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Abstract

The specific interaction between DNA and proteins constitutes one of the crucial elements in the
regulation of gene expression. This thesis focuses on the development and optimization of two
microfluidic-based technologies called SMiLE-seq and FloChIP that enable the sensitive and high-
throughput analysis of two important aspects of protein/DNA interactions: respectively, 1) the
transcription factor DNA-binding specificities and 2) the genome-wide distribution of chromatin-

associated proteins.

In Chapter 1, we describe the core motivation, operating principles, optimization and results
obtained with SMiLE-seq. As opposed to existing solutions, SMiLE-seq offers the possibility to
screen a large library of randomized DNA for sequence-specific protein ligands in a miniaturized
context. SMiLE-seq integrates in a single microfluidic chip the advantages of both HT-SELEX —
i.e. large DNA library screens coupled to high-throughput sequencing — and MITOMI - i.e.
microfluidic trapping of DNA/protein complexes. We first demonstrate as proof-of-principle that
SMiLE-seq successfully recapitulates with robustness and reproducibility the binding specificities
of known factors belonging to different species and TF families. Moreover, we show that SMiLE-
seq reflects the energy binding landscapes of TFs with high accuracy. Subsequently, we target the
numerous although largely uncharacterized family of TFs called KRAB-ZFPs. We initially set
out to redesign the microfluidic and protocol architecture in order to attain maximal throughput
and sensitivity. Next, we add the ability of probing the sensitivity of these factors to methylation
by synthesizing randomized methylated DNA libraries. Finally, we proceed to test 101 KRAB-
ZFPs with both methylated and non-methylated DNA. We obtained high confidence motifs for 43
factors, of which 22 we not sensitive to methylation, 10 yielded motifs only with methylated DNA
and 10 only with non-methylated DNA. By integrating our SMiLE-seq data with published ChIP-
exo data and in silico predictions, we develop a framework for systematically identifying which

zinc fingers directly contribute to DNA binding for a given KRAB-ZFPs.



In Chapter 2, we describe the development and results obtained with FloChIP, a microfluidic
implementation of the widespread ChIP-seq and sequential ChIP-seq protocols. FloChIP
encompasses three main technological advances: 1) the multi-layered serface chemistry that allows
any off-the-shelf antibody to be immobilized on-chip and and 2) a micropillar architecture that
provides high surface-to-volume ratio and efficient removal of non-specific DNA. 3) The direct
on-chip tagmentation of immunoprecipitated DNA. We validate our approach by first performing
H3k27ac ChIP-seq on different number of sample inputs, i.e. from 500 to 10° cells. We show that
although FloChIP provides good results with as low as 500 cells, the best trade-off between low-
input and data quality is reached at 100’000 cells. Therefore, we proceed to prove the flexibility
of our approach by performing ChIP-seq on different histone marks — namely H3k27ac,
H3k27me3, H3k4me3, H3k4mel and H3k9me3 — and comparing them to existing ENCODE data.
Both region-specific profiles and enrichment scores show high similarity with publicly available
data. Subsequently, we set out to demonstrate the feasibility of on-chip sequential-ChIP-seq by
performing consecutive H3k4me3 and H3k27me3 IP on chromatin derived from mouse embryonic
stem cells. Our data faithfully recapitulates previously studies and show enrichment of bivalent
4me3/27me3 in promoters associated to embryonic development. Finally, we illustrate the high-
throughput feature of our technology by performing MEF2A-ChIP-seq on chromatin derived from
32 different lymphoblastoid cell lines.

Keywords: transcription factor, DNA binding specificity, ChIP-seq, sequential ChIP-seq,

microfluidics.



Sommario

L’interazione tra DNA e proteine costituisce uno degli elementi principali nella regolazione
dell’espressione genica. Questa tesi si concentra sullo sviluppo e ottimizzatione di due tecnologie
a base di microfluidi, chiamate SMiLE-seq e FloChIP, che permettono in maniera efficiente e high-
throughput di analizzare due aspetti importanti delle interazioni DNA/proteina: rispettivamente,
1) la specificita dei fattori di trascrizione e 2) la distribuzione genome-wide di protein associate

alla cromatina.

Nel Capitolo 1 descriviamo la motivazione, i principi operativi, I'ottimizzazione e risultati ottenuti
con SMiLE-seq. Contrariamente a soluzioni pre-esistenti, SMiLE-seq offre la possibilita di fare
uno screening su una vasta libraria di DNA randomizzato in un contesto miniaturizzato. SMiLE-
seq presenta in un solo chip i vantaggi di HT-SELEX - i.e. DNA screening su large scale in
combinazione con sequenziamento high-throughout - ¢ MITOMI - i.e. la cattura di complessi
proteina/DNA a livello microfluidico. Inizialmente dimostriamo che SMiLE-seq riproduce
fedelmente la specificita di legame di fattori conosciuti e appartenenti a diverse speci e famiglie di
TFs. Inoltre, SMiLE-seq riflette 1'energia di legame con grande accuratezza. Successivamente,
prendiamo in considerazione la numerosa seppur poco studiata famiglia di TFs conosciuta come
KRAB-ZFPs. Inizialmente, ci dedichiamo a riprogettare il sistema a microfluidic e il protocollo
sperimentale al fine di ottenere massimo throughput e sensibilita. In secondo luogo, aggiungiamo
la capacita di sondare la sensibilita di questi fattori alla metilazione tramite la sintesi di librerie di
DNA metilate e randomizzate. Infine, procediamo a testare 101 KRAB-ZFPs sia con DNA
metilato sia non-metilato. Otteniamo cosi binding motifs per 43 fattori: di questi 22 non presentano
sensibilita a metilazione, 10 presentano motifs solo con DNA metilato e 11 solo con DNA non-
metilato. Tramite l'integrazioni dei dati ottenuti con SMiLE-seq con dati ChIP-exo pubblici e
simulazioni in silico, sviluppiamo un framework per identificare in maniere sistematica quali sono

gli zinc fingers che contribuiscono direttamente al legame di DNA.

Nel Capitolo 2, descriviamo lo sviluppo e i risulati ottenuti con FloChIP, un'implementazione

microfluidica dei diffusi protocolli di ChIP-seq e sequential ChIP-seq. FloChIP include tre



principali progressi tecnologici: 1) una surface chemistry multi-strato che permette a qualsisi
anticorpo disponibile commercialmente di essere immobilizzato on-chip, 2) una architettura a
microcolonne che offre un alto rapporto area/volume e una efficiente rimozione di DNA non
specifico e 3) la tagmentazione on-chip del DNA immunoprecipitato. Validiamo il nostro
approccio tramite H3k27ac ChIP-seq su un diverso numero di input cellular, da 500 a 10° cellule.
Dimostriamo cosi che sebbene con FloChIP si ottengano buoni risulati con solo 500 cellule, il
migliore trade-off tra low-input e qualita dei dati si ottiene con un input di 100'000 cellule. Quindi,
procediamo ad illustrare la flessibilita della nostra tecnica eseguendo ChIP-seq su diversi tipi di
histone marks - nel dettaglio H3k27ac, H3k27Sme3, H3k4me3, H3k4mel and H3k9me3 - e
paragonando i dati cosi ottenuti ai dati ENCODE. Sia i profili di specifiche regioni genomiche che
le enrichment scores esibiscono grande similaritd con i dati pubblici. Successivamente, ci
proponiamo di dimostrare sequential-ChIP-seq on-chip eseguendo H3k4me3 e H3k27me3 IP in
maniere consecutiva su cromatina ottenuta da cellule embrionali di topo. I nostri data riproducono
fedelmente studi precedenti e presentano enrichment di 4me3/27me3 in promotori associati allo
sviluppo embrionale. In fine, mostriamo le capacita high-throughput della nostra tecnologia

eseguendo MEF2A-ChIP-seq su cromatina ottenuta da 32 linee cellulari di linfoblastoidi differenti.

Parole chiave: fattori di trascrizione, specificita di legame DNA, ChIP-seq, sequential ChIP-seq,

microfluidica.
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Chapter 1: Introduction

1.1 The relevance of Protein/DNA interactions

First introduced by Francis Crick (Crick, 1970), the central dogma of molecular biology states that
“DNA is transcribed into RNA and RNA is translated into protein” (Fig. 1.1). Despite its
simplicity, the central dogma of molecular biology provides a simple yet powerful framework to

understand how information is encoded in biological systems:

- It introduces the three fundamental classes of biopolymers, i.e. DNA, RNA and proteins.
- It highlights the direction for the biological flow of information, i.e. DNA — RNA — Protein.
- It provides the terms used for describing the conversion of one species into the next, i.e.

transcription (DNA — RNA) and translation (RNA — Protein).

DNA replication
DNA—DNA

- PN AT A
URATUN
/ ";)f!,‘f U

Transcription
DNA —RNA

~ LU

Translation
RNA —Protein
@@ @00

Adenine (A)
s Thymine (T)
s Cytosine (C)

¢ Uracil (U)

@ ~ninoacia

Figure 1.1: The flow of information between DNA, RNA and protein. Image credit: Genome
Research Limited
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Although true and experimentally validated, the central dogma somehow fails to deliver the sense
of enormous complexity and diversity that biological systems have evolved throughout the years.
In humans, for instance, a single zygote grows into ~37 trillion cells (Bianconi et al., 2013), all
different (to some extent) from each other but all containing the exact same DNA makeup, i.e. the
same genome. Therefore, it is clear that the genome not only encodes information on what proteins
to express but also information on when and where to express those proteins. Surprisingly, only
1.5% of the human genome codes for proteins while more than 80% has been assigned a regulatory
function (ENCODE Project Consortium, 2012). Thus, the majority of the genome is dedicated to
integrating external information in order to efficiently regulate the expression of its smaller
protein-coding portion. This external information, in turn, is relayed to the genome by some of the
same protein species that are encoded in it by means of physical protein/DNA interactions (Fig.
1.2). Protein/DNA interactions constitute a major component of a much vaster collection of
molecular interactions - the gene regulatory network - which collectively govern and orchestrate

the expression of proteins in cells.

Figure 1.2: Molecular reconstruction of the lambda repressor helix-turn-helix transcription
factor bound to its DNA target. Image credit: Wikipedia
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From this observations, a more complex picture is drawn than the one outlined initially by the
central dogma. In this picture, the link between proteins and DNA is not unidirectional but
bidirectional in the sense that proteins themselves interact with DNA to regulate its transcription.
Moreover, the human genome is made up of 3 billion “letters” (or base pairs) and there are between
1’200 and 1°300 estimated sequence-specific DNA-binding proteins, also called transcription
factors (Vaquerizas et al.,, 2009). Given the absence of an accurate prediction model for
protein/DNA interaction, the only way to study the complexity of this enormous network is to

probe its interactions experimentally.
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1.2 Techniques to study of Protein/DNA interactions

Historically, protein/DNA interactions have been experimentally probed mainly in two contexts:

in vitro and in vivo.

1.2.1 In vitro techniques

In vitro techniques aim to probe the interaction between protein and DNA in isolation from their
natural context, in order to exclude possible confounding factors due to unexpected interactions.
The main goal of in vitro methods is to derive the sequence specificity and affinity of transcription
factors (TFs).

Several in vitro solutions have been proposed over the years; of these, the most successful
examples are: protein binding microarrays (PBM) (Berger et al., 2006) and high-throughput
systematic evolution of ligands by exponential enrichment (HT-SELEX) (Jolma et al., 2010).

In PBM (Fig. 1.3), a double-stranded DNA library - either genomic (Mukherjee et al., 2004) or
synthetic (Berger et al., 2006) - is immobilized on a microarray substrate and exposed to a TF of
interest. After binding occurs, the unbound protein is washed away while the specifically bound
TF remains attached to its corresponding DNA strand in a specific position of the microarray. A
fluorescent antibody targeting the TF or its tag is later used to determine the position and hence,
the sequence of the TF-bound DNA. PBMs have been extensively proven their efficiency and
robustness in determining the DNA binding motifs of several mammalian TFs (Berger et al., 2008).
The major drawback of PBMs lies the limited DNA sequence combination which they can test,
which is ultimately constrained by the size of the microarray. As a matter of fact, the current upper

limit is the space of all possible 12-mers of DNA.

20



> — — —
——
b — — >

I
ﬂ l] Double-strand a single-
stranded DNA microarray
by primer extension

NN

i
!

Hybridize a GST-tagged
TF on the microarray

1 Detect binding events by
using a fluorophore-labeled
anti-GST antibody

Data analysis

Figure 1.3: Workflow of protein binding microarrays. Copyright 2011 Springer.
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On the other hand, in HT-SELEX (Fig. 1.4), it is the protein of interest which is immobilized
inside the well of a 96-well plate (Jolma et al., 2010). As opposed to PBMs, HT-SELEX provides
a much larger coverage of the DNA combinatorial space (x10° higher). The main differentiator for
HT-SELEX is the fact that the DNA sequences are not immobilized on a solid support and can
instead be freely floating in solution. This allows DNA randomers to be much longer as compared
to PBMs, which translates into a much larger DNA search space. After exposing the TF with the
random DNA library, the specifically bound DNA is collected, amplified and re-fed once more to
the TF in order to achieve exponential enrichment of specific DNA binders. After usually three or
four rounds of selection, the collected DNA is sequence by next generation sequencing (NGS) and
the binding motifs are computationally derived. Another distinctive factor of HT-SELEX is the
ability to multiplex different TFs in the same experiment. This is achieved thanks to molecular
barcodes included in the synthetic DNA libraries. Given its advantages, HT-SELEX has become
the most prolific in vitro technique for the derivation of TF binding specificities (Jolma et al.,
2013), providing insights in the DN A-dependent formation of heterodimers (Jolma et al., 2015) as
well as the impact of methylation on DNA binding (Yin et al., 2017).
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Figure 1.4: Overview of HT-SELEX selection process. Copyright 2010, Cold Spring Harbor
Lab Press.

1.2.2 In vivo techniques

In vivo techniques probe the interaction between protein and DNA in their natural context, which
comes with advantages and disadvantages. The main advantage is that not only can in vivo methods
derive the binding preferences of the proteins under study, but they can also provide snapshots of
their genome-wide distribution at a given time. The main disadvantage is the fact that, in their
natural context, the DNA binding properties of a protein can be confounded by a myriad of other
possible interactions.

Currently, the most widely adopted technique for in vivo protein/DNA interaction studies is

chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq).

ChIP-seq (Fig. 1.5) consists of several steps. Initially, cells are treated with a crosslinking agent,
thereby effectively “freezing” all protein/DNA interactions. Subsequently, the genomic material
is fragmented either by sonication or enzymatic digestion until all fragments are at a size
compatible with subsequent DNA sequencing (i.e. around 150-200bp). Next, the fragmented
chromatin is mixed with solutions containing antibody-bound microbeads: the antibody binds
tightly to its target protein, whereas the microbeads are used in the separation procedure. Once

antibody/protein/DNA complexes are formed, the microbeads are extracted from the solution
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(usually by means of a dedicated magnet) washed and the DNA is finally eluted by high
temperature and high salt buffers. Subsequently, the collected DNA is sequenced by NGS and the
corresponding data is analyzed to study the genome-wide DNA-binding properties of the protein.
Introduced in 2007 (Johnson et al. 2007), ChIP-seq has become an instrumental tool in identifying
the functional elements of the human and other genomes (Landt et al., 2012). However, it remains
a manually intensive, slow (>3 days) and low-throughput method and only a small number of

protein targets can be probed at a time.
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Figure 1.5: Overview of the steps and reagents required for ChIP-seq.
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1.3 The potential for microfluidics applied to biology

All the techniques presented above are macroscale implementations, designed by humans for
human’s execution. However, the fundamental processes of biology happen at a very different
scale, the microscale. Moreover, as also mentioned above, the complexity of the protein/DNA
interaction network is such that the shear number of interactions to probe requires fast, automated
and high-throughput methods. These important missing aspects, miniaturization, automation and

throughput, are the key advantages offered by microfluidics.

