
Stochastic Variance Reduced Gradient Optimization
of Generative Adversarial Networks

Tatjana Chavdarova 1 2 Sebastian Stich 2 Martin Jaggi 2 François Fleuret 1 2

Abstract
Generative Adversarial Networks (GANs) are a
class of algorithms that produce deep generative
models. The quality of the generated samples as
well as the algorithm’s time efficiency–in training
and inference–made GAN widely applied. How-
ever, this class of methods also earned a reputation
for being notoriously difficult to train.

We consider Stochastic Variance Reduced Gradi-
ent (SVRG) methods for optimizing GANs. With
marginal additional computation per parameter
update, SVRG-GAN substantially improves the
stability and the final performance of the algo-
rithm on less challenging datasets and avoids the
mode collapse problem.

1. Introduction
Generative Adversarial Networks (Goodfellow et al., 2014)
are a class of unsupervised generative algorithms that take
advantage of deep learning technologies. Given samples
from a fixed data distribution pd, a GAN learns a generative
neural network whose distribution pg mimics pd and is fast
to sample from. The samples’ quality, the inference speed,
and the ability to learn from unlabeled data all contributed
to GAN being a popular choice for multiple applications:
image synthesis (Goodfellow et al., 2014; Berthelot et al.,
2017), super resolution (Ledig et al., 2017), image to im-
age translation (Isola et al., 2017), text to image synthe-
sis (Zhang et al., 2017; Reed et al., 2016), image inpaint-
ing (Yeh et al., 2017; Pathak et al., 2016), semi-supervised
tasks (Salimans et al., 2016), 3D object reconstruction (Choy
et al., 2016) and others.

The core components of GAN are two deep neural networks:
The generator represents a mapping G : z 7→ x, where z fol-
lows a known distribution pz such as uniform, and x follows

1Idiap Research Institute 2École Polytech-
nique Fédérale de Lausanne. Correspondence to:
<firstname.lastname@{idiap1,epfl2}.ch>.

Presented at the International Conference on Machine Learning–
ICML 2018 workshop on Theoretical Foundations and Applica-
tions of Deep Generative Models.

(ideally) the distribution pd of the data. The discriminator is
a classifier D : x 7→ y ∈ [0, 1], whose output represents an
estimated probability that x originates from the real dataset.
Given “real” samples x ∼ pd and “fake” ones x ∼ pg, D
is trained to distinguish between the two, using “implicit”
labels corresponding to the true origins of the samples. G is
trained so as to “fool” D that its samples G(z) are real: it
aligns D(G(z)) with the label used for real samples. D in
effect acts as a loss to train the generative model G, which
is notably less restrictive compared to classical reconstruc-
tion loss. The discriminative loss directly models what we
aim at–generating realistic looking samples, in contrast to
replicating those we have.

One way to formalize the above involves the classical mini-
max game between two players (Goodfellow et al., 2014):

min
G

max
D

E
x∼pd

[logD(x)]+ E
z∼pz

[log(1−D(G(z)))]. (1)

The Nash equilibrium of Eq. 1, corresponds to the modelled
distribution fully recovering the real distribution pg = pd,
derived in functional space (Goodfellow et al., 2014). Given
an optimal discriminator, the loss function for G reveals
the Jensen Shanon divergence between the targeted and the
modelled distribution DJS(pd||pg) (see (Goodfellow et al.,
2014), §4.1).

In practice, GANs are often reported as difficult to opti-
mize (Arjovsky & Bottou, 2017; Mescheder et al., 2017).
Several empirically obtained techniques for improving the
training stability are applied by practitioners (see (Radford
et al., 2015) for generating images). In particular, the train-
ing may fail under some choices, perform poorly, or per-
formances may oscillate through the iterative procedure of
the training. A typical failure is that the generator produces
samples from a strict subset of the full dataset, which is
referred to as mode collapse.

As pg and pd lie in low dimensional manifolds (Arjovsky
& Bottou, 2017), it is unlikely that these would overlap in
high dimensions (e.g. two planes are unlikely to overlap
in 3D) (see Arjovsky & Bottou, 2017). The parameters θG
and θD of the two deep neural networks G and D respec-
tively, are optimized iteratively. Recall that DJS is constant
if the two distributions have non-overlapping supports. In



Stochastic Variance Reduced Gradient Optimization of Generative Adversarial Networks

turn, the gradient of DJS would not allow for optimizing
the networks G(z; θG) and D(x; θD). This line of thought
motivated series of works that consider an alternative dis-
tance to DJS , such as the Wasserstein distance (Arjovsky
et al., 2017; Gulrajani et al., 2017)(see § 2), or the Cramer
distance (Bellemare et al., 2017).

Note from Eq. 1 how the slope of the generator’s loss to
minimize log(1 −D(G(z))) at initial iterations would be
close to zero as D would provide high confidence esti-
mates in favor of correctly classifying its input. Indeed,
this will cause the generator’s gradient to vanish. Observe
that, |∇ log(D(G(z)))| � |∇ log(1 −D(G(z)))|. Hence,
the implementations of the vanilla-GAN algorithm (Good-
fellow et al., 2014; Radford et al., 2015) instead used a
“non-saturating” loss (as referred by Goodfellow): the gen-
erator, given a fixed D, aims at maximizing:

LG(G,D) = max
G

E
z∼pz

[log(D(G(z)))]. (2)

To our knowledge, the generator loss shown in Eq. 2 is used
in all the implementations of the vanilla GAN algorithm.
The theoretical justifications of the algorithm in function
space motivate D to be trained up to convergence at each
iteration of the algorithm. This is in contrast to the empiri-
cal results that show that doing so has either no benefit or
worsens the performances (Arjovsky & Bottou, 2017). This
discrepancy is also addressed in the initial implementations
of vanilla GAN (Goodfellow et al., 2014; Radford et al.,
2015), as D is updated once per iteration (hence, as many
times asG). Because of this, it is not easy to see that the gra-
dients would vanish and whether replacing the divergence
would help.

