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Abstract Gaussian random fields are widely used as building blocks for modeling stochastic

processes. This paper is concerned with the efficient representation of d-point correlations for

such fields, which in turn enables the representation of more general stochastic processes that

can be expressed as a function of one (or several) Gaussian random fields. Our representation

consists of two ingredients. In the first step, we replace the random field by a truncated

Karhunen-Loève expansion and analyze the resulting error. The parameters describing the

d-point correlation can be arranged in a tensor, but its storage grows exponentially in d. To

avoid this, the second step consists of approximating the tensor in a low-rank tensor format,

the so called Tensor Train decomposition. By exploiting the particular structure of the tensor,

an approximation algorithm is derived that does not need to form this tensor explicitly and

allows to process correlations of order as high as d = 20. The resulting representation is

very compact and its use is illustrated for elliptic partial differential equations with random

Gaussian forcing terms.

Keywords: Gaussian random fields, n-points correlations, low-rank approximation, Karhunen-
Loève expansion, Tensor Train decomposition.

1 Introduction

This paper is concerned with the efficient representation of d-point correlation functions for a
(possibly non-stationary) Gaussian random field f on a bounded domain D ⊂ Rn. We particu-
larly focus on the case d > 2. This gives rise to a number of challenges, as a d-point correlation
function is defined on the domain D × D × . . . × D ⊂ Rdn. Therefore a naive representation
would lead to storage requirements growing exponentially in d. In this work, we propose to
overcome this issue by combining a truncated Karhunen-Loève (KL) expansion of the random
field with low-rank tensor techniques.

Gaussian random fields are widely used as building blocks for modeling stochastic processes.
Efficient representations of d-point correlations, as the one proposed in this paper, will then

†ANCHP, EPF Lausanne, station 8, CH-1015 Lausanne, Switzerland. daniel.kressner@epfl.ch. CT is now
with Mathworks, Natick, USA. christine.tobler@mathworks.com.
‡CSQI, EPF Lausanne, station 8, CH-1015 Lausanne, Switzerland. fabio.nobile@epfl.ch. RK is now with

RICAM, Linz, Austria. rajesh.kumar@oeaw.ac.at.
∗Supported by the Italian grant FIRB-IDEAS (Project n. RBID08223Z) “Advanced Numerical Techniques for

Uncertainty Quantification in Engineering and Life Science Problems (NUMQUES)”.

1



be useful to derive analogous representations and compute statistics of more general stochastic
processes that can be expressed as a function of one (or several) Gaussian random fields.

The target application discussed in this work is the computation of statistics of the solution
of a well-posed linear partial differential equation (PDE) with random Gaussian input data.
In this case, one can derive exact high-dimensional differential equations, obtained by d-fold
tensorization of the original PDE, that relate the d-point correlation of the solution with the
d-point correlation of the input data. This problem has already been addressed several times
in the literature. We mention, in particular, the works [22, 26, 11] that propose and investigate
sparse finite element approximations of the d-moment equation for strongly elliptic PDEs. More
recently, extensions of this idea to (non-coercive) problems in mixed form of Hodge-Laplace type
have been considered in [4, 13]. Thanks to the fact that the d-point correlation of the solution of
the PDEs typically has Sobolev regularity on mixed derivatives, sparse finite element approxima-
tions appear to be particularly suited. However, their implementation in a Galerkin framework
remains quite cumbersome. An approach using frames has been proposed in [11], which allows
to reuse available deterministic codes. However, one still has to construct a hierarchy of nested
triangulations and the corresponding discrete deterministic problems.

Our approach is alternative to the ones mentioned above and makes use of a low-rank rep-
resentation of the tensor associated with the d-point correlation expanded in the KL eigenfunc-
tions. We first focus on the representation of the correlations of a given Gaussian random field
in the Tensor Train (TT) format proposed in [17, 19]. Different methods for approximating a
given tensor in the TT format exist. In principle, the cross approximation algorithms proposed
in [18, 20] are well suited for this purpose, as they only need to access selected entries from the
tensor. However, in our preliminary numerical experiments, we have found these methods to be
too slow in the context of our application. We therefore propose a new method that takes the
particular structure of the tensors at hand into account. We stress that our algorithm heavily
relies on the fact that the random field is expanded in an orthonormal basis (like the basis of KL
eigenfunctions), and does not directly apply to other types of non-orthogonal expansions such
as the one produced by a pivoted Cholesky decomposition [10].

When considering the d-point correlation for the solution of a PDE with the data represented
in a low rank tensor format, the tensor structure of the d-moment equation allows to obtain a low
rank approximation to the solution in a straightforward manner, without resorting to a Galerkin
projection on a sparse approximation space. Our approach has the additional advantages that
it can be built on any available deterministic solver as a black-box. Moreover, we observe that
the low rank representation for the solution only has a comparably mild dependence on d.

We finally mention that the ideas presented here can be extended to non-linear PDEs or
PDEs depending non-linearly on the input random field, as it is the case for instance for PDEs
with random coefficients or defined in random domains, by adopting a perturbation approach
in the case of small noise, see e.g. [3, 5, 6, 12, 25].

The rest of this paper is organized as follows. In Section 2, we derive the expansion for the
d-point correlation of a given Gaussian random field f in terms of tensorized KL eigenfunctions.
Moreover, we show that the resulting tensor is sparsifiable in the sense that only M terms need
to be retained to achieve an error O(M−α) with α independent of d (the involved constant,
however, depends strongly on d), under mild assumptions on the decay of the KL expansion.
Section 3 is concerned with the approximation of the tensor in the TT format and presents
cheaply computable expressions for the error. In Section 4, several numerical examples demon-
strate the efficiency of our approach in computing correlations for Gaussian random fields with
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covariance function from the Matérn family up to d = 20. Section 5 concludes the paper by
applying our approach to linear elliptic PDEs with random forcing terms.