1.3.1 What are microfluidic systems?

Microfluidics is both a science and a technology. The science addresses the study of fluids
dynamics through micro-channels and micro-structures. The technology addresses with the
fabrication of miniaturized devices inside of which fluids can be constrained. In general,
microfluidics deals with very minute amount of fluids, from microliters to femtoliters. At these

scales, fluids behave in different way and a plethora of useful properties originate because of this.

1.3.2 The advantages of microfluidics and their application to protein/DNA
interactions.

Given their microscopic nature, microfluidic devices offer a series of advantages over traditional
macroscale techniques. First of all, the very small size translates into reducing costs of reagents.
Furthermore, the small size enables the development of highly integrated and sensitive tools
capable of isolating and analyzing small quantities of precious samples. Examples of areas of
molecular biology in which microfluidic chips have found successful include:

- single cell handling and analysis (Macosko et al., 2015, Fig. 1.6a)

- microfluidic flow cytometers and cell sorters (Nitta et al., 2018, Fig. 1.6b)

- single cell culturing chambers (Lecault et al., 2011, Fig. 1.6¢)
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Figure 1.6: Examples of microfluidic applications to biology. a) Single cell handling and
encapsulation. Copyright 2015, Cell Press. b) Single cell sorting. Copyright 2018, Cell Press. ¢)
Single cell culturing. Copyright 2011, Nature Publishing group.

Nevertheless, the most relevant devices for the work in this thesis are the ones applied to the study
of protein/DNA interactions. As per standard molecular biology techniques, also these devices can
be subdivided in two categories, in vitro and in vivo, for which the two most notable examples are

MITOMI (Maerkl and Quake, 2007) and MOWChIP-seq (Cao et al. 2015), respectively.

MITOMI (Fig. 1.7) stands for Mechanically Induced Trapping of Molecular Interactions. It is an
approach that exploits high-throughput microfluidics in order to achieve sensitive measurement of
the biophysical affinity between TFs and DNA. So far, MITOMI was used to study the binding
energy profiles of a numerous TFs from a diverse set of organisms such as human, yeast, and E.

coli both in monomeric and heterodimeric form (Maerkl and Quake, 2007; Isakova et al., 2016).
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Figure 1.7: Schematic workflow of the MITOMI principle. Copyright 2012 Springer.

The key advantage of MITOMI is the speed at which the assay is conducted, thereby allowing to
obtain a snapshot of the equilibrium state of the TF/DNA interaction and keeping the complexes
intact. Other desirable advantages are the ability to purify proteins directly on-chip, low reagent
consumption and small device footprint. However, one key disadvantage of this method is the
requirement for know a priori the DNA-binding specificity of TF under study. This precludes the
possibility of performing MITOMI on large number of TFs for which binding motifs have not been
derived yet. In the previous section, it was mentioned that the efficient derivation of the DNA-
binding specificity of TFs was a successful application of HT-SELEX. It is therefore intriguing to
wonder if it would be possible borrow lessons learned from HT-SELEX and MITOMI and to
devise a microfluidic solution that can be used to study the DNA-binding specificity of TFs in a
sensitive and miniaturized manner. The design, implementation and optimization of such a device

alongside with the results obtained with it are the main subject of Chapter 2.

MOWChIP-seq (Fig. 1.8) stands for microfluidic oscillatory washing—based ChIP-seq. It is an
approach in which immunoprecipitation is carried out by a closely packed column of magnetic
beads coated with an antibody of choice and localized within the walls of a microfluidic chamber.
The chromatin sample is introduced into the microfluidic chip and flown through the small space
in between the microbeads. Washing to remove unbound chromatin is then carried out in an

oscillatory manner and with the help of a magnet in order to keep the microbeads on chip.
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Figure 1.8: Schematic sequence of steps for MOWChIP-seq.
Copyright 2015 Nature Publishing Group.

The main advantages of MOWCHIP-seq are the short experimental time-frame (45 minutes versus
the 4 hours for manual ChIP-seq) and its sensitivity (chromatin landscapes can be obtained for as
low as 100 cells versus the minimum 1 million cells of manual ChIP-seq). The main drawback of
MOWCHIP-seq is that it can address only one protein species at a time, hence it suffers from being
as low-throughput as manual ChIP-seq. In Chapter 3, I describe a novel microfluidic solution that
not only is sensitive and fast, but it also performs in a high-throughput, parallel and automated

way.
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1.4 KRAB zinc finger proteins

One of the main focuses of this thesis is to apply microfluidics to the study of DNA-binding

specificities of a large transcription factor family called the Kriippel-associated box domain zinc

finger proteins (KRAB-ZFPs). In humans there are some 350 KRAB-ZFPs (Fig. 1.9) and their

function has been mainly associated with repressing the activity of transposable retroelements

during embryonic development (Ecco et al., 2017, Imbeault et al., 2017).

1,200
1,000
800
600
400
200

Coelacanth Opossum
|

b

Human

KZFP genes and
pseudogenes

T

(=]

Marsupials

Figure 1.9: KRAB-ZFP count in different species genomes.
Copyright 2017 Nature Publishing Group.
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KRAB-ZFPs are characterized by two domains with distinct function: an N-terminal KRAB

domain, which mediates the factor repressive activity, and a C-terminal array of C2H2 zinc fingers

that confer their DNA binding ability (Fig. 1.10).
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Figure 1.10: KRAB-ZFP structure and domains.
Copyright 2017 The Company of Biologists.
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Human KRAB-ZFPs have between 2 and 40 fingers per factor and, even if the DNA-binding
properties of individual zinc fingers is fairly well understood (Najafabadi et al., 2015, Persikov et
al., 2014), the a priori prediction of the DNA specificity of entire zinc finger arrays remains a
challenge. C2H2 zinc fingers are normally arranged in two -barrels and one a-helix conformation

coordinated by a zinc ion (Fig. 1.11)

Figure 1.11: C2H2 zinc fingers structure.

The main determinant of the of the DNA-binding specificity of each zinc finger are the side chains
of the amino-acids located at positions -1,2,3 and 6 with respect to the beginning of the a-helix
motif. Conventionally, it has been thought that each zinc finger follows a one-finger-three-base
rule, where each finger recognizes a specific set of three DNA base pairs. However, recent
structural information (Patel et al., 2018) and comparison between predicted and ChIP-seq-based
DNA binding motifs (Chapter 2) reveals widespread deviation of zinc finger arrays from this rule.
In particular, Patel and colleagues demonstrate by structural analysis that the 11 zinc fingers of the
mouse Zfp568 interact with DNA by contacting 2, 3 or 4 bases per finger. Moreover, they also
demonstrate that not all zinc fingers of the array engage in DNA binding, which is consistent with
other observations suggesting that zinc fingers not directly involved in DNA binding could be

implicated in other types of interactions, e.g. with RNA or proteins (Ecco et al., 2017).
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Figure 1.12: DNA interactions schematic of the zinc finger array of the mouse Zfp568.
Copyright 2018 Cell Press.
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To further complicate the picture, it has been reported that certain KRAB-ZFPs such as ZFP57
exclusively bind methylated DNA (Quenneville et al., 2011). Taken together, these observations
seem to suggest that the DNA binding specificity of KRAB-ZFPs is influenced by several factors
beyond the mere DNA sequence and individual zinc finger specificity. These factors may include
DNA methylation, 3D-arrangements of the zinc finger array and protein-protein or RNA-protein
interactions (Ecco et al., 2017). In order to begin to disentangle the complexity of the DNA-binding
mechanisms KRAB-ZFPs, we apply our in-house microfluidic solutions to understand which
factors are capable of in vitro DNA binding, i.e. in isolation from co-factors, and which of these

factors are sensitive to the methylation state of their DNA substrate.
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Chapter 2. SMiLE-seq

Smile-seq and Smile-seq v2.0: the next generation of tools to study

the binding specificities of transcription factors

Alina Isakova', Riccardo Dainese', Evgeniia Pankevich', Bart Deplanckel

Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

31






2.1 Introduction

The DNA-binding specificities of transcription factors are an essential aspect in the regulatory
dynamics of gene networks. Collective efforts aimed at extensively cataloguing these specifies
have resulted in several online databases, e.g. TRANSFAC (Matys et al., 2006), HOCOMOCO
(Kulakovskiy et al., 2016), or UniPROBE (Mathelier et al., 2014), which collectively account for
601 human transcription factor binding motifs. Nevertheless, as also mentioned in the introduction,
it has been estimated that mammals express between 1’300 and 2°000 TFs (Vaquerizas et al.,
2009), which suggests further experimental efforts have to be conducted in order to complete the
specificity catalog. Of this missing data, a large portion belongs to transcription factors
characterized by C2H2 zinc-finger-mediated DNA binding (Deplancke et al., 2016). There is a
number of speculated reasons as to why these TFs have so far resisted experimental
characterization, e.g. incomplete TF expression context, the need for co-factors and possibly the
simple fact that existing technologies are not sensitive enough to detect certain types of TF/DNA
interactions. Therefore, in order to obtain a deeper understanding of our genome architecture, it is
important to devise alternative methods that can independently and quantitatively provide DNA-
binding information.

In this chapter, I present two developmental stages of a microfluidic technology, SMiLE-seq
(selective microfluidics-based ligand enrichment followed by sequencing), that allows for the
sensitive and robust derivation of DNA-binding specificities of human transcription factors.
SMiLE-seq combines the advantages of both MITOMI and HT-SELEX in order to screen a large
library of random DNA with the added benefits of performing assay in a microfluidic context, i.e.
low sample requirement, low reagent consumption and fast reactions. In the first developmental
stage, [ followed the guidance of a senior PhD and later postdoc, Alina Isakova, who has conceived
the original experimental pipeline and obtained several SMiLE-seq results. We show that we
successfully benchmark SMiLE-seq on several monomers belonging to distinct structural families
and species. Moreover, we show that the distribution of k-mers in SMiLE-seq libraries correlates
positively with MITOMI derived binding energy landscapes. This first stage is the subject of a
first landmark paper, which encompasses all of Alina’s major findings (Isakova et al, 2017).

Subsequently, I show that in order to tackle the most numerous and largely unexplored TF family,
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the Kriippel-associated box (KRAB)-containing C2H2 zinc-finger proteins (ZFPs), I set out to
further develop our technology. As a result, SMiLE-seq v2.0 is a high-throughput, unbiased and
highly multiplexable implementation which we use to obtain the largest catalogue of in vitro-

derived KRAB ZFPs motifs to date and gain insights in their DNA binding properties.
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2.2 SMiLE-seq

2.2.1 The SMILE-seq device and its operation

As mentioned above SMiLE-seq combines features of both MITOMI and HT-SELEX. MITOMI
provides a great framework for the expression and immune-based capture of tagged transcription
factors. In particular, as opposed to other methods requiring protein expression, MITOMI does not
require protein purification prior the actual experiment. The reason for this is that in the majority
of cases the required protein is obtained through bacterial- or yeast-based expression, which which
require the extra step of protein purification before the following assays. On the other hand,
MITOMI adopts a different route and makes use of the so-called “cell-free” in vitro expression
systems. As the name suggests, these are commercially available cellular lysates that can express
the required protein by simple mixing and incubation with the appropriate plasmid. Despite their
ease of use and very short turnaround time, these systems are very expensive and, for instance,
bacterial-based expression is often a more cost-effective choice for obtaining large amounts of
protein. However, being a microfluidic technology, MITOMI does require only minute amounts
of protein, which, in turn can be expressed by very small fractions of the in vitro expression system,
thereby amply justifying and encouraging their use.

Another notable feature of MITOMI is the way transcription factors are immobilized on-chip.
Indeed, in MITOMI the clever integration between multilayer microfluidics and surface chemistry
provides a way to controllably pull-down the TFs in very confined regions called MITOMI
buttons. The MITOMI buttons are circular areas of the microfluidic chip with a diameter of
~250pum in which the ceiling of the microchannel can be made to collapse by applying pressure on
channels above (hence called “control channels”), therefore closing like a button and trapping the
molecular species beneath it. By selectively and consecutively flowing under the MITOMI button
biotinyalted-BSA, neutravidin and a biotinylated-anti-GFP antibody, while closing the MITOMI
button at appropriate times (details in the Methods section), it is possible to specifically immobilize

the biotinyalted antibody under the area of MITOMI button (Fig. 2.1).
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Figure 2.1: Detailed schematic of the MITOMI procedure.

In SMiLE-seq, we adopted these two great features of MITOMI, while at the same time adding
the power of randomized DNA and molecular barcodes, in order to achieve very high-throughput
in terms of screened DNA sequences. This second set of features was inspired by the seminal work
of Jolma et al. and their HT-SELEX platform. In HT-SELEX proteins are obtained through
standard bacterial expression, which, as we discussed, is a more laborious approach as compared
to in vitro expression systems. However, the clever synthesis of their DNA library allowed them
to achieve a very robust and multiplexed method, which resulted in great success in characterizing
new DNA binding motifs (Jolma et al., 2013). Briefly, the original HT-SELEX library consisted
of four main components: 1) Illumina-compatible primer binding sites for amplification, 2)
Illumina-compatible primer binding sites for sequencing, 3) a TF-specific barcode in order to make
experiments multiplexed and 4) a DNA random region of 14bp. Intuitively, this library construct
not only allowed them to sample for each TF a large number of DNA sequences (namely 4"14=
268°435°456), but also to do so in a multiplexed format where each TF is assigned a specific
molecular barcode (Fig. 2.2).
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Figure 2.2: HT-SELEX random library composition.

The result of the cross-fertilization between the approaches reported in MITOMI and HT-SELEX
is what we call selective microfluidics-based ligand enrichment followed by sequencing, i.e.
SMiLE-seq. Our approach consists in a modified MITOMI device (Fig. 2.3) which harbours 8
consecutive MITOMI buttons. As in MITOMI, the inlets are separated by microvalves that control
the sequential introduction reagents in order to immobilise antibodies in the center of the MITOMI
buttons. The outlets are used both for ridding the device of surplus reagents and for washing away
unbound DNA. The microcapillary pumps are introduced at the lower and upper ends of each
MITOMI button in order to provide passive sample loading.

The second important aspect of SMiLE-seq is the synthesis of the barcoded and randomised
library. As opposed to HT-SELEX, we opted for a larger random region, hence allowing us to
sample an even larger sequence space as compared to HT-SELEX. Moreover, we introduced two
small TF-specific barcodes at each end of the random region, in order to increase the reliability of
post-experiment bioinformatic demultiplexing. The final, 121bp construct, already includes

portions of sequencing adapters directly within the random DNA library design.
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Figure 2.3: The two fundamental components of SMiLE-seq. a) The 8 unit MITOMI-based
microfluidic chip. b) The Illumina-compatible random DNA library.

Despite adopting with minor modifications already established solutions, SMiLE-seq required
substantial optimization in order to provide efficient enrichment of the specifically TF-bound
DNA. Importantly, we reasoned that given the ability to wash the interior of microfluidic channels,
it should be possible to simply remove unbound by extensive washing with a pure saline buffer
like PBS. This notion would allow us to enrich for the wanted DNA in a very convenient manner
while, at the same time, avoiding laborious rounds of exponential enrichment. The resulting key

steps of the workflow are depicted in Fig. 2.4:

1) Express transcription factor of interested as a GFP-fusion in an in vitro expression mix.
2) Mix expressed TF with barcode DNA library and load onto antibody-functionalized device.
3) Perform MITOMI on TF/DNA complexes.

4) Wash unbound DNA while keeping MITOMI button closed.

5) Open MITOMI button and elute bound DNA.

6) Sequence bound DNA and compute motif logo.
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Figure 2.4: The SMiLE-seq workflow.

