same as in Theorem 2.

Corollary 2 ([12, Corollary 2]). Given the first n points of a (t, s)-sequence in base b,

then, for any n ≥ 1, it holds that

Dn
S ≤

btτb
2s!

(
b− 1

2 ln b

)s
(lnn)s

n
+O

(
(lnn)s−1

n

)
. (15)

Again, the term O ((lnn)s−1/n) in (15) can be precisely quantified taking into

account all the terms in the right-hand side of (14).

Notice that the main difference between the bound (15) for sequences and the bound

(13) for nets is in the exponent of the logarithmic terms as well as in the factorial s!

in the denominator compared with (s − 1)!. Recently, the upper bound on the star

discrepancy for (t, s)-sequences has been further improved in the non-asymptotic regime

in [14, Theorem 1].

The digital construction of (t,m, s)-nets and (t, s)-sequences has been introduced

in [23]. Afterwards, these point sets have been named digital (t,m, s)-nets and digital

(t, s)-sequences, see also [11]. We do not introduce them in the present paper, and

just mention that our results proven for nets and sequences hold true for digital nets

and digital sequences as well. Recently (t,m, e, s)-nets have also been introduced, see

[31, 16], but we will address their application in forthcoming analyses. Neither will we

consider generalized nets, i.e. (t, α, β, n×m, s)-nets as introduced in [8, 3, 4].

3.1.2. The one-dimensional set of deterministic equispaced points

In one dimension, the following result provides an explicit formula for the star discrep-

ancy of any point set.
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Theorem 4 ([24, Theorem 2.6]). If 0 ≤ y1 ≤ . . . ≤ yn ≤ 1, then

Dn
S =

1

2n
+ max

1≤i≤n

∣∣∣∣yi − 2i− 1

2n

∣∣∣∣ . (16)

In this case, the point set of “closed” type with minimal star discrepancy (16) is

yi =
2i− 1

2n
∈ I, i = 1, . . . , n, (17)

and the value of its star discrepancy, with S = {1}, is

Dn
S = (2n)−1, n ≥ 1. (18)

The point set (17) is a (0, 1, 1)-net in base b = n, and it is optimal in the sense that it

has the best star discrepancy w.r.t. all point sets with n points in [0, 1].

3.2. Low-order projections of a low-discrepancy point set

The overall accuracy of the quasi-Monte Carlo method relies on the low-discrepancy

properties of the set of quadrature points, and on the properties of the integrand, e.g.

its smoothness. A well known explicit formula for the integration error is (26), which

involves indeed the local discrepancy of all the low-order projections. Therefore, the

discrepancy quality of low-order projections is as much important as the discrepancy

quality of the point set itself. However, the number of low-order projections of an

s-dimensional point set is 2s − 1, and a quantitative analysis of their role corresponds

to taking into account the different importance that the interplay of any subset of

coordinates might have. The discrepancies of low-order projections of low-discrepancy

point sets and their influence in the convergence of quasi-Monte Carlo have already

been studied in the literature, see [28, 32], and will play a main role in our analysis as

well.

In the following we estimate the superposition of star discrepancies of low-order

projections

Dn
s (θ) :=

∑
∅6=R⊆S

Dn
Rθ
|R| (19)

for point sets like (t,m, s)-nets and (t, s)-sequences with any s ≥ 1 and with θ being a

nonnegative real parameter. In the case S = {1} and θ = 1, Dn
s (θ) coincides with the

usual star discrepancy. We recall a useful propagation rule for the low-order projections

of a (t,m, s)-net.

Lemma 1 ([11, Lemma 4.16]). Given a (t,m, s)-net in base b, its projection onto any

combination of 1 ≤ s′ ≤ s dimensions is a (t,m, s′)-net in base b.

An analogous propagation rule holds also for a (t, α, β, n×m, s)-net in base b, see

[3, Theorem 1.2], and for a digital (t, α, β, n×m, s)-net, see [9, Theorem 2, propagation

rule V].
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In the next lemma we explicitly calculate an upper bound for the superposition

of star discrepancies of low-order projections of (t,m, s)-nets, starting from the upper

bound in Theorem 2.

Lemma 2. In any dimension s ≥ 2, given a (t,m, s)-net in base b with n = bm points:

for any real θ ≥ 0 the superposition of star discrepancies of low-order projections

satisfies

Dn
s (θ) ≤ θbt

n

((
1 + θ

b+ 2

2

)s−2
((

1 +
θ(b− 1)

2 + θ(b+ 2)

lnn

ln b

)s−1

g(s, b, θ)− h(s, b)

)
+ s

)
,

(20)

with

g(s, b, θ) :=
s

2

(
θ(s− 1)a

(2)
0,b + a

(2)
1,b

)
, (21)

h(s, b) := s
a

(2)
1,b

2
. (22)

Proof. See Appendix A.

From Lemma 1, the quality parameter of any low-order projection of a (t, s)-

sequence cannot be worse than t. Therefore, an upper bound for the superposition

of star discrepancies of low-order projections of (t, s)-sequences can be explicitly cal-

culated starting from the upper bound in Theorem 3.

Lemma 3. In any dimension s ≥ 2, given the first n ≥ max{b, bt} points in a (t, s)-

sequence in base b: for any real θ ≥ 0 the superposition of star discrepancies of low-

order projections satisfies

Dn
s (θ) ≤ θbt

n

(
b

(
1 + θ

b+ 2

2

)s−2
((

1 +
2θ(b− 1)

2 + θ(b+ 2)

lnn

ln b

)s−1

g(s, b, θ)− h(s, b)

)

+s

(
a

(2)
1,b

(
1 +

lnn

ln b

)
+ 2

)
+

1

2

(
b+ 2

2

)−2(
r(b) + w(s, b)

(
1 + θ

b+ 2

2

)s))
,

(23)

with the functions g and h being defined in (21)–(22), and the functions r = r(b) and

w = w(s, b) defined as

r(b) := 4− a(2)
0,b +

(
3− a(2)

0,b

)(b+ 2

2

)
, (24)

w(s, b) :=
(
a

(2)
0,b + s2 − 4

)
. (25)

Proof. See Appendix A.
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For some types of (t, s)-sequences, e.g. for digital sequences of Sobol’ and Niederre-

iter type, it is possible to quantify how much the quality parameter of low-order projec-

tions is smaller than the quality parameter of the starting sequence. More specifically,

for any ∅ 6= R ⊆ S an explicit expression depending on |R| can be obtained for the

quality parameter of the (tR, |R|)-sequence obtained by projecting the (t, s)-sequence

onto the coordinates in R, see [27, Section 2]. Thanks to this explicit expression, for

these particular (t, s)-sequences it is possible to improve the term bt in (23).

3.3. Koksma-Hlawka inequalities

In this section we recall in Lemma 4 the Hlawka/Zaremba’s identity (see [15, 33] for

the proof), and then prove in Lemma 5 a Koksma-Hlawka-type inequality, which is the

starting point of the analyis developed in §4.