In this paper, we empirically replicate this problem. The
results show that in case of non-overlapping supports the
generator’s gradient does not vanish and the de-facto imple-
mentation of vanilla GAN (which uses the non-saturating
loss–Eq.2) continues to converge. The results give rise to
an important question: what are the key problems of the
alternating optimization of D and G reported by practition-
ers. Addressing this and improving accordingly would be
useful because training can be notoriously difficult and the
performance evaluation is time-consuming too.

Finally, to our knowledge GANs perform relatively well
on more “simplistic” datasets (of low sample diversity, e.g.
MNIST (Lecun & Cortes) or SVHN (Netzer et al., 2011)–
Street View House Numbers). However, performances
deteriorate on datasets with high diversity such as Ima-
geNet (Russakovsky et al., 2015) or (equivalently) require
a large number of iterations for the algorithm to converge.
From classical classification problems, we know that low
and high sample variance implicate fast (almost linear) and
slow (sublinear) convergence of Stochastic (Mini-batch)
Gradient Descent which is the de-facto method for optimiz-

ing neural networks. Motivated by this, in this paper we
point out that the stochastic optimization of this algorithm
could be an important cause of the training difficulties.

Empirically, we first present results which indicate: (i) in
case of non-overlapping supports (under typical experimen-
tal set-up) the non-saturating version of the Jensen Shannon
divergence yet converges; and (ii) the stochastic optimiza-
tion is an important potential cause of mode collapse as well
as slow convergence on datasets with high sample diversity.
Regarding the latter, we conduct vanilla Gradient Descent
training of GANs on MNIST (Lecun & Cortes), as well
as larger batch size experiments on CIFAR10 (Krizhevsky,
2009) and ImageNet (Russakovsky et al., 2015).

We propose Stochastic Variance Reduced Gradient (Johnson
& Zhang, 2013) optimization of GANs, and we show em-
pirical results in favor of it. We observe that this approach
offers three major advantages: (i) the mode collapse prob-
lem is naturally handled as the generated samples at each
iteration are of higher diversity compared to classical train-
ing; (ii) the performances do not oscillate; and (iii) the
training saturates when an optimum is reached, as the gradi-
ent updates vanish. The latter is not the case if SGD is used,
as the generator may start to diverge, making it difficult to
determine the number of iterations of the algorithm. How-
ever, on more challenging datasets, this approach is more
prominent to converging to local optima, where the training
saturates, and the generated samples are of a lower quality.
These results indicate a need of stochastic variance reduced
optimization methods that perform well in a non-convex
setting, as we later discuss.

The organization is as follows. We review related works in
§ 2. After briefly summarizing Stochastic Variance Reduced
Optimization (Johnson & Zhang, 2013) § 3, we propose an
extension of it to GANs, § 4. The experiments presented
in § 5 first motivate SVRG-based optimization and then
list preliminary results of SVRG optimization of GANs.
Directions for extensions are discussed in § 6.

2. Related works
GAN variants. When one uses the GAN framework to
train a model that generates images, particular Convolu-
tional Neural Network (CNN) architectures are used for G
and D, called the Deep Convolutional Generative Adver-
sarial Networks (DCGAN) (Radford et al., 2015). Also,
common implementations of GAN often follow several
gudelines enumerated by Radford et al., as these could be
critical.

To train G, the mapping represented by D, besides being
differentiable, shall have non-zero gradient. To ensure this
holds when the supports of pg and pd are disjoint (see also
§ 1 or (Arjovsky et al., 2017) for details) DJS can be re-



Stochastic Variance Reduced Gradient Optimization of Generative Adversarial Networks

placed by the Wasserstein distance (Villani, 2008), which
accounts for the Euclidean structure–a variant called Wasser-
stein GAN (WGAN) (Arjovsky et al., 2017). Interestingly,
the computationally tractable version of it, based on the
Kantorovich Rubinstein duality principle (Villani, 2008),
requires a K-Lipschitz discriminator (here called critic as
its output is no longer a probability estimate). The result
is intuitive from a practical standpoint: strongly regulariz-
ing the discriminator prevents the gradient from vanishing
through it.

A computationally cheap way of enforcing the Lipschitz con-
tinuity is through weight clipping (Arjovsky et al., 2017).
However, this is shown to degrade performances (Gulra-
jani et al., 2017). Alternatively, it can be implemented in
a smooth manner by adding an extra term in D’s loss so
that gradients whose norm is higher then K are penalized–
a variant called WGAN with Gradient Penalty (WGAN-
GP) (Gulrajani et al., 2017). Note how the latter is computa-
tionally more demanding as of the need to compute second
order derivative.

Motivated by game theory principles, Kodali et al. de-
rive similar solution. Based on the vanilla GAN loss, the
proposed algorithm named Deep Regret Analytic GAN
(DRAGAN) forces the constraint on the gradients of D(x)
solely in local regions around real samples.

