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ABSTRACT
Majority-inverter graphs (MIGs) are a logic representation with
remarkable algebraic and Boolean properties that enable efficient
logic optimizations beyond the capabilities of traditional logic repre-
sentations. Further, since many nano-emerging technologies, such
as quantum-dot cellular automata (QCA) or spin torque majority
gates (STMG), are inherently majority-based, MIGs serve as a natu-
ral logic representation to map into these technologies. So far, MIG
optimization methods predominantly target to reduce the depth of
the logic networks, corresponding to low delay implementations
in the respective technologies. In this paper, we introduce several
methods to optimize the size of MIGs. They can be applied such that
the depth of the logic network is preserved; therefore our methods
have a direct effect on the physical area, without worsening the
delay. Some methods are inspired by existing size optimization
algorithms for non-majority-based logic networks, others make
explicit use of the majority function and its properties. All methods
are Boolean—in contrast to algebraic optimization methods—which
has a positive effect on the quality but challenges their implemen-
tation. Our experiments show that using our methods the size of
MIGs in the EPFL combinational benchmark suite can be reduced
by up to 7.12%. When mapped to QCA and STMG technologies we
reduce the average area-delay-energy product by 2.31% and 2.07%,
respectively.
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1 INTRODUCTION
Many of today’s nano-emerging technologies, including spin-wave
devices [8], quantum-dot cellular automata (QCA, [10]), and spin
torque majority gates (STMG, [13]), are inherently majority-based.
As an example, the computation principle of spin-wave devices
is based on the interference of propagating spin waves and the
information is encoded in the phase of the waves. Being majority-
based, these technologies offer a particular inexpensive realization
of the majority operation. For example, in the QCA technology
the area requirements for the majority-of-three operation are more
than 2× smaller compared to the ones of an inverter.

The recent progress in nano-emerging technologies have sparked
a considerable interest in majority-based logic synthesis. In contrast
to conventional logic synthesis algorithms—being based on logic
primitives such as ‘AND’ or ‘OR’—majority-based algorithms em-
ploy intermediate data-structures capable of natively representing
and manipulating majority operations. In particular, competitive
solutions for majority-based delay optimization (see, e.g., [1]) and
inversion minimization (see, e.g., [18]) have been proposed.

In this paper, we concentrate onmajority-based size optimization.
We introduce size optimization algorithms for majority-inverter
graphs (MIGs), a logic network representation inwhich the only two
primitives are a majority-of-three gate and an inverter. We focus on
node replacement techniques that re-express the global function of
an existing majority node using other nodes already present in the
logic network. Nodes which are no longer used (including nodes
in their transitive fan-ins) can then be removed. The objective is
to reduce the size of the logic representation as much as possible
while maintaining the global input-output functionality of the logic
network (and preserving the logic network’s depth).

We introduce Boolean resubstitution for MIGs, an effective opti-
mization technique in conventional logic optimization flows, which
serves two purposes: (1) it achieves size reductions when other tech-
niques saturate and (2) helps to escape local minima in the logic
optimization flow and thus re-enables other size optimizations. We
show that finding a resubstitution for a single node in an MIG—
although requiring in the worst-case cubic time in the number of
majority nodes (instead of quadratic time for two-input nodes in
conventional logic representations)—can be done efficiently inMIGs
by leveraging a novel filtering approach that sorts out infeasible
resubstitution candidates as early as possible.

Moreover, we introduce relevance optimization, a novel node
replacement technique that makes use of the majority operation’s
functional properties and thus exploits optimization capabilities not
easily recognizable in conventional logic representations. We show
experimentally that in practice relevance optimization achieves
results competitive to general Boolean resubstitution such that
logic optimization flows for MIGs benefit from both.
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Figure 1: Example of an (a) AOIG representation and
(b) MIG representation for function prime5(x1, . . . ,x5) =
[(x5 . . . x1)2 is prime]. Majority-3, ‘AND’, and ‘OR’ nodes are
distinguished byM , ∧, and ∨, respectively.

Complemented edges are drawn using a dashed line.

