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Optimization of mesh hierarchies in Multilevel Monte
Carlo samplers

Abdul–Lateef Haji–Ali · Fabio Nobile ·
Erik von Schwerin · Raúl Tempone

Abstract We perform a general optimization of the parameters in the Multilevel
Monte Carlo (MLMC) discretization hierarchy based on uniform discretization
methods with general approximation orders and computational costs. Moreover,
we discuss extensions to non-uniform discretizations based on a priori refinements
and the effect of imposing constraints on the largest and/or smallest mesh sizes.
We optimize geometric and non-geometric hierarchies and compare them to each
other, concluding that the geometric hierarchies, when optimized, are nearly op-
timal and have the same asymptotic computational complexity. We discuss how
enforcing domain constraints on parameters of MLMC hierarchies affects the opti-
mality of these hierarchies. These domain constraints include an upper and lower
bound on the mesh size or enforcing that the number of samples and the num-
ber of discretization elements are integers. We also discuss the optimal tolerance
splitting between the bias and the statistical error contributions and its asymp-
totic behavior. To provide numerical grounds for our theoretical results, we apply
these optimized hierarchies together with the Continuation MLMC Algorithm [13]
that we recently developed, to several examples. These include the approxima-
tion of three-dimensional elliptic partial differential equations with random inputs
based on FEM with either direct or iterative solvers and Itô stochastic differential
equations based on the Milstein scheme.

Keywords Multilevel Monte Carlo, Monte Carlo, Partial Differential Equations
with random data, Stochastic Differential Equations, Optimal discretization

Mathematics Subject Classification (2000) 65C05 · 65N30 · 65N22

1 Introduction

The history of Multilevel Monte Carlo methods can be traced back to Heinrich
et al. [19,20], where it was introduced in the context of parametric integration.
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Kebaier [26] then used similar ideas for a two-level Monte Carlo (MC) method to
approximate weak solutions to stochastic differential equations (SDEs) in mathe-
matical finance. The basic idea of the two-level MC method is to reduce the number
of samples on the fine grid by using a control variate that is obtained by approxi-
mating the solution on a coarser grid. In [16], Giles extended this idea to more than
two levels and dubbed his extension the Multilevel Monte Carlo (MLMC) method.
Giles introduced a hierarchy of discretizations with geometrically decreasing grid
sizes. His work also included an optimization of the number of samples on each
level that reduced the computational complexity to O

(
TOL−2 log TOL

)
when

applied to SDEs with Euler-Maruyama discretization, compared to O
(
TOL−3

)
of the standard Euler-Maruyama MC method. In [15], Giles further reduced the
computational complexity of approximating weak solutions of a one-dimensional
SDE to O

(
TOL−2

)
by using the Milstein scheme instead of the Euler-Maruyama

scheme to discretize the SDE. MLMC has also been extended and applied in
many contexts, including equations with jump diffusions [32], partial differential
equations (PDEs) with stochastic coefficients [8,10,11,31] and stochastic partial
differential equations (SPDEs) [7,17], to compute scalar quantities of interest that
are functionals of the solutions. In [31, Theorem 2.5], an optimal convergence rate
is derived for general rates of strong and weak convergence and the computational
complexity associated with generating a single sample of the quantity of interest.
It is shown that if the strong convergence is sufficiently fast, the computational
complexity can be of the optimal rate, O

(
TOL−2

)
.

Several points can be investigated in this standard MLMC setting. For instance,
the standard MLMC uses uniform mesh sizes on each level and across the levels
the mesh sizes follow a geometric sequence in which the ratio between mesh sizes
of subsequent levels is a constant, β, henceforth referred to as level separation.
However, it is not clear if this is an optimal choice. Moreover, in the literature, the
derivation of the optimal number of samples on each level assumed an equal, fixed
splitting of accuracy between statistical and bias error contributions. In [13], the
authors used a more efficient splitting that improved the running time of MLMC
by a constant factor, but no analysis of the splitting parameter was provided. In
this work, we show that, in certain cases, the optimal level separation is not a con-
stant and depends on several parameters, including the level index, `. Moreover,
when restricted to geometric hierarchies, we optimize for the constant level sepa-
ration parameter, β, and show that using this optimal choice, the computational
complexity of the geometric hierarchies is close to the computational complexity
of the optimized non-geometric hierarchies. We also show that the computational
complexity of both hierarchies are the same in the limit TOL → 0. In addition,
we analyze the optimal splitting parameter, θ, and note its asymptotic behavior
as TOL→ 0. Several issues arise in a practical implementation of MLMC. One of
these issues is that the hierarchies generated by optimality theorems are usually
not applicable due to constraints on either mesh sizes (for instance due to CFL
stability limitations) or the number of samples; the constraint on the latter being
an integer, for example. We analyze these issues and note their effect on the opti-
mality of the MLMC hierarchies. Other issues include the stopping criteria [9] and
the estimation of variances in the case of a small number of samples, a feature that
is inherent to MLMC and is always present in the deepest levels of the MLMC
hierarchies. To this end, we here apply these optimized hierarchies together with
the Continuation MLMC algorithm (CMLMC) that we recently developed [13]



Optimization of mesh hierarchies in Multilevel Monte Carlo samplers 3

and show the effectiveness of the resulting algorithm in several examples. The use
of a posteriori error estimates and related adaptive algorithms, as introduced first
in [22], is beyond the scope of this work, which focuses instead on optimizing a
priori defined parametric families to create the discretization hierarchies.

This work is organized as follows. Section 2.1 recalls the MLMC sampling
framework and states the hierarchy optimization problem. Several approximation
steps lead to an analytically treatable problem. Section 2.2 presents the solution
for the case of unconstrained optimal mesh sizes, including the number of sam-
ples per level and the splitting accuracy parameter; these optimal mesh sizes do
not form geometric sequences in general. Then, Section 2.3 presents the optimal
hierarchies if they are restricted to geometric sequences of mesh sizes. Finally, Sec-
tion 3 illustrates the theoretical results with numerical examples, which include
three-dimensional PDEs with random inputs and Itô SDEs, and Section 4 draws
conclusions and proposes future extensions of this work. To avoid cluttering the
presentation, the technical derivations of the formulas included in this work are
included in the appendix.

2 Optimal MLMC Hierarchies

Here we state the problem of optimizing the mesh hierarchies in MLMC and
present the mesh hierarchies resulting from a theoretical optimization, first al-
lowing very general sequences of mesh sizes and then for comparison restricting
ourselves to geometric sequences.

In Section 2.1 we introduce the MLMC hierarchy, the parameters that we con-
sider free to optimize in the hierarchy, and the models of the computational work
and of the weak and strong errors that define the general, discrete and non-convex,
optimization problem. Simplifying assumptions then lead to an analytically treat-
able continuous optimization problem in Sections 2.2–2.3.

2.1 Problem Setting

Let g(u) denote a scalar quantity of interest, which is a function of the solution
u of an underlying stochastic model. Our goal is to approximate the expected
value, E[g(u)], to a given accuracy TOL with a high probability of success. We
assume that individual outcomes of the underlying solution, u, and the evaluation
of g(u) are approximated by a discretization-based numerical scheme characterized
by a mesh size1, h. The following examples are adapted from [13] with some
modification:

Example 2.1 Let (Ω,F , P ) be a complete probability space and D be a bounded
convex polygonal domain in Rd. Find u : D × Ω → R that almost surely (a.s.)
solves the following equation:

−∇ · (a(x;ω)∇u(x;ω)) = f(x;ω) for x ∈ D, (2.1a)

u(x;ω) = 0 for x ∈ ∂D. (2.1b)

1 We consider uniform meshes, but the extension to certain non-uniform meshes is immedi-
ate; see Remark 2.1 in Section 2.2.
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Here we make the standard assumptions on the coefficients: there exist two pos-
itive random variables, 0 < amin ≤ amax < ∞ such that amin(ω) ≤ a(x, ω) ≤
amax(ω) a.s. and almost everywhere on D. With respect to the right-hand side, f :
D×Ω → R, we here assume that there exists a random variable Cf (ω) <∞, such
that ‖f(·, ω)‖L2(D < Cf (ω) a.s. Denote the space H1

0 (D) = {v ∈ H1(D) : ‖v −
ϕn‖H1(D) → 0, for some (ϕn) ⊂ C∞0 (D)} endowed with the norm ‖v‖H1

0 (D) =
‖∇v‖L2(D).Under the previous assumptions, there exists a unique solution, u(·, ω) ∈
H1

0 (D) ⊂ H1(D), such that

‖u(ω)‖H1
0 (D) ≤

CP ‖f‖L2(D)

amin(ω)
, a.s.

where CP is the Poincaré constant, i.e. ‖v‖L2(D) ≤ CP ‖v‖H1
0 (D), for all v ∈

H1
0 (D). We also assume that there exists a random variable, 0 ≤ Ca < ∞,

such that ‖∇a(·, ω)‖L∞(D) ≤ Ca(ω) a.s. Thus, there exists a random variable,
0 < Cu(ω) <∞, such that ‖u(ω)‖H2(D) ≤ Cu(ω) a.s.

