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Abstract 
________________________________ 

 
The specific interaction between DNA and proteins constitutes one of the crucial elements in the 

regulation of gene expression. This thesis focuses on the development and optimization of two 

microfluidic-based technologies called SMiLE-seq and FloChIP that enable the sensitive and high-

throughput analysis of two important aspects of protein/DNA interactions: respectively, 1) the 

transcription factor DNA-binding specificities and 2) the genome-wide distribution of chromatin-

associated proteins.  

 

In Chapter 1, we describe the core motivation, operating principles, optimization and results 

obtained with SMiLE-seq. As opposed to existing solutions, SMiLE-seq offers the possibility to 

screen a large library of randomized DNA for sequence-specific protein ligands in a miniaturized 

context. SMiLE-seq integrates in a single microfluidic chip the advantages of both HT-SELEX – 

i.e. large DNA library screens coupled to high-throughput sequencing – and MITOMI – i.e. 

microfluidic trapping of DNA/protein complexes. We first demonstrate as proof-of-principle that 

SMiLE-seq successfully recapitulates with robustness and reproducibility the binding specificities 

of known factors belonging to different species and TF families. Moreover, we show that SMiLE-

seq reflects the energy binding landscapes of TFs with high accuracy. Subsequently, we target the 

numerous although largely uncharacterized family of TFs called KRAB-ZFPs.  We initially set 

out to redesign the microfluidic and protocol architecture in order to attain maximal throughput 

and sensitivity. Next, we add the ability of probing the sensitivity of these factors to methylation 

by synthesizing randomized methylated DNA libraries. Finally, we proceed to test 101 KRAB-

ZFPs with both methylated and non-methylated DNA. We obtained high confidence motifs for 43 

factors, of which 22 we not sensitive to methylation, 10 yielded motifs only with methylated DNA 

and 10 only with non-methylated DNA. By integrating our SMiLE-seq data with published ChIP-

exo data and in silico predictions, we develop a framework for systematically identifying which 

zinc fingers directly contribute to DNA binding for a given KRAB-ZFPs. 
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In Chapter 2, we describe the development and results obtained with FloChIP, a microfluidic 

implementation of the widespread ChIP-seq and sequential ChIP-seq protocols. FloChIP 

encompasses three main technological advances: 1) the multi-layered serface chemistry that allows 

any off-the-shelf antibody to be immobilized on-chip and and 2) a micropillar architecture that 

provides high surface-to-volume ratio and efficient removal of non-specific DNA. 3) The direct 

on-chip tagmentation of immunoprecipitated DNA. We validate our approach by first performing 

H3k27ac ChIP-seq on different number of sample inputs, i.e. from 500 to 106 cells. We show that 

although FloChIP provides good results with as low as 500 cells, the best trade-off between low-

input and data quality is reached at 100’000 cells. Therefore, we proceed to prove the flexibility 

of our approach by performing ChIP-seq on different histone marks – namely H3k27ac, 

H3k27me3, H3k4me3, H3k4me1 and H3k9me3 – and comparing them to existing ENCODE data. 

Both region-specific profiles and enrichment scores show high similarity with publicly available 

data. Subsequently, we set out to demonstrate the feasibility of on-chip sequential-ChIP-seq by 

performing consecutive H3k4me3 and H3k27me3 IP on chromatin derived from mouse embryonic 

stem cells. Our data faithfully recapitulates previously studies and show enrichment of bivalent 

4me3/27me3 in promoters associated to embryonic development. Finally, we illustrate the high-

throughput feature of our technology by performing MEF2A-ChIP-seq on chromatin derived from 

32 different lymphoblastoid cell lines. 

 

Keywords: transcription factor, DNA binding specificity, ChIP-seq, sequential ChIP-seq, 

microfluidics. 
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Sommario 
________________________________ 

 
L’interazione tra DNA e proteine costituisce uno degli elementi principali nella regolazione 

dell’espressione genica. Questa tesi si concentra sullo sviluppo e ottimizzatione di due tecnologie 

a base di microfluidi, chiamate SMiLE-seq e FloChIP, che permettono in maniera efficiente e high-

throughput di analizzare due aspetti importanti delle interazioni DNA/proteina: rispettivamente, 

1) la specificità dei fattori di trascrizione e 2) la distribuzione genome-wide di protein associate 

alla cromatina. 

 

Nel Capitolo 1 descriviamo la motivazione, i principi operativi, l'ottimizzazione e risultati ottenuti 

con SMiLE-seq. Contrariamente a soluzioni pre-esistenti, SMiLE-seq offre la possibilità di fare 

uno screening su una vasta libraria di DNA randomizzato in un contesto miniaturizzato. SMiLE-

seq presenta in un solo chip i vantaggi di HT-SELEX - i.e. DNA screening su large scale in 

combinazione con sequenziamento high-throughout - e MITOMI - i.e. la cattura di complessi 

proteina/DNA a livello microfluidico. Inizialmente dimostriamo che SMiLE-seq riproduce 

fedelmente la specificità di legame di fattori conosciuti e appartenenti a diverse speci e famiglie di 

TFs. Inoltre, SMiLE-seq riflette l'energia di legame con grande accuratezza. Successivamente, 

prendiamo in considerazione la numerosa seppur poco studiata famiglia di TFs conosciuta come 

KRAB-ZFPs. Inizialmente, ci dedichiamo a riprogettare il sistema a microfluidic e il protocollo 

sperimentale al fine di ottenere massimo throughput e sensibilità. In secondo luogo, aggiungiamo 

la capacità di sondare la sensibilità di questi fattori alla metilazione tramite la sintesi di librerie di 

DNA metilate e randomizzate. Infine, procediamo a testare 101 KRAB-ZFPs sia con DNA 

metilato sia non-metilato. Otteniamo cosí binding motifs per 43 fattori: di questi 22 non presentano 

sensibilità a metilazione, 10 presentano motifs solo con DNA metilato e 11 solo con DNA non-

metilato. Tramite l'integrazioni dei dati ottenuti con SMiLE-seq con dati ChIP-exo pubblici e 

simulazioni in silico, sviluppiamo un framework per identificare in maniere sistematica quali sono 

gli zinc fingers che contribuiscono direttamente al legame di DNA. 

 

Nel Capitolo 2, descriviamo lo sviluppo e i risulati ottenuti con FloChIP, un'implementazione 

microfluidica dei diffusi protocolli di ChIP-seq e sequential ChIP-seq. FloChIP include tre 
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principali progressi tecnologici: 1) una surface chemistry multi-strato che permette a qualsisi 

anticorpo disponibile commercialmente di essere immobilizzato on-chip, 2) una architettura a 

microcolonne che offre un alto rapporto area/volume e una efficiente rimozione di DNA non 

specifico e 3) la tagmentazione on-chip del DNA immunoprecipitato. Validiamo il nostro 

approccio tramite H3k27ac ChIP-seq su un diverso numero di input cellular, da 500 a 106 cellule. 

Dimostriamo così che sebbene con FloChIP si ottengano buoni risulati con solo 500 cellule, il 

migliore trade-off tra low-input e qualità dei dati si ottiene con un input di 100'000 cellule. Quindi, 

procediamo ad illustrare la flessibilità della nostra tecnica eseguendo ChIP-seq su diversi tipi di 

histone marks - nel dettaglio H3k27ac, H3k27Sme3, H3k4me3, H3k4me1 and H3k9me3 - e 

paragonando i dati cosi ottenuti ai dati ENCODE. Sia i profili di specifiche regioni genomiche che 

le enrichment scores esibiscono grande similarità con i dati pubblici. Successivamente, ci 

proponiamo di dimostrare sequential-ChIP-seq on-chip eseguendo H3k4me3 e H3k27me3 IP in 

maniere consecutiva su cromatina ottenuta da cellule embrionali di topo. I nostri data riproducono 

fedelmente studi precedenti e presentano enrichment di 4me3/27me3 in promotori associati allo 

sviluppo embrionale. In fine, mostriamo le capacità high-throughput della nostra tecnologia 

eseguendo MEF2A-ChIP-seq su cromatina ottenuta da 32 linee cellulari di linfoblastoidi differenti. 

 

Parole chiave: fattori di trascrizione, specificità di legame DNA, ChIP-seq, sequential ChIP-seq, 

microfluidica. 
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Chapter 1: Introduction 
________________________________ 

 

1.1 The relevance of Protein/DNA interactions 
 

First introduced by Francis Crick (Crick, 1970), the central dogma of molecular biology states that 

“DNA is transcribed into RNA and RNA is translated into protein” (Fig. 1.1). Despite its 

simplicity, the central dogma of molecular biology provides a simple yet powerful framework to 

understand how information is encoded in biological systems: 

 

It introduces the three fundamental classes of biopolymers, i.e. DNA, RNA and proteins.  

It highlights the direction for the biological flow of information, i.e. DNA → RNA → Protein. 

It provides the terms used for describing the conversion of one species into the next, i.e. 

transcription (DNA → RNA) and translation (RNA → Protein). 

 

Figure 1.1: The flow of information between DNA, RNA and protein. Image credit: Genome 
Research Limited 
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Although true and experimentally validated, the central dogma somehow fails to deliver the sense 

of enormous complexity and diversity that biological systems have evolved throughout the years. 

In humans, for instance, a single zygote grows into ~37 trillion cells (Bianconi et al., 2013), all 

different (to some extent) from each other but all containing the exact same DNA makeup, i.e. the 

same genome. Therefore, it is clear that the genome not only encodes information on what proteins 

to express but also information on when and where to express those proteins. Surprisingly, only 

1.5% of the human genome codes for proteins while more than 80% has been assigned a regulatory 

function (ENCODE Project Consortium, 2012). Thus, the majority of the genome is dedicated to 

integrating external information in order to efficiently regulate the expression of its smaller 

protein-coding portion. This external information, in turn, is relayed to the genome by some of the 

same protein species that are encoded in it by means of physical protein/DNA interactions (Fig. 

1.2). Protein/DNA interactions constitute a major component of a much vaster collection of 

molecular interactions - the gene regulatory network - which collectively govern and orchestrate 

the expression of proteins in cells. 

 

 
Figure 1.2: Molecular reconstruction of the lambda repressor helix-turn-helix transcription 

factor bound to its DNA target. Image credit: Wikipedia 
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From this observations, a more complex picture is drawn than the one outlined initially by the 

central dogma. In this picture, the link between proteins and DNA is not unidirectional but 

bidirectional in the sense that proteins themselves interact with DNA to regulate its transcription. 

Moreover, the human genome is made up of 3 billion “letters” (or base pairs) and there are between 

1’200 and 1’300 estimated sequence-specific DNA-binding proteins, also called transcription 

factors (Vaquerizas et al., 2009). Given the absence of an accurate prediction model for 

protein/DNA interaction, the only way to study the complexity of this enormous network is to 

probe its interactions experimentally. 
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1.2 Techniques to study of Protein/DNA interactions 
 

Historically, protein/DNA interactions have been experimentally probed mainly in two contexts: 

in vitro and in vivo.  

 

1.2.1 In vitro techniques 
 
In vitro techniques aim to probe the interaction between protein and DNA in isolation from their 

natural context, in order to exclude possible confounding factors due to unexpected interactions. 

The main goal of in vitro methods is to derive the sequence specificity and affinity of transcription 

factors (TFs).  

Several in vitro solutions have been proposed over the years; of these, the most successful 

examples are: protein binding microarrays (PBM) (Berger et al., 2006) and high-throughput 

systematic evolution of ligands by exponential enrichment (HT-SELEX) (Jolma et al., 2010).  

 

In PBM (Fig. 1.3), a double-stranded DNA library - either genomic (Mukherjee et al., 2004) or 

synthetic (Berger et al., 2006) - is immobilized on a microarray substrate and exposed to a TF of 

interest. After binding occurs, the unbound protein is washed away while the specifically bound 

TF remains attached to its corresponding DNA strand in a specific position of the microarray. A 

fluorescent antibody targeting the TF or its tag is later used to determine the position and hence, 

the sequence of the TF-bound DNA. PBMs have been extensively proven their efficiency and 

robustness in determining the DNA binding motifs of several mammalian TFs (Berger et al., 2008). 

The major drawback of PBMs lies the limited DNA sequence combination which they can test, 

which is ultimately constrained by the size of the microarray. As a matter of fact, the current upper 

limit is the space of all possible 12-mers of DNA. 
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Figure 1.3: Workflow of protein binding microarrays. Copyright 2011 Springer. 

 

On the other hand, in HT-SELEX (Fig. 1.4), it is the protein of interest which is immobilized 

inside the well of a 96-well plate (Jolma et al., 2010). As opposed to PBMs, HT-SELEX provides 

a much larger coverage of the DNA combinatorial space (x106 higher). The main differentiator for 

HT-SELEX is the fact that the DNA sequences are not immobilized on a solid support and can 

instead be freely floating in solution. This allows DNA randomers to be much longer as compared 

to PBMs, which translates into a much larger DNA search space. After exposing the TF with the 

random DNA library, the specifically bound DNA is collected, amplified and re-fed once more to 

the TF in order to achieve exponential enrichment of specific DNA binders. After usually three or 

four rounds of selection, the collected DNA is sequence by next generation sequencing (NGS) and 

the binding motifs are computationally derived. Another distinctive factor of HT-SELEX is the 

ability to multiplex different TFs in the same experiment. This is achieved thanks to molecular 

barcodes included in the synthetic DNA libraries. Given its advantages, HT-SELEX has become 

the most prolific in vitro technique for the derivation of TF binding specificities (Jolma et al., 

2013), providing insights in the DNA-dependent formation of heterodimers (Jolma et al., 2015) as 

well as the impact of methylation on DNA binding (Yin et al., 2017). 
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Figure 1.4: Overview of HT-SELEX selection process. Copyright 2010, Cold Spring Harbor 

Lab Press. 
 

1.2.2 In vivo techniques 
 

In vivo techniques probe the interaction between protein and DNA in their natural context, which 

comes with advantages and disadvantages. The main advantage is that not only can in vivo methods 

derive the binding preferences of the proteins under study, but they can also provide snapshots of 

their genome-wide distribution at a given time. The main disadvantage is the fact that, in their 

natural context, the DNA binding properties of a protein can be confounded by a myriad of other 

possible interactions. 

Currently, the most widely adopted technique for in vivo protein/DNA interaction studies is 

chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq).  

 

ChIP-seq (Fig. 1.5) consists of several steps. Initially, cells are treated with a crosslinking agent, 

thereby effectively “freezing” all protein/DNA interactions. Subsequently, the genomic material 

is fragmented either by sonication or enzymatic digestion until all fragments are at a size 

compatible with subsequent DNA sequencing (i.e. around 150-200bp). Next, the fragmented 

chromatin is mixed with solutions containing antibody-bound microbeads: the antibody binds 

tightly to its target protein, whereas the microbeads are used in the separation procedure. Once 

antibody/protein/DNA complexes are formed, the microbeads are extracted from the solution 
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(usually by means of a dedicated magnet) washed and the DNA is finally eluted by high 

temperature and high salt buffers. Subsequently, the collected DNA is sequenced by NGS and the 

corresponding data is analyzed to study the genome-wide DNA-binding properties of the protein.   

Introduced in 2007 (Johnson et al. 2007), ChIP-seq has become an instrumental tool in identifying 

the functional elements of the human and other genomes (Landt et al., 2012). However, it remains 

a manually intensive, slow (>3 days) and low-throughput method and only a small number of 

protein targets can be probed at a time. 

 

 

 
Figure 1.5: Overview of the steps and reagents required for ChIP-seq. 
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1.3 The potential for microfluidics applied to biology 
 

All the techniques presented above are macroscale implementations, designed by humans for 

human’s execution. However, the fundamental processes of biology happen at a very different 

scale, the microscale. Moreover, as also mentioned above, the complexity of the protein/DNA 

interaction network is such that the shear number of interactions to probe requires fast, automated 

and high-throughput methods. These important missing aspects, miniaturization, automation and 

throughput, are the key advantages offered by microfluidics. 