Lemma 4 (Hlawka’s identity or Zaremba’s identity). For any function f ∈ Hs
mix and

any set of n points y1, . . . , yn ∈ Is it holds that

1

n

n∑
i=1

f(yi)−
∫
Is

f(y)dy =
∑
R⊆S

(−1)|R|
∫
I|R|

∆n,R ∂
|R|

∂yR
f(yR, 1)dyR. (26)

Lemma 5. For any function f ∈ Hs
mix and any set of n points y1, . . . , yn ∈ Is it holds

that∣∣∣‖f‖2
L2(Is) − ‖f‖2

n

∣∣∣ ≤ ∑
∅6=R⊆S

Dn
R

∑
T⊆R

∥∥∥∥∂|T |∂yT
f(yR, 1)

∥∥∥∥
L2(I|R|)

∥∥∥∥∥∂|R\T |∂yR\T
f(yR, 1)

∥∥∥∥∥
L2(I|R|)

. (27)

Proof. Using the Zaremba’s identity (26) we have

‖f‖2
L2(Is) − ‖f‖2

n =

∫
Is

(f(y))2dy − 1

n

n∑
i=1

(f(yi))2 =
∑
∅6=R⊆S

(−1)|R|
∫
I|R|

∆n,R ∂
|R|

∂yR
(f(yR, 1))2dyR.

(28)

Then,∣∣∣‖f‖2
L2(Is) − ‖f‖2

n

∣∣∣ ≤ ∑
∅6=R⊆S

∣∣∣∣∣
∫
I|R|

∆n,R ∂
|R|

∂yR
(f(yR, 1))2dyR

∣∣∣∣∣
=
∑
∅6=R⊆S

∣∣∣∣∣
∫
I|R|

∆n,R
∑
T⊆R

∂|T |

∂yT
f(yR, 1)

∂|R\T |

∂yR\T
f(yR, 1)dyR

∣∣∣∣∣
≤
∑
∅6=R⊆S

Dn
R

∫
I|R|

∣∣∣∣∣∑
T⊆R

∂|T |

∂yT
f(yR, 1)

∂|R\T |

∂yR\T
f(yR, 1)

∣∣∣∣∣ dyR
≤
∑
∅6=R⊆S

Dn
R

∑
T⊆R

(∫
I|R|

(
∂|T |

∂yT
f(yR, 1)

)2

dyR

) 1
2

∫
I|R|

(
∂|R\T |

∂yR\T
f(yR, 1)

)2

dyR

 1
2

=
∑
∅6=R⊆S

Dn
R

∑
T⊆R

∥∥∥∥∂|T |∂yT
f(yR, 1)

∥∥∥∥
L2(I|R|)

∥∥∥∥∥∂|R\T |∂yR\T
f(yR, 1)

∥∥∥∥∥
L2(I|R|)

.
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There are mainly two differences between (27) and the classical Koksma-Hlawka

inequality, see [17, Theorem 5.6]: first we directly bound the difference of the norms

instead of the integration error, and second we keep the combinatorial summation with

the low-order star discrepancies out of the norm on the right-hand side, rather than

including it in the Hardy–Krause variation.

4. Norm equivalence on polynomial spaces

In this section we prove a norm equivalence between the discrete and continuous L2

norms over PΛ, i.e. we derive conditions which ensure the existence of δ ∈ (0, 1), such

that

(1− δ)‖u‖2
L2(Is) ≤ ‖u‖2

n ≤ (1 + δ)‖u‖2
L2(Is), ∀ u ∈ PΛ, (29)

where Λ is an arbitrary downward closed set. The norm equivalence (29) corresponds

to
1

1 + δ
≤
‖u‖2

L2(Is)

‖u‖2
n

≤ 1

1− δ
, ∀ u ∈ PΛ,

and therefore, taking the supremum and infimum over u ∈ PΛ \ {u ≡ 0}, it allows us

to obtain lower and upper bounds of the quantities introduced in (3), namely:

1

1 + δ
≤ S(n,Λ) ≤ 1

1− δ
, and 1− δ ≤ Q(n,Λ) ≤ 1 + δ.

It also provides, using Proposition 2, a bound on the condition number of A>A, namely

cond(A>A) ≤ 1 + δ

1− δ
.

To begin with, in §4.1 we derive from [20] some useful multivariate Markov-type

and Nikolskii-type inequalities for polynomials associated with downward closed multi-

index sets. Afterwards, in §4.2 we prove the norm equivalence (29) with the equivalence

constant δ being dependent on the particular polynomial space PΛ characterized by the

multi-index set Λ, on the star discrepancy of all the low-order projections of the points

y1, . . . , yn, and on the dimension s.

4.1. Multidimensional inequalities for polynomials associated with downward closed

multi-index sets

We first recall two standard results on univariate Legendre polynomials. Given an

interval [a, b] ⊂ R, for any q ∈ N0 the L2-orthonormal Legendre polynomial ϕq with

degree q satisfies

‖ϕ′q‖L2(a,b) =
2

b− a

√
q

(
q +

1

2

)
(q + 1), (30)

‖ϕq‖L∞(a,b) =

√
2q + 1

b− a
. (31)
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The proof of (30) follows from [20, Lemma 4], taking into account the scaling factor

due to the change of the interval.

To keep the present paper self-contained, we now recall from [20] some results that

will be used a number of times in the following. Given η ∈ N0 and η+1 real nonnegative

coefficients α0, . . . , αη, we define the univariate polynomial p ∈ Pη(N0) of degree η as

p : N0 → R : n 7→ p(n) :=

η∑
l=0

αln
l, (32)

with the convention that 00 = 1 to avoid the splitting of the summation. In any

dimension s and given an arbitrary downward closed multi-index set Λ, we define the

quantity Kp(Λ) as

Kp(Λ) :=
∑
ν∈Λ

s∏
q=1

p(νq) =
∑
ν∈Λ

s∏
q=1

(
α0 + α1νq + . . .+ αην

η
q

)
, (33)

which depends only on Λ when p is fixed. We introduce the following condition con-

cerning the coefficients of the polynomial p.

Definition 4 (Binomial condition). The polynomial p defined in (32) satisfies the

binomial condition if its coefficients α0, . . . , αη satisfy

αl ≤
(
η + 1

l

)
, for any l = 0, . . . , η. (34)

Theorem 5 ([20, Theorem 1]). In any dimension s, for any downward closed multi-

index set Λ and for any η ∈ N0, if the coefficients α0, . . . , αη of the polynomial p satisfy

the binomial condition (34) then the quantity Kp(Λ) defined in (33) satisfies

Kp(Λ) ≤ (#Λ)η+1. (35)

In our analysis in the present paper we need also Markov and Nikolskii inequalities

for multivariate polynomials that have been proven in [20], and we report them in the

following adapted to the domain Is instead of [−1, 1]s.

Theorem 6 ([20, Theorem 3]). For any s-variate polynomial u ∈ PΛ(Is) with Λ down-

ward closed it holds that∥∥∥∥ ∂s

∂y1 · · · ∂ys
u

∥∥∥∥
L2(Is)

≤ (#Λ)2‖u‖L2(Is).