A standard approach to approximate the solution of this problem is to use
Finite Elements on regular triangulations. In such a setting, the parameter 0 < h
refers to either the maximum element diameter or another characteristic length
and the corresponding approximate solution is denoted by uh(ω). If g is an L2(D)
continuous functional and with the assumptions in this example, then for piecewise
linear or piecewise bilinear continuous finite element approximations, the following
approximation rates hold: there exists a random variable, 0 ≤ Cg <∞ s.t. |g(u)−
g(uh)| ≤ Cgh2 a.s. Assuming extra integrability on the coefficients a and f we can
even obtain the estimates |E[g(u) − g(uh)]| ≤ QW h2 and E[(g(u) − g(uh))2] ≤
QS h

4 for some constants 0 < QW , QS <∞.

Example 2.2 Here we study the weak approximation of Itô stochastic differential
equations (SDEs)

du(t) = a(t, u(t))dt+ b(t, u(t))dW (t), 0 < t < T, (2.2)

where u(t;ω) is a stochastic process in Rd, with randomness generated by a k-
dimensional Wiener process with independent components, W (t;ω), cf. [25,29],
and a(t, u) ∈ Rd and b(t, u) ∈ Rd×k are the drift and diffusion fluxes, respec-
tively. For any given sufficiently well-behaved function, g : Rd → R, our goal is to
approximate the expected value, E[g(u(T ))]. A typical application is to compute
option prices in mathematical finance, cf. [24,18], and other related models based
on stochastic dynamics.

When one uses a standard Milstein scheme based on uniform time steps of size h
to approximate (2.2), the following rates of approximation hold: E[g(u(T ))− g(uh(T ))] ≤ QW h
and E[(g(u(T ))−g(uh(T )))2] ≤ QS h2, for some constants, QW and 0 < QS <∞.
For suitable assumptions on the functions a, b and g, we refer to [27].

To avoid cluttering the notation, we omit the reference to the underlying so-
lution from now on, simply denoting the quantity of interest as g. Following the
standard MLMC approach, we introduce a hierarchy of L + 1 meshes defined by
decreasing mesh sizes {h`}L`=0 and we denote the resulting approximation of g us-
ing mesh size h` by g`, or by g`(ω) when we want to stress the dependence on an
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outcome on the underlying random model. Then, the expected value of the finest
approximation, gL, can be expressed as

E[gL] = E[g0] +
L∑
`=1

E[g` − g`−1],

where the MLMC estimator is obtained by approximating the expected values in
the telescoping sum by sample averages as

A =
1

M0

M0∑
m=1

g0(ω0,m) +
L∑
`=1

1

M`

M∑̀
m=1

(g`(ω`,m)− g`−1(ω`,m)) . (2.3)

Each sample average is computed using M` independent identically distributed
(i.i.d.) outcomes {ω`,m}M`

m=1 of the underlying, mesh-independent, stochastic model;
the outcomes are also assumed to be independent between the different sample av-
erages. We note that, given the model for g`, the MLMC estimator is defined by
the triplet H =

(
L, {h`}L`=0, {M`}L`=0

)
, which we also refer to as the MLMC hier-

archy. Depending on the numerical discretization method, possible mesh sizes will
be restricted to a discrete set of positive real numbers, which we denote by H. For
instance, for uniform meshes in the domain [0, 1]d, the number of subdivisions in
each dimension has to be an integer, resulting in the constraint h−1 ∈ N \ {0}. We
do not, however, introduce any other restriction on the mesh sizes but allow the
MLMC hierarchy to use any decreasing sequence of attainable mesh sizes. More-
over, the number of samples on any level is a positive integer, M` ∈ N \ {0}, while
L is a non-negative integer, L ∈ N.

IfW` is the average cost associated with generating one sample of the difference,
g` − g`−1, or simply g0 if ` = 0, then the cost of the estimator (2.3) is

W (H) =
L∑
`=0

M`W`. (2.4)

We assume that the work required to generate one sample of mesh size h is propor-
tional to h−dγ , where d is the dimension of the computational domain and γ > 0
represents the complexity of generating one sample with respect to the number of
degrees of freedom. We then model use the following model for W`

W` ≈ h−dγ` , (2.5)

and model the total work of generating the MLMC estimator (2.3) using the
measure of computational complexity

W (H) =
L∑
`=0

M`

hdγ`
. (2.6)

This can be motivated in two ways. Namely, we are simply neglecting the work to
generate the coarser variable in each realization pair (g`, g`−1) or, we are bounding
the work to generate the pair by a constant factor, which is clearly less than or
equal to twice the work to generate the finest variable in each realization pair.

For example, if each sample evaluation is the approximation of an Itô stochastic
differential equation by a time stepping scheme, then d = γ = 1. If, instead, the
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underlying differential equation is an elliptic partial differential equation with a
stochastic coefficient field, then a numerical method based on an ideal multigrid
solver will still have γ = 1 up to a logarithmic factor, while a naive implementation
of Gaussian elimination based on full matrices leads to γ = 3.

We want to find a hierarchy, H, which, with a prescribed probability, satisfies

|E[g]−A| ≤ TOL,

while minimizing the work, W (H). Here, we aim to meet this accuracy requirement
by controlling the bias and statistical error separately as

|E[g −A]| ≤ (1− θ)TOL and |E[A]−A| ≤ θTOL, (2.7)

where the latter bound should hold with high probability, leading us to require

Var[A] ≤
(
θTOL

Cα

)2

, (2.8)

for some given confidence parameter, Cα, based on the standard normal distri-
bution, motivated by the Lindeberg-Feller Central Limit Theorem in the limit
TOL → 0; see [13, Lemma A.2]. This splitting of the error introduces a new pa-
rameter, 0 < θ < 1, which we are free to choose. We will later see that the choice
of θ that minimizes the work is not obvious, and does not reduce to any simple
rule of thumb.

By construction of the estimator, E[A] = E[gL] and using the notation

V` =

{
Var[g0] ` = 0,

Var[g` − g`−1] ` > 0,

and by independence we have Var[A] =
∑L
`=0 V`M

−1
` . The requirements (2.7) and

(2.8) therefore become

|E[g − gL]| ≤ (1− θ)TOL, (2.9a)

L∑
`=0

V`M
−1
` ≤

(
θTOL

Cα

)2

. (2.9b)

We now assume that the numerical approximation of g` leads to weak conver-
gence of order q1 and strong convergence of order q2/2 ≤ q1 as h → 0, and we
further assume that the variance on the coarsest level is approximately indepen-
dent of its corresponding mesh size. Using these assumptions and neglecting all
higher order terms in h`, we obtain the following models for the bias and variances

|E[g − gL]| ≤ QWhq1L ,
V` ≈ QShq2`−1 for ` > 0. (2.10)

We observe that the problem of finding H = (L, {h`}L`=0, {M`}L`=0) ∈ N×HL+1×
ZL+1
+ minimizing W (H) in (2.6) while satisfying the constraints (2.9) is a difficult

discrete optimization problem. Hence, we make a further simplification by tem-
porarily removing the domain constraints on h` andM` to let H ∈ N×RL+1

+ ×RL+1
+

The simplified variance model (2.10) is valid for the geometric sequences of mesh
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sizes in Section 2.3, but in our more general setting in Section 2.2, it can instead
be seen as a penalty on closely spaced meshes, where it overestimates the resulting
variance.

The simplified models for the bias and the variance of the MLMC estimator
are then

|E[g −A]| ≈ QWhq1L , (2.11a)

Var[A] ≈ V0
M0

+QS

L∑
`=1

hq2`−1

M`
, (2.11b)

with problem- and method-specific positive constants, QW , QS , and V0. We note
that neglecting the higher-order terms in h` is usually justified in the model of
the bias, which only depends on the finest mesh. On the other hand, it may be
that the contribution of the higher-order terms on coarse meshes makes the model
(2.11b) inaccurate, causing the hierarchies derived in this work to be suboptimal.
Dealing with such non-asymptotic behavior is beyond the scope of this work and
we leave it for future work.