2 Series representations of Gaussian random fields and their
d-point correlations

Let D ⊂ Rn be an open, bounded domain and (Ω, Σ, P ) a complete probability space, Ω being
the set of outcomes, Σ ⊂ 2Ω the σ-algebra of events and P : Σ → [0, 1] a probability measure.
In this work, we consider a real valued Gaussian random field f : D×Ω→ R (see e.g. [1]) with
continuous covariance function Cov : D ×D → R,

Cov(x, y) = E[(f(x, ·)− E[f ](x))(f(y, ·)− E[f ](y))], x, y ∈ D

where E[X] =
∫

ΩX(ω)dP (ω) denotes the expectation of a random variable X : Ω→ R.
By Mercer’s theorem, the random field f can be decomposed into the so called Karhunen-

Loève expansion (see e.g. [15, 16])

f(x, ω) = E[f ](x) +
∞∑
i=1

√
λiYi(ω)Φi(x) (1)

where λi ≥ 0 are the eigenvalues of the covariance operator K : L2(D) → L2(D) defined by
(Kψ)(x) =

∫
D×D Cov(x, y)ψ(y)dy. The corresponding eigenfunctions Φi form an orthonormal

basis in L2(D), whereas Yi are independent standard Gaussian random variables, Yi ∼ N (0, 1).
We assume hereafter that the eigenvalues λi have been ordered in decreasing order.

It is well known that the series in (1) exhibits mean-square convergence in ω and uniform
convergence in x. Let us denote the N -term truncated Karhunen-Loève expansion by fN =
E[f ] +

∑N
i=1

√
λiYiΦi. Since f − fN is a centered Gaussian random field for any N , we actually

have Lp-convergence for any p > 0:

lim
N→∞

sup
x∈D

E[|f − fN |p] = 0, ∀p > 0. (2)

This result follows from the fact that any centered Gaussian random variable satisfies E[|X|p] =
C(p)E[X2]

p
2 with C(p) = 1√

2π

∫
R |x|

pe−x
2/2dx. In particular, for p even, C(p) = γp = p!

2p/2(p/2)!

is the p-th moment of the standard normal distribution.
We finally recall that∫

D
Var(f) =

∞∑
i=1

λi, and

∫
D

Var(f − fN ) =

∞∑
i=N+1

λi.

Matérn family. This family of covariance functions, for stationary random fields, has been
widely employed for instance in geostatistics applications [8] and will be used in the numerical
experiments described in Sections 4 and 5. For all members of this family, the covariance
Cov(x, y) only depends on x, y via ‖x− y‖:

Cov(x, y) =
1

2κ−1Γ(κ)

(
‖x− y‖

lc

)κ
Kκ

(
‖x− y‖

lc

)
, (3)
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where Kκ(·) is the modified Bessel function of the second kind of order κ > 0, and lc > 0 is a
scale parameter that represents a characteristic correlation length, see [8]. The corresponding
centered and stationary Gaussian random field is κ-times mean square differentiable.

For κ = 0.5, the Matérn covariance function reduces to the exponential covariance Cov(x, y) =
e−‖x−y‖/lc , while it reduces to the Gaussian covariance Cov(x, y) = e−‖x−y‖

2/l2c for κ → ∞. In
Figure 1(a) we show the decay of the eigenvalues λi of the corresponding covariance operator
in one dimension for different values of κ. Notice that the eigenvalues decay asymptotically as
λi ∼ i−( 2κ

n
+1) for i→∞, see e.g. [9].
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Figure 1: Decay of eigenvalues (a) and the covariance (b) of the Matérn covariance operator
for different values of κ.

2.1 Series expansion of d-point correlations

In the following, we aim to approximate the d-point correlation of f , defined as

µdf : D
d → R, µdf (x1, . . . , xd) := E

[ d∏
η=1

(f(xη, ·)− E[f ](xη))
]
.

Inserting the Karhunen-Loève expansion of f from (1) leads to the following series representation:

µdf (x1, . . . , xd) =

∞∑
i1=1

· · ·
∞∑
id=1

E
[ d∏
η=1

√
λiηYiη

] d⊗
η=1

Φiη(xη). (4)

Because of (2) this series converges uniformly in D
d
.

We now introduce the multi-index i ∈ Nd and denote by mi(`) the multiplicity of ` in the
multi-index i = (i1, . . . , id), that is,

mi(`) := ]{ij = `, j = 1, . . . , d} for ` = 1, 2, . . . . (5)

Notice that mi has finite support, having d non-zero entries at most. Thanks to the mutual
independence of the random variables Yi, the series expansion (4) can be equivalently written
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as

µdf (x1, . . . , xd) =
∑
i∈Nd
Ci1,...,id

d⊗
η=1

Φiη(xη), Ci1,...,id =
∞∏
`=1

λ
mi(`)/2
` E

[
Y
mi(`)
`

]
. (6)

Recalling that the moments of a standard normal random variable Y ∼ N (0, 1) satisfy

γm = E[Y m] =

{
0, for m odd,

m!
2m/2(m/2)!

, for m even,

it follows that Ci1,...,id is nonzero only when all multiplicities mi(`) are even. In particular, the
d-point correlation µdf is always zero for odd d and we therefore focus on the case of even d from
now on.

Assuming that all multiplicities mi(`) are even implies that the index i = (i1, . . . , id) must

be a permutation of (j1, j1, j2, j2, . . . , jd/2, jd/2) for j = (j1, . . . , jd/2) ∈ N
d
2 . We now define the

set Σ ⊂ N
d
2 as the set of d/2-tuples with increasing entries:

Σ = {j ∈ N
d
2 , such that j1 ≤ j2 ≤ . . . ≤ jd/2}.

For any j ∈ Σ, we let Pj denote the set of all unique permutations of (j1, j1, j2, j2, . . . , jd/2, jd/2).
For example, when d = 4 and j1 = 1, j2 = 2,

Pj =
{

(1, 1, 2, 2), (1, 2, 1, 2), (1, 2, 2, 1), (2, 1, 1, 2), (2, 1, 2, 1), (2, 2, 1, 1)
}
.

This notation allows us to equivalently write the d-point correlation as

µdf (x1, . . . , xd) =
∑
j∈Σ

∑
i∈Pj

( ∞∏
`=1

λ
mj(`)
` γ2mj(`)

)(
d⊗
η=1

Φiη(xη)

)
. (7)

2.2 Optimal Series truncation and error estimates

In this section, we consider best M -term approximations of the series (7) representing the d-
point correlation of f . We derive estimates for the corresponding approximation error, with the
main result given by Theorem 2.3 below.