All presented size optimizations can be integrated with existing
large-scale logic optimization frameworks. We present a proof-of-
concept implementation using windowing in combination with
truth tables. Experimental results using the EPFL benchmark suite
confirm the effectiveness of the novel optimization techniques. We
show that a single optimization pass can reduce the size of an al-
ready depth-optimized as well as already size-optimized MIG by
up to 7.12% and 2.83% (without increasing its depth1), respectively.
As baseline, we compare to the best-known state-of-the-art algo-
rithms for MIG depth and MIG size optimization. The resulting
improvements are within the expected range of 3% average reduc-
tion ratio reported for Boolean resubstitution in conventional logic
optimization flows [11] and enable depth- and size-oriented logic
optimization flows for MIGs that achieve an average depth reduc-
tion of up to 44.17% and an average size reduction of up to 18.13%,
respectively.

Almost none of the previous majority-based logic optimization
algorithms show the actual gain in area and delay after mapping the
logic networks to the corresponding technologies. We demonstrate
the effect of the proposed techniques both to the logic minimization
of MIGs and to area minimization when mapped to QCA and STMG
technologies. The experimental results confirm the effectiveness
of our approach. The size of MIGs can be improved by up to 7.12%
compared to the state-of-the-art MIG size optimization algorithms.
When being mapped to QCA and STMG, the optimized logic net-
works lead to an improvement in the average area-delay-energy
(ADE) product by 2.31% and 2.07%, respectively, compared to the
state-of-the-art mapping algorithm.

2 BACKGROUND

2.1 Majority-Inverter Graphs
Majority-inverter graphs (MIGs, [1]) are homogeneous logic net-
works. A MIG is a directed acyclic graph, where internal nodes
represent 3-input majority operations connected via edges that can
be complemented to represent inverters. Each node implements the
majority function of its three children x , y, and z, denoted as 〈xyz〉,
which evaluates to true if and only if at least two of the three inputs
are true [15]. MIGs are universal representation forms, which can

1In fact, the depth is further reduced.

be employed to efficiently represent any Boolean function. Tradi-
tional AND-OR-inverter graphs (AOIGs) are a special case of MIGs,
since 〈0xy〉 = x ∧ y and 〈1xy〉 = x ∨ y. It follows that MIGs can
be easily derived from AOIGs by node-wise replacement of the
‘AND’ and ‘OR’ operators by majority-3 operators with a constant
input. Fig. 1 shows both the AOIG and the MIG for the function
prime5(x1, . . . ,x5) = [(x5 . . . x1)2 is prime]. Note that the ‘AND’
gates in the MIG can be considered as majority nodes where one of
its inputs points to constant 0. The example illustrates that MIGs
allow for a more compact representation due to the expressiveness
of the majority operator. This positively influences the mapping
into majority-based technologies.

2.2 MIG Optimization Techniques
Besides representing Boolean functions, MIGs allow remarkable
logic optimizations. Optimization methods can be classified as al-
gebraic or Boolean and typically aim for either reducing the depth
(number of levels) or the size (number of nodes) of an MIG.

Algebraic optimization methods use a sequence of transforma-
tion rules to transform an MIG into an optimized version. For this
purpose, anMIG Boolean algebra together with its axiomatic system
are introduced in [1]. The axiomatic system consists of five prim-
itive axioms (identity, commutativity, distributivity, associativity,
and complement) and forms a sound and complete axiomatization
of MIG manipulation. As a consequence, given an MIG, all possi-
ble functionally equivalent MIG representations can be reached
by applying sequences of these axioms. Moroever, three derived
rules (relevance, complementary associativity, and substitution) are
introduced in [1]. In the context of this paper, only the complement
axiom and the relevance rule are important which we introduce
as the following transformation rules: (1) The self-duality of the
majority operation enables inverter propagation described by the

inverter propagation rule 〈xyz〉 = 〈x̄ȳz̄〉, which allows to move
inverters from inputs to outputs, and vice versa. (2) The relevance
rule 〈xyz〉 = 〈xyzx/ȳ 〉 allows to replace reconvergent variables
with their neighbors, i.e., each occurrence of x in z is replaced by ȳ
denoted by zx/ȳ .