2.2 General Mesh Size Sequences

Here, we present the optimal hierarchy, H, using the continuous, convex, model of
the previous subsection, which solves:

Problem 2.1 Find H = (L, {h`}L`=0, {M`}L`=0) ∈ N× RL+1
+ × RL+1

+ such that

W (H) =
L∑
`=0

M`

hdγ`
, (2.12a)

is minimized while satisfying the constraints

QWh
q1
L ≤ (1− θ)TOL, (2.12b)

V0
M0

+QS

L∑
`=1

hq2`−1

M`
≤
(
θTOL

Cα

)2

, (2.12c)

for some θ ∈ (0, 1).

Note that, even though the parameter θ is not part of the hierarchy H defining
the MLMC estimator, determining θ is still an important part of the optimiza-
tion. Initially, we treat the parameters θ and L as given and optimize first with
respect to {M`}L`=0 and then {h`}L`=0. From a Lagrangian formulation of the prob-
lem of minimizing the general work model (2.4) under the constraint (2.9b), it is
straightforward to obtain the optimal number of samples,

M` =

(
Cα

θTOL

)2√
V`
W`

L∑
k=0

√
WkVk, (2.13)

in terms of general work estimates, {W`}L`=0, and variance estimates, {V`}L`=0; see
Section A.1 for more details on this and the following steps. The finest mesh size is
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determined by the bias constraint (2.12b), for any given choice of θ. The optimality
conditions then lead to a linear difference equation, which can easily be solved for
the remaining mesh sizes. In the idealized situation, where the coarsest mesh size
is treated as an unconstrained variable in the optimization, we can analytically
minimize the computational complexity with respect to θ to obtain the optimal
hierarchy for any fixed L. Introducing the two model- and method-dependent
parameters,

η =
q1
dγ

and χ =
q2
dγ
, (2.14)

we can summarize the result derived in Sections A.1.1 and A.1.2 in the following
theorems for the two cases: χ = 1 and χ 6= 1.

Theorem 2.1 (On the optimal hierarchies when χ = 1) For any fixed L ∈ N,
with χ = 1, the optimal sequences {h`}L`=0 and {M`}L`=0 in Problem 2.1 are given
by

h` = β(`−L)

(
(1− θ)TOL

QW

) 1
q1

, for l = 0, 1, 2, . . . , L, (2.15)

M` = βq2`V0(L+ 1)

(
Cα

θTOL

)2

, for l = 0, 1, 2, . . . , L, (2.16)

where the level separation β ∈ (0, 1) is independent of `,

β =

{(
(1− θ)TOL

QW

) 1
q1

(
QS
V0

) 1
q2

} 1
L+1

, (2.17)

and the optimal choice of the splitting parameter

θ(1, η, L) =

(
1 +

1

2η

1

L+ 1

)−1

. (2.18)

Lemma 2.1 For the case χ = 1 and the optimal hierarchies in Theorem 2.1, the
optimal number of levels, L, satisfies

1 ≤ 2η(L+ 1)

log
(

TOL−1QWV
η
0 Q
−η
S

) ≤ exp(1)

exp(1)− 1
, (2.19)

and asymptotically

lim
TOL→0

L+ 1

log TOL−1 =
1

2η
. (2.20)

Corollary 2.1 For the case χ = 1 and the optimal hierarchies in Theorem 2.1
and using L in (2.20), the total work measure (2.6) satisfies

W (H)

TOL−2(log TOL)2
→ C2

α exp(2)QS

(
1

2η

)2

, as TOL↘ 0. (2.21)



Optimization of mesh hierarchies in Multilevel Monte Carlo samplers 9

Theorem 2.2 (On the optimal hierarchies when χ 6= 1) For any fixed L ∈ N,
with χ 6= 1, the optimal sequences, {h`}L`=0 and {M`}L`=0, in Problem 2.1 are given
by

h`(θ, L) =

(
(1− θ) TOL

QW

) 1
q1

1−χ`+1

1−χL+1
(
V0
QS

) 1
dγ

χ`−χL

1−χL+1

· χ
− 1
dγ

2
1−χ

(
χL+1−χ`+1

1−χL+1 +
L(1−χ`+1)−`(1−χL+1)

1−χL+1

)
,

(2.22a)

M`(θ, L) =

(
Cα

θTOL

)2

((1− θ) TOL)
χ
η

1−χ`

1−χL+1 V0
χ`−χL+1

1−χL+1

·

(
Q

1/χ
S

Q
1/η
W

) χ(1−χ`)
1−χL+1

1− χL+1

χL(1− χ)
χ

{
− 2χ

1−χ
1−χ`

1−χL+1 (L+1)+ 1+χ
1−χ `

}
,

(2.22b)

where the optimal choice of the splitting parameter is

θ(χ, η, L) =

(
1 +

1

2η

1− χ
1− χL+1

)−1

. (2.22c)

Lemma 2.2 For the case χ 6= 1 and the optimal hierarchies in Theorem 2.2, the
optimal number of levels, L, satisfies

1

c2

(
1 +

c1 + log (1 + 2η)

log
(
TOL−1

) )
<

L+ 1

log
(
TOL−1

) <


1
c2

(
1 +

c1+log
(
1+ 2η

1−χ

)
log (TOL−1)

)
,χ ∈ (0, 1),

χ
c2

(
1 +

c1+log
(

2η
χ−1

)
log (TOL−1)

)
, χ ∈ (1,∞),

(2.23)

where

c1 = log

(
V0
η/χ

Q
η/χ
S

QW

)
and c2 = log (χ)

2η

χ− 1
> 0, (2.24)

and asymptotically

1

2η

χ− 1

logχ
≤ lim inf

TOL→0

L+ 1

log
(
TOL−1

) ≤ lim sup
TOL→0

L+ 1

log
(
TOL−1

) ≤ max {1, χ}
2η

χ− 1

logχ
.

(2.25)

Corollary 2.2 For the case χ 6= 1 and the optimal hierarchies in Theorem 2.2
and using the upper bound on L in (2.23), the total work measure (2.6) satisfies

W (H)

TOL
−2
(
1+ 1−χ

2η

) → C1, as TOL↘ 0 for χ ∈ (0, 1), and (2.26a)

W (H)

TOL−2 → C2, as TOL↘ 0 for χ > 1, (2.26b)
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with known constants of proportionality,

C1 = C2
αQSQ

{
1−χ
η

}
W χ

{
− 2χ

1−χ

} (
1

2η

)2 (
1 +

2η

1− χ

)2
(
1+ 1−χ

2η

)
, (2.27a)

C2 = C2
α V0

{
χ−1
χ

}
Q

{
1
χ

}
S χ

2
{

χ
χ−1

}
(χ− 1)−2 . (2.27b)

Note that the parameter θ controlling the split between the statistical and
discretization errors depends non-trivially on the problem parameters. The above
theorem shows that the choice of θ = 1/2, used for example in the initial works by
Giles [16,15] and by some of the authors of the present work in [21,22] for adaptive
MLMC, is increasingly suboptimal as the number of levels increases. To further
understand the splitting parameter, θ, we consider the asymptotic behavior as
L(TOL)→∞ and see that

θ(χ, η, L)→ 1, as L→∞, if χ ≥ 1, (2.28a)

θ(χ, η, L)→ 1

1 + 1−χ
2η

, as L→∞, if χ < 1. (2.28b)

The qualitative observations here are: 1) if the strong convergence is sufficiently
fast, that is χ ≥ 1, almost all the tolerance is allocated to the statistical error
(forcing the discretization to be fine), and 2) for slower strong convergence, χ < 1,
the tolerance can be shifted either towards the statistical error or towards the bias
according to

lim
L→∞

θ(χ, η, L) >
1

2
(stat. error larger) , if χ < 1 < χ+ 2η,

lim
L→∞

θ(χ, η, L) <
1

2
(stat. error smaller) , if χ < χ+ 2η < 1.

Since the above theorems give the optimal {h`}L`=0 and {M`}L`=0 for any given
L ∈ N, it is easy to find the optimal L by doing an extensive search over a finite
range of integer values. In typical cases, for computationally feasible tolerances,
L is a small non-negative integer, 0 ≤ L ≤ 10; we can also use the obtained
bounds on the optimal value of L to delimit the range of possible integer values.
Moreover, using the optimal sequences {h`}L`=0 and {M`}L`=0 for any given L, we
have observed that the total computational complexity is usually rather insensitive
to the value of L near the optimum.