2.2.2 SMiLE-seq identifies motifs for a wide range of TFs

In order to benchmark our technology, we set out to obtain motifs from a number of previously
characterized factors (Fig 2.6). Based on detectable GFP signal, we observed the correct
expression of 58 (6 Drosophila, 12 mouse and 40 human) out of the randomly selected 60
transcription factors belonging to different families (Isakova et al, 2017). With SMiLE-seq we
were able to obtain highly enriched motifs and for all of them. Moreover, transcription factors
tested in replicates also showed high correlation (Supp. Fig. 2.1), therefore demonstrating the
reproducibility of SMiLE-seq. Seeking an external validation of the retrieved motifs, we compared
them to public databases through a TOMTOM-based search (Gupta et al., 2007). The top resulting
TOMTOM matches, including motifs derived by independent methods like ChIP-seq, PBMs and
SELEX, corresponded to the SMiLE-seq-derived motifs for all tested 58 motifs (Isakova et al,
2017). These results establish the validity of motifs obtained through SMiLE-seq and, in general,
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advocate the reliability of our technology for its application to a large variety of transcription

factors.
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Figure 2.5: TF specificities obtained for the first 60 factors benchmark set. Copyright 2017,
Nature Publishing Group (Isakova et al, 2017).

2.2.3 SMILE-seq data reflects the energy binding landscapes of TFs

As mentioned previously, a distinctive aspect of SMiLE-seq is its ability to capture TF/DNA
complexes at the steady state. We reasoned that this steady state could be reflected by the
distribution and relative abundance of DNA sequences obtained by next generation sequencing,
thereby providing direct information on the DNA binding energy landscapes for a given TF. In
order to test this hypothesis, we considered two transcription factors, the human MAX and the
mouse Ergl, for which the DNA affinity profiles had been previously obtained (Maerkl et al., 2007
and Geerz et al., 2012, respectively). Subsequently, we evaluated the k-mer distribution of the

same TFs for three independent datasets obtained by HT-SELEX, PBMs and SMiLE-seq (Fig. 2.5
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and Supp. Fig. 2.2). For both factors, we found that SMiLE-seq datasets show higher and

reproducible correlation as compared to the other methods (Isakova et al, 2017).
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Figure 2.6: SMiLE-seq ability to reflect energy binding landscapes. Left panel: correlation
analysis between k-mer enrichment and binding affinity for TF MAX derived both in SMiLE-seq
and HT-SELEX. Right panel: correlation analysis between k-mer enrichment and binding
affinity for TF MAX derived both in SMiLE-seq and PBM. Copyright 2017, Nature Publishing
Group (Isakova et al, 2017).

2.2.4 SMiILE-seq demonstrates the feasibility of its application to KRAB-ZFPs

As mentioned in the introduction, the Kriippel-associated box domain zinc finger proteins (KRAB-
ZFPs) constitute the largest family of transcriptional factors in higher vertebrates. They typically
display an N-terminal KRAB domain, which is implicated in co-factor binding, and an array of
DNA-binding C2H2 zinc fingers located C-terminally (Urrutia et al., 2003). Despite their large
number, the DNA binding properties of most KRAB-ZFPs remains poorly characterized. The

number of zinc fingers varies widely across the KRAB-ZFPs, from 4 to 24, which would suggest
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an equal diversity in the size of DNA binding sites. Nevertheless, recent evidence demonstrates
how the DNA binding of long tandem arrays can substantially diverge from the one-finger-three-
bases rule of well-studied three-finger systems (Patel et al., 2018). Moreover, it appears that
different DNA substrates can also induce distinct tandem conformations in which the individual
zinc fingers re-arrange and diverge from their usual DNA-binding pattern (Patel et al., 2018). It
therefore comes as no surprise that the several computational tools aimed at predicting the DNA
binding motifs of C2H2 zinc finger proteins have thus far had limited success with KRAB-ZFPs
(Persikov et al., 2014, Najafabadi et al., 2015, Patel et al., 2018). This multimodal and
unpredictable behaviour suggests that KRAB-ZFPs may be characterized by a more complex
DNA-recognition code than previously anticipated. Hence, it is necessary to devise innovative
methods that can allow for flexible, sensitive and high-throughput testing of the several KRAB-
ZFPs and in different DNA-binding contexts. In order to investigate whether SMiLE-seq would
be applicable to the investigation of such a difficult family of TFs, we selected randomly 24 full-
length KRAB-ZFPs of which 19 successfully expressed in our MITOMI-based expression system.
Out of these initial set, we obtained motifs for 9 factors (Fig. 2.7, Isakova et al, 2017), i.e. with an
approximate success rate of 37%, which is significantly higher than the one showed by other
macroscale efforts like HT-SELEX (Yin et al., 2017 —tested 105 KRAB-ZFPs and obtained motifs
for 16, i.e. with success rate of 15%). Subsequently, we evaluated to what extent the motifs that
we derived were conforming to results obtained by online prediction tools. We then resorted to
obtain the respective predicted motifs for all 9 TFs by using the Zinc Finger Recognition Code
tool (http://zifrc.ccbr.utoronto.ca/, Najafabadi et al., 2015) and compare them to the SMiLE-seq

motifs. Overall, the comparison shows a very limited ability of the only tool to predict either the

main features any given motif.
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Figure 2.7: First set of SMiLE-seq derived KRAB-ZFPs motifs (Isakova et al, 2017).

These preliminary results highlight the potential of SMiLE-seq as a tool to investigate in a
systematic way the complex DNA-binding patterns of KRAB-ZFPs. However, before
systematically tackling the entire TF family, we set out to re-develop our tool further in order to
increase the throughput, sensitivity and scope of our future studies. In particular, we aimed to
address the following limitations:
- Throughput.
The current SMiLE-seq device can process eight TFs in parallel, which is in the low end
of the spectrum of throughput that can be achieved with microfluidic tools. We reason that
we careful re-design, it would be possible to increase the procedural output of the device.
- Inter-experiment multiplexing.
The original SMiLE-seq library does not contain allow for inserting molecular barcodes
during the amplification step. As a consequence, two different SMiLE-seq libraries cannot
be sequenced in the same Illumina sequencing run. Remarkably, the frequency with which

SMiLE-seq experiments can be performed is far higher than for [llumina sequencing runs.
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This creates a situation in which several SMiLE-seq libraries sit idle for weeks before they
can be processed, therefore delaying the whole discovery process.

- Analysis.
The current SMiLE-seq analysis pipeline is based on the MEME suite (Bailey et al., 1994),
which is an algorithm that does not allow, for computational reasons, to conveniently
process more than a few thousands reads for a given TF. Since tens or hundreds of
thousands of sequences are readily available, this analytical constraint constitute a limit to
the overall sensitivity of the de novo motif discovery process.

- Library bias.
Randomized synthetic DNA libraries are supposed to present a uniform distribution of
nucleotides and no enrichment should be detected when analysing input libraries, i.e.
libraries amplified and sequenced without being enriched through SMiLE-seq.
Nevertheless, we observed significant input library bias with over-enriched sequences that
show statistical levels of enrichment similar to the ones obtained for low-affinity TFs. This
constitutes another obstacle towards the efficient derivation of high-quality motifs from

TFs such as the KRAB-ZFPs that exhibit a wide range DNA-binding modes and affinities.
The new approach that resulted from addressing all the above limitations, SMiLE-seq v2.0,

provides an unbiased, high-throughput and multiplexable new version of its original

implementation.
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2.3 SMILE-seq v2.0

2.3.1 The SMiLE-seq v2.0 chip

As mentioned in the previous section, the new SMiLE-seq implementation that we aimed to
developed addressed four specific limitations: throughput, experiment multiplexing, analysis
pipeline and library bias. In order to address the first of these limitations, i.e. throughput, we re-
designed the microfluidic chip in its entirety. Our specific goals in this regard were to increase the
number of MITOMI buttons that could be utilized in a single experimental run. In the first SMiLE-
seq implementation, each MITOMI button was connected to bulky capillary pumps, which helped
the loading of reagents while, at the same time, increasing the footprint of the microfluidic device.
In SMiLE-seq v2.0, we circumvented the need for capillary pumps by connecting each sample
inlet to western-blot tips, which could then, in turn, be easily connected to external macroscale
pressure sources (Fig. 2.8). In practice, we reduced the area footprint of each MITOMI button by
substituting capillary pumps with readily available external pressure sources and a simple but
clever macro-to-micro interface. This allowed us to confine in the limited of a glass slide several
32 MITOMI buttons, hence a 4-fold increase compared to the previous SMiLE-seq version (Fig.
2.8c). The new microfluidic design consists of 4 rows of 8 MITOMI buttons each. Moreover, each
button is connected to the same reagents inlets but has different reagents outlets. This enables us
to perform the same MITOMI-based surface functionalization in parallel for all rows, thereby
effectively performing 4 SMiLE-seq experiments at once, while at the same separately collecting
the bound DNA library individually from each row. In the next section, I explain how this row-
based microfluidic architecture, in combination with a new DNA library design enables cost-

effective experimental multiplexing.
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Figure 2.8: The SMiLE-seq v2.0 chip. a) Schematic layout of the original SMiLE-seq chip for
comparison purposes. b) Inset of the MITOMI button unit of SMiLE-seq v2.0. ¢) Schematic
layout of the SMiLE-seq v2.0 chip. d) Photograph of a SMiLE-seq v2.0 chip connected to a tip
for sample dispensing.
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2.3.2 The SMiLE-seq v2.0 library

The major drawback related to the original SMiLE-seq library design was the inability to sequence

SMiLE-seq libraries at the same frequency as the one at which they could be generated. As a result,

several libraries would be stored for weeks without being sequenced, which delay the whole

troubleshooting and discovery process. In order to address this issue, we modified the SMiLE-seq

library in order to make it compatible with the highly-multiplexed Nextera library preparation

protocol (Fig. 2.9). The important modifications to the library design are:

The introduction of Nextera primer binding sites (Nextera adapters) at each end of the DNA
library sequence. This allowed for standard and readily available Nextera primers to be
used for library amplification, instead of the custom designed original SMiLE-seq primers.
The important aspect of Nextera primers is that they contain molecular barcodes which
enables libraries amplified with different primers to be sequenced in the same sequencing
run and de-multiplexed bioinformatically. As a result, the introduction of Nextera adapters
in the library design allows for scalable experimental multiplexing, i.e. any number of
SMiLE-seq v2.0 libraries can be sequenced in the same sequencing run, as long as they are
amplified with a different set of Nextera amplification primers.

The replacement of two 7bp barcodes with a 10bp barcode as several other independent
barcoding strategies have shown to be sufficient for effective multiplexing. This barcode
should not be confused with the barcodes introduced at the amplifications stage by the
Nextera primers. Indeed, the Nextera primers are used to multiplex libraries, whereas the
SMiLE-seq v2.0 barcodes are used to multiplex samples. In this manner, we effectively
achieve a double-multiplexing process in which N, transcription factors can be sequenced
in the same sequencing run, where Ny=Ny;*Ns, (Nys 1s the available number of nextera
barcodes and Ng, is the available number of SMiLE-seq barcodes). This double-
multiplexing constitutes a significant improvement because it not only allows to save time
by eliminating the waiting times between each SMiLE-seq library sequencing, but it also
saves significant capital in terms of DNA synthesis cost.

The expansion of the DNA random region from 30bp to 40bp, in order to accommodate

TFs with potential long motifs like the KRAB ZFPs.
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Overall, the new library design and its combination with the row-based microfluidic architecture
of SMiLE-seq v2.0 allows to test the DNA binding specificities of TFs at a much greater

throughput than and for the same cost as the previous SMiLE-seq version.

Original SMILE-seq library design

Sequencing
\ primer binding site 30 bp random region

p7 7bp 7bp
barcode barcode P5

SMiLE-seq v2.0 library design

i7 Nextera
index 40 bp random region adapter RV

s ]
P7 Nextera 10bp

adapter FW barcode i5 \
index

Figure 2.9: The SMiLE-seq v2.0 library design

2.3.3 The SMiLE-seq v2.0 analysis pipeline

As mentioned in the previous section, the limitations regarding the original SMiLE-seq procedure
that we aimed to tackle are two-fold:

1. The original pipeline for de novo motif discovery was based on the command line and/or
web-based tool MEME (Bailey et al., 1994). The main constraint that this tool posed was
the upper limit of sequences (~1000 reads) that could be processed before the computation
became prohibitively slow. This drawback has to do with the inner algorithms of the tool,
for which the number of operations to perform increases quadratically with the number of
input sequences and the motif size. Nevertheless, even though SMiLE-seq libraries are
normally sequenced as simple spike-ins, they yield in the order of tens of thousands of
sequences. As a result, by using MEME we are forced to limit the analysis to less than 10%

of our sequencing data, thereby ignoring all the information contained in the remaining
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90%. This drawback can prove significantly problematic for low-affinity TFs, for which
enrichment of specifically bound sequences may be very low. Therefore, it is essential to
establish an analysis framework that can take as input a much larger set of DNA sequences.
The previous SMiLE-seq pipeline also ignores the significant bias of synthetic random
DNA. As a matter of fact, even if synthetic libraries are supposed to have a uniform
distribution of bases and no over-represented sequences, we found that the opposite is true.
In order to quantify this, we sequenced a subset of input DNA libraries without first
enriching them through SMiLE-seq. Ideally, when subjected to motif discovery, these
libraries should show no statistically significant enrichment of any motifs. As reported in
Fig. 2.10, each input library shows different statistically significant biases, with P-values
ranging from le-65 to le-22.

Unfortunately, another drawback of the MEME suite is the inability to complement the
motif discovery with background correction, a solution that would compensate for this

experimental bias and decrease the likelihood of false positives.

Lib1 cATATcTAIA P

Lib2 =

A
ach= II* p=1e-48
Lib3
M:—-_‘;._.T :-:A A p=1e-29
P-value range [1e-65, 1e-22]

Figure 2.10: Examples of bias in random synthetic DNA libraries.

The solution that we adopted in order to address these issues consisted in shifting to a new analysis

software, called HOMER (Heinz et al., 2010). HOMER allows for de novo motif discovery with

large numbers of input DNA sequences, variable length and, importantly, also accepts as input

files containing the background sequences to be corrected for. With HOMER, we can take

advantage of the entire information content of the SMiLE-seq v2.0 libraries, while, at the same

time, accurately discovering de novo motifs in an unbiased manner.

49



2.3.4 Generation of a synthetic methylated DNA library

It has been shown in previous studies that CpG methylation may be an important modulator of the
DNA binding of transcription factors (Yin et al., 2017). In order to add this extra dimension to
study of the DNA binding specificity of KRAB-ZFPs, we set out to artificially introduce CpG
methylation in the SMiLE-seq v2.0 DNA libraries. To achieve this, we treated half of each of our
DNA libraries with a CpG Methyltransferase (M.Sss/) which methylates all cytosine residues of
the double-stranded DNA within CpG dinucleotides (Fig. 2.11a). Before using the methylated
libraries in SMiLE-seq experiments, we confirmed successful CpG methylation by methylation-
specific restriction analysis. In order to do this, we run both methylated and non-methylated
libraries on agarose gel before and after restriction with the enzyme BstBI, a frequent cutter whose
restriction ability is impaired by CpG methylation. As can be seen in Fig. 2.11b, after digestion
only the non-methylated library shows significant degradation, whereas the methylated library

remains at the nominal size of 121bp.

Non-methylated DNA Methylated DNA
) M.Sssl
- e CpG- -—t
[ e——— methylation _:Iil:

b Before digestion  After digestion
A A
[ | \
200 bp
100 bp
&> > >
<@ ,5,5” g

Figure 2.11: The SMiLE-seq v2.0 methylated DNA library. a) Schematic depiction of the
methyltransfare-based library conversion. b) Restriction analysis of the methylated and non-
methylated DNA library.
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The generation of methylated DNA libraries is an important one as it increases the scope of the
SMiLE-seq motif discovery process, by allowing to not only infer the sequence preferences of

transcription factors but also their sensitivity to the methylation state of the DNA substrate.

2.3.5 The DNA binding specificities of KRAB ZFPs

After establishing a more powerful experimental framework with a new chip, new library design
and new analysis pipeline we set out to process an initial set of 101 KRAB ZFPs. These factors
were chosen based on motif size considerations made in light of a preliminary analysis of recently
published ChIP-exo data on KRAB-ZFPs (Imbeault et al., 2017). We derived motifs for all KRAB-
ZFPs using their respective peak files and subsequently sorted each motif based on size (Supp.
Fig. 2.3). We reasoned that factors with very long motifs — i.e. from 30 to 50 basepairs — would
have low probability of yielding motifs in our experimental setting due to the difficulty of covering
the extremely high number of sequence combinations. Therefore, for SMiLE-seq, we prioritized
factors with shorter in vivo - i.e. derived from ChIP-exo - motifs.