Theorem 7 ([20, Theorem 6]). For any s-variate polynomial u ∈ PΛ(Is) with Λ down-

ward closed it holds that

‖u‖2
L∞(Is) ≤ (#Λ)2‖u‖2

L2(Is).
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The proofs of these inequalities rely on the use of Theorem 5 combined with the one-

dimensional equalities (30) and (31) for Legendre polynomials. These results have been

proven also for weighted L2 norms, with the orthonormalization weight of Chebyshev,

Jacobi and Gegenbauer orthogonal polynomials, see [20].

Given any set ∅ 6= R ⊆ S, we define the multi-index set

ΛR := projRΛ,

which is obtained by projecting the multi-index set Λ onto the coordinates in the set

R. This corresponds to building a multi-set with all the elements in Λ truncated to the

components in the set R, and then take out possible multiple occurrences of the same

element to obtain a properly-said set. Unless mentioned otherwise, we allow also the

empty set R = ∅, in which case we define #ΛR := 1. This is a natural choice to ensure

that

#ΛR ≤ (#ΛT )(#ΛR\T ), ∀ T ⊆ R, ∀ R ⊆ S,

and allows us, for example, to make sense of the case S\R = ∅ in the following equation

(36), where equality is attained. Notice that, if Λ is downward closed, then the set ΛR

is downward closed for any R ⊆ S.

In the following two lemmas, we prove Nikolskii-type and Markov-type inequalities

for multivariate polynomials associated with downward closed multi-index sets.

Lemma 6. For any s-variate polynomial u ∈ PΛ with Λ downward closed and for any

set ∅ 6= R ⊆ S it holds that

max
yS\R∈I|S\R|

‖u(yR, yS\R)‖2
L2(I|R|)

≤
(
#ΛS\R

)2 ‖u‖2
L2(Is). (36)

Proof. For any u ∈ PΛ(Is) it holds that

u(yR, ·) ∈ PΛS\R , ∀ yR ∈ I|R|.

Then, using Theorem 7 we have

max
yS\R∈I|S\R|

∣∣u(yR, yS\R)
∣∣ ≤ (#ΛS\R

)√∫
IS\R

u2(yR, yS\R)dyS\R, ∀ yR ∈ I|R|.

Moreover,

‖u(yR, yS\R)‖2
L2(I|R|)

≤ max
yS\R∈I|S\R|

∫
I|R|

u2(yR, yS\R)dyR

≤
∫
I|R|

max
yS\R∈I|S\R|

u2(yR, yS\R)dyR

≤
(
#ΛS\R

)2
∫
I|R|

∫
I|S\R|

u2(yR, yS\R)dyS\RdyR

=
(
#ΛS\R

)2 ‖u‖2
L2(Is).
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Lemma 7. For any s-variate polynomial u ∈ PΛ with Λ downward closed, and for any

set ∅ 6= R ⊆ S and any subset T ⊆ R, it holds that∥∥∥∥∂|T |∂yT
u(yR, yS\R)

∥∥∥∥
L2(I|R|)

≤ (#ΛT )2 ‖u(yR, yS\R)‖L2(I|R|), ∀ yS\R ∈ I|S\R|. (37)

Proof. For any u ∈ PΛ(Is) it holds that

u(·, yS\R) ∈ PΛR
, ∀ yS\R ∈ I|S\R|.

Given any arbitrary yS\R ∈ I|S\R|, we define uR := u(·, yS\R) ∈ PΛR
. Using Theorem 6

adapted to the domain I|T |, for any arbitrary yS\R ∈ I|S\R| we have∥∥∥∥∂|T |∂yT
u(yR, yS\R)

∥∥∥∥2

L2(I|R|)

=

∫
I|R|

(
∂|T |

∂yT
u(yR, yS\R)

)2

dyR

=

∫
I|R|

(
∂|T |

∂yT
uR(yR)

)2

dyR

=

∫
I|R\T |

∫
I|T |

(
∂|T |

∂yT
uR(yR)

)2

dyT dyR\T

≤
∫
I|R\T |

(#ΛT )4 ‖uR(yR)‖2
L2(I|T |)

dyR\T

= (#ΛT )4

∫
I|R\T |

∫
I|T |

u2(yT , yR\T ) dyT dyR\T

= (#ΛT )4 ‖u(yR, yS\R)‖2
L2(I|R|)

.

4.2. Norm equivalence on polynomial spaces using the star discrepancy

This section contains several results where a norm equivalence between the L2 continu-

ous and discrete norms is proven, with the equivalence constant depending on the star

discrepancy of the low-order projections.

Lemma 8. For any s-variate polynomial u ∈ PΛ with Λ downward closed, using any

point set with n points it holds that∣∣∣‖u‖2
L2(Is) − ‖u‖2

n

∣∣∣ ≤ ‖u‖2
L2(Is)(#Λ)4Dn

s (1). (38)

Proof. First we prove the following intermediate result. For any set ∅ 6= R ⊆ S and
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any ν,µ ∈ Λ, the L2-orthonormal Legendre polynomials ϕν and ϕµ satisfy∫
I|R|

∣∣∣∣∣∂|R|∂yR

(∏
q∈R

ϕνq(yq)ϕµq(yq)

)∣∣∣∣∣ dyR =

∫
I|R|

∣∣∣∣∣∏
q∈R

∂

∂yq

(
ϕνq(yq)ϕµq(yq)

)∣∣∣∣∣ dyR
=
∏
q∈R

(∫
I

∣∣∣∣ ∂∂yq (ϕνq(yq)ϕµq(yq))
∣∣∣∣ dyq)

=
∏
q∈R

(∫
I

∣∣∣∣(ϕµq(yq) ∂

∂yq
ϕνq(yq) + ϕνq(yq)

∂

∂yq
ϕµq(yq)

)∣∣∣∣ dyq)
≤
∏
q∈R

(∫
I

∣∣∣∣(ϕµq(yq) ∂

∂yq
ϕνq(yq)

)∣∣∣∣ dyq +

∫
I

∣∣∣∣(ϕνq(yq) ∂

∂yq
ϕµq(yq)

)∣∣∣∣ dyq)

≤
∏
q∈R

(∥∥∥∥ ∂

∂yq
ϕνq(yq)

∥∥∥∥
L2(I)

+

∥∥∥∥ ∂

∂yq
ϕµq(yq)

∥∥∥∥
L2(I)

)
=
∏
q∈R

(√
4ν3

q + 6ν2
q + 2νq +

√
4µ3

q + 6µ2
q + 2µq

)
.