Spectral Normalization GAN (SNGAN) (Miyato et al.,
2018) obtains Lipschitz discriminator using the power itera-
tion method to normalize the parameters of the discriminator,
and uses the original DJS divergence.

GAN optimization. Mescheder et al. and Nagarajan &
Kolter discuss the algorithm’s convergence and stability
through the Jacobian of the vector field that corresponds to
the parameter updates. Both consider simultaneous gradient
ascent/descent, i.e. at each iteration D and G are updated at
the same time. Mescheder et al. points out that simultaneous
gradient ascent may require infeasibly small learning rates
for convergence, when the eigenvalues of the Jacobian have
small/no real part and big imaginary part (also pointed out by
Alain & Bengio–§ 3.6 in the context of autoencoders). It is
not immediately clear if this problem arises if doing alternat-
ing gradient descent, which is the optimization method used
in practice. Importantly, Nagarajan & Kolter investigate if
GAN and the WGAN variant are stable at the equilibria.
Under certain assumptions, Nagarajan & Kolter show that
vanilla-GAN is locally exponentially stable if performing
simultaneous gradient descent optimization.

Multi-Network approaches. Several works report im-
proved stability when using either multiple generators ver-
sus single discriminator (Ghosh et al., 2017; 2016), or mul-
tiple discriminators versus one generator (Durugkar et al.,

Algorithm 1 Pseudocode for SVRG.

1: Input: datasetD, epochsE, update frequencym, learn-
ing rate η, objective function L

2: Initialize: Θ
3: for e = 0 to E−1 do
4: if e%m == 0 then
5: ΘS = Θ
6: µ = 1

|D|
∑|D|

n=1∇ΘSL (D[n])

7: end if
8: for i = 0 to |D|−1 do
9: n ∼ U(1, |D|)

10: Θ = Θ− η
(
∇ΘL (D[n])−∇ΘSL (D[n]) + µ

)
11: end for
12: end for
13: Output: Θ

2017). Wang et al. propose building a “self-ensemble” out
of copies of the generator taken at different iterations while
training a single pair. Chavdarova & Fleuret train a “global”
pair against a statistically independent ensemble of adver-
sarial pairs. These works are motivated by the high variance
of the updates and the oscillations observed in practice.

3. Stochastic Variance Reduced Gradient
We are often interested in developing efficient algorithms
that learn a model, given a finite size of annotated dataset
D. The training of the model’s parameters Θ aims at:

min
Θ

1

N

N∑
i=1

L (D[i]; Θ), (3)

where N = |D|, and L (·) is a differentiable loss func-
tion. For example, a typical choice is the squared loss:
L (D[i],Θ) = (f(xi; Θ)−yi)2, where f is the function rep-
resetned by our model, and D[i] = (xi, yi), i = 1, . . . , N
are training examples where xi ∈ Rd, yi ∈ R. For clearity,
we omit the parameters Θ of L (·; Θ).

Gradient Descent (GD) based methods are the workhorse
of deep learning. The randomly initialized model param-
eters are iteratively updated using the gradients of L (·):
Θ = Θ − η

(
1
B

∑B
i=1∇ΘL (D[σ(i)]))

)
, where η is the

learning rate. At each iteration, GD and Stochastic Gradient
Descent (SGD) use the full dataset D (B = N , σ = 1N )
and a sample of the dataset x ∼ U(D) (B = 1, σ is a
random permutation of [1, N ]), respectively. While the for-
mer (deterministic) optimization requires significantly larger
computation per each update–O(Nd), it has the advantage
over SGD of a linear convergence rate.

Stochastic Variance Reduced Gradient (SVRG) (Johnson
& Zhang, 2013) is an optimization method which speeds
up SGD through reducing the variance of the updates of



Stochastic Variance Reduced Gradient Optimization of Generative Adversarial Networks

Algorithm 2 Pseudocode for alternating GAN.

1: Input: dataset D, batch size B, known distribution
pz , iterations I , learning rate η, generator loss LG,
discriminator loss LD

2: Initialize: D(·; ΘD), G(·; ΘG)
3: for e = 1 to I do
4: x1 . . . xB ∼ U(D), z1 . . . zB ∼ pz
5: ΘD = ΘD − η∇ΘD

LD(D,G, x, z)
6: z1 . . . zB ∼ pz
7: ΘG = ΘG − η∇ΘG

LG(D,G, z)
8: end for
9: Output: Θ

the model parameters, and provably converges under strong
convexity and smoothness assumptions. As SGD, SVRG
iteratively updates Θ using a sample of the dataset of size
B, where 0 < B � |D|.

Alg. 1 summarizes the SVRG algorithm, where for sim-
plicity B = 1. At particular iterations (with a predefined
frequency m), SVRG computes a vector µ ∈ R|Θ| as an
average of the gradients of the full dataset D with respect
to Θ. It stores a copy of the model’s parameters at the point
µ is calculated, denoted as ΘS , where S stands for snap-
shot. Finally, each update of Θ is done using a randomly
picked sample of the dataset n ∼ U(D), and is calculated
as ∇ΘL (D[n]) − ∇ΘSL (D[n]) + µ. Note how the two
extra terms vanish in expectation, what explains the need
of storing ΘS . Under the identical assumptions, SVRG
converges at a linear rate (Johnson & Zhang, 2013).