Of the initial set of 101 KRAB-ZFPs probed through SMiLE-seq, we obtained enriched motifs for
43 factors (Supp. Table 1); of these, 22 yielded motifs for both methylated and non-methylated
DNA (referred to as met-Independent factors), 10 only for methylated DNA (methylation sensitive
type A or metA factors), 11 only for non-methylated DNA (methylation sensitive type A metB

factors).
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Figure 2.12: Example of the three types of methylation sensitivity observed in our SMiLE-seq

results.

In order to validate the motifs obtained, we compared them to the respective ChIP-exo motifs as
well as the motifs predicted using two dedicated web-based tools (Persikov et al., 2014, Najafabadi
et al., 2015) (Fig 2.12a., Supp. Fig. 2.4). We observed that, while SMiLE-seq faithfully
recapitulates ChIP-exo motifs, the predicted motifs fell short of predicting the correct motif in
most cases (Fig. 2.12b). However, we reasoned that the online tools tend to predict motifs based
on the assumption that all zinc fingers bind DNA — which is reflected by the fact that the predicted
motifs are much longer than the actual SMiLE-seq and ChIP-exo motifs. Moreover, by manual
inspection we noticed that certain portions of the predicted motifs were similar to the in vitro and

in vivo results. We therefore wondered whether the low performance the prediction tools were due
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mostly to overestimating the size of the motifs and not the DNA-binding specificities of individual
zinc fingers. To test this hypothesis, we aligned the predicted motifs to the ChIP-exo ones and
calculated the motif difference considering only the overlapping portion of the aligned motif.
Indeed, we observed that the overall similarity of the aligned motifs was much higher and became
comparable to the similarity between ChIP-exo and SMiLE-seq motifs (Fig. 2.12b). This suggests
that the major limitation of available prediction tools is not the ability to predict the specificity of
individual zinc fingers or zinc finger arrays. Rather the main challenge is to understand which zinc
fingers actually contribute to DNA binding and which ones don’t. In this direction, we set out to
systematically identify for each KRAB-ZFP the subset of zinc fingers that likely contributed to
binding. In order to achieve this, we took advantage of the ability of the web tool provided by
Persikov et al. of providing the predicted binding specificity of any submitted zinc finger array
and, for each TF, we queried the tool with different subsets of consecutive zinc fingers. After
downloading the predicted motif for each zinc finger subset, we selected the one that was most
similar to the ChIP-exo and SMiLE-seq motifs, thus effectively shortlisting which zinc fingers are
predicted to directly bind DNA. For instance, the KRAB-ZFP ZIM3 contains 11 zinc fingers and
the predicted motif is 33 base pairs long. Nevertheless, the in vivo and in vitro motifs are much
shorter (15bp) which suggests that a minimum of 5 out of the 11 zinc fingers contributes to binding.
By applying the systematic approach described above we predicted that zinc fingers 5-9 are likely
to be the ones responsible for the observed DNA specificity of the factor (Fig. 2.13a). Similar
observations were made for all the other KRAB-ZFPs tested with SMiLE-seq (Supp. Fig. 2.5),
including metA and metB factors such as ZFP57 and ZNF133, respectively (Fig. 2.13b,c).
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Figure 2.13: Example of zinc finger binding prediction for three KRAB-ZFPs, i.e. ZIM3 (a),
ZFP57 (b) and ZNF133 (c).
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In order to explore the origins of the observed sensitivity of some factors to methylation, we took
into consideration 5 type of phylogenetic trees based on different types of similarities between the
examined factors: 1) similarity based on full protein sequence, 2) similarity based on the sequence
of all zinc fingers, 3) similarity between the alpha helices of all zinc fingers, 4) similarity between
the alpha helices of the zinc fingers that are predicted to bind DNA and 5) similarity between
experimentally derived motifs. Surprisingly, none of these approaches successfully clustered the

methylation-sensitive factors in specific subgroups (Fig. 2.14, Supp. Fig. 2.6).
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Figure 2.14: Dendrogram obtained considering the similarity between experimentally derived
motifs.

Therefore, based on our preliminary results it appears that methylation sensitivity did not evolve
from a common ancestor and that methylation can have different effects even on members of the
same family of paralogs (Supp. Fig. 1.6). Another puzzling observation we made was that several
of the factors that we identified as methylation sensitive, did not display the canonical CG
dinucleotide. By analyzing the dinucleotide distribution in all the ChIP-exo derived motifs we also

observed a significant bias against CG as compared to other dinucleotides (Fig. 2.15).
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Figure 2.15: Dinucleotide distribution in ChIP-exo motifs.

Despite being consistent with the phenomenon of CG suppression and underrepresentation in the
human genome (Lander et al., 2001), this observation is somehow at odds with the importance of
KRAB-ZFPs in controlling imprinting and mediating DNA methylation (Ecco et al., 2017). It is
also remarkable to notice that prediction tools tend to predict quite accurately the binding
specificity of both non- and methylation sensitive factors (including the known ZFP57) without
integrating information about methylation specificity at all. This suggests that the methylation
sensitivity of certain factors might originate independently from the binding specificity conferred

by their respective ZF contacts.
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2.4 Discussion

In this chapter, [ presented the development and optimization of a microfluidic-based tool, SMiLE-
seq, for the study of DNA binding specificities of transcription factors in vitro. In SMiLE-seq we
adopt and merge features of both HT-SELEX and MITOMI. As a result, our solution allows to
screen a very large amount of DNA binders in a sensitive and miniaturized fashion. With the first
version of this technology, we set out to demonstrate its feasibility by analysing several factors
belonging to different species and TF families. Of the randomly selected 60 factors, 58 (6
Drosophila, 12 mouse and 40 humans) yielded the expected motif with high reproducibility.
Moreover, by comparing SMiLE-seq data and the experimentally derived binding affinity of the
factors MAX and Ergl, we found the SMiLE-seq recapitulates better than existing methods the
energy landscapes of TF/DNA binding. After successfully passing the proof-of-principle stage, we
proceeded to investigate the applicability SMiLE-seq to a family of transcription factors, the
KRAB-ZFPs, for which the vast majority of DNA binding motifs are still missing. In order to do
this, we processed with SMiLE-seq 24 KRAB-ZFPs, of which 9 yielded highly enriched motifs
that closely reflected in vivo binding. Given the low success rate with this initial set of KRAB-
ZFPs, we set out to further develop our technology by exploring ways to increase its sensitivity
and throughput. As a result of these efforts, we arrived at a new version of SMiLE-seq, called
SMiLE-seq v2.0 that presents the following improvements: 1) a 4-fold increase in the number of
factors processed for each microfluidic chip; 2) Nextera-compatible libraries which allow for any
number of SMiLE-seq experiments to be processed in one sequencing run; 3) a longer random
region in the DNA library in order to expand the combinatorial space covered; 4) methylated DNA
libraries in order to investigate the sensitivity of TFs to cytosine methylation; 5) a new analysis
pipeline that allows for background-corrected de novo motif discovery with a much larger number
of input sequences. With SMiLE-seq v2.0, we processed 101 KRAB-ZFPs for both methylated
and non-methylated DNA configurations, for a total of 202 experiments. We retrieved highly
enriched motifs for 43 factors — 22 yielded motifs for both non- and methylated DNA, 10 only for
methylated DNA and 11 only for non-methylated DNA — therefore providing the largest individual
dataset on the in vitro binding properties of KRAB-ZFPs. All of the motifs thus obtained faithfully
resembled motifs originated from the analysis of a large KRAB-ZFP-based ChIP-exo dataset
recently published (Imbeault et al., 2017). Subsequently, we compared ChIP-exo and SMiLE-seq

motifs to the ones obtained using two dedicated prediction tools (Najafabadi et al., 2015, Persikov

57



etal., 2014). We noticed that both tools systematically overestimated the size of the experimentally
derived motifs while, at the same time, closely resembling these motifs only in specific portions
of their predictions. By isolating these “highly similar” portions for each factor, we found that
overall the main limitation of existing prediction tools is not the ability to predict the DNA
specificity of zinc fingers, but rather the ability to discern which fingers contribute to DNA binding
and which ones do not. By mapping the optimal portions of predicted motifs to the responsible
zinc fingers, we were able to identify for each factor the specific subset of zinc fingers that were
likely to be responsible for binding. It has previously been noted that KRAB-ZFPs may present
motifs that are much shorter than as expected by the number of zinc fingers in each factor (Ecco
et al., 2017). Our preliminary results confirm this view: considering the 43 SMiLE-seq-positive
factors, the average number of zinc fingers per factor is 10+£3 whereas the predicted number of
zinc fingers directly contributing to binding is only 4.5+0.7. Phylogenetic analysis based on
different similarity criteria of the methylation specific factors did not provide, for the moment,
insight in the evolutionary origin of methylation sensitivity. Moreover, we also noticed that several
of the identified methylation specific factors do not contain the canonical CG dinucleotide in their
motif, which is consistent with the underrepresentation of the same dinucleotide considering all
experimental motifs and the human genome dinucleotide distribution as well. These observations,
together with the fact that prediction tools seem to perform well without integrating any
methylation-specific information, raises more questions on the mechanisms of methylation
detection of these factors. While further experimental validation will be required to validate these
results, through SMiLE-seq applied to truncated TF forms or MITOMI to confirm methylation
specific factors, we believe the presented framework will prove a powerful addition towards

deciphering the DNA recognition code of KRAB-ZFPs.

58



2.5 Methods

2.5.1 Protein expression

Every SMiLE-seq experiment begins with the in vitro expression of a GFP-tagged transcription
factor. After testing different systems, we identified the TnT® Coupled Wheat Germ Extract
System from Promega as the most reproducible and robust solution for human transcription factors
expression. In order to achieve high quantities of GFP-tagged TFs, we subcloned by LR reaction
(Gateway cloning system) the TFs of interest into a custom-made vector called pF3a-eGFP, which
contains translation enhancers (TE) from the wheat-germ-compatible barley yellow dwarf virus

(BYDV) and a C-terminal eGFP tag.

2.5.2 Target DNA library preparation

The random DNA library was prepared through primer extension of single stranded Ultramers®
ordered directly from IDT. For both SMiLE-seq and SMiLE-seq v2.0 the Ultramers® were
extended by a Cy5-labelled primer (/5Cy5/CAA GCA GAA GAC GGC ATA CG, also from IDT)
and a Klenow-based extension reaction (NEB Cat No M0212).

The library synthesis occurs with the following reaction:

- 5pl Buffer 2 (NEB)

- 5ul dNTPs

- 0.5ul Cys5 labeling primer (500 pM)
- 1.5pl Library oligos (200 uM)

- 37ul dH20

And the following thermal cycle:

= 94°C for 5 min
= 50°C for 60 sec
= place tubes on ice

= add 1ul of Klenow 3’ — 5’ exo- (NEB Cat No M0212)
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= 37°C for 60 min

= keep at 0°C
Use MinElute (Qiagen) to purify the double-stranded libraries, elute in 12 pl of EB. Dilute the
libraries 1:10 in ddH20O or elution buffer (Qiagen).

2.5.3 Chip fabrication

Microfluidic devices were fabricated using standard multilayer soft-lithography, similarly to
previous examples (Maerkl and Quake, 2007, Unger et al. 2000). To these end, two layouts were
designed using a dedicated software (L-Edit Tanner Tools), one for the so-called control layer and
one for the so-called flow layer. Both layouts were transferred onto chromium masks using
photolithography. For the flow layer, the layout was transferred onto a silicon wafer coated with
AZ9260 positive resist 10 um of thickness. After development, the positive resist microstructures
were re-flown for 1 minute at 130°C in order to obtain round-shaped channels, which are required
for the correct functioning of the microfluidic microvalves. For the control layer, the layout was
transferred onto a silicon wafer coated with SU8 negative resist 10um of thickness. The
microfluidic flow layer, PDMS at 5:1 (prepolymer/curing agent w/w ration) was cast and cured on
the flow layer wafer at a thickness of 4mm, whereas for the control layer the PDMS 20:1 was spun
onto the control wafer in order to achieve a thickness of ~20um. Both layers were partially cured
at 80°C for 30 minutes, then the flow layer was peeled off its wafer and aligned on the control
layer. Curing was finalized for a minimum of 90 minutes at 80°C. After curing, the assembled
device was peeled off the control layer and holes were punched with a reusable biopsy punch.
After punching the device was cleaned with isopropanol and bonded to a glass slide by plasma

treatment.

2.5.4 Control lines preparation

All pressure sources are connected to the same number of plastic tubes. Each tube is color-coded
as in 2.17d. In order to connect the tubes of the control lines to the chip, fill the tubes with water
using a syringe (the water should fill ~2-5 cm of the tube). Connect all the control lines one-by-
one by plugging the tubes into the chip. Actuate one-by-one each valve. After a 10-30 seconds,

the water should start reaching the control channels which should be visible under the microscope.
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It is important to make sure that the valves close according to the predefined experimental scheme

and that all valves are completely filled with water.

2.5.5 Surface preparation

For the SMiLE-seq surface preparation the following steps are required:

1. Collect and place on ice the following reagents:
= Biotin-BSA at 2mg/ml
= Neutravidin at Img/ml
= PBS
= Anti-GFP antibody aliquots (1:50 dilution from 100ug/pl stock)

2. Take 20 pl of BSA and 15 pl of PBS, NA and anti-GFP using a western-blot pipette tip
and place them in the reagent inlets of the chip. Connect each tip the with blue pressure
tubes coming from the flow line pressure manifold.

3. When all tips and tubes have been properly connected (all valves are still closed) bring the
pressure of flow line to 8PSI.

4. Open one-by-one the inlet pressure channels and check visually that the order of the
scheme has been respected. When an inlet channel gets pressurized, the respective valve is
slightly “pushed up” by its inlet channel.

5. When all inlets are pressurized, release the biotin-BSA channel by opening the respective
valve and let the biotin-BSA go everywhere on chip and remove the air in the main
channels.

6. Wait for 10-15 minutes until the inlet areas of the other reagents gets filled with the
respective reagents and no air is left in the chip.

7. Set timer to 10 minutes and start it. Bring inlet pressure to 2.5psi, mark on the pipette tips
with a marker the position of the reagents (in order to keep track of how much liquid is
introduced in the chip. It is very important not to let any air get inside the chip.

8. The SMiLE-seq surface functionalization sequence is as follows:

= 10 min of biotin-BSA.
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= Imin of PBS wash.

= 10 min of Neutravidin

= PBS wash for 1 min and then close MITOMI button.

=  Wash another minute with PBS, then 10min of biotin-BSA.

= Imin PBS wash.

= Antibody 1 minute.

= After 1 min of Antibody, open the MITOMI button and wait 10min.
= After 10 min of Antibody, 1min PBS wash.

= Extract all western blot tips from the chip (apart from PBS tip).

2.5.6 Sample loading

Add 4 pl of DNA library to the pre-incubated in vitro expression mix, vortex, centrifuge to let all
possible debris go to the bottom (14’000 rcf, 4 min). For each inlet, take 6-8 pl of TF using a
western pipette tip and load each sample in a different 2mm inlet hole. The samples are ejected in
the hole and the tip is discarded. Make sure you are touching the bottom of the chip while ejecting
the liquid. Extract slowly the pipette tip while you are ejecting the samples in order to avoid that
the liquids tops off the inlet hole.