Let ΛM ⊂ Σ be an arbitrary subset of Σ such that
∑

j∈ΛM
]Pj = M . We consider the

approximation of µdf when restricting the first summation in (7) to the subset ΛM :

µdf,ΛM (x1, . . . , xd) =
∑
j∈ΛM

∑
i∈Pj

∞∏
`=1

λ
mj(`)
` γ2mj(`)

(
d⊗
η=1

Φiη(xη)

)
.

Notice that this approximation contains exactly M rank-one tensor product terms
⊗d

η=1 Φiη(xη).
It can therefore be viewed as a rank-M approximation in the Canonical Polyadic (CP) for-
mat [14]. We now aim at estimating the L2(Dd)-error between µdf and µdf,ΛM given by

‖µdf − µdf,ΛM ‖
2
L2(Dd) =

∫
D
. . .

∫
D︸ ︷︷ ︸

d times

∑
j∈ΛcM

∑
i∈Pj

∞∏
`=1

λ
mj(`)
` γ2mj(`) (Φi1 ⊗ · · · ⊗ Φid)

2

,
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where ΛcM = Σ \ ΛM . Using the L2-orthogonality of the basis {Φi}∞i=1, this simplifies to

‖µdf − µdf,ΛM ‖
2
L2(Dd) =

∑
j∈ΛcM

∑
i∈Pj

∞∏
`=1

λ
2mj(`)
` γ2

2mj(`)
=
∑
j∈ΛcM

]Pj aj, (8)

where we have set

aj =
∞∏
`=1

λ
2mj(`)
` γ2

2mj(`)
.

To state our results, we need to introduce the following additional notation:

• {al}∞l=1 is the sequence of the coefficients {aj, j ∈ Σ} ordered in decreasing order such that
al ≥ al+1. To simplify the notation, we still use the symbol {al}.

• j(l) is the multi-index j ∈ Σ corresponding to the l-th coefficient in the ordered se-
quence {al}.

• {ãl}∞l=1 is the repeated sequence defined as

{ãl}∞l=1 = {a1, . . . , a1︸ ︷︷ ︸
]Pj(1)

, a2, . . . , a2︸ ︷︷ ︸
]Pj(2)

, . . .}.

We now define the set of M largest coefficients (each one considered with its multiplicity) as

Λopt
M = {j ∈ Σ, corresponding to the M largest ãl}.

The following two lemmas will be needed to derive our main result.

Lemma 2.1. Assuming that the sequence {ãl} is p-summable for some p ≤ 1, that is,

∞∑
l=1

ãpl =

∞∑
l=1

]Pj(l)a
p
l <∞,

we have

‖µdf − µdf,Λopt
M
‖L2(Dd) ≤M1/2−1/2p

( ∞∑
l=1

ãpl

)1/2p

.

Proof. It can easily be seen from equation (8) that

‖µdf − µdf,Λopt
M
‖2L2(Dd) =

∑
j∈(Λopt

M )c

]Pj aj =
∑
l>M

ãl.

Now, Stechkin’s Lemma (see, e.g., [7]) immediately implies

‖µdf − µdf,Λopt
M
‖2L2(Dd) ≤M

1−1/p

( ∞∑
l=1

(ãl)
p

)1/p

.

6



The following lemma quantifies the p-summability of the sequence {ãl}.

Lemma 2.2. Suppose that the sequence {λ`}` is 2p-summable, that is,
∑∞

`=1 λ
2p
` < +∞ for

some p < 1/2. Then the sequence {ãl}l is p-summable and

∞∑
l=1

ãpl ≤ γd

( ∞∑
`=1

λ2p
`

) d
2

.

Proof. We have

∞∑
l=1

ãpl =
∞∑
l=1

]Pj(l)a
p
l =

∑
j∈Σ

]Pj

( ∞∏
`=1

λ
2mj(`)
` γ2

2mj(`)

)p
.

Let us now introduce sequences m ∈ NN with |m| =
∑∞

j=1mj <∞ and use the notation

m! =

∞∏
j=1

mj ! and 2m =
∞∏
j=1

2mj = 2|m|.

Substituting the value of ]Pj and using the fact that there is a one-to-one correspondence between
j ∈ Σ and m ∈ NN with |m| = d/2, we obtain

∞∑
l=1

ãpl =
∑
|m|=d/2

(2|m|)!
(2m)!

( ∞∏
`=1

λ2 pm`
` γ2p

2m`

)

=
∑
|m|=d/2

d !

(2m)!

(
(2m)!

2mm!

)2p ∞∏
`=1

λ2 pm`
`

=
d !

2dp(d/2)!

∑
|m|=d/2

(2m)!2p−1

m!2p−1

(d/2)!

m!

∞∏
`=1

λ2 pm`
` .

The last expression can be simplified further to

∞∑
l=1

ãpl =
d !

2dp(d/2)!
2d(2p−1)/2

∑
|m|=d/2

((2m− 1)!!)2p−1 (d/2)!

m!

∞∏
`=1

λ2 pm`
` .

Since p < 1/2, we have ((2m− 1)!!)2p−1 < 1 for any m > 0 and it therefore follows that

∞∑
l=1

ãpl ≤
d !

2d/2(d/2)!

∑
|m|=d/2

(d/2)!

m!

∞∏
`=1

λ2 pm`
` = γd

( ∞∑
`=1

λ2p
`

)d/2
,

where we have used the multinomial theorem in the last step. This yields the desired result.

The following theorem states the main result of this section.
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Theorem 2.3. Assume there exists p < 1 such that

∞∑
`=1

λp` < +∞, (9)

then, for any even d ≥ 2,

‖µdf − µdf,Λopt
M
‖L2(Dd) ≤M

1
2
− 1
p

γd
( ∞∑
`=1

λp`

) d
2


1
p

(10)

with γd = d !
2d/2(d/2)!

.

Proof. The result follows directly from combining the results of Lemma 2.1 and Lemma 2.2,
with 2p replaced by p.

Remark 2.4 (Exponential decay). In the case of exponential decay of the eigenvalues of the
KL expansion, λj ≤ Ce−sj, s > 0, the sum in (9) is bounded for any p > 0:

∞∑
`=1

λp` ≤ (Ce−s)p
1

1− e−sp
.