Boolean optimization methods, in contrast to algebraic methods,
leverage each node’s (Boolean) function (and possibly additional
don’t care information) to improve an MIG representation. In gen-
eral, Boolean optimization methods are often more precise than
algebraic methods and achieve better results, but they are also
computationally more costly. One remarkable Boolean method par-
ticularly designed for MIGs was proposed in [2]: advantageous
orthogonal bit-errors are seeded into the MIG which are automati-
cally corrected leveraging the error correction capabilities of the
majority operation.

A logic optimization flow, that employs algebraic and Boolean
methods, for MIG depth reduction has been presented in [2].

Work on size reduction of MIGs is more sparse. Recently, an
exact synthesis method based on functional hashing has been pre-
sented [16]. The idea is to rewrite the MIG by replacing all 4-input
subgraphs with their minimal-size exact representation. In [16],
the search space for 4-input Boolean functions has been reduced
by making use of Boolean function classification. Overall, these
techniques produce large improvements, but suffer from scalability
issues when all Boolean functions with more than 4 inputs have to
be precomputed. In [7], the use of exact synthesis for logic rewriting
is further improved by computing the exact subgraph only for those



Size Optimization of MIGs with an Application to QCA and STMG Technologies NANOARCH ’18, July 17–19, 2018, Athens, Greece

functions that appear in practice. This has been achieved by using
lookup-table-based mapping techniques (LUT mapping, [14]). In
addition to the mentioned optimization methods, other algorithms
have been presented. In [9], the network is decomposed into 3-input
subgraphs; all 3-input subgraphs are then replaced by their minimal
majority expression. Further, node redundancies are removed by
keeping only one of the nodes implementing the same function.
The method has been extended to work with all 4-input subgraphs
in [20]. A size optimization node merging approach, which removes
node redundancies in MIGs, has been presented in [6].

Besides size and depth, other metrics can be optimized. As an
example, inversion optimization plays a key role for applications
that concern emerging technologies. Some of the most promising
nano-technologies face inversion limitations and hence benefit from
inversion minimization: (i) some of them do not have an efficient
way to implement inversion (see, e.g., QCA [10]); (ii) some others
do not have the possibility to build inversions (see, e.g., STMG [12]).
In [18], a method to optimize the number of MIG inversions accord-
ing to the target technology is presented. This method exploits the
inverter propagation rule to minimize complemented edges. The
same property is used in [19] to remove inversions in the network
by moving them on primary inputs.

3 SIZE OPTIMIZATION
In this paper, we revise functional reduction and introduce two
new size optimization methods for MIGs: (i) Boolean resubstitu-
tion and (ii) relevance optimization. The first method is inspired
by existing size optimization algorithms for non-majority-based
logic networks; the second method leverages the properties of the
majority function. Both methods are Boolean and make use of
functional information computed for each node in the logic net-
work. The basis for all optimization methods is the scalable logic
synthesis framework described by Mishchenko and Brayton [11]:
a small window (with restricted fan-in and unlimited fan-out) is
moved over the logic network. The Boolean function of each node
within the window is computed using exhaustive simulation. The
approach is fast (Boolean functions are represented as truth tables),
scales well, and often outperforms computation based on binary
decision diagrams [4] or Boolean satisfiability, when windows up
to 16 inputs are considered.

3.1 Windowing
Windowing is an approach to limit the scope of an optimization
procedure to a small fraction of a logic network that allows in many
cases to drastically improve the scalability. The pseudocode of the
windowing procedure is shown as Algorithm 1. The procedure
takes as input an MIGM and two positive integers l and s , where
l denotes the maximal number of primary inputs (cut-size limit)
of the window and s denotes the maximal number of nodes (node
limit) of the window. As result, the procedure returns the MIGM
optimized for size.

In a loop, the procedure iterates over all nodes p of M in topo-
logical order and generates for each of the nodes a reconvergence-
driven cut C starting from p with at most l nodes (see [11] for a
detailed description of the cut computation). The cut C serves as
the input boundary of the windowW . Starting from the nodes in
C , the windowW is iteratively extended by merging parent nodes
if all their children are already inW . The procedure terminates if
no new parents can be merged or the number of window nodes

Input:MIGM , cut-size limit l , node limit s
Output: Optimized MIGM

1 foreach node p inM in topological order do
2 C = ComputeCut(M, {p}, l);

3 W = ExpandToWindow(M,C, s);

4 Ŵ = OptimizationProcedure(W ,p);

5 M = M[W ← Ŵ ];

Algorithm 1: Windowed MIG Optimization

1 ComputeTruthTable(W);

2 foreach node u inW in topological order do
3 foreach node v inW \{u} in topological order do
4 if v ∈ TransitiveFanout(u) then continue;

5 if u = v then
6 Merge(W ,u,v);

7 else if u = v̄ then
8 Merge(W ,u, v̄);

Algorithm 2: Functional Reduction

exceeds s . The obtained windowW is then locally optimized to Ŵ
using an optimization procedure. Finally, the windowW in M is

replaced by the optimized window Ŵ .