4. Stochastic Variance Reduced Gradient
optimization of GAN

GAN optimization. The most common implementa-
tion of Eq. 1 is the alternating optimization of G and
D, see Alg. 2. In Alg. 2, for vanilla-GAN we have
LD(D,G, x, z) = log(D(x)) + log(1 − D(G(z))) and
LG(D,G, z) = log(D(G(z))). Observe that contrary to
classical training of the form Eq. 3 where we minimize
a single training criterion, in Alg. 2 we optimize the two
networks stochastically, and each affects the opponent op-
timization in the next iteration. This leads to optimization
trajectories that may largely differ based on the sampling.

SVRG-GAN. Alg. 3 summarizes the SVRG optimization
extended to GAN. To obtain that E

[
∇ΘSL (DS , GS , ·)−

µ
]

vanishes, when updating ΘD and ΘG where the expeca-
tion is over samples of D and Z respectively, we use the
snapshopt networks DS and GS for the second term in
lines 12 & 14. Moreover, the noise dataset Z ∼ pz , where
|Z| = |D|, is fixed. Nonetheless, sampling from pz should
not impact the performance, as |Z| is usually high.

Algorithm 3 Pseudocode for SVRG-GAN.

1: Input: dataset D, noise dataset Z (|Z| = |D|), epochs
E, update frequency m, learning rate η, generator loss
LG, discriminator loss LD

2: Initialize: D(|x ∼ D|; ΘD), G(z; ΘG)
3: for e = 0 to E−1 do
4: if e%m == 0 then
5: ΘSD = ΘD

6: ΘSG = ΘG

7: µD = 1
|D|
∑|D|

n=1∇ΘS
D

LD(DS , GS ,D[nd],Z[n])

8: µG = 1
|Z|
∑|Z|

n=1∇ΘS
G
LG(DS , GS ,Z[n])

9: end if
10: for i = 0 to |D|−1 do
11: nd ∼ U(1, |D|), nz ∼ U(1, |Z|)
12: ΘD = ΘD − η

(
∇ΘD

LD(D,G,D[nd],Z[nz])−
∇ΘS

D
LD(DS , GS ,D[nd],Z[nz]) + µD

)
13: z ∼ U(1, |Z|)
14: ΘG = ΘG − η

(
∇ΘG

LG(D,G,Z[nz]) −
∇ΘS

G
LG(DS , GS ,Z[nz]) + µG

)
15: end for
16: end for
17: Output: Θ

5. Experiments
Unless otherwise ephasized, our experiments use vanilla-
GAN. In this case, always the non staurating loss for the
generator (Eq. 2) is used. See App. A for details on our
implementation.

Datasets. We used few datasets: (i) MNIST (Lecun
& Cortes) and FASHION-MNIST (Xiao et al., 2017),
(ii) CIFAR10 (Krizhevsky §3), (iii) ImageNet (Rus-
sakovsky et al., 2015).

Figure 1: GD-GAN mode recovery experiment (see § 5.1)
on MNIST. For the first step we used the digits 0 and 1,
shown in the first and second row, respectively. Left–to–
right columns show samples taken at the iterations: 1, 50,
100, 500, and 1000, respectiely.



Stochastic Variance Reduced Gradient Optimization of Generative Adversarial Networks

Metrics. A limitation to improve GANs is the lack of a
proper performance evaluation (Lucic et al., 2017). Ideally,
the model should generate samples that do not necessarily
exist in the dataset at hand, which yet “look alike” these.
Note how this is highly subjective, what implies that even
an evaluation made by humans could be noisy.

In case of image synthesis, most widely adopted is the In-
ception score (IS) (Salimans et al., 2016). This metric feeds
a pre-trained model named Inception (Szegedy et al., 2015)
with a large sample of generated images and measures the
Kullback–Leibler divergence between the predicted con-
ditional label distribution and the actual class probability
distribution. The mode collapse failure is reflected by the
mode’s class being less frequent, making the conditional
label distribution more deterministic. As the Inception net-
work operates on an input of 3 channels (RGB), for the
1 channel MNIST dataset, we replace the module with a
classifier trained on this dataset. For datasets of 3 input
channels, we use the original implementation of the Incep-
tion Score (Salimans et al., 2016) and a sample of pg of
size 50·103, whereas for the latter case we use our own
implementation in PyTorch (Paszke et al., 2017).

The Fréchet Inception Distance (FID) (Heusel et al.,
2017) also relies on the Inception model (Szegedy et al.,
2015), but uses it to embed samples into a “good” fea-
ture space. It consists of first estimating the means µg

and µd, and covariances Cg and Cd, respectively for pg and
pd in that feature space, and computing DFID(pd, pg) ≈
d2((µd, Cd), (µg, Cg)) = ||µd − µg||22 + Tr(Cd + Cg −
2(CdCg)

1
2 ), where d2 denotes the Fréchet Distance.

For experiments on MNIST, using an independently trained
classifier distinguishing its 10 classes, we also plot the en-
tropy of the generated samples’ mode distribution, as well
as the total variation between the class distribution of the
generated samples and a uniform one.

5.1. Disjoint supports

To assess if the learning saturates for the generator in case
of non-overlapping supports we conduct the following two-

step experiments: (i) enforcing mode collapse using a subset
of the dataset, and (ii) full-dataset training. The former
step, which uses a single class of the dataset, produces Gc

& Dc. The latter starts from Gc & Dc and trains these net-
works using the full dataset. The second step was carried out
in: (i) standard GAN training set-up: training stochastically
using Adam–denoted as SGD-GAN; and (ii) using vanilla
GD optimization–denoted as GD-GAN. The latter ensures
that the obtained results are consistent, in a sense that these
do not depend on the random sampling and is more rigorous.
We call this experiment mode recovery.