 

1.3.1 What are microfluidic systems? 
 

Microfluidics is both a science and a technology. The science addresses the study of fluids 

dynamics through micro-channels and micro-structures. The technology addresses with the 

fabrication of miniaturized devices inside of which fluids can be constrained. In general, 

microfluidics deals with very minute amount of fluids, from microliters to femtoliters. At these 

scales, fluids behave in different way and a plethora of useful properties originate because of this. 

 

1.3.2 The advantages of microfluidics and their application to protein/DNA 
interactions. 
 

Given their microscopic nature, microfluidic devices offer a series of advantages over traditional 

macroscale techniques. First of all, the very small size translates into reducing costs of reagents. 

Furthermore, the small size enables the development of highly integrated and sensitive tools 

capable of isolating and analyzing small quantities of precious samples. Examples of areas of 

molecular biology in which microfluidic chips have found successful include: 

single cell handling and analysis (Macosko et al., 2015, Fig. 1.6a) 

microfluidic flow cytometers and cell sorters (Nitta et al., 2018, Fig. 1.6b) 

single cell culturing chambers (Lecault et al., 2011, Fig. 1.6c) 
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Figure 1.6: Examples of microfluidic applications to biology. a) Single cell handling and 

encapsulation. Copyright 2015, Cell Press. b) Single cell sorting. Copyright 2018, Cell Press. c) 
Single cell culturing. Copyright 2011, Nature Publishing group. 

 

Nevertheless, the most relevant devices for the work in this thesis are the ones applied to the study 

of protein/DNA interactions. As per standard molecular biology techniques, also these devices can 

be subdivided in two categories, in vitro and in vivo, for which the two most notable examples are 

MITOMI (Maerkl and Quake, 2007) and MOWChIP-seq (Cao et al. 2015), respectively.  

 

MITOMI (Fig. 1.7) stands for Mechanically Induced Trapping of Molecular Interactions. It is an 

approach that exploits high-throughput microfluidics in order to achieve sensitive measurement of 

the biophysical affinity between TFs and DNA. So far, MITOMI was used to study the binding 

energy profiles of a numerous TFs from a diverse set of organisms such as human, yeast, and E. 

coli both in monomeric and heterodimeric form (Maerkl and Quake, 2007; Isakova et al., 2016).  
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Figure 1.7: Schematic workflow of the MITOMI principle. Copyright 2012 Springer. 

 

The key advantage of MITOMI is the speed at which the assay is conducted, thereby allowing to 

obtain a snapshot of the equilibrium state of the TF/DNA interaction and keeping the complexes 

intact. Other desirable advantages are the ability to purify proteins directly on-chip, low reagent 

consumption and small device footprint. However, one key disadvantage of this method is the 

requirement for know a priori the DNA-binding specificity of TF under study. This precludes the 

possibility of performing MITOMI on large number of TFs for which binding motifs have not been 

derived yet. In the previous section, it was mentioned that the efficient derivation of the DNA-

binding specificity of TFs was a successful application of HT-SELEX. It is therefore intriguing to 

wonder if it would be possible borrow lessons learned from HT-SELEX and MITOMI and to 

devise a microfluidic solution that can be used to study the DNA-binding specificity of TFs in a 

sensitive and miniaturized manner. The design, implementation and optimization of such a device 

alongside with the results obtained with it are the main subject of Chapter 2. 

 

MOWChIP-seq (Fig. 1.8) stands for microfluidic oscillatory washing–based ChIP-seq. It is an 

approach in which immunoprecipitation is carried out by a closely packed column of magnetic 

beads coated with an antibody of choice and localized within the walls of a microfluidic chamber. 

The chromatin sample is introduced into the microfluidic chip and flown through the small space 

in between the microbeads. Washing to remove unbound chromatin is then carried out in an 

oscillatory manner and with the help of a magnet in order to keep the microbeads on chip.  
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Figure 1.8: Schematic sequence of steps for MOWChIP-seq.  

Copyright 2015 Nature Publishing Group. 
 

The main advantages of MOWCHIP-seq are the short experimental time-frame (45 minutes versus 

the 4 hours for manual ChIP-seq) and its sensitivity (chromatin landscapes can be obtained for as 

low as 100 cells versus the minimum 1 million cells of manual ChIP-seq). The main drawback of 

MOWCHIP-seq is that it can address only one protein species at a time, hence it suffers from being 

as low-throughput as manual ChIP-seq. In Chapter 3, I describe a novel microfluidic solution that 

not only is sensitive and fast, but it also performs in a high-throughput, parallel and automated 

way. 
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1.4 KRAB zinc finger proteins 
 

One of the main focuses of this thesis is to apply microfluidics to the study of DNA-binding 

specificities of a large transcription factor family called the Krüppel-associated box domain zinc 

finger proteins (KRAB-ZFPs). In humans there are some 350 KRAB-ZFPs (Fig. 1.9) and their 

function has been mainly associated with repressing the activity of transposable retroelements 

during embryonic development (Ecco et al., 2017, Imbeault et al., 2017).  

 

 
 

Figure 1.9: KRAB-ZFP count in different species genomes.  
Copyright 2017 Nature Publishing Group. 

 

KRAB-ZFPs are characterized by two domains with distinct function: an N-terminal KRAB 

domain, which mediates the factor repressive activity, and a C-terminal array of C2H2 zinc fingers 

that confer their DNA binding ability (Fig. 1.10).  

 

 
 

Figure 1.10: KRAB-ZFP structure and domains. 
Copyright 2017 The Company of Biologists. 
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Human KRAB-ZFPs have between 2 and 40 fingers per factor and, even if the DNA-binding 

properties of individual zinc fingers is fairly well understood (Najafabadi et al., 2015, Persikov et 

al., 2014), the a priori prediction of the DNA specificity of entire zinc finger arrays remains a 

challenge. C2H2 zinc fingers are normally arranged in two β-barrels and one α-helix conformation 

coordinated by a zinc ion (Fig. 1.11) 

  

 
Figure 1.11: C2H2 zinc fingers structure. 

 

The main determinant of the of the DNA-binding specificity of each zinc finger are the side chains 

of the amino-acids located at positions -1,2,3 and 6 with respect to the beginning of the α-helix 

motif. Conventionally, it has been thought that each zinc finger follows a one-finger-three-base 

rule, where each finger recognizes a specific set of three DNA base pairs. However, recent 

structural information (Patel et al., 2018) and comparison between predicted and ChIP-seq-based 

DNA binding motifs (Chapter 2) reveals widespread deviation of zinc finger arrays from this rule. 

In particular, Patel and colleagues demonstrate by structural analysis that the 11 zinc fingers of the 

mouse Zfp568 interact with DNA by contacting 2, 3 or 4 bases per finger. Moreover, they also 

demonstrate that not all zinc fingers of the array engage in DNA binding, which is consistent with 

other observations suggesting that zinc fingers not directly involved in DNA binding could be 

implicated in other types of interactions, e.g. with RNA or proteins (Ecco et al., 2017). 

 

 
Figure 1.12: DNA interactions schematic of the zinc finger array of the mouse Zfp568. 

Copyright 2018 Cell Press. 
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To further complicate the picture, it has been reported that certain KRAB-ZFPs such as ZFP57 

exclusively bind methylated DNA (Quenneville et al., 2011). Taken together, these observations 

seem to suggest that the DNA binding specificity of KRAB-ZFPs is influenced by several factors 

beyond the mere DNA sequence and individual zinc finger specificity. These factors may include 

DNA methylation, 3D-arrangements of the zinc finger array and protein-protein or RNA-protein 

interactions (Ecco et al., 2017). In order to begin to disentangle the complexity of the DNA-binding 

mechanisms KRAB-ZFPs, we apply our in-house microfluidic solutions to understand which 

factors are capable of in vitro DNA binding, i.e. in isolation from co-factors, and which of these 

factors are sensitive to the methylation state of their DNA substrate. 
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________________________________ 

 

 

 

 

 

 

Smile-seq and Smile-seq v2.0: the next generation of tools to study 

the binding specificities of transcription factors 

 

 
Alina Isakova1, Riccardo Dainese1, Evgeniia Pankevich1, Bart Deplancke1 

 
Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland  
 





 
 

33 

2.1 Introduction 
 
 

The DNA-binding specificities of transcription factors are an essential aspect in the regulatory 

dynamics of gene networks.  Collective efforts aimed at extensively cataloguing these specifies 

have resulted in several online databases, e.g. TRANSFAC (Matys et al., 2006), HOCOMOCO 

(Kulakovskiy et al., 2016), or UniPROBE (Mathelier et al., 2014), which collectively account for 

601 human transcription factor binding motifs. Nevertheless, as also mentioned in the introduction, 

it has been estimated that mammals express between 1’300 and 2’000 TFs (Vaquerizas et al., 

2009), which suggests further experimental efforts have to be conducted in order to complete the 

specificity catalog. Of this missing data, a large portion belongs to transcription factors 

characterized by C2H2 zinc-finger-mediated DNA binding (Deplancke et al., 2016). There is a 

number of speculated reasons as to why these TFs have so far resisted experimental 

characterization, e.g. incomplete TF expression context, the need for co-factors and possibly the 

simple fact that existing technologies are not sensitive enough to detect certain types of TF/DNA 

interactions. Therefore, in order to obtain a deeper understanding of our genome architecture, it is 

important to devise alternative methods that can independently and quantitatively provide DNA-

binding information.  

In this chapter, I present two developmental stages of a microfluidic technology, SMiLE-seq 

(selective microfluidics-based ligand enrichment followed by sequencing), that allows for the 

sensitive and robust derivation of DNA-binding specificities of human transcription factors. 

SMiLE-seq combines the advantages of both MITOMI and HT-SELEX in order to screen a large 

library of random DNA with the added benefits of performing assay in a microfluidic context, i.e. 

low sample requirement, low reagent consumption and fast reactions. In the first developmental 

stage, I followed the guidance of a senior PhD and later postdoc, Alina Isakova, who has conceived 

the original experimental pipeline and obtained several SMiLE-seq results. We show that we 

successfully benchmark SMiLE-seq on several monomers belonging to distinct structural families 

and species. Moreover, we show that the distribution of k-mers in SMiLE-seq libraries correlates 

positively with MITOMI derived binding energy landscapes.  This first stage is the subject of a 

first landmark paper, which encompasses all of Alina’s major findings (Isakova et al, 2017). 

Subsequently, I show that in order to tackle the most numerous and largely unexplored TF family, 
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the Krüppel-associated box (KRAB)-containing C2H2 zinc-finger proteins (ZFPs), I set out to 

further develop our technology. As a result, SMiLE-seq v2.0 is a high-throughput, unbiased and 

highly multiplexable implementation which we use to obtain the largest catalogue of in vitro-

derived KRAB ZFPs motifs to date and gain insights in their DNA binding properties. 
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2.2 SMiLE-seq 
 
 

2.2.1 The SMiLE-seq device and its operation 
 

As mentioned above SMiLE-seq combines features of both MITOMI and HT-SELEX. MITOMI 

provides a great framework for the expression and immune-based capture of tagged transcription 

factors. In particular, as opposed to other methods requiring protein expression, MITOMI does not 

require protein purification prior the actual experiment. The reason for this is that in the majority 

of cases the required protein is obtained through bacterial- or yeast-based expression, which which 

require the extra step of protein purification before the following assays. On the other hand, 

MITOMI adopts a different route and makes use of the so-called “cell-free” in vitro expression 

systems. As the name suggests, these are commercially available cellular lysates that can express 

the required protein by simple mixing and incubation with the appropriate plasmid. Despite their 

ease of use and very short turnaround time, these systems are very expensive and, for instance, 

bacterial-based expression is often a more cost-effective choice for obtaining large amounts of 

protein. However, being a microfluidic technology, MITOMI does require only minute amounts 

of protein, which, in turn can be expressed by very small fractions of the in vitro expression system, 

thereby amply justifying and encouraging their use.  

Another notable feature of MITOMI is the way transcription factors are immobilized on-chip. 

Indeed, in MITOMI the clever integration between multilayer microfluidics and surface chemistry 

provides a way to controllably pull-down the TFs in very confined regions called MITOMI 

buttons. The MITOMI buttons are circular areas of the microfluidic chip with a diameter of 

~250μm in which the ceiling of the microchannel can be made to collapse by applying pressure on 

channels above (hence called “control channels”), therefore closing like a button and trapping the 

molecular species beneath it. By selectively and consecutively flowing under the MITOMI button 

biotinyalted-BSA, neutravidin and a biotinylated-anti-GFP antibody, while closing the MITOMI 

button at appropriate times (details in the Methods section), it is possible to specifically immobilize 

the biotinyalted antibody under the area of MITOMI button (Fig. 2.1).  
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Figure 2.1: Detailed schematic of the MITOMI procedure.  

 

In SMiLE-seq, we adopted these two great features of MITOMI, while at the same time adding 

the power of randomized DNA and molecular barcodes, in order to achieve very high-throughput 

in terms of screened DNA sequences. This second set of features was inspired by the seminal work 

of Jolma et al. and their HT-SELEX platform. In HT-SELEX proteins are obtained through 

standard bacterial expression, which, as we discussed, is a more laborious approach as compared 

to in vitro expression systems. However, the clever synthesis of their DNA library allowed them 

to achieve a very robust and multiplexed method, which resulted in great success in characterizing 

new DNA binding motifs (Jolma et al., 2013).  Briefly, the original HT-SELEX library consisted 

of four main components: 1) Illumina-compatible primer binding sites for amplification, 2) 

Illumina-compatible primer binding sites for sequencing, 3) a TF-specific barcode in order to make 

experiments multiplexed and 4) a DNA random region of 14bp. Intuitively, this library construct 

not only allowed them to sample for each TF a large number of DNA sequences (namely 4^14= 

268’435’456), but also to do so in a multiplexed format where each TF is assigned a specific 

molecular barcode (Fig. 2.2). 
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Figure 2.2: HT-SELEX random library composition.  

 

The result of the cross-fertilization between the approaches reported in MITOMI and HT-SELEX 

is what we call selective microfluidics-based ligand enrichment followed by sequencing, i.e. 

SMiLE-seq. Our approach consists in a modified MITOMI device (Fig. 2.3) which harbours 8 

consecutive MITOMI buttons. As in MITOMI, the inlets are separated by microvalves that control 

the sequential introduction reagents in order to immobilise antibodies in the center of the MITOMI 

buttons. The outlets are used both for ridding the device of surplus reagents and for washing away 

unbound DNA. The microcapillary pumps are introduced at the lower and upper ends of each 

MITOMI button in order to provide passive sample loading.  

The second important aspect of SMiLE-seq is the synthesis of the barcoded and randomised 

library. As opposed to HT-SELEX, we opted for a larger random region, hence allowing us to 

sample an even larger sequence space as compared to HT-SELEX. Moreover, we introduced two 

small TF-specific barcodes at each end of the random region, in order to increase the reliability of 

post-experiment bioinformatic demultiplexing. The final, 121bp construct, already includes 

portions of sequencing adapters directly within the random DNA library design. 



 
 

38

 
 

Figure 2.3: The two fundamental components of SMiLE-seq. a) The 8 unit MITOMI-based 
microfluidic chip. b) The Illumina-compatible random DNA library. 

 

Despite adopting with minor modifications already established solutions, SMiLE-seq required 

substantial optimization in order to provide efficient enrichment of the specifically TF-bound 

DNA. Importantly, we reasoned that given the ability to wash the interior of microfluidic channels, 

it should be possible to simply remove unbound by extensive washing with a pure saline buffer 

like PBS. This notion would allow us to enrich for the wanted DNA in a very convenient manner 

while, at the same time, avoiding laborious rounds of exponential enrichment. The resulting key 

steps of the workflow are depicted in Fig. 2.4: 

 

1) Express transcription factor of interested as a GFP-fusion in an in vitro expression mix. 

2) Mix expressed TF with barcode DNA library and load onto antibody-functionalized device. 

3) Perform MITOMI on TF/DNA complexes. 

4) Wash unbound DNA while keeping MITOMI button closed. 

5) Open MITOMI button and elute bound DNA. 

6) Sequence bound DNA and compute motif logo. 
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Figure 2.4: The SMiLE-seq workflow. 