(39)

In the last but one step we have used the Cauchy-Schwarz inequality. In the last step

we have used (30) for each one of the two derivatives. We can now expand any u ∈ PΛ

in Legendre series u =
∑

ν∈Λ βνψν with coefficients β = (βν)ν∈Λ. Then, using in

sequence (39), (31), (
√
a+
√
b)2 ≤ (a+ 1)(b+ 1) for any reals a, b ≥ 0 and Theorem 5,
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we obtain the following:∫
I|R|

∣∣∣∣∂|R|∂yR
u2(yR, 1)

∣∣∣∣ dyR =

∫
I|R|

∣∣∣∣∣∂|R|∂yR

((∑
ν∈Λ

βνψν(yR, 1)

)(∑
µ∈Λ

βµψµ(yR, 1)

))∣∣∣∣∣ dyR
=

∫
I|R|

∣∣∣∣∣∂|R|∂yR

(∑
ν∈Λ

∑
µ∈Λ

βνβµψν(yR, 1)ψµ(yR, 1)

)∣∣∣∣∣ dyR
≤
∑
ν∈Λ

∑
µ∈Λ

|βν ||βµ|
∏
q /∈R

|ϕνq(1)||ϕµq(1)|
∫
I|R|

∣∣∣∣∣∂|R|∂yR

(∏
q∈R

ϕνq(yq)ϕµq(yq)

)∣∣∣∣∣ dyR
≤
∑
ν∈Λ

∑
µ∈Λ

|βν ||βµ|
∏
q /∈R

√
(2νq + 1)(2µq + 1)

∏
q∈R

(√
4ν3

q + 6ν2
q + 2νq +

√
4µ3

q + 6µ2
q + 2µq

)
≤ ‖β‖2

`2

√∑
ν∈Λ

∑
µ∈Λ

∏
q /∈R

(2νq + 1)(2µq + 1)
∏
q∈R

(
4ν3

q + 6ν2
q + 2νq + 1

) (
4µ3

q + 6µ2
q + 2µq + 1

)

≤ ‖β‖2
`2

√√√√∑
ν∈Λ

∑
µ∈Λ

s∏
q=1

(4ν3
q + 6ν2

q + 2νq + 1)(4µ3
q + 6µ2

q + 2µq + 1)

= ‖β‖2
`2

√√√√∑
ν∈Λ

s∏
q=1

(4ν3
q + 6ν2

q + 2νq + 1)
∑
µ∈Λ

s∏
q=1

(4µ3
q + 6µ2

q + 2µq + 1)

≤ ‖u‖2
L2(Is)(#Λ)4.

(40)

Finally, from (28) and using (40) we obtain the thesis for any u ∈ PΛ:∣∣∣‖u‖2
L2(Is) − ‖u‖2

n

∣∣∣ ≤ ∑
∅6=R⊆S

∣∣∣∣∣
∫
I|R|

∆n,R ∂
|R|

∂yR
u2(yR, 1)dyR

∣∣∣∣∣
≤
∑
∅6=R⊆S

Dn
R

∫
I|R|

∣∣∣∣∂|R|∂yR
u2(yR, 1)

∣∣∣∣ dyR
≤ ‖u‖2

L2(Is)(#Λ)4
∑
∅6=R⊆S

Dn
R.

An alternative and sometimes better estimate can be obtained starting from (27)

instead of (28).

Lemma 9. For any s-variate polynomial u ∈ PΛ with Λ downward closed, using any

point set with n points it holds that∣∣∣‖u‖2
L2(Is) − ‖u‖2

n

∣∣∣ ≤ ‖u‖2
L2(Is)

∑
∅6=R⊆S

Dn
R

(
#ΛS\R

)2
∑
T⊆R

(#ΛT )2 (#ΛR\T
)2

(41)

≤ ‖u‖2
L2(Is) max

∅6=R⊆S
T⊆R

{(
#ΛS\R

)2
(#ΛT )2 (#ΛR\T

)2
}
Dn
s (2). (42)
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Proof. From (27), using Lemma 7 and Lemma 6 we obtain∣∣∣‖u‖2
L2(Is) − ‖u‖2

n

∣∣∣ ≤ ∑
∅6=R⊆S

Dn
R

∑
T⊆R

∥∥∥∥∂|T |∂yT
u(yR, 1)

∥∥∥∥
L2(I|R|)

∥∥∥∥∥∂|R\T |∂yR\T
u(yR, 1)

∥∥∥∥∥
L2(I|R|)

≤
∑
∅6=R⊆S

Dn
R

∑
T⊆R

(#ΛT )2 (#ΛR\T
)2 ‖u(yR, 1)‖2

L2(I|R|)

=
∑
∅6=R⊆S

Dn
R‖u(yR, 1)‖2

L2(I|R|)

∑
T⊆R

(#ΛT )2 (#ΛR\T
)2

≤‖u‖2
L2(Is)

∑
∅6=R⊆S

Dn
R

(
#ΛS\R

)2
∑
T⊆R

(#ΛT )2 (#ΛR\T
)2
,

and (41) is proven. Starting from the right-hand side of (41) we obtain (42) as in the

following:∑
∅6=R⊆S

Dn
R

(
#ΛS\R

)2
∑
T⊆R

(#ΛT )2 (#ΛR\T
)2 ≤

∑
∅6=R⊆S

Dn
R

(
#ΛS\R

)2
max
T⊆R

{
(#ΛT )2 (#ΛR\T

)2
}∑
T⊆R

1

≤ max
∅6=R⊆S
T⊆R

{(
#ΛS\R

)2
(#ΛT )2 (#ΛR\T

)2
} ∑
∅6=R⊆S

Dn
R2|R|.

In the case of an isotropic polynomial space, the previous result particularizes as

follows.

Corollary 3. Let PΛ be an isotropic polynomial space, i.e. Λ is invariant under any

permutation of the directions. Then, for any polynomial u ∈ PΛ with Λ downward

closed and using any point set with n points it holds that∣∣∣‖u‖2
L2(Is) − ‖u‖2

n

∣∣∣ ≤ max
0≤t≤q≤s

{(
#Λ{1,...,t}

)2 (
#Λ{1,...,q−t}

)2 (
#Λ{1,...,s−q}

)2
}
Dn
s (2)‖u‖2

L2(Is).

Corollary 4 (Anisotropic TP spaces). In any dimension s, when Λ is an anisotropic

tensor product space with degrees w1, . . . ,ws, the following quantity appearing in (42)

satisfies

max
∅6=R⊆S
T⊆R

{(
#ΛS\R

)2
(#ΛT )2 (#ΛR\T

)2
}

=
s∏
q=1

(wq + 1)2 = (#Λ)2. (43)

Remark 2. For any polynomial space PΛ with the downward closed multi-index set Λ

contained in the anisotropic tensor product with degrees w1, . . . ,ws it holds that

max
∅6=R⊆S
T⊆R

{(
#ΛS\R

)2
(#ΛT )2 (#ΛR\T

)2
}
≤

s∏
q=1

(wq + 1)2. (44)

In the cases with s = 1, s = 2 or s = 3, if Λ is such that the maximal degrees in each

direction are equal to w1, . . . ,ws then the equality holds in (44), and therefore the set
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Λ always behaves like the anisotropic tensor product despite it could be more sparse.