3.2 Functional Reduction
Functional reduction (FR) [5, 6, 9] is an approach that identifies
and merges functionally equivalent nodes in a logic network such
that after its application no two nodes in the functionally reduced
network represent the same logic function. In this section, we revise
the basic functional reduction approach of [9] and present a scal-
able variant utilizing the windowing procedure from the previous
section. The pseudocode is shown in Algorithm 2.

Functional reduction is applied to a windowW . In an iterative
process, each node u ∈W is checked for functionally equivalence
with each node v ∈W not in the transitive fan-out of u. If u and
v (u and v̄) represent the same logic function, i.e., u = v (u = v̄),
then u and v (v̄) are merged inW , such that the larger logic cone is
replaced by the smaller logic cone and the overall size is reduced.

3.3 Boolean Resubstitution
Boolean resubstitution (RS) expresses the logic function of a node
using other nodes already present in the logic network. Resub-
stitution techniques are distinguished by the number k of logic
operators additionally added to the logic network when substitut-
ing a logic function, i.e., 0-resubstitution expresses a logic function
by one other logic function without adding a new logic operator;
1-resubstitution expresses a logic function by adding one logic
operator, and so forth.

A resubstitution of a candidate node p with the logic function f
is considered beneficial if the number of nodes of W decreases
after substitution, i.e., if Gain(p, f ) ≥ 1 which corresponds to the
number of majority operators freed. We consider 0-resubstitution
and 1-resubstitution only:

The 0-resubstitution algorithm is an asymmetric variant of func-
tional reduction. Its pseudocode is identical to Algorithm 2, but
instead of iterating over all nodes u (line 2) the fixed candidate
node p is used.
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1 ComputeTruthTable(W);

2 if TryResubstitution0(W ,p) then return;

3 if TryResubstitution1(W ,p) then return;

4 [...]

1 foreach node x ∈W \{p} in topological order do
2 if x ∈ TransitiveFanout(p) then continue;

3 foreach node y ∈W \{p,x} in top. order do
4 if y ∈ TransitiveFanout(p) then continue;

5 if p � 〈xyp〉 then continue;

6 foreach node z ∈W \{p,x ,y} in top. order do
7 if z ∈ TransitiveFanout(p) then continue;

8 if Gain(p, 〈xyz〉) < 1 then continue;

9 if p = 〈xyz〉 then
10 W =W [p ← 〈xyz〉];

11 return true;

12 else if p = 〈x̄yz〉 then
13 W =W [p ← 〈x̄yz〉];

14 return true;

15 return false;

Algorithm 3: TryResubstitution1

The 1-resubstitution algorithm shown as Algorithm 3 searches
for nodes x , y, z to replace p using one majority operator. Note that
due to the inverter propagation rule (see Section 2.2) it suffices to
consider x̄ as the only negated child. To further speed up compu-
tation, we employ a Boolean filter derived from the majority law.
If x � y, then 〈xyp〉 = p has to hold, i.e., after selecting nodes for
x and y, one does not have to iterate over z whenever the filter
applies.

3.4 Relevance Optimization
In this section, we introduce relevance optimization (RO), a novel
node replacement technique for MIGs that exploits the properties of
the majority function and thus cannot be employed when restricted
to gate libraries using only ‘NOT’ and ‘AND’ or ‘NOT’ and ‘OR’.

Theorem 1 (Replacement rule2). We have 〈xyz〉 = 〈wyz〉 if
and only if (x ⊕w)(y ⊕ z) = 0, or in other words y � z ⇒ w = x .