 

 

2.2.2 SMiLE-seq identifies motifs for a wide range of TFs 
 

In order to benchmark our technology, we set out to obtain motifs from a number of previously 

characterized factors (Fig 2.6). Based on detectable GFP signal, we observed the correct 

expression of 58 (6 Drosophila, 12 mouse and 40 human) out of the randomly selected 60 

transcription factors belonging to different families (Isakova et al, 2017). With SMiLE-seq we 

were able to obtain highly enriched motifs and for all of them. Moreover, transcription factors 

tested in replicates also showed high correlation (Supp. Fig. 2.1), therefore demonstrating the 

reproducibility of SMiLE-seq. Seeking an external validation of the retrieved motifs, we compared 

them to public databases through a TOMTOM-based search (Gupta et al., 2007). The top resulting 

TOMTOM matches, including motifs derived by independent methods like ChIP-seq, PBMs and 

SELEX, corresponded to the SMiLE-seq-derived motifs for all tested 58 motifs (Isakova et al, 

2017). These results establish the validity of motifs obtained through SMiLE-seq and, in general, 
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advocate the reliability of our technology for its application to a large variety of transcription 

factors.  

 

 

 
Figure 2.5: TF specificities obtained for the first 60 factors benchmark set. Copyright 2017, 

Nature Publishing Group (Isakova et al, 2017). 
 

 

2.2.3 SMiLE-seq data reflects the energy binding landscapes of TFs 
 

As mentioned previously, a distinctive aspect of SMiLE-seq is its ability to capture TF/DNA 

complexes at the steady state. We reasoned that this steady state could be reflected by the 

distribution and relative abundance of DNA sequences obtained by next generation sequencing, 

thereby providing direct information on the DNA binding energy landscapes for a given TF. In 

order to test this hypothesis, we considered two transcription factors, the human MAX and the 

mouse Erg1, for which the DNA affinity profiles had been previously obtained (Maerkl et al., 2007 

and Geerz et al., 2012, respectively). Subsequently, we evaluated the k-mer distribution of the 

same TFs for three independent datasets obtained by HT-SELEX, PBMs and SMiLE-seq (Fig. 2.5 
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and Supp. Fig. 2.2). For both factors, we found that SMiLE-seq datasets show higher and 

reproducible correlation as compared to the other methods (Isakova et al, 2017). 

 

 
Figure 2.6: SMiLE-seq ability to reflect energy binding landscapes. Left panel: correlation 

analysis between k-mer enrichment and binding affinity for TF MAX derived both in SMiLE-seq 
and HT-SELEX. Right panel: correlation analysis between k-mer enrichment and binding 

affinity for TF MAX derived both in SMiLE-seq and PBM. Copyright 2017, Nature Publishing 
Group (Isakova et al, 2017). 

 

2.2.4 SMiLE-seq demonstrates the feasibility of its application to KRAB-ZFPs 
 

As mentioned in the introduction, the Krüppel-associated box domain zinc finger proteins (KRAB-

ZFPs) constitute the largest family of transcriptional factors in higher vertebrates. They typically 

display an N-terminal KRAB domain, which is implicated in co-factor binding, and an array of 

DNA-binding C2H2 zinc fingers located C-terminally (Urrutia et al., 2003). Despite their large 

number, the DNA binding properties of most KRAB-ZFPs remains poorly characterized. The 

number of zinc fingers varies widely across the KRAB-ZFPs, from 4 to 24, which would suggest 
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an equal diversity in the size of DNA binding sites. Nevertheless, recent evidence demonstrates 

how the DNA binding of long tandem arrays can substantially diverge from the one-finger-three-

bases rule of well-studied three-finger systems (Patel et al., 2018). Moreover, it appears that 

different DNA substrates can also induce distinct tandem conformations in which the individual 

zinc fingers re-arrange and diverge from their usual DNA-binding pattern (Patel et al., 2018). It 

therefore comes as no surprise that the several computational tools aimed at predicting the DNA 

binding motifs of C2H2 zinc finger proteins have thus far had limited success with KRAB-ZFPs 

(Persikov et al., 2014, Najafabadi et al., 2015, Patel et al., 2018). This multimodal and 

unpredictable behaviour suggests that KRAB-ZFPs may be characterized by a more complex 

DNA-recognition code than previously anticipated. Hence, it is necessary to devise innovative 

methods that can allow for flexible, sensitive and high-throughput testing of the several KRAB-

ZFPs and in different DNA-binding contexts. In order to investigate whether SMiLE-seq would 

be applicable to the investigation of such a difficult family of TFs, we selected randomly 24 full-

length KRAB-ZFPs of which 19 successfully expressed in our MITOMI-based expression system. 

Out of these initial set, we obtained motifs for 9 factors (Fig. 2.7, Isakova et al, 2017), i.e. with an 

approximate success rate of 37%, which is significantly higher than the one showed by other 

macroscale efforts like HT-SELEX (Yin et al., 2017 – tested 105 KRAB-ZFPs and obtained motifs 

for 16, i.e. with success rate of 15%). Subsequently, we evaluated to what extent the motifs that 

we derived were conforming to results obtained by online prediction tools. We then resorted to 

obtain the respective predicted motifs for all 9 TFs by using the Zinc Finger Recognition Code 

tool (http://zifrc.ccbr.utoronto.ca/, Najafabadi et al., 2015) and compare them to the SMiLE-seq 

motifs. Overall, the comparison shows a very limited ability of the only tool to predict either the 

main features any given motif.  
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Figure 2.7: First set of SMiLE-seq derived KRAB-ZFPs motifs (Isakova et al, 2017). 

 

These preliminary results highlight the potential of SMiLE-seq as a tool to investigate in a 

systematic way the complex DNA-binding patterns of KRAB-ZFPs. However, before 

systematically tackling the entire TF family, we set out to re-develop our tool further in order to 

increase the throughput, sensitivity and scope of our future studies. In particular, we aimed to 

address the following limitations: 

Throughput. 

The current SMiLE-seq device can process eight TFs in parallel, which is in the low end 

of the spectrum of throughput that can be achieved with microfluidic tools. We reason that 

we careful re-design, it would be possible to increase the procedural output of the device. 

Inter-experiment multiplexing. 

The original SMiLE-seq library does not contain allow for inserting molecular barcodes 

during the amplification step. As a consequence, two different SMiLE-seq libraries cannot 

be sequenced in the same Illumina sequencing run. Remarkably, the frequency with which 

SMiLE-seq experiments can be performed is far higher than for Illumina sequencing runs. 
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This creates a situation in which several SMiLE-seq libraries sit idle for weeks before they 

can be processed, therefore delaying the whole discovery process. 

Analysis. 

The current SMiLE-seq analysis pipeline is based on the MEME suite (Bailey et al., 1994), 

which is an algorithm that does not allow, for computational reasons, to conveniently 

process more than a few thousands reads for a given TF. Since tens or hundreds of 

thousands of sequences are readily available, this analytical constraint constitute a limit to 

the overall sensitivity of the de novo motif discovery process.  

Library bias. 

Randomized synthetic DNA libraries are supposed to present a uniform distribution of 

nucleotides and no enrichment should be detected when analysing input libraries, i.e. 

libraries amplified and sequenced without being enriched through SMiLE-seq. 

Nevertheless, we observed significant input library bias with over-enriched sequences that 

show statistical levels of enrichment similar to the ones obtained for low-affinity TFs. This 

constitutes another obstacle towards the efficient derivation of high-quality motifs from 

TFs such as the KRAB-ZFPs that exhibit a wide range DNA-binding modes and affinities. 

 

The new approach that resulted from addressing all the above limitations, SMiLE-seq v2.0, 

provides an unbiased, high-throughput and multiplexable new version of its original 

implementation. 
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2.3 SMiLE-seq v2.0 
 

2.3.1 The SMiLE-seq v2.0 chip 
 

As mentioned in the previous section, the new SMiLE-seq implementation that we aimed to 

developed addressed four specific limitations: throughput, experiment multiplexing, analysis 

pipeline and library bias. In order to address the first of these limitations, i.e. throughput, we re-

designed the microfluidic chip in its entirety. Our specific goals in this regard were to increase the 

number of MITOMI buttons that could be utilized in a single experimental run. In the first SMiLE-

seq implementation, each MITOMI button was connected to bulky capillary pumps, which helped 

the loading of reagents while, at the same time, increasing the footprint of the microfluidic device. 

In SMiLE-seq v2.0, we circumvented the need for capillary pumps by connecting each sample 

inlet to western-blot tips, which could then, in turn, be easily connected to external macroscale 

pressure sources (Fig. 2.8). In practice, we reduced the area footprint of each MITOMI button by 

substituting capillary pumps with readily available external pressure sources and a simple but 

clever macro-to-micro interface. This allowed us to confine in the limited of a glass slide several 

32 MITOMI buttons, hence a 4-fold increase compared to the previous SMiLE-seq version (Fig. 

2.8c). The new microfluidic design consists of 4 rows of 8 MITOMI buttons each. Moreover, each 

button is connected to the same reagents inlets but has different reagents outlets. This enables us 

to perform the same MITOMI-based surface functionalization in parallel for all rows, thereby 

effectively performing 4 SMiLE-seq experiments at once, while at the same separately collecting 

the bound DNA library individually from each row. In the next section, I explain how this row-

based microfluidic architecture, in combination with a new DNA library design enables cost-

effective experimental multiplexing. 
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Figure 2.8: The SMiLE-seq v2.0 chip. a) Schematic layout of the original SMiLE-seq chip for 

comparison purposes. b) Inset of the MITOMI button unit of SMiLE-seq v2.0. c) Schematic 
layout of the SMiLE-seq v2.0 chip. d) Photograph of a SMiLE-seq v2.0 chip connected to a tip 

for sample dispensing. 
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2.3.2 The SMiLE-seq v2.0 library  
 

The major drawback related to the original SMiLE-seq library design was the inability to sequence 

SMiLE-seq libraries at the same frequency as the one at which they could be generated. As a result, 

several libraries would be stored for weeks without being sequenced, which delay the whole 

troubleshooting and discovery process. In order to address this issue, we modified the SMiLE-seq 

library in order to make it compatible with the highly-multiplexed Nextera library preparation 

protocol (Fig. 2.9). The important modifications to the library design are: 

The introduction of Nextera primer binding sites (Nextera adapters) at each end of the DNA 

library sequence. This allowed for standard and readily available Nextera primers to be 

used for library amplification, instead of the custom designed original SMiLE-seq primers. 

The important aspect of Nextera primers is that they contain molecular barcodes which 

enables libraries amplified with different primers to be sequenced in the same sequencing 

run and de-multiplexed bioinformatically. As a result, the introduction of Nextera adapters 

in the library design allows for scalable experimental multiplexing, i.e. any number of 

SMiLE-seq v2.0 libraries can be sequenced in the same sequencing run, as long as they are 

amplified with a different set of Nextera amplification primers. 

The replacement of two 7bp barcodes with a 10bp barcode as several other independent 

barcoding strategies have shown to be sufficient for effective multiplexing. This barcode 

should not be confused with the barcodes introduced at the amplifications stage by the 

Nextera primers. Indeed, the Nextera primers are used to multiplex libraries, whereas the 

SMiLE-seq v2.0 barcodes are used to multiplex samples. In this manner, we effectively 

achieve a double-multiplexing process in which Ntf transcription factors can be sequenced 

in the same sequencing run, where Ntf=NNb*NSb (NNb is the available number of nextera 

barcodes and NSb is the available number of SMiLE-seq barcodes). This double-

multiplexing constitutes a significant improvement because it not only allows to save time 

by eliminating the waiting times between each SMiLE-seq library sequencing, but it also 

saves significant capital in terms of DNA synthesis cost.  

The expansion of the DNA random region from 30bp to 40bp, in order to accommodate 

TFs with potential long motifs like the KRAB ZFPs. 
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Overall, the new library design and its combination with the row-based microfluidic architecture 

of SMiLE-seq v2.0 allows to test the DNA binding specificities of TFs at a much greater 

throughput than and for the same cost as the previous SMiLE-seq version. 

 

 
Figure 2.9: The SMiLE-seq v2.0 library design 

 

 

2.3.3 The SMiLE-seq v2.0 analysis pipeline  
 

As mentioned in the previous section, the limitations regarding the original SMiLE-seq procedure 

that we aimed to tackle are two-fold: 

1. The original pipeline for de novo motif discovery was based on the command line and/or 

web-based tool MEME (Bailey et al., 1994). The main constraint that this tool posed was 

the upper limit of sequences (~1000 reads) that could be processed before the computation 

became prohibitively slow. This drawback has to do with the inner algorithms of the tool, 

for which the number of operations to perform increases quadratically with the number of 

input sequences and the motif size. Nevertheless, even though SMiLE-seq libraries are 

normally sequenced as simple spike-ins, they yield in the order of tens of thousands of 

sequences. As a result, by using MEME we are forced to limit the analysis to less than 10% 

of our sequencing data, thereby ignoring all the information contained in the remaining 
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90%. This drawback can prove significantly problematic for low-affinity TFs, for which 

enrichment of specifically bound sequences may be very low. Therefore, it is essential to 

establish an analysis framework that can take as input a much larger set of DNA sequences. 

2. The previous SMiLE-seq pipeline also ignores the significant bias of synthetic random 

DNA. As a matter of fact, even if synthetic libraries are supposed to have a uniform 

distribution of bases and no over-represented sequences, we found that the opposite is true. 

In order to quantify this, we sequenced a subset of input DNA libraries without first 

enriching them through SMiLE-seq. Ideally, when subjected to motif discovery, these 

libraries should show no statistically significant enrichment of any motifs. As reported in 

Fig. 2.10, each input library shows different statistically significant biases, with P-values 

ranging from 1e-65 to 1e-22.  

Unfortunately, another drawback of the MEME suite is the inability to complement the 

motif discovery with background correction, a solution that would compensate for this 

experimental bias and decrease the likelihood of false positives.  

 
Figure 2.10: Examples of bias in random synthetic DNA libraries. 

 

The solution that we adopted in order to address these issues consisted in shifting to a new analysis 

software, called HOMER (Heinz et al., 2010). HOMER allows for de novo motif discovery with 

large numbers of input DNA sequences, variable length and, importantly, also accepts as input 

files containing the background sequences to be corrected for. With HOMER, we can take 

advantage of the entire information content of the SMiLE-seq v2.0 libraries, while, at the same 

time, accurately discovering de novo motifs in an unbiased manner. 
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2.3.4 Generation of a synthetic methylated DNA library 
 

It has been shown in previous studies that CpG methylation may be an important modulator of the 

DNA binding of transcription factors (Yin et al., 2017). In order to add this extra dimension to 

study of the DNA binding specificity of KRAB-ZFPs, we set out to artificially introduce CpG 

methylation in the SMiLE-seq v2.0 DNA libraries. To achieve this, we treated half of each of our 

DNA libraries with a CpG Methyltransferase (M.SssI) which methylates all cytosine residues of 

the double-stranded DNA within CpG dinucleotides (Fig. 2.11a). Before using the methylated 

libraries in SMiLE-seq experiments, we confirmed successful CpG methylation by methylation-

specific restriction analysis. In order to do this, we run both methylated and non-methylated 

libraries on agarose gel before and after restriction with the enzyme BstBI, a frequent cutter whose 

restriction ability is impaired by CpG methylation. As can be seen in Fig. 2.11b, after digestion 

only the non-methylated library shows significant degradation, whereas the methylated library 

remains at the nominal size of 121bp. 

 

 
 

Figure 2.11: The SMiLE-seq v2.0 methylated DNA library. a) Schematic depiction of the 
methyltransfare-based library conversion. b) Restriction analysis of the methylated and non-

methylated DNA library. 
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The generation of methylated DNA libraries is an important one as it increases the scope of the 

SMiLE-seq motif discovery process, by allowing to not only infer the sequence preferences of 

transcription factors but also their sensitivity to the methylation state of the DNA substrate. 

 

2.3.5 The DNA binding specificities of KRAB ZFPs  
 

After establishing a more powerful experimental framework with a new chip, new library design 

and new analysis pipeline we set out to process an initial set of 101 KRAB ZFPs. These factors 

were chosen based on motif size considerations made in light of a preliminary analysis of recently 

published ChIP-exo data on KRAB-ZFPs (Imbeault et al., 2017). We derived motifs for all KRAB-

ZFPs using their respective peak files and subsequently sorted each motif based on size (Supp. 