Figures 1 and 2 illustrate the results on MNIST and CI-
FAR10. We observe that the learning does not saturate, and
the non-saturating GAN continues to converge. Note that
this is not the case if the originalDJS is used. Moreover, we
experimented with large learning rate for the discriminator
that is not used in practice, and we observe that in this case,
the learning does saturate as the loss quickly goes to 0. In
summary, the de-facto implementation of GAN is able to
recover gradients and the learning continues.

5.2. Larger batch size and Gradient Descent
optimization

We conduct preliminary experiments that may point out if
variance reduced optimization could improve performances.
To this end, we used vanilla GD optimization on MNIST.
As GD is infeasible for larger datasets, we conducted exper-
iments using varying batch size on two datasets: CIFAR10
and ImageNet.

Fig. 3 quantitatively compares the performances obtained
on MNIST. Primarily, the results show that increasing the
batch size improves performances. It is important to note
that the x-axis of Fig. 3 shows the number of parameters’
updates, hence each iteration of GD consumes significantly
more computation compared to cases where B � |D|. Be-
sides the expected results that gradient descent converges
faster in terms of the number of updates of the parameters,
we observe from Fig. 3b that GD training on this dataset
impressively avoids mode collapse, as the across class dis-

initial fake samples 1000-th iteration, GD 2000-th iteration, GD 1000-th iteration, Adam, B=64 2000-th iteration, Adam, B=64

Figure 2: Mode recovery experiment (see § 5.1) on CIFAR10. Selected class: airplane.



Stochastic Variance Reduced Gradient Optimization of Generative Adversarial Networks

0 500 1000 1500 2000 2500 3000
Generator updates

1

2

3

4

5

6

7

8
In

ce
pt

io
n 

Sc
or

e

SGD&Adam, = 0.0001, B = 50
SGD&Adam, = 0.0001, B = 500
GD&Adam, = 0.0001
GD, = 0.009
GD, = 0.01

(a) IS (higher is better)

0 500 1000 1500 2000 2500 3000
Generator updates

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

En
tro

py

SGD&Adam, = 0.0001, B = 50
SGD&Adam, = 0.0001, B = 500
GD&Adam, = 0.0001
GD, = 0.009
GD, = 0.01

(b) Entropy (higher is better)

0 500 1000 1500 2000 2500 3000
Generator updates

0.0

0.2

0.4

0.6

0.8

To
ta

l V
ar

ia
tio

n

SGD&Adam, = 0.0001, B = 50
SGD&Adam, = 0.0001, B = 500
GD&Adam, = 0.0001
GD, = 0.009
GD, = 0.01

(c) Total variation (lower is better)

Figure 3: Different optimization methods of GAN on MNIST (best seen in color). SGD emphasizes that the optimization is
stochastic, in which case we use Adam (Kingma & Ba, 2014). η and B denote learning rate and batch size, respectively. The
input space is 1×28×28. See App. A for implementational details.

0 20000 40000 60000 80000 100000 120000 140000
Generator updates

0

2

4

6

8

In
ce

pt
io

n 
Sc

or
e

ImageNet, B = 64
ImageNet, B = 256
ImageNet, B = 512
ImageNet, B = 1024

CIFAR10, B = 64
CIFAR10, B = 256
CIFAR10, B = 512
CIFAR10, B = 1024

CIFAR10, B = 1
CIFAR10, B = 4
CIFAR10, B = 8

0 20000 40000 60000 80000 100000 120000 140000
Generator updates

40

60

80

100

120

140

160

180

200

Fr
éc

he
t I

nc
ep

tio
n 

Di
st

an
ce

ImageNet, B = 64
ImageNet, B = 256
ImageNet, B = 512
ImageNet, B = 1024

CIFAR10, B = 64
CIFAR10, B = 256
CIFAR10, B = 512
CIFAR10, B = 1024

CIFAR10, B = 1
CIFAR10, B = 4
CIFAR10, B = 8

Figure 4: Top: IS (higher is better), and bottom: FID (lower
is better) on ImageNet and CIFAR10 (best seen in color).
Using Adam, η=0.0001 and different batch sizes B.

50-Adam,
η=10−4

500-Adam,
η=10−4

GD-Adam,
η=10−4

GD,
η=10−3

GD,
η=10−2

Figure 5: Random sample of pg of the experiments illus-
trated in Figure 3. The samples are taken at the 5000-th
iteration of each of the experiments. [B-] followed by the
optimization method denotes the minibatch size.

tribution of the generated samples is uniform. Fig. 5 is
complementary and shows that the metrics in Figure 3 are in
line with the observed quality and diversity of the generated
samples.

Fig. 4 shows quantitative results on ImageNet and CIFAR10
for different batch size, obtained using the IS and FID met-
rics. Increasing the batch sizes improves performances for
ImageNet, which has 1000 classes. The performance gain is
smaller for CIFAR10 when varying the batch sizes between
64 − 1024, as this dataset has 10 classes. However, if we
reduce the batch size to similar ratio C/B where C denotes
the number of classes, as for ImageNet, we observe that per-
formances drastically decrease. Moreover, if using B = 1
the algorithm does not converge, which experiment we run
for 900, 000 iterations.