The replacement rule describes under which condition one op-
erand in a majority expression can be replaced by another one.
One can readily verify that the aforementioned relevance rule is a
special case of the replacement rule.

Corollary 1 (Relevance rule2). We have 〈xyz〉 = 〈xy/z̄yz〉,
where xy/z̄ is obtained by replacing all occurrences of y with z̄ in x .

The replacement rule can be used to formulate an optimization
procedure that replaces a child node x of a majority expression
m = 〈xyz〉 with another node w if (x ⊕ w)(y ⊕ z) = 0 holds and
x is not used by any other logic function in the network or as a
primary output. These additional structural conditions stem from
the fact that the replacement rule only enforces x = w if y � z.
Otherwise, if y = z, the result ofm is determined by the majority
law. However, in these cases, x � w may hold which would affect
other logic functions that use x . Further, to guarantee that the logic

2The proof is presented in [17].

network stays free of cycles, the node p cannot be chosen from the
transitive fan-out ofm.

The replacement rule allows to reduce the complexity of a logic
network in two ways: (i) Ifw is replaced by x , then x is no longer
used in the logic network and can be removed. The size of the
logic network is reduced if and only if x is not a constant. (ii) If the
logic cone of w is smaller than x , the logic cone ofm is reduced.
Consequently, if multiple different nodesw satisfy the replacement
rule, the x with the smallest logic cone is preferred. To find good
candidate pairs x ,w fast, we iterate overw in topological order, but
overm in reverse topological order:

1 ComputeTruthTable(W);

2 foreach nodem = 〈xyz〉 inW in reverse top. order do
3 foreach nodew inW \{m} in topological order do
4 if |Fanout(x)| > 1 then continue;

5 if w ∈ TransitiveFanout(m) then continue;

6 if (x ⊕w)(y ⊕ z) = 0 then
7 W =W [x ← w];

8 return;

9 else if (x ⊕ w̄)(y ⊕ z) = 0 then
10 W =W [x ← w̄];

11 return;

4 EXPERIMENTAL RESULTS
We implemented the presented size optimization methods in C++3

and evaluated them using the EPFL combinational benchmark
suite.4 All experiments were conducted on an Intel(R) Xeon(R)
CPU E5-2690 v4 @ 2.60GHz. The windows were limited to at most
12 inputs and at most 200 nodes. We apply ABC [3] equivalence
checking to ensure the correct behavior of each benchmark.

4.1 MIG Size Reduction
We show the size improvement obtained by applying each of the
mentioned techniques individually, and we compare our results
over existing approaches from the state of the art for depth opti-
mization [1] and size optimization [7]. In the first case, we focus on
reducing the size without further increasing the depth. In the latter
case, we focus on reducing the size without any additional restric-
tions on the depth. The proposed optimization methods achieve
reductions in both cases.

Tables 1 and 2 show the results for all three optimization meth-
ods when applied individually to the benchmarks. The first column
names the benchmarks, the remaining columns are organized in
five blocks: the first block (Benchmark) lists the number of pri-
mary inputs and primary output as well as the size and depth for
the benchmarks. In the second block (Prev. flow), we present the
size and depth of the MIGs when optimized with the best-known
state-of-the-art approach. The other three blocks (FR, RS, RO) are
structured in the same way and present the size and depth after
an optimization method was applied as well as the time required
for optimizing the benchmark. In the last row of each table, the
mean size and depth reductions are summarized for all benchmarks.
The row total reduction shows the reductions of the benchmarks
3Source code for the algorithms will be published with the publication of the paper.
4http://lsi.epfl.ch/benchmarks
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achieved by the overall synthesis flows with respect to the unopti-
mized benchmarks. The row improvement shows the reductions
achieved by the new techniques with respect to the previous flow.

Starting from the depth-optimized MIGs, the three methods are
capable of reducing the size of the MIGs by 2.03%, 7.12%, and 4.80%,
respectively, without affecting the depth negatively. Contrarily, the
depth even reduced by 0.19%, 1.01%, and 0.19%, respectively. The
depth-preservation is achieved by keeping track of the depths of
the nodes during logic optimization and forbidding updates on the
logic network that lead to an increased depth.