Fig. 2.3). We reasoned that factors with very long motifs – i.e. from 30 to 50 basepairs – would 

have low probability of yielding motifs in our experimental setting due to the difficulty of covering 

the extremely high number of sequence combinations. Therefore, for SMiLE-seq, we prioritized 

factors with shorter in vivo - i.e. derived from ChIP-exo - motifs. 

Of the initial set of 101 KRAB-ZFPs probed through SMiLE-seq, we obtained enriched motifs for 

43 factors (Supp. Table 1); of these, 22 yielded motifs for both methylated and non-methylated 

DNA (referred to as met-Independent factors), 10 only for methylated DNA (methylation sensitive 

type A or metA factors), 11 only for non-methylated DNA (methylation sensitive type A metB 

factors).  
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Figure 2.12: Example of the three types of methylation sensitivity observed in our SMiLE-seq 

results. 

 

In order to validate the motifs obtained, we compared them to the respective ChIP-exo motifs as 

well as the motifs predicted using two dedicated web-based tools (Persikov et al., 2014, Najafabadi 

et al., 2015) (Fig 2.12a., Supp. Fig. 2.4). We observed that, while SMiLE-seq faithfully 

recapitulates ChIP-exo motifs, the predicted motifs fell short of predicting the correct motif in 

most cases (Fig. 2.12b). However, we reasoned that the online tools tend to predict motifs based 

on the assumption that all zinc fingers bind DNA – which is reflected by the fact that the predicted 

motifs are much longer than the actual SMiLE-seq and ChIP-exo motifs. Moreover, by manual 

inspection we noticed that certain portions of the predicted motifs were similar to the in vitro and 

in vivo results. We therefore wondered whether the low performance the prediction tools were due 
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mostly to overestimating the size of the motifs and not the DNA-binding specificities of individual 

zinc fingers. To test this hypothesis, we aligned the predicted motifs to the ChIP-exo ones and 

calculated the motif difference considering only the overlapping portion of the aligned motif. 

Indeed, we observed that the overall similarity of the aligned motifs was much higher and became 

comparable to the similarity between ChIP-exo and SMiLE-seq motifs (Fig. 2.12b). This suggests 

that the major limitation of available prediction tools is not the ability to predict the specificity of 

individual zinc fingers or zinc finger arrays. Rather the main challenge is to understand which zinc 

fingers actually contribute to DNA binding and which ones don’t. In this direction, we set out to 

systematically identify for each KRAB-ZFP the subset of zinc fingers that likely contributed to 

binding. In order to achieve this, we took advantage of the ability of the web tool provided by 

Persikov et al. of providing the predicted binding specificity of any submitted zinc finger array 

and, for each TF, we queried the tool with different subsets of consecutive zinc fingers. After 

downloading the predicted motif for each zinc finger subset, we selected the one that was most 

similar to the ChIP-exo and SMiLE-seq motifs, thus effectively shortlisting which zinc fingers are 

predicted to directly bind DNA. For instance, the KRAB-ZFP ZIM3 contains 11 zinc fingers and 

the predicted motif is 33 base pairs long. Nevertheless, the in vivo and in vitro motifs are much 

shorter (15bp) which suggests that a minimum of 5 out of the 11 zinc fingers contributes to binding. 

By applying the systematic approach described above we predicted that zinc fingers 5-9 are likely 

to be the ones responsible for the observed DNA specificity of the factor (Fig.  2.13a). Similar 

observations were made for all the other KRAB-ZFPs tested with SMiLE-seq (Supp. Fig. 2.5), 

including metA and metB factors such as ZFP57 and ZNF133, respectively (Fig.  2.13b,c). 
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Figure 2.13: Example of zinc finger binding prediction for three KRAB-ZFPs, i.e. ZIM3 (a), 

ZFP57 (b) and ZNF133 (c). 
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In order to explore the origins of the observed sensitivity of some factors to methylation, we took 

into consideration 5 type of phylogenetic trees based on different types of similarities between the 

examined factors: 1) similarity based on full protein sequence, 2) similarity based on the sequence 

of all zinc fingers, 3) similarity between the alpha helices of all zinc fingers, 4) similarity between 

the alpha helices of the zinc fingers that are predicted to bind DNA and 5) similarity between 

experimentally derived motifs. Surprisingly, none of these approaches successfully clustered the 

methylation-sensitive factors in specific subgroups (Fig. 2.14, Supp. Fig. 2.6).  

 

 
Figure 2.14: Dendrogram obtained considering the similarity between experimentally derived 

motifs. 
 

Therefore, based on our preliminary results it appears that methylation sensitivity did not evolve 

from a common ancestor and that methylation can have different effects even on members of the 

same family of paralogs (Supp. Fig. 1.6). Another puzzling observation we made was that several 

of the factors that we identified as methylation sensitive, did not display the canonical CG 

dinucleotide. By analyzing the dinucleotide distribution in all the ChIP-exo derived motifs we also 

observed a significant bias against CG as compared to other dinucleotides (Fig. 2.15).  
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Figure 2.15: Dinucleotide distribution in ChIP-exo motifs. 

 

Despite being consistent with the phenomenon of CG suppression and underrepresentation in the 

human genome (Lander et al., 2001), this observation is somehow at odds with the importance of 

KRAB-ZFPs in controlling imprinting and mediating DNA methylation (Ecco et al., 2017). It is 

also remarkable to notice that prediction tools tend to predict quite accurately the binding 

specificity of both non- and methylation sensitive factors (including the known ZFP57) without 

integrating information about methylation specificity at all. This suggests that the methylation 

sensitivity of certain factors might originate independently from the binding specificity conferred 

by their respective ZF contacts. 
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2.4 Discussion 
 
In this chapter, I presented the development and optimization of a microfluidic-based tool, SMiLE-

seq, for the study of DNA binding specificities of transcription factors in vitro. In SMiLE-seq we 

adopt and merge features of both HT-SELEX and MITOMI. As a result, our solution allows to 

screen a very large amount of DNA binders in a sensitive and miniaturized fashion. With the first 

version of this technology, we set out to demonstrate its feasibility by analysing several factors 

belonging to different species and TF families. Of the randomly selected 60 factors, 58 (6 

Drosophila, 12 mouse and 40 humans) yielded the expected motif with high reproducibility. 

Moreover, by comparing SMiLE-seq data and the experimentally derived binding affinity of the 

factors MAX and Erg1, we found the SMiLE-seq recapitulates better than existing methods the 

energy landscapes of TF/DNA binding. After successfully passing the proof-of-principle stage, we 

proceeded to investigate the applicability SMiLE-seq to a family of transcription factors, the 

KRAB-ZFPs, for which the vast majority of DNA binding motifs are still missing. In order to do 

this, we processed with SMiLE-seq 24 KRAB-ZFPs, of which 9 yielded highly enriched motifs 

that closely reflected in vivo binding. Given the low success rate with this initial set of KRAB-

ZFPs, we set out to further develop our technology by exploring ways to increase its sensitivity 

and throughput. As a result of these efforts, we arrived at a new version of SMiLE-seq, called 

SMiLE-seq v2.0 that presents the following improvements: 1) a 4-fold increase in the number of 

factors processed for each microfluidic chip; 2) Nextera-compatible libraries which allow for any 

number of SMiLE-seq experiments to be processed in one sequencing run; 3) a longer random 

region in the DNA library in order to expand the combinatorial space covered; 4) methylated DNA 

libraries in order to investigate the sensitivity of TFs to cytosine methylation; 5) a new analysis 

pipeline that allows for background-corrected de novo motif discovery with a much larger number 

of input sequences. With SMiLE-seq v2.0, we processed 101 KRAB-ZFPs for both methylated 

and non-methylated DNA configurations, for a total of 202 experiments. We retrieved highly 

enriched motifs for 43 factors – 22 yielded motifs for both non- and methylated DNA, 10 only for 

methylated DNA and 11 only for non-methylated DNA – therefore providing the largest individual 

dataset on the in vitro binding properties of KRAB-ZFPs. All of the motifs thus obtained faithfully 

resembled motifs originated from the analysis of a large KRAB-ZFP-based ChIP-exo dataset 

recently published (Imbeault et al., 2017). Subsequently, we compared ChIP-exo and SMiLE-seq 

motifs to the ones obtained using two dedicated prediction tools (Najafabadi et al., 2015, Persikov 
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et al., 2014). We noticed that both tools systematically overestimated the size of the experimentally 

derived motifs while, at the same time, closely resembling these motifs only in specific portions 

of their predictions. By isolating these “highly similar” portions for each factor, we found that 

overall the main limitation of existing prediction tools is not the ability to predict the DNA 

specificity of zinc fingers, but rather the ability to discern which fingers contribute to DNA binding 

and which ones do not. By mapping the optimal portions of predicted motifs to the responsible 

zinc fingers, we were able to identify for each factor the specific subset of zinc fingers that were 

likely to be responsible for binding. It has previously been noted that KRAB-ZFPs may present 

motifs that are much shorter than as expected by the number of zinc fingers in each factor (Ecco 

et al., 2017). Our preliminary results confirm this view: considering the 43 SMiLE-seq-positive 

factors, the average number of zinc fingers per factor is 10±3 whereas the predicted number of 

zinc fingers directly contributing to binding is only 4.5±0.7. Phylogenetic analysis based on 

different similarity criteria of the methylation specific factors did not provide, for the moment, 

insight in the evolutionary origin of methylation sensitivity. Moreover, we also noticed that several 

of the identified methylation specific factors do not contain the canonical CG dinucleotide in their 

motif, which is consistent with the underrepresentation of the same dinucleotide considering all 

experimental motifs and the human genome dinucleotide distribution as well. These observations, 

together with the fact that prediction tools seem to perform well without integrating any 

methylation-specific information, raises more questions on the mechanisms of methylation 

detection of these factors. While further experimental validation will be required to validate these 

results, through SMiLE-seq applied to truncated TF forms or MITOMI to confirm methylation 

specific factors, we believe the presented framework will prove a powerful addition towards 

deciphering the DNA recognition code of KRAB-ZFPs. 
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2.5 Methods 
 

2.5.1 Protein expression 
 

Every SMiLE-seq experiment begins with the in vitro expression of a GFP-tagged transcription 

factor. After testing different systems, we identified the TnT® Coupled Wheat Germ Extract 

System from Promega as the most reproducible and robust solution for human transcription factors 

expression. In order to achieve high quantities of GFP-tagged TFs, we subcloned by LR reaction 

(Gateway cloning system) the TFs of interest into a custom-made vector called pF3a-eGFP, which 

contains translation enhancers (TE) from the wheat-germ-compatible barley yellow dwarf virus 

(BYDV) and a C-terminal eGFP tag. 

 

2.5.2 Target DNA library preparation 
 

The random DNA library was prepared through primer extension of single stranded Ultramers® 

ordered directly from IDT. For both SMiLE-seq and SMiLE-seq v2.0 the Ultramers® were 

extended by a Cy5-labelled primer (/5Cy5/CAA GCA GAA GAC GGC ATA CG, also from IDT) 

and a Klenow-based extension reaction (NEB Cat No M0212). 

The library synthesis occurs with the following reaction: 

 

- 5μl Buffer 2 (NEB) 

- 5μl dNTPs  

- 0.5μl Cy5 labeling primer (500 μM)  

- 1.5μl Library oligos (200 μM)  

- 37μl dH2O 

 

And the following thermal cycle: 

 

94°C for 5 min   

50°C for 60 sec  

place tubes on ice  

add 1μl of Klenow 3’ – 5’ exo- (NEB Cat No M0212)  
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37°C for 60 min  

keep at 0°C  

Use MinElute (Qiagen) to purify the double-stranded libraries, elute in 12 μl of EB. Dilute the 

libraries 1:10 in ddH2O or elution buffer (Qiagen). 

 

2.5.3 Chip fabrication 
 
Microfluidic devices were fabricated using standard multilayer soft-lithography, similarly to 

previous examples (Maerkl and Quake, 2007, Unger et al. 2000).  To these end, two layouts were 

designed using a dedicated software (L-Edit Tanner Tools), one for the so-called control layer and 

one for the so-called flow layer. Both layouts were transferred onto chromium masks using 

photolithography. For the flow layer, the layout was transferred onto a silicon wafer coated with 

AZ9260 positive resist 10 μm of thickness. After development, the positive resist microstructures 

were re-flown for 1 minute at 130°C in order to obtain round-shaped channels, which are required 

for the correct functioning of the microfluidic microvalves. For the control layer, the layout was 

transferred onto a silicon wafer coated with SU8 negative resist 10μm of thickness. The 

microfluidic flow layer, PDMS at 5:1 (prepolymer/curing agent w/w ration) was cast and cured on 

the flow layer wafer at a thickness of 4mm, whereas for the control layer the PDMS 20:1 was spun 

onto the control wafer in order to achieve a thickness of ~20μm. Both layers were partially cured 

at 80°C for 30 minutes, then the flow layer was peeled off its wafer and aligned on the control 

layer. Curing was finalized for a minimum of 90 minutes at 80°C. After curing, the assembled 

device was peeled off the control layer and holes were punched with a reusable biopsy punch. 

After punching the device was cleaned with isopropanol and bonded to a glass slide by plasma 

treatment. 

 

2.5.4 Control lines preparation 
 

All pressure sources are connected to the same number of plastic tubes. Each tube is color-coded 

as in 2.17d. In order to connect the tubes of the control lines to the chip, fill the tubes with water 

using a syringe (the water should fill ~2-5 cm of the tube). Connect all the control lines one-by-

one by plugging the tubes into the chip. Actuate one-by-one each valve. After a 10-30 seconds, 

the water should start reaching the control channels which should be visible under the microscope. 
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It is important to make sure that the valves close according to the predefined experimental scheme 

and that all valves are completely filled with water.  

 

2.5.5 Surface preparation 
 

For the SMiLE-seq surface preparation the following steps are required: 

 

1. Collect and place on ice the following reagents: 

Biotin-BSA at 2mg/ml 

Neutravidin at 1mg/ml 

PBS 

Anti-GFP antibody aliquots (1:50 dilution from 100ug/μl stock) 

  

2. Take 20 μl of BSA and 15 μl of PBS, NA and anti-GFP using a western-blot pipette tip 

and place them in the reagent inlets of the chip. Connect each tip the with blue pressure 

tubes coming from the flow line pressure manifold.  

3. When all tips and tubes have been properly connected (all valves are still closed) bring the 

pressure of flow line to 8PSI. 

4. Open one-by-one the inlet pressure channels and check visually that the order of the 

scheme has been respected. When an inlet channel gets pressurized, the respective valve is 

slightly “pushed up” by its inlet channel. 

5. When all inlets are pressurized, release the biotin-BSA channel by opening the respective 

valve and let the biotin-BSA go everywhere on chip and remove the air in the main 

channels. 

6. Wait for 10-15 minutes until the inlet areas of the other reagents gets filled with the 

respective reagents and no air is left in the chip. 

7. Set timer to 10 minutes and start it. Bring inlet pressure to 2.5psi, mark on the pipette tips 

with a marker the position of the reagents (in order to keep track of how much liquid is 

introduced in the chip. It is very important not to let any air get inside the chip. 

8. The SMiLE-seq surface functionalization sequence is as follows: 

10 min of biotin-BSA. 
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1min of PBS wash. 

10 min of Neutravidin 

PBS wash for 1 min and then close MITOMI button. 

Wash another minute with PBS, then 10min of biotin-BSA. 

1min PBS wash. 

Antibody 1 minute. 

After 1 min of Antibody, open the MITOMI button and wait 10min. 

After 10 min of Antibody, 1min PBS wash. 

Extract all western blot tips from the chip (apart from PBS tip).  

 

2.5.6 Sample loading 
 

Add 4 µl of DNA library to the pre-incubated in vitro expression mix, vortex, centrifuge to let all 

possible debris go to the bottom (14’000 rcf, 4 min). For each inlet, take 6-8 µl of TF using a 

western pipette tip and load each sample in a different 2mm inlet hole. The samples are ejected in 

the hole and the tip is discarded. Make sure you are touching the bottom of the chip while ejecting 

the liquid. Extract slowly the pipette tip while you are ejecting the samples in order to avoid that 

the liquids tops off the inlet hole. 

