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Advancing climate science with knowledge-discovery through
data mining
Annalisa Bracco1,2, Fabrizio Falasca1, Athanasios Nenes1,3,4,5, Ilias Fountalis6 and Constantine Dovrolis6

Global climate change represents one of the greatest challenges facing society and ecosystems today. It impacts key aspects of
everyday life and disrupts ecosystem integrity and function. The exponential growth of climate data combined with Knowledge-
Discovery through Data-mining (KDD) promises an unparalleled level of understanding of how the climate system responds to
anthropogenic forcing. To date, however, this potential has not been fully realized, in stark contrast to the seminal impacts of KDD
in other fields such as health informatics, marketing, business intelligence, and smart city, where big data science contributed to
several of the most recent breakthroughs. This disparity stems from the complexity and variety of climate data, as well as the
scientific questions climate science brings forth. This perspective introduces the audience to benefits and challenges in mining
large climate datasets, with an emphasis on the opportunity of using a KDD process to identify patterns of climatic relevance. The
focus is on a particular method, δ-MAPS, stemming from complex network analysis. δ-MAPS is especially suited for investigating
local and non-local statistical interrelationships in climate data and here is used is to elucidate both the techniques, as well as the
results-interpretation process that allows extracting new insight. This is achieved through an investigation of similarities and
differences in the representation of known teleconnections between climate reanalyzes and climate model outputs.
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INTRODUCTION
Many of the greatest scientific challenges involve problems of vast
complexity and interconnectedness that transcend traditional
disciplinary boundaries. Climate science is one such example,
requiring an interdisciplinary approach to advance scientific
knowledge. The fast growing availability of observations from
remote sensing platforms (space-borne, aircraft-based and
ground-based), and detailed outputs from global-scale earth
system models provide an overwhelming flow of spatio-temporal
data that far exceeds data analysis capacity. While the develop-
ment of statistical tools applied to climate fields is mature, the big
data–induced revolution seen in health-care, financial banking,
advertising or biology have yet to be duplicated in climate
science. In the last decade, however, several groups attempted to
apply the so-called Knowledge-Discovery through Data mining
(KDD)1,2 to climate. KDD refers to the overall process of using data
mining algorithms that autonomously identify patterns from
various data sources to find, extract and identify what is qualified
as knowledge, and interpret the outcomes. It begins with
choosing the tools for the data mining steps, as well as the
preprocessing steps, and concludes with the evaluation and
interpretation of the patterns resulting from the chosen algo-
rithms. The KDD process, therefore, while encompassing data
mining, adds several important steps.
Here we discuss key big-data challenges facing climate science,

with an overview of recent efforts to apply KDD to this field, and
we provide concrete examples from ongoing research. We focus
on knowledge discovery using complex network analysis3 coupled

to dimensionality reduction techniques with the objective of
extracting and analyzing statistical interrelationships in fields of
climatic interest.

COMPLEX NETWORK ANALYSIS AND CLIMATE SCIENCE
It is widely recognized that anthropogenic emissions contribute to
the observed rates of temperature increase, as ratified at the 2015
Paris Agreement.4 The fundamental scientific mechanism behind
greenhouse gas-induced climate warming is straightforward and
indisputable but many uncertainties remain on the extent,
patterns, and implications of changes in climate fields over space
and time. We have reasonably constrained global mean trends
and rates of changes of heat and carbon dioxide reservoirs in the
ocean, atmosphere and land over the past forty years, but we
struggle to provide robust regional assessments, diagnose how
modes of natural climate variability and global warming are
interlinked, deduce ecosystem responses, or infer how climate
change may affect weather events.5–11 The spatial and temporal
scales involved in climate-relevant interactions are daunting. For
example, greenhouse gases and aerosol modify the millimeter-
scale size of cloud droplets and ice crystals, which in turn
modulates the ability of clouds reflective sunlight and planetary
heat, with global feedbacks on temperature and precipitation,12–14

while decadal or longer-scale climate changes are felt by society
through changes in the character of weather-like extreme
events.15–17 A second challenge is associated with the inadequacy
of the available observing system to sample thoroughly the
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spatio-temporal scales on which climate varies. Remote sensing
platforms have revolutionized climate science, but satellite records
effectively start in the late 1970s, while technological challenges
hamper sensing key areas of climatic interest such as high
latitudes or the deep portions of the oceans.18–20

As in other areas of science and engineering, numerical models
have become indispensable for understanding climate science. In
the past thirty years, they have evolved to account for an
increasing number of physical, chemical, and biological processes.
The end result is better numerical simulations with codes that use
finer grids and include more interacting processes. Climate
modelers, however, are faced by challenges that include the
multiplicity and nonlinearity of the processes contributing to
the climate system, the high-dimensionality of the problem, and
the computational requirements.13,21 Despite substantial improve-
ments in the representation of large-scale averages, climate
models remain difficult to constrain at regional scales. The
uncertainties about linkages between subgrid processes, regional
scale changes and large scale dynamics in both observations and
model outputs hamper the confidence in regional-scale attribu-
tion of on-going changes and future projections.13,22–24