Starting from the size-optimizedMIGs, the three methods further
reduced the size of theMIGs by 1.04%, 2.34%, and 2.83%, respectively.
The size optimization also had a positive effect on the depth—the
depth reduced by 2.59%, 4.97%, and 4.63%, respectively.

In these experiments, the optimization methods were applied
only once. We argue that the presented techniques are, as in conven-
tional logic synthesis, more powerful when applied several times
interleavedwith other optimization passes, e.g., rewriting, factoring,
or balancing, which are not yet available for MIGs.

Overall, the size optimization techniques are able to regain up
to 7.12% size while preserving a depth reduction of up to 44.17%.
Moreover, when focusing on the size-optimized MIGs, the novel rel-
evance optimization achieves a better size reduction than functional
reduction and resubstitution, which results in an overall reduction
of up to 18.13% of nodes and up to 4.63% of levels of the MIGs.

4.2 Area-Delay-Energy Product Reduction for
QCA and STMG

We evaluate the efficiency of our size optimization by mapping the
logic networks into QCA and STMGs. We compare our results to
the state-of-the-art approach presented in [20], which we reimple-
mented using FR from Section 3 and windowing to achieve larger
scalability and therefore address larger benchmarks. In our experi-
ments, we found that the results obtained with our implementation
of [20] outperform the more recently presented results in [6]; the
latter can also easily be validated by comparing the numbers for
size and depth in Table 2 from the previous section to [6, Table III]
for the common benchmarks (i2c, max, square, log2, multiplier).

Table 3 shows area, delay, energy, and the ADE product for each
of the benchmarks when mapped to QCA and STMG technologies,
respectively. Total reduction compares the results to the original
EPFL benchmarks, while the improvement is evaluated with respect
to [20]. In this case, since STMGs and QCA technologies have
limited possibilities for inverter implementation, we always applied
the algorithm presented in [19] in order to create inversion free
circuits. For size optimization we used the approach in [7] followed
by the FR, RO, and RS optimization techniques. To obtain area,
delay, and energy, we use the same specifications as in [19]. Our
optimization method is able to further reduce the ADE product by
2.31% for QCA and by 2.07% for STMGs. Overall, the MIG-based
synthesis flow is able to obtain an average improvement of 20.81%
and 55.63% for QCA and STMG, respectively.

5 CONCLUSIONS
Majority-based logic synthesis is a key enabler for majority-based
nano-emerging technologies. In this paper, we stocked up the reper-
toire of optimization techniques for MIGs with powerful size opti-
mization methods in order to exploit the full potential of MIGs for
majority-based nano-emerging technologies. Experimental results

for the proposed optimization methods confirmed the effectiveness
of our proposed optimization techniques. They show significant
size reductions when compared to the state-of-the-art depth and
size optimizations for MIGs. We also show the gain after mapping
the optimized logic networks to the technologies. Overall logic
minimization accounts for a total reduction of 20.81% and 55.63% of
the area-delay-energy products for STMG and QCA, respectively.
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Table 1: Optimization Methods Applied to Depth Optimized Benchmarks

Benchmark Prev. flow [1] FR [6] RS RO

I/O Size Depth Size Depth Size Depth Time Size Depth Time Size Depth Time
[s] [s] [s]

dec 8 / 256 304 3 304 3 304 3 0.00 304 3 0.14 304 3 0.00
ctrl 7 / 26 174 10 180 6 176 6 0.03 169 6 0.09 160 6 0.05
bar 135 / 128 3336 12 3336 12 3336 12 2.07 3199 12 12.77 3336 12 3.27
cavlc 10 / 11 693 16 708 11 701 11 0.20 695 11 0.56 680 11 0.24
int2float 11 / 7 260 16 260 8 260 8 0.06 255 8 0.17 244 8 0.06
i2c 147 / 142 1342 20 1457 9 1454 9 0.37 1423 9 1.24 1420 9 0.49
router 60 / 30 257 54 365 26 362 26 0.16 349 26 1.22 363 26 0.21
voter 1001 / 1 13758 70 14075 60 12838 58 63.48 11157 58 224.40 12670 57 66.82
arbiter 256 / 129 11839 87 11523 77 11523 77 13.22 11523 77 30.44 11523 77 14.67
mem_ctrl 1204 / 1231 46836 114 52103 79 51816 79 361.77 49889 77 1818.65 51524 80 484.01
sin 24 / 25 5416 225 6679 112 6523 111 9.08 6138 108 64.08 6409 112 13.28
square 64 / 128 18484 250 21927 39 21548 39 79.12 19253 38 579.54 21081 39 124.04
priority 128 / 8 978 250 1148 126 1148 126 0.65 1050 126 7.10 951 126 1.10
adder 256 / 129 1020 255 1859 18 1760 18 1.05 1666 18 4.68 1825 18 0.98
multiplier 128 / 128 27062 274 33355 113 32952 112 178.21 31425 106 1670.05 30790 113 563.70
max 512 / 130 2865 287 4754 48 4666 48 5.48 4658 48 17.69 4677 48 6.38
log2 32 / 32 32060 444 36936 262 36406 262 209.01 34233 223 1660.81 35843 262 324.71
sqrt 128 / 64 24618 5058 32138 3430 31808 3447 137.56 30429 3430 611.02 31842 3430 154.10