Once all samples have been transferred to the 2mm inlet holes, close the MITOMI button.  By 

using the little “air gun” connected to the flow line pressure, start pushing the samples in the chip. 

This is done by opening the channel connected to it and placing the air gun over one of the 2mm 

inlet holes. The pressure created by the air coming out of the gun (around 3-4 PSI) in this case is 

going to push the liquid from the hole to its respective outlet. 2-10 seconds after placing the gun 

on top of a 2mm inlet hole, you should see some liquid coming of its respective outlet; when this 

happens move on to the next sample. After priming all sample inlets, open the MITOMI button 

and push in the rest samples using the air gun (pressure 2-6 PSI). Be careful not to let any air be 

introduced in the chip. It is not essential to push exactly all of the sample liquid inside the chip, 

i.e. after 70-80% of the sample has been pushed into the chip, enough TF should have been trapped 

under the MITOMI button. Check regularly how much liquid is left in the 2mm holes by tilting 

the chip and looking from the side at the 2mm inlet holes or looking at the level of liquid in the 
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western blot tips if you used them. After all samples have been introduced into the chip, leave the 

chip at RT for around 2 hours in order for the TF/Ab complexes to reach steady state. 

 

2.5.7 Chip washing 
 

When the 2 hours have passed turn on the microarray scanner and login into the scanner computer. 

Close the MITOMI button B3 and wash all the MITOMI button areas with PBS. Before scanning, 

open the MITOMI button for 30 seconds and close again (this is done to prevent elution of non-

bound DNA trapped under the button). Wash extensively with PBS in order to remove all unbound 

DNA. 

 

2.5.8 Chip scanning 
 

In order to confirm the correct expression and pull-down of the factor the microfluidic SMiLE-seq 

chip can be scanned with a microarray scanner. To do this, pull off the pipette tips and wash briefly 

the external surface of the chip with ethanol and a tissue. Insert the chip into the scanner and wait 

for the lamp to reach the appropriate temperature. Select the filter A488 and initialise scan. When 

the MITOMI buttons in use are localised, a bright white circle in the middle of the button should 

be visible. It is recommended to also scan for the Cy5 signal in each button in order to identify 

specific sources of contamination, e.g. dust particles, onto which non-specific DNA is 

accumulated. 

 

2.5.9 DNA elution and library preparation 
 

Take 30 µl of SMiLE-seq Elution Buffer with a western blot tip, insert into A5 inlet. Open B1,  

Assemble the system for elution: a metal pin is inserted into the plastic tube on one end and into 

the library outlet of the chip on the other end. Purify with a PCR purification kit and elute with 20 

µl of EB.  

 

For sample amplification, two qPCR runs are needed – one with volume 15μl to determine the 

number of cycles for amplification, and a second one of 50μl for final amplification. 
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Make the following mix for both reaction (total volume 65ul):  

NEBNext Ultra II Master Mix 32.5 μl 

Purified DNA 20 μl 

Primers (i5 and i7 Illumina adapter sequences) 0.5 μl per primer 

SYBR (1X) 0.5 μl 

EB (elution buffer) to 65 μl 

 

 

The first qPCR consists of 5 cycles for the whole volume of the reaction (65μl) with the following 

settings: 

Temperature (°C) Time N of cycles 

72 5 min 1 

98 30 sec 1 

98 10 sec 5 

63 30 sec 

72 1 min 

72 1 min 1 

 

 

In the second qPCR step 15 μl out the initial 65 μl are cycled for 20 cycles in order to determine 

the correct number of amplification cycles in order to avoid overamplification. Finally, the 

remaining 50 μl are amplified for the determined number of cycles. 
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Before sequencing, the amplified DNA is purified, its size distribution and concentration measured 

through Fragment Analyzer (High Sensitivity NGS Fragment Analysis Kit), and Qubit (dsDNA 

HS Assay Kit), respectively. 

 

2.5.10 Analysis 
 

DNA reads are demultiplexed and duplicates are removed using FastxTools scripts. PWM are 

calculated using the HOMER suite and especially the command findMotifs.pl. As input to the 

command, we used SMiLE-seq libraries of up to 100’000 reads each. For background 

compensation, the same number of reads taken from an “input library”, i.e. libraries not enriched 

by SMiLE-seq, was used for each TF analysed. Recovered motifs are compared to existing data as 

well as predictions by means of custom Python scripts. In particular, we programmed scripts that 

systematically queried the online tools with the KRAB-ZPs protein sequences and downloaded the 

response in PWM form.  
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2.6 Supplementary Figures 

 
Supplementary Figure 2.1: SMiLE-seq reproducibility. Pearson correlation of the top 2000 k-
mers, from two independent SMiLE-seq experiments for the TFs PAX7 (a), SRY (b), MAX (c) 

and FLI1 (d). 
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Supplementary Figure 2.2: PBM, HT-SELEX and SMiLE-seq data correlation. 
 a) correlation analysis between k-mer enrichment and binding affinity for TF Egr1 derived both 
in SMiLE-seq and HT-SELEX. Right panel: correlation analysis between k-mer enrichment and 

binding affinity for TF Egr1 derived both in SMiLE-seq and PBM. Copyright 2017, Nature 
Publishing Group. 
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Supplementary Figure 2.3: KRAB-ZFPs DNA-binding motifs derived from ChIP-exo data. 
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Supplementary Figure 2.4: Motifs obtained with SMiLE-seq and respective ChIP-exo and 

predicted motifs. 
 

 



 
 

75 



 
 

76 



 
 

77 

 
Supplementary Figure 2.5: Predicted DNA binding zinc fingers for the factors that yielded 

motifs in SMiLE-seq 
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Supplementary Figure 2.6: Summary of difference between number of zinc fingers in each 

factor and number of zinc fingers that are predicted to bind. 
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Supplementary Figure 2.7: Phylogenetic trees obtained using different similarity criteria. a) 
similarity based on full protein sequence – paralog groups are highlighted in red, b) similarity 

based on the sequence of all zinc fingers, c) similarity between the alpha helices of all zinc 
fingers, d) similarity between the alpha helices of the zinc fingers that are predicted to bind 

DNA. 
 

Supplementary Table 1: Summary of KRAB-ZFPs tested with SMiLE-seq 
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3.1 Introduction 
 
 

The genome-wide distribution and dynamics of protein-DNA interactions constitute a fundamental 

aspect of gene regulation. Chromatin immunoprecipitation followed by next generation 

sequencing (ChIP-seq, Johnson et al. 2007) has become the most widespread technique for 

mapping DNA-protein interactions genome-wide. ChIP-seq has been successfully applied to 

dozens of TFs, histone modifications, chromatin modifying complexes, and other chromatin-

associated proteins in humans and other model organisms. The ENCODE and modENCODE 

consortia have performed more than 8,000 ChIP-seq experiments, which have enhanced our 

collective understanding of how gene regulatory processes are orchestrated in humans as well as 

several model organisms (Landt et al., 2012). In addition, ChIP-seq proved to be essential to 

acquire new insights into genomic organization (Kasowski et al., 2013, Waszak et al., 2015) and 

into the mechanisms underlying genomic variation-driven phenotypic diversity and disease 

susceptibility (Deplancke et al., 2016, Lehner et al., 2013, Albert et al., 2015). More specifically, 

this assay proved crucial in determining the DNA binding properties of hundreds of TFs (Lambert 

et al., 2018). Nevertheless, in comparison to other widespread NGS-based methods – e.g. RNA-

seq (Kolodziejczyk et al., 2015), ATAC-seq (Buenrostro et al., 2015), and Hi-C (Ramani et al., 

2017) – ChIP-seq lags behind in some key metrics, i.e. throughput, sensitivity, modularity, and 

automation, which hinder its wider adoption and reproducibility. For example, while RNA-seq can 

now be regularly performed on hundreds or thousands of single cells using readily available 

workflows, ChIP-seq has largely remained labor intensive and limited to few samples per run, each 

composed of millions of cells. Moreover, while a typical pre-amplification RNA-seq workflow 

consists of only three steps – i.e. cell lysis, RNA capturing and reverse transcription – ChIP-seq 

typically involves several pre-amplification steps (crosslinking, lysis, fragmentation, 

immunoprecipitation, end-repair and adapter ligation). Finally, any given RNA transcript is 

present in each cell in numerous copies, which increases the likelihood of its capture and detection, 

whereas, on the other hand, each locus-specific protein-DNA contact occurs a maximum of two 

times in a diploid cell. The combination of these idiosyncratic differences, together with the lack 

of enabling solutions, has thus far prevented the ChIP-seq technology, as opposed to other NGS-

based methods, to reach its full potential in terms of adoption and overall utility.  
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In addition to the standard ChIP protocol, a modification of its workflow involving sequential 

chromatin immunoprecipitation (sequential-ChIP) has also been adopted to infer genomic co-

occurrence of two distinct protein targets. In principle, sequential-ChIP consists in performing 

ChIP twice on the same input chromatin, which leads to a multiplication of the inefficiencies 

mentioned above. Therefore, not only does sequential-ChIP show the same limitations as regular 

ChIP-seq, but these also come in an augmented form due to its sequential nature. As a result, 

despite the multi-dimensional information provided, sequential-ChIP has also resisted wider 

adoption. 

In recent years, several attempts have been made to alleviate some of the limitations of the 

ChIP-seq and sequential-ChIP approaches. Gasper et al. (2014) and Aldridge et al. (2013) 

addressed the issue of automation by implementing the manual steps of a conventional ChIP-seq 

workflow on robotic liquid handling systems. However, in these examples, automation came at 

the expense of sensitivity, which remains in the range of tens of millions of cells per experiment. 

van Galen et al. (2015) and Chabbert et al. (2015) addressed the issue of throughput by barcoding 

and pooling chromatin samples before immunoprecipitation (IP). Although van Galen and 

colleagues also proved that their approach leads to higher sensitivity (500 cells per ChIP), both 

methods are not automated and were shown to work only for histone marks. Ma et al. (2018) and 

Rotem et al. (2015) addressed the limits of sensitivity with two different microfluidic-based 

strategies. Ma et al. focused on improving the efficiency of the IP step by confining it within 

microfluidic channels. Although these researchers showed good IP efficiency down to as few as 

30 cells, their approach requires impractical antibody-oligo conjugates, is not automated and was 

not shown to work for TFs. On the other hand, Rotem et al. achieved the remarkable feat of 

performing ChIP-seq in a single cell by integrating the concept of chromatin barcoding and pooling 

into a single droplet-based microfluidic chip. However, even though the barcoding step has indeed 

single cell resolution, the most critical step – i.e. the IP step – is performed manually on 100 cells. 

As a result, their approach, which was also shown to work only for histone marks so far, yielded 

sparse single cell data and thousands of assays are needed to identify specific cell subpopulation 

signatures. In a notable effort to simplify the sequential-ChIP workflow, Weiner et al. (2016) 

complement the immunoprecipitation steps with sequential chromatin barcoding, thus achieving a 

high degree of multiplexing. However, their approach increases the number of experimental steps 

which makes it significantly more labor-intensive given that the workflow is not automated. In 



 
 

85 

summary, previous valuable attempts at improving the technology selectively address specific 

limitations but typically at the expense of or ignoring others.  

In this work, we tackle all the three major limitations of current ChIP-seq and sequential-

ChIP solutions (throughput, sensitivity and automation), by developing a microfluidic 

multiprocessor that we named FloChIP. We show that high quality one-day and parallelized ChIP-

seq for histone marks (down to 500 cells) and TFs (100’000 cells) is achieved through a 

combination of microvalves, microstructures, flexible surface chemistry and on-chip chromatin 

tagmentation. Moreover, by designing an interconnected and modular device, FloChIP enables 

straightforward re-immunoprecipitation of eluted chromatin, effectively enabling sequential-ChIP 

which allows us to probe bivalent chromatin with unprecedented ease. 
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3.2 FloChIP 
 

3.2.1 FloChIP is engineered for automated, bead-less and miniaturized ChIP-seq 
 
The two core elements of FloChIP’s technology are assembly of a multilayered “totem” of 

molecular species (Fig. 3.1a, Supp. Fig. 3.1a) and an engineered pattern of high surface-to-volume 

micropillars (Fig. 3.1b). The totem is based on strong although non-covalent molecular interactions 

and culminates with the immobilization of an antibody of choice prior to immunoprecipitation. 

The first layer is obtained by flowing on-chip a concentrated solution of biotinylated-BSA, which 

passively but thoroughly adsorbs to the hydrophobic walls of the microfluidic device. This layer 

has both an insulating role, i.e. it prevents non-specific adsorption of chromatin to the walls, and 

a docking role for the next layer, which is obtained by flowing on-chip a solution containing 

neutravidin that strongly binds to the biotin groups of the first layer. The third layer is formed by 

flowing a solution of biotinylated-protein A/G, which gets firmly immobilized by the unsaturated 

binding sites of the neutravidin layer. Protein A/G is a recombinant protein used in a variety of 

immunoassays due to its ability to strongly bind to a large number of different antibodies. This 

ability is retained by FloChIP’s totem which thus constitutes a general substrate for antibody pull-

down (Fig. 3.1a).  

 

For the successful initiation of the antibody-capturing totem, the only substrate requirement is the 

hydrophobic surface of the polymer. Therefore, we set out to optimize the topology of the 

microfluidic channels having three main goals in mind: obtaining as much surface area as possible, 

miniaturizing the overall device footprint and ensuring flawless distribution of chemical species – 

i.e. without dead volumes where undesired chromatin could accumulate. This optimization 

strategy led to a design encompassing an array of micropillars of rhomboidal cross-section with 

the major axis aligned to the direction of the flow (Fig. 3.1b). To achieve a total estimated surface 

area that yields a sufficiently complex post-IP DNA library, the micropillar pattern is then repeated 

multiple times across each IP-lane (Fig. 3.1c).  
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Figure 3.1. FloChIP technical innovation. a) FloChIP’s processing phases in descending 
chronological order. b)  Top-view microscopy picture of a portion containing numerous micro-

pillars. c) Top-view schematic of one IP lane. d) Fluorescence micrographs showing the 
requirement for biotin-BSA in the correct formation of FloChIP’s totem. e) Top-view schematic 
of the high-throughput 64-units FloChIP device, flow channels are in blue and control channels 

in red. 
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With the goal of visually confirming the outcome of the combination between totem assembly and 

the micropillar array and that every element is essential to this end, we first sought to IP chromatin 

derived from a HeLa H2B-mCherry cell line using an anti-mCherry antibody. The resulting 

fluorescence micrographs confirmed that each layer of the totem is necessary for successful IP of 

cellular chromatin (Fig. 3.1c, Supp. Fig. 3.1b). 

 

The IP-lane is the fundamental element of the FloChIP architecture and it can itself be repeated n 

times, where n is the desired throughput of the device. For our low-throughput initial tests we used 

an 8-lanes FloChIP device (Supp. Fig. 3.1c), whereas for high-throughput experiments we utilized 

a 64-unit device (Fig. 3.1e). To gain accurate flow control, automation and multiplexing, a network 

of Quake-style microfluidic valves was added to the design. Moreover, by actuating distinct sets 

of valves, different multiplexing modes can be achieved with the same microfluidic architecture. 

For instance, we named “FloChIP mode 1” the option of multiplexing one sample into different IP 

units, hence equally distributing the same sample across multiple lanes, enabling multiple parallel 

IPs involving distinct antibodies (Fig. 3.2a). Alternatively, “FloChIP mode 2” provides the option 

of coating the whole device with one antibody, thus achieving sample multiplexing (Fig. 3.2b). 