Evaluating climate datasets and model outputs in an efficient
and robust way, while gathering information about linkages
between fields, geographical regions, or time intervals is therefore
a priority. This can be achieved through complex network analysis
which premise is that the underlying topology or network
structure of a system has a strong impact on its dynamics and
evolution. Applications to climate science have received growing
attention since 2004,25 when graph theory was applied to the
investigation of global geopotential height. Network analysis has
been since applied to studies of numerous climate modes,26–31 of
atmospheric and oceanic circulation drivers,32–35 of precipitation
in different time periods,36–38 and of Rossby wave dynamics.39

Generally networks are constructed as undirected, binary
graphs. A graph is a set of vertices or nodes that, in the case of
climate variables, represent geographical locations and, for
gridded data-sets, grid points. The edges or links between the
nodes are bidirectional (undirected), commonly do not carry
information about the weight of the links (binary), and are inferred
using simultaneous linear or non-linear similarity measures such as
Pearson correlation, mutual information, or phase synchroniza-
tion.27,29,39,40 Often, two nodes that are not linked according to
the chosen criterion have their correlations deleted or pruned. In
the case of climate fields, however, cell-level pruning can cause
loss of robustness in the network inference, and methods that
adopt pruning should not be used for intercomparison stu-
dies.41,42 Community detection (clustering) algorithms are com-
monly used to reduce the dimensionality of graphs.43

Recent developments in network analysis applications to
climate have focused on three issues. First, it has been noted
that detecting communities in climate variables requires separat-
ing between dynamical links and autocorrelations44,45 because of
teleconnections between non-adjacent regions and autocorrela-
tions over different spatio-temporal scales. Second, multivariate
networks46 and networks with links that account for lagged
interactions38 have been developed to explore interactions
between different variables and characterize time-lagged relation-
ships. Finally, new methodologies that uncover directed or even
causal relationships have been proposed.47,48

δ-MAPS
Here we focus on a network-based methodology, δ-MAPS, that
we developed to robustly compare spatial consistent gridded
fields. Our goal is to exemplify how data mining methods can
assist with discovering important linkages, or their absence, in
climate data.

δ-MAPS identifies the spatially contiguous components of a
system, or domains, that contribute in a homogenous way to the
system’ dynamics, and then infers their connections accounting
for autocorrelations. It refines a previously proposed methodol-
ogy41,42 and allows for overlapping domains and weighted links at
a temporal lag, both relevant to climate fields. After the domains
are identified, δ-MAPS infers a functional network between them
by examining the statistical significance of each lagged cross-
correlation between any two domains, calculating a range of
potential lag values for each edge, and assigning a weight that is
based on the covariance of the signal of the corresponding two
domains. While a temporally ordered correlation does not imply
causation, it provides information on the plausible directionality of
interactions. Finally each domain has a ‘strength’ calculated as the
sum of the absolute weights of all links ignoring their
directionality. The greater the strength, the larger is the domain
influence on the system at the temporal scales considered.
Details about the methodology are provided as a Supplemen-

tary file (Supplementary Methods) and illustrations of advantages
of δ-MAPS compared to standard techniques such as principal
component analysis, clustering and community detection are
presented in Fountalis et al.49

We present a sample of networks from two global monthly sea
surface temperature (SST) reanalysis datasets, the HadISST50 and
COBE-SST2,51 from the fractional ice content within clouds from
the MERRA-2 project52 available from 1980 onward and corre-
sponding variables from a representative member of the
Community Earth System Model (CESM) large ensemble.53 The
resolution is 1.25°x1° and the focus on the latitudinal range [60°S-
60°N] for SST and [55°S-55°N] for clouds to avoid regions where
the correlation across reanalyzes is widely low51 or data are not
continuously available. All networks are built using detrended
monthly anomalies.
Figure 1 presents strength maps over the period 1971–2015.