The freedom in choosing the parameter p can be used to optimize the bound (10). For this
purpose, we follow closely the argument in [2]. Using the asymptotic estimate (1 − e−sp) ∼ sp
for p � 1 and γd ∼

√
2(d/e)d/2, obtained from the Stirling approximation, the bound (10) can

be written as

‖µdf − µdf,Λopt
M
‖L2(Dd) .

√
(Ce−s)dM

[
√

2M−1

(
d

esp

) d
2

] 1
p

.

This expression is minimized for p = d
s
d
√

2M−2, leading to the approximate bound

‖µdf − µdf,Λopt
M
‖L2(Dd) .

√
(Ce−s)dM exp{−s2−

d+1
d M

2
d }. (11)

3 Tensor compression of d-point correlations

In this section, we will discuss a compressed storage scheme for representing the d-point corre-
lation µdf . Starting from the representation (6), we will proceed in two steps.

In the first step, we truncate the infinite sum over i ∈ Nd to a finite sum over i ∈ {1, . . . , N}d,
which corresponds to considering only the first N terms in the KL expansion (1). The effect of
this truncation will be analyzed in Section 3.1.

In the second step, we consider the N ×· · ·×N tensor C of order d containing all coefficients

Ci1,...,id =
N∏
`=1

λ
mi(`)/2
` γmi(`), i ∈ {1, . . . , N}d, (12)

8



where γmi(`) = E
[
Y`(ω)mi(`)

]
. Even when exploiting the many zero entries of C, constructing

or storing this tensor is impossible, except for very small values of d, say d = 2 or d = 4. It
will therefore be necessary to store C approximately in a data-sparse format. For this purpose,
we will make use of the so called tensor train (TT) decomposition [19], which we briefly recall
in Section 3.2. Methods for computing exact and approximate TT decompositions of C are
described in Section 3.3 and Section 3.4, respectively.

3.1 Error from truncating the Karhunen-Loève expansion

Assuming that the function f(x, ω) admits a KL expansion of the form (1), we will consider the
truncated KL expansion

fN (x, ω) = E(f) +

N∑
i=1

√
λiYi(ω)Φi(x).

This section is concerned with computing the resulting error in the corresponding d-point cor-
relation function.

In practice, the function f is discretized in space and, consequently, the KL expansion only
has finitely many terms. More specifically, the number Ñ � N of these terms corresponds to
the degrees of freedom in the discretization. In the following, we assume such a setting and
derive computable formulas for

errN := ‖µdf − µdfN ‖L2(Dd), (13)

where µdf and µdfN are the d-point correlation functions for f and fN , respectively. We now

consider the corresponding Ñ ×· · ·× Ñ tensor C̃ and the N ×· · ·×N tensor C, defined from the
(truncated) KL expansions as in (12). Since the functions Φi(x) are L2 orthonormal, it follows
from (6) that

errN = ‖C̃ − C‖2F ,

where we implicitly padded zeros to the different modes of C to match the size of C̃. Note that
‖ · ‖F denotes the usual Frobenius norm of a tensor.

Since C̃i and Ci are identical for all i ∈ {1, . . . , N}d, we have

errN =

√
‖C̃‖2F − ‖C‖2F . (14)

Thus, the problem of computing errN has been reduced to computing norms of tensors. However,
even the naive computation of these norms becomes way too expensive for larger d. The following
lemma provides a much cheaper way.

Lemma 3.1. Consider the d-th order tensor C ∈ RN×···×N defined by

Ci1,...,id =
N∏
`=1

λ
mi(`)/2
` γmi(`).

for some scalars λ1, . . . , λN ∈ R and γ0, . . . , γd ∈ R. Then

‖C‖2F = d!
(
a(1) ∗ a(2) ∗ · · · ∗ a(N)

)
d
,

9



where the second factor is the d-th component of the discrete convolution ∗ of the vectors a(j) ∈
`2(Z), j = 1, . . . , N , defined as

a(j)
m =

{
λmj γ

2
m

m! if m ∈ {0, . . . , d},
0 otherwise.

Proof. We aim to calculate

‖C‖2F =
∑

i∈{1,...,N}d
C2
i .

Similarly to the discussion in Section 2, the symmetry of Ci1,...,id allows us to rewrite this sum
in terms of the multi-index m = (m1, . . . ,md):

‖C‖2F =
∑
i∈Σ

d!∏N
j=1mi(j)!

C2
i = d!

∑
i∈Σ

N∏
j=1

λ
mi(j)
j γ2

mi(j)

mi(j)!
= d!

∑
|m|=d

N∏
j=1

a(j)
mj ,

where Σ :=
{

(i1, . . . , id) ∈ {1, . . . , N}d : i1 ≤ i2 ≤ · · · ≤ id
}

and mi(j) is defined as in (5). By
recursive application of discrete convolution, defined by

(a(1) ∗ a(2))k =
∞∑

j=−∞
a

(1)
j a

(2)
k−j ,

it follows that
∑
|m|=d

∏N
j=1 a

(j)
mj = (a(1) ∗ a(2) ∗ · · · ∗ a(N))d, which concludes the proof.

Lemma 3.1 shows that ‖C‖F can be computed within O(N2d log(Nd)) operations, when
using the FFT for computing the discrete convolutions. For larger d, say d ≥ 16, we observed
that the FFT leads to accuracy problems, probably because it mixes very small entries with
larger entries in the vectors a(j). This problem seems to disappear when implementing the
discrete convolution directly according to its definition, which is still comparably cheap.

To determine a suitable cutoff parameterN , we can now progressively increaseN = 1, 2, 3, . . .,
until the error (13) is smaller than a given tolerance ε. The results of computing the cutoff error
for two different decays of λj are shown in Figure 2, where we have used Ñ = 1000. These plots
correspond quite well with a bound of the form

‖C − CN‖F .
√
λ2
N+1 + λ2

N+2 + · · ·+ λ2
Ñ
.

3.2 Tensor Train decomposition

In the following, we will compress the truncated tensor C further by making use of the TT
(tensor train) decomposition introduced by Oseledets [19].