We note that both multiplexing modes are compatible with the direct ChIP approach. However, 

FloChIP is also fully compatible with the indirect ChIP strategy, in which the chromatin is pre-

incubated with an antibody before flowing the sample-antibody mixture on-chip. Interestingly, we 

noticed that for low-affinity antibodies (e.g. certain TF antibodies), the indirect ChIP was 

preferable to the direct one (data not shown). On the other hand, all tested histone marks antibodies 

showed high affinity for their epitopes and both direct and indirect ChIP yielded an equal data 

quality (data not shown). Regardless of the chosen approach, it is important to emphasize that, due 

to its microfluidic nature, FloChIP’s IP step can be considerably shorter (30 to 60 minutes) than 

for the other macroscale alternatives. 
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Figure 3.2. Schematics of FloChIP operational modes.  a) Schematic depiction of 

FloChIP’s mode 1: antibody multiplex. Each IP lane is functionalized separately by introducing 
different antibodies through the individual inlets. During IP, one sample is introduced through 

the common inlet and distributed equally across all IP lanes. b) Schematic depiction of 
FloChIP’s mode 2: sample multiplex. One antibody solution is introduced through the common 
inlet and distributed equally across all IP lanes. During IP, each IP lane is loaded separately by 

introducing different samples through the individual inlets. 
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3.2.2 FloChIP reliably reproduces ENCODE data across a wide range of input cells 
 
To benchmark the reliability of our technology and its multiplexing features as well as its overall 

sensitivity, we first set out to empirically estimate the overall binding capacity of each IP lane. To 

this end, we performed FloChIP in multiplexing mode 2, i.e. “antibody multiplex”, by 

functionalizing the whole chip with an anti-H3K27ac antibody and immunoprecipitating different 

chromatin dilutions, from 1 million down to 500 cells. Since the amount of DNA that was typically 

recovered from the chip tended to be too small to be measured directly, we used the number of 

amplification cycles needed to reach a given cycle threshold (Ct) as an indirect estimator of DNA 

amount. Following this metric, we observed that for lower input amounts, a progressively greater 

number of amplification cycles is required to reach the same Ct value (Supp. Fig. 3.2a), indicating 

that below 100’000 cells, FloChIP functions in below-saturation conditions. We therefore 

estimated that FloChIP’s inner surface saturates at approximately 100’000 cells. Nevertheless, we 

also obtained positive and stable fold enrichment results (Supp. Fig. 3.2b) and good genomic 

coverage (Fig. 3.3a) across the whole series of dilutions tested, suggesting that FloChIP can be 

carried out efficiently below and above its saturation point. To obtain a genome-wide perspective 

on its dynamic range, we sequenced FloChIP’s derived libraries for four dilutions, i.e. 100’000, 

50’000, 5’000 and 500 cells. Although the rate of uniquely mapped reads remained high for all 

samples (Supp. Fig. 2c), the fraction of reads falling into peaks (FRiP score) slightly decreased 

with lowering input amounts – from over 60% for 100’000 cells, to just above 10% for 500 cells 

(Supp. Fig. 2d). Nevertheless, genome-wide analysis of the obtained libraries revealed expected 

accumulation of reads into regions in proximity of transcription start sites (TSS, Fig. 3.3b). 

Moreover, genome-wide correlations demonstrate the high accuracy of our approach by showing 

high correlation between all library pairs (between R2= 0.78 and R2= 0.98), including Encode-

FloChIP pairs among which the highest correlation was obtained for the 100’000 cells samples, 

i.e. R2= 0.91.  
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Figure 3.3. FloChIP data on cell number dilutions. a) H3k27ac profiles obtained by FloChIP 

with decreasing cell numbers. For comparison, ENCODE data generated by conventional ChIP-
seq are also shown. b) Normalized read density profiles around transcription start sites for 

samples of decreasing cell numbers and ENCODE. c) Genome-wide correlation between pairs of 
samples with decreasing cell numbers and ENCODE. 

 

 

After establishing 100’000 cells as the optimal trade-off point between IP-lane saturation and data 

quality, we set out to evaluate the reproducibility of our approach with other genomic targets. To 

this end, by using FloChIP’s mode 1: “sample multiplex”, we ChIPed in parallel 5 histone marks 

(H3K27ac, H3K4me3, H3K27me3, H3K4me1 and H3K9me3), going from chromatin to 

sequencing-ready libraries, in just one day. By visual inspection of locus specific genomic regions, 

we found that the obtained signal tracks closely resemble those of Encode (Fig. 3.4a). In addition, 

to evaluate FloChIP’s performance more precisely, we determined the extent of genome-wide 

correlation between FloChIP and Encode datasets. Comparison of signal intensities between the 

respective datasets confirmed an overall high genome-wide correlation (H3K4me3: R2= 0.82, 

H3K27ac: R2= 0.88, H3K4me1: R2= 0.91, H3K27me3: R2= 0.56, H3K9me3: R2= 0.86; Fig. 3.4b). 

Moreover, comparison in terms of the FRiP score showed that, despite the ChIP input for Encode 

being two orders of magnitude greater than that of FloChIP, our technology consistently yields 
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highly enriched libraries, with FRiP scores between 1.07x and 4.12x higher for FloChIP compared 

to Encode (expect for H3k27me3, Fig. 3.4b). These data show that FloChIP can be used to robustly 

generate chromatin landscapes for histone marks with a wide input dynamic range. 

 

 

 
 

Figure 3.4. Comparison of FloChIP and ENCODE data. a) Signal tracks for H3k27ac, H3k4me1 
and H3k4me3 profiles obtained by FloChIP are shown. For comparison, ENCODE data 

generated by conventional ChIP-seq are also shown. b) Genome-wide correlation plots between 
FloChIP (x axis) and ENCODE (y axis) data for all targets tested, i.e. H3k27ac, H3k4me1, 
H3k9me3, H3k27me3 and H3k4me3. c) Comparison in terms of fraction of reads in peaks 

(FRiP) between FloChIP and ENCODE for histone mark samples. 
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3.2.3 FloChIP “sequential-IP” mode provides genome-wide information on bivalent 
promoters 
 
Conventional ChIP-seq provides information on the genome-wide localization of one specific 

protein or histone modification at a time. However, DNA regulatory elements generally harbor the 

interaction of several transcription factors and histone modifications in order to regulate gene 

expression (Deplancke et al., 2016, Spitz et al., 2012). For instance, it has been shown that 

promoters showing both repressive (H3k27me3) and activating (H3k4me3) marks are a 

characteristic feature in embryonic stem (ES) cells (Mikkelsen et al., 2007, Bernstein et al., 2006). 

This class of promoters have been originally named “bivalent” and are strongly associated to key 

developmental genes. In order to obtain direct information on the genomic location of bivalent 

promoters, a variant of the standard ChIP protocol called sequential-ChIP was developed. 

Sequential-ChIP relies on the consecutive IP of two different antigens and, as opposed to simply 

intersecting two ChIP-seq datasets, provides unbiased information on bivalent regions. Despite the 

advantage of sequential ChIP over standard ChIP in discerning true bivalency, its manual 

involvement and impracticality have thus far prevented widespread usage. Moreover, due to the 

inefficiency of the method, few studies have so far performed sequential ChIP followed by next 

generation sequencing (sequential-ChIP-seq), since most of them relied on qPCR to validate 

putative bivalent regions (sequential ChIP-qPCR). To address the technical limitations of the 

current sequential-ChIP workflow, we exploited FloChIP’s intrinsic modularity, highly efficient 

IP and multiplexing features to derive the example of an automated and miniaturized sequential-

ChIP solution (Fig. 3.5).  
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Figure 3.5. Operational schematics of FloChIP in sequential IP mode. a) FloChIP’s sequential IP 
steps in descending chronological order for the case of H3k4me3-H3k27me3. Chromatin coming 
from the first IP is collected into off-chip reservoirs connected to device. Following collection, 
the control channels are actuated in a way to isolate the first IP lane from the chromatin, while 
opening the path to the second IP lane. At this point, the chromatin flown into the second pre-

functionalised IP lane. Finally, the bivalent chromatin is eluted again in off-chip reservoirs.  
 

We validated our approach by focusing on bivalent chromatin given its well-studied role in 

embryonic development. Specifically, we acquired genome-wide direct co-occupancy profiles for 

H3K27me3 and H3K4me3 in mouse embryonic stem cells (mESCs) in both IP directions – i.e. 

H3K27me3 first followed by H3K4me3 (H3K27me3/H3K4me3) and vice versa. As mentioned 

above, H3K4me3 and H3K27me3 bivalency has been originally attributed to promoters of 

developmental genes, leading to the hypothesis that a bivalent state maintains genes in a poised 

state (Mikkelsen et al 2007). In a previous study, it has been suggested that, based on the promoter 

read coverage comparison of ChIP-seq and sequential-ChIP-seq data, promoters show three 

distinct patterns of bivalency, i.e. pseudo bivalency, partial bivalency and full bivalency21. 

However, we consider these classes an artificial construct that does reflect the more fine-grained 

distribution of bivalency levels. Therefore, instead of assigning promoters to specific classes, we 

compute for each TSS a “bivalency score” (bvScore, Fig. 3.6b, details in the Methods section). To 
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evaluate the performance of sequential FloChIP, we focused on three distinct regions which have 

been previously used as proof-of-concept models by Bernstein and colleagues using ChIP-qPCR 

and sequential ChIP-qPCR to illustrate the methylation status difference among 4me3-only (Tcf4 

TSS), 27me3-only (upstream of Hoxa3) and bivalent (Irx2 TSS) regions. FloChIP-based genomic 

profiles (Fig. 3.6a, Supp. Fig. 3.3a) and bvScore distributions (Fig. 3.6b) validated these previous 

findings as we observed that the Tcf4 promoter shows high H3K4me3 but low H3K27me3 

enrichment, and thus very low bivalency (bvScore=0.83). In contrast, Hoxa3 was mainly marked 

by H3K27me3, with low H3K4me3 and bivalency signals (bvScore=0.44). Finally, the TSS of 

Irx2 showed true bivalency (bvScore=3.34), with all four genomic tracks showing high coverage. 

In addition to considering specific loci, we also validated our data on a genome-wide scale by 

achieving high correlation with the results obtained by Weiner et. al using their Co-ChIP system 

(Supp. Fig. 3.3b).  Our results are also consistent with a study by Mikkelsen and colleagues21, who 

analyzed the genome-wide co-occurrence of H3K4me3 and H3K27me3 in mESCs by conventional 

ChIP-seq. Their findings suggested that, at the embryonic stage, most “high-CpG” (HPC) 

promoters, are associated with intervals of H3K4me3 enrichment, while the remaining ~22% 

appear to be bivalent. While our analysis confirmed that the majority (80%) of HPC promoters is 

marked by H3K4me3, as reflected by the green color-coded region in Fig. 3.6b, we found that the 

remaining 20% of promoters is bivalent (~15%, blue color-coded region) but also marked by 

mainly H3K27me3 (~5%, red color-coded region) especially for very low bivalency scores.  

Finally, as an independent validation of our analysis, we performed gene ontology enrichment on 

the first one thousand promoters with the highest bivalency score. As expected, we found that these 

promoters are highly enriched in genes involved in a number of developmental processes, from 

anatomical structure development to neurogenesis (Fig. 3.6c).  
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Figure 3.6. FloChIP sequential ChIP-seq results. a) Locus-specific signal tracks for the two 
individual IP libraries (H3k4me3 and H3k27me3) as well as the corresponding sequential IP 

samples (H3k27me3/H3k4me3 and H3k4me3/ H3k27me3). b) Bivalency score distribution for 
HCP promoters. The color-codes reflect the relative abundance of the two individual marks for 
each promoter. c) Gene Ontology enrichment analysis for the first one thousand promoters with 

the highest bivalency score. 
 

Taken together, data indicates that FloChIP’s “sequential IP” mode provides the first example of 

an automated, low-input (100’000 cells) and rapid (between 5-6 hours) sequential-ChIP-seq 

workflow for the study of bivalent promoters.  
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3.2.4 FloChIP is capable of ChIPing TFs in “high-throughput” mode  
 
As mentioned in the introduction, previous attempts at improving the sensitivity and multiplexing 

ability of ChIP-seq experiments were shown to perform well only in the context of histone 

modifications. The reason for this is that performing TF ChIP-seq poses additional challenges as 

compared to histone marks (HM) including the fact that i) TF/DNA interactions are less abundant 

and less robust than HM/DNA interactions and ii) antibodies for TFs normally show lower affinity 

for their epitopes as compared to HM antibodies. These challenges, whose severity varies on a 

case by case basis, translate into the need for greater sample inputs and longer incubation times. 

Indeed, in our experience with FloChIP, we also experienced these challenges and for most of the 

TF antibodies that we tested, FloChIP’s indirect method – i.e. with 2-4 hours antibody/chromatin 

pre-incubation in tubes – appeared to be the only way to obtain high quality results (data not 

shown). Nevertheless, by slowly and intermittently flowing the pre-incubated antibody/chromatin 

mixture on-chip, we succeeded in performing TF immunoprecipitation on only 100’000 cells, 

proving for the first time the feasibility of miniaturized and automated TF ChIP-seq (Fig. 3.7). 

After establishing a working protocol for TF ChIP-seq, we set out to concurrently demonstrate the 

high-throughput capabilities of our device. To this end, by using half of the 64 IP lanes of the 

FloChIP device, we performed MEF2-A ChIP-seq on chromatin derived from 32 different 

lymphoblastoid cell lines (LCLs) (Fig. 3.7a) Before sequencing, we verified the 

immunoprecitation quality of each library by qPCR (Fig. 3.7b). Amplification results indicate 

consistently good fold enrichment across the 32 IP lanes (log2(Fold enrichment), mean=5.7, 

stdev=1.5). Another positive aspect of FloChIP is its apparent internal normalization effect on the 

immunoprecipitated DNA. To note, even without normalizing the input chromatin across the 32 

cell lines, the amount of recovered DNA after FloChIP was extremely similar. In fact, all post-

ChIP DNA libraries were amplified the same number of cycles (17 PCR cycles), adding to the 

convenience of our solution. We attribute this particular feature to the fact the FloChIP provides 

very efficient IP and reaches saturation levels even with lowly abundant samples. When saturated, 

the microfluidic device cannot IP any more chromatin and, given that the geometrical structure of 

each IP lane is the same, this leads to uniform amounts of DNA recovered even from very different 

samples. Subsequently, we sequenced at low coverage all 32 samples and observed variation in 

the percentage of uniquely mapped reads (Fig. 3.7c, mean=42%, stdev=22%), which in turn 

translated into variable genomic coverage of the libraries and variable number of peaks called (Fig. 
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3.7d and Fig. 3.7e). Despite this variable coverage, we were able to assess the quality of the 

generated libraries through different criteria. By visual inspection, both genomic profiles and 

genome wide TSS annotation suggested that the obtained reads accumulated as expected near 

transcription start sites and that the respective regions and were clearly visible in the genome 

browser (Fig. 3.7d and Supp. Fig. 3.4a). Moreover, in order to analyze the genome-wide agreement 

of the 32 datasets in an unbiased way, we considered a set of peaks obtained by merging all the 32 

alignment files together and counted the number of reads mapped within each peak of each library. 

This allowed us to observed high pairwise correlation of the 32 libraries (Supp. Fig. 3.4b) as well 

as FRiP scores (Fig. 3.4f, mean=6.9%, stdev=2.7%) similar to the ones obtained for Encode with 

its own data (i.e 4.7%). Finally, we examined the enrichment of the MEF2-A motif for each set of 

peaks, generate individually from each sample. Despite the low number of peaks of some libraries, 

the expected motif is found in all libraries with a p-value lower 0.001 (Fig. 3.4f, -log(Pvalue), 

mean=9.1, stdev=6.9). 
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Figure 3.7. FloChIP TFs data. a) List of the 32 cell lines used in this study. b) qPCR enrichment 
for each library. The average across all libraries log2(fold change) is 5.7. c)Percent of mapped 

reads for each library. The average mapping rate across all libraries is 46.6%. d) Signal tracks are 
reported for each library for three different genomic regions. e) Number of peaks called for each 
library (3374 peaks on average). f) FRiP score for each library (6.9% on average). g) MEF-2A 

motif enrichment for each library (a –log(Pvalue) of 9.2 on average) 
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3.3 Discussion 
 
The interaction between DNA and proteins constitutes a fundamental aspect of gene regulation. 