We observe that the rates in the asymptotic complexity in Corollaries 2.1
and 2.2 are the same ones obtained with more restrictive assumptions on the
sequences of mesh sizes; see for instance [11, Theorem 1] and Section 2.3. With
the optimal number of levels, the optimized hierarchies minimize the multiplicative
constants in the complexity without improving the rate. Also note that the full
complexities give the asymptotic growth of the cost as TOL → 0. Typically the
work model approaches the asymptotic work model from below, as in Figure 2.1,
and consequently the apparent rate in the complexity for modest tolerances is
slightly larger than the asymptotic, optimal rate. In Corollary 2.2, the blow up
of the constants C1 and C2 as χ → 1 corresponds to the need for including the
log(TOL−1)2 factor that appears in the complexity of MLMC when χ = 1 as
Corollary 2.1 shows.
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Fig. 2.1 Ratio between the work model (2.6) for the optimized hierarchies in Theorem 2.2 and
the asymptotic model in Corollary 2.2 for some parameter values similar to those corresponding
to the two different solvers used in Example 2.1 in Section 3.

The ratio between two successive mesh sizes in Theorem 2.2 has the following
complicated, non-constant expression:

h`+1

h`
=

(
V0
QS

)− (χ−1)χ`

dγ(χ1+L−1)

χ
2
dγ

( 1
1−χ+

(L+1)χ`+1

χL+1−1
)
(

(1− θ)TOL

QW

) (χ−1)χ`+1

q1(χL+1−1)

. (2.29)

Clearly, when χ 6= 1, the optimal mesh sequences are not geometric in general. On
the other hand, when χ = 1, the optimal mesh sequences are indeed geometric.
Finally, we note that the value of the optimal splitting parameter, θ, in (2.18) for
L = 0 is consistent with the single level adaptive Monte Carlo analysis in [28].

Remark 2.1 (On non-uniform meshes) The optimization and the resulting optimal
hierarchies do not depend on the assumption that the discretizations were uniform.
Indeed, h` can also be interpreted as a more general mesh parameter that defines
a mesh size, ∆x`, of the underlying discretization as

∆x` = r(h`, x),

for some mesh grading function r(h`, x), allowing for example, for local a priori
refinement of meshes close to known singularities in the computational domain. As
long as approximate models (2.6) and (2.11) can be provided in terms of the mesh
parameter, the expressions for the optimal hierarchies in Theorems 2.1 and 2.2 can
still be applied. As mentioned previously, the construction of MLMC hierarchies
based on the use of a posteriori error estimates and related adaptive algorithms,
as introduced first in [22], is out of the scope of the present work.

Remark 2.2 (On a lower bound on possible mesh sizes) Since equations (2.15)–
(2.17) and (2.22a)–(2.22b) are expressed in terms of general θ and L, they remain
valid when an additional constraint is imposed on the smallest possible mesh
sizes. If for example the available computer memory dictates a lower limit on the
practical mesh sizes, h` ≥ hmin, then the optimal splitting for given L is

θ(χ, η, L) =


min

{
1− QWh

q1
min

TOL ,
(

1 + 1
2η

1−χ
1−χL+1

)−1
}
, if χ 6= 1,

min

{
1− QWh

q1
min

TOL ,
(

1 + 1
2η(L+1)

)−1
}
, if χ = 1,

(2.30)



12 Abdul–Lateef Haji–Ali et al.

where tolerances TOL ≤ QWh
q1
min are out of reach of the computation. Such an

extra constraint can in turn cause the optimal number of levels to be smaller
than the lower bound in (2.23) or (2.19), but it can still easily be found by an
extensive search over a small integer set; the asymptotic bounds (2.20) and (2.25)
are obviously not relevant then.

Remark 2.3 (On an upper bound on possible mesh sizes) If the coarsest meshes
in (2.22a) or (2.15) are unfeasibly large for the given method of discretization,
for instance due to CFL stability constraints, or the asymptotic models that we
assumed are only valid for small enough h0, then we should treat the largest mesh
size, h0, as fixed. We briefly analyze this case at the end of Section A.1.2 for the
case χ 6= 1. There, we can still express all remaining mesh sizes in terms of h0 and
hL by (A.13), and use (2.13) for the optimal number of samples on the resulting
sequence of mesh sizes. However, we no longer have an explicit expression for the
optimal splitting parameter, but only bounds from below and above in (A.26).
Since L varies over a finite integer range, we can easily obtain the optimal θ and
L in a two-stage numerical optimization.

Remark 2.4 The optimized h` in (2.15) and (2.22a) do not necessarily belong to H
and might be unusable in an actual computation. We instead use the closest ele-
ment in H to each h`. For example, for uniform meshes in the domain [0, 1]d where
h−1
` is the number of elements along every dimension, we can simply round h−1

` up
to the nearest integer. Similarly, M` in (2.16) and (2.22b) or equivalently (2.13) is
not necessarily an integer and we round these expression up to the nearest integer
to get an integer number of samples that can be used in actual computations; see
also Remark 2.6.

2.3 Geometric Mesh Size Sequences

In the optimal hierarchies of Problem 2.1 presented above, the mesh sizes do not
form a geometric sequence except for the case χ = 1. In this section, we optimize
MLMC hierarchies with the more restrictive assumption that the mesh sizes do
form a geometric sequence; that is, h` = h0β

` for some positive value β < 1. We
do not, however, force β−1 to be a positive integer corresponding to successive
refinements of existing meshes. In this setting, for easier analysis, we no longer
treat L as a free parameter and instead assume a given h0. On the other hand,
similar to the previous analysis, we begin by treating θ as a free parameter and
postpone optimizing it until we obtain explicit, asymptotic expressions for the
total work. The work and variance models in this case become

V` =

{
V0 ` = 0,

QSh
q2
0 β
−q2βq2` ` > 0,

(2.31a)

W` = h−dγ0 β−dγ`. (2.31b)

We do not prove the optimality of the geometric hierarchy but merely state that
a heuristic optimization of β given for any θ and h0 leads to the choice (cf. Sec-
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tion A.2)

β =

χ
2

dγ(1−χ) , if χ ∈ R+ \ {1},
exp

(
− 2
q2

)
, if χ = 1,

(2.32)

which satisfies β ∈ (0, 1) for all χ ∈ R+. Here, the finest mesh size, hL, must
satisfy the bias constraint (2.12b), for any TOL and θ, such that, for geometric
hierarchies, we must have

L ≥
1
q1

log
(

(1−θ)TOL
QW

)
− log (h0)

log(β)
. (2.33)

For a fixed TOL, the requirement that L ∈ N gives a sequence of splitting
parameters, {θk}∞k=0, where θk → 1 as k →∞. For any such pair (θk, Lk) and for
a given h0, we take the optimal mesh sizes (A.13) and compute the ratio between
two successive mesh sizes,

h`+1

h`
=

(
hL
h0

)χ` 1−χ
1−χL

χ
− 2
dγ

(
Lχ`

(1−χL)
− 1

(1−χ)

)
,

which, choosing h0 such that hL/h0 = βL and using (2.32), simplifies to

h`+1

h`
= β.

That is, under the restriction (θ, L) = (θk, Lk), the optimal mesh size sequence will
be precisely the geometric sequence proposed here. Now, we choose, for example,
the θk closest to the θ of the optimal mesh hierarchy; there is no guarantee that
the optimal L corresponding to this θk in the general optimization will be Lk, but
in general the total work is rather insensitive to the choice of L, as long as it is
near the optimum. This in the case of χ 6= 1, leads to the heuristic conclusion
that allowing a general β ∈ (0, 1) that does not have to correspond to nested
mesh refinements or indeed result in meshes in the set H, there will usually exist
a geometric sequence of mesh sizes leading to a computational cost close to the
cost of the optimal hierarchy proposed in Theorem 2.2. The following corollary
also shows the asymptotic computational complexity of geometric hierarchies.

Corollary 2.3 Consider geometric hierarchies, h` = h0β
`, for a given h0, and

the optimal number of samples M` in (2.13) and the work and variance models
(2.31). Moreover, assume that we choose β in (2.32) and the lower bound of L in
(2.33). We distinguish between two cases:

– If χ = 1, the optimal θ goes to 1 as L→∞, and the total works satisfies (2.21).
– Otherwise, if χ 6= 1, the optimal θ satisfies (2.28) and the total work satisfies

(2.26) with C1 as defined in (2.27a) and

C2 = C2
αh

dγ(χ−1)
0

(
√
V0h

−q2
2

0 +
√
QS

χ
χ
χ−1

χ− 1

)2

. (2.34)
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Moreover, if we choose

h0 =

(
V0
QS

) 1
q2

χ
1

dγ(1−χ) , (2.35)

then C2 simplifies to (2.27b). Notice that (2.35) can be obtained from the limit
of (2.22a) for ` = 0 as L→∞.

Remark 2.5 Corollary 2.3 shows that, asymptotically as TOL→ 0, the work and
optimal splitting of the geometric hierarchies with optimal β (2.32) is exactly the
same as the work and optimal splitting of the optimized hierarchies as stated in
Corollaries 2.1 and 2.2.