A general tensor X ∈ Rn1×n2×···×nd is said to be in TT decomposition if its entries can be
expressed in the form

Xi1,...,id =

r0∑
α0=1

r1∑
α1=1

· · ·
rd∑

αd=1

G1(α0, i1, α1)G2(α1, i2, α2) · · · Gd(αd−1, id, αd) (15)
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Figure 2: Error ‖C̃ − C‖F for truncating an order d tensor C̃, d = 2, 4, . . . , 10. Left: KL
eigenvalues λj = exp(−j). Right: KL eigenvalues λj = j−2.

where the tensors Gµ ∈ Rrµ−1×nµ×rµ for µ = 1, . . . , d are the so called cores of the TT de-
composition. For convenience, we have used Matlab notation for denoting the entries of the
cores.

The minimal r0, r1, . . . , rd for which (15) holds are called the TT ranks of X . Note that
we always impose the boundary conditions r0 = 1 and rd = 1 and consequently G1 and Gd are
actually n1 × r1 and rd−1 × nd matrices, respectively. For moderate TT ranks, the cores of a
TT decomposition require much less storage than the full tensor X . For example, if rµ ≡ r and
nµ ≡ n then the storage cost is reduced from O(nd) down to O(dnr2).

The TT decomposition is closely connected to the (1, . . . , µ)-matricization defined as the
n1 · · ·nµ × nµ+1 · · ·nd matrix with entries

X(1,...,µ)([i1, . . . , iµ], [iµ+1, . . . , id]) = Xi1,...,id ,

where [i1, . . . , iµ] represents the index associated with (i1, . . . , iµ), see [14] for more details. In
particular, the TT rank rµ is given by the rank of X(1,...,µ). Moreover, as explained in [19],
the singular value decompositions of X(1,...,µ) for µ = 1, . . . , d − 1 can be used to compute a
quasi-optimal approximation of lower TT ranks to X .

3.3 Construction of exact TT decomposition for C

In this section, we will derive a procedure for computing an exact TT decomposition (15) of
the N × · · · × N tensor C defined in (12). This will form the basis for the approximate TT
decomposition developed in the next section.

As mentioned before, we will only consider the case of even d = 2k, for which the represen-
tation (7) leads to the following expression for the vectorization of C:

vec(C) =
N∑

j1,...,jk=1
j1≤···≤jk

N∏
`=1

λ
mj(`)
`

(2mj(`))!

2mj(`)mj(`)!

(∑
i∈Pj

2k⊗
µ=1

eiµ

)
. (16)
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We will make use of the following fundamental property of TT decompositions [19]. Let
Gµ ∈ Rrµ−1N×rµ denote the (1, 2)-matricizations of the cores Gµ for a TT decomposition of C.
Then the matrices Up ∈ RNp×rp generated by the recursion

U1 = G1, Uµ+1 = (IN ⊗ Uµ)Gµ+1, µ = 1, . . . , d− 1 (17)

satisfy R(Up) = R(C(1,...,p)), where ⊗ denotes the Kronecker product and R denotes the range
of a matrix.

Our construction of the TT decomposition will go the opposite way. We explicitly construct
cores satisfying the relation (17) for some Uµ with R(Uµ) = R(C(1,...,µ)). For this purpose, note
that (16) immediately implies for p = 1, . . . , k the relations

R(C(1,...,p)) = span
{∑

i∈Pj

p⊗
µ=1

eiµ : j = (j1, . . . , jk) ∈ {1, . . . , N}k, j1 ≤ · · · ≤ jk
}

= span
{∑

i∈Qj

p⊗
µ=1

eiµ : j = (j1, . . . , jp) ∈ {1, . . . , N}p, j1 ≤ · · · ≤ jp
}
, (18)

where Qj is the set of all distinct permutations of j = (j1, . . . , jp). Let us now define the vectors

fj :=
1√
]Qj

∑
i∈Qj

p⊗
µ=1

eiµ . (19)

We then define the matrix Up such that its columns contain the vectors fj for all j = (j1, . . . , jp) ∈
{1, . . . , N}p with j1 ≤ · · · ≤ jp.

Lemma 3.2. The matrix Up defined above is an orthonormal basis of R(C(1,...,p)).

Proof. From (18), it follows that Up is a basis of R(C(1,...,p)). Moreover, the definition (19)
implies

〈fj, fj′〉 =
1√

]Qj · ]Qj′

∑
i∈Qj

∑
i′∈Qj′

p∏
µ=1

〈eiµ , ei′µ〉 =

{
1 if j = j′,
0 otherwise,

and hence the columns of Up are orthonormal.

Example 3.3. For d = 4, N = 3 we have U1 = G1 = (e1, e2, e3) and

U2 =
(
e1 ⊗ e1, e2 ⊗ e2, e3 ⊗ e3, . . .

(e1 ⊗ e2 + e2 ⊗ e1)/
√

2, (e1 ⊗ e3 + e3 ⊗ e1)/
√

2, (e2 ⊗ e3 + e3 ⊗ e2)/
√

2
)
.

Let the tensor G2 ∈ R3×3×6 be defined to have zero entries except for

G2(1, 1, 1) = 1, G2(2, 2, 2) = 1, G2(3, 3, 3) = 1, G2(1, 2, 4) = 1/
√

2, G2(2, 1, 4) = 1/
√

2,

G2(1, 3, 5) = 1/
√

2, G2(3, 1, 5) = 1/
√

2, G2(2, 3, 6) = 1/
√

2, G2(3, 2, 6) = 1/
√

2.

Then it can be easily verified that
U2 = (I3 ⊗ U1)G2,

where G2 ∈ R9×6 is the (1, 2)-matricization of G2.
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It is straightforward to generalize Example 3.3 and construct core tensors G2, . . . ,Gk that
satisfy the recurrence (17). As the tensor C is supersymmetric, the remaining core tensors
Gd,Gd−1, . . . ,Gk+1 are computed by simply permuting the tensors G1,G2, . . . ,Gk, as follows:

Gd−µ+1(j, i, `) = Gµ(`, i, j), µ = 1, . . . , k.

With this choice of core tensors, the recurrence (17) is satisfied. We will now modify the
middle core tensor Gk such that also the TT decomposition (15) itself is satisfied. The corre-
sponding matricization C(1,...,k) is symmetric and hence the matrix Uk provides an orthonormal
basis for the row and column spaces, implying

C(1,...,k) = UkMUTk with M := UTk C
(1,...,k)Uk.