ChIP-seq allows to probe DNA-protein interactions on a genome-wide scale, thus achieving high-

throughput in terms of DNA sequence space coverage. On the other hand, for what concerns 

throughput in terms of proteins and biological samples, ChIP-seq remains at the lowest level 

possible, with only one protein species and one sample tested per experiment. Aggravating this 

aspect, the long and manually intensive protocol prevents straightforward development towards 

higher throughput. Community-led efforts like ENCODE have therefore been put in place in order 

to perform ChIP-seq for a large number of proteins and cell types. However, despite the valuable 

data generated, ENCODE still sampled only a small portion of a much larger combination space. 

In addition to limited throughput and manual involvement, standard ChIP-seq is also restricted by 

the input requirements for biological material. The requirement for at least one million cells, has 

precluded ChIP-seq from performing reliably on smaller but possibly biologically relevant 

samples. Understanding the impact of these limitations, several groups attempted to improve the 

original protocol. However, these attempts have addressed specifically certain issues while 

overlooking others. In this study, we address all major ChIP-seq limitations by introducing a new 

technology, FloChIP, that allows for rapid, high-throughput, automated and sensitive chromatin 

immunoprecipitation. The two core technological aspects of FloChIP are its surface chemistry and 

its microfluidic architecture. The former confers FloChIP the ability to perform solid-state bead-

less IP with most off-the-shelf antibodies, while the latter provides the structural substrate for 

miniaturized IP, rapid washing, multiplexing and straightforward automation. 

Following IP, another distinctive feature of FloChIP is the direct on-chip tagmentation of captured 

chromatin. As also shown by Schmidl et al. (Schmidl et al., 2015), on bead-bound chromatin, 

direct solid-state tagmentation reduces time, cost and input requirements of ChIP experiments. To 

our knowledge, this is the first time solid-state tagmentation is shown to function efficiently and 

reproducibly on the walls on a microfluidic chip and, in general, on a substrate other than 

microbeads. 

In order to demonstrate its reliability and applicability, we performed FloChIP for a variety of 

targets and samples. Initially, we aimed to empirically gain insights into FloChIP’s dynamic input 

range. By obtaining high H3k27ac qPCR fold enrichment and high correlation with the respective 

ENCODE data for inputs ranging between 106 and 500 cells, we show that FloChIP can be used 
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across a wide range of inputs. Next, as a more comprehensive benchmark, we performed FloChIP 

for four more histone marks, namely H3k27me3, H3k4me3, H3k4me1 and H3k9me3. Despite the 

much lower input used for FloChIP, our results showed high correlation with ENCODE data and 

superior FRiP scores, thus advocating the robustness and efficiency of our approach. Next, by 

designing pair-wise interconnect IP lanes, we show that the chromatin eluted after the first IP step 

can be easily re-directed into a second IP lane, therefore achieving straightforward sequential 

immunoprecipitation. We validated FloChIP’s sequential IP by recapitulating previously 

published qPCR and sequencing data on bivalent promoters in mouse embryonic stem cells. To 

the best of our knowledge, this is the fastest (1/2 day) and most sensitive (100’000 cells) example 

of sequential ChIP-seq. Moreover, this is the first automated, microfluidic and bead-less example 

of sequential ChIP-seq. Finally, we sought to simultaneously demonstrate FloChIP’s applicability 

on TFs and throughput by ChIPping MEF-2A from 32 different lymphoblastoid cell lines. Overall, 

our data demonstrate that FloChIP is a robust, sensitive and high-throughput all-in-one ChIP-seq 

solution. Given its advantages and wide applicability, we believe FloChIP has great promise for 

establishing itself as a widely adopted tool for the study of genome-wide protein-DNA 

interactions. 
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3.4 Methods 
 

3.4.1 Chromatin preparation 
 

Cell fixation 

 

GM12878 cells (5-10 millions) were harvested, washed once with PBS and resuspended in 1ml 

crosslinking buffer (1% PFA in PBS) for 10 minutes shaking. Crosslinking was stopped by adding 

50μl of 2.5M glycine and shaking for other 5 minutes. Fixed cells were then washed twice with 

ice-cold PBS, pelleted, deprived of the supernatant, snap frozen and stored and -80°C. 

 

Lysis and sonication 

 

The frozen cell pellet was resuspended in ice-cold PBS at 4°C agitating for 30 minutes, spun at 

1000g for 5 minutes, resuspended in lysis buffer (50 mM Hepes pH 7.8, 140 mM NaCl, 1mM 

EDTA, 0.5% NP40, 10% glycerol, 0.25% Triton and freshly added protease inhibitor), incubated 

with mild agitation for 10 minutes, spun for 5 minutes at 1000g, resuspended in nuclei wash buffer 

(20 mM Tris-HCl pH 8.0, 200 mM NaCl, 1 mM EDTA, 0.5 mM EGTA and freshly added protease 

inhibitor), incubated with mild agitation for 10 minutes, spun for 5 minutes at 1000g and 

resuspended in sonication buffer (20 mM Tris-HCl pH 8.0, 200 mM NaCl, 1 mM EDTA, 0.5 mM 

EGTA, 0.5% Na-Deoxycholate, 0.5% N-laurosylsarcosine and freshly added protease inhibitor). 

Nuclei were sonicated on a covaris E220 machine with the following settings: 140W intensity, 5% 

duty factor and 200 bursts/cycle. Chromatin was then aliquoted (~100’000 cells/aliquot) in PCR 

tubes and snap frozen until ChIP.  

 

3.4.2 FloChIP  
 

Device fabrication 

 

Microfluidic designs were generated using Tanner L-Edit and fabricated using multilayer standard 

soft lithography (Thorsten et al., 2002) at the EPFL center for microtechnology. Briefly, designs 

were first transferred to chrome masks using a VPG200 pattern generator (Heidelberg 
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Instruments). Subsequently, microfluidic molds were assembled on silicon wafers with SU8 

photoresist for the control layer and AZ9260 positive resist for the flow layer using a SUSS 

ACS200 Gen3 system (SUSS MicroTec). Microfluidics chips were fabricated by first separately 

casting PDMS onto the SU8 and the AZ9260 wafers with two different PDMS/curing agent ratios 

(20:1 and 5:1, respectively), partially curing for 30 minutes at 80°C, peeling off the PDMS from 

the AZ9260 wafer and aligning it to the SU8 wafer in order the reconstitute the wanted pattern. 

The chips were finally fully cured at 80°C for one hour and half, peeled off, holed and plasma-

bonded to clean glass slides or to PDMS-coated petri dishes.  

 

Experimental setup 

 

Automated control of the FloChIP experimental workflow is obtained by a system of components 

including: 1) MATLAB software, 2) a standard laptop, 3) a WAGO fieldbus controller (ModBus 

750-881), 4) FESTO 3/2 way 24V miniature solenoid valves, 5) compressed air building supply 

(Supp. Fig 3.1) and 6) a PCR machine. Tygon tubing and western blot tips are used to interface 

the microfluidic chip and the solenoid valves. 

FloChIP is, in essence, a method consisting of the sequential introduction of different reagents into 

a custom-designed microfluidic chip. This sequence of reagents can be programmed with simple 

scripting commands which are, in turn, translated into sequences of solenoid valve actuations and 

releases. The concerted action of the solenoid valves, belonging to both the control layer and the 

flow layer of the chip, realizes in an automated fashion the required surface chemistry, 

immunoprecipitation and tagmentation reactions. On-chip temperature control is achieved by 

placing the microfluidic device on top of a PCR machine with flat heat-block and starting a pre-

programmed temperature sequence in sync with the MATLAB script. 

 

FloChIP operation 

 

A FloChIP experiment starts pre-loading the control lines with distilled water and activating all 

valves (at a pressure of 25-30 PSI for the control lines and 2.5-5 PSI for the flow valves). 

Subsequently, all the reagents required for the surface chemistry (i.e. biotin-BSA, neutravidin, 

PBS and biotin-protein A/G, antibodies), IP (chromatin), washes (low-salt, high-salt and LiCL 
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buffers), tagmentation (Tn5 buffer) and elution (SDS buffer), are loaded into pipette tips and 

inserted into the inlets of the microfluidic device. At this stage, all valves are closed and there is 

no possible cross-talk between any of the reagents above. Immediately after completing the 

insertion of the tips, the automated protocol is launched by running the respective script. The 

protocol entails, in sequential order, the following steps: 20 minutes of BSA-biotin (2mg/ml), 30 

seconds of PBS wash, 20 minutes of Neutravidin (1mg/ml), 30 seconds of PBS wash, 20 minutes 

of biotin-protein A/G (2mg/ml) and 30 seconds of PBS wash. Depending on whether direct or 

indirect ChIP is performed, immunoprecipitation is carried out in two different ways. (direct ChIP) 

or loading of the pre-incubated antibody/chromatin mix (indirect ChIP).  

For direct ChIP, following biotin-protein A/G, the antibody or antibodies of choice are loaded on 

chip for 20 minutes. Moreover, within direct ChIP, it is possible to operate the chip in two distinct 

multiplexing modes, either antibody multiplex, in which microvalves are actuated in such a way 

that every IP unit is functionalized with a different antibody, or sample multiplex, in which all IP 

units are functionalized with the same antibody. The antibodies used in this study were (Abcam 

antibodies: anti-H3k27ac ab4729, anti-H3k4me3 ab8580, anti-H3k4me1 ab8895, anti-H3k9me3 

ab8898, anti-H3k27me3 ab6147; Santa-cruz antibodies: anti-PU.1 sc-390405 and anti-MEF2a 

anti-MEF2A sc-17785). Following antibody loading and quick PBS wash, chromatin samples are 

loaded on chip by opening and closing the respective microvalves. These ON/OFF cycles, usually 

of 2 or 5 minutes, are performed in order to ensure that the chromatin spends enough time inside 

the micropillar array for the epitopes to be efficiently recognized by the corresponding antibody.   

For indirect ChIP, the antibody and chromatin are incubated for 2 or 4 hours in a PCR tube prior 

the loading on-chip. During the IP step, the antibody/chromatin mixes are loaded into the chip in 

separate IP units by utilizing the same ON/OFF cycles as mentioned above. 

Both for direct and indirect ChIP, the overall immunoprecipitation is performed at room 

temperature time spans between 30 and 60 minutes, depending on the amount of chromatin mix to 

be processed.  

Following immunoprecipitation, rapid salt washes are performed to eliminate non-specific 

binding: 5 minutes of low-salt buffer (20 mM Tris pH 8.0, 150 mM NaCl, 2mM EDTA, 1% 

TritonX-100, 0.1% SDS), 5 minutes of high-salt buffer (20 mM Tris pH 8.0, 500 mM NaCl, 2mM 

EDTA, 1% TritonX-100, 0.1% SDS) and 5 minutes of LiCl buffer (20 mM Tris pH 8.0, 250 mM 

LiCl, 2mM EDTA, 1% NP40, 1% Na-Deoxycholate).  
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Following washes, Tn5 buffer (10 mM Tris pH 8.0, 5 mM MgCl2) is slowly flown on-chip at 37°C 

for 45 minutes. This step ensures the complete tagmentation of the immunoprecipitated chromatin. 

Following Tn5 buffer and a 5-minutes low-salt wash to remove excess adapters, SDS buffer (10 

mM Tris pH 8.0, 200 mM NaCl, 1mM EDTA, 1% SDS) is loaded on-chip at 65°C for 10 minutes 

in order to elute the antibody-bound chromatin from the device. The eluate is independently 

collected from each IP lane into PCR tubes and decrosslinked at 65°C for 4 hours. Following 

decrosslinking, DNA is purified in Qiagen EB buffer using Qiagen MinElute purification kits. 

 

FloChIP operation for sequential ChIP 

 

For sequential ChIP, instead of eluting the chromatin in SDS buffer, elution is performed by 

saturating the antibody with a given elution peptide (ab1342 for H3k4me3, ab1782 for H3k27me3 

and ab24404 for H3k27ac, Abcam – Peptide elution buffer: 20μl of IP buffer, 2μg of an antibody-

specific peptide). This way, the eluted chromatin from a given IP lane can be directly re-

immunoprecipitated in the subsequent IP lane. Following elution, the chromatin is collection into 

a western-blot tip inserted in the specific chip outlet. Subsequently, by closing the microvalves 

connecting the first IP lane and the outlets while opening the ones connecting the outlet and the 

second IP lane, the chromatin is re-flown on-chip for the second immunoprecipitation. This second 

immunoprecipitation is also performed using ON/OFF cycles of 2 minutes each. The total time for 

the second ChIP is also between 30 and 60 minutes. Finally, after all the chromatin has been re-

flown on-chip, the salt washes are repeated and elution is achieved using the standard SDS buffer. 

 

3.4.3 ChIP-qPCR 
 

Following FloChIP, qPCR was used to evaluate IP efficiency prior to next generation sequencing. 

qPCR was performed on a StepOnePlus™ (primer sequences: H3k27ac_FW 

CCACCCTGCACTTACGATG, H3k27ac_RV TGAGCTCCCTGTCTCTCCTC, H3k4me3_FW 

CGGGGGCTGCCCAAAGTTTCA, H3k4me3_RV ATTGGGGAAATTGCAGAGCGAGC, 

H3k27me3_FW, H3k4me1_FW, H39me3_FW GTCCGGGTCTGACTGTCTTG, 

H3k27me3_RV, H3k4me1_RV, H39me3_RV ACTGCACTGGGTTCACGAAG). Each qPCR 

reaction was composed of 10μl Applied Biosystems™ PowerUp™ SYBR™ Green Master Mix, 
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0.8μl of a 10μM forward primer solution, 0.8μl of a 10μM reverse primer solution, 2μl of DNA 

and water to a final volume of 20μl. The cycling program was the following: 2 minutes at 50°C, 2 

minutes at 95°C and [5 seconds at 95°C, 20 seconds at 60°C]x60 cycles. Fold enrichment values 

were obtained as ratios between the percent of input of the expected positive and negative regions 

genomic regions. 

 

3.4.4 NGS Library preparation 
 

NGS library were prepared by mixing 20μl of purified DNA with 2.5μl of forward Nextera adapter, 

2.5μl of reverse Nextera adapter, 32.5μl of NebNext master mix, 0.5μl of 1x SYBR green and 

water to 65μl. First, 5 pre-amplification cycles are run as follows: 5 minutes at 72°C, 30 seconds 

at 98°C and [10 seconds at 98°C, 30 seconds at 63°C, 60 seconds at 72°C]x5 cycles. Subsequently, 

15μl out of the original 65μl are separated and amplified for 20 more cycles in order to estimate 

the optimal number of amplification cycles: 30 seconds at 98°C and [10 seconds at 98°C, 30 

seconds at 63°C, 60 seconds at 72°C]x20 cycles. Finally, the remaining 50μl were amplified for N 

cycles, where N is the rounded up Ct value determined in the previous reaction. 

DNA was size selected using AMPure XP beads in order to obtain a size distribution between 

150bp and 500bp. Concentrations were measure with Qubit (ThermoFisher), size distribution was 

profiled with Fragment analyzer (AATI) and libraries were sequenced on an Illumina NextSeq 

500. 

  

3.4.5 FloChIP reads mapping and processing 
 

Sequencing reads were mapped to the human (hg38 and hg19) and mouse (mm10) genomes using 

STAR (Dobin et al., 2013) with default parameters. Uniquely mapped reads were used to call peaks 

using HOMER command findPeaks.pl with the appropriate flag, i.e. –histone for histone marks 

and –factor for transcription factors. FRiP scores we calculated using HOMER’s command 

annotatePeaks.pl and divided the total number of reads that fall within peaks by the total number 

of mapped reads. Correlation plots were generated using annotatePeaks.pl on a common peak file, 

either Encode’s peak files or, alternatively, the overlapping set of peaks between Encode and 

FloChIP datasets. 
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3.4.6 Bivalency score calculation 
 

The bvScore is assigned to each promoter and is intended to take into account both the intersection 

between two ChIP-seq datasets as well as the agreement between the respective sequential-ChIP-

seq datasets. Accordingly, the bvScore can be expressed as the product of the co-occurrence score 

(cScore), which measures the relative coverage of the two ChIP-seq tracks, and the agreement 

score (aScore), which measures the relative coverage of the two sequential-ChIP-seq tracks. We 

define the cScore as (nmr4i+nmr27i)/(nmr4i-nmr27i), where nmr4i and nmr27i are the normalized 

number of mapped reads in promoter i for H3K4me3 and H3K27me3, respectively. The higher the 

value of the cScore for a promoter, the more similar is the occupancy of the two marks on that 

promoter. A positive cScore indicates prevalence of H3K4me3 while a negative cScore indicates 

prevalence of H3K27me3.  We define the aScore as the absolute value of 

(nmr4/27i+nmr27/4i)/(nmr4/27i-nmr27/4i), where nmr4/27i and nmr27/4i are the number of mapped reads 

in promoter i for the two sequential-ChIP-seq experiments. The higher the aScore of a promoter, 

the more similar is the coverage of the two sequential-ChIP-seq datasets on that promoter. Finally, 

the bivalency score is thus defined as bvScore=abs(cScore*aScore) or equivalently 

bvScore=log(abs(cScore*aScore)).  