5.3. SVRG-GAN

In Fig. 6 we plot the Inception Score, Entropy and Total
Variation metrics (see § 5) of SVRG-GAN on MNIST. In-
terestingly, SVRG-GAN is comparable to GD-GAN, while
the latter is significantly more computation demanding. Fig-
ures 7 and 8 show samples generated from SVRG-GAN, on
MNIST and FASHION-MNIST, respectively.



Stochastic Variance Reduced Gradient Optimization of Generative Adversarial Networks

0 1000 2000 3000 4000 5000
Generator updates

1

2

3

4

5

6

7

8

In
ce

pt
io

n 
Sc

or
e

SGD&Adam, = 0.0001
GD&Adam, = 0.0001
GD, = 0.01
D : SVRG, = 0.01;
G : Adam, = 0.0001
SVRG, = 0.01

(a) IS (Salimans et al., 2016) (higher is bet-
ter)

0 1000 2000 3000 4000 5000
Generator updates

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

En
tro

py

SGD&Adam, = 0.0001
GD&Adam, = 0.0001
GD, = 0.01
D : SVRG, = 0.01;
G : Adam, = 0.0001
SVRG, = 0.01

(b) Entropy (higher is better)

0 1000 2000 3000 4000 5000
Generator updates

0.0

0.2

0.4

0.6

0.8

To
ta

l V
ar

ia
tio

n

SGD&Adam, = 0.0001
GD&Adam, = 0.0001
GD, = 0.01
D : SVRG, = 0.01;
G : Adam, = 0.0001
SVRG, = 0.01

(c) Total variation (lower is better)

Figure 6: SVRG-GAN experiments on MNIST (best seen in color). Except for GD-GAN, B=50 for the rest of the
experiments.

(a) D: SVRG, η=0.01; G:
Adam, η=0.0001;

(b) SVRG, η=0.01

Figure 7: Generated samples on MNIST, using SVRG.

Figure 8: Generated samples on FASHION-MNIST, using
SVRG η = 0.0001, at the 30000-th iteration.

6. Conclusion
The feasible way of optimizing the two deep neural networks
tied as opponents – stochastically, introduces variance for
the parameter updates. As the generator represents a map-
ping from latent code to the space of the real data, a high
variance may cause large oscillations and slow convergence,

as well as imbalance or repetition of how the modes of the
real data are mapped to the latent codes. This line of reason-
ing was confirmed empirically, as vanilla Gradient Descent
GAN optimization on MNIST demonstrated no mode col-
lapse and increasing the size of the mini-batches improves
performances on more challenging datasets.

We proposed an SVRG extension to GANs, and we showed
that such extension greatly outperforms Adam in terms of
convergence speed and reducing mode collapse. In this
paper, we focused on vanilla SVRG which provably con-
verges under strong convexity assumption. Nonetheless,
there exists multiple variants of this method (Allen-Zhu,
2016; Shang et al., 2018) which on the theory side require
less strict assumptions, and practically outperform vanilla
SVRG on more challenging non-convex problems. Our
future work is towards addressing key properties required
for variance reduced optimization of GANs on challenging
datasets.

More precisely, we observe two main drawbacks: (i) sen-
sitivity to the choice of the initial learning rate, as well as
(ii) convergence halt due to snapshot networks which are
off the mean parameter values in the current epoch. The
latter occurs as GAN optimization is significantly more chal-
lenging than the classical one, as the dynamics constantly
change (see App.). The above can be addressed using mo-
mentum based adaptation of the learning rate, and using
an average of the past parameter values for the snapshot
network (as Shang et al. recently propose), respectively.

Acknowledgements
This work was supported by the Swiss National Science
Foundation, under grant CRSII2-147693 “WILDTRACK”
and the Hasler Foundation through the “MEMUDE” project.



Stochastic Variance Reduced Gradient Optimization of Generative Adversarial Networks

References
Alain, G. and Bengio, Y. What Regularized Auto-Encoders

Learn from the Data Generating Distribution. ArXiv e-
prints, November 2012.

Allen-Zhu, Z. Katyusha: The First Direct Acceleration
of Stochastic Gradient Methods. ArXiv e-prints, March
2016.

Arjovsky, M. and Bottou, L. Towards Principled Methods
for Training Generative Adversarial Networks. ArXiv
e-prints, January 2017.

Arjovsky, M., Chintala, S., and Bottou, L. Wasser-
stein generative adversarial networks. In Proceed-
ings of the 34th International Conference on Ma-
chine Learning, volume 70, pp. 214–223, 2017.
URL http://proceedings.mlr.press/v70/
arjovsky17a.html.

Bellemare, M. G., Danihelka, I., Dabney, W., Mohamed, S.,
Lakshminarayanan, B., Hoyer, S., and Munos, R. The
Cramer Distance as a Solution to Biased Wasserstein
Gradients. ArXiv e-prints, May 2017.

Berthelot, D., Schumm, T., and Metz, L. BEGAN: Boundary
Equilibrium Generative Adversarial Networks. ArXiv e-
prints, March 2017.

Chavdarova, T. and Fleuret, F. SGAN: An alternative train-
ing of generative adversarial networks. In Proceedings of
the IEEE international conference on Computer Vision
and Pattern Recognition (CVPR), 2018.

Choy, C. B., Xu, D., Gwak, J., Chen, K., and Savarese, S.
3D-R2N2: A unified approach for single and multi-view
3D object reconstruction. In Proceedings of the European
Conference on Computer Vision (ECCV), 2016.