Note that the entries of M can be explicitly computed as follows:

M(ĵ, t̂) =
√
]Qj · ]Qt Cj1,...,jk,t1,...,tk ,

where ĵ and t̂ represent the columns of Uk associated with j = (j1, . . . , jk) and t = (t1, . . . , tk),
respectively. By the recurrence (17), we have Uk = (IN ⊗ Uk−1)Gk. Hence, setting Gk := GkM
or, equivalently,

Gk(jk−1, ik, jk) :=

rk∑
`=1

Gk(jk−1, ik, `)M(`, jk),

yields
C(1,...,k) = UkU

T
k .

for Uk := (IN ⊗ Uk−1)Gk. Together with the recurrence (17), this shows that C admits a TT
decomposition with the cores

G1,G2, . . . ,Gk−1,Gk,Gk+1, . . . ,Gd.

A Matlab implementation of the described procedure for constructing an exact TT decom-
position C is available [24]. The tensor is constructed by the function call C = constr tt(d,

lambda, 0), where lambda represents the vector (λ1, . . . , λN ) and d is the order d of C.
Note that the TT rank rp of C equals the number of columns of Up and hence rp =

(
N+p−1

p

)
.

This exponential growth of the ranks limits the practicality of the exact TT decomposition and
therefore an approximation is required.

3.4 Construction of approximate TT decomposition for C

In the following, we propose a simple modification of the exact construction from the previous
section to limit the growth of the TT ranks. As before, we aim to successively construct implicit
representations of (approximate) orthonormal bases Û1, Û2, . . . , Ûk for the matricizations of C.
However, in each step we will prune columns of Ûµ that only have a negligible impact on the
overall approximation quality of the TT decomposition. This will yield a smaller orthonormal
basis Ũµ, from which we continue the construction. This idea leads to Algorithm 1, which should
be considered as a top level description only. As we will see below, none of the intermediate
tensors C0, C1, . . . , Ck needs to be constructed explicitly.
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Algorithm 1 Construct approximation of C in TT format

Input: Tensor C defined as in (12) by d = 2k and λ1, . . . , λN . Truncation tolerance ε.

Output: Tensor Ĉ in TT decomposition, such that ‖C − Ĉ‖F ≤ ε.
1: Set C0 = C.
2: Set Û1 = IN .
3: for p = 1, . . . , k do

4: Choose indices of Ûµ to form Ũµ, s.t. ‖(I − ŨµŨTµ )C
(1,...,µ)
µ−1 ‖2F ≤ ε2/d.

5: Set vec(Cµ) := (ŨµŨ
T
µ ⊗ INd−2µ ⊗ ŨµŨTµ )vec(Cµ−1).

6: Construct Ûµ+1 by joining columns of IN⊗Ũµ that represent permutations of the same multi-index.
7: end for
8: Set Ĉ = Ck.

For the tensor returned by Algorithm 1, it holds that

‖C − Ĉ‖2F = ‖C0 − Ck‖2F = ‖C0 − C1 + C1 − C2 + · · ·+ Ck−1 − Ck‖2F =
k∑

µ=1

‖Cµ−1 − Cµ‖2F ,

where the last equality follows from the fact that, for all 1 ≤ µ < ν ≤ k, the entries of the
tensor Cν−1 − Cν are zero at the positions of the nonzero entries of Cµ−1 − Cµ and hence these
differences are orthogonal to each other. Moreover, the following bound holds for µ = 1, . . . , k:

‖Cµ−1 − Cµ‖2F = ‖(INd − ŨµŨTµ ⊗ INd−2µ ⊗ ŨµŨTµ )vec(Cµ−1)‖22
≤ 2‖(INd − INd−µ ⊗ ŨµŨTµ )vec(Cµ−1)‖22
= 2‖(INµ − ŨµŨTµ )C

(1,...,µ)
µ−1 ‖2F

Thus, to ensure ‖C − Ĉ‖F ≤ ε, it is sufficient to require that

∥∥(INµ − ŨµŨTµ )C
(1,...,µ)
µ−1

∥∥2

F
≤ ε2

d
, (20)

which coincides with the criterion in Line 4 of Algorithm 1.
We now discuss the efficient evaluation of the criterion (20). Let Ωµ ⊂ {j : j1 < · · · < jµ}

contain the multi-indices corresponding to the columns that have been pruned from Ûµ to yield

the reduced basis Ũµ. Then∥∥(INµ − ŨµŨTµ )C
(1,...,µ)
µ−1

∥∥2

F
=
∑
j∈Ωµ

]Qj · ‖Ûµ(:, ĵ)TC
(1,...,µ)
µ−1 ‖2F =

∑
j∈Ωµ

]Qj · ‖Cj1,...,jp,:,...,:‖2F ,

where Ûµ(:, ĵ) represents the column of Ûµ associated with j = (j1, . . . , jp). Based on this
formula, we compute each error ]Qj · ‖Cj1,...,jp,:,...,:‖2F entailed by pruning the corresponding

column of Ûµ, and remove as many columns as possible such that the sum of the errors does not
exceed ε2/d.

A variation of Lemma 3.1 can be used to perform the evaluation of ‖Cj1,...,jµ,:,...,:‖F very
efficiently.
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Lemma 3.4. Consider the d-th order tensor C ∈ RN×···×N defined in (12) and a multi-index
t = (t1, . . . , tp) ∈ {1, . . . , N}p. Then

‖Ct1,...,tp,:,...,:‖2F = (d− p)!(ã(1) ∗ ã(2) ∗ · · · ∗ ã(N))d,

where the second factor is the d-th component of the discrete convolution ∗ of the vectors ã(j) ∈
`2(Z), j = 1, . . . , N , defined as

ã(j)
m =

{
λmj γ

2
m

(m−mt(j))! if m ∈ {mt(j),mt(j) + 1, . . . , d},
0 otherwise.