total reduction -19.09% +43.16% -17.06% +43.35% -11.97% +44.17% -14.28% +43.35%
improvement 0.00% 0.00% +2.03% +0.19% +7.12% +1.01% +4.80% +0.19%

Table 2: Optimization Methods Applied to Size Optimized Benchmarks

Benchmark Prev. flow [7] FR [6] RS RO

I/O Size Depth Size Depth Size Depth Time Size Depth Time Size Depth Time
[s] [s] [s]

ctrl 7 / 26 174 10 139 10 139 10 0.01 128 9 0.06 135 9 0.02
router 60 / 30 257 54 220 54 217 54 0.08 215 54 1.05 211 54 0.11
int2float 11 / 7 260 16 263 18 261 16 0.04 256 16 0.46 254 16 0.06
dec 8 / 256 304 3 328 4 328 4 0.00 328 4 0.26 328 4 0.01
cavlc 10 / 11 693 16 757 19 744 19 0.29 725 19 2.43 724 19 0.41
priority 128 / 8 978 250 993 245 993 245 2.15 978 239 9.95 807 125 0.92
adder 256 / 129 1020 255 386 129 386 129 0.08 385 129 1.29 386 129 0.07
i2c 147 / 142 1342 20 1329 23 1310 23 0.42 1298 23 2.78 1287 23 0.64
max 512 / 130 2865 287 2491 290 2428 261 4.72 2469 280 18.52 2448 279 5.70
bar 135 / 128 3336 12 3110 14 3110 14 2.40 3110 13 14.76 3088 14 3.75
sin 24 / 25 5416 225 4496 167 4480 162 4.74 4465 158 36.31 4480 170 6.08
arbiter 256 / 129 11839 87 8957 63 8957 63 8.82 8957 63 45.41 8957 63 11.97
voter 1001 / 1 13758 70 7767 67 6649 59 31.90 5787 47 87.81 6537 61 45.10
square 64 / 128 18484 250 13671 156 13390 130 61.67 13194 128 109.84 13463 154 47.55
sqrt 128 / 64 24618 5058 21066 5989 21063 5989 102.62 20976 5942 624.11 21060 5988 109.43
multiplier 128 / 128 27062 274 19844 143 19824 143 72.16 19824 141 252.05 19804 143 122.00
log2 32 / 32 32060 444 25040 230 24999 230 89.96 24996 229 257.55 24977 230 109.43
mem_ctrl 1204 / 1231 46836 114 45034 144 44476 144 410.72 43305 136 1170.23 44118 143 600.50

total reduction +15.30% +5.59% +16.34% +8.18% +17.64% +10.56% +18.13% +10.22%
improvement 0.00% 0.00% +1.04% +2.59% +2.34% +4.97% +2.83% +4.63%

Table 3: Size Optimization Techniques (after QCA and STMG Technology Mapping)

Benchmark Baseline [20] QCA Opt. QCA Baseline [20] STMG Opt. STMG

Area Delay Energy ADE Area Delay Energy ADE Area Delay Energy ADE Area Delay Energy ADE