Once all samples have been transferred to the 2mm inlet holes, close the MITOMI button. By
using the little “air gun” connected to the flow line pressure, start pushing the samples in the chip.
This is done by opening the channel connected to it and placing the air gun over one of the 2mm
inlet holes. The pressure created by the air coming out of the gun (around 3-4 PSI) in this case is
going to push the liquid from the hole to its respective outlet. 2-10 seconds after placing the gun
on top of a 2mm inlet hole, you should see some liquid coming of its respective outlet; when this
happens move on to the next sample. After priming all sample inlets, open the MITOMI button
and push in the rest samples using the air gun (pressure 2-6 PSI). Be careful not to let any air be
introduced in the chip. It is not essential to push exactly all of the sample liquid inside the chip,
i.e. after 70-80% of the sample has been pushed into the chip, enough TF should have been trapped
under the MITOMI button. Check regularly how much liquid is left in the 2mm holes by tilting
the chip and looking from the side at the 2mm inlet holes or looking at the level of liquid in the
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western blot tips if you used them. After all samples have been introduced into the chip, leave the

chip at RT for around 2 hours in order for the TF/Ab complexes to reach steady state.

2.5.7 Chip washing

When the 2 hours have passed turn on the microarray scanner and login into the scanner computer.
Close the MITOMI button B3 and wash all the MITOMI button areas with PBS. Before scanning,
open the MITOMI button for 30 seconds and close again (this is done to prevent elution of non-
bound DNA trapped under the button). Wash extensively with PBS in order to remove all unbound
DNA.

2.5.8 Chip scanning

In order to confirm the correct expression and pull-down of the factor the microfluidic SMiLE-seq
chip can be scanned with a microarray scanner. To do this, pull off the pipette tips and wash briefly
the external surface of the chip with ethanol and a tissue. Insert the chip into the scanner and wait
for the lamp to reach the appropriate temperature. Select the filter A488 and initialise scan. When
the MITOMI buttons in use are localised, a bright white circle in the middle of the button should
be visible. It is recommended to also scan for the Cy5 signal in each button in order to identify
specific sources of contamination, e.g. dust particles, onto which non-specific DNA is

accumulated.

2.5.9 DNA elution and library preparation

Take 30 pl of SMiLE-seq Elution Buffer with a western blot tip, insert into A5 inlet. Open B1,
Assemble the system for elution: a metal pin is inserted into the plastic tube on one end and into
the library outlet of the chip on the other end. Purify with a PCR purification kit and elute with 20
ul of EB.

For sample amplification, two qPCR runs are needed — one with volume 15pul to determine the

number of cycles for amplification, and a second one of 50pl for final amplification.
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Make the following mix for both reaction (total volume 65ul):

NEBNext Ultra II Master Mix 32.5ul

Purified DNA 20 ul

Primers (i5 and 17 [llumina adapter sequences) | 0.5 ul per primer

SYBR (1X) 0.5 ul

EB (elution buffer) to 65 ul

The first gPCR consists of 5 cycles for the whole volume of the reaction (65ul) with the following

settings:

Temperature (°C) | Time N of cycles
72 5 min 1

98 30 sec 1

98 10 sec 5

63 30 sec

72 1 min

72 1 min 1

In the second qPCR step 15 pl out the initial 65 pl are cycled for 20 cycles in order to determine
the correct number of amplification cycles in order to avoid overamplification. Finally, the

remaining 50 pl are amplified for the determined number of cycles.
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Before sequencing, the amplified DNA is purified, its size distribution and concentration measured
through Fragment Analyzer (High Sensitivity NGS Fragment Analysis Kit), and Qubit (dssDNA
HS Assay Kit), respectively.

2.5.10 Analysis

DNA reads are demultiplexed and duplicates are removed using FastxTools scripts. PWM are
calculated using the HOMER suite and especially the command findMotifs.pl. As input to the
command, we used SMiLE-seq libraries of up to 100’000 reads each. For background
compensation, the same number of reads taken from an “input library”, i.e. libraries not enriched
by SMiLE-seq, was used for each TF analysed. Recovered motifs are compared to existing data as
well as predictions by means of custom Python scripts. In particular, we programmed scripts that
systematically queried the online tools with the KRAB-ZPs protein sequences and downloaded the

response in PWM form.
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2.6 Supplementary Figures
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Supplementary Figure 2.1: SMiLE-seq reproducibility. Pearson correlation of the top 2000 k-
mers, from two independent SMiLE-seq experiments for the TFs PAX7 (a), SRY (b), MAX (c)
and FLI1 (d).
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Publishing Group.
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Supplementary Figure 2.3: KRAB-ZFPs DNA-binding motifs derived from ChIP-exo data.
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Supplementary Figure 2.6: Summary of difference between number of zinc fingers in each
factor and number of zinc fingers that are predicted to bind.
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Supplementary Figure 2.7: Phylogenetic trees obtained using different similarity criteria. a)
similarity based on full protein sequence — paralog groups are highlighted in red, b) similarity

based on the sequence of all zinc fingers, c) similarity between the alpha helices of all zinc
fingers, d) similarity between the alpha helices of the zinc fingers that are predicted to bind

Supplementary Table 1: Summary of KRAB-ZFPs tested with SMiLE-seq

DNA.

Factors tested Motifs obtained Met-independent MetA motifs MetB
ZFP1 ZNF431 ZFP1 ZFP1 ZFP57 ZNF3
ZFP14 ZNF436 ZFP14 ZFP14 ZNF135 ZNF133
ZFP30 ZNF440 ZFP30 ZIM3 ZNF283 ZNF552
ZFP57 ZNF443 ZFP57 ZNF8 ZNF445 ZNF671
ZFP82 ZNF445 ZIM3 ZNF10 ZNF468 ZNF680
ZIM3 ZNF461 ZNF3 ZNF18 ZNF506 ZNF716
ZKSCAN3 ZNF468 ZNF8 ZNF75D ZNF525 ZNF891
ZKSCANS ZNF485 ZNF10 ZNF202 ZNF614
ZNF2 ZNF506 ZNF18 ZNF248 ZNF793 (no ChIP-exo motif)
ZNF3 ZNF519 ZNF23 ZNF263 ZNF324 ZFP30
ZNF8 ZNF525 ZNF75A ZNF282 ZNF23
ZNF10 ZNF528 ZNF75D ZNF320 ZNF250
ZNF18 ZNF540 ZNF133 ZNF333 ZNF688
ZNF23 ZNF547 ZNF135 ZNF343
ZNF30 ZNF548 ZNF202 ZNF398
ZNF75A ZNF549 ZNF248 ZNF417
ZNF75D ZNF552 ZNF250 ZNF429
ZNF100 ZNF557 ZNF263 ZNF587
ZNF101 ZNF558 ZNF282 ZNF695
ZNF114 ZNF561 ZNF283 INF777
ZNF132 ZNF562 ZNF320 ZNF792
ZNF133 ZNF564 ZNF324
ZNF135 ZNF570 ZNF333 (no ChIP-exo motif)
ZNF140 ZNF571 ZNF343 ZNF75A
ZNF141 ZNF582 ZNF398
ZNF154 ZNF585A ZNF417
ZNF184 ZNF587 ZNF429
ZNF197 ZNF611 ZNF445
ZNF202 ZNF613 ZNF468
ZNF205 ZNF614 ZNF506
ZNF211 ZNF616 ZNF525
ZNF222 ZNF641 ZNF552
ZNF235 ZNF649 ZNF587
ZNF248 ZNF671 ZNF614
ZNF250 ZNF680 ZNF671
ZNF256 ZNF682 ZNF680
ZNF263 ZNF688 ZNF688
INF274 ZNF695 ZNF695
ZNF282 ZNF713 ZNF716
ZNF283 ZNF714 ZNF777
ZNF320 ZNF716 ZNF792
ZNF324 ZNF737 ZNF793
ZNF324B INF777 ZNF891
ZNF333 ZNF780A
ZNF337 ZNF783
ZNF343 ZNF792
ZNF345 ZNF793
ZNF398 ZNF812
ZNF417 ZNF891
ZNF429
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3.1 Introduction

The genome-wide distribution and dynamics of protein-DNA interactions constitute a fundamental
aspect of gene regulation. Chromatin immunoprecipitation followed by next generation
sequencing (ChIP-seq, Johnson et al. 2007) has become the most widespread technique for
mapping DNA-protein interactions genome-wide. ChIP-seq has been successfully applied to
dozens of TFs, histone modifications, chromatin modifying complexes, and other chromatin-
associated proteins in humans and other model organisms. The ENCODE and modENCODE
consortia have performed more than 8,000 ChIP-seq experiments, which have enhanced our
collective understanding of how gene regulatory processes are orchestrated in humans as well as
several model organisms (Landt et al., 2012). In addition, ChIP-seq proved to be essential to
acquire new insights into genomic organization (Kasowski et al., 2013, Waszak et al., 2015) and
into the mechanisms underlying genomic variation-driven phenotypic diversity and disease
susceptibility (Deplancke et al., 2016, Lehner et al., 2013, Albert et al., 2015). More specifically,
this assay proved crucial in determining the DNA binding properties of hundreds of TFs (Lambert
et al., 2018). Nevertheless, in comparison to other widespread NGS-based methods — e.g. RNA-
seq (Kolodziejczyk et al., 2015), ATAC-seq (Buenrostro et al., 2015), and Hi-C (Ramani et al.,
2017) — ChIP-seq lags behind in some key metrics, i.e. throughput, sensitivity, modularity, and
automation, which hinder its wider adoption and reproducibility. For example, while RNA-seq can
now be regularly performed on hundreds or thousands of single cells using readily available
workflows, ChIP-seq has largely remained labor intensive and limited to few samples per run, each
composed of millions of cells. Moreover, while a typical pre-amplification RNA-seq workflow
consists of only three steps — i.e. cell lysis, RNA capturing and reverse transcription — ChIP-seq
typically involves several pre-amplification steps (crosslinking, lysis, fragmentation,
immunoprecipitation, end-repair and adapter ligation). Finally, any given RNA transcript is
present in each cell in numerous copies, which increases the likelihood of its capture and detection,
whereas, on the other hand, each locus-specific protein-DNA contact occurs a maximum of two
times in a diploid cell. The combination of these idiosyncratic differences, together with the lack
of enabling solutions, has thus far prevented the ChIP-seq technology, as opposed to other NGS-

based methods, to reach its full potential in terms of adoption and overall utility.
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In addition to the standard ChIP protocol, a modification of its workflow involving sequential
chromatin immunoprecipitation (sequential-ChIP) has also been adopted to infer genomic co-
occurrence of two distinct protein targets. In principle, sequential-ChIP consists in performing
ChIP twice on the same input chromatin, which leads to a multiplication of the inefficiencies
mentioned above. Therefore, not only does sequential-ChIP show the same limitations as regular
ChIP-seq, but these also come in an augmented form due to its sequential nature. As a result,
despite the multi-dimensional information provided, sequential-ChIP has also resisted wider
adoption.

In recent years, several attempts have been made to alleviate some of the limitations of the
ChIP-seq and sequential-ChIP approaches. Gasper et al. (2014) and Aldridge et al. (2013)
addressed the issue of automation by implementing the manual steps of a conventional ChIP-seq
workflow on robotic liquid handling systems. However, in these examples, automation came at
the expense of sensitivity, which remains in the range of tens of millions of cells per experiment.
van Galen et al. (2015) and Chabbert et al. (2015) addressed the issue of throughput by barcoding
and pooling chromatin samples before immunoprecipitation (IP). Although van Galen and
colleagues also proved that their approach leads to higher sensitivity (500 cells per ChIP), both
methods are not automated and were shown to work only for histone marks. Ma et al. (2018) and
Rotem et al. (2015) addressed the limits of sensitivity with two different microfluidic-based
strategies. Ma et al. focused on improving the efficiency of the IP step by confining it within
microfluidic channels. Although these researchers showed good IP efficiency down to as few as
30 cells, their approach requires impractical antibody-oligo conjugates, is not automated and was
not shown to work for TFs. On the other hand, Rotem et al. achieved the remarkable feat of
performing ChIP-seq in a single cell by integrating the concept of chromatin barcoding and pooling
into a single droplet-based microfluidic chip. However, even though the barcoding step has indeed
single cell resolution, the most critical step —i.e. the IP step — is performed manually on 100 cells.
As a result, their approach, which was also shown to work only for histone marks so far, yielded
sparse single cell data and thousands of assays are needed to identify specific cell subpopulation
signatures. In a notable effort to simplify the sequential-ChIP workflow, Weiner et al. (2016)
complement the immunoprecipitation steps with sequential chromatin barcoding, thus achieving a
high degree of multiplexing. However, their approach increases the number of experimental steps

which makes it significantly more labor-intensive given that the workflow is not automated. In
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summary, previous valuable attempts at improving the technology selectively address specific
limitations but typically at the expense of or ignoring others.

In this work, we tackle all the three major limitations of current ChIP-seq and sequential-
ChIP solutions (throughput, sensitivity and automation), by developing a microfluidic
multiprocessor that we named FloChIP. We show that high quality one-day and parallelized ChIP-
seq for histone marks (down to 500 cells) and TFs (100’000 cells) is achieved through a
combination of microvalves, microstructures, flexible surface chemistry and on-chip chromatin
tagmentation. Moreover, by designing an interconnected and modular device, FloChIP enables
straightforward re-immunoprecipitation of eluted chromatin, effectively enabling sequential-ChIP

which allows us to probe bivalent chromatin with unprecedented ease.
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3.2 FloChIP

3.2.1 FloChIP is engineered for automated, bead-less and miniaturized ChIP-seq

The two core elements of FloChIP’s technology are assembly of a multilayered “totem” of
molecular species (Fig. 3.1a, Supp. Fig. 3.1a) and an engineered pattern of high surface-to-volume
micropillars (Fig. 3.1b). The totem is based on strong although non-covalent molecular interactions
and culminates with the immobilization of an antibody of choice prior to immunoprecipitation.
The first layer is obtained by flowing on-chip a concentrated solution of biotinylated-BSA, which
passively but thoroughly adsorbs to the hydrophobic walls of the microfluidic device. This layer
has both an insulating role, i.e. it prevents non-specific adsorption of chromatin to the walls, and
a docking role for the next layer, which is obtained by flowing on-chip a solution containing
neutravidin that strongly binds to the biotin groups of the first layer. The third layer is formed by
flowing a solution of biotinylated-protein A/G, which gets firmly immobilized by the unsaturated
binding sites of the neutravidin layer. Protein A/G is a recombinant protein used in a variety of
immunoassays due to its ability to strongly bind to a large number of different antibodies. This
ability is retained by FloChIP’s totem which thus constitutes a general substrate for antibody pull-
down (Fig. 3.1a).

For the successful initiation of the antibody-capturing totem, the only substrate requirement is the
hydrophobic surface of the polymer. Therefore, we set out to optimize the topology of the
microfluidic channels having three main goals in mind: obtaining as much surface area as possible,
miniaturizing the overall device footprint and ensuring flawless distribution of chemical species —
i.e. without dead volumes where undesired chromatin could accumulate. This optimization
strategy led to a design encompassing an array of micropillars of rhomboidal cross-section with
the major axis aligned to the direction of the flow (Fig. 3.1b). To achieve a total estimated surface
area that yields a sufficiently complex post-IP DNA library, the micropillar pattern is then repeated

multiple times across each IP-lane (Fig. 3.1c).
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Figure 3.1. FloChIP technical innovation. a) FloChIP’s processing phases in descending
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requirement for biotin-BSA in the correct formation of FloChIP’s totem. e¢) Top-view schematic
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With the goal of visually confirming the outcome of the combination between totem assembly and
the micropillar array and that every element is essential to this end, we first sought to IP chromatin
derived from a HeLa H2B-mCherry cell line using an anti-mCherry antibody. The resulting
fluorescence micrographs confirmed that each layer of the totem is necessary for successful IP of

cellular chromatin (Fig. 3.1¢, Supp. Fig. 3.1b).