Proof. Analogously to the proof of Lemma 3.1, it can be shown that

‖Ct1,...,tp,:,...,:‖2F = (d− p)!
∑
i∈Σ

N∏
j=1

λ
mi(j)
j γ2

mi(j)

(mi(j)−mt(j))!
,

where

Σ :=
{

(t1, . . . , tp, sp+1, . . . , sd) : sj ∈ {1, . . . , N} ∀j = p+ 1, . . . , d and sp+1 ≤ · · · ≤ sd
}
.

Note that only the multiplicities mi(j), j = 1, . . . , N are used inside the sum, and that every
d-tuple in Σ is uniquely associated with an N -tuple (m1, . . . ,mN ) ∈ Σ̃:

Σ̃ :=
{

(m1, . . . ,mN ) ∈ Nd0 : m1 +m2 + · · ·+mN = d and mj ≥ mt(j) ∀j = 1, . . . , N
}
. (21)

Replacing the sum over Σ by a sum over Σ̃ leads to

‖Ct1,...,tp,:,...,:‖2F = (d− p)!
∑
m∈Σ̃

N∏
j=1

a(j)
mj ,

with a
(j)
m =

λmj γ
2
m

(m−mt(j))! . The condition mj ≥ mt(j) in Σ̃ can be enforced by replacing a
(j)
mj by ã

(j)
mj ,

with ã
(j)
mj = 0 for mj < mt(j). As described in the proof of Lemma 3.1, the resulting summation

can be expressed by repeated application of convolutions.

Once Algorithm 1 has computed the reduced bases Û1, . . . , Ûk, the core tensors of the TT
decomposition for Ĉ can be computed analogous to the procedure discussed in Section 3.3. In
fact, none of these bases needs to be formed explicitly; it is sufficient to keep track of the multi-
indices corresponding to the pruned column indices. For the technical details, we refer to the
Matlab implementation [24]. The approximate tensor Ĉ is constructed by the function call
C hat = constr tt(d, lambda, epsilon), where lambda is the vector (λ1, . . . , λN ), d is the
order d of C, and epsilon is the maximally allowed error ε.

Finally, we remark that the tensor Ĉ returned by Algorithm 1 is not necessarily supersym-
metric, as the pruning of the columns does, in general, not preserve all permutations of a given
multi-index.
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4 Numerical Experiments

In this section, we assess the performance of the TT decomposition for approximating d-point
correlation functions. For this purpose, we apply Algorithm 1 with a prescribed tolerance ε.
This is followed by the higher-order SVD, in order to compress the tensor further within the
same tolerance. We investigate numerically how the obtained TT ranks grow as a function of ε,
depending on the dimension d and the spatial smoothness of the random field.

In all examples, we consider a one-dimensional centered Gaussian random field with unit
variance on the interval [0, 1]. The random field has been discretized on a uniform grid of grid-
size Nh, where Nh has always been chosen sufficiently large to not affect the obtained ranks. In
all cases, the middle TT rank rd/2 of the TT tensor turned out to be the largest one. Since the
CP rank of a tensor represents an upper bound for each TT rank, it makes sense to compare
rd/2 with the CP rank M predicted by the bounds (10) and (11) to attain the same accuracy ε.
For convenience, we recall the asymptotics of these bounds:

finite regularity
∑

i λ
p
i < +∞ : ε ∼ CM

1
2
− 1
p ,

exponential decay λj ∼ e−sj : ε ∼ C exp{−s2−
d+1
d M

2
d }.

It is important to remark that these bounds feature constants C that are potentially very large
and have not been taken into account in our plots.

4.1 Matérn covariance

We use the Matérn covariance (3) with the parameters κ ∈ {0.5, 1, 1.5} and lc = 0.25. The KL
eigenvalues are computed using linear finite elements on a grid with Nh + 1 equidistant points.
These eigenvalues are then used to construct the approximation of d-point correlation functions
of f , using the KL expansion and the approximate TT decomposition with given accuracy ε.
We analyze the d-point correlations for various d by taking a sequence of decreasing tolerances
ε1 > ε2 > · · · .

Figure 3 shows the resulting middle TT ranks rd/2 (continuous line) and the theoretical
bound M (dashed line) as a function of ε for d = 4 and d = 20. Since the eigenvalues of the
covariance operator decay as λj ∼ j−(2κ+1), we use p = 1.01/(2κ+ 1) in the theoretical bound,
which makes the sum in (9) bounded. For larger κ, the slopes of the observed accuracy do
not match the predicted asymptotic rate, due to the large constants involved in the theoretical
bounds. This becomes even more apparent in the left plot of Figure 4, which compares the
results for d = 2, 4, 6, 8, 10. Although the theoretically predicted rate does not depend on d, the
observed maximum TT-rank shows a slight deterioration with respect to the dimension d.

The right plot of Figure 4 displays the singular values of all matricizations of the 10-point
correlation of f . Note that – due to symmetry – there are only 5 matricizations with different
singular values. The (1)-matricization shows the most favorable behavior; its singular values
decay with the rate 2κ + 1, consistent with the decay of the KL eigenvalues. The (1, . . . , d/2)-
matricization, which determines the middle TT rank, shows the worst behavior. We refer to [21]
for a theoretical explanation of this phenomenon.
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4.2 Exponentially decaying KL eigenvalues

We repeat the experiments from the previous section for exponentially decaying KL eigenvalues.
More specifically, λk = exp(−ks) with s = 1 and s = 2 is considered. Again, the theoretical
bound is compared with the maximal rank of the TT approximation for 4, 6, 8, and 20 point
correlation functions of f using a varying tolerance ε in the TT algorithm. The obtained results
are displayed in Figure 5. Again, there is a slight mismatch with the theoretically predicted
asymptotic rate, but this time the observed convergence of the TT approximation is actually
better.
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5 Application to linear elliptic PDEs with random forcing term

In this section, we illustrate how the techniques from this paper can be applied to study stochastic
linear elliptic equations of the form

−div(a(·)∇u(·, ω)) = f(·, ω) on D, for a.e. ω ∈ Ω (22)

with boundary condition u(·, ω) = 0 on ∂D.
In the following, we give a very brief description of the discretization of (22) and the resulting

equation for the (discretized) correlations of u. We refer to, e.g., [23, 26] for more details. A
standard finite element (FE) discretization of (22) leads to a linear system

Au(ω) = f(ω),

where A is an Ñ × Ñ symmetric positive definite matrix and Ñ equals the dimension of the
FE space. To simplify the notation, we again use u, f for expressing the discretizations of the
corresponding functions.