Durugkar, I. P., Gemp, I., and Mahadevan, S. Generative
multi-adversarial networks. In International Conference
on Learning Representations (ICLR), 2017.

Ghosh, A., Kulharia, V., and Namboodiri, V. P. Message
passing multi-agent GANs. CoRR, abs/1612.01294, 2016.
URL http://arxiv.org/abs/1612.01294.

Ghosh, A., Kulharia, V., Namboodiri, V. P., Torr, P. H. S.,
and Dokania, P. K. Multi-agent diverse generative ad-
versarial networks. CoRR, abs/1704.02906, 2017. URL
http://arxiv.org/abs/1704.02906.

Goodfellow, I. NIPS 2016 Tutorial: Generative Adversarial
Networks. ArXiv e-prints, December 2017.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,

Y. Generative adversarial nets. In Advances in Neu-
ral Information Processing Systems 27, pp. 2672–2680.
2014. URL http://papers.nips.cc/paper/
5423-generative-adversarial-nets.pdf.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and
Courville, A. C. Improved training of Wasserstein GANs.
In Advances in Neural Information Processing Systems
30, pp. 5767–5777. 2017.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. GANs trained by a two time-scale update
rule converge to a local nash equilibrium. In Advances
in Neural Information Processing Systems 30, pp. 6626–
6637. 2017.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In Proceedings of the 32Nd International Conference on
International Conference on Machine Learning - Volume
37, ICML’15, pp. 448–456. JMLR.org, 2015.

Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. Image-to-
image translation with conditional adversarial networks.
In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

Johnson, R. and Zhang, T. Accelerating stochastic gradient
descent using predictive variance reduction. In Burges,
C. J. C., Bottou, L., Welling, M., Ghahramani, Z., and
Weinberger, K. Q. (eds.), Advances in Neural Information
Processing Systems 26, pp. 315–323. Curran Associates,
Inc., 2013.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2014. URL http:
//arxiv.org/abs/1412.6980.

Kodali, N., Abernethy, J. D., Hays, J., and Kira, Z. How
to train your DRAGAN. CoRR, abs/1705.07215, 2017.
URL http://arxiv.org/abs/1705.07215.

Krizhevsky, A. Learning Multiple Layers of Fea-
tures from Tiny Images. Master’s thesis, 2009.
URL http://www.cs.toronto.edu/˜{}kriz/
learning-features-2009-TR.pdf.

Lecun, Y. and Cortes, C. The MNIST database of handwrit-
ten digits. URL http://yann.lecun.com/exdb/
mnist/.

Ledig, C., Theis, L., Huszr, F., Caballero, J., Cunning-
ham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J.,
Wang, Z., and Shi, W. Photo-realistic single image
super-resolution using a generative adversarial network.
In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 105–114, July 2017. doi:
10.1109/CVPR.2017.19.

http://proceedings.mlr.press/v70/arjovsky17a.html
http://proceedings.mlr.press/v70/arjovsky17a.html
http://arxiv.org/abs/1612.01294
http://arxiv.org/abs/1704.02906
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1705.07215
http://www.cs.toronto.edu/~{}kriz/learning-features-2009-TR.pdf
http://www.cs.toronto.edu/~{}kriz/learning-features-2009-TR.pdf
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/


Stochastic Variance Reduced Gradient Optimization of Generative Adversarial Networks

Lucic, M., Kurach, K., Michalski, M., Gelly, S., and Bous-
quet, O. Are GANs Created Equal? A Large-Scale Study.
ArXiv e-prints, November 2017.

Mescheder, L., Nowozin, S., and Geiger, A. The numer-
ics of GANs. In Guyon, I., Luxburg, U. V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., and Gar-
nett, R. (eds.), Advances in Neural Information Process-
ing Systems 30, pp. 1825–1835. Curran Associates, Inc.,
2017. URL http://papers.nips.cc/paper/
6779-the-numerics-of-gans.pdf.

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spec-
tral normalization for generative adversarial networks. In
International Conference on Learning Representations,
2018. URL https://openreview.net/forum?
id=B1QRgziT-.

Nagarajan, V. and Kolter, J. Z. Gradient descent GAN opti-
mization is locally stable. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 30, pp. 5585–5595. Curran Asso-
ciates, Inc., 2017.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu,
B., and Ng, A. Y. Reading digits in natural
images with unsupervised feature learning. In
NIPS Workshop on Deep Learning and Unsuper-
vised Feature Learning 2011, 2011. URL http:
//ufldl.stanford.edu/housenumbers/
nips2011_housenumbers.pdf.

Paszke, A., Gross, S., Chintala, S., and Chanan,
G. PyTorch. https://github.com/pytorch/
pytorch, 2017.

Pathak, D., Krähenbühl, P., Donahue, J., Darrell, T., and
Efros, A. Context encoders: Feature learning by inpaint-
ing. 2016.

Radford, A., Metz, L., and Chintala, S. Unsupervised rep-
resentation learning with deep convolutional generative
adversarial networks. CoRR, abs/1511.06434, 2015. URL
http://arxiv.org/abs/1511.06434.

Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B.,
and Lee, H. Generative adversarial text to image syn-
thesis. In Balcan, M. F. and Weinberger, K. Q. (eds.),
Proceedings of The 33rd International Conference on
Machine Learning, volume 48 of Proceedings of Ma-
chine Learning Research, pp. 1060–1069, New York,
New York, USA, 20–22 Jun 2016. PMLR.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Fei-Fei, L. ImageNet Large Scale

Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015. doi:
10.1007/s11263-015-0816-y.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V.,
Radford, A., Chen, X., and Chen, X. Improved techniques
for training GANs. In Advances in Neural Information
Processing Systems 29, pp. 2234–2242, 2016.