The IP-lane is the fundamental element of the FloChIP architecture and it can itself be repeated n
times, where 7 is the desired throughput of the device. For our low-throughput initial tests we used
an 8-lanes FloChIP device (Supp. Fig. 3.1c), whereas for high-throughput experiments we utilized
a 64-unit device (Fig. 3.1¢). To gain accurate flow control, automation and multiplexing, a network
of Quake-style microfluidic valves was added to the design. Moreover, by actuating distinct sets
of valves, different multiplexing modes can be achieved with the same microfluidic architecture.
For instance, we named “FloChIP mode 1” the option of multiplexing one sample into different IP
units, hence equally distributing the same sample across multiple lanes, enabling multiple parallel
IPs involving distinct antibodies (Fig. 3.2a). Alternatively, “FloChIP mode 2” provides the option
of coating the whole device with one antibody, thus achieving sample multiplexing (Fig. 3.2b).
We note that both multiplexing modes are compatible with the direct ChIP approach. However,
FloChlIP is also fully compatible with the indirect ChIP strategy, in which the chromatin is pre-
incubated with an antibody before flowing the sample-antibody mixture on-chip. Interestingly, we
noticed that for low-affinity antibodies (e.g. certain TF antibodies), the indirect ChIP was
preferable to the direct one (data not shown). On the other hand, all tested histone marks antibodies
showed high affinity for their epitopes and both direct and indirect ChIP yielded an equal data
quality (data not shown). Regardless of the chosen approach, it is important to emphasize that, due
to its microfluidic nature, FloChIP’s IP step can be considerably shorter (30 to 60 minutes) than

for the other macroscale alternatives.
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Figure 3.2. Schematics of FloChIP operational modes. a) Schematic depiction of
FloChIP’s mode I: antibody multiplex. Each IP lane is functionalized separately by introducing
different antibodies through the individual inlets. During IP, one sample is introduced through
the common inlet and distributed equally across all IP lanes. b) Schematic depiction of
FloChIP’s mode 2: sample multiplex. One antibody solution is introduced through the common
inlet and distributed equally across all IP lanes. During IP, each IP lane is loaded separately by
introducing different samples through the individual inlets.
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3.2.2 FloChlIP reliably reproduces ENCODE data across a wide range of input cells

To benchmark the reliability of our technology and its multiplexing features as well as its overall
sensitivity, we first set out to empirically estimate the overall binding capacity of each IP lane. To
this end, we performed FloChIP in multiplexing mode 2, i.e. “antibody multiplex”, by
functionalizing the whole chip with an anti-H3K27ac antibody and immunoprecipitating different
chromatin dilutions, from 1 million down to 500 cells. Since the amount of DNA that was typically
recovered from the chip tended to be too small to be measured directly, we used the number of
amplification cycles needed to reach a given cycle threshold (Ct) as an indirect estimator of DNA
amount. Following this metric, we observed that for lower input amounts, a progressively greater
number of amplification cycles is required to reach the same Ct value (Supp. Fig. 3.2a), indicating
that below 100’000 cells, FloChIP functions in below-saturation conditions. We therefore
estimated that FloChIP’s inner surface saturates at approximately 100’000 cells. Nevertheless, we
also obtained positive and stable fold enrichment results (Supp. Fig. 3.2b) and good genomic
coverage (Fig. 3.3a) across the whole series of dilutions tested, suggesting that FloChIP can be
carried out efficiently below and above its saturation point. To obtain a genome-wide perspective
on its dynamic range, we sequenced FloChIP’s derived libraries for four dilutions, i.e. 100’000,
507000, 5°000 and 500 cells. Although the rate of uniquely mapped reads remained high for all
samples (Supp. Fig. 2¢), the fraction of reads falling into peaks (FRiP score) slightly decreased
with lowering input amounts — from over 60% for 100’000 cells, to just above 10% for 500 cells
(Supp. Fig. 2d). Nevertheless, genome-wide analysis of the obtained libraries revealed expected
accumulation of reads into regions in proximity of transcription start sites (TSS, Fig. 3.3b).
Moreover, genome-wide correlations demonstrate the high accuracy of our approach by showing
high correlation between all library pairs (between R’= 0.78 and R’= 0.98), including Encode-
FloChIP pairs among which the highest correlation was obtained for the 100’000 cells samples,
ie. R°=091.

90



a H3k27ac
ENCOD Ju, do il 4, adandabdA .l

tookeele il u il La ansesbbbiens ek
K c?!!iuJMIVJA,.,.,,.J, ‘M“L‘..m,, . .L_..;.JL.
koot , b habith, M. nodban. k.

CENPM
® 100k cells @ ENCODE
S, ® 50k cells
5k cells
@500 cells

Norm tag densit

-2000 TSS 2000

Figure 3.3. FloChIP data on cell number dilutions. a) H3k27ac profiles obtained by FloChIP
with decreasing cell numbers. For comparison, ENCODE data generated by conventional ChIP-
seq are also shown. b) Normalized read density profiles around transcription start sites for
samples of decreasing cell numbers and ENCODE. c¢) Genome-wide correlation between pairs of
samples with decreasing cell numbers and ENCODE.

After establishing 100°000 cells as the optimal trade-off point between IP-lane saturation and data
quality, we set out to evaluate the reproducibility of our approach with other genomic targets. To
this end, by using FloChIP’s mode 1: “sample multiplex”, we ChIPed in parallel 5 histone marks
(H3K27ac, H3K4me3, H3K27me3, H3K4mel and H3K9me3), going from chromatin to
sequencing-ready libraries, in just one day. By visual inspection of locus specific genomic regions,
we found that the obtained signal tracks closely resemble those of Encode (Fig. 3.4a). In addition,
to evaluate FloChIP’s performance more precisely, we determined the extent of genome-wide
correlation between FloChIP and Encode datasets. Comparison of signal intensities between the
respective datasets confirmed an overall high genome-wide correlation (H3K4me3: R’= 0.82,
H3K27ac: R’= 0.88, H3K4mel: R°= 0.91, H3K27me3: R°= 0.56, H3K9me3: R’= 0.86; Fig. 3.4b).
Moreover, comparison in terms of the FRiP score showed that, despite the ChIP input for Encode

being two orders of magnitude greater than that of FloChIP, our technology consistently yields
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highly enriched libraries, with FRiP scores between 1.07x and 4.12x higher for FloChIP compared
to Encode (expect for H3k27me3, Fig. 3.4b). These data show that FloChIP can be used to robustly

generate chromatin landscapes for histone marks with a wide input dynamic range.
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Figure 3.4. Comparison of FloChIP and ENCODE data. a) Signal tracks for H3k27ac, H3k4mel
and H3k4me3 profiles obtained by FloChIP are shown. For comparison, ENCODE data
generated by conventional ChIP-seq are also shown. b) Genome-wide correlation plots between
FloChIP (x axis) and ENCODE (y axis) data for all targets tested, i.e. H3k27ac, H3k4mel,
H3k9me3, H3k27me3 and H3k4me3. ¢) Comparison in terms of fraction of reads in peaks
(FRiP) between FloChIP and ENCODE for histone mark samples.
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3.2.3 FloChIP “sequential-IP” mode provides genome-wide information on bivalent
promoters

Conventional ChIP-seq provides information on the genome-wide localization of one specific
protein or histone modification at a time. However, DNA regulatory elements generally harbor the
interaction of several transcription factors and histone modifications in order to regulate gene
expression (Deplancke et al., 2016, Spitz et al., 2012). For instance, it has been shown that
promoters showing both repressive (H3k27me3) and activating (H3k4me3) marks are a
characteristic feature in embryonic stem (ES) cells (Mikkelsen et al., 2007, Bernstein et al., 2006).
This class of promoters have been originally named “bivalent” and are strongly associated to key
developmental genes. In order to obtain direct information on the genomic location of bivalent
promoters, a variant of the standard ChIP protocol called sequential-ChIP was developed.
Sequential-ChlIP relies on the consecutive IP of two different antigens and, as opposed to simply
intersecting two ChIP-seq datasets, provides unbiased information on bivalent regions. Despite the
advantage of sequential ChIP over standard ChIP in discerning true bivalency, its manual
involvement and impracticality have thus far prevented widespread usage. Moreover, due to the
inefficiency of the method, few studies have so far performed sequential ChIP followed by next
generation sequencing (sequential-ChIP-seq), since most of them relied on qPCR to validate
putative bivalent regions (sequential ChIP-qPCR). To address the technical limitations of the
current sequential-ChIP workflow, we exploited FloChIP’s intrinsic modularity, highly efficient
[P and multiplexing features to derive the example of an automated and miniaturized sequential-

ChIP solution (Fig. 3.5).
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IP #2

Stored chromatin is flown into the second set of IP lanes

Elution
Bivalent chromatin is collected in second set of outlets.

Figure 3.5. Operational schematics of FloChIP in sequential IP mode. a) FloChIP’s sequential IP
steps in descending chronological order for the case of H3k4me3-H3k27me3. Chromatin coming
from the first IP is collected into off-chip reservoirs connected to device. Following collection,
the control channels are actuated in a way to isolate the first IP lane from the chromatin, while
opening the path to the second IP lane. At this point, the chromatin flown into the second pre-
functionalised IP lane. Finally, the bivalent chromatin is eluted again in off-chip reservoirs.

We validated our approach by focusing on bivalent chromatin given its well-studied role in
embryonic development. Specifically, we acquired genome-wide direct co-occupancy profiles for
H3K27me3 and H3K4me3 in mouse embryonic stem cells (mESCs) in both IP directions — i.e.
H3K27me3 first followed by H3K4me3 (H3K27me3/H3K4me3) and vice versa. As mentioned
above, H3K4me3 and H3K27me3 bivalency has been originally attributed to promoters of
developmental genes, leading to the hypothesis that a bivalent state maintains genes in a poised
state (Mikkelsen et al 2007). In a previous study, it has been suggested that, based on the promoter
read coverage comparison of ChIP-seq and sequential-ChIP-seq data, promoters show three
distinct patterns of bivalency, i.e. pseudo bivalency, partial bivalency and full bivalency®'.
However, we consider these classes an artificial construct that does reflect the more fine-grained
distribution of bivalency levels. Therefore, instead of assigning promoters to specific classes, we

compute for each TSS a “bivalency score” (bvScore, Fig. 3.6b, details in the Methods section). To
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evaluate the performance of sequential FloChIP, we focused on three distinct regions which have
been previously used as proof-of-concept models by Bernstein and colleagues using ChIP-qPCR
and sequential ChIP-qPCR to illustrate the methylation status difference among 4me3-only (7cf4
TSS), 27me3-only (upstream of Hoxa3) and bivalent (/rx2 TSS) regions. FloChIP-based genomic
profiles (Fig. 3.6a, Supp. Fig. 3.3a) and bvScore distributions (Fig. 3.6b) validated these previous
findings as we observed that the Tcf4 promoter shows high H3K4me3 but low H3K27me3
enrichment, and thus very low bivalency (hvScore=0.83). In contrast, Hoxa3 was mainly marked
by H3K27me3, with low H3K4me3 and bivalency signals (bvScore=0.44). Finally, the TSS of
Irx2 showed true bivalency (bvScore=3.34), with all four genomic tracks showing high coverage.
In addition to considering specific loci, we also validated our data on a genome-wide scale by
achieving high correlation with the results obtained by Weiner et. al using their Co-ChIP system
(Supp. Fig. 3.3b). Our results are also consistent with a study by Mikkelsen and colleagues®', who
analyzed the genome-wide co-occurrence of H3K4me3 and H3K27me3 in mESCs by conventional
ChIP-seq. Their findings suggested that, at the embryonic stage, most “high-CpG” (HPC)
promoters, are associated with intervals of H3K4me3 enrichment, while the remaining ~22%
appear to be bivalent. While our analysis confirmed that the majority (80%) of HPC promoters is
marked by H3K4me3, as reflected by the green color-coded region in Fig. 3.6b, we found that the
remaining 20% of promoters is bivalent (~15%, blue color-coded region) but also marked by
mainly H3K27me3 (~5%, red color-coded region) especially for very low bivalency scores.

Finally, as an independent validation of our analysis, we performed gene ontology enrichment on
the first one thousand promoters with the highest bivalency score. As expected, we found that these
promoters are highly enriched in genes involved in a number of developmental processes, from

anatomical structure development to neurogenesis (Fig. 3.6c).
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Figure 3.6. FloChIP sequential ChIP-seq results. a) Locus-specific signal tracks for the two
individual IP libraries (H3k4me3 and H3k27me3) as well as the corresponding sequential IP
samples (H3k27me3/H3k4me3 and H3k4me3/ H3k27me3). b) Bivalency score distribution for
HCP promoters. The color-codes reflect the relative abundance of the two individual marks for
each promoter. c) Gene Ontology enrichment analysis for the first one thousand promoters with
the highest bivalency score.

Taken together, data indicates that FloChIP’s “sequential IP”” mode provides the first example of
an automated, low-input (100’000 cells) and rapid (between 5-6 hours) sequential-ChIP-seq

workflow for the study of bivalent promoters.
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3.2.4 FloChlIP is capable of ChIPing TFs in “high-throughput” mode

As mentioned in the introduction, previous attempts at improving the sensitivity and multiplexing
ability of ChIP-seq experiments were shown to perform well only in the context of histone
modifications. The reason for this is that performing TF ChIP-seq poses additional challenges as
compared to histone marks (HM) including the fact that i) TF/DNA interactions are less abundant
and less robust than HM/DNA interactions and ii) antibodies for TFs normally show lower affinity
for their epitopes as compared to HM antibodies. These challenges, whose severity varies on a
case by case basis, translate into the need for greater sample inputs and longer incubation times.
Indeed, in our experience with FloChIP, we also experienced these challenges and for most of the
TF antibodies that we tested, FloChIP’s indirect method — i.e. with 2-4 hours antibody/chromatin
pre-incubation in tubes — appeared to be the only way to obtain high quality results (data not
shown). Nevertheless, by slowly and intermittently flowing the pre-incubated antibody/chromatin
mixture on-chip, we succeeded in performing TF immunoprecipitation on only 100’000 cells,
proving for the first time the feasibility of miniaturized and automated TF ChIP-seq (Fig. 3.7).

After establishing a working protocol for TF ChIP-seq, we set out to concurrently demonstrate the
high-throughput capabilities of our device. To this end, by using half of the 64 IP lanes of the
FloChIP device, we performed MEF2-A ChIP-seq on chromatin derived from 32 different
lymphoblastoid cell lines (LCLs) (Fig. 3.7a) Before sequencing, we verified the
immunoprecitation quality of each library by qPCR (Fig. 3.7b). Amplification results indicate
consistently good fold enrichment across the 32 IP lanes (log2(Fold enrichment), mean=35.7,
stdev=1.5). Another positive aspect of FloChIP is its apparent internal normalization effect on the
immunoprecipitated DNA. To note, even without normalizing the input chromatin across the 32
cell lines, the amount of recovered DNA after FloChIP was extremely similar. In fact, all post-
ChIP DNA libraries were amplified the same number of cycles (17 PCR cycles), adding to the
convenience of our solution. We attribute this particular feature to the fact the FloChIP provides
very efficient IP and reaches saturation levels even with lowly abundant samples. When saturated,
the microfluidic device cannot [P any more chromatin and, given that the geometrical structure of
each IP lane is the same, this leads to uniform amounts of DNA recovered even from very different
samples. Subsequently, we sequenced at low coverage all 32 samples and observed variation in
the percentage of uniquely mapped reads (Fig. 3.7c, mean=42%, stdev=22%), which in turn

translated into variable genomic coverage of the libraries and variable number of peaks called (Fig.
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3.7d and Fig. 3.7e). Despite this variable coverage, we were able to assess the quality of the
generated libraries through different criteria. By visual inspection, both genomic profiles and
genome wide TSS annotation suggested that the obtained reads accumulated as expected near
transcription start sites and that the respective regions and were clearly visible in the genome
browser (Fig. 3.7d and Supp. Fig. 3.4a). Moreover, in order to analyze the genome-wide agreement
of the 32 datasets in an unbiased way, we considered a set of peaks obtained by merging all the 32
alignment files together and counted the number of reads mapped within each peak of each library.
This allowed us to observed high pairwise correlation of the 32 libraries (Supp. Fig. 3.4b) as well
as FRiP scores (Fig. 3.4f, mean=6.9%, stdev=2.7%) similar to the ones obtained for Encode with
its own data (i.e 4.7%). Finally, we examined the enrichment of the MEF2-A motif for each set of
peaks, generate individually from each sample. Despite the low number of peaks of some libraries,
the expected motif is found in all libraries with a p-value lower 0.001 (Fig. 3.4f, -log(Pvalue),
mean=9.1, stdev=6.9).
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Figure 3.7. FloChIP TFs data. a) List of the 32 cell lines used in this study. b) qPCR enrichment
for each library. The average across all libraries log2(fold change) is 5.7. c)Percent of mapped
reads for each library. The average mapping rate across all libraries is 46.6%. d) Signal tracks are
reported for each library for three different genomic regions. e) Number of peaks called for each
library (3374 peaks on average). ) FRiP score for each library (6.9% on average). g) MEF-2A
motif enrichment for each library (a —log(Pvalue) of 9.2 on average)
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3.3 Discussion

The interaction between DNA and proteins constitutes a fundamental aspect of gene regulation.
ChIP-seq allows to probe DNA-protein interactions on a genome-wide scale, thus achieving high-
throughput in terms of DNA sequence space coverage. On the other hand, for what concerns
throughput in terms of proteins and biological samples, ChIP-seq remains at the lowest level
possible, with only one protein species and one sample tested per experiment. Aggravating this
aspect, the long and manually intensive protocol prevents straightforward development towards
higher throughput. Community-led efforts like ENCODE have therefore been put in place in order
to perform ChIP-seq for a large number of proteins and cell types. However, despite the valuable
data generated, ENCODE still sampled only a small portion of a much larger combination space.
In addition to limited throughput and manual involvement, standard ChIP-seq is also restricted by
the input requirements for biological material. The requirement for at least one million cells, has
precluded ChIP-seq from performing reliably on smaller but possibly biologically relevant
samples. Understanding the impact of these limitations, several groups attempted to improve the
original protocol. However, these attempts have addressed specifically certain issues while
overlooking others. In this study, we address all major ChIP-seq limitations by introducing a new
technology, FloChIP, that allows for rapid, high-throughput, automated and sensitive chromatin
immunoprecipitation. The two core technological aspects of FloChIP are its surface chemistry and
its microfluidic architecture. The former confers FloChIP the ability to perform solid-state bead-
less IP with most off-the-shelf antibodies, while the latter provides the structural substrate for
miniaturized IP, rapid washing, multiplexing and straightforward automation.