When s ≥ 4 this is not the case and the sparsity of Λ might pay off: if

∃ ∅ 6= R ⊆ S : 2 ≤ |R| ≤ s− 2 and ΛR <
∏
q∈R

(wq + 1),

then the strict inequality holds in (44). In other words, in high-dimension (s ≥ 4) the

largest three-term product of the square of the cardinalities of the low-order projections

of Λ can be effectively smaller than
∏s

q=1(wq +1)2, if Λ is sufficiently more sparse than

an anistropic tensor product. This cannot happen in dimension s = 1, 2, 3.

5. Stability and accuracy of discrete least squares

In this section we present the main result on the stability and accuracy of discrete

least squares with deterministic evaluations. First, in §5.1 we prove that the same

conditions that ensure the norm equivalence (29) between the continuous and the

discrete L2 norms are sufficient conditions for the stability and accuracy of discrete

least squares on polynomial spaces. Afterwards, in §5.2 we recall the main results

achieved in [7, 6, 19, 21, 22, 20] concerning the analysis of discrete least squares with

uniformly distributed random points. Finally in §5.3 we compare the cases of low-

discrepancy - and random points.

5.1. Evaluations at low-discrepancy point sets

Using the results in Lemmas 8 and 9, we introduce the following positive quantity,

which depends on Λ, n and s:

Zs,n(Λ) := min

(#Λ)4 Dn
s (1),

∑
∅6=R⊆S

Dn
R

(
#ΛS\R

)2
∑
T⊆R

(#ΛT )2 (#ΛR\T
)2

 (45)

≤ min

{
(#Λ)4Dn

s (1), max
∅6=R⊆S
T⊆R

{(
#ΛS\R

)2
(#ΛT )2 (#ΛR\T

)2
}
Dn
s (2)

}
. (46)

The quantity Zs,n(Λ) can be made arbitrarily small by choosing an open or closed

low-discrepancy point set with a sufficiently large number of points. In any dimension

s and for any Λ downward closed, it holds that

lim
n→+∞

Zs,n(Λ) = 0,

because from Lemmas 2–3 the upper bounds of Dn
s (1) and Dn

s (2) in (46) converge to

zero as n goes to infinity. Notice that, when using a point set of closed type, different

values of n in Zs,n(Λ) might correspond to completely different sets of points. Using

specific types of low-discrepancy point sets, thanks to the same upper bounds from

Lemmas 2–3, it can be shown that the quantity Zs,n(Λ) is monotonically decreasing

w.r.t. n for all n large enough, in any dimension s and for any Λ downward closed.
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The following theorem gives an upper bound on Zs,n(Λ) for (t,m, s)-nets and (t, s)-

sequences.

Theorem 8. For any s ≥ 2, when Λ is of anisotropic tensor product type, using the

n = bm points of a (t,m, s)-net in base b it holds that

Zs,n(Λ) ≤ (#Λ)2 bt

n

(
(b+ 3)s−2

((
1 +

b− 1

b+ 3

lnn

ln b

)s−1

g(s, b, θ)− h(s, b)

)
+ s

)
,

(47)

and using the first n ≥ max{b, bt} points of a (t, s)-sequence in base b it holds that

Zs,n(Λ) ≤ (#Λ)2 bt

n

(
b (b+ 3)s−2

((
1 +

2(b− 1)

b+ 3

lnn

ln b

)s−1

g(s, b, θ)− h(s, b)

)

+ s

(
a

(2)
1,b

(
1 +

lnn

ln b

)
+ 2

)
+

1

2

(
b+ 2

2

)−2

(r(b) + w(s, b) (b+ 3)s)

)
.

(48)

Proof. Starting from (46), using Corollary 4 and Lemma 2 for (t,m, s)-nets or Lemma 3

for (t, s)-sequences, we obtain (47) and (48), respectively.

Theorem 9. In any dimension s ≥ 1 and for any downward closed multi-index set Λ,

fix δ ∈ (0, 1) and choose n such that the following condition holds

δ ≥ Zs,n(Λ). (49)

Then it holds that

1 ≤ cond
(
A>A

)
≤ 1 + δ

1− δ
, (50)

and for any φ ∈ C0(Is)

‖φ− Πn
Λφ‖L2(Is) ≤

(
1 +

1√
1− δ

)
inf
u∈PΛ

‖u− φ‖L∞(Is). (51)

Proof. When using a low-discrepancy point set of “open” or “closed” type with n

points, combining Lemmas 8 and 9 we obtain

1−Zs,n(Λ) ≤ ‖u‖2
n

‖u‖2
L2(Is)

≤ 1 + Zs,n(Λ), ∀ u ∈ PΛ \ {u ≡ 0}. (52)

The right-hand side of (52) does not depend on the polynomial u, and therefore we

can take the supremum over the space PΛ \ {u ≡ 0} and substitute the definition (3)

of the quantity Q:

1− δ ≤ 1−Zs,n(Λ) ≤ Q(n,Λ) ≤ 1 + Zs,n(Λ) ≤ 1 + δ. (53)
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Taking the inverse of each term in (52), with the same argument and using the definition

(3) of the quantity S gives

1

1 + δ
≤ 1

1 + Zs,n(Λ)
≤ S(n,Λ) ≤ 1

1−Zs,n(Λ)
≤ 1

1− δ
. (54)

Using the result in Proposition 2 and thanks to (53) and (54) we obtain the thesis (50).

To prove (51) it suffices to substitute the bound (54) into (4).

The following corollary highlights the case of anisotropic tensor product polynomial

spaces with low-discrepancy point sets of “open” and “closed” type.

Corollary 5. Fix any δ ∈ (0, 1). In one dimension s = 1, if the number of sampling

points n satisfies

n ≥δ−1(#Λ)2, with the (0, 1, 1)-net in base b = n given by (17), (55)
n

lnn
≥2δ−1(#Λ)2 B1, with any point set of “open” type, (56)

then (50) and (51) hold true. In any dimension s ≥ 2 with Λ being of anisotropic

tensor product type: if the number of sampling points n satisfies

n

(b+ 3)s−2

(
1 +

b− 1

b+ 3

lnn

ln b

)s−1

O(s2)

≥δ−1(#Λ)2bt, (57)

with any (t,m, s)-net in base b with n = bm points, or

n

b (b+ 3)s−2

(
1 +

2(b− 1)

b+ 3

lnn

ln b

)s−1

O(s2) +

(
1 +

lnn

ln b

)
O(s)

≥δ−1(#Λ)2bt, (58)

with any (t, s)-sequence in base b, then (50) and (51) hold true.

Proof. In the one-dimensional case (s = 1), from (45) we have Zs,n(Λ) = 2Dn
S(#Λ)2,

and combining this with (18) and (10) we can rewrite condition (49) as (55) and (56),

respectively. In the multidimensional case (s ≥ 2), in the case of anisotropic tensor

product polynomial spaces using Theorem 8 we can rewrite condition (49) as (57) and

(58). Thanks to Theorem 9, conditions (55), (56), (57) and (58) ensure that (50) and

(51) hold true in each one of the cases.