With the numerical examples in Section 3 in mind, we note that the two cases
with χ 6= 1 in Table 3.1 would give β ≈ 0.56 and β ≈ 0.62, both of which are not
too far from 1/2. Hence, meshes generated by repeated stepsize halving might not
be far from optimal in these two cases. On the other hand, any of the following
modifications: a slower linear solver (γ > 1.5), a higher spatial dimension (d > 3),
or higher order of strong convergence (q2 > 4), would make the value of β closer
to 1, indicating that nested geometric refinements would be far from optimal for
such cases.

Remark 2.6 Just as a hierarchy H1 ∈ N × RL+1
+ × RL+1

+ solving Problem 2.1
must be adjusted to satisfy the practical constraints of the discretization, H1 ≈
H ∈ N × HL+1 × ZL+1

+ , so must a hierarchy that is geometric with a general β.
Hence, the restriction to general geometric sequences of mesh sizes, without the
true constraint {h0β`}L`=0 ∈ HL+1 has no practical value and we merely include
the comparison here to point out that one can often find geometric hierarchies
that are close to optimal hierarchies.

Figure 2.2 shows the effect of applying these domain constraints to the number
of elements and number of samples on the optimality of the hierarchies. This figure
compares the work measure (2.6) of five hierarchies: 1) The “real-valued” optimized
hierarchy with h` defined by (2.22a) and M` defined by (2.13), 2) The “integer-
valued” hierarchy obtained by ceiling M` in (2.13) and h−1

` in (2.22a) to obtain
an integer number of samples and an integer number of elements, respectively,
3) Another hierarchy obtained by performing a limited brute-force search in the
neighboring integer space around the optimized h−1

` and M` of (2.22a) and (2.13),
respectively. 4) The real-valued geometric hierarchy with β as defined by (2.32),
h0 = 0.5 andM` again as defined by (2.13), 5) Finally, the integer-valued geometric
hierarchy obtained by ceiling M` in (2.13) and the previous h−1

` . In all cases,
χ = 2η and we use an approximation of the parameters of Ex.1 in Section 3.
Namely the values: QW = 0.0571, QS = 0.1581 and V0 = 1.4050. Similar plots can
be produced with different values. On the other hand, the number of levels, L,
was optimized and chosen according to Figure 2.3. These plots show that simply
taking the ceiling of the number of samples and number of elements produces a
hierarchy that is nearly optimal. Notice also in Figure 2.3 that the optimal L of
the optimized real-valued hierarchies is well within the developed bounds (2.23),
up to an integer rounding. However, the bounds no longer hold when considering
integer-valued hierarchies.



Optimization of mesh hierarchies in Multilevel Monte Carlo samplers 15

10−7 10−6 10−5 10−4 10−3 10−2 10−1

TOL

0.9

1.0

1.1

1.2

1.3

N
or

m
al

iz
ed

W
or

k

χ = 1.33333333333

10−7 10−6 10−5 10−4 10−3 10−2 10−1

TOL

0.9

1.0

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

W
or

k

χ = 0.888888888889

Real-valued optimized hierarchies
Integer-valued hierarchies
Local integer optimization

Real-valued geometric hierarchies
integer-valued geometric hierarchies

Fig. 2.2 Ex.1: Work measures (2.6) of different hierarchies normalized by the work estimate

of the “real-valued” optimized hierarchy. Taking the ceiling of h−1
` and M` seems to produce

near-optimal hierarchies. To generate these hierarchies, we used the values χ = 2η,QW =
0.0571, QS = 0.1581 and V0 = 1.4050, which roughly correspond to the parameters of Ex.1
(See Remark 2.6).
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Fig. 2.3 Ex.1: Optimal L of different hierarchies. Here the bounds are from (2.23). To gen-
erate these hierarchies we used the parameters: QW = 0.0571, QS = 0.1581 and V0 = 1.4050.

3 Numerical Results

In this section, we first introduce the two test problems: a geometric Brownian
motion SDE for which χ > 1 and random PDE for which χ < 1 or χ > 1, depending
on the linear solver used for the underlying problem. We then describe several
implementation details and finally conclude by presetting the actual numerical
results. We do not show results for the case χ = 1 since we proved that the
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geometric hierarchies are optimal in this case and similar results can be found in
the standard work of Giles [16].

3.1 Overview of Examples

We consider two numerical examples for which we can compute a reference solu-
tion.

3.1.1 Ex.1

This problem is based on Example 2.1 in Section 2.1 with some particular choices
that satisfy the assumptions therein. First, we choose D = [0, 1]3 and assume that
the forcing is

f(x;ω) = f0 + f̂
K∑
i=0

K∑
j=0

K∑
k=0

Φijk(x)Zijk,

where
Φijk(x) =

√
λiλjλkφi(x1)φj(x2)φk(x3),

and

φi(x) =

{
cos
(
10Λi
2 πx

)
i is even,

sin
(

10Λ(i+1)
2 πx

)
i is odd,

λi = (2π)
14
12 Λ

22
12


1
2 i = 0,

exp
(
−2
(
π i2Λ

)2)
i is even,

exp
(
−2
(
π i+1

2 Λ
)2)

i is odd,

for given parameters Λ, positive, and K, positive integer, and Z = {Zijk} a set
of (K + 1)3 i.i.d. standard normal random variables. Moreover, we choose the
diffusion coefficient to be a function of two random variables as follows:

a(x;ω) = a0 + exp
(

4Y1Φ121(x) + 40Y2Φ877(x)
)
. (3.1)

Here, Y = {Y1, Y2} is a set of i.i.d. standard normal random variables, also inde-
pendent of Z. Finally, we make the following choice for the quantity of interest,
g:

g = (2πσ)
−3
2

∫
D

exp

(
−‖x− x0‖22

2σ2

)
u(x)dx,

and select the parameters a0 = 0.01, f0 = 50, f̂ = 10, Λ = 0.2√
2
,K = 10, σ =

0.02622863 and x0 = [0.5026695, 0.26042876, 0.62141498]. Since the diffusion coef-
ficient, a, is independent of the forcing, f , a reference solution can be calculated
to sufficient accuracy by scaling and taking expectation of the weak form with
respect to Z to obtain a formula with constant forcing for the conditional expecta-
tion with respect to Y . We then use stochastic collocation, [3], with a sufficiently
accurate quadrature to produce the reference value, E[g]. Using this method, the
reference value 1.6026 is computed with an error estimate of 10−4.
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d γ q1 q2 χ η s Optimal β
Ex.1 with GMRES solver 3 1 2 4 4/3 2/3 2 0.5625
Ex.1 with MUMPS solver 3 1.5 2 4 8/9 4/9 2.25 0.6243
Ex.2 with Milstein scheme 1 1 1 2 2 1 2 0.25

Table 3.1 Summary of problem parameters.

3.1.2 Ex.2

The second example is a one-dimensional geometric Brownian motion based on
Example 2.2 where we make the following choices:

T = 1,

a(t, u) = 0.05u,

b(t, u) = 0.2u,

g(u) = 10 max(u(1)− 1, 0).

The exact solution can be computed using a change of variables and Itô’s formula.
For the selected parameters, the solution is 1.04505835721856.

3.2 Implementation and Runs

To test the different hierarchies presented in this work we extend the CMLMC
algorithm [13] to optimal hierarchies and implement it in the C programming
language.

For implementing the solver for the PDEs in test problem Ex.1, we use PetIGA [14,
12]. While the primary intent of this framework is to provide high-performance
B-spline-based finite element discretizations, it is also useful in applications where
the domain is topologically square and subject to uniform refinements. As its name
suggests, PetIGA is designed to tightly couple to PETSc [5,6,4]. The framework
can be thought of as an extension of the PETSc library, which provides methods
for assembling matrices and vectors that result from integral equations. We use
uniform meshes with a standard trilinear basis to discretize the weak form of the
model problem, integrating it with eight quadrature points. We also generate re-
sults for two linear solvers for which PETSc provides an interface. The first solver
is an Iterative GMRES solver that solves a linear system in almost linear time
with respect to the number of degrees of freedom for the mesh sizes of interest; in
other words, in this case γ = 1 and χ > 1. The second solver is the Direct solver
MUMPS [1,2]. For the mesh sizes of interest, the running time of MUMPS varies
from quadratic to linear in the total number of degrees of freedom. The best fit
turns out to be γ = 1.5 in this case, which gives χ < 1. From Corollary 2.2 (or
Corollary 2.3), the complexity for all the examples is expected to be O

(
TOL−s

)
,

where s depends on q1, q2, and dγ. These and other problem parameters are sum-
marized in Table 3.1 for the different examples. Also included in this table is the
optimal level separation constant β, which we used when computing with geometric
hierarchies. Obviously, as mentioned in Remark 2.4, the “real-valued” hierarchies
we derived cannot always be used in practice and we follow the strategies outlined
in that remark to produce “integer-valued” hierarchies that can be used.
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Parameter Purpose Value for Ex.1 Value for Ex.2
κ0 and κ1 Confidence parameter for the weak and

strong error models
0.1 for both 0.1 for both

TOLmax The maximum tolerance with which to
start the algorithm.