Following IP, another distinctive feature of FloChIP is the direct on-chip tagmentation of captured
chromatin. As also shown by Schmidl et al. (Schmidl et al., 2015), on bead-bound chromatin,
direct solid-state tagmentation reduces time, cost and input requirements of ChIP experiments. To
our knowledge, this is the first time solid-state tagmentation is shown to function efficiently and
reproducibly on the walls on a microfluidic chip and, in general, on a substrate other than
microbeads.

In order to demonstrate its reliability and applicability, we performed FloChIP for a variety of
targets and samples. Initially, we aimed to empirically gain insights into FloChIP’s dynamic input
range. By obtaining high H3k27ac qPCR fold enrichment and high correlation with the respective
ENCODE data for inputs ranging between 10° and 500 cells, we show that FloChIP can be used
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across a wide range of inputs. Next, as a more comprehensive benchmark, we performed FloChIP
for four more histone marks, namely H3k27me3, H3k4me3, H3k4mel and H3k9me3. Despite the
much lower input used for FloChIP, our results showed high correlation with ENCODE data and
superior FRiP scores, thus advocating the robustness and efficiency of our approach. Next, by
designing pair-wise interconnect IP lanes, we show that the chromatin eluted after the first IP step
can be easily re-directed into a second IP lane, therefore achieving straightforward sequential
immunoprecipitation. We validated FloChIP’s sequential IP by recapitulating previously
published qPCR and sequencing data on bivalent promoters in mouse embryonic stem cells. To
the best of our knowledge, this is the fastest (1/2 day) and most sensitive (100’000 cells) example
of sequential ChIP-seq. Moreover, this is the first automated, microfluidic and bead-less example
of sequential ChIP-seq. Finally, we sought to simultaneously demonstrate FloChIP’s applicability
on TFs and throughput by ChIPping MEF-2A from 32 different lymphoblastoid cell lines. Overall,
our data demonstrate that FloChIP is a robust, sensitive and high-throughput all-in-one ChIP-seq
solution. Given its advantages and wide applicability, we believe FloChIP has great promise for
establishing itself as a widely adopted tool for the study of genome-wide protein-DNA

interactions.
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3.4 Methods

3.4.1 Chromatin preparation

Cell fixation

GM12878 cells (5-10 millions) were harvested, washed once with PBS and resuspended in 1ml
crosslinking buffer (1% PFA in PBS) for 10 minutes shaking. Crosslinking was stopped by adding
50ul of 2.5M glycine and shaking for other 5 minutes. Fixed cells were then washed twice with
ice-cold PBS, pelleted, deprived of the supernatant, snap frozen and stored and -80°C.

Lysis and sonication

The frozen cell pellet was resuspended in ice-cold PBS at 4°C agitating for 30 minutes, spun at
1000g for 5 minutes, resuspended in lysis buffer (50 mM Hepes pH 7.8, 140 mM NaCl, 1mM
EDTA, 0.5% NP40, 10% glycerol, 0.25% Triton and freshly added protease inhibitor), incubated
with mild agitation for 10 minutes, spun for 5 minutes at 1000g, resuspended in nuclei wash buffer
(20 mM Tris-HCl1 pH 8.0, 200 mM NaCl, 1 mM EDTA, 0.5 mM EGTA and freshly added protease
inhibitor), incubated with mild agitation for 10 minutes, spun for 5 minutes at 1000g and
resuspended in sonication buffer (20 mM Tris-HCI pH 8.0, 200 mM NaCl, 1 mM EDTA, 0.5 mM
EGTA, 0.5% Na-Deoxycholate, 0.5% N-laurosylsarcosine and freshly added protease inhibitor).
Nuclei were sonicated on a covaris E220 machine with the following settings: 140W intensity, 5%
duty factor and 200 bursts/cycle. Chromatin was then aliquoted (~100°000 cells/aliquot) in PCR

tubes and snap frozen until ChIP.

3.4.2 FloChIP

Device fabrication

Microfluidic designs were generated using Tanner L-Edit and fabricated using multilayer standard
soft lithography (Thorsten et al., 2002) at the EPFL center for microtechnology. Briefly, designs

were first transferred to chrome masks using a VPG200 pattern generator (Heidelberg
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Instruments). Subsequently, microfluidic molds were assembled on silicon wafers with SUS
photoresist for the control layer and AZ9260 positive resist for the flow layer using a SUSS
ACS200 Gen3 system (SUSS MicroTec). Microfluidics chips were fabricated by first separately
casting PDMS onto the SU8 and the AZ9260 wafers with two different PDMS/curing agent ratios
(20:1 and 5:1, respectively), partially curing for 30 minutes at 80°C, peeling off the PDMS from
the AZ9260 wafer and aligning it to the SU8 wafer in order the reconstitute the wanted pattern.
The chips were finally fully cured at 80°C for one hour and half, peeled off, holed and plasma-
bonded to clean glass slides or to PDMS-coated petri dishes.

Experimental setup

Automated control of the FloChIP experimental workflow is obtained by a system of components
including: 1) MATLAB software, 2) a standard laptop, 3) a WAGO fieldbus controller (ModBus
750-881), 4) FESTO 3/2 way 24V miniature solenoid valves, 5) compressed air building supply
(Supp. Fig 3.1) and 6) a PCR machine. Tygon tubing and western blot tips are used to interface
the microfluidic chip and the solenoid valves.

FloChlIP is, in essence, a method consisting of the sequential introduction of different reagents into
a custom-designed microfluidic chip. This sequence of reagents can be programmed with simple
scripting commands which are, in turn, translated into sequences of solenoid valve actuations and
releases. The concerted action of the solenoid valves, belonging to both the control layer and the
flow layer of the chip, realizes in an automated fashion the required surface chemistry,
immunoprecipitation and tagmentation reactions. On-chip temperature control is achieved by
placing the microfluidic device on top of a PCR machine with flat heat-block and starting a pre-

programmed temperature sequence in sync with the MATLAB script.

FloChIP operation

A FloChIP experiment starts pre-loading the control lines with distilled water and activating all
valves (at a pressure of 25-30 PSI for the control lines and 2.5-5 PSI for the flow valves).
Subsequently, all the reagents required for the surface chemistry (i.e. biotin-BSA, neutravidin,

PBS and biotin-protein A/G, antibodies), IP (chromatin), washes (low-salt, high-salt and LiCL
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buffers), tagmentation (Tn5 buffer) and elution (SDS buffer), are loaded into pipette tips and
inserted into the inlets of the microfluidic device. At this stage, all valves are closed and there is
no possible cross-talk between any of the reagents above. Immediately after completing the
insertion of the tips, the automated protocol is launched by running the respective script. The
protocol entails, in sequential order, the following steps: 20 minutes of BSA-biotin (2mg/ml), 30
seconds of PBS wash, 20 minutes of Neutravidin (Img/ml), 30 seconds of PBS wash, 20 minutes
of biotin-protein A/G (2mg/ml) and 30 seconds of PBS wash. Depending on whether direct or
indirect ChIP is performed, immunoprecipitation is carried out in two different ways. (direct ChIP)
or loading of the pre-incubated antibody/chromatin mix (indirect ChIP).

For direct ChIP, following biotin-protein A/G, the antibody or antibodies of choice are loaded on
chip for 20 minutes. Moreover, within direct ChIP, it is possible to operate the chip in two distinct
multiplexing modes, either antibody multiplex, in which microvalves are actuated in such a way
that every IP unit is functionalized with a different antibody, or sample multiplex, in which all IP
units are functionalized with the same antibody. The antibodies used in this study were (Abcam
antibodies: anti-H3k27ac ab4729, anti-H3k4me3 ab8580, anti-H3k4mel ab8895, anti-H3k9me3
ab8898, anti-H3k27me3 ab6147; Santa-cruz antibodies: anti-PU.1 sc-390405 and anti-MEF2a
anti-MEF2A sc-17785). Following antibody loading and quick PBS wash, chromatin samples are
loaded on chip by opening and closing the respective microvalves. These ON/OFF cycles, usually
of 2 or 5 minutes, are performed in order to ensure that the chromatin spends enough time inside
the micropillar array for the epitopes to be efficiently recognized by the corresponding antibody.
For indirect ChIP, the antibody and chromatin are incubated for 2 or 4 hours in a PCR tube prior
the loading on-chip. During the IP step, the antibody/chromatin mixes are loaded into the chip in
separate IP units by utilizing the same ON/OFF cycles as mentioned above.

Both for direct and indirect ChIP, the overall immunoprecipitation is performed at room
temperature time spans between 30 and 60 minutes, depending on the amount of chromatin mix to
be processed.

Following immunoprecipitation, rapid salt washes are performed to eliminate non-specific
binding: 5 minutes of low-salt buffer (20 mM Tris pH 8.0, 150 mM NaCl, 2mM EDTA, 1%
TritonX-100, 0.1% SDS), 5 minutes of high-salt buffer (20 mM Tris pH 8.0, 500 mM NaCl, 2mM
EDTA, 1% TritonX-100, 0.1% SDS) and 5 minutes of LiCl buffer (20 mM Tris pH 8.0, 250 mM
LiCl, 2mM EDTA, 1% NP40, 1% Na-Deoxycholate).
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Following washes, Tn5 buffer (10 mM Tris pH 8.0, 5 mM MgCl,) is slowly flown on-chip at 37°C
for 45 minutes. This step ensures the complete tagmentation of the immunoprecipitated chromatin.
Following Tn5 buffer and a 5-minutes low-salt wash to remove excess adapters, SDS buffer (10
mM Tris pH 8.0, 200 mM NaCl, ImM EDTA, 1% SDS) is loaded on-chip at 65°C for 10 minutes
in order to elute the antibody-bound chromatin from the device. The eluate is independently
collected from each IP lane into PCR tubes and decrosslinked at 65°C for 4 hours. Following

decrosslinking, DNA is purified in Qiagen EB buffer using Qiagen MinFElute purification kits.

FloChIP operation for sequential ChIP

For sequential ChIP, instead of eluting the chromatin in SDS buffer, elution is performed by
saturating the antibody with a given elution peptide (ab1342 for H3k4me3, ab1782 for H3k27me3
and ab24404 for H3k27ac, Abcam — Peptide elution buffer: 20ul of IP buffer, 2ug of an antibody-
specific peptide). This way, the eluted chromatin from a given IP lane can be directly re-
immunoprecipitated in the subsequent IP lane. Following elution, the chromatin is collection into
a western-blot tip inserted in the specific chip outlet. Subsequently, by closing the microvalves
connecting the first [P lane and the outlets while opening the ones connecting the outlet and the
second IP lane, the chromatin is re-flown on-chip for the second immunoprecipitation. This second
immunoprecipitation is also performed using ON/OFF cycles of 2 minutes each. The total time for
the second ChIP is also between 30 and 60 minutes. Finally, after all the chromatin has been re-

flown on-chip, the salt washes are repeated and elution is achieved using the standard SDS buffer.

3.4.3 ChIP-qPCR

Following FloChIP, qPCR was used to evaluate IP efficiency prior to next generation sequencing.
gPCR was performed on a StepOnePlus™ (primer sequences: H3k27ac FW
CCACCCTGCACTTACGATG, H3k27ac RV TGAGCTCCCTGTCTCTCCTC, H3k4me3 FW
CGGGGGCTGCCCAAAGTTTCA, H3k4me3 RV ATTGGGGAAATTGCAGAGCGAGC,
H3k27me3 FW, H3k4mel FW, H39me3 FW GTCCGGGTCTGACTGTCTTG,
H3k27me3 RV, H3k4mel RV, H39me3 RV ACTGCACTGGGTTCACGAAG). Each qPCR
reaction was composed of 10ul Applied Biosystems™ PowerUp™ SYBR™ Green Master Mix,

105



0.8ul of a 10uM forward primer solution, 0.8ul of a 10uM reverse primer solution, 2ul of DNA
and water to a final volume of 20ul. The cycling program was the following: 2 minutes at 50°C, 2
minutes at 95°C and [5 seconds at 95°C, 20 seconds at 60°C]x60 cycles. Fold enrichment values
were obtained as ratios between the percent of input of the expected positive and negative regions

genomic regions.

3.4.4 NGS Library preparation

NGS library were prepared by mixing 20l of purified DNA with 2.5ul of forward Nextera adapter,
2.5ul of reverse Nextera adapter, 32.5ul of NebNext master mix, 0.5ul of 1x SYBR green and
water to 65ul. First, 5 pre-amplification cycles are run as follows: 5 minutes at 72°C, 30 seconds
at 98°C and [10 seconds at 98°C, 30 seconds at 63°C, 60 seconds at 72°C]x5 cycles. Subsequently,
15ul out of the original 65l are separated and amplified for 20 more cycles in order to estimate
the optimal number of amplification cycles: 30 seconds at 98°C and [10 seconds at 98°C, 30
seconds at 63°C, 60 seconds at 72°C]x20 cycles. Finally, the remaining 50ul were amplified for N
cycles, where N is the rounded up Ct value determined in the previous reaction.

DNA was size selected using AMPure XP beads in order to obtain a size distribution between
150bp and 500bp. Concentrations were measure with Qubit (ThermoFisher), size distribution was
profiled with Fragment analyzer (AATI) and libraries were sequenced on an Illumina NextSeq

500.