Notice that, in conditions (57) and (58), for any b ≥ 2 it holds

b− 1

(b+ 3) ln b
≤ 0.311,

and the terms O(s2) and O(s) are precisely quantified in Theorem 8.
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5.2. Evaluations at random point sets

Discrete least squares with evaluations at random points have been analyzed in [7, 6,

19, 21, 22, 20]. In [22, Theorem 3] it is proven that the univariate discrete least-squares

approximation with random evaluations is stable and accurate with high probability,

when the number of evaluations is proportional to the square of the dimension of

the polynomial space, and for any “quasi-uniform” density ρ, i.e. densities which are

bounded and bounded away from zero. An analogous univariate result has been proven

in [7] but in expectation rather than in probability. The case of beta and gaussian den-

sities have been analyzed in [19, Chap. 3]. In the following we report the multivariate

result which has been proven in [6], in the particular case of the uniform density. Ex-

tensions to the Chebyshev density can also be found in [6], and further generalizations

to the beta family can be obtained using the results proven in [20].

For a given M > 0, we assume that the target function satisfies a uniform bound

|φ(y)| ≤M for any y ∈ Is. In addition, we introduce the truncation operator TM(t) :=

sign(t) min{M, |t|} and define the truncated discrete least-squares projector Π̃n
Λ :=

TM ◦ Πn
Λ. For any δ ∈ (0, 1), we define ζ(δ) := δ + (1− δ) ln(1− δ) > 0.

Theorem 10 (from [6]). For any γ > 0, any δ ∈ (0, 1) and any downward closed

multi-index set Λ ⊂ Ns
0, if n satisfies

n

lnn
≥ 1 + γ

ζ(δ)
(#Λ)2 (59)

then for any φ ∈ C0(Is) with ‖φ‖L∞(Is) ≤M , the following hold

E
(
‖φ− Π̃n

Λφ‖2
L2(Is)

)
≤
(

1 +
4ζ(δ)

(1 + γ) lnn

)
‖φ− ΠΛφ‖2

L2(Is) + 8M2n−γ, (60)

Pr

(
‖φ− Πn

Λφ‖L2(Is) ≤

(
1 +

√
1

1− δ

)
inf
u∈PΛ

‖φ− u‖L∞(Is)

)
≥ 1− 2n−γ,

Pr

(
cond

(
A>A

)
≤ 1 + δ

1− δ

)
≥ 1− 2n−γ,

where the expectation in (60) is taken over all possible random point sets.

Theorem 10 asserts that the discrete least-squares approximation is stable and

optimally convergent in any dimension and for any downward closed multi-index set

Λ, if the number of sampling points is proportional to the square of the dimension of

the polynomial space (up to logarithmic factors). We aim now at comparing this result

with the one obtained for low-discrepancy point sets derived in §5.1.

5.3. Low-discrepancy point sets versus random point sets

With both deterministic or random points, in any dimension s and for any downward

closed multi-index set Λ, the discrete least-squares approximation is stable and accurate

under condition (49) or (59), respectively.
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The first notable difference is that in Theorem 10 the stability and accuracy of

discrete least squares on polynomial spaces are proven with high probability, whereas

in Corollary 5 the stability and accuracy are proven with certainty.

In the one-dimensional case we summarize the following situation. The condition

to ensure stability and accuracy, with evaluations in random uniformly distributed

points, requires the number of evaluations n to scale like n ∝ w2 up to a logarithmic

factor in n, with respect to the highest degree w retained in the polynomial space. The

choice of evaluations at low-discrepancy point sets of “open” type requires n ∝ w2,

again up to a logarithmic factor in n, whereas the choice of evaluations at the low-

discrepancy point set (17) of “closed” type requires n ∝ w2, without any logarithmic

factor. Therefore, in one dimension, the same proportionality relation n ∝ w2 ensures

stability and accuracy, no matter which type of points is being used.

In the multidimensional case in any dimension, the condition n ∝ (#Λ)2 ensures sta-

bility and accuracy of discrete least squares on polynomial spaces of anisotropic tensor

product type, up to a dimension-free logarithmic factor in the case of random points,

and up to a dimension-dependent logarithmic factor in the case of low-discrepancy

points. With more general polynomial spaces PΛ, associated with arbitrary downward

closed multi-index sets Λ, the condition n ∝ (#Λ)2 with random points might worsen

to n ∝ (#Λ)4, again up to a dimension-dependent logarithmic factor, in the case of

low-discrepancy points, according to our estimates.

The number of points n required by condition (59) with random points can be lower

or larger than the number of points required by condition (49) with deterministic points,

depending on the dimension s, on the multi-index set Λ, on the parameter γ, and on the

parameters b and t which determine the low-discrepancy point set of “open” or “closed”

type. In particular, the parameters t and b still depend on the dimension s and on the

number of points n, see e.g. http://mint.sbg.ac.at, complicating the comparison

between condition (59) and condition (49), i.e. (57)–(58). The two conditions (59)

and (49) have different consequences: with random points, stability and accuracy are

achieved with a confidence level which still depends on γ; with low-discrepancy points,

stability and accuracy are achieved with certainty. The one-dimensional case s = 1 is

aside: with the (0, 1, 1)-net in base b = n given by (17), condition (49) is always less

demanding than (59). In higher dimension s ≥ 2, on the one hand, for any admissible

choice of the parameters b, m and t there might be a choice of γ > 0 such that (59) is

less demanding than (49). Here “admissible” means that the choice of the parameters

b, m and t is not arbitrary but obeys to specific constraints. On the other hand, it is

always possible to choose a sufficiently large γ such that (59) becomes more demanding

than (49), but still cannot reach a confidence level equal to one, which can be achieved

only in the limit n going to infinity. The precise comparison between (59) and (49)

should also take into account all the constants arising from the upper bounds of the

star discrepancy and the interplay among the parameters n, s, b and t outlined in §3.

Remark 3. In the case of independent and uniformly distributed points, probabilistic
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bounds for the star discrepancy have been derived in [1] showing that

Pr

(
Dn
s ≤ c(s, ξ)

√
s√
n

)
≥ ξ, with c(s, ξ) := 5.7 +

√
4.9 +

ln ((1− ξ)−1)

s
,

with ξ ∈ (0, 1). The use of this bound allows us to prove the stability and accuracy with

high probability of discrete least squares with evaluations at random points, following

the lines of the proof of Theorem 9. Unfortunately in this case the condition requires

n ∝ (#Λ)4, which is nonoptimal w.r.t. condition (59) in Theorem 10.