Shang, F., Zhou, K., Cheng, J., Tsang, I. W., Zhang,
L., and Tao, D. VR-SGD: A simple stochastic vari-
ance reduction method for machine learning. CoRR,
abs/1802.09932, 2018. URL http://arxiv.org/
abs/1802.09932.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer
vision. CoRR, abs/1512.00567, 2015. URL http://
arxiv.org/abs/1512.00567.

Villani, C. Optimal Transport: Old and New. Grundlehren
der mathematischen Wissenschaften. Springer, 2009 edi-
tion, September 2008. ISBN 3540710493. URL http:
//www.worldcat.org/isbn/3540710493.

Wang, Y., Zhang, L., and van de Weijer, J. En-
sembles of generative adversarial networks. CoRR,
abs/1612.00991, 2016. URL http://arxiv.org/
abs/1612.00991.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-MNIST: a
novel image dataset for benchmarking machine learning
algorithms, 2017.

Yeh, R. A., Chen, C., Lim, T.-Y., Schwing, A. G., Hasegawa-
Johnson, M., and Do, M. N. Semantic image inpainting
with deep generative models. pp. 6882–6890, 2017.

Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X.,
and Metaxas, D. StackGAN: Text to photo-realistic image
synthesis with stacked generative adversarial networks.
In Proceedings of International Conference on Computer
Vision (ICCV), 2017.

http://papers.nips.cc/paper/6779-the-numerics-of-gans.pdf
http://papers.nips.cc/paper/6779-the-numerics-of-gans.pdf
https://openreview.net/forum?id=B1QRgziT-
https://openreview.net/forum?id=B1QRgziT-
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1802.09932
http://arxiv.org/abs/1802.09932
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
http://www.worldcat.org/isbn/3540710493
http://www.worldcat.org/isbn/3540710493
http://arxiv.org/abs/1612.00991
http://arxiv.org/abs/1612.00991


Stochastic Variance Reduced Gradient Optimization of Generative Adversarial Networks

A. Implementational details
Architectures. We used architectures based on the DC-
GAN (Radford et al., 2015) implementation, or identical to
it when using input space of 64×64.

For experiments conducted on MNIST, we used the original
dimensions of this dataset of 28×28. Hence, we modified
the DCGAN networks accordingly to this input space and
reduced their depth for one layer, see Tab. 1. Similarly, for
CIFAR10 we used its original dimensions of 32×32. The
implementation of DCGAN (Radford et al., 2015) uses
Batch Normalization layers (Ioffe & Szegedy, 2015).

Hyperparameters. We used a batch size of 50 and 64 for
(FASHION)MNIST and the rest of the datasets, respectively.
When using the Adam optimizer (Kingma & Ba, 2014),
we fixed the two hyperparameters (one parameter used for
computing running averages of gradient and another for its
square) to 0.5 and 0.999, as in (Radford et al., 2015).

B. Analyses
Fig. 9 depicts the `2-norm of the gradient updates using
standard training, as well as SVRG training. For the latter

Generator
Input: z ∈ R128 ∼ N (0, I)

transposed conv. (kernel: 3×3, 128→ 512; stride: 1)
Batch Normalization

ReLU
transposed conv. (kernel: 4×4, 512→ 256, stride: 2)

Batch Normalization
ReLU

transposed conv. (kernel: 4×4, 256→ 128, stride: 2)
Batch Normalization

ReLU
transposed conv. (kernel: 4×4, 128→ 1, stride: 2, pad: 1)

Tanh(·)
Discriminator

Input: x ∈ R1×28×28

conv. (kernel: 4×4, 1→ 64; stride: 2; pad:1)
LeakyReLU (negative slope: 0.2)

conv. (kernel: 4×4, 64→ 128; stride: 2; pad:1)
Batch Normalization

LeakyReLU (negative slope: 0.2)
conv. (kernel: 4×4, 128→ 256; stride: 2; pad:1)

Batch Normalization
LeakyReLU (negative slope: 0.2)

conv. (kernel: 3×3, 256→ 1; stride: 1)
Sigmoid(·)

Table 1: Architectures for experiments on MNIST.

we considered SVRG applied only to the discriminator, and
full SVRG-GAN training, denoted as SVRG-Discriminator-
GAN and SVRG-GAN, respectively. The performance eval-
uation of these experiments is given in Fig. 6. Primerely,
when using Adam we observe that the `2-norm of the gra-
dient updates of the discriminator and the generator largely
differ, i.e. ‖∇ΘD

LD(·)‖ � ‖∇ΘG
LG(·)‖. On the con-

trary, this is not the case for SVRG(-Discriminator)-GAN.
Note from Fig. 6 that this is not due to slower convergence,
as SVRG shows outperforming results throughout the itera-
tions. This could indicate that the parameters of the models
when using SVRG are towards the optimal one (faster con-
vergence rate), hence the observed lower `2-norm of δΘ.

(a) Vanilla GAN. Adam, η=1e−4.

(b) SVRG-Discriminator-GAN.G: Adam, η=0.0001; D: SVRG
η=0.01

(c) SVRG-GAN. η=0.01.

Figure 9: `2-norm of the gradient updates on MNIST.