0.5 0.1

r1 and r2 Controls computational burden to cali-
brate the problem parameters.

2 and 1.1, respec-
tively

2 and 1.1, respec-
tively

Initial hierar-
chy

The initial hierarchy to start the
CMLMC algorithm.

L = 2 and
h` = {4, 6, 8} and
M` = 10 for all `.

L = 2 and
h` = {1, 2, 4} and
M` = 10 for all `.

Linc Maximum number of values to consider
when optimizing for L.

2 2

L Maximum number of levels used to
compute estimates of QW and QS .

3 5

Cα Parameter related to the confidence in
the statistical constraint

2 2

Table 3.2 Summary of parameter values used in the CMLMC algorithm in our numerical
tests. This table is reproduced from [13] where more information is available.

We run each setting 100 times and show in plots in the next section the medians
with vertical bars spanning from the 5% percentile to the 95% percentile. Finally,
all results were generated on the same machine with 52 gigabytes of memory to
ensure that no overhead is introduced due to hard disk access during swapping
that could occur when solving the three-dimensional PDEs with a fine mesh. We
use the parameters listed in Table 3.2 for the CMLMC algorithm [13].

3.3 Results

We start by presenting the results of Ex.1. We show in Figure 3.1 that the actual
running time of the CMLMC algorithm with optimal hierarchies has the expected
rate as predicted in Corollary 2.2. Figure 3.2 shows that the exact error that was
computed using the reference solution when using optimal hierarchies is less than
the required tolerance with the required confidence of 95%, in accordance with
the chosen value of Ca = 2 and [13, Lemma A.2]. Figure 3.3 compares the com-
putational complexity of optimal hierarchies to geometric hierarchies for different
values of θ. This figure shows numerical confirmation that optimal hierarchies do
not give significant improvement over geometric hierarchies, especially for optimal
values of θ. In other words, the improvement of the running time is mainly due the
better choice of θ as discussed in [13]. The CMLMC algorithm uses a computational
splitting parameter, θ, calculated based on the expected bias as

θ = 1−
QWh

q1
L

TOL
,

to relax the statistical error constraint. This is different from the splitting param-
eter defined by (2.22c) that was used to find optimal hierarchies. The difference
comes from the fact that the computational theta depends on the actually used hL,
which is slightly different from the optimal choice in (2.22a) due to domain con-
straints. Figure 3.5 shows the optimal splitting, θ, as defined by (2.22c). Compare
this figure to Figure 3.4, which shows the used number of levels, L, for different
tolerances, and notice the dependence of θ on the number of levels, L. On the
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Fig. 3.1 Ex.1: The running time of the CMLMC algorithm when using optimal hierarchies.
The reference dashed line is O

(
TOL−s

)
where s is taken from Table 3.1 as predicted in

Theorem 2.2.

other hand, Figure 3.6 shows the computational splitting used in the CMLMC al-
gorithm. Notice that θ follows a similar pattern in both Figure 3.5 and Figure 3.6.
The continuous change in the latter is due to differences in the estimation of QW
for different runs of the algorithm. For comparison, Figure 3.7 shows that the
computational splitting parameter produced when using geometric hierarchies is
different from the computational splitting parameter produced when using optimal
hierarchies. However they both seem to approach the same limit as predicted in
Theorem 2.2 and Corollary 2.3. Finally, even though [13, Lemma A.2] assumes a
geometric sequence, Figure 3.8 shows that the lemma still holds for non-geometric
hierarchies; i.e., that the cumulative density function (CDF) of the exact error
when suitably normalized is well approximated by a standard normal CDF.

Next, we focus on Ex.2 where χ = 2 due to using the Milstein scheme. Since
we showed previously that geometric hierarchies are near-optimal, we only present
the results when using geometric hierarchies in this case. The optimal geometric
constant, β, is 0.25 in this case according to (2.32). Figure 3.9 shows that the actual
running time of the CMLMC algorithm has the expected rate TOL−2, again as
predicted in Theorem 2.2. Figure 3.10 shows that the exact errors for different
tolerances are less than the required tolerance with the required confidence of
95%.

4 Conclusions

MLMC sampling methods are becoming increasingly popular due to their robust-
ness and simplicity. In this work, in Theorems 2.1 and 2.2 and Corollary 2.3, we
have developed optimal non-geometric and geometric hierarchies for MLMC by
assuming certain asymptotic models on the weak and strong convergence and the
average computational cost per sample. We have shown, in Remark 2.5, that the
optimal geometric hierarchies are nearly optimal and that, asymptotically, their
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Fig. 3.2 Ex.1: The exact errors calculated using optimal hierarchies in the top plot, and
using geometric hierarchies in the bottom one. The numbers on top of the → line are the
percentage of algorithm runs that produced a larger error than the required tolerance. Notice
that the choice Cα = 2 gives a confidence of a 95% in the error bound, as predicted in [13,
Lemma A.2].

computational complexity is the same as the non-geometric optimal hierarchies.
Moreover, we have analyzed the asymptotic behavior of the optimal tolerance split-
ting parameter, θ, between the bias and the statistical error contribution. Finally,
we have discussed how enforcing domain constraints on parameters of MLMC
hierarchies affects the optimality of these hierarchies. These domain constraints
include an upper and lower bound on the mesh size or enforcing that the number
of samples and the number of discretization elements are integers.

In future work, it is possible to improve the efficiency of the MLMC method
by including certain non-asymptotic terms in the models for the weak and strong
convergence or the computational complexity. Moreover, since the asymptotic de-
pendence of the computational complexity on the different problem constants is
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Fig. 3.3 Ex.1: Actual running time of the CMLMC algorithm when using optimal and geo-
metric hierarchies with different tolerance splitting, normalized by the average running time
of the algorithm when using optimal hierarchies. Compare this figure to Figure 2.2, where the
latter is based on the theoretical results. Observe that most of the gain in computational com-
plexity is due to the optimal choice of θ and using optimal hierarchies does not significantly
improve the running time over geometric hierarchies.
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Fig. 3.4 Ex.1: The used number of levels, L, for different tolerances in the last iteration of
the CMLMC algorithm when using optimal hierarchies and ceiling h−1

` and M`. Compare this
figure to the Figure 2.3, where the latter is based on the theoretical results. The bounds are
taken from (2.23). The L values used by the CMLMC algorithm fall outside the predicted
bounds because the bounds are valid for the real-valued optimal hierarchies only. On the other
hand, CMLMC restricts L to integer values and limits the increments of L across iterations.
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Fig. 3.5 Ex.1: The error splitting parameter, θ, as defined by (2.22c).
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Fig. 3.6 Ex.1: The computational splitting parameter, θ, in the CMLMC algorithm for op-
timal hierarchies.

clearly shown in Corollaries 2.1 and 2.2, one can devise methods to combine with
MLMC to reduce the total computational complexity by affecting these constants,
for example by reducing the variance, V0, for the case where χ > 1.
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A Derivations and Proofs

A.1 Optimal Hierarchies given h0, θ, and L

Here we solve Problem 2.1 of Section 2.2 for the optimal hierarchy for any fixed value of L. We
initially treat the parameter θ as given, postponing its optimization until later, and proceed
in two steps to find the optimal {M`}L`=0 and {h`}L`=0. Assuming general work estimates

{W`}L`=0 in (2.4) and general variance estimates of {V`}L`=0, we assume equality in (2.9b) and
introduce the Lagrange multiplier λ to obtain the Lagrangian

L
(
{M`}L`=0, λ

)
=

L∑
`=0

M`W` + λ

{
L∑
`=0

V`

M`
−
(
θ

TOL

Cα

)2
}
.

The requirement that the variation of the Lagrangian with respect to M` is zero, gives M` =√
λ V`
W`

. Solving for λ in the variance constraint (2.9b) and substituting back leads to (2.13).