6. Conclusions

We have proven that, in anisotropic tensor product polynomial spaces in any dimen-

sion, discrete least squares with evaluations at low-discrepancy point sets are stable

and accurate if the number of evaluations is proportional to the square of the dimen-

sion of the polynomial space, up to a dimension-dependent logarithmic factor. Here,

accuracy is evaluated in terms of the best approximation error in the L∞ norm. With

any polynomial space associated with an arbitrary downward closed multi-index set,

stability and accuracy have been proven under a more demanding sufficient condition,

with at most a quartic power rather than a quadratic power. The conditions derived in

our analysis will automatically take advantage of any future improvement in the upper

bounds for the star discrepancy of “open” and “closed” point sets.
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Appendix A. Proofs of Lemmas 2 and 3

Proof of Lemma 2. From Definition 2, in the one-dimensional case S = {1} the star

discrepancy of any (t,m, s)-net in base b with n = bm points satisfies Dn
S ≤ btn−1.

Using the propagation rule of Lemma 1 and the upper bound stated in Theorem 2 for

s ≥ 2 we obtain

Dn
s (θ) =

∑
∅6=R⊆S

Dn
Rθ
|R| =

∑
R⊆S
|R|=1

Dn
Rθ
|R| +

∑
R⊆S
|R|≥2

Dn
Rθ
|R| ≤ bt

n

sθ +
s∑
q=2

(
s

q

)
θq

q−1∑
v=0

a
(q)
v,bm

v

︸ ︷︷ ︸
T1

 .
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Now we estimate the term T1 as:

T1 :
s∑
q=2

(
s

q

)
θq

q−1∑
v=0

a
(q)
v,bm

v =
s−1∑
v=0

mv

s∑
q=v+2

(
s

q

)
θqa

(q)
v,b

=
s−1∑
v=0

mv

(
s− 1

v

)
1

v!

s−v−2∑
q=0

θq
(
s− v − 2

q

)
s(s− v − 1)

(q + v + 1)(q + v + 2)

×
(
b+ 2

2

)q (
b− 1

2

)v
θv+2

(
a

(2)
0,b + (q + v + 2)2 − 4

)
+

s−1∑
v=1

mv

(
s− 1

v

)
1

(v − 1)!

×
s−v−2∑
q=0

θq
(
s− 1− v

q

)
s

(q + v)(q + v + 1)

(
b+ 2

2

)q (
b− 1

2

)v
θv+1a

(2)
1,b

≤
s−1∑
v=0

mv

(
s− 1

v

)
1

v!

(
b− 1

2

)v
θv+2s(s− v − 1)

×


(
a

(2)
0,b − 4

)
(v + 1)(v + 2)

+ 1 +
1

(v + 1)

 s−v−2∑
q=0

θq
(
s− v − 2

q

)(
b+ 2

2

)q

+
s−1∑
v=1

mv

(
s− 1

v

)
1

(v − 1)!

(
b− 1

2

)v
θv+1a

(2)
1,b

s

v(v + 1)

s−v−2∑
q=0

θq
(
s− 2− v

q

)(
b+ 2

2

)q

=
s−1∑
v=0

mv

(
s− 1

v

)
1

v!

(
b− 1

2

)v
θv+2s(s− v − 1)


(
a

(2)
0,b − 4

)
(v + 1)(v + 2)

+ 1 +
1

(v + 1)

(1 + θ
b+ 2

2

)s−v−2

︸ ︷︷ ︸
T2

+
s−1∑
v=1

mv

(
s− 1

v

)
1

v!

(
b− 1

2

)v
θv+1a

(2)
1,b

s

v + 1

(
1 + θ

b+ 2

2

)s−v−2

.︸ ︷︷ ︸
T3

We introduce the functions

f1(v, s, b, θ) :=θs(s− v − 1)
1

v!


(
a

(2)
0,b − 4

)
(v + 1)(v + 2)

+ 1 +
1

(v + 1)

 ,

f2(v, s, b, θ) :=
1

v!

(
a

(2)
1,b

s

v + 1

)
,

that are products of decreasing functions in v. Hence, for any choice of the parameters

s, b and θ, the two points v̂1 = 0 and v̂2 = 1 satisfy

f1(v, s, b, θ) ≤ f1(v̂1, s, b, θ), ∀v = 0, . . . , s− 1,

f2(v, s, b, θ) ≤ f2(v̂2, s, b, θ), ∀v = 1, . . . , s− 1.
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Afterwards, we estimate the terms T2 and T3 as

T2 ≤ f1(0, s, b, θ)
s−1∑
v=0

(
s− 1

v

)(
b− 1

2

)v
θv+1

(
1 + θ

b+ 2

2

)s−v−2

mv,

T3 ≤ f2(1, s, b, θ)
s−1∑
v=1

(
s− 1

v

)(
b− 1

2

)v
θv+1

(
1 + θ

b+ 2

2

)s−v−2

mv,

and summing up the series we finally obtain

T1 ≤T2 + T3

≤θ
(

1 + θ
b+ 2

2

)s−2
((

1 +
θ(b− 1)

2 + θ(b+ 2)

lnn

ln b

)s−1

(f1(0, s, b, θ) + f2(1, s, b, θ))− f2(1, s, b, θ)

)
.

To shorten formulas, we introduce the functions g = g(s, b, θ) and h = h(s, b) defined in

(21)–(22) such that g(s, b, θ) = f1(0, s, b, θ)+f2(1, s, b, θ) and h(s, b) = f2(1, s, b, θ).

Remark 4. For given values of θ, b, s and n, the upper estimate (20) can be optimized.

We introduce two real constants C1 and C2 such that

C1, C2 ≥ 1,

and the parametric upper estimate

Dn
s (θ) ≤ θbt

n

((
1 + θ

b+ 2

2

)s−2
((

1 +
θ(b− 1)

2 + θ(b+ 2)

lnn

C1 ln b

)s−1

f̃1(v̂1, s, b, θ, C1)

+

(
1 +

θ(b− 1)

2 + θ(b+ 2)

lnn

C2 ln b

)s−1

f̃2(v̂2, s, b, θ, C2)− f̃2(v̂2, s, b, θ, C2)

)
+ s

)
,

(A.1)

with the functions f̃1 and f̃2 being defined as

f̃1(v, s, b, θ, C1) :=θs(s− v − 1)
Cv1
v!


(
a

(2)
0,b − 4

)
(v + 1)(v + 2)

+ 1 +
1

(v + 1)

 ,

f̃2(v, s, b, θ, C2) :=
Cv2
v!

(
a

(2)
1,b

s

v + 1

(
1 + θ

b+ 2

2

))
,

and with the points v̂1 ∈ [0, . . . , s− 1] and v̂2 ∈ [1, . . . , s− 1] such that

f̃1(v, s, b, θ) ≤ f̃1(v̂1, s, b, θ), ∀v = 0, . . . , s− 1,

f̃2(v, s, b, θ) ≤ f̃2(v̂2, s, b, θ), ∀v = 1, . . . , s− 1.