Gene ontology analysis was performed using the online tool http://geneontology.org/page/go-

enrichment-analysis. 
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3.5 Supplementary Figures 
 

 
 

Supplementary Figure 3.1. FloChIP’s setup schematics. a) FloChIP’s processing phases in 
descending chronological order in the case of chromatin/antibody pre-incubation. b) 

Fluorescence micrographs showing the requirement for neutravidin and protein A/G in the 
correct formation of FloChIP’s totem. c) Top-view schematic of the medium-throughput 8-units 

FloChIP device, flow channels are in blue and control channels in red. d) Schematic of 
FloChIP’s electronic control system. e) Example of a COMSOL simulation used to optimise the 

device architecture. f) Microfluidic 64-outlets multiplexer for straightforward pressure 
distribution into FloChIP’s device. g) Microfluidic 16-outlets multiplexer. 
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Supplementary Figure 3.2. Amplification and enrichment of FloChIP on histone marks.  

a) Amplification cycle statistics for samples of decreasing cell number, from 1 million to 500 
cells. b).  Fold enrichment statistics for samples of decreasing cell number, from 1 million to 500 
cells. c) Mapping rate for samples of decreasing cell number, from 100’000 to 500 cells. d) FRiP 

score for samples of decreasing cell number, from 1 million to 500 cells. e) Normalized read 
density profiles around transcription start sites for H3k4me3, H3k27ac and H3k4me1. f) Fold 

enrichment statistics for histone mark samples, namely H3k4me3, H3k27ac, H3k27me3, 
H3k9me3 and H3k4me1. 

 
 

 
Supplementary Figure 3.3 FloChIP’s sequential IP results recapitulate previously published 

data. a) Signal tracks for individual and sequential IP libraries reported for the same loci 
originally shown in the seminal work of Mikkelsen and colleagues. b) Correlation results 

between FloChIP and the previously publishd Co-Chip data. 
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Supplementary Figure 3.4. Genome wide characterization FloChIP’s of TF data. a) Normalized 
read density profiles around transcription start sites for all sequenced libraries (in red the average 

profile). b) Correlation results between all pairs of sequenced libraries 
.
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4 Conclusions and outlook 
________________________________ 

 

4.1 Research rational 
 

Living organisms replicate, develop and function according to rules encoded in their own genome. 

These rules self-express in the form of gene regulatory networks, which consist of a vast amount 

of physical interactions between protein DNA and RNA. The sheer amount of these interactions, 

their diversity, their context-specificity, their microscale and transient nature constitute a major 

obstacle towards deciphering the underlying operational principles of the genome. The research 

community tackled this daunting challenge by continuously and rapidly developing new 

technologies to reverse-engineer the complexity of gene regulatory networks.  

 

The first wave of technological innovation addressed the task of efficiently and cost-effectively 

identifying the “nodes” of gene regulatory networks, i.e. listing the functional elements of the 

network such as proteins, DNA regulatory regions and RNA species. This approach culminated in 

a plethora of new tools, among which on of the most notable example is perhaps next generation 

sequencing (NGS). Introduced commercially in the mid-2000s, NGS allowed researchers to 

sequence DNA faster, cheaper and at a much larger scale than ever before. As an historical 

perspective, it is noteworthy to compare the duration and cost of the Human Genome Project 

(1990–2003, $3 billion) with today’s NGS-enabled standards (one day, <$5’000) to sequence a 

single human genome.  

 

With the establishment of next generation sequencing as the technological gold standard for DNA 

sequencing, the focus of technical development shifted towards finding efficient ways to 

characterize the interaction between DNA and the other constituents of gene regulatory networks, 

i.e. RNA and proteins. Several of the resulting technologies leveraged on the throughput offered 

by NGS and are for this reason referred to as “NGS-based”. These technologies focused on the 

isolation of molecular complexes containing genomic (or random) DNA, while relying on NGS 

for downstream sequencing, in order to obtain so-called genome-wide profiles. 
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As opposed to the first wave of technical developments, whose main achievements are now 

consolidated, privatized and commercially successful, the second stage of innovation is still in its 

infancy. For instance, the most adopted “first-wave” NGS solution is embodied by the Illumina 

sequencing instruments. They come in the form of workstations onto which sequencing cartridges 

are loaded and run. They are standardized, microfluidic-based, user-friendly and extremely high-

throughput. One the other hand, the most adopted solutions belonging to the new wave of advances 

come for the most part in the form by publicly-shared laboratory protocols. For instance, even if 

ChIP-seq has been instrumental for the community – from classifying functional of DNA elements 

(ENCODE Project Consortium, 2012) to elucidating the impact of genetic variation on gene 

regulation (Deplancke et al., 2016) – it remains a poorly standardized, manually intensive and low-

throughput approach.  

 

In this thesis work, I report development and optimization of two microfluidic tools, SMiLE-seq 

and FloChIP, which complements standard macroscale techniques for the characterization of 

protein/DNA interactions in vitro and in vivo, respectively. In both instances, research efforts were 

tailored towards offering superior alternatives to existing methods according distinct although 

equally important metrics: user-friendliness, automation, throughput and sensitivity. In other 

words, I aimed to develop technologies that follow a similar “innovation trajectory” as the one that 

led to next generation sequencing.  

 

I demonstrate the functionalities of the SMiLE-seq and FloChIP by first benchmarking them 

against publicly available data and secondly by providing examples of how their engineered 

microfluidic features render them superior alternatives to existing solutions. 

 

4.2 SMiLE-seq summary 
 
The initial motivation was that a large portion of the DNA-binding specificity of individual 

transcription factors was yet uncharacterized. Although established methods like protein binding 

microarrays (Berger et al., 2006) and HT-SELEX (Jolma et al., 2010) greatly expanded the list of 

known in vitro human TF-DNA specificity (Jolma et al., 2013), their difficulty in completing the 
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list left room for alternative or complementary solutions. We reasoned that the resistance of some 

factors towards in vitro characterization had to do with their inherent perhaps weak and/or transient 

DNA-binding modes. We therefore considered devising an alternative based on the MITOMI 

principle (Maerkl and Quake, 2007) which has been shown to be able to mechanically trap 

TF/DNA interactions with great sensitivity.  

 

By capitalizing on our knowledge of microfluidics and molecular biology, we combined features 

of both MITOMI and HT-SELEX in order to design a novel NGS-based experimental framework 

capable of characterizing the binding specificities of TFs over a wide affinity range and with 

minimum reagent/sample consumption. We first proved the feasibility of our approach be 

recapitulating the binding specificities of 58 previously characterized factors coming from 

different species (6 Drosophila, 12 mouse and 40 human) and TF families. Next, we showed that 

SMiLE-seq data holds accurate information on the DNA binding energy landscapes indicating that 

microfluidic-based washing of unspecifically-bound DNA leads to superior ligands enrichment. 

Finally, we proceeded to address the challenge of obtaining DNA-binding motifs for those factors 

that so far resisted characterization by both HT-SELEX and PBMs.  

 

The majority of these uncharacterized factors belong to the family of krüppel-associated box zinc-

finger proteins (KRAB-KZFPs), a large family of ~350 transcription factors. Although, the exact 

function of several KRAB-ZFPs is poorly understood, a great portion of this TF family is 

implicated in repressing transposable retroelements during embryonic development. Moreover, it 

is known that the DNA-binding of certain KRAB-zinc fingers is methylation-specific, e.g. ZFP57 

is known to selectively bind the methylated hexanucleotide TGCCGC. Therefore, in order to 

simultaneously increase the likelihood of deriving motifs and add another dimension to our study, 

we considered introducing in our assays methylated DNA libraries as well.  

 

Given the theoretically large number of assays planned (700, i.e. 350 with normal and methylated 

DNA), we first decided to test the efficiency of SMiLE-seq on a small sample test and later opted 

for the re-design of the original workflow towards a version with higher throughput and sensitivity. 

Briefly, we achieved higher through modifying the architecture of the previous SMiLE-seq device 

and the sequence of the input DNA libraries. As opposed to 8 factors per experiment and one 
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library per sequencing run, the new system could host 32 parallel assays per chip while allowing 

a theoretical multiplexing ability of hundreds of libraries per sequencing run. To put this in 

perspective, considering that the average waiting time for sequencing SMiLE-seq libraries is ~1 

week, the original SMiLE-seq would have processed the 700 KRAB-ZFPs assays in more than 1.5 

years. On the other hand, the new SMiLE-seq version (SMiLE-seq v2.0) eliminates the sequencing 

waiting time as an experimental bottleneck. Instead, the assay delay becomes solely dependent on 

the throughput of microfluidic device. Considering an experiment per day, the new 32-factor 

SMiLE-seq device can potentially complete the 700 assays in 22 days.  

 

With SMiLE-seq 2.0 we performed 202 assay – i.e. 101 factors for both methylated and non-

methylated DNA – and retrieved motifs for 43 KRAB-ZFPs. These motifs closely match the motifs 

obtained by analysing recently published ChIP-exo data of the same factors. By integrating ChIP-

exo and SMiLE-seq with in silico predictions we demonstrate that the major limitation of existing 

tools is the ability to discern which zinc fingers contribute to DNA binding in a given zinc finger 

array. Moreover, for all tested KRAB-ZFPs, we propose the subset of zinc fingers that actually 

determines the DNA binding specificity of the factor. Further experimental work is needed to 

validate our results.  

4.3 FloChIP summary 
 

For FloChIP, the scope of the project was to explore ways to address the major ChIP-seq 

limitations with one comprehensive solution. After years of development, FloChIP now provides 

rapid, high-throughput, automated and sensitive chromatin immunoprecipitation. 

This was achieved by developing in parallel two aspects that together confer FloChIP its 

functionalities: its surface chemistry and its microfluidic architecture. The former enables solid-

state bead-less IP with any off-the-shelf antibodies, while the latter provides the structural substrate 

for miniaturized IP, rapid washing, multiplexing and straightforward automation. 

 

Beyond IP, another important feature of FloChIP is the direct on-chip tagmentation of captured 

chromatin which reduces time, cost and input requirements of ChIP experiments.  
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In order to demonstrate its reliability and applicability, we performed FloChIP for a number of 

targets and samples. Initially, we obtained high H3k27ac qPCR fold enrichment and high 

correlation with the respective ENCODE data for inputs ranging between 106 and 500 cells, thus 

demonstrating that FloChIP can be used across a wide range of inputs.  

 

Next, we performed FloChIP for four more histone marks – i.e. H3k27me3, H3k4me3, H3k4me1 

and H3k9me3. Despite the much lower input used for FloChIP, we demonstrate high correlation 

with ENCODE data and high FRiP scores, which proves the robustness and efficiency of the 

technology.  

 

Subsequently, by connecting the IP lanes in a pair-wise fashion, we show the feasibility of 

sequential ChIP-seq on-chip. We validated FloChIP’s sequential IP by recapitulating previously 

published qPCR and sequencing data on bivalent promoters in mouse embryonic stem cells. Our 

positive results demonstrate the feasibility of a very fast (6 hours) and sensitive (100’000 cells) 

sequential ChIP-seq. Finally, we sought to simultaneously demonstrate FloChIP’s applicability on 

TFs and throughput by ChIPping MEF-2A from 32 different lymphoblastoid cell lines.  

 

Overall, we expect that both SMiLE-seq and FloChIP will contribute to the characterization and 

understanding of protein/DNA interactions in the context of gene regulatory networks.  

4.4 Outlook 
 

During a long and intense explorative journey such as four years of hands-on and heads-down 

research, it is easy to get lost in the details of a project and lose track of the so-called “big picture”.  

When it’s finally the time to stop experiments, it becomes an interesting mental exercise to ask: 

what’s next? What follows is my personal view on different aspects of the near and not so-near 

future of biological research. 

 

4.4.1 SMiLE-seq and the specificity of transcription factors 
 

In the immediate future, it is straightforward to imagine that the SMiLE-seq, together with HT-

SELEX and PBM will be employed to obtain the DNA-binding specificities of the remaining ~500 
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human transcription factors. Depending on the research interest, dedicated funding and adoption 

of the respective technologies, it is likely that the TF/DNA specificity cataloguing will be extended 

to other species as well, e.g. mouse, Drosophila, C. elegans, the zebrafish and possibly other exotic 

species.  

Once the DNA-binding specificities of most individual TFs are known, the climb uphill will only 

have started. I believe the main following challenges will be: 

understand how the formation of TF/protein complexes, i.e. co-factor binding, 

dimerization, trimerization etc. – will induces changes in the binding specific of individual 

TFs. A number of groups already reported indications which support the ‘variable 

specificity’ of TF-complexes (Slattery et al., 2011, Jolma et al., 2015) but the systematic 

examination of all possible dimers has not been conducted yet. Moreover, higher order 

oligomers haven’t been tested yet because the shear number of possible combinations 

surpasses by far the capabilities of existing techniques. 

characterize the affinity landscapes for all TFs. Specificity is only one side of the coin and 

the quantification of the affinity of each TF to its target DNA sequences (and variants 

therein) will be equally important to characterize. This thorough biophysical 

characterization will be extremely important towards the accurate mathematical modeling 

of regulatory networks, their rewiring and their de novo engineering. In order to achieve 

this, one could envision large-scale systematic MITOMI-like assays. Unfortunately, the 

current state of MITOMI and other techniques does not allow yet to perform such large-

scale studies in reasonable times/costs. 

design structural and computational tools the accurately model TF/DNA interactions. As 

data keeps being accumulated, a foreseeable consequence is the development of ever more 

accurate models that generalize well the specificity and affinity of TFs to DNA. These 

models will again be instrumental in the process of digitizing biology. 

 

4.4.2 FloChIP and experimental biology 
 

As mentioned before, FloChIP constitutes an attempt to integrate on a single microfluidic chip 

several steps of the long and tedious ChIP-seq technique. This miniaturization came with intrinsic 

advantages such as ease of automation, sensitivity and speed. I believe these qualities will translate 
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into wide adoption of FloChIP and, with it, wider adoption of ChIP-seq in general. In the post-

genomic era, this will be crucial towards understanding the mechanisms of how genetic variants 

and environmental factors affect chromatin state and gene expression. Nevertheless, FloChIP’s 

development is only just beginning. The ultimate goal is to minimize manual operation and 

maximize reproducibility. For example, FloChIP still requires chromatin that has been prepared 

manually, this introducing variability inter-experiment and inter-operator variability. FloChIP 

therefore still needs to be developed further in order to become a complete solution. Nevertheless, 

my experience with FloChIP so far proved me that it is possible to take an established multi-step 

experimental protocol, miniaturize it and thus obtaining a series of advantages over the current 

solution. In light of this I wonder: how many existing laboratory protocols exist that suffer from 

the same drawback/limitations as ChIP-seq that have not been innovated yet? From relatively new 

methods like RNA-seq to old-school protocols such DNA purification and PCR. Surprisingly, 

several examples can be found in the literature of microfluidic implementations of the above 

mentioned techniques. However, very few of them has been widely adopted. As a result, most 

common lab practices remain manual, slow and low-throughput. The biggest challenge for the 

future is then to understand the underlying reasons of the resistance of experimental biology to 

widespread automation and miniaturization, address them and move small but steady steps towards 

complete miniaturization and automation of experiments. Before digitizing biology, we need to 

digitizing experimental biology. 
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