[μm2] [ns] [J] [μm2] [ns] [J] [μm2] [ns] [J] [μm2] [ns] [J]

adder 1.6 0.5 4.0E-18 3.5E-18 1.6 0.5 4.0E-18 3.5E-18 15.4 193.5 5.4E-11 1.6E-07 15.4 193.5 5.4E-11 1.6E-07
arbiter 12.8 0.3 3.1E-17 1.1E-16 12.8 0.3 3.1E-17 1.1E-16 35.2 94.5 5.9E-10 2.0E-06 35.2 94.5 5.9E-10 2.0E-06
bar 7.9 0.1 1.9E-17 1.1E-17 7.8 0.1 1.9E-17 1.0E-17 21.9 21.0 7.2E-10 3.3E-07 21.9 19.5 7.1E-10 3.0E-07
cavlc 1.4 0.1 3.3E-18 4.1E-19 1.3 0.1 3.2E-18 3.7E-19 4.0 28.5 1.3E-10 1.5E-08 3.8 28.5 1.2E-10 1.3E-08
ctrl 0.3 0.1 6.2E-19 8.6E-21 0.2 0.1 5.7E-19 6.6E-21 0.7 15.0 2.3E-11 2.4E-10 0.6 13.5 2.1E-11 1.8E-10
dec 0.4 0.0 1.1E-18 1.4E-20 0.4 0.0 1.1E-18 1.4E-20 1.2 6.0 2.8E-11 2.0E-10 1.2 6.0 2.8E-11 2.0E-10
i2c 2.6 0.1 6.5E-18 1.8E-18 2.5 0.1 6.1E-18 1.6E-18 6.9 34.5 2.1E-10 5.0E-08 6.6 34.5 2.0E-10 4.6E-08
int2float 0.5 0.1 1.2E-18 5.0E-20 0.5 0.1 1.2E-18 4.3E-20 1.4 24.0 4.8E-11 1.6E-09 1.3 24.0 4.4E-11 1.4E-09
log2 60.0 0.9 1.5E-16 8.2E-15 59.9 0.9 1.5E-16 8.2E-15 179.6 345.0 2.1E-09 1.3E-04 179.3 343.5 2.0E-09 1.2E-04
max 7.4 1.1 1.8E-17 1.4E-16 7.3 1.1 1.8E-17 1.4E-16 30.7 391.5 4.3E-10 5.2E-06 30.7 390.0 4.3E-10 5.1E-06
mem 92.4 0.6 2.3E-16 1.2E-14 86.3 0.6 2.1E-16 1.0E-14 265.2 216.0 6.5E-09 3.7E-04 247.0 204.0 6.0E-09 3.0E-04
mult 47.7 0.6 1.2E-16 3.3E-15 47.7 0.6 1.2E-16 3.2E-15 141.6 214.5 2.2E-09 6.6E-05 141.6 211.5 2.2E-09 6.5E-05
priority 2.6 1.0 6.5E-18 1.7E-17 2.6 1.0 6.3E-18 1.6E-17 7.7 367.5 1.8E-10 5.0E-07 7.7 358.5 1.7E-10 4.8E-07
router 0.7 0.2 1.8E-18 3.1E-19 0.7 0.2 1.8E-18 2.9E-19 3.6 81.0 4.2E-11 1.2E-08 3.6 81.0 4.1E-11 1.2E-08
sin 10.7 0.7 2.6E-17 1.9E-16 10.6 0.7 2.6E-17 1.8E-16 31.8 243.0 3.5E-10 2.7E-06 31.6 240.0 3.3E-10 2.5E-06
sqrt 51.0 24.0 1.3E-16 1.5E-13 50.8 23.8 1.2E-16 1.5E-13 151.6 8983.5 1.6E-09 2.2E-03 150.9 8911.5 1.6E-09 2.2E-03
square 32.0 0.5 7.8E-17 1.3E-15 31.0 0.5 7.6E-17 1.3E-15 95.1 195.0 1.6E-09 3.0E-05 92.3 193.5 1.6E-09 2.8E-05
voter 19.9 0.3 4.9E-17 2.4E-16 17.6 0.2 4.3E-17 1.6E-16 60.1 88.5 6.7E-10 3.6E-06 60.1 73.5 5.8E-10 2.6E-06

total reduction +18.50% +20.81% +53.56% +55.63%
improvement 0.00% +2.31% 0.00% +2.07%