Using the fact that the expectation E(u) satisfies the mean field equation AE(u) = E(f), the

d-point correlation µdu ∈ RÑ×···×···Ñ of u is related to the d-point correlation µdf ∈ RÑ×···×···Ñ of
f via the linear system

(A⊗A⊗ . . .⊗A︸ ︷︷ ︸
d−times

)vec(µdu) = vec(µdf ). (23)

where ⊗ again denotes the Kronecker product.

5.1 Tensor techniques

As explained in Section 2, a truncated KL expansion allows us to (approximately) represent the
d-point correlation of f as

vec(µdf ) = (Φ⊗ · · · ⊗ Φ)vec(Cf ),

where Φ ∈ RÑ×N contains the orthonormal basis of retained KL eigenfunctions and Cf is the
tensor defined as in (16). By (23), this implies that the d-point correlation of u is given by

vec(µdu) = (A−1Φ⊗ · · · ⊗A−1Φ)vec(Cf ).

Let A−1Φ = ΦuRu be a QR decomposition, that is, Φu is again an orthonormal basis and Ru is
an upper triangular matrix. Then

vec(µdu) = (Φu ⊗ · · · ⊗ Φu) (Ru ⊗ · · · ⊗Ru)vec(Cf )︸ ︷︷ ︸
=:vec(Cu)

. (24)

The tensor Cu is obtained from the tensor Cf by multiplying each of its modes with Ru.

Suppose that Ĉf is the tensor in TT decomposition obtained from Algorithm 1, such that

‖Cf − Ĉf‖F ≤ ε. Then an approximation Ĉu for Cu is obtained by multiplying each mode of

Ĉf with Ru, which can be performed very cheaply for a tensor in TT decomposition. The
orthonormality of Φ and Φu then imply the error bound

‖Ĉu − Cu‖F =
∥∥(Ru ⊗ · · · ⊗Ru)

(
vec(Ĉf )− vec(Cf )

)∥∥
2
≤ ‖A−1‖d2 · ε.

19



Note that ‖A−1‖2 is bounded from above uniformly with respect to the dimension Ñ of the FE
space. Note also that Ĉu and Ĉf have identical TT ranks but, as we will see below, it is often

possible to recompress Ĉu to lower rank without significantly increasing the error.

5.2 Example: One-dimensional PDE

First, we consider an example that admits a direct approximation of µdu. For D = (0, π) we
obtain the boundary value problem

−u′′(x, ω) = f(x, ω), x ∈ (0, π), ω ∈ Ω, (25)

with zero Dirichlet boundary conditions. Assuming that f(x, ω) =
∑∞

j=1

√
λjYj(ω) sin(jx), it is

natural to use a spectral discretization of (25) with the basis sin(x), sin(2x), . . . , sin(Ñx). This
yields the linear system

Au(ω) = f(ω), A = diag(−12,−22, . . . ,−Ñ2).

Since the matrix A is diagonal, the KL expansion of u(x, ω) is known a priori for this case:

u(x, ω) = −
∞∑
j=1

j−2
√
λjYj(ω) sin(jx).

Using the method described in Section 3.2, this gives us the possibility to directly compute
low-rank approximations Ĉf and Ĉu corresponding to the correlations µdf and µdu, respectively.

To study the approximability of the correlations, let us consider the dominant singular values
of the different matricizations for Ĉf and Ĉu for the cases λj = exp(−j) for d = 14 (Figure 6)
and λj = j−3 for d = 8 (Figure 7). In both cases, the singular values are observed to decay

much faster for Ĉu, giving the possibility to approximate d-point correlations of u with TT
decompositions of comparably low rank.

5.3 Example: Two-dimensional PDE

Finally, we consider the PDE (22) with a two-dimensional domain of the form D = (0, π) ×
(0, π). The equation is discretized using piecewise linear FEs on an unstructured mesh with
1932 vertices. We consider a tensorized random field f(x, y, ω) = f1(x, ω)f2(y, ω) with f1,f2

independend Gaussian random fields with Matérn covariance function, for two different values
of κ = 0.5, κ = 1 together with lc = 0.35 and lc = 0.25, respectively.

Using the method described in Section 5.1, we compute a low-rank approximation Ĉu to the
d-point correlation for the solution u of the discretized PDE (22). Figure 8 shows the middle rank
of the TT decomposition of Ĉu for different prescribed tolerances ε. Once again, the growth of
the middle rank is rather mild as d increases. As can be seen in Figure 9 for κ = 0.5, the singular
values decay much faster for u than for f , confirming our observation for the 1D-problem. The
plots for κ = 1 look similar and yield the same conclusion.

6 Conclusions

The combination of truncated Karhunen-Loève expansion with low-rank tensor techniques is an
effective mean to represent d-point correlation functions of Gaussian random fields. The error
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Figure 6: 1-D problem (25) with exponential KL eigenvalue decay λj = exp(−j): Singular

values for all matricizations of the tensors Ĉf and Ĉu corresponding to d = 14 point correlations
of f and u, respectively.
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Figure 7: 1-D problem (25) with polynomial KL eigenvalue decay λj = j−3: Singular values

for all matricizations of tensors Ĉf and Ĉu corresponding to d = 8 point correlations of f and u,
respectively.
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Figure 8: 2D-Problem with Matérn covariance for two different sets of parameters: Prescribed
tolerance ε vs. middle TT rank of the TT approximation for the d point correlation of the
solution u.
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Figure 9: 2D-Problem with Matérn covariance for κ = 0.5, lc = 0.35: Singular values for all
matricizations of the tensors Ĉf and Ĉu corresponding to d = 10 point correlations of f and u,
respectively.
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resulting from the truncation of the expansion admits an analysis that matches the numerical
observations quite well. In contrast, it is surprising and not predicted by existing bounds [21]
that the ranks of the involved TT decompositions depend only rather mildly on d. Together
with Algorithm 1, this allows us to conveniently handle orders as high as d = 20.

To illustrate how our construction can be used in the solution of stochastic PDEs, we have
restricted ourselves to the comparably simple case of random forcing terms. However, our work
has already been used to cover more general situations [3, 5].
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