3.4.5 FloChIP reads mapping and processing

Sequencing reads were mapped to the human (hg38 and hg19) and mouse (mm10) genomes using
STAR (Dobin et al., 2013) with default parameters. Uniquely mapped reads were used to call peaks
using HOMER command findPeaks.pl with the appropriate flag, i.e. —histone for histone marks
and —factor for transcription factors. FRiP scores we calculated using HOMER’s command
annotatePeaks.pl and divided the total number of reads that fall within peaks by the total number
of mapped reads. Correlation plots were generated using annotatePeaks.p! on a common peak file,
either Encode’s peak files or, alternatively, the overlapping set of peaks between Encode and

FloChIP datasets.
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3.4.6 Bivalency score calculation

The bvScore is assigned to each promoter and is intended to take into account both the intersection
between two ChIP-seq datasets as well as the agreement between the respective sequential-ChIP-
seq datasets. Accordingly, the bvScore can be expressed as the product of the co-occurrence score
(cScore), which measures the relative coverage of the two ChIP-seq tracks, and the agreement
score (aScore), which measures the relative coverage of the two sequential-ChIP-seq tracks. We
define the cScore as (nmry+tnmriz)/(nmry-nmrs7;), where nmry; and nmr;7; are the normalized
number of mapped reads in promoter i for H3K4me3 and H3K27me3, respectively. The higher the
value of the cScore for a promoter, the more similar is the occupancy of the two marks on that
promoter. A positive cScore indicates prevalence of H3K4me3 while a negative cScore indicates
prevalence of H3K27me3. We define the aScore as the absolute value of
(mmr g7t nmr27)/(nmr 42 7-nmr27.4;), where nmry7; and nmr,z,.4; are the number of mapped reads
in promoter i for the two sequential-ChIP-seq experiments. The higher the aScore of a promoter,
the more similar is the coverage of the two sequential-ChIP-seq datasets on that promoter. Finally,
the bivalency score is thus defined as bvScore=abs(cScore*aScore) or equivalently
bvScore=log(abs(cScore*aScore)).

Gene ontology analysis was performed using the online tool http://geneontology.org/page/go-

enrichment-analysis.
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3.5 Supplementary Figures
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Supplementary Figure 3.1. FloChIP’s setup schematics. a) FloChIP’s processing phases in
descending chronological order in the case of chromatin/antibody pre-incubation. b)
Fluorescence micrographs showing the requirement for neutravidin and protein A/G in the
correct formation of FloChIP’s totem. ¢) Top-view schematic of the medium-throughput 8-units
FloChIP device, flow channels are in blue and control channels in red. d) Schematic of
FloChIP’s electronic control system. e) Example of a COMSOL simulation used to optimise the
device architecture. f) Microfluidic 64-outlets multiplexer for straightforward pressure
distribution into FloChIP’s device. g) Microfluidic 16-outlets multiplexer.
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Supplementary Figure 3.2. Amplification and enrichment of FloChIP on histone marks.

a) Amplification cycle statistics for samples of decreasing cell number, from 1 million to 500
cells. b). Fold enrichment statistics for samples of decreasing cell number, from 1 million to 500
cells. ¢) Mapping rate for samples of decreasing cell number, from 100’000 to 500 cells. d) FRiP

score for samples of decreasing cell number, from 1 million to 500 cells. e) Normalized read

density profiles around transcription start sites for H3k4me3, H3k27ac and H3k4mel. f) Fold
enrichment statistics for histone mark samples, namely H3k4me3, H3k27ac, H3k27me3,
H3k9me3 and H3k4mel.
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Supplementary Figure 3.3 FloChIP’s sequential IP results recapitulate previously published
data. a) Signal tracks for individual and sequential IP libraries reported for the same loci
originally shown in the seminal work of Mikkelsen and colleagues. b) Correlation results

between FloChIP and the previously publishd Co-Chip data.
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Supplementary Figure 3.4. Genome wide characterization FloChIP’s of TF data. a) Normalized
read density profiles around transcription start sites for all sequenced libraries (in red the average

profile). b) Correlation results between all pairs of sequenced libraries
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4 Conclusions and outlook

4.1 Research rational

Living organisms replicate, develop and function according to rules encoded in their own genome.
These rules self-express in the form of gene regulatory networks, which consist of a vast amount
of physical interactions between protein DNA and RNA. The sheer amount of these interactions,
their diversity, their context-specificity, their microscale and transient nature constitute a major
obstacle towards deciphering the underlying operational principles of the genome. The research
community tackled this daunting challenge by continuously and rapidly developing new

technologies to reverse-engineer the complexity of gene regulatory networks.

The first wave of technological innovation addressed the task of efficiently and cost-effectively
identifying the “nodes” of gene regulatory networks, i.e. listing the functional elements of the
network such as proteins, DNA regulatory regions and RNA species. This approach culminated in
a plethora of new tools, among which on of the most notable example is perhaps next generation
sequencing (NGS). Introduced commercially in the mid-2000s, NGS allowed researchers to
sequence DNA faster, cheaper and at a much larger scale than ever before. As an historical
perspective, it is noteworthy to compare the duration and cost of the Human Genome Project
(1990-2003, $3 billion) with today’s NGS-enabled standards (one day, <$5°000) to sequence a

single human genome.

With the establishment of next generation sequencing as the technological gold standard for DNA
sequencing, the focus of technical development shifted towards finding efficient ways to
characterize the interaction between DNA and the other constituents of gene regulatory networks,
i.e. RNA and proteins. Several of the resulting technologies leveraged on the throughput offered
by NGS and are for this reason referred to as “NGS-based”. These technologies focused on the
isolation of molecular complexes containing genomic (or random) DNA, while relying on NGS

for downstream sequencing, in order to obtain so-called genome-wide profiles.
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As opposed to the first wave of technical developments, whose main achievements are now
consolidated, privatized and commercially successful, the second stage of innovation is still in its
infancy. For instance, the most adopted “first-wave” NGS solution is embodied by the Illumina
sequencing instruments. They come in the form of workstations onto which sequencing cartridges
are loaded and run. They are standardized, microfluidic-based, user-friendly and extremely high-
throughput. One the other hand, the most adopted solutions belonging to the new wave of advances
come for the most part in the form by publicly-shared laboratory protocols. For instance, even if
ChIP-seq has been instrumental for the community — from classifying functional of DNA elements
(ENCODE Project Consortium, 2012) to elucidating the impact of genetic variation on gene
regulation (Deplancke et al., 2016) — it remains a poorly standardized, manually intensive and low-

throughput approach.

In this thesis work, I report development and optimization of two microfluidic tools, SMiLE-seq
and FloChIP, which complements standard macroscale techniques for the characterization of
protein/DNA interactions in vitro and in vivo, respectively. In both instances, research efforts were
tailored towards offering superior alternatives to existing methods according distinct although
equally important metrics: user-friendliness, automation, throughput and sensitivity. In other
words, [ aimed to develop technologies that follow a similar “innovation trajectory” as the one that

led to next generation sequencing.

I demonstrate the functionalities of the SMiLE-seq and FloChIP by first benchmarking them
against publicly available data and secondly by providing examples of how their engineered

microfluidic features render them superior alternatives to existing solutions.

4.2 SMiLE-seq summary

The initial motivation was that a large portion of the DNA-binding specificity of individual
transcription factors was yet uncharacterized. Although established methods like protein binding
microarrays (Berger et al., 2006) and HT-SELEX (Jolma et al., 2010) greatly expanded the list of
known in vitro human TF-DNA specificity (Jolma et al., 2013), their difficulty in completing the
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list left room for alternative or complementary solutions. We reasoned that the resistance of some
factors towards in vitro characterization had to do with their inherent perhaps weak and/or transient
DNA-binding modes. We therefore considered devising an alternative based on the MITOMI
principle (Maerkl and Quake, 2007) which has been shown to be able to mechanically trap
TF/DNA interactions with great sensitivity.

By capitalizing on our knowledge of microfluidics and molecular biology, we combined features
of both MITOMI and HT-SELEX in order to design a novel NGS-based experimental framework
capable of characterizing the binding specificities of TFs over a wide affinity range and with
minimum reagent/sample consumption. We first proved the feasibility of our approach be
recapitulating the binding specificities of 58 previously characterized factors coming from
different species (6 Drosophila, 12 mouse and 40 human) and TF families. Next, we showed that
SMiLE-seq data holds accurate information on the DNA binding energy landscapes indicating that
microfluidic-based washing of unspecifically-bound DNA leads to superior ligands enrichment.
Finally, we proceeded to address the challenge of obtaining DNA-binding motifs for those factors
that so far resisted characterization by both HT-SELEX and PBMs.

The majority of these uncharacterized factors belong to the family of kriippel-associated box zinc-
finger proteins (KRAB-KZFPs), a large family of ~350 transcription factors. Although, the exact
function of several KRAB-ZFPs is poorly understood, a great portion of this TF family is
implicated in repressing transposable retroelements during embryonic development. Moreover, it
is known that the DNA-binding of certain KRAB-zinc fingers is methylation-specific, e.g. ZFP57
is known to selectively bind the methylated hexanucleotide TGCCGC. Therefore, in order to
simultaneously increase the likelihood of deriving motifs and add another dimension to our study,

we considered introducing in our assays methylated DNA libraries as well.

Given the theoretically large number of assays planned (700, i.e. 350 with normal and methylated
DNA), we first decided to test the efficiency of SMiLE-seq on a small sample test and later opted
for the re-design of the original workflow towards a version with higher throughput and sensitivity.
Briefly, we achieved higher through modifying the architecture of the previous SMiLE-seq device

and the sequence of the input DNA libraries. As opposed to 8 factors per experiment and one
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library per sequencing run, the new system could host 32 parallel assays per chip while allowing
a theoretical multiplexing ability of hundreds of libraries per sequencing run. To put this in
perspective, considering that the average waiting time for sequencing SMiLE-seq libraries is ~1
week, the original SMiLE-seq would have processed the 700 KRAB-ZFPs assays in more than 1.5
years. On the other hand, the new SMiLE-seq version (SMiLE-seq v2.0) eliminates the sequencing
waiting time as an experimental bottleneck. Instead, the assay delay becomes solely dependent on
the throughput of microfluidic device. Considering an experiment per day, the new 32-factor

SMiLE-seq device can potentially complete the 700 assays in 22 days.

With SMiLE-seq 2.0 we performed 202 assay — i.e. 101 factors for both methylated and non-
methylated DNA — and retrieved motifs for 43 KRAB-ZFPs. These motifs closely match the motifs
obtained by analysing recently published ChIP-exo data of the same factors. By integrating ChIP-
exo and SMiLE-seq with in silico predictions we demonstrate that the major limitation of existing
tools is the ability to discern which zinc fingers contribute to DNA binding in a given zinc finger
array. Moreover, for all tested KRAB-ZFPs, we propose the subset of zinc fingers that actually
determines the DNA binding specificity of the factor. Further experimental work is needed to

validate our results.
4.3 FloChIP summary

For FloChIP, the scope of the project was to explore ways to address the major ChIP-seq
limitations with one comprehensive solution. After years of development, FloChIP now provides
rapid, high-throughput, automated and sensitive chromatin immunoprecipitation.

This was achieved by developing in parallel two aspects that together confer FloChIP its
functionalities: its surface chemistry and its microfluidic architecture. The former enables solid-
state bead-less IP with any off-the-shelf antibodies, while the latter provides the structural substrate

for miniaturized IP, rapid washing, multiplexing and straightforward automation.

Beyond IP, another important feature of FloChIP is the direct on-chip tagmentation of captured

chromatin which reduces time, cost and input requirements of ChIP experiments.
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In order to demonstrate its reliability and applicability, we performed FloChIP for a number of
targets and samples. Initially, we obtained high H3k27ac qPCR fold enrichment and high
correlation with the respective ENCODE data for inputs ranging between 10° and 500 cells, thus

demonstrating that FloChIP can be used across a wide range of inputs.

Next, we performed FloChIP for four more histone marks — i.e. H3k27me3, H3k4me3, H3k4mel
and H3k9me3. Despite the much lower input used for FloChIP, we demonstrate high correlation
with ENCODE data and high FRiP scores, which proves the robustness and efficiency of the
technology.

Subsequently, by connecting the IP lanes in a pair-wise fashion, we show the feasibility of
sequential ChIP-seq on-chip. We validated FloChIP’s sequential IP by recapitulating previously
published gPCR and sequencing data on bivalent promoters in mouse embryonic stem cells. Our
positive results demonstrate the feasibility of a very fast (6 hours) and sensitive (100’000 cells)
sequential ChIP-seq. Finally, we sought to simultaneously demonstrate FloChIP’s applicability on
TFs and throughput by ChIPping MEF-2A from 32 different lymphoblastoid cell lines.

Overall, we expect that both SMiLE-seq and FloChIP will contribute to the characterization and

understanding of protein/DNA interactions in the context of gene regulatory networks.
4.4 Outlook

During a long and intense explorative journey such as four years of hands-on and heads-down
research, it is easy to get lost in the details of a project and lose track of the so-called “big picture”.
When it’s finally the time to stop experiments, it becomes an interesting mental exercise to ask:
what’s next? What follows is my personal view on different aspects of the near and not so-near

future of biological research.

4.4.1 SMiILE-seq and the specificity of transcription factors

In the immediate future, it is straightforward to imagine that the SMiLE-seq, together with HT-
SELEX and PBM will be employed to obtain the DNA-binding specificities of the remaining ~500
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human transcription factors. Depending on the research interest, dedicated funding and adoption

of the respective technologies, it is likely that the TF/DNA specificity cataloguing will be extended

to other species as well, e.g. mouse, Drosophila, C. elegans, the zebrafish and possibly other exotic

species.

Once the DNA-binding specificities of most individual TFs are known, the climb uphill will only

have started. I believe the main following challenges will be:

understand how the formation of TF/protein complexes, i.e. co-factor binding,
dimerization, trimerization etc. — will induces changes in the binding specific of individual
TFs. A number of groups already reported indications which support the ‘variable
specificity’ of TF-complexes (Slattery et al., 2011, Jolma et al., 2015) but the systematic
examination of all possible dimers has not been conducted yet. Moreover, higher order
oligomers haven’t been tested yet because the shear number of possible combinations
surpasses by far the capabilities of existing techniques.

characterize the affinity landscapes for all TFs. Specificity is only one side of the coin and
the quantification of the affinity of each TF to its target DNA sequences (and variants
therein) will be equally important to characterize. This thorough biophysical
characterization will be extremely important towards the accurate mathematical modeling
of regulatory networks, their rewiring and their de novo engineering. In order to achieve
this, one could envision large-scale systematic MITOMI-like assays. Unfortunately, the
current state of MITOMI and other techniques does not allow yet to perform such large-
scale studies in reasonable times/costs.

design structural and computational tools the accurately model TF/DNA interactions. As
data keeps being accumulated, a foreseeable consequence is the development of ever more
accurate models that generalize well the specificity and affinity of TFs to DNA. These

models will again be instrumental in the process of digitizing biology.

4.4.2 FloChIP and experimental biology

As mentioned before, FloChIP constitutes an attempt to integrate on a single microfluidic chip

several steps of the long and tedious ChIP-seq technique. This miniaturization came with intrinsic

advantages such as ease of automation, sensitivity and speed. I believe these qualities will translate
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into wide adoption of FloChIP and, with it, wider adoption of ChIP-seq in general. In the post-
genomic era, this will be crucial towards understanding the mechanisms of how genetic variants
and environmental factors affect chromatin state and gene expression. Nevertheless, FloChIP’s
development is only just beginning. The ultimate goal is to minimize manual operation and
maximize reproducibility. For example, FloChlIP still requires chromatin that has been prepared
manually, this introducing variability inter-experiment and inter-operator variability. FloChIP
therefore still needs to be developed further in order to become a complete solution. Nevertheless,
my experience with FloChIP so far proved me that it is possible to take an established multi-step
experimental protocol, miniaturize it and thus obtaining a series of advantages over the current
solution. In light of this I wonder: how many existing laboratory protocols exist that suffer from
the same drawback/limitations as ChIP-seq that have not been innovated yet? From relatively new
methods like RNA-seq to old-school protocols such DNA purification and PCR. Surprisingly,
several examples can be found in the literature of microfluidic implementations of the above
mentioned techniques. However, very few of them has been widely adopted. As a result, most
common lab practices remain manual, slow and low-throughput. The biggest challenge for the
future is then to understand the underlying reasons of the resistance of experimental biology to
widespread automation and miniaturization, address them and move small but steady steps towards
complete miniaturization and automation of experiments. Before digitizing biology, we need to

digitizing experimental biology.
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Resolving the DNA-binding specificities of transcription factors (TFs) is of critical value for
understanding gene regulation. Here, we present a novel, semiautomated protein-DNA
interaction characterization technology, selective microfluidics-based ligand enrichment
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