Substituting this optimal M` in the total work (2.4) yields

W (H) =

(
Cα

θTOL

)2
(

L∑
`=0

√
W`V`

)2

. (A.1)

We proceed to find the optimal {h`}L`=0 under the particular models (2.12). The total work
(A.1) is minimized when

L∑
`=0

√
W`V` =

√
V0

hdγ0
+
√
QS

L∑
`=1

√√√√hq2`−1

hdγ`

, (A.2)

is minimized. Here the finest mesh, hL, is given by the bias constraint (2.12b) as

hL =

(
(1− θ) TOL

QW

) 1
q1
, (A.3)

independently of the multilevel construction. Now, treat the coarsest mesh, h0, as given and
find the optimal h1, . . . , hL−1 that minimize

1
√
QS

L∑
`=1

√
W`V` =

L∑
`=1

√√√√hq2`−1

hdγ`

. (A.4)

The requirement that the derivative of this sum with respect to h` equals zero, for ` = 1, . . . , L−
1, leads to the optimality condition

q2h

(
q2+dγ

2

)
` = dγh

( q22 )
`−1 h

(
dγ
2

)
`+1 ,

which after taking the logarithm and using χ defined in (2.14), leads to

− log (h`+1) + (1 + χ) log (h`)− χ log (h`−1) = −
2

dγ
log (χ). (A.5)

This is a second order linear difference whose solution depends on χ.



26 Abdul–Lateef Haji–Ali et al.

A.1.1 For χ = 1

This section provides proofs of Theorem 2.1, Lemma 2.1, and Corollary 2.1. The solution of
the difference equation (A.5) for the case χ = 1 is the geometric sequence

h` = h0β
`, with β =

(
hL

h0

)1/L

. (A.6)

In other words, all h` are defined in terms of h0 and hL, where the latter is determined
by θ through (A.3) and we solve for the former by setting the derivative of (A.2) with respect
to h0 equal to zero. This optimality condition becomes (for q2 = dγ)

h1 =

(
QS

V0

) 1
q2
h20.

Combining this expression with (A.6) for ` = 1 and solving for h0 yields

h0 = h
1

L+1

L

(
V0

QS

) L
q2(L+1)

. (A.7)

Substituting this expression and (A.3) in the expression for β in (A.6) we obtain (2.17). More-
over, substituting (2.17) and (A.6) and (2.10) and (2.5) in (2.13) yields (2.16). Next, we
substitute (2.16) and (2.15) in (2.6) to obtain the optimal work measure for q2 = dγ

W =

(
Cα

θTOL

)2 (√
V0h

−q2
2

0 +
√
QSβ

−q2
2 L

)2

. (A.8)

Using (A.6) and (A.7), we obtain

W =

(
Cα

θTOL

)2

h
−q2
L+1

L V
1

L+1
0 Q

L
L+1

S (1 + L)2 . (A.9)

Substituting for hL from (A.3)

W =

(
Cα

θTOL

)2 ( QW

(1− θ) TOL

) 1
η(L+1)

V
1

L+1
0 Q

L
L+1

S (1 + L)2 . (A.10)

Optimizing for θ yields (2.18). Substituting back gives the work as a function of L

W (L) = C2
αTOL−2(1+e(L))Q

2e(L)
W V

2ηe(L)
0 Q

−2ηe(L)
S QS

(
1

2η

)2 (
1 +

1

e(L)

)2(1+e(L))

, (A.11)

where e(L) = 1
2η(L+1)

. Treating L as a continuous variable and differentiating with respect to

L yields

W ′(L) = 2W (L)e′(L) (C − y + log(y)) , (A.12)

where y = 1 + 2η(L+ 1) ≥ 1 and C = 1 + log
(

TOL−1QWV η0 Q
−η
S

)
. Setting (A.12) to zero

gives the equation y − log(y) = C. Note that for all x ≥ 1 and C(
exp(1)− 1

exp(1)

)
x− C ≤ x− log(x)− C ≤ x− C

Hence, for y ≥ 1 we have 1 ≤ yC−1 ≤ exp(1)
exp(1)−1

, which leads to (2.19). Moreover, asymptoti-

cally, limC→∞
x
C

= 1 leads to (2.20) for the value of L and (2.21) for the work measure.



Optimization of mesh hierarchies in Multilevel Monte Carlo samplers 27

A.1.2 For χ 6= 1

This section provides proofs of Theorem 2.2, Lemma 2.2, and Corollary 2.2. The solution of
the difference equation (A.5) for the case χ 6= 1 is

h` = h

(
χ`−χL

1−χL

)
0 h

(
1−χ`

1−χL

)
L χ

− 2
dγ

(
L(1−χ`)−`(1−χL)

(1−χ)(1−χL)

)
. (A.13)

We now distinguish between two different cases for h0: either we are free to choose the
optimal h0 ∈ R+, or we have an upper bound on the coarsest mesh h0. The first, idealized,
situation will allow us to obtain explicit expressions for the optimal splitting parameter θ and
the asymptotic work, and we start by considering this case. We return to the other case at the
end of this section.

Unconstrained optimization of h0 We take h1, . . . , hL given by (A.13) and (A.3) and set
the derivative of (A.2) with respect to h0 equal to zero. This optimality condition becomes
(after some straightforward simplifications)

−
dγ

2

√
V0

h
1+dγ/2
0

+
q2

2

√
QS

h
q2/2−1
0

h
dγ/2
1

= 0,

which, since all parameters are positive, is equivalent to

h1 =

(
χ2QS

V0

) 1
dγ

h1+χ0 .

Combining this expression for h1 with the one in (A.13) and solving for h0 gives

h0 = h

(
1−χ

1−χL+1

)
L

(
V0

QS

) 1
dγ

1−χL

1−χL+1

χ
− 2
dγ

1
1−χ

(
L 1−χ

1−χL+1−χ
1−χL

1−χL+1

)
,

which after substituting back into (A.13) and using (A.3) yields (2.22a). Finally substituting
these optimal mesh sizes into (2.13) yields (2.22b).

Optimal splitting parameter θ Now the sequences {h`}L`=0 and {M`}L`=0 are determined
in terms of the still not optimized L and θ as well as measurable model parameters. The work
per level in (2.6) becomes

M`

hdγ`

=

(
Cα

θTOL

)2 ( QW

(1− θ) TOL

) 1
η

1−χ
1−χL+1

V0

(
QS

V0

){ 1−χL

1−χL+1

}

·
1− χL+1

1− χ
χ

{
− 2χ

1−χ
1−χL

1−χL+1 +L 1+χL+1

1−χL+1

}
χ−`.

Since the only `-dependent factor in the right hand side is the last one, χ−`, and using∑L
`=0 χ

−` = χ−L(1− χL+1)/(1− χ), the total work in (2.6) becomes

W (L, θ,TOL) = w1 (L,TOL) w2(L) f (L, θ)

(
1− χL+1

1− χ

)2

, (A.14)

with

w1 (L,TOL) = TOL
−
(
2+ 1

η
1−χ

1−χL+1

)
, (A.15a)

w2(L) = C2
α V0

(
QS

V0

){ 1−χL

1−χL+1

}
Q

{
1
η

1−χ
1−χL+1

}
W (A.15b)

· χ

{
− 2χ

1−χ
1−χL

1−χL+1 +2L χL+1

1−χL+1

}
,

f (L, θ) =
1

θ2 (1− θ)
1
η

1−χ
1−χL+1

. (A.15c)



28 Abdul–Lateef Haji–Ali et al.

Thus given the value of L the dependence on the splitting parameter θ is straightforward, and
the minimal work for a given L is obtained with the minimizer of (A.15c), namely (2.22c).
With this optimal splitting parameter θ in (A.14) the total work as a function of the yet to be
determined parameter L and the tolerance is

W (L,TOL) = w1(L,TOL)w2(L)w3(L), (A.16)

with

w3(L) =

(
1

2η

)2 (
1 + 2η

1− χL+1

1− χ

)2

(
1+ 1

2η
1−χ

1−χL+1

)
. (A.17)

Optimal number of levels The optimal integer L seems impossible to find analytically. In
practical computations we instead perform an extensive search over a small range of integer
values. In the analysis below we treat L as a real parameter to obtain the bounds (2.23) that
delimit the range of integer values that must be tested, and allow a complexity analysis as
TOL→ 0 without an exactly determined L.

Treating L as a real parameter, we differentiate the work (A.16) with respect to L to
obtain

∂W

∂L
=
∂w1

∂L
w2 w3 + w1

∂w2

∂L
w3 + w1 w2

∂w3

∂L
,

where, introducing the shorthand

ξ(L) = 2η
1− χL+1

1− χ
for L ∈ [0,∞), (A.18)

and using the constants c1 and c2 in (2.24) we write

∂w1

∂L
= w1(L,TOL)

log (χ)χL+1

1− χL+1

2

ξ(L)
log
(
TOL−1

)
, (A.19a)

∂w2

∂L
= w2(L)

log (χ)χL+1

1− χL+1

2

ξ(L)
(c1 +−c2(L+ 1) + ξ(L)) , (A.19b)

∂w3

∂L
= w3(L)

log (χ)χL+1

1− χL+1

2

ξ(L)

(
log (1 + ξ(L))− ξ(L)

)
, (A.19c)

so that

∂W

∂L
(L,TOL) = u(L,TOL)v(L,TOL), (A.20)

with

u(L,TOL) = W (L,TOL)
log (χ)χL+1

1− χL+1

2

ξ(L)
,

v(L,TOL) = log
(
TOL−1

)
+ c1 +−c2(L+ 1) + log (1 + ξ(L)).