The upper bound (A.1) differs from (20) due to the smaller multiplicative term in front

of log n and to the presence of the additional terms Cv1 and Cv2 in the functions f̃1 and f̃2,

competing with the factorials v!. The upper bound (20) is a particular instance of (A.1)

with C1 = C2 = 1, and therefore can only be improved by a constrained optimization

over the parameter set {(C1, C2) ∈ R2 : C1, C2 ≥ 1}.
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Proof of Lemma 3. It holds that

Dn
s (θ) =

∑
∅6=R⊆S

Dn
Rθ
|R| =


∑
R⊆S
|R|=1

Dn
Rθ
|R|

︸ ︷︷ ︸
Q1

+
∑
R⊆S
|R|≥2

Dn
Rθ
|R|

︸ ︷︷ ︸
Q2

 .

A result from [13, Corollary 1] states that for any (t, 1)-sequence in base b ≥ 2 the star

discrepancy satisfies

Dn
S ≤

bt

n

(
a

(2)
1,b(1 + logb n) + 2

)
,

where a
(2)
1,b is the same coefficient introduced in Theorem 2 and S = {1}. We use this

bound to estimate the term Q1, and obtain

Q1 ≤
sθbt

n

(
a

(2)
1,b(1 + logb n) + 2

)
.

To estimate the term Q2 we use the upper bound stated in Theorem 3 for any s ≥ 2,

and then split the innermost summation:

Q2 ≤
bt

n

(
s∑
q=2

(
s

q

)
θq

q∑
v=0

A
(q)
v,b (logb n)v

)

=
bt

n


s∑
q=2

(
s

q

)
θq
b+ 2

2
a

(q)
0,b︸ ︷︷ ︸

I

+
s∑
q=2

(
s

q

)
θq

q−1∑
v=1

a
(q)
v,b 2v (logb n)v︸ ︷︷ ︸

II

+
s∑
q=2

(
s

q

)
θq

q−1∑
v=1

a
(q)
v,b

b− 1

2
(logb n)v︸ ︷︷ ︸

III

+
s∑
q=2

(
s

q

)
θq

q−1∑
v=0

a
(q)
v,b

b− 1

2(v + 1)
(logb n)v+1

︸ ︷︷ ︸
IV

 ,

where in the term IV we have merged the terms

q−1∑
v=1

a
(q)
v−1,b

b− 1

2v
(logb n)v + a

(q)
q−1,b

b− 1

2q
(logb n)q =

q∑
v=1

a
(q)
v−1,b

b− 1

2v
(logb n)v

=

q−1∑
v=0

a
(q)
v,b

b− 1

2(v + 1)
(logb n)v+1 .
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For the terms II, III, IV, swapping the two summations we get

II :
s∑
q=2

(
s

q

)
θq

q−1∑
v=1

a
(q)
v,b 2v (logb n)v =

s−1∑
v=1

2v (logb n)v
s∑

q=v+2

(
s

q

)
θqa

(q)
v,b

=
s−1∑
v=0

2v (logb n)v
s∑

q=v+2

(
s

q

)
θqa

(q)
v,b︸ ︷︷ ︸

IIa

−
s∑
q=2

(
s

q

)
θqa

(q)
0,b︸ ︷︷ ︸

IIb

,

III :
s∑
q=2

(
s

q

)
θq

q−1∑
v=1

a
(q)
v,b

b− 1

2
(logb n)v =

b− 1

2

s−1∑
v=1

(logb n)v
s∑

q=v+2

(
s

q

)
θqa

(q)
v,b

=
b− 1

2

s−1∑
v=0

(logb n)v
s∑

q=v+2

(
s

q

)
θqa

(q)
v,b︸ ︷︷ ︸

IIIa

− b− 1

2

s∑
q=2

(
s

q

)
θqa

(q)
0,b︸ ︷︷ ︸

IIIb

,

IV :
s∑
q=2

(
s

q

)
θq

q−1∑
v=0

a
(q)
v,b

b− 1

2(v + 1)
(logb n)v+1 =

s−1∑
v=0

b− 1

2(v + 1)
(logb n)v

s∑
q=v+2

(
s

q

)
θqa

(q)
v,b.

For the term IIa, using the result obtained with nets in the proof of Lemma 2, we

obtain

IIa :
s−1∑
v=0

2v (logb n)v
s∑

q=v+2

(
s

q

)
θqa

(q)
v,b

≤ θ

((
1 + θ

b+ 2

2

)s−2
((

1 +
2θ(b− 1)

2 + θ(b+ 2)

lnn

ln b

)s−1

g(s, b, θ)− h(s, b)

)
+ s

)
,

with a doubled multiplicative factor in front of lnn. For the terms IIIa and IV, again

proceeding as in the proof of Lemma 2 with nets, we get

IIIa :
b− 1

2

s−1∑
v=0

(logb n)v
s∑

q=v+2

(
s

q

)
θqa

(q)
v,b

≤ θ
b− 1

2

((
1 + θ

b+ 2

2

)s−2
((

1 +
θ(b− 1)

2 + θ(b+ 2)

lnn

ln b

)s−1

g(s, b, θ)− h(s, b)

)
+ s

)
,

IV :
s−1∑
v=0

b− 1

2(v + 1)
(logb n)v

s∑
q=v+2

(
s

q

)
θqa

(q)
v,b

≤ b− 1

2

s−1∑
v=0

(logb n)v
s∑

q=v+2

(
s

q

)
θqa

(q)
v,b

≤ θ
b− 1

2

((
1 + θ

b+ 2

2

)s−2
((

1 +
θ(b− 1)

2 + θ(b+ 2)

lnn

ln b

)s−1

g(s, b, θ)− h(s, b)

)
+ s

)
.
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For the term I we have

I :
s∑
q=2

(
s

q

)
θq
b+ 2

2
a

(q)
0,b =

s∑
q=2

(
s

q

)
θq
(
b+ 2

2

)q−2 (
a

(2)
0,b + q2 − 4

)
,

and putting together the terms I, IIb and IIIb, we arrive at

I − IIb− IIIb =
s∑
q=2

(
s

q

)
θq
b+ 2

2
a

(q)
0,b −

b+ 1

2

s∑
q=2

(
s

q

)
θqa

(q)
0,b

=
1

2

s∑
q=2

(
s

q

)
θq
(
b

2
+ 1

)q−2 (
a

(2)
0,b + q2 − 4

)
=

1

2

(
−(a

(2)
0,b − 4)

(
b+ 2

2

)−2

− (a
(2)
0,b − 3)

(
b+ 2

2

)−1

+
s∑
q=0

(
s

q

)
θq
(
b

2
+ 1

)q−2 (
a

(2)
0,b + q2 − 4

))

≤1

2

(
b+ 2

2

)−2(
4− a(2)

0,b +
(

3− a(2)
0,b

)(b+ 2

2

)
+
(
a

(2)
0,b + s2 − 4

)(
1 + θ

b+ 2

2

)s)
. (A.2)

Now collecting the estimates for the terms IIa, IIIa, IV and (A.2) (that is an upper

bound for the summation of the terms I, IIb and IIIb) we obtain the upper bound of

Q2, and then summing the upper bounds of Q1 and Q2 we obtain the thesis. To shorten

formulas we write the thesis using the auxiliary functions r = r(b) and w = w(s, b)

defined in (24)–(25).
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