Domains are similar in the reanalyzes, but generally weaker in
COBE. The strongest domain covers the El Niño Southern
Oscillation (ENSO) region extending to 60°N with a pattern
reminiscent of the Pacific Decadal Oscillation (PDO) footprint.
Strong domains include the horseshoe areas north and south of
the equator, the eastern portion of the South Pacific, the tropical
Indian Ocean, the north Tropical Atlantic, and in the reanalyzes the
south Tropical Atlantic. A domain occupies the Warm Pool only in
HadISST. We verified that also the ERSSTv454 reanalysis network
and the MERRA-2 cloud fields presented later do not include it. In
the randomly chosen CESM member no domain occupies the
Warm Pool region and the south Tropical Atlantic area is
extremely weak. Both features are common to all other CESM
runs analyzed.
The connections between the strongest domains including the

Warm Pool for HadISST, and their lags are shown in Fig. 2. In the
reanalyzes the ENSO/PDO area is linked to all others at zero or
positive lags except for the south Tropical Atlantic, which is
anticorrelated and leads by 8 to 10 months. Positive (negative)
spring SST anomalies in the Equatorial Tropical Atlantic and in the
Gulf of Guinea indeed strengthen (weaken) the Walker circulation,
modifying the equatorial winds and the eastern Pacific upwelling
and favoring La Niña (El Niño) conditions the following winter55,56

through a Gill-Matsuno-type response.57 Such connection is only
partially counteracted by the thermodynamic link from the
ENSO area into the Tropical Atlantic through the warming of the
entire tropical troposphere following El Niños58,59 and by the
dynamical response of the tropical Atlantic trades to the Pacific
warming.59–61 In CESM links from the Pacific to the Indian Ocean
and north Tropical Atlantic are stronger than observed, while the
connection from the south Tropical Atlantic is missing. The
relation between ENSO and south Atlantic domains is indeed
weak and opposite in sign.
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The network analysis of cloud fields can contribute to diagnose
this common model bias.62 Despite the higher level of noise and
intermittency of cloud fields compared to SST, the δ-MAPS
outcome is insightful. Figure 3 presents maps of strength for all
domains and links from the ENSO area for the ice cloud fraction.
Focusing on the Equatorial and south Tropical Atlantic, two
domains are identified in MERRA-2, with the first negatively
connected to the Equatorial Pacific, and the southern one
positively correlated as expected in the thermodynamic response
to ENSO; in SST these domains are merged due to the oceanic
circulation. In the CESM ice cloud fraction network there is only
one domain, positively, but statistically insignificantly, linked to
ENSO; a weakly anticorrelated one is found entirely shifted into
the northern hemisphere. The domains in MERRA-2 are used to
define boxes to evaluate correlograms of SST anomalies with
respect to those from the E domain (Fig. 3e–f). In HadISST (or
COBE) both the thermodynamic feedback, lead by ENSO and
mostly effective into the southern box, and the dynamical Gill-
Matsuno teleconnection, lead by the Equatorial Atlantic, are
identified. The second dominates the total domain signal. In CESM
the dynamical connection is mostly absent, the Equatorial Atlantic
evolves independently of ENSO and the thermodynamic link is
stronger than observed63 but not sufficient to achieve statistical
significance. All other 29 members of the large-ensemble confirm
that CESM overestimates the thermodynamic feedback and
underestimates the dynamic teleconnection, which prevails only
in one run. In several integrations the thermodynamic feedback is

so strong that a significant link from ENSO to the south Tropical
Atlantic domain characterizes the SST network.

DISCUSSION: A WAY FORWARD
In seeking to understand past, present and future changes in our
climate is mandatory to leverage advances in KDD research while
accounting for the characteristics of climate data. KDD methods
that account for the characteristics of climate data can effectively
aid scientific theory and should be integral to any interdisciplinary
framework to quantify uncertainties in climate projections or to
unveil linkages between perturbations to the climate system and
its response. δ-MAPS, for example, infers the high-level abstract
linkages across components of the climate system,49 highlights

Fig. 1 SST domains identified by δ-MAPS and their strength in a
HadISST, b COBE, and c one member of the CESM ensemble over the
1971–2015 period. The strength of the domain occupying the ENSO
region (E) is off-scale and indicated atop of each panel

Fig. 2 SST network across the a seven of the strongest domains in
HadISST (the Warm Pool domain is excluded), b the seven strongest
domains in COBE, and c six strongest domains in CESM, where TAS
has no links. The color of each link represents the corresponding
cross-correlation. Arrows indicate signed definitive (positive or
negative) lags. The absence of arrow indicates that connections
are significant also at zero lags. Some (not all for clarity) lags are
indicated

Advancing climate science with knowledge
A Bracco et al.

3

Published in partnership with CECCR at King Abdulaziz University npj Climate and Atmospheric Science (2018)  20174 



quantifiable differences across datasets, and provides a reduced
form model that can be continuously informed from data updates.
It is therefore uniquely suited to assess impacts, evaluate model
performances and biases, and characterize pathway scenarios,
climate trajectories, and the propagation of perturbations from
local forcing agents (e.g., aerosols) across climate fields.
Immediate applications range from diagnosing representation

and changes in teleconnections—or connectivity in the case of
ecosystems—over space and time, to aiding adjoint models in a
general framework for regional or global attribution studies.

Data availability
All data sets used are publicly available. The software for δ-MAPS
is available at https://github.com/FabriFalasca/delta-MAPS
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