Clearly u(L,TOL) < 0 for all χ ∈ R+ \ {1} so the sign of ∂W/∂L is the opposite of the sign
of v(L,TOL). For a fixed χ ∈ R+ \ {1} we have

v(L,TOL) > 0⇔ L+ 1 <
1

c2

(
log
(
TOL−1

)
+ c1 + log (1 + ξ(L))

)
,

and, since ξ(L) ≥ ξ(0) = 2η,

L+ 1 <
1

c2

(
log
(
TOL−1

)
+ c1 + log (1 + 2η)

)
⇒ v(L,TOL) > 0⇔

∂W

∂L
< 0. (A.21)
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For the opposite inequality,

v(L,TOL) < 0⇔ L+ 1 >
1

c2

(
log
(
TOL−1

)
+ c1 + log (1 + ξ(L))

)
,

we distinguish between the cases 0 < χ < 1 and 1 < χ. When 0 < χ < 1 we have the upper
bound ξ(L) < 2η

1−χ and consequently

L+ 1 >
1

c2

(
log
(
TOL−1

)
+ c1 + log

(
1 +

2η

1− χ

))
⇒

∂W

∂L
> 0, χ ∈ (0, 1). (A.22)

In contrast ξ(L) is unbounded when 1 < χ but, since the definitions of χ and η and the relation
between strong and weak convergence orders implies that 2η ≥ χ, we have

log (1 + ξ(L)) < log

(
2η

χ− 1

)
+ (L+ 1) logχ,

and

c2 ≥
χ

χ− 1
logχ,

which gives the bound

1

c2
log (1 + ξ(L)) <

χ− 1

χ
(L+ 1) +

1

c2
log

(
2η

χ− 1

)
.

Hence

L+ 1−
1

c2
log (1 + ξ(L)) >

L+ 1

χ
−

1

c2
log

(
2η

χ− 1

)
,

and it follows that

L+ 1 >
χ

c2

(
log
(
TOL−1

)
+ c1 + log

(
2η

χ− 1

))
⇒

∂W

∂L
> 0, χ ∈ (1,∞). (A.23)

Combining (A.21) with (A.22) and (A.23), we obtain the bounds (2.23).

Optimal hierarchies with an upper bound on h0 Practical computations will impose an
upper limit on the mesh sizes, h0 ≤ hmax. If the mesh sizes (2.22a) violate such a bound, we
must modify our analysis slightly. We now consider h0 given as one of the coarsest mesh sizes
that can be realized in the given discretization, and analyze the case L ≥ 1. Using the optimal
mesh sizes (A.13) yields√√√√hq2`−1

hdγ`

= h

dγ
2
χL 1−χ

1−χL
0 h

− dγ
2

1−χ
1−χL

L χ

(
L

1−χL
− χ

1−χ−`
)
,

where the only `-dependent factor in the right hand side is the last one, χ−`, so that the
sum in (A.4) is

L∑
`=1

√√√√hq2`−1

hdγ`

=

h
(χL)
0

hL


dγ
2

1−χ
1−χL

χ

(
LχL

1−χL
− χ

1−χ

)
1− χL

1− χ
.

In this sum only hL depends on θ through (A.3). Keeping L fixed we wish to minimize the
total work, which by (A.1)–(A.2) is

W (H) =

(
Cα

θTOL

)2


√

V0

hdγ0
+
√
QS

h
(χL)
0

hL


dγ
2

1−χ
1−χL

χ

(
LχL

1−χL
− χ

1−χ

)
1− χL

1− χ


2

,



30 Abdul–Lateef Haji–Ali et al.

with respect to θ. Letting

∆ =
1

2η

1− χ
1− χL

,

and

C =

√
QS

V0
h

dγ
2

1−χL+1

1−χL
0 χ

(
LχL

1−χL
− χ

1−χ

)
1− χL

1− χ

(
QW

TOL

)∆
,

we obtain

W (H) ∝ f̃ (θ, L, h0) =
1

θ2

(
1 +

C

(1− θ)∆

)2

,

with the optimality condition

∂f̃

∂θ
=

2

θ2

(
1 +

C

(1− θ)∆

)(
C∆

(1− θ)∆+1
−

1

θ

(
1 +

C

(1− θ)∆

))
= 0,

where

2

θ2

(
1 +

C

(1− θ)∆

)
> 0.

In this case when h0 is constrained we no longer have an explicit expression for the optimal
θ. However, using

C∆

(1− θ)∆+1
−

1

θ

(
1 +

C

(1− θ)∆

)
<

C

(1− θ)∆

(
∆

1− θ
−

1

θ

)
,

and that

∆

1− θ
−

1

θ
= 0⇔ θ =

1

1 +∆
,

we conclude that the optimal θ satisfies

1

1 +∆
≤ θ. (A.24)

Similarly, from the inequality

C∆

(1− θ)∆+1
−

1

θ

(
1 +

C

(1− θ)∆

)
>

1

(1− θ)∆

(
C∆

1− θ
−

1 + C

θ

)
,

and the relation

C∆

1− θ
−

1 + C

θ
= 0⇔ θ =

1 + C

1 + C +∆
,

we obtain an upper bound for θ, namely

θ ≤
1 + C

1 + C + C∆
. (A.25)

Finally, combining (A.24) and (A.25) we have the following bounds for the optimal θ:(
1 +

1

2η

1− χ
1− χL

)−1

≤ θ ≤
(

1 +
1

2η

1− χ
1− χL

C

1 + C

)−1

, (A.26)

where the upper bound has a non-trivial dependence on TOL and L through C.
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A.2 Heuristic optimization of geometric hierarchies

This section motivates the results in Section 2.3 and Corollary 2.3 where we optimized geo-
metric hierarchies defined by h` = h0β` for given h0 and β < 0. In this case, the work and
variance models are in (2.31) and L is no longer a free parameter but must be bounded from
below by (2.33). We distinguish between two cases:

• χ = 1: Or equivalently q2 = dγ. We make the simplification of treating L as a real
parameter and substitute the lower bound (2.33) in (A.8) to obtain

Work =

(
Cα

θTOL

)2
√V0h q220 +

√
QS

β
−q2
2

log β

(
1

q1
log

(
(1− θ)TOL

QW

)
− log (h0)

)2

.

Optimizing with respect to β yields the optimal β = exp(− 2
q2

). With this choice, the total

work satisfies

Work

TOL−2 (log TOL)2
→ θ−2C2

αQS exp(2)

(
1

2η

)2

, as TOL→ 0.

Optimizing for θ suggests that θ → 1 as TOL→ 0 and (2.21) follows.

• χ 6= 1: In this case, the total work defined in (A.1) simplifies to

Work =

(
Cα

θTOL

)2

h
dγ(χ−1)
0

√V0h−q22
0 +

√
QS

(
1− β

L(−dγ+q2)
2

)
β
dγ
2 − β

q2
2


2

, (A.27)

for a given L, h0 and θ. Again, we make the simplification of treating L as a real parameter
and substitute the lower bound (2.33) to obtain

β
L(−dγ+q2)

2 =

(
(1− θ)TOL

QW

)χ−1
2η

h
dγ(χ−1)

2
0 ,

for any β. Substituting back in (A.27) and optimizing with respect to β to minimize the work
gives (2.32). Substituting this optimal β in (A.27) yields

Work =

(
Cα

θTOL

)2

h
dγ(χ−1)
0

(√
V0h

−q2
2

0 +
√
QS

χ
χ
χ−1

χ− 1

(
1− χ−L

))2

. (A.28)

Asymptotically, using the lower bound in (2.33) as TOL → 0 yields (2.26) with the following
constants

C1 = (1− θ)
χ−1
η θ−2C2

αQ
1−χ
η

W QS

(
χ

χ
χ−1

χ− 1

)2

, (A.29a)

C2 = θ−2C2
αh

dγ(χ−1)
0

(√
V0h

−q2
2

0 +
√
QS

χ
χ
χ−1

χ− 1

)2

. (A.29b)

Optimizing these constants with respect to θ yields (2.28) and substituting back yields (2.27a)
and (2.34) for C1 and C2, respectively. This, as Remark 2.5 mentions, shows that the asymp-
totic computational complexities of optimal non-geometric and geometric hierarchies are the